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1 Introduction

The peculiarities of the interaction of light with confined metal inclusions have been of interest
for a long time. The most prominent examples are the coloring effects achieved by certain
noble metals included in windows in churcheq!] The theoretical description of such effects has
been performed by G. Mie [MieO8|. Furthermore, the theoretical prediction of bound elec-
tromagnetic modes at metal dielectric interfaces by R. H. Ritchie |Rit57] comprises another
important milestone. In the following decades many interesting applications have been inves-
tigated, e.g., extra-ordinary transmission of light through metal films perforated with holes of
sub-wavelength dimensions [ELGT98, [BDEO3].

During the last years, the subject of light-matter interaction with metal objects of sub-
wavelength size has been experienced further interest [BFLT07, [Ram05], [Sha07|. The reasons
for this development are manyfold. On one side the fabrication processes have been contin-
uously improved due to the growing demands for smaller circuit sizes in the semiconductor
industry. Among other fabrication schemes, mostly top-down approached?] such as electron
beam lithography, have successfully been applied to realize highly reproducible structures
covering large areas. Thus, versatile fabrication methods have been established to provide
structures with feature sizes far below the wavelength of optical radiation. On the other side,
the classical electrodynamic description of light-matter interaction with arbitrarily-shaped ob-
jects got enriched by the exploration and application of powerful numerical techniques. These
methods allow the verification of experimental findings in the same manner as new effects can
be predicted and finally observed in application-oriented realizations of specific structures.
Moreover, the numerical methods are valuable tools to bridge the gap between the physics,
taking place at the scale of nanometers, and the macroscopic observation.

The dramatical developments in these two fields provided the optimal breeding ground for
the emerging field of metamaterials. Eventually, everything that was required to launch this
topic was a physical idea.

Exactly this idea was presented in the work of J. B. Pendry in 1999 [PHRS99]. He proposed
the concept of artificial materials, i.e., metamaterialsﬂ that are composed of sub-wavelength
structures, acting similarly as atoms and molecules do in ordinary matter. These structures
were termed metamolecules and have in common that their dimensions are much smaller than
the wavelength of the impinging radiation. Thus, in a simplified picture, the illumination

cannot resolve the structural details and behaves like in an effective medium with propagation

'The Lycurcus Cup, exposed in the British museum in London, is a frequently referred example for its different
color appearance depending on the illumination conditions.

2The term top-down accounts for fabrication schemes for which the entire structure is created starting from
a predefined arrangement, e.g., a stack of layers, that is finally processed, typically by electron or ion beam
lithography. Differently, bottom-up approaches denote schemes that are starting with entities at a smaller
scale than the final structure. Examples are chemical synthesis of gold spheres and other self-organized
fabrication schemes.

3The term metamaterial originates from the greek word "meta" which can be translated by "beyond". Hence,
the expression metamaterials should account for materials beyond the capabilities of natural matter.
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properties dictated by the elementary metamolecules. These metamolecules, similar to ordi-
nary matter, predominantly interact with electromagnetic waves by their carriers. In contrast
to ordinary matter, for which the carrier dynamics is determined by the atomic assembly of
the respective element, the carrier dynamics can be tailored by the geometry of the meta-
molecules in metamaterials. Due to their high electron density and mobility, noble metals
such as gold or silver are typically selected as composite materials for metamolecules. The
associated resonant carrier excitations are so-called localized surface plasmon-polaritons that
can be controlled by adjusting the shape and the composition of the metamolecule. As it
may be anticipated from the terminology, such excitations are located at the surface of the
respective metamolecule, due to the limited penetration depth in the metal on the one side
and an evanescent decay in the ambient dielectric medium on the other side. Furthermore,
they are hybrid excitations, since the electron dynamics (plasmon) induces an electric field
(polariton) and wvice versa. With these considerations it becomes clear that a resonance in
the carrier dynamics is accompanied with a resonant and thus enhanced local electromagnetic
field in the vicinity of the structure.

In contrast to the research associated with metamaterials, localized surface plasmon-polari-
tons have been known for a long time. A famous and fundamental theoretical description
related to such resonances is the work published by G. Mie [Mie0O8| which has been already
mentioned above. Although Mie did not use the terminology of localized surface plasmon-
polaritons, he developed a rigorous electrodynamic formalism to solve the scattering problem
of electromagnetic waves at isolated spheres with arbitrary diameter and composition. With
this approach he was able to predict the resonances occurring in the scattering spectra of
colloidal gold solutions. These resonances have been observed in the form of coloring effects
mentioned in the beginning.

Hence, the physics of metal structures with sub-wavelength dimensions has been known for
decades and was subject of intense investigations. The dramatic new feature of structures
that are typically investigated in the field of metamaterials is the possibility to additionally
create a magnetic response besides the electrical one. Exactly this intriguing difference can
be considered as the major achievement during the last years, since metamaterials can exhibit
optical magnetism, i.e., magnetic light-matter interaction at optical frequencies [PHRS99].
Such an effective magnetic response has never been observed in natural matter before and
opens the gate to alter both, the magnetic and the electric properties for light propagation by
structured materials with an unprecedented diversity.

Among other famous works which investigated a potential magnetic response there is one
publication that is of particular importance in the field of metamaterials. This work has been
presented by V. G. Veselago [Ves68, Boall| who theoretically investigated what impact a
potential magnetic response would have early in 1968. As the most important consequence,
Veselago considered the case of a negative refractive index [Ves68|. However, only in combi-
nation with the structures and the concepts proposed by Pendry, realizations of such effects
became feasible [BAWPATI0, DWSL07, SCCT05, [VZZ708|.

Although the ability to create a magnetic response in addition to the electrical seems to



be only an incremental development, the consequences of such an apparently slight change
are enormous. For instance, the resolution limit of £. Abbe [AbbT73|, which is approximately
one half of the irradiating wavelength, can be circumvented by perfect lenses [Pen00, [SE06,
JANOG|. Recently, much smaller details have been resolved with the use of metamaterials
[LLXT07, [SHDO7]. Finally, the fascinating concept of cloakmgﬁ shall be mentioned which
is also related to the control of electric and magnetic properties of electromagnetic waves in
metamaterials [Leo06, [SM.JT06, NMMBOT7].

Motivation

During the last years of metamaterial research significant progress has been made in altering
the propagation properties of electromagnetic fields, see, e.g., the above-mentioned examples.
For this purpose mainly numerical methods have been established to design the metamolecules
of the metamaterial exhibiting the desired functionality. In turn, the underlying physics for
the realized functionality is quite often explained in a phenomenological manner. A frequently
applied explanation originates from the circuit theory which deals with L C-circuits possessing
a magnetic inductance L and an electric response due to the capacitance C' [AE06, BFL™07].
Indeed, the early metamaterials with a magnetic response were based on such considerations
[SPV™00, [SSSOT|. A second possibility to explain magnetic effects at optical frequencies is that
microscopic ring currents are induced creating a magnetic dipole moment [SFVKO09, [LLZG09].
These microscopic magnetic moments give rise to a macroscopic magnetization, i.e., an effec-
tive magnetic permeability. The description on the basis of such multipole moments is much
more related to the understanding of nanostructures that had been developed before metama-
terials were explored. It immediately allows to apply standard textbook knowledge, i.e., the
electrodynamic multipole expansion, and thus gives physicists a clear picture of the underly-
ing microscopic and macroscopic mechanisms. Furthermore, it is the consequent advancement
from the description of nanostructures operating in the first-order, i.e., the electric dipole,
regime. Therefore, the sub-wavelength objects are described by a microscopic electric dipole
moment giving rise to a macroscopic polarizability. For such understanding, analytical models

have already been developed which allow the prediction of the ensemble response.

Scope of this work

The scope of this work is to include the electric and the magnetic response of metamaterials
in a unified description of metamolecules. As will be shown, this can be performed by a
multipole expansion, taking into account multipole moments up to second-order. For this
reason, a carrier ansatz will be applied to account for the microscopic dynamics of the metal’s
free charges inside each metamolecule. This microscopic formalism is similar to the description
of atomic lattices in solid state physics where a set of coupled oscillators is applied as a first

approximation. By describing the carrier dynamics of a metamolecules with such a set of

4The term cloaking is used to describe the guiding of electromagnetic fields around an object which does not
interact with the light and thus, remains undetectable, i.e., cloaked.
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oscillators, the oscillation eigenmodes can be directly related to the localized eigenmodes
of the respective metamolecule. Moreover, the explicit knowledge of the carriers’ motions
immediately allows the application of the multipole expansion. With this step, the microscopic
properties, i.e., the oscillation eigenmodes of the isolated metamolecule, will be translated into
macroscopic properties, such as the dispersion relation and the effective material parameters.
Hence, metamolecules will be considered, whose interaction with light can be conceptually
reduced to the excitation of multipole moments. A necessary condition for such an approach
is that the metamolecule, i.e., the metamaterial’s building blocks, are represented by isolated
objects for which a multipole expansion is meaningful. For metamaterials whose functionality
originates from extended or connected building blocks this expansion up to the second order
might not be sufficient at all. A prototypical and decisive metamaterial with such building
blocks is the double fishnet structure [ZEMT05, [ZFEPT05].

The analysis in this work will be focussed on the properties of localized two- and three-
dimensional metamolecules. Therefore this work is organized as follows. At first, a brief
summary of experimental and theoretical basics, applied in this work, will be given. The most
important routine mentioned therein is the averaging procedure, i.e., the transition from the
microscopic Maxwell’s equations to their macroscopic representation. Within the averaging
procedure, the role of multipolar moments will be stressed. In addition, this known approach
will be discussed in the context of metamolecules in contrast to natural molecules for which the
averaging process is applied in ordinary matter [Jac7h, [Rus70]. With this concept it is possible
to connect isolated metamolecules with the optical response of the entire metamaterial. In the
following parts, this work is conceptually organized similar to the multipole expansion itself.

Hence, in part |3] metamolecules will be considered in the electric dipole regime. The op-
tical properties of dipole nanostructures that are relevant for this work will be examined,
i.e., the near-field enhancement as well as the excitation conditions in terms of the incident
polarization. Furthermore, it will be shown how ensemble properties, i.e., effective material
parameters, can be controlled with particular arrangements of such dipole nanostructures
which finally allows for the simultaneous excitation of another class of plasmonic excitations,
i.e., propagating surface plasmon polaritons. Moreover, the experimental verification of nu-
merically predicted optical far-field properties for such arrangements will be performed by
applying far-field spectroscopy in this part. Finally, it will be shown how the fabricated sam-
ples can be applied to improve the Surface-Enhanced Raman Scattering of adsorbed chemical
analytes. The simultaneous excitation of a localized surface plasmon-polariton at the excita-
tion frequency and a propagating surface plasmon-polariton at the detected Stokes frequency
represents a novel approach for improved Surface-Enhanced Raman Scattering substrates.

In part [4] metamaterials displaying the before-mentioned electric and magnetic response
will be considered. Examples for metamaterials operating in the linear optical regime will
be investigated firstly. Furthermore, the oscillator equations will be prepared to account
for conductively as well as capacitively coupled metamolecules, e.g., the split-ring resonator
[ILEWT04| and the cut-wire metamolecule [SZO01], respectively. Next, the transition from

metamaterials with linearly polarized eigenstates toward elliptically polarized eigenstates will



be performed. Due to the symmetry of the metamolecules, the metamaterials investigated
up to this point display solely linearly polarized eigenstates. Hence, particular modifications
on the metamolecules will be performed to break these symmetries which again can be de-
scribed by the microscopic oscillator approach. As will be shown, the macroscopic response
obtained by the multipole expansion shows elliptically polarized eigenstates. As a consequence,
asymmetric transmission for circularly polarized light can be observed. Furthermore, it will be
shown that the far-field reflection and transmission coefficients for the modified metamolecules
can be predicted on the basis of the metamolecules’ properties before the modification that
comprise linearly polarized eigenstates.

Since second-order multipole moments are also accompanied with nonlinear optical proper-
ties, multipole-induced nonlinear effects will be the subject of this part as well. As an example,
the second-harmonic generation will be investigated. The quadratic nonlinear properties as-
sociated with the appearance of second-order multipoles are shown to be consistent with the
structural nonlinearities predicted by another approach applied in metamaterial research, i.e.,
the hydrodynamic theory of electrons [FLK™08, [ZHL™09].

Finally, the electromagnetic near-fields of individual metamolecules will be rigorously de-
composed into their multipolar components. This final step will prove that the applied descrip-
tion of metamaterials in terms of multipole moments holds for ensembles of metamolecules in
the same manner as for the individual ones.

