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ABSTRACT

In this paper we propose a concept of a modular robot

that can mainly be used for testing control algorithms in

research work and in education. In our research work

the main purpose is the experimental testing of com-

puted torque control algorithms of underactuated dy-

namical systems, which are modeled by non-minimum

set of descriptor coordinates. Various control meth-

ods are known being able to handle these type of con-

trol systems. Before the application of these methods

on complex robotic structures experimental testing on

simpler robotic systems is also needed additionally to

the simulational tests.

The benefit of the development of a customized mod-

ular manipulator is to get a flexibly programmable and

reconfigurable robot which can be built up in several

various architectures. The modular structure makes pos-

sible to build up different configuration robots, includ-

ing serial and closed kinematic chain robots. The de-

sign and tune of a control strategy for complex and of-

ten underactuated systems require practical knowledge

and experience of sensing, actuating and data process-

ing based on computers. This predictably low price ap-

plication makes possible to investigate the control of

a serial, parallel or hybrid kinematic chained robot in

real environment for educational or research purposes.

An other important task is the portability and compat-

ibility, which means that the system will be able to be

mobilized easily and to be controlled by any PC using

commercial softwares like the Matlab.

Index Terms— Modular robot, underactuated ro-

botics, computed torque control, computed desired com-

puted torque control
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1. INTRODUCTION

Modular robots usually builds up of multiple building

parts of a relatively small variety, with uniform docking

interfaces. The interfaces allow transfer of mechanical

forces and torques, electrical power, and communica-

tion throughout the robot. The modular building blocks

often consist of some primary structural actuated unit

and potentially some additional specialized units such

as grippers, wheels, cameras, etc. [1].

Modular robotic systems can be divided into the

family of not self-reconfigurable and self-reconfigurable

systems. The self-reconfigurable systems provides the

capability of doing a wide variety of tasks because of

their effectively changing topology.

Self-reconfigurable robot systems appeared first in

the late 1980s when the concept of the common con-

nection interface was applied in the CEBOT (short for

cellular robot) modular robotic system [2]. Since then

several self-reconfigurable modular robotic systems ha-

ve been appeared. The modular transformer (MTRAN)

series [3] incorporates the advantages of hybrid chain

and lattice system [1]. The Miche system [4] has been

developed at MIT. Each modules of this modular lat-

tice system is an autonomous robot cube capable of

connecting to and communicating with its immediate

neighbors. The group of modules can be assembled

into a complex structure with the help of distributed

control algorithms. PolyBot [5] chain self-reconfigura-

tion system was created at Palo Alto Research Center

(PARC). Each cubic shaped module has one rotational

degree of freedom. PolyBot has demonstrated many

modes of locomotion including: biped walking, snake-

like locomotion, climbing, etc. An other system with

mechanically similar modules is Molecube system de-

veloped at Cornell University [6], built to physically

demonstrate kinematic self-reproduction. The theoret-

ical existence of arbitrarily sized self-replicating ma-

chines has been mathematically demonstrated. The Su-

perBot [7] seen in Fig.1 has been developed at the Uni-
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Fig. 1. KUKA light weight robot (left), SuperBot from

the University of Southern California (right)

versity of Southern California as a deployable self-re-

configurable robot for real-world applications outside

laboratories. Its modules have a hybrid chain and lat-

tice architecture.

Not self-reconfigurable systems forms the other lar-

ge group of modular robots. The goal of the develop-

ment of such systems is to obtain the possibility of con-

structing large variety of configurations mainly for re-

search and educational purposes. Light-weight robots

usually fits to this goal and generally consist of uni-

fied building parts. The DLR Institute of Robotics and

Mechatronics, designed several light-weight robotic sys-

tems: DLR Light-Weight Robot I, II and III [8, 9].