Lastly, all results collected in this work will be summarized and potential perspectives will

be given.



2 Theoretical and experimental basics

2.1 Theory

Throughout this chapter essential mathematical techniques describing the physics of light
interaction with metal nanostructures in the framework of classical electrodynamics are re-
viewed. The fundamental set of equations spanning the entire physical space of observable
phenomena investigated in this work is formed by microscopic and macroscopic Maxwell’s
equations. More specifically this fundamental set of equations can be solved numerically as
well as analytically for the case of light interaction with nanoparticles incorporating approxi-
mations that will be discussed herein. The detailed investigation of both procedures will allow
for a correct and physically thorough theoretical investigation of light interaction processes of

metal nanostructures in the following chapters.

2.1.1 Averaging microscopic Maxwell’'s equations - the role of

multipole moments

Microscopic Maxwell’s equations represent the fundamental set of linear differential equations

connecting the electromagnetic vector fields to microscopic carrier and current densitieq!|

Vx@(r,t)—l—%%(r,t) = 0, (2.1)
Vx%(r,t)—é%(’i(r,t) — i(r,8), (2.2)
V- B(rt) = 0, (2.3)

Vo€t — eit(r,t). (2.4)

In Egs.(2.1{2.4) &(r,t) and B(r,t) represent the electric field and the magnetic induction,
whereas j(r,t) and t(r,t) account for the microscopic current and charge density, respectively.
These equations can be applied to describe the electromagnetic fields emitted and absorbed
upon temporal and spatial current and carrier dynamics. Moreover, the fields themselves
react on the carriers and currents again. The electromagnetic force acting on a particular
carrier distribution of N charges ¢; located at r; is described by the important connection of

mechanics and electrodynamics: the Lorenz force

F(t)=> a {@(rl,t) + %Fl X %(I‘l,f)} =D (@€, 1) +3i x B(r,, 1)]. (2.5)

'Here the differential form of Maxwell’s equations has been selected, since solely this representation will be
applied for numerical techniques and analytical models in the following sections.
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Hence, the Lorenz force can be considered as the microscopic constitutive relation or
material equation, since it represents the physical connection between media, in terms of car-
riers (with the charge ¢;) or currents (j;), and electromagnetic fields. Combining Eq.(2.5) and
Eqs. the interaction of incident electromagnetic fields with a carrier distribution of N

charges becomes a self-consistent many-particle task.

In order to overcome this mathematical burden for electromagnetic field interaction with ob-
jects consisting of large numbers of carriers and the numerous interactions among themselves,

microscopic Maxwell’s equations can be averaged yielding macroscopic Maxwell’s equations

0

V x E(r,t) + aB(r,t) = 0, (2.6)
V x H(r,t) — %D(r,t) = j(r, 1), (2.7)
V- -B(r,t) = 0, (2.8)
V- -D(r,t) = p(r,t). (2.9)

Comparing Eqs. with Eqs. the homogeneous equations as well
as the inhomogeneous equations remain formally invariant. However, in con-
trast to the microscopic representation the microscopic variables &, B, ¢, and j have been
replaced by the averaged or macroscopic observables E, B, p,and j and amended by two new
variables: the electric displacement D and the magnetic field H. This averaging procedure is
discussed in detail in Refs. [MN53, [Jac75|. The principle idea of this procedure is that the
microscopic fields, currents and charge densities can be averaged in order to describe electric
field interactions on a macroscopic scale, e.g., in optical and plasmonic systems. It turns
out to be sufficient to carry out this averaging procedure only spatially rather than spatio-
temporally. There are two frequently applied arguments for that. First, the atomic time scales
for nuclear vibrations (10712 s) and for electron motion (1077 s) are already in the same order
compared with optical light cycles (A = 550 nm — 7' = 1.83 - 107 %s) making an averaging
inappropriate. Second, these temporal fluctuations occur in an uncorrelated manner over the
typical averaging distances. Hence, the dominant time dependence is mainly dictated by the
frequency components of the incident light, whereas the spatial carrier distribution is washed
out for averaging volumes investigated herein, which are in the order of > (10 nm)?3.

At this stage it shall be mentioned that this situation changes if ultra-short light pulses are
interacting with matter. Thereby the temporal excitation can resolve or even be below the time
scales of electron and nuclear dynamics. Thus, the isolated temporal dynamics of the molecule
becomes important. Since in such experiments very diluted gases or even single molecules or
ions are illuminated the spatial averaging becomes meaningless. Beyond such limitations of
ultra-short light-matter interactions the averaging procedure is adequate and well-established
for the description of electrodynamic interactions with condensed matter nanostructures, i.e.,
metals or dielectrics, at optical frequencies.

In order to quantify the above-mentioned restrictions a gold nanoparticle will be considered



in the following to motivate the averaging procedure for the case of nanostructures. Starting
with a nanosphere radius of R = 5 nm the associated sphere volume is Viphere = AT R3 /3 =
523.6 nm?. The known radius of a gold atom [Sla64] is Ra, = (135+5) - 1072 nm yielding an
atomic volume of Vyiom = 47R3,/3 = 0.0103 nm?. Assuming highest sphere packing density
of ~ 0.74 the gold sphere comprises an estimated number of 0.74 - Viphere/ Vatom =~ 3.8 - 10?
atoms, a too large number for a microscopic analysis. This consideration shows that even
tiny nanostructures, typical structures are larger than the example discussed here, contain a
considerable amount of carriers making a macroscopic description desirable.

In the following the main steps of the spatial averaging of matter are re-examined in order
to reveal the role of multipole moments in the transition from the microscopic to the macro-
scopic representation, an important routine that will be applied for various nanostructures
throughout this work. Afterwards the peculiarities occurring for ensembles of nanostructures
as well as similarities to a historical approach are discussed. For this purpose the notation of
G. Russakofl is recapitulated [Rus70, [Jac75]. Spatial averaging of any temporally and spatially

dependent function can be expressed as the convolution with the test function G(r) [Yan66)

((r, 1)) = /R (e~ G) (2.10)

The test function G(r) can be arbitrarily chosen with the restriction that it is normalized to

unity. For the case of the nanosphere example from above the test function could be

3 . v
G(r)={ 7R el < R, (2.11)
0, Vir| > R.

Applying the averaging [Eq.(2.10))] to time and space derivatives for continuously differentiable
functions ¢ (r, t) yields

ai(tb(r,t» = <ai1/z(r,t)>, (2.12)

Goe0) = (o). 213

Thus, the electric field €(r,¢) and the magnetic induction B(r,¢) can be straightforwardly

rewritten applying the respective averaged quantities. The homogeneous microscopic equa-

tions (2.1)2.3) then read as

0
V x (E(r,t)) + E(‘B(r,t)} = 0, 2.14)
V- {B(r,t) = 0, (2.15)
which can be transformed into macroscopic equations (2.6)2.8)) by substituting
(€(r,1)) = E(rt), 2.16)
(B(r,t)) = B(r,1) (2.17)
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Figure 2.1: Sketch of the averaging volume embedding bound (molecules) as well as free (electrons
and ions) carriers.

The remaining inhomogeneous equations

V(B0 0)) — (€ 0) = poli 1) 219
V- (E(r,t) = %(t(r,t)), (2.19)

contain next to the averaged macroscopic fields E(r, t), B(r,t) also the averaged current (j(r, t))
and charge (t(r,t)) densities that have to be considered in detail. Applying the averaging
procedure [Eq.(2.10)| to the charge density t(r, ) one obtaines

(e(r, 1)) = /R (e - G, (2.20)

Any microscopic carrier distribution corresponding to a realistic natural material may then be
separated into two contributions: bound and free carriers, see Fig[2.1] Both can be considered

as point charges in the form of

’C(I‘,t) = tbound( )+tfree( t) (221)

moleculeﬁ Nbound Nfree

- Z Z Qo(m)0 (T — Ty — Tp(m)) +qu6r—rf (2.22)

Bound carriers can be considered in terms of charges of atoms, molecules or valence electrons,
respectively. For the case of metamolecules bound carriers are associated with ensembles of free
electrons which are bound by the geometry of the metamolecule and that can be driven into
resonance upon external illumination. Therefore, noble metals are typically used as building
blocks, because of their high density of conduction band carriers. Averaging of Eq. then

reads as

Nmolecules Nbound Nfree
(t(r, 1)) = Z Z Qm)G (T — Ty — Tp(m)) + Z q¢rG(r —ry). (2.23)
m=1 b(m)=1 f=1

In a final step, it is assumed that the typical dimensions over which the averaging is performed

are much larger than the molecular dimensions. If this applies, a Taylor expansion of the bound
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contribution of Eq.(2.23)) up to the second order in the vicinity of |r —r,,| yields for the m—th

molecule

Nbound
<tbound(r7 t)>m = Z Qb m)G r—r, — m)) (224)
Nbound
~ Z Qb(m){G(r — ) = Tym) - VG(r — 1)
b(m)—l
82
+= azﬁ a[Tom)] 1w or; G(r — rm)} (2.25)

Regarding the series expansion Eq.([2.25)) one can define the electric multipole moments [section

2.1.2| yielding an averaged carrier density that can be expressed as

<tbound(ra t)>m ~ (ij(I‘ - rm) — Pm - VG(I‘ - rm)

2

1 )
+2 ;(Qm)aﬁma(r —1.). (2.26)

In Eq. Gms Pm, and Qm represent the bound or molecular quantities: charge, electric

dipole, and electric quadrupole moment, associated with the m—th molecule, respectively

Nypound

in = D Bom, (2.27)
b(m)=1

Nyound

Pm = Z qv(m)Tv(m), (228)

(Qm)as = 3 Y @by (Toim))a(Fom) )5 (2.29)

In passing it is mentioned that a primitive quadrupole tensor has been applied in order
to obtain Maxwell’s equations which are origin-independent |[GPR92, IdLRO5|. Considering
Eq.(2.26)) one would end up at exactly the same expression, if the charge distribution would

have been

thound (T, 1) = Z [ (r—ry) — V- -pnd(r—ry,)
1
6

(r—r,)|. (2.30)

ﬁ

12



With the averaging procedure according to Eq.(2.20) and Egs.(2.12]2.13)) one obtains

(Cpouna(r,2)) = Nmfles<qm5<r—rm>>—v-<pm5<r—rm>>

m=1

i > o (@t =) )| (231)

The explicit application of the convolution [Eq.(2.20))] reflects Eq.(2.26)), but solely by con-
sidering Eq.(2.31) one has an intuitive physical interpretation of the averaging procedure at
hand. Any microscopic molecular or atomic carrier ensemble will result in a collection of

electric point multipoles in the averaged macroscopic domain. For the first inhomogeneous

equation (2.19) the averaged charge density (2.31]) gives

eV - (€(r,t)) = (x(r,1)),
Za: % {eo(ea(r, 1)) + Py(r,t) — %Qaﬁ(r,t)} = p(r,t). (2.32)

Whereby in Eq.(2.32) the macroscopic charge density

= 5 (e )+ 3 (e xp) (2:39

f=1

m=1
the macroscopic polarization
Niolecules
P(r,t) = <pm5(r — rm)>, (2.34)
m=1
and the macroscopic quadrupole density

1 Nmolcculcs

Quitet) =5 > ((Qulasdlr —12)). (239

m=1

have been introduced. Hence, the electric displacement D(r,t) can be introduced formally on

the basis of Eq.(2.23) as

D(r,t) = eE(r,t) + P(r,t) = V- Q(r,t), with [V-QJo =) %Qaﬁ. (2.36)
B

To finalize the transition from microscopic to macroscopic Maxwell’s equations, the micro-

scopic current density needs to be averaged. Averaging microscopic free and molecular currents

13



in the form of

i0,8) = (bowa(, ) + (Jiree(r,1)) (2.37)
Nmolecules Nbound Niree

= > D GV + Vim0 = T = Tyen) + D qpvpS(r — 1), (2.38)
m=1" b(m)=1 f=1

will lead, similar to the charge density Eq.(2.23)), to

Nmolecules Nbound Niree
(i(r,t)) = Z Z Qom) [V + Vi) |G (T = Ty — Tp(m)) + Z qrvsG(r —rs)(2.39)
m=1  b(m)=1 f=1