DLR’s light-weight robots are composed by unified mo-

dules and have an outstanding ratio of payload to to-

tal mass. These systems are mainly applied in univer-

sity research work. The light-weight robot designed

by the KUKA Robotics company [10] is also interest-

ing for researchers in the field of robotics, and besides

the system is also important in the industry. The con-

tribution to the research into new fields of application

for robotics co-operating with universities is aimed by

the KUKA Robotics company keeping in focus the re-

cently designed modular structured light-weight robot.

An other basically modular robotic system in the indus-

try is the modular robotic arm designed by the Robot-

nik company [11]. The modular arm includes modular

servo-actuators composed by a motor and an attached

gearbox. A power supply unit and a controller is also

integrated in the system, thus, as an important feature,

the modular arm does not need an external control unit.

Hence, the communication between the arm and the en-

vironment is reduced to minimal: 2 wires for commu-

nication and 2 for power.

Because of the criteria explained in the following

sections none of the above mentioned systems is not

suitable for our purposes. In this work we design a

manually reconfigurable modular robotic system for re-

search and educational purposes. The main goal is the

experimental testing of computed torque control algo-

rithms of underactuated dynamical systems, which are

modeled by non-minimum set of descriptor coordinates.

2. THE CONTROL ALGORITHMS AIMED TO
TEST EXPERIMENTALLY

This section summarizes the control problems planned

to be studied experimentally. The mechanical structure

of the proposed modular system is polarized to be as

suitable as possible for these control algorithms.

2.1. Overview

In general computed torque control (CTC) method can

be used if the given trajectory of the end effector of the

robot has to be followed with minimal deviation. The

CTC method requires an accurate dynamical model and

its inverse kinematics and dynamics [12]. The accu-

rate following of a prescribed trajectory is a typical de-

mand e.g. in industrial robotic systems, surgical sys-

tems [13] or in the case of domestic robots such as the

ACROBOTER system [14].

In our research work we apply the CTC method

for underactuated dynamical systems. Generally a sys-

tem is underactuated if the rank of the input matrix is

smaller than the number of degrees of freedom (DoF).

Thus, if a dynamical system has less independent actu-

ators than DoFs, it is underactuated [15].

In practice the controlled dynamical systems may

be underactuated as in the case of unmanned aerospace

and under-water vehicles [16]. The elasticity of the me-

chanical parts of a controlled dynamical system also

can be handled as an underactuated problem [17]. Sev-

eral specially designed robotic systems are also under-

actuated such as the ACROBOTER service robot [14].

In general the application of the computed torque

control leads to a differential algebraic equation (DAE)

problem [18, 19] because the generalized coordinates

of the system as differential variables and the control

inputs as algebraic variables are to be calculated from

the equations results from the joined inverse dynamical

and kinematical calculation.

A basic aim of our research is to apply the CTC

method for underactuated multibody systems. Multi-

body systems, especially those which contain closed

kinematic chain, cannot be efficiently modeled in the

most common way, when a minimum set of general-

ized coordinates is chosen. Instead, redundant set of

descriptor coordinates can be used with geometric con-

straints, in order to avoid numerically expensive com-

putations [20]. Because of the geometric constraints

between the redundant coordinates, algebraic equations

arise in the resulting equation of motion.

If we consider the above mentioned phenomena we

can conclude that the application of the CTC method

for underactuated systems modeled by redundant coor-

dinates is a challenging task because the control law is

formulated in the form of a DAE [17, 18, 19, 21, 22].

Several methods exists for the solution of the problem

which led us to develop a modular robot, on which the



computed torque control algorithms for underactuated

dynamical systems modeled by non-minimum set of

coordinates can be experimentally tested.

2.2. Problem formulation with redundant
coordinates

The CTC method for underactuated systems can be gen-
eralized for systems modeled by non-minimum set of
coordinates. In such case the dynamical model can be
written in the form of a differential algebraic equation,
which has the following general form [15, 20]:

Mq̈ + C(q, q̇) + ΦΦΦT
q (q)λλλ = Q(q) + H(q)u, (1)

φφφ(q) = 0, (2)

where M ∈ R
n×n is the constant massmatrix, C(q, q̇)

∈ R
n is the vector of the forces arise from the dynam-

ics of the system, and ΦΦΦq(q) = ∂φφφ(q)/∂q ∈ R
m×n

is the constraint Jacobian associated with the geomet-

ric constraints φφφ(q) ∈ R
m. Q(q) ∈ R

n is the vector

of gravitational forces. H(q) ∈ R
n×l is the control in-

put matrix and u ∈ R
l is the control input vector. We

assume that the dimension of the control input l is less

than the degrees of freedom n − m.
The inverse kinematical and dynamical calculations

have unique solution if the number of control inputs
and the dimension of the task is equal [17]. Thus we
assume that the task is defined by l number of algebraic
equations. This set of additional constraint equations
are the so-called servo-constraints (control-constraints)
φφφs(q, t) ∈ R

l:

φφφs(q, t) = 0. (3)

We assume that the servo-constraints can be satisfied

with bounded control forces.
In special cases we can assume that these servo-

constraint equations can be written in the following form:

φφφs(q, t) = g(q) − p(t), (4)

where g(q) represents, for example, the end-effector

position of the robot as the function of the descriptor

coordinates and p(t) is an arbitrarily prescribed func-

tion of time expressing the performance goal to be re-

alized [17].
In some cases the servo-constraints and a well cho-

sen subset of geometric constraints can be solved for
the controlled coordinates qc in closed form. Then the
task can be defined by

qc = qd
c , (5)

where the superscript d refers to the desired coordinate
value ore one can say desired trajectory. In this formu-
lation the controlled coordinates are a prescribed func-
tion of time. In such case one can split the descriptor
coordinates into controlled and uncontrolled part as:

qc = ST
c q, (6)

qu = ST
uq, (7)

respectively, where Sc and Su are task dependent se-

lector matrices. In some of the control methods over-

viewed in the further sections this simplification can be

utilized for saving computational time.

2.3. Analytical solution

In simple cases analytical solution may exist for the

problem defined in section 2.2. The analytical inverse

dynamical calculation of an underactuated crane model

was demonstrated in [19]. This reference uses simple

algebraic operations to solve the problem, however the

application of Laplace-transformation is a more gen-

eral method for linear systems. After the Laplace-trans-

formation of equations (1), (2) and (3) the Laplace-

transform of the control input u can be calculated as

a solution of a linear algebraic equation system. After

that the inverse Laplace-transformation can be applied.

2.4. ODE form of the equation of motion

For the application of almost all control theorem, the

constraint forces, mathematically the Lagrange multi-

pliers, have to be eliminated from the equation of mo-

tion (1).
For this, one choice is the method of Lagrange mul-

tipliers [20]. In order to do this one can use the geomet-
ric constraints in the level of acceleration by differen-
tiating the constraint equation (2) twice with respect to
time:

ΦΦΦqq̈ + Φ̇ΦΦqq̇ = 0. (8)

Substituting (8) into the equation of motion (1) the La-
grange multipliers can be expressed in closed form:

λλλ = (ΦΦΦqM
−1ΦΦΦT

q )−1(ΦΦΦqM
−1(Q + Hu) + Φ̇ΦΦqq̇). (9)

After substituting (9) back into the equation of motion

(1) the acceleration can be expressed directly. How-

ever, important to notice that the resulting ODE is un-

stable thus it cannot be used for simulations only for

the calculation of the control input in a definite time

instant.
An other possibility to transform the equation of

motion into ODE form is the projection of the equation
of motion (1) into the proper subspaces [23]. Let us
consider the decomposition of the variation of the de-
scriptor coordinate velocity δq into the admissible δqa

and the constrained δqc vectors:

δq = δqa + δqc. (10)