Now, the bound carrier contribution of Eq.(2.39) consists of two parts, the velocity of the
m-th molecule v, together with the relative velocity of the bound charges v,y and the free
carrier motion vy which are simply added in the non-relativistic regime. Again the expression

can be analyzed in terms of a Taylor expansion up to second order

Nbound
Gbound (®:)m = Y o) [Vin + Vo(m))G(X = Tiu = Toomy) (2.40)
b(m)=1
Nbound
~ Z o(m) [Vim + Vim)] [G(r —Tp) — Ty - VG(r — 1)
b(m)=1
32
+ %[Tb(m)]a[rb(m)]ﬂmG(r - I'm)} . (2.41)

Similarly to the procedure applied for the charge density the molecular current density (2.41))

can be transformed into [Rus70)]

. . 0 0
e, = i)+ g5 | Palr ) = 5= Qualr )] + (7 x MG,
a Nmolecules
P 2 (st = Guatin)s] o0 =)
B m=1
1 82 Nmolecules
5 g 2 | (@estin)y — @5 5
(2.42)
where the macroscopic current density
Nfree Nmolecules
0.0 =Y (e =11} + 3 (avade—1)), (243
f=1 m=1
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the macroscopic magnetization

M(r,t) = Nmz <mm5(r . r’)>, (2.44)

m=1
as well as the molecular magnetic dipole moment

1 Nbound
my, = 5 Z db(m) [rb(m) X Vb(m)]a (245)

b(m)=1
have been introduced. The last two terms of Eq.(2.42) are usually negligible since for many
optical systems the molecular velocity is assumed to be zero or at least much smaller than the
localized velocities of the bound carriers [Jac75|. These contributions have been taken into
account just for being consistent, but are formally dropped in the following by setting v,,, = 0.
It is convenient to write the current density in this form, because it is then easily possible to

evaluate the remaining inhomogeneous Maxwell’s equation ([2.18))

T X (B 0) - ag (D) = (D)
1 0 A .
%V x B(r,t) — 5 |:60E +P(r,t) — V x Q(r,t)} = j(r,t) + V x M(r, 1),
v x [iB(r,t) —M(r,t)] - %D(r,t) — (1), (2.46)

which is equal to Eq.(2.7)) if the macroscopic magnetic field is defined by

H(r,t) = iB(r,t) — M(r, ). (2.47)
Ho
This concise discussion of the averaging procedure provides an easy understanding of the
macroscopic Maxwell’s equations for natural media. Moreover the multipole moments up to
second order are defined and their contribution to the macroscopic constitutive relations, i.e.,
Eqs.([2.36]2.47)) has been retraced.

Performing the averaging procedure and determining the constitutive relations in the above
manner is the method of choice in various textbooks but not the only possibility. For several
reasons the magnetic dipole response can be included within the macroscopic current density.
Using another definition of the macroscopic current density that is based on Eq. one

obtains

jr,t) = < quvé(r — I'f)> +V x M(r, ). (2.48)
f=1

The current density (2.48]) with the related macroscopic charge density p must satisfy the
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equation of continuity

ol 1)+ V1) = 0 (249

With the current density ([2.48]) the charge density remains equal to that in Eq.(2.33)), because
V [V x M] = 0. The main difference caused by the above definition of the current is the
constitutive relation for the magnetic field when compared with Eq.(2.47))

H(r,t) — —B(r,1). (2.50)
Ho

Hence, there is a certain degree of freedom in defining the macroscopic current density. The
influence of such modifications will result in different constitutive relations, e.g., Eq. and
thus in differing boundary conditions at the interface of the averaged media compared with the
standard boundary conditions [Jac75|. In the same manner as the magnetic dipole moment
has been included in j also the electric multipole contributions could be included yielding
another constitutive relation for the electric field [Per63|, when compared with Eq.. So
it is important to keep this ambiguity in mind when reading articles or books where differing

constitutive relations or averaging procedures have been used.
In order to conveniently describe a macroscopic medium, for which the averaging is per-
formed, material parameters can be introduced. This is typically done in the Fourier domain

to which the transformations may be defined as

X(1) = 1{ /w de(w)e‘M—i-c.c.], (2.51)

2| Juer
1 .

X(r,t) = = / dw/ dkX (k,w)e™ ™t 4 cc.|. (2.52)
2 weR keR3

Applying the temporal Fourier transformation (2.51)) to Eq.(2.36|) and Eq.(2.47) the constitu-

tive relations become

D(r,w) = eB(r,w)+P(r,w)—V-Q(r,w), (2.53)
H(r,w) — iB(r,w) _ M(r,w). (2.54)

Now that all multipole moments are related to carrier dynamics induced by the impinging
fields, a linear dependence of all moments on the electric field can be assumedﬂ. Due to
the presence of spatial derivatives in the dielectric displacement, e.g., in front of the electric
quadrupole tensor in Eq., the general response will show non-local effects. Hence, for a
linear relation between the field and the moments, the application of the Fourier transform
will immediately result in a k-dependence in the constitutive relation&ﬂ. Thus, in general

2This assumption of course only holds in the linear optical regime. For the considerations of multipole induced
nonlinearities the dependence is different [PCT™09).

3The same holds for the magnetic constitutive relation, if the magnetization, i.e., the magnetic dipole moment,
is induced by the electric field as well.
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Figure 2.2: Illustration of the averaging volume including nanoparticles that represent artificial
molecules.

second order moments will induce spatial dispersion and for Eqgs.(2.53] [2.54) the following

expressions can be introduced

Dk,w) = elk,w)Ek,w), (2.55)
Bk,w) = poi(k,w)H(k,w). (2.56)

Here é(k,w) corresponds to the electric permittivity while fi(k,w) represents the magnetic
permeability for the averaged medium. These equations complete the averaging process since
they allow to treat any macroscopic, i.e., averaged medium, by the knowledge of its microscopic
constituents. Such constituents are averaged multipole moments that account for light-matter
interactions with bound and free molecular carriers. Having arrived at the macroscopic level,
e.g., Eqs., , the basics of the averaging procedure are no longer of interest for many
applications, since for various macroscopic media these values are obtained experimentally
[JCT72].

The purpose of the detailed recapitulation in this section was to repeat the fundamental
principles which in the following will facilitate the understanding of ensembles of nanostruc-
tures. These are acting as artificial atoms or molecules, termed metamolecules, forming a new
material class that will be considered in complete analogy throughout this work (Fig.

The most appealing difference in the averaging of nanoparticles representing artificial meta-
molecules in comparison to ordinary molecules is that all multipole moments in nanoparticles
are induced by an electromagnetic field. Hence, all moments in metamolecules vanish without
an external field. In contrast, real molecules can possess permanent multipole contributions
even in the absence of any external fields. A prominent example for a material with a perma-
nent molecular quadrupole moment is carbon dioxide being the first experimentally measured
molecular quadrupole [BD63|. This example shows that higher-order multipolar response has
been observed and investigated before. But in order to realize this higher-order response at
arbitrary frequencies, e.g., in the range of optical frequencies, induced multipoles are required.
In metamolecules induced higher-order multipoles can be achieved at will. To obtain second-
order effects in metamolecules it has been shown above that effects such as non-locality, i.e.,
spatial dispersion in the Fourier domain, must exist. For this purpose, each metamolecule must

comprise a certain dimension in propagation direction. On the other side, metamolecules are
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supposed to be as small as possible to make the averaging and the multipole expansion mean-
ingful. Thus, metamolecules should possess sub-wavelength dimensions [ZDUT08|. These
two competing issues led to the concept of mesoscopic structures [PHSY96, IMPR10|, which
applies to metamolecules exhibiting particularly prepared optical effects, e.g., artificial mag-
netism occurring at optical wavelengths [PHRS99, BOK™09, [GV(9].

2.1.2 Multipole radiation

In order to classify and identify individual multipolar material interactions beyond effective
material responses, i.e., a non-vanishing magnetic permeability of an ensemble, etc. the charac-
teristic near-field distributions for molecular multipole moments are considered in this section
as an adequate tool. Multipolar near-field contributions up to the second order of an arbitrary
molecular carrier and current distribution are considered in this section. The motivation for
the detailed analysis is to determine multipolar excitations from an individual metamolecule’s
near-field pattern. Such field distributions represent an important subject of this work in the
following chapters. The derivation starts with the vector potential A and the scalar potential
¢, which are related to the fields [Jac75| as

¢E(r,t) = —qu(r,t)—%A(r,t), (2.57)

V x A(r,1). (2.58)

o5}
—~
=

~
S~—

|

Together with the microscopic Maxwell’s equations (2.142.4) and assuming Lorenz gauging
(V-A+c22¢ =0) the defining wave equations for both potentials become

ot
1 0? )
AA(I',t) — ;@A(I',t) = —/1/0](1', t), (259)
Aoty — L L ey = L (2.60)
¢ I', C_Qat2¢ I', - at I', ) .

which can be solved in general by the retarded potential

3 R t— |r—r’|
Muy@/wwr“ ) (2.61)
Vo

4w Ir —1/|

The vector potential (2.61)) together with Eqgs.(2.57})2.58|) describes the creation of radiation

due to temporal current dynamics in a localized volume V}. In order to evaluate this expression
the current density is Fourier transformed via Eq.(2.51))

-7 . r—r’
j (t - |—') = j(r)e i, (2.62)
C

and is translated to the vector potential [Nol02]

M /
A(r,t) = A(r,w)e ™ = Ho dr’?’ﬂeik'“r/'e_iwt, with k = —. (2.63)
47 Vo



The magnetic field (2.58)) can be regarded as the source inducing electric fields radiated by
the carrier and current distribution (v = 0,j = 0) according to Eq.([2.2))

2

E(r,w) =iV x V x A(r,w). (2.64)
w

Hence, it is sufficient to consider the vector potential A(r,w) to determine the radiated fields.
Now the integral kernel of Eq.(2.63) can be expanded near the origin of the current density

by a Tailor series

ik\rfr\ ikr 1
SRR [1+n r’ <——ik:)], withn = -. (2.65)

lr —r/ | r T T
And the vector potential can be obtained as

ikr 1 ikr
Alr,w) =~ Hot / d*r'i(x’) + Z—O (; — Zk) ¢ /V d*r'i(r')(n - ')
0
' w). (2.66)

Il
>
=
£
_l’_
>

The first-order term A in Eq. corresponds to the electric dipole moment, while the
second-order expansion term A(?) accounts for both the magnetic dipole and the electric
quadrupole contribution. It is important to keep in mind that both, the electric quadrupole
as well as the magnetic dipole moment, represent second-order multipole contributions. To
show the relationship of A(M) with the electric dipole moment, the first term on the right hand
side of Eq. can be transformed with the continuity relation and Gauss’s law to

AD (1, w) = App(r,w) = o & (2.67)

4t r

The electric dipole moment p in Eq.(2.67)) represents the molecular dipole moment Eq.([2.28)

Nvound
p :/ d*r'v'p( Z / 1’ Gy 6 (X = Tom)) = Pon- (2.68)
Vo VO

The second term in Eq.(2.66)) splits into two contributions using the identity

W) = G o + i | 20)

for which the vector potential for the second order can be separated into the magnetic dipole

and the electric quadrupole parts

AD(r,w) = A (r,w) + Arg(r,w), (2.70)
Awp(r,w) = Z—ie: (%—zk) E /_ Z iy’ x j(r')] . (2.71)
Asg(r,w) — Z—;e: (%—zkz) / Zd?’r’%{[n-r’]j(r’)Jr[n- j(r’)]r’}. (2.72)
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Figure 2.3: Illustration of the electric (upper 3 rows) and the magnetic (lower 3 rows) near-fields
(left 3 columns) and their radiated fields (right 3 columns).

Considering bound carrier dynamics in terms of currents written by

Nbound

() = > Qo) Vem)6(X = Tymy), (2.73)
b(m)=1

together with the expression ([2.45) the vector potential for the molecular magnetic dipole

moments reads

ikr 1
Ayp(r) = Ho® (— - zk) m,, X n. (2.74)
The remaining electric quadrupole vector potential (2.72) can be transformed with the identity
/ dST’{(n-r’)j(r’) + [j(r’)-n]r’} = —/ &r'v'(n-)[V' i (r)], (2.75)
Vo Vo

and the continuity equation ([2.49) to

Ang(r,w) = e (1 —zk) /V () (2.76)

r r

iwho
8
T eik:r
= w—
8

. (% — zk) Z;ea(Q)ag(n), with e, = r?a (2.77)
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The modified molecular quadrupole tensor Q(n) of a carrier density according to Eq.(2.68) is

ch Ny Qxynz sznz
Q(l’l) = nyny nyny Qyzny ) (278)
sznz sznz sznz

where (), are the molecular quadrupole entries according to Eq.. After arriving at
the vector potentials Eqs. the near- and far-field distributions for first- and
second-order multipoles can be determined by the relations Eqs.. It is mentioned
that the electrodynamical derivation easily allows for the determination of the static fields
with the transition £ — 0. For illustration the in-plane radiation patterns for primitive carrier

and current configurations have been computed for the static as well as the time harmonic

radiation in Fig[2.3

2.1.3 Localized plasmon polaritons

In this section the electrostatic approximation, a particular and frequently applied simplifi-
cation for the electrodynamical treatment, will be applied to calculate the effective param-
eters of an ensemble of particulary shaped nanoparticles. This approximation is limited to
metamolecules with such small dimensions that the internal field of the metamolecule can be
assumed to be constant. Strictly speaking, the wavelength, being a number for the length
scale of the spatial variations of incident electromagnetic plane waves, has to be much larger
than the metamolecule’s dimensions. This limitation is termed the sub-wavelength criterion.

It will be seen that the natural electric permittivity of certain materials in ellipsoidal-
shaped metamolecules will allow for a resonant phenomenon in the optical response, termed
localized plasmon-polariton (LPP). The derivation starts with the scalar potential according
to Eq., but in the electrostatic regime making time derivations safely negligible

Ag(r,t) = ——1(r,1). (2.79)

€0

Averaging [Eq.([2.20))] yields for the corresponding macroscopic scalar potential
Ad(r,t) =0. (2.80)

Eq.(2.80) is now considered for the case of elliptical particles. It is mentioned that for other
nanoparticle shapes, except spheres, cylinders and ellipsoids, analytical solutions of Eq.(2.80))
are hardly amenable. Here the notation according to Ref. |[BH83| is used. Transformation

towards elliptical coordinates provides the scalar potential for an external z-polarized electric
field

Bo(r, 1) = —2Ey = —Eo\/ (e (Ifi(zz)?a?i“ij) <) (2.:81)
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Hereby a,., . represent the semi axes of the ellipsoid in the principle directions z,y, z, respec-
tively, and &, 7, are the elliptical coordinates [BH83|. The potential outside the ellipsoid
comprises beyond the external contribution ®, the influence of the ellipsoid @, considered as
a perturbation, while the potential inside the ellipsoid is ®;. The potential at the interface of
the ellipsoid has to be continuous, described in elliptical coordinates by & = 0 and expressed

by the condition

®;(0,n,¢) = ®,(0,1,¢) + Po(0,7, ). (2.82)

The transformation of Eq.(2.80)) in elliptical coordinates yields

AD(r1) = (- C)f(é)a% [f@)g—ﬂ . f)f(n)a% [f(n)?—ﬂ
. n)f(C)a% {ﬂog—ﬂ 7 (2.83)

with f(u) = \/(u +a2)(u+a2)(u+a?) and u € [§,71,(]. The solutions of Eq.(2.83) for the

unknown ®,,; are considered in form of the ansatz

pi(€,1,¢) = F(E)V/ (a2 +n)(a2 +C), (2.84)

which is substituted into Eq.(2.83)) yielding two solutions

Fi(§) = Vai+§, (2.85)
du

() = Fl(f)/:om. (2.86)

The requirement for vanishing potential at infinite distance from the ellipsoid is expressed by

¢ — oo which is only satisfied by F5(€). Hence, the solutions for the ellipsoid’s potential

(6,7, ¢) = CoF2(€) v/ (a2 + 1) (a2 + 0, (2.87)

and the internal potential which has to be finite at the origin, are found

®i(&,n,¢) = GF(E)V (a2 + 1) (a2 +¢). (2.88)

In order to determine the two unknown constants C),;, the boundary conditions for the po-
tential (2.82)) as well as the requirement for a continuous normal component of the dielectric

displacement D(r,w)

0 0
61(00)8—5@(57777@01) o = Ea(w)a_gq)p(fa777<7w) o
+ @ (Ene)| (2.80)
£€=0
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yield two equations for two unknown constants. The permittivity denoted as €, represents the
embedding ambient material, whereas ¢; accounts for the the ellipsoid’s permittivity. The final

expressions for the potentials in the Fourier domain [transformation [2.51] can be obtained as

1
¢l(€7 /'77 C? w) = ®0(£7 777 C? w) L [EA(w)_e (w)] Y (2'90)
1 + z 1€a(w)a
QA Cy Q. [€a(w) — &(w fg a2+u V(W)
P& Gw) = Pol&m, (w) = (2.91)
' €a(w) + L:[61(w) — €a(w)]
In Egs.(2.9012.91) the geometrical factors L; have been introduced as
[ = el /OO du with [ € [z,y, 2] (2.92)
[ ) AR :
2 Jo (af +u)f(u)

The potential (2.91) is typically solved for distances far away from the ellipsoid r > a,, .
which allows the expansion of the integral in the nominator of Eq.(2.91)

- du N - —5/2 _2 -3/2
/g —(az 0 F @) N/g u 2 du = 3§ ) (2.93)

For ¢2 = r? the far-field scattering potentiall| of the ellipsoid can be finally determined

Eocos(0)  azaya]e(w) — €a(w)]
1?2 3ea(w) + 3L, [6(w) — ea(w)]

Dy (& m, G w) = (2.94)

The introduced angle # accounts for the polarization direction of the external electric field with
respect to the axis a, according to Eq.. In order to relate the found potential to the
multipole moments, the fundamental electric dipole vector potential can be translated into the
corresponding scalar potential applying the Lorenz gauging relation [V - A + —iwe,(w)c 2® =
0]. This yields for the vector potential of the electric dipole

c? 1 p-r

ep(r,w) =V PP iwea(w)  Amegea(w) 13 (295)

Comparing Eq.(2.94) with Eq.(2.95)), the electric dipole moment associated with the ellipsoid
in the principle directions [ € [z, y, z] follows directly

Aepeq(w)azaya, €(w) — €a(w)
3 €a(w) + Lil6(w) — €a(w)]

m(w) = Eo(w). (2.96)

Having arrived at this point some important conclusions can be drawn which are beneficial to

understand the physics of localized plasmon polaritons in more complex geometries.

4Typically the series expansion of the integral [Eq] is only performed up to the first order, yielding
solely the electric dipole potential. Now, one might erroneously anticipate that higher series expansion
orders could help to include higher-order multipoles. To include higher multipole orders it is first of all
essential to have more complicated ansatz for the scalar potentials ([2.87)12.88), see Ref. [LL85].
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Figure 2.4: The dipole moment for an electric field with the amplitude 1 for the three principle
directions x, y, z in (A,B,C), respectively. The red dotted line marks the frequency for which [e,(w)(1—
L.)+ L.ei(w) = 0] is fulfilled. (D) A sketch of an ellipsoid embedded in air together with the spatial
dimensions. (E) The bulk permittivity of gold [JC72], used for all simulations. (F) The effective cross
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sections of the isolated ellipsoid for the two indicated polarization directions.

e The electric field induced by the ellipsoid E, = =V &,

_ agaya, [ea(w) — &(W)IV [(I)O féoo (a%ﬁ:gf(w]

E, (&1, w) = 2 €a(w) + L:[6(w) — €a(w)] ,

(2.97)

will be resonant, if the denominator becomes zero |e,(w)(1 — L.) + L.€(w) = 0]. Since
L; < 1 for arbitrary ellipsoids, this condition can only be fulfilled if one of the two
involved permittivities is negative. This property of having a negative permittivity
can be naturally satisfied for metals at frequencies below the plasma frequency, see
Fig{2.4(E). Hence, for metal ellipsoids, but also for their inverse geometry, i.e., elliptical
dielectric voids in an ambient metallic material with negative permittivity, the local field
can be enhanced at a certain resonance frequencyﬂ. This resonance corresponds to the

localized plasmon polariton mode.

Beyond having the ability of enhancing the local electric field one can also observe the
LPP in the far-field. Averaging over an ensemble of identical ellipsoids (number density
n) the macroscopic polarization via Eq. and finally the corresponding effective
permittivity can be calculated

&(w) — €a(w)
€a(w) + Liei(w) — €a(w)]’

drazaya,

3

(W) = 1+ e, () (2.98)

It can be deduced that this effective permittivity represents a diagonal tensor, since a

5A detailed investigation of the local field enhancement of ellipsoids will be presented in section m
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Figure 2.5: Comparison between effective permittivities predicted by Eq. 1) and the Clausius
Mosotti (CM) formula [Eq.([2.99)] for two particle concentrations of ellipsoids according to Fig[2.4(D)
for a polarization along the main axis: (A) 200 particles per pm? and (B) 2000 per pum?.

polarized electric field induces a dipole moment only in the same direction. Since these
entries are different for an ellipsoid with a, # a, # a. the general response has axial
anisotropy in all three directions, see Fig(A—D). Hence, the general far-field response
caused by a volume described by the effective permittivity is expected to show a

strong dispersion in the frequency domains where LPP resonances are excited.

e [t is an important fact that the LPP resonance position is defined by both, the material
dispersion |&(w), €a(w)], and the geometrical dispersion, induced solely by the geometry

(L;) of the metamolecule, i.e., the ellipsoid.

e The influence of neighboring metamolecules is not considered by Eq., since the av-
eraged electric field of an ensemble of ellipsoids has been assumed to be the same as for
the isolated ellipsoid. Hence, any electric field interaction of adjacent ellipsoids has been
neglected. To consider this effect, which is important for large concentrations 7, a local
field correction can be done. Therefore the local field contributions of neighboring scat-
terers are considered by their polarization fields E,, = —P/(3€q) [Jac75]. This describes
the electric field at the origin of a fictive sphere containing a volume of electric dipoles
with the macroscopic polarization P. In addition to the external field, the polarization
field interacts with each dipole which yields an approximation for the averaged electric
field. With this assumption the effective permittivity takes the following form

pi(w)

with  a(w) = T (2.99)
ol

3noy(w)

e =14+ ———,
ottt () + 3eg — nay(w)

Equation connects the microscopic polarizability «(w) and the associated macro-
scopic permittivity €(w) and is known as the Clausius Mosotti relation |[JacTh]. The two
expressions for the effective permittivities and for different number densi-
ties are compared in Figf2.5] In general, it can be concluded that an increasing number

density 1 causes a redshift due to increasing effective interaction of metamolecules.

e Considering an isolated ellipsoid rather than an ensemble, the far-field response may
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be described best by effective cross sections C'(w). The scattering cross section Cyea(w)
is defined by the ratio of the scattered power and the intensity of the incident light
(the drradiance) yielding values with the units of an area. Similarly, the absorption
[Cabs(w)] as well as the extinction [Cyea(w) + Caps(w)] cross sections are defined. The
scattered power is calculated by the poynting vector (S = E x H) which is additionally
integrated over the surface of a sphere including the scattering object. Evaluating these
quantities with the help of Eqgs.(2.58|[2.64}[2.67]2.95]) the cross sections follow after some
manipulations [BHS3|

Coeag(w) = ki;? | (w) P, Capsi(w) = k(w)S[ay(w)], (2.100)
Cext,l(w) = Csca,l<w)+0abs,l(w)- (2101)

The cross sections for the ellipsoid with the polarizabilities a;(w), shown in Fig[2.4(A-C)
can be evaluated with Eqs.. Dividing these cross sections by the geometrical
cross sections of the ellipsoid for the respective polarization direction yields the depen-
dencies presented in Fig[2.4[E). As it can be inferred this fraction is larger than unity
within the LPP resonance region. In addition, it is depicted by Fig[2.4[(A-C) that for
a polarization parallel to the larger ellipsoid axis the resonance appears to be increased
and redshifted. Furthermore, the ratio between scattered and absorbed light changes as
well. For increasing ellipsoid dimensions the extinction cross section is mainly dominated
by scattering, whereas for small ellipsoids absorption is the primary contribution to the

total extinction.

Although these conclusions are drawn in the electrostatic limit, these physical properties
of LPP resonances hold qualitatively also to understand more complex metamolecules that
can only be described numerically. Hence, the above-mentioned properties will be essential
in order to understand principle physical mechanisms and effects connected to LPP modes in

the following chapters.

2.1.4 Propagating plasmon polaritons

In this section another family of plasmons, termed surface plasmon polaritons (SPP), will be
discussed. Beyond the possibility to enhance and localize light in the vicinity of metal particles,
localization can also occur on low-dimensional, i.e., one dimensional systems. Prototypical
examples of such systems are metal films embedded in dielectrics (insulator metal insulator:
IMI) or their inverse (metal insulator metal: MIM) configurations, see Fig[2.6|(H). Considering
a localized surface mode at a metal film parallel to the xy-plane the macroscopic magnetic
field might be described by the ansatz [BSASG|

H(r,t) = Cf(z)ek=o=1, (2.102)
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In Eq.([2.102) the vector C is constant and accounts for the correct units, here [A /m|. Further-
more, C is zero in z and in z direction for propagation in this plane, making the considered
solutions transverse magnetic modes. This can be verified by plugging this ansatz into the
homogeneous Maxwell equation and requiring general solutions |k, # 0, and 9, f(z) # 0].
Due to the in-plane translational invariance the propagation direction can be fixed parallel
to one axis, i.e., the x-axis. The associated electric fields in Fourier domain follow from the
second curl Maxwell equation and the constitutive relation ([2.53)

B(r,w) = — 'V x Hr,w). (2.103)

wepe(w)

Now, the remaining task is to determine the functional dependence f(z) describing the field

decay inside and away from the guiding layer of the thicknessﬂ h

k=17 Vo 2 <0,
f(z) =< cosh(k.22) + % sinh(k,22) Voo0<z<h, (2.104)
[cosh(k:zgh) 1 ke sinh(k;zgh)} ek s p,

The function f(z) in Eqs. is chosen to fulfill the criteria for a steady transition of the
tangential magnetic field (H,) at the interfaces at z = 0 and z = h. The remaining boundary
condition for a continuous behavior of the tangential electric field (F,) will then provide the
solutions for k,(w) for the selected field profile. The wave equation can be obtained for each

homogeneous layer by combining macroscopic Maxwell’s equations (2.6{2.9)) and constitutive
relations ([2.55)2.56))

2

V x V x B(r,w) — %el(w)E(r,w) = 0, [V eew)E)=0], (2.105)
AE(r,w) + C;j—zzel(w)E(r,w) = 0, l€ll1,2,3]. (2.106)

Thereby, it has been assumed that no external currents or charges are present and that it
is sufficient to consider materials in the electric dipole limit (M = 0, Q = 0). According to
Eq.(2.103]) the electric field in the respective layer can be applied to get the dispersion relation,

connecting k,(w), ¢(w) and k,(w)

w2

B (w) —kBw) = —=ew), 1€(1,2,3]. (2.107)

c2

With Eqgs.(2.107)) the implicit defining equation for k,(w) can be obtained from evaluating the

boundary condition for the tangential electric fields

k.sk.o€1€a + Koik o€0€s

tanh(k.qh) = — (2.108)

k.ok.o€1€3 + Ko1K 36060

Starting from Eq.([2.108]) two important special cases are considered in the following: the single

5The frequency argument (w) has been dropped in Eq.(2.104) and Eq.(2.108) for the sake of clarity.

27



interface surface plasmon polariton and the case of symmetric embedding |e1(w) = e3(w)].

e Starting with the single interface plasmon one can consider Eq.(2.108]) in the limit of

large film thicknesses h. For this limit the asymptotic behavior for the hyperbolic tangent

function can be applied tanh(z)|,—. = 1. Hence, the defining equation for k,(w) can

be rewritten as

s (W) e (@) + Faa(w)es(@)] ko (w)ea (@) + Kaa(w)er (w)] = 0, (2.109)

which is mutually fulfilled if at least one expression of the two brackets becomes zero.
Using the relations (2.107) to get k,(w) at the respective interface (1,2) or (3,2) yields

the important single interface surface plasmon dispersion relation [BSAS6]

KDy = @ [aWel) g g (2.110)

?

e c\l g(w) + e(w)

Furthermore, one can draw the important conclusion that one of the layers must have a

negative real part of the electric permittivity like in the case of the LPP modes before,

see section [2.1.3, Combining Eq.(2.110) and Eq.(2.107)) one can write

w —e2(w)

ke (w) = = | ———2— (2.111)

c\l e(w) + ez(w)

Now, if R[e;(w)] > 0, which corresponds to an arbitrary dielectric for frequencies far

away from any material resonance, es(w) should be negative such that € (w) + €z (w) < 0.

In this case the solutions for k,;(w) have a positive real part and guarantee guided modes
with evanescent field decay according to Eqs.([2.103)2.104]). Though only shown for single

interface surface plasmons, it can be generalized that for the second family of plasmons,

i.e., surface plasmon polaritons, metals represent suitable materials for their existence

in the same manner as for LPPs. It is worth noting that in contrast to LPPs, SPPs are

existing typically in a much broader spectral range compared with LPPs.

e The second important implication is the case of a symmetric embedding of the guiding
layer. Hence, the general relation (2.108|) can be further simplified for €;(w) = €3(w) and

one obtains

tanh[k,s(w)h] = — (w2)/£21( wiew)es Q(W)
ko (w)et(w) + k4 (W) (w)
Eq.(2.112]) can be simplified using the identity for the hyperbolic tangent
r __ ,—x 2z 1
tanh(z) = — = © (2.113)

er + e % 62z+1’
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Figure 2.6: (A) Results of the evaluation of Eq., (B) for the symmetric, and (C) for the
anti-symmetric modes according to Eqs. for a 50 nm thick gold layer embedded in
two equal halfspaces with n = 1.5. The blue spots represent solutions of the respective equation
{log[|f(kz)|]}. (D) The real part of the propagation constant k,(w) for these modes as well as the free
space dispersion relation and k(w) for the single interface SPP. (E) The z-component of the electric
field and (F) the z-component for the fundamental symmetric and anti-symmetric modes. (G) The
propagation length (logarithmic z-scale) for the two modes compared to the single interface SPP. (H)

Sketch of the two systems, metal insulator metal (MIM) and the inverse setup metal insulator metal
(MIM).
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It can be seen that the original set of solutions can be separated into two types of solutions
("+” and "-”). Substituting Eq.(2.114]) into Eq.(2.113)) by replacing z by k,2(w)h/2 yields

for "+

tant | S22 it (2.115)
and for "-”

corn | F2{20t | _fareiestel (2.116)

To illustrate the advantage of such a separation, a 50 nm thick gold layer embedded in a

dielectric medium with a non-dispersive refractive index of n = 1.5 has been assumed to
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calculate the dispersion relation as well as the two separated solutions according
to Eqgs.(2.115)2.116)). Results are shown in Figl2.6(A-C) for a constant frequency of
600 THz. It can be seen that the general equation contains all solutions, indicated
by the blue spots compared with the split approach. Regarding the field distribution
for the first two modes that are determined by different imaginary parts, it can be
seen that symmetric and anti-symmetric modes with respect to the tangential electric
fields emerge, see Fig[2.6((E). These modes can be either described by Eq. if they
are symmetric or Eq. if the z-component of the electric field is anti-symmetric.
Thus, for numerical Calculationsm it is beneficial to use the split formalism, since then all
points representing solutions for the dispersion relation are better separated and reduce
potential numerical errors. Furthermore, both modes comprise different dispersion in the
propagation vector k,(w) as it can be seen from Figf2.6(D). Considering the imaginary

part of this propagation vector the propagation length of the respective mode

1

L= Sk @)

(2.117)

can be estimated [Rae88]. Evaluating Eq.(2.117) for the fundamental modes and the
case of the single interface plasmon one ends up with the propagation length plotted
in Fig(G). The symmetric mode has a shorter propagation length for all frequencies
when compared to the anti-symmetric mode and the single interface SPP. The increased
propagation length of the anti-symmetric mode is frequently explained by the electric
field distribution which has a zero and thus less confinement in the lossy metal in contrast
to the electric field of the symmetric mode. Hence, typical propagation lengths range

from several nanometers up to hundred microns, depending on the frequency.

Finally, there are two more important peculiarities of SPPs considering the local field enhance-
ment and their excitation. First, the real part of the propagation constant below frequencies
where € (w) +€2(w) < 0 is always on the right side of the free space dispersion relation “n;(w).
Hence, SPPs cannot be excited with plane waves. For frequencies above this threshold, SPPs
become leaky modes, i.e., modes that radiate into free space and have an even larger imagi-
nary part in k,(w). To overcome the excitation problem with plane waves various excitation
regimes have been developed utilizing, e.g., grating couplers, attenuated total internal reflec-
tion, prisms, etc. |[Rae88|. One important technique for this work is the so-called end fire
coupling [BSA86|. Thereby the translational invariance of the infinite planes is broken on one
side and the plane wave illuminates the end facets of the layer system. From this side the
k-vector mismatch results only in a non-zero back reflection, but SPP modes can be excited
depending on the symmetry of the illumination, i.e., the angle of incidence or the polarization
state.

The second important point is the discontinuity of the component normal to the surface, e.g.,

see Figf2.6(F). This discontinuity allows an electric field enhancement localized at the metal

"Here an adaptive simplex method has been applied which is able to calculate the shown dispersion relations
with an appropriate numerical accuracy [Ak,(w)/k.(w) ~ 1074].
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surface that is typically applied in various systems, e.g., Surface-Enhanced Raman Scattering,

nonlinear optics, etc. [Rae88|.

2.1.5 Rigorous numerical methods

In this section two very important numerical solution schemes that are widely applied through-
out this work are introduced: The Fourier Modal Method (FMM) and the Finite Difference
Time Domain (FDTD) method. Instead of presenting the exact derivation and implemen-
tation schemes here, the two approaches are described briefly supported by examples that
correspond to problems whose solution has been found analytically in the previous sections.
It is furthermore mentioned that in the field of nanoplasmonics and metamaterials the two
presented methods correspond to standard tools that are frequently applied to solve various

problems.

Fourier Modal Method

The most appealing aspect on the Fourier Modal Method, also known as Rigorous Coupled
Wave Analysis (RCWA), especially when compared to the FDTD, is that it constitutes a
frequency domain method. Hence, a solution for the wave propagation that is based on
macroscopic Maxwell’s equations computed in Fourier domain. Thereby the structures inter-
acting with the electromagnetic fields are described by an electric permittivity distribution in

reciprocal space and frequency according to

1 iKex 1
e(r,w) = A Z Z (K, K, w)e ety (2.118)

Y K.eSy K, €8,
An example of such a 2D distribution is sketched in Fig[2.7(A). Similar to that expansion for

the structure, the electromagnetic fields, denoted as G, inside the structure are equivalently

assumed to be decomposable in form of

1

G(r7w) = A A

Y DY GK, Ky w)eereton, (2.119)

Y K.eS, Ky€8,

Considering Egs.([2.118]2.119) there are a few important aspects to be mentioned. First, the
requirement for the Fourier decomposition is that the structure is arranged periodically. The
periods for a planar structure oriented parallel to the xy-plane are denoted as A, and A,.
Second, the spatial frequencies, or spatial harmonics K, ,, have to be elements of a certain
parameter space S, , which for the FMM is naturally provided by integer numbers multiplied
by the respective inverse grating vector I';, , = 27/A, , known as the Floguet theorem [TW9T].
Since for numerical simulations the corresponding infinite sums over all these values have to
be approximated by calculating only finite sums, the FMM accuracy is limited by the number
of Fourier orders. Hence, for a particular problem the number of considered orders determines

the structural resolution as well as the resolution of the fields inside the modulated area. For
simplicity the FMM is explained for 2D systems |Fig[2.7(B)] (translational invariance in y-
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Figure 2.7: (A) 2D periodic unit cell of a typical structure for FMM simulations. (B) The definition
of the illumination conditions as well as the approximation scheme required for varying structures in
propagation direction.

direction) in the following as initially presented by the Moharam and Gaylord in 1981 [MGSI1].
Thus, the tangential electric fields in the homogeneous regions above (1) and below (3) the

modulated layers may be written for transversal electric polarization (TE) as

E?Sl)(fv,z,w) _ Einceikonlsin(e)x+i’yoz+ Z Rmemm’”_pmz, (2‘120)
E(3) _ = T 1M T+Tm 2 ko = 27 2191
Yy (iL',Z,CU) - Z m€ ) OZT, ( . )
m=—co
with

) 2mm
= konisin(0) , (2.122)

A,

pm =V (kon1)? — a2, ,Tm =/ (kons)? — a2,. (2.123)

The angle of incidence is denoted by 6, while the refractive index of the associated homogeneous

layer (1) is ny and for layer (3) is ng. In order to describe the fields inside the modulated

region (2) the wave equation (2.106)) is

2 2 2
88372 % + w_62(x W)} EZSQ)@’ z,w) = 0. (2.124)

Performing the spatial Fourier transformation ([2.52)) provides the solution of Eq.([2.124))

E?S (z,2,w) Z E,, eomethmz (2.125)

m=—o00
which is conform to the general equation (2.119). The respective boundary conditions allow
to formulate an eigenvalue problem from Eq.(2.125)), whereas f3,, represents the eigenvalue
and FE,, the eigenvector of the respective mode number m, which is solved numerically. As
a result the electric ﬁeldsﬂ for each mode m in each layer, i.e., the complex values for R,

and T,,, as well as the propagation constants [3,, are obtained. A further direct result of

8For transversal magnetic polarization (TM) E, has to be replaced with H, and the respective boundary
condition has to be taken.
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Figure 2.8: (A) FMM calculated zeroth order transmission (solid blue), reflection (dashed black)
and total absorption (dashed dotted red) spectra including all orders of a metal film incorporating
periodically arranged subwavelength slits. (B) The SPP dispersion relation (solid blue) together with
the grating vectors 2rm/A (dashed dotted blue), the numerically obtained resonance frequencies (red
dashed), and the free space dispersion relation for reference (dashed blue). (C) The z-component of
the electric field modulus for mode m = 3 is shown (FMM simulation).

these considerations is an important relation, i.e., the grating equation. For their derivation
it is sufficient to consider the conservation of momentum parallel to the xy-plane. Using this

requirement for the electric fields (2.12042.125)) the condition for forward diffracted orders

becomes

Oy = Qy (2.126)
—~ —~
(1) ®3)
2
kony sin(6) + Xm = konzsin(f,,). (2.127)

The analogous consideration of the backward diffracted orders results in

2mm

Ag

kony sin(9) + = konysin(f)). (2.128)
Though the grating equations (2.127] easily allow to predict the diffraction angles, see
Fig2.7(B), the amplitudes R,,, T,, require a numerical solution as described above.

As an example for the FMM a SPP propagation is described by calculating a 25 nm thin gold
film embedded in vacuum incorporating a 50 nm wide slit. The period A, of the periodically
repeated unit cell in x-direction is 1.75 pm. The resulting normalized zeroth-order reflectance
and transmittance are shown for normal incidence and TM polarization in Fig[2.8(A). Several
spectral features can be observed. Additionally the total absorption including all diffraction
orders has been plotted showing an enhanced absorption for the resonance frequencies. Calcu-
lating the dispersion relation k,(w) [Eq] for the corresponding SPP at an unperturbed
flat film yields the propagation constant shown in Figl2.8(B). Now, if the grating equation
is elaborated for the first modes and if additionally the numerically calculated resonance po-

sitions are inserted, one observes that the crossings match the SPP lind’l Hence, one can

9For mode "4" in FigB) there are two intersections with the SPP line. The low frequency line causes
no observable resonance in the spectra, since for this resonance the damping [S(k;)| is much larger (not
shown here).
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anticipate that the grating vector, being the only k-vector in x-direction in the system, is able
to launch SPP’s due to the k-vector matching at the weakly perturbed metal film, explaining
the observed enhanced absorption. This procedure, i.e., considering the grating in terms of
the grating equation and utilizing the SPP dispersion relation of a plain metal film in order
to describe the composite system is known as the empty lattice approzimation [CEMWS6E]. To
verify the SPP nature of the obtained resonances rigorously the FMM can be simultaneously
utilized to calculate the z-component of the electric field for a particular mode (m = 3), see
Fig2.§[(C). As expected, the evanescent decay away from the surface and away from the slit
is observed, which can be attributed to the LPP excitation due to the presence of the grating.
Moreover the field seems to be able to penetrate the subwavelength slit aperture and causes
localized fields at the back side of the metal film. In passing it is mentioned that beyond the
SPP additionally a quasi-cylindrical mode [LLO§| is launched. In the literature this mode is
important to describe the scattered of light after passing through nano-scaled holes and slits
[LCXX10]. This mode yields radiation patterns similar to cylindrical waves which can be
roughly anticipated from the near-fields in Fig2.§(C).

Finally, the FMM has been briefly introduced and applied together with the previous con-
siderations of SPP resonances to calculate experimentally accessible values, e.g., far-field in-
tensities, as well as near-field distributions. In the end it is mentioned that state of the art im-
plementation routines differing from the historical approach presented here typically use more
stable implementations incorporating spatial adaptive resolution [EB10], coordinate transfor-
mations for faster convergence as well as adapted boundary conditions [Lie03|, VHO02, [SLHCO1]

or even nonlinear optical effects [BT07].

Finite Difference Time Domain Method

Probably the numerical technique with the lowest number of approximations or manipulations
on the original set of Maxwell’'s equations is the Finite Difference Time Domain method
(FDTD). With this method, Maxwell’s equations are discretized in space and time applying
the transition from analytical to numerical differential operators. Hence, the method is an
appropriate tool to simulate an unknown system, since all physics are included. However, the
method is approximate as all rigorous schemes due to limitations provided by computational
resources like memory or CPU (central processing unit) power, which are finally defining the
computational time. For convenience the FDTD will be shortly explained for 3D systems.
The two curl Maxwell’s equations undergoing spatial and temporal discretizationm

(x,y,2,t) = (aAx, BAYy, yAz, 0At) , (2.129)

10For FDTD simulations only the curl equations have to be considered, since the divergence equations are
automatically fulfilled by the applied Yee grid [Yee66].
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Figure 2.9: (A) The far-field observables T" and R for a periodic arrangement for gold spheres with
a diameter of 50 nm. The calculation has been performed by FDTD (lines) and the LPP model (lines
with triangles or circles) utilizing an effective medium according to Eq.. Therefore three periods
(200, 150 and 75 nm) have been investigated. (B) The near-field for the LPP resonance frequency of
588 THz has been computed by FDTD. The inset shows the respective near-field component for an
electric dipole, see Fig@

become for F, and H, [Yee66|
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(2.131)

Analogous expressions are obtained for the remaining field components. However, there are
some important points that can be directly inferred by considering Eqs., . First,
the structure enters the formalism typically by a spatial electric permittivity distribution,
which has to be known in the time domain. Since typically the material permittivity is known
in the frequency domain, special dispersion models have to be assumed for which the trans-
formation in time domain can be performed. This is especially of interest if pulsed, e.g.,
Gaussian, temporal excitation profiles are considered. For time-harmonic fields, i.e., continu-
ous wave propagation, only the permittivity for a particular frequency is needed. Second, the
six electric and magnetic field components are not entirely available at the same time and on
the same spatial grid. The reason for this is the underlying leapfrog algorithm [Taf95] that is
applied to calculate the temporal and spatial derivatives. This calculation is performed on two
shifted numerical grids which significantly decreases the computational time and improves the
stability. Third, quite often the current in Eqs. is used to include sources of the field,
i.e., the excitation. However, electric field sources are also possible. State-of-the-art imple-

mentations include various improvements of the original formulation of the FDTD by [Yee66],
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such as adaptive spatial resolution [Rem06], the possibility to account for nonlinear optical
effects [GT92| and various others [Taf95] that can be found in open source implementations
[ORIT10] or commercial products [FDT10]. In order to illustrate the principle operation of the
FDTD a periodical arrangement of metal spheres with a diameter of 50 nm and three different
periods has been simulated for plane wave illumination. The typical FDTD simulation do-
main can be seen in Fig2.9(B). An excitation plane for the launched field, the structure, and
proper boundary conditions at the edges of the computational window are labeled. Frequently
applied boundary conditions are periodic boundary conditions (PBC) or perfectly matched lay-
ers (PML). The latter provide an exponential decay with suppressed back-reflection from the
boundaries which is applied when properties of isolated metamolecules are simulated. The en-
tire computational window is then discretized, denoted by Az, Ay, Az in Eq.(2.129)). Hence,
for each time step At the entire computational domain has to be stored for all desired field
components, as well as the field components that are required for their computation, see e.g.,
Eqs.(2.1302.131)). Thus, the machine specific available memory is limiting the spatial resolu-
tion for numerical computations. Second, the time step At cannot be chosen arbitrarily, since
the numerical speed for the fields propagating with Ar/At can not exceed the maximal phase

velocity in the system max(vphase) Which has been termed the Courant stability condition

At max(Vphase) < \/Aaﬂ + Ay? + Az2 (2.132)

Although there are proposed methods to overcome this criterion [ZCZ99], this is still imple-
mented in various codes [FDT10, (ORIT10].

As an example the normalized power spectra, monitored on the top and on the bottom of
the computational window, for a gold sphere with a diameter of 50 nm has been evaluated for
three selected periods (A, = A, = 150, 100, 75 nm). Results are presented in Fig[2.9(A). The
spatial resolution for this computation has been set to 2.5 nm in all directions. In order to
calculate spectral quantities such as 7" and R the temporal field evolution has to be Fourier-
transformed. Hence, the size of the entire time window AT = [max(d) — min(d)]At yields the
frequency sampling rate Av = 1/AT. The second limitation beyond the spatial discretization
for accurate spectral investigations is the number of time steps At for which the temporal
evolution of the fields is calculated.

For reference, the numerically estimated values for R and T are compared with quasi-
static calculations from section [2.1.3] Therefore the Clausius Mosotti relation has been
appliedE]. As expected, the resonances are shifted towards smaller frequencies for smaller
periods, i.e., approaching spheres. The number density for the two-dimensional arrangement
of spheres is n = 1/(A,Ayh). The line-shapes between the spectra predicted by FDTD and
the quasi-static approach differ, which is an effect that occurs due to the size of the spherical
metamolecule approaching limits of the validity for the quasi-static treatment. Besides these

weak deviations, the near-fields [R(E,)]| are equivalent to the associated near-field component

HFor the calculation of the reflection and transmission coefficients a standard transfer matrix formalism
[BW99] has been used. Thereby, the film thickness has been set to the diameter of the spheres, while the
refractive index of the film has been set to neg = \/€ofr-
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of the fundamental multipolar contribution, i.e., the electric dipole patternm in Fig., shown
in the inset of Fig[2.9(B).

With the two introduced numerical methods the most important computational techniques
are presented that are widely applied in this work. Nevertheless, there are several other numer-
ical solvers for Maxwell’s equations that have been successfully applied in the recent research
focussing on nanoplasmonics and metamaterials [GKMI0, [KBN10, [Jin93, INH06]. The two
methods presented here have been selected since typical experimental samples are character-
ized by an inherent periodicity (see chapter . Therefore, the FMM is the method of choice
in order to calculate far-field transmission and reflection coefficients. However, for a complete
understanding of spectral features of these quantities near-field simulations are indispensable.
For this purpose, a second numerical method, i.e., the FDTD, has been presented as a tool to
calculate the desired near-field distributions, as well.

Beyond these numerical methods, the analytical considerations introduced in this chapter
present the physical basis which helps to understand, interpret and categorized plasmonic

effects occurring upon electromagnetic excitation in metamolecules of interest.

2.2 Experimental

In this chapter an experimental method is presented, which has been applied to character-
ize fabricated planar metamaterials optically. In particular, the measured observables of in-
terest in this work are the far-field intensities. Among other physical techniques that are
widely applied to optically characterize metamaterials, the intensity measurement can be
regarded a rather simple setup. Other frequently applied methods for the optical charac-
terization are spectroscopic ellipsometry [LBBT09|, scanning near-field microscopy [BDO™10),
BVDZ10, DDLWT10] or phase-resolved measurements of the reflection and transmission coeffi-
cients [PSSHT10| as well as single particle spectroscopy [HKET08, BPQL10]. The advantages
of the intensity measurement are that the number of potentially occurring errors is comparably
low to the before-mentioned setups and that it allows to observe defining spectral features of
ensembles of metamolecules.

Nevertheless, this measurement setup has some significant requirements, e.g., the need for
samples with a large structured area. There are several reasons for that. At first, the spot
size of the illuminating beam can only be focused or confined in the limits of the diffraction
limit. For such beam widths the interaction with an isolated metamolecule can be hardly
detected by standard schemes and will probably vanish in the noise. Thus, the signal has to
be increased by large numbers of metamolecules covering the entire illumination spot size. A
second restriction is induced by the requirement for normal incidence as it will be discussed in
the forthcoming chapters. Therefore, any focussed illumination on the area covered with the

metamaterial should be avoided. Hence, the covered area should be large to use pinholes and

2The corresponding field component for the electric dipole in Fig is the (F,) component due to a different
coordinate system in Figl2.9(B).
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other optical elements with a low numerical aperture to allow measurements close to normal
incidence.

This again results in a minimal area which should be covered with the metamaterial. Thus,
sophisticated fabrication processes enabling for a large area covering of metamaterials are
required [BMH™10, HBST08|, which finally allow a rather simple detection scheme for optical
measurements.

It is mentioned that both, the details of the fabrication of metamaterials as well as the
development of sophisticated measurement setups are beyond the scope of this thesis. The
reader is referred to more experimentally oriented publications on these issues [HMRT09,
PSSH™ 10, [HBSTO0S|.

In this work the experimental verification of certain spectral effects of particular metamateri-
als has been performed by means of optical and near-infrared far-field intensity measurements,
e.g., for the nanoantenna samples of part [3] For this reason, the applied setup is described in
the following section [2.2.1] for completeness.

2.2.1 Far-field spectroscopy

The basic setup for the spectrally resolved intensity measurements applied in this work is
the Lambda 950 professional spectrometer from the PerkinElmer company [Perb|. The setup
is based on a double-beam spectrometric method, illustrated in Fig[2.10] The double-beam
approach allows for a reference measurement for each frequency without removing the sample.
This is useful to account for any fluctuations during the measurements, e.g., instabilities of
the lamps, etc. Thus, the recorded observable for each frequency is the ratio between the
intensity measured in the sample and the reference beam. In order to align the ratio of the
two beam paths and to remove the effect of residual ambient or background radiation an
initial reference measurement without sample is performed. This initial adjustment can be
similarly performed with a substrate without any structuring in order to remove the influence
of the substrate. After this step the measurement for the relative and spectrally resolved
transmission and reflection intensities can be realized and monitored online.

In the following the beam path of the spectrometer is briefly described in accordance with
Fig2.10l Two lamps represent the illumination. For ultra-violet and visible frequencies a
deuterium lamp (a) is applied, while for the smaller frequencies in the visible and infra-
red a halogen lamp (b) is used. After passing a rough initial spectral filter (c) the desired
frequency is selected by two gratings (d). Thereby, each diffraction order propagates under
a certain angle, see Eq.. Thus, the frequency is adjusted by selecting the respective
rotation angle of the diffraction gratings. Afterwards, the beam passes an adjustable slit
(e) that can be applied to narrow the frequency band which is propagating under a certain
opening angle. At this point it becomes obvious that a precise alignment of a particular
frequency coincides with very low illumination intensities. For a high spectral resolution very
narrow slit widths have to be applied, which will result in a decrease of the energy passing

through the slit. Consequently, for each measurement there is a trade-off between detector
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----- mirror  sample compartment

Figure 2.10: The principle beam path in the Lambda 950 spectrometer. The insets show photographs
of the spectrometer including the standard (top) and the advanced (bottom) sample compartment.

noise and spectral accuracy. The beam shape can be further modified by a second slit (f)
to reduce the beam width in the second transversal direction. Next, the beam passes a
depolarizer to remove the residual beam polarization introduced by, e.g., by the gratings, etc.
The beam is selectively switched to the reference or the sample beam by a chopper (g). In
order to perform measurements with polarized illumination, different types of polarizers can
by optionally mounted in the automatic polarizer posts (h). Before the beams are finally
detected by either a photo-multiplyer or an InGaAs (Indium-Galium-Arsenide) detector, the
sample can be optionally mounted in the upper or in the lower path (i). Besides this setup
that has been presented for transmission measurements, the beam path can be modified for
reflection measurements at oblique incidence, scattering measurements, etc. by adding further
items into the sample compartment.

The entire spectral interval provided by the lamps ranges from 175 to 3300 nm. The real
measurement interval is reduced to &~ 280 — 2500 nm by the sensitivity of the detectors, the
transmission window of the substrate, and the specifications of the applied polarizer. The

overall accuracy of the entire setup is specified with a relative accuracy of < 2% [Peral.
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3 Electric dipole excitations in metal

nanostructures

3.1 Optical properties of dipole nanoantennas

After presenting the fundamental physical concepts, the applied fabrication as well as optical
characterization methods in part [2] the following part is related to the first order multipolar
response, i.e. electric dipole excitations, in detail. The associated metamolecules are termed
dipole nanoantennas due to their similar radiation and absorption characteristics when com-
pared with dipole antennas in the radiofrequency domain [KKHI0, Bal0§|. This idea, i.e.,
the application of the antenna concept in the field of nanooptics, started quite recent by the
two seminal works of Miihischlegel et al. [MEMT05| and Schuck et al. [SEST05] in 2005. A
profound knowledge about the optical response of nanoantennas operating in the fundamental
multipole mode, i.e., the electric dipole, will be essential in order to design and understand
the properties of more complex metamolecules [PWABI10, [TSS09, PCT*09| entering higher
multipole regimes. This will be the subject of the forthcoming part [4]

The content of chapter is devoted to the presentation of general optical properties
of electric dipole nanoantennas. In chapter this knowledge will be applied to design and
realize a new type of bio-sensing substrates. For this purpose, particularly arranged ensembles
of dipole nanoantennas, providing LPP resonances, are tuned to exhibit SPP excitations,
simultaneously. This combination yields multi-resonant plasmonic metamaterials that are

successfully applied for Surface-Enhanced Raman Scattering (SERS).

3.1.1 Near-field enhancement

In order to start with the fundamental LPP resonance, i.e., the electric dipole, simple arrange-
ments of nanoantennas are considered at first. The reason, why such nanoantennas are of
special interest, is the possibility to exploit the local field enhancement in the spectral vicinity
of LPP resonances as motivated in section [2.1.3] This enhancement provides the playground
for a broad band of physical and interdisciplinary applications. Examples are bio-sensing
applications [GHMGI10], such as Surface-Enhanced Raman Scattering (SERS) [F'SDO0§]|, non-
linear frequency conversion processes [KYFT09|, trapping [ZHSM10] or quantum effects, e.g.,
single photon emission [ETGI10]. These typical research topics exploit the field enhancement
occurring at optical nanoantennas. For this work, the enhancement will be applied to design
improved SERS substrates for bio-sensing and chemical analysis later on. From the viewpoint
of physics, there are three different principles that result in a local field enhancement utilizing

optical nanoantennas.

e First, the presence of a plasmonic resonance, see section for LPP resonances and
section for SPP resonances. In principle, both can be utilized to enhance the local
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electric fields in a predefined spectral region, whereas LPP resonances are anticipated as

the predominant plasmonic effect for an isolated nanoantenna.

e Second, a coupling between two or more closely spaced nanoantennas can enhance the
the local field beyond the enhancement of an isolated nanoantenna [FNDM09, AKGQ09].

e Third, field enhancement can be achieved by particular shapes of the nanoantenna.
This effect coined the term lightning rod effect [GN80L, [PC85, [LWS82]. In contrast to the
first mechanism, it is a non-resonant effect that can be observed at various structures

displaying sharp corners, tips, or rough surfaces.

In order to illustrate all three effects, triangular-shaped nanoantennas will be considered as
an example. The triangular shape has been selected since it simultaneously allows for the
excitation of LPP resonances and comprises sharp tips [NKS™07]. Moreover, it is a prototypical
example for a constituent that can be coupled to a second triangular nanoantenna yielding a
system termed bow-tie nanoantenna [KYET09]. The system has been investigated numerically
by means of the FMM for the spectral analysis, and the FDTD for the computation of the
near-fields. For all simulations a two-dimensional periodic array with a grating period of
400 nm in z- and y-direction, n = 1 as the ambient refractive index, and n = 1.5 as the
refractive index of the substrate have been assumed.

The nanoantennas are made of gold [JCT72] and have a thickness of 25 nm. The propagation
is assumed to be normal to the nanoantenna arrays, i.e., parallel to the z-direction. The polar-
ization of the electric field has been set either along the z- or the y-direction. The orientation
of the nanoantennas in the zy-plane is depicted in Fig[3.1C). Considering the far-field spectra
[Fig[3.1[ A,B)], distinct resonances for both the triangular as well as the bow-tie nanoantennas
for both polarization directions can be observed. These are associated to the fundamental
LPP resonances, i.e., the electric dipole modes, of the nanoantenna for the respective polar-
ization direction. To motivate that the resonances correspond to electric dipole excitations,
the y-component of the electric field is shown in Fig[3.1[C) for the bow-tie nanoantenna at
the resonance frequency for z-polarization. The inset in Fig[3.1[C) shows the corresponding
radiation pattern of an isolated electric dipole in the near-field zone, as derived in section [2.1.2]
It can be easily verified that the near-field patters of the bow-tie nanoantenna match nicely
to the electric dipole pattern. It is mentioned that the y-component has been selected for
this comparison, because it does not contain the impinging transverse electromagnetic fields.
Hence, the localized mode can be observed almost undisturbed from the illumination field.

In Fig[3.1(D-F) the moduli of the z-polarized electric fields for the three scenarios of field
enhancement are shown: (D) due to resonant coupling of the bow-tie nanoantennas with a gap
width of 15 nm, (E) due to the LPP resonance of a single triangular nanoantenna, and (F)
due to the presence of sharp curvatures at the nanoantenna’s surface only, i.e., at the tips of
the triangle. For the latter scenario an excitation frequency spectrally well-separated from the
LPP resonance has been selected in order to ensure that the effects of the LPP resonance can be
safely neglected. The fields have been recorded 5 nm above the nanoantennas. Additionally,

the fields have been shown in a y-cut through the center of the respective nanoantenna,
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Figure 3.1: The spectral reflection (black) and transmission (blue) coefficients for an array of gold
triangles and bow-tie nanoantennas computed with the FMM for (A) x-polarized electric fields, and
(B) for y-polarized electric fields. (C) The real part of the y-component of the electric field for the bow-
tie nanoantennas for the resonance frequency in z-polarization. The inset shows the corresponding
radiation pattern of an electric dipole, oriented along the z-axis, in the near-field zone, see Fig[2.3|
(D) The modulus of the z-component of the electric field 5 nm above the bow-tie nanoantenna in
the resonance for z-polarized electric fields. The bottom image shows the modulus of the same
field component in a y-cut through the center of the bow-tie nanoantenna. (E) The respective field
distributions for the triangular nanoantenna at the resonance, and (F) in the off-resonant case.

see small insets at the bottom of Fig[3.1(D-F). For all three scenarios the electric fields are
enhanced as |E,/E,o| exceeds unity. Furthermore, the field enhancement factor directly at
the tips of the triangles is &~ 40 for the resonant excitation, & 8 for the off-resonant excitation,
and = 50 in the gap for the bow-tie setup at the resonance frequency.

For the coupled bow-tie nanoantannas there is one more peculiarity to be mentioned, which
is a generic property of coupled electric dipole nanoantennas and which manifests in the
far-field spectra in Fig[3.1(A,B). It can be seen that the resonance frequencies of the bow-tie
nanoantenna system appears to be either red-shifted, i.e., shifted toward smaller frequencies, or
blue-shifted, i.e., shifted toward larger frequencies, depending on the incident polarization when
compared with the uncoupled triangular nanoantenna’s resonance frequencies. In particular,
the in-line excitation ("——"), i.e Flg- , is energetically easier to excite and hence
appears at lower frequencies due to the attraction of opposite charges of the two dipoles. In
contrast, the side-by-side excitation ("11"), i.e., Fig[3.1[B), appears at higher frequencies due
to the rejection of the two facing and equally charged carriers of the dipoled}

To get a additional insights into the underlying physical principles of the field enhancement
at nanoantennas, an ellipsoidal dipole nanoantenna will be analytically investigated with the
LPP model introduced in section [2.1.3] The local field of a metal ellipsoid in the electrostatic

LA comprehensive investigation on the coupling of nanoantennas with different shapes and orientations that
is sometimes referred to as plasmon hybridization, has been performed by Davis et al. [DGV10].

42



description according to Eq.(2.97)) can be rewritten as

_ Gi(w) _ ea(w) Qg Gy Gy o du
Bl 6w) = i Lla) @] 2 [‘I’O /5 (@t ) f@)} SNCRY

The resonant behavior of the first term has already been discussed in section 2.1.3] It can
be considered as the dispersive enhancement since it can be interpreted as the geometrically
induced resonance control, mediated by the factor L,. Hence, the shape of the ellipsoid controls
the resonance position, at which the LPP emerges, and thus, at which frequency the local field
is enhanced. The second term is a purely geometry-dependent factor that is sometimes referred
to as the lightning rod factor [LW82]. In the following, it will be briefly shown that this factor
provides a field localization and enhancement, as observed for the off-resonant excitation of the
nanoantenna example above |Fig[3.1[F)|. For the last expression in Eq. one can simplify

to

Ay QyQ, o du
—TVEY | P — | =E
2 [/g (a2+U)f(U)L:0 ’

By using the relation 9, [ fo(ox) g(u) du = —g[f(x)]0, f(x) for continuously differentiable func-
tions g(x), f(z) and Egs.(2.92) the second part in the sum of Eq.(3.2) becomes

Ay QyQ, *° du
el v =
2~ /5 (a2 + ) f(w)

Now, the problem is to calculate the gradient of the elliptical coordinate £ which is given as a

Ay Q,a & du
g [
2 ¢ (a2 +u)f(u)

] L (3.2)

=0

z

£=0 2a?

Ve (3.3)

solution to

LC2 yQ 22

+ + =1
a? +¢ a§—|—£ a?+¢

(3.4)

Instead of solving Eq.(3.4), which is quite challenging, and applying the differential operator
V it is very easy to compute the gradient of £ by a differentiation of Eq.(3.4)) for each cartesian
component, directly which giveﬂ

2r,€4 x? y? 22

Vee= v |@rer T @rer T @ren)

with a € [z,y, 2]. (3.5)

2Since the explicit form of ¢ is not required, this step simplifies the derivation significantly.
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Figure 3.2: The electric field distributions of an ellipsoid oriented in z-direction at the surface: (A)
The modulus of E;, (C) the modulus of E,, and (D) the modulus of E, at the resonance frequency of
v = 590 THz. The arrows in (A) denote the vectorial electric field. (B) The electric field enhancement
for E, at the tips of the ellipsoid according to Eq.. The insets in (A,C,D) represent the field
distributions of an electric dipole calculated at an external spherical surface that is finally mapped at
the surface of an ellipsoid by coordinate transformation.

With the above considerations it is possible to calculate the electric fields at the entire surface

of an arbitrary ellipsoid, which is described by £ =0

a(w) — () 0300
E, (0 = E
06 = B L) - w@) { +yPalal + ala
zZ
X ? % - Lzez:| (3 6)

Typically this field is only computed at selected points of the ellipsoid, i.e., the tips or along
the minor equator, which is defined as the ellipse spanned by the two minor axes of the
ellipsoid. In order to illustrate the lightning rod effect and to discuss the field enhancement
in terms of the electric dipole moment, all three field components have been calculated at the
entire surface of a particular ellipsoid with a, = 100 nm, a, = 75 nm, and a, = 200 nm.
Since the dispersive enhancement does not depend on the spatial coordinates it has been set
to unity. Results are shown in Fig[3.2] In Fig[3.2(A) the z-component of the electric field,
being the incident polarization direction, is encoded by the surface color, while the red arrows
correspond to the entire vectorial electric field and their length accounts for the magnitude.
It can be clearly seen that the electric fields are enhanced and localized at the tips of the
ellipsoids. Moreover, the effect of the lightning rod factor, which is corresponding to the fields
at the surface, as introduced before, becomes obvious. Furthermore, the electric fields in z-

direction are also enhanced at the minor equator of the ellipsoid, e.g., at (a,,0,0), (0,a,,0).
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To illustrate this and to include also the dispersive enhancement for realistic materials, gold
has been used as the bulk permittivity ¢;(w) for the ellipsoid, while €,(w) has been set to unity,
see Fig.(B). At the frequency where the denominator of the dispersive enhancement, i.e.,
€a(w) + L,[ei(w) — €a(w)], becomes zero, the electric fields are enhanced at the tip (0,0, a.) as
well as at the minor equator at (a,,0,0), (0,a,,0) of the ellipsoid.

To clarify the electric field patterns of the ellipsoid, that have been obtained by the solution
of the electrostatic Laplace equation , the corresponding electric field distributions for
an electric dipole have been calculated at the surface of a sphere with Eqs., . In a
final step, these have been mapped on the surface of the same ellipsoid as computed before
by simple coordinate transformation. For an electric dipole oriented in z-direction the results
are shown in the insets of Fig(A,C,D). It can be seen that the radiation patterns of both
fields match nicely, which is a further proof of the dipolar nature of the considered elliptical
nanoantennas. In addition, Eq. together with the electric dipole fields in Fig(C,D)
yields a simple explanation for the occurrence of electric field components that are not included
in the excitation, e.g., I/;, E,. These two field components are not provided by the excitation,
but are induced by the localized electric dipole mode.

In this section the near-field enhancement, being the dominant physical effect for the ap-
plication of dipole nanoantennas, has been presented. Numerical simulations have been per-
formed that provide exact results in terms of the spectral far-field and near-field response. In
a second step, the LPP model has been utilized to explain the physics for the simplified case
of elliptical dipole nanoantennas. Although this is an approximation, physical consequences
could be derived that help to understand and interpret the numerical data for more complex
nanoantennas, and finally are required for a specific design for nanoantennas with predefined

optical properties.

3.1.2 Polarization dependence

In section a comprehensive investigation of the near-field characteristics for dipole nanoan-
tennas has been performed. The intention of the present section is to understand their ez-
citation properties. For this purpose, the effect the incident polarization orientation on the
excitation of the dipole nanoantennas will be considered. The associated results and conclu-
sions of this analysis will be of interest in the following chapter.

This investigation, similar to the previous section, will be performed numerically for a
particular nanoantenna, i.e., the bow-tie nanoantenna, before the analytical LPP model for
ellipsoids will be applied to explain the observed behavior. For the numerical simulations, the
bow-tie nanoantennas from the previous section are used. The FMM is applied to numerically
calculate the spectrally resolved reflection and transmission coefficients at normal incidence,
but with changing polarization angle 6;, see principle setup at the top of Fig(C). Results
for the far-field spectra in steps of Af; = 15° are shown in Fig[3.3[A). The red and the black
lines represent the spectral absorption coefficients 1 — T — R, for z-polarization (¢, = 0°) and

y-polarization (6; = 90°), respectively. It can be clearly seen that by changing the polarization
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between these angles the absorption coefficients for the bow-tie antenna changes continuously
from the value at the resonance frequencies for 0° toward the value at the 90° resonance, see
blue-dashed lines in Figl3.3(A). Strictly speaking, the LPP resonance frequencies are fixed,
but their excitation strengths are varying.

It is mentioned that plasmonic resonances comprise radiative losses due to enhanced scatter-
ing, as well as dissipative losses, i.e. non-radiative absorption of energy in the metal [SEW™T02].
Consequently, by considering the transmission and reflection coefficients for a certain nanoan-
tenna ensemble, an enhanced absorption is expected for frequencies close to the excitation of
LPP resonances. Thus, the absorption can be regarded as an appropriate quantity to describe
the excitation strength for the LPP resonances of the considered bow-tie nanoantennas for a
particular excitation [Gri09].

Moreover, the LPP resonances of the bow-tie nanoantennas investigated here are orthogonal,
since an isolated observation of each resonance is possible at polarization angles of 0° and 90°.
Hence, the polarization eigenstates of the bow-tie nanoantennas are linearly polarized as long
as the cross-polarized coefficients 7} ;, R;;, with ¢,j € [x,y] : i # j are zero. If the LPP modes
are associated with electric dipole modes, their molecular dipole moment is expected to be
proportional to the elongation of the internal metal carriers [Eq] which is proportional
to the external electric field [Eq] Hence, the projection of the electric field onto the
electric dipole modes of the bow-tie nanoantennas in x- and y-direction is responsible for the
excitation of the two LPP modes. In addition, the intensity is proportional to the square of
the modulus of the electric field. Thus, the spectral response for a particular polarization

angle 6; and frequency wy may be expected to have the form
I(wo, 01) = I(wp,0°) cos®(61) + I(wp, 90°) sin(6;). (3.7)

To verify this assumption, the absorption dependence on the polarization angle for the res-
onance frequency along the x-axis, see blue solid line, and for the off-resonant case, see red
dotted line in Fig[3.3(B), have been calculated with Eq.(3.7). Therefore, the required values
for I(wo,0°) and I(wg, 90°) at the LPP resonance frequency, see Fig(A), have been taken
and used to calculate those of all other polarization angles. In addition, the absorption has
been calculated for the resonance frequency for x-polarization at discrete polarization angles
with the FMM. As can be seen, the continuous line corresponding to Eq. matches nicely
to the numerical data represented by the black triangles. Furthermore, these calculations
prove that the spectral quantities at a polarization of 0° and 90° form a complete set of eigen-
states for normal incidence, since the optical response for arbitrary polarization angles can be
determinedﬁ from Eq..

Now, the LPP model for ellipsoids will be applied to complete the description of the ex-
citation properties of dipole nanoantennas which is in line with all considerations performed

above. Such a model is of importance, since it gives insights into the underlying physics of

3Tt is mentioned that there is one remaining dipolar LPP mode along the z-axis. For completeness this has
to be taken into account as well. But this mode cannot be probed at normal incidence.
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Figure 3.3: (A) The influence of the variation of the polarization angle 6; on the spectrally resolved
absorption coefficient. (B) The polar representation of the absorption for a changing polarization
angle. The red-dashed line accounts for an off-resonant excitation frequency, while the black triangles
represent the numerical values for the resonance frequency along the z-axis of the bow-tie nanoan-

tennas. Blue solid lines are associated with predictions from Eq.(3.7). (C) Sketch of the bow-tie
nanoantennas including the illumination and the definition of the polarization angle.

the investigation performed previously. The molecular electric dipole moment induced in a

ellipsoid can be found according to Eq.(2.96) and Eq.(2.99) from section [BHS3]

az(w) 0 0
b= | 0 o) 0 |Ew =awew, (38)
0 0 a,(w)

with the polarizability tensoxﬂ &(w). Any rotation of the ellipsoid or the external field may
be described by the application of a transformation matrix U. For example a rotation of the

polarization of the electric field in the zy-plane, as performed above, may be described by

) cos(fy) —sin(6y) 0
U(6y) = | sin(fy) cos(61) 0 |. (3.9)
0 0 1

The molecular dipole moment for the rotation with respect to the z-axis as described by

Eq.(3.9) becomes
p(w) = U(61)p(w). (3.10)
In analogy, the electric field yields

¢(w) = U(6;)€(w). (3.11)

4Although the polarizabilities have been introduced and discussed for the case of ellipsoids, this considera-
tion holds for arbitrary dipole nanoantennas with linearly polarized eigenstates, i.e., nanoantennas with a
diagonal polarizability tensor. The only difference is that for arbitrary nanoantennas, the polarizabilities
can no longer be obtained analytically.
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Hence, Eq.(3.8]), upon performing the respective transformation for &(w), yields
p(w) = UT(0))a(w)U (6,)€(w) = a(w)E(w). (3.12)

In order to quantify the total amount of energy that is scattered or absorbed by an elec-
tric dipole with a known molecular dipole moment, described by Eq., the effective cross
sections as introduced in section [2.1.3| can be applied. With the definitions of the effective
scattering and extinction cross sections according to Eq. and Eq. the effect of a
changing polarization angle as described by U (61) in Eq. can be computed

Coa(w,B) = 6&”) d%")é)‘”) _k 62‘:’) {\&z(w)\2c082(91)+|ay(w)\281n2(91) (3.13)
_ o &(W)~(W) _ ey 2 .2
Coaps(w, 01) = k(w)S Elo o ) k(w)Sag(w) cos®(61) + ay(w) sin®(61)]. (3.14)

As a result, the extinction cross section Cex(w, 01) = Csea(w, 01) 4+ Caps(w, 61 ), which quantifies
the amount of energy that is scattered and absorbed due to the excitation of dipolar LPP modes
in the ellipsoid, has the same functional dependence as the observed absorption for the bow-
tie nanoantenns in Fig{3.3(B) upon changing polarization angles. Furthermore, as long as the
polarizabilities have different resonance frequencies according to the different dimensions of the
three semi-axes of the ellipsoid, the extinction cross sections for a selected resonance frequency
will show a strong polarization dependence. This situation changes only, if the polarizabilities
are degenerated in their resonance frequencies or if the selected observation frequency is off-
resonant. For the latter case the polarizabilities would be almost identical to that of the
embedding dielectric material. The second scenario, i.e., a frequency degeneration of all three
polarizabilities, is possible, e.g., for spherical nanoantennas for which the depolarization factors
are equal L, = L, = L, = 1/3. Consequently, the polarizabilities a,, .(w) are equal. Similarly
to the off-resonant case, the angular dependence with respect to the polarization angle will
be described by a circular shape, as it is observed for the off-resonant excitation in Fig)3.3|(B)
(red-dashed line). Slight deviations from a perfectly circular line-shape are observed, since
the observation frequency should be even smaller than applied here. Even though the above
presented LPP model has been applied to describe the polarization dependence only, also
the effect of angular incidence can be modelled with the respective transformation U. These
considerations and the resulting conclusions can be applied to understand the optical response
of ensembles