With the assumption that the geometric constraints does
not depend on time explicitly from the time derivative
of the constraint equation (2) we can write that

ΦΦΦqδq̇ = 0. (11)

Besides the constraint Jacobian ΦΦΦq is composed by the
gradient vectors of the geometric constraints which lead



to the following expression for the variation of the con-
strained velocities:

ΦΦΦqδq̇c = 0, (12)

from which considering (11) one can obtain:

ΦΦΦqδq̇a = 0. (13)

The vector δq̇a appearing in (13) is the difference of
two possible velocities admitted by the geometric con-
straints, so it is the virtual velocity in the classical sense.
Moreover we can state that (13) is satisfied if δq̇a is in
the null space of ΦΦΦq defined as:

δq̇a = Paδq̇, (14)

Pa = I −ΦΦΦ†
qΦΦΦq, (15)

where ΦΦΦ†
q is the Moore-Penrose pseudoinverse of the

constraint Jacobian. Finally we gain the equation of the
motion admitted by the geometric constraints by using
the principle of virtual power and the projection matrix
defined by (15):

PT
a [Mq̈ + C(q, q̇) − Q(q) − H(q)u] = 0, (16)

One can observe that the calculation of the pseudoin-
verse ΦΦΦ†

q can lead to physically incorrect results de-
pending of the dimensions of the descriptor coordinates
in q. In [23] a modified pseudoinverse calculation was
introduced and was used to calculate the projection ma-
trix Pa:

Φ̃ΦΦ
†
q = L−1(ΦΦΦqL

−1)†, (17)

Pa = I − Φ̃ΦΦ
†
qΦΦΦq, (18)

where L is the Cholesky decomposition of the mass

matrix M.

The methods that was briefly summarized in this

section makes possible to use the general control meth-

ods for systems defined with geometric constraints.

2.5. Partial feedback linearization

The partial feedback linearization is commonly used
in the case of the control of underactuated systems.
The main idea of the method is to substitute the origi-
nal nonlinear system with a partially equivalent linear
system by a transformation. The partial feedback lin-
earization can be applied for the systems given in the
following form [24]:

ẋ = f(x) + g(x)u, (19)

y = h(x), (20)

where x is the state vector of the system, u is the con-
trol input and y is the output vector. With the partial
feedback linearization the control input can be formu-
lated as:

u = a(x) + b(x)v, (21)

which results a linearized system as a cascade of n in-

tegrators, and a synthetic input v that can be chosen

arbitrarily, e.g. linear compensator [24].

For the application of this theory the Lagrange mul-

tipliers have to be eliminated from the equation of mo-

tion as section 2.4 explains.

2.6. Computed Desired Computed Torque Control
method

The CTC method for underactuated systems is already

published in [25] for dynamical systems that are mod-

eled by minimum set of generalized coordinates. The

generalized method is called Computed Desired Com-

puted Torque Control method (CDCTC), where the ex-

pression ”computed desired” refers to the fact that the

uncontrolled coordinates cannot be prescribed arbitrar-

ily, since they depend on the internal dynamics of the

system. In case of the CDCTC method the equations of

motion is an ordinary differential equation (ODE) and

the null space of the coefficient matrix of the input vec-

tor is used to project these equations into the space of

uncontrolled motions. The projected set of differential

equations can then be solved for the desired values of

the uncontrolled coordinates and the control inputs can

then be expressed from the original equation of motion.

For the application of the CDCTC the Lagrange

multipliers have to be eliminated from the equation of

motion as section 2.4 explains.

2.7. Method of Lagrange multipliers with
servo-constraint stabilization

In this approach the servo-constraints are handled sim-
ilarly to the geometric constraints. The geometric con-
straints can be expressed in acceleration level as equa-
tion (8) shows. Similarly the servo-constraint equation
(3) also can be differentiated twice with respect to time:

Gqq̈ + Ġqq̇ + ċ = 0, (22)

where Gq ∈ R
l×n is the Jacobian of the servo-con-

straint and c ∈ R
l is the time derivative of the ex-

plicitly time dependent part of the servo-constraint. In
the application of the method of Lagrange multipliers
the geometric constraint equations are stabilized by the
Baumgarte method [20, 26]. Similarly, here we extend
the acceleration level servo-constraint equation (22) as
follows:

Gqq̈ + Ġqq̇ + ċ + KD(Gqq̇ + c) + KPφφφs = 0, (23)

The equation of motion (1), the acceleration level geo-
metric constraint equation (8) and equation (23) can be
incorporated in hyper-matrix form as follows:
⎡
⎣

M ΦΦΦT
q −H

ΦΦΦq 0 0
Gq 0 0

⎤
⎦

⎡
⎣

q̈
λλλ
u

⎤
⎦ =

⎡
⎣

Qg − C

−Φ̇ΦΦq̇

−Ġqq̇ − ċ − KD(Gqq̇ + c) − KPφφφs

⎤
⎦ , (24)

from which the control input can be calculated as the

function of the measured state q and q̇ of the system. It

has to be noticed that the coefficient hyper-matrix of the

unknowns q̈, λλλ and u is not invertible if the system is

non-collocated. The definition of collocated and non-

collocated underactuated systems can be found in [25].



2.8. Direct discretization

This method is similar to the CDCTC method sum-

marized in section 2.6 from the viewpoint that the de-

sired coordinates are also calculated. In this method

we apply the backward Euler discretization of the DAE

system directly and the resulting set of nonlinear al-

gebraic equations are solved by the Newton-Raphson

method for the desired actuator forces, uncontrolled co-

ordinates and Lagrange multipliers [19, 22].
In the present formulation we assume that the servo-

constraints with the geometric constraints can be solved
for the controlled set of descriptor coordinates qc, see
equations (5), (6) and (7). Considering a PD controller
with gain matrices KP and KD the control law can be
formulated as:

Mq̈d + C(qd, q̇d) + ΦΦΦT
q (qd)λλλ = Q(qd) +

H(qd)u + KP (q − qd) + KD(q̇ − q̇d), (25)

φφφ(qd) = 0. (26)

Introducing yd = q̇d we derive the first order form
of (25). After the decomposition of the controlled and
uncontrolled coordinates the control law can be written
as:

q̇d
c = yd

c , (27)

q̇d
u = yd

u, (28)

ẏd
c = ST

c M−1[−ΦΦΦT
q (qd)λλλ − C(qd, q̇d) + Q(qd) +

H(qd)u + KP (q − qd) + KD(q̇ − q̇d)], (29)

ẏd
u = ST

uM−1[−ΦΦΦT
q (qd)λλλ − C(qd, q̇d) + Q(qd) +

H(qd)u + KP (q − qd) + KD(q̇ − q̇d)], (30)

0 = φφφ(qd). (31)

Equation (27) is identity because the controlled coor-
dinates are prescribed thus it can be left out from the
equation set. After the backward Euler discretization
of equations (28-31) we obtain a system of 2n− l + m
number of nonlinear algebraic equations for the i-th
value of the desired uncontrolled coordinates qd

u,i, their

time derivatives yd
u,i, the control inputs ui and the La-

grange multipliers λλλi. It can be formulated as a func-
tion F(zi) of the vector of unknowns zi:

zi = [qd
u,i,y

d
u,i,ui, zi]

T. (32)

The system of nonlinear algebraic equations is solved
by Newton-Raphson method. The j-th approximation
of the unknowns in the i-th time step can be formulated
as:

zj
i = zj−1

i − J−1(zj−1
i )F(zj−1

i ), (33)

where J(zi) is the Jacobian of F(zi). Usually Newton-

Raphson iteration gives accurate result in very few steps

because the initial estimation z0
i comes from the solu-

tion zi−1 calculated in the previous time step.

The calculation of the Jacobian can be accomplis-

hed analytically and also numerically. In order to save

computational time it is enough to calculate the Jaco-

bian one or maximum two times in each time step.

In some cases the Jacobian matrix may be ill-con-

ditioned, but the problem can be handled by singular

value decomposition.

3. THE DESIGN OF THE MODULAR ROBOT

We propose the design of a flexibly programmable and

manually reconfigurable modular robotic system. The

main requirements the system has to meet are summa-

rized as:

• The robot has to be flexibly reconfigurable in-

cluding the possibility to build serial and parallel

kinematic chain manipulators.

• The system has to be able to form underactu-

ated systems, which means that active and pas-

sive joints have to be replaceable easily. The pas-

sive joint have to provide the rotation with min-

imal friction and the measurement of the joint

angle at the same time.

• The inertial forces in the system has to be signif-

icantly larger that the friction forces arising by

the actuators.

• The centralized control programme of the robot

is running on an external PC with which the robot

communicates via a standardized interface. This

provides the possibility to use commercial soft-

wares to the control algorithm development, e.g.

MATLAB, LabVIEW, etc.

• The system has to be able to be extended and

replicated easily with unified building parts.

• The hardware has to be developed and remanu-

factured within relatively low budget. It is im-

portant in educational purposes.

In order to test the control methods explained in

section 2 these requirements has to be fulfilled. The

systems overviewed in section 1 do not meet with all

of the above requirements at the same time. It is par-

tially obvious for self-reconfigurable robotic systems

because the aim of the development of those systems

is not for testing of control algorithms in general. This

led us to design a custom robotic system.

The robot builds up by unified modular components.

The modular structure allows to build up different con-

figuration robots, including serial (see Fig.3) and closed

kinematic chain robots (see Fig.4). Underactuated con-

figurations also can be set up as Fig.3 shows.

The links of the robot are connected to each other

by rotation modules, which are driven by motors or em-

ployed as free joints where encoders are placed. The

rotation module can be seen on Fig.2. Motors (M1 on

Fig.3 and M1, M2, M6 on Fig.4) and encoders (E1 on

Fig.3 and E3, E4, E5 on Fig.4) can be attached to the

hollow shaft of the rotation module. The design of the

rotation module and the bar even allows 90o angular

deflection between the joint axes as shown on Fig.3.



Fig. 2. Rotation module

Fixed
M1

E2

Fig. 3. An open kinematic chain underactuated config-

uration

The block diagram of the control architecture is shown

in Fig.5) for the case of two motors and two encoders,

however several motors and encoders could be handled.

The control unit communicates with a computer, where

the main control algorithm runs. The task of the control

unit is to transfer the digital control signal from PC to

the motors applying pulse width modulation (PWM).

The measured encoder signals are transferred to the

computer in digital form. So the control unit integrates

the motor and encoder drivers with several input and

output interface. Besides the power supply is also pro-

vided by the same hardware unit. It provides power

supply for the motors, encoders and control unit.

4. CONCLUSION

A modular robot design was proposed to provide an ex-

perimental tool for testing different control algorithms

in university research work. The developed system is

also useful in education to study basic control problems

and higher level control methods experimentally.

The computed torque control algorithms applica-

ble for underactuated dynamical systems, which are

modeled by non-minimum set of descriptor coordinates

were overviewed. The requirement for a robotic sys-

tem which is suitable for the testing of these algorithms

was summarized. The state of the modular robotic sys-

Fixed

M1

M6

M2

E5 E4

E3

Fig. 4. A closed kinematic chain fully actuated config-

uration

Control Unit

Power Supply Unit

Motor 1

Motor 2

Encoder 2

Encoder 1

PC

O
U

T
IN

Fig. 5. Centralized control architecture

tems also was overviewed, and we concluded that the

desing of a new low cost system is beneficial based on

the state-of-the art modular robotic systems.
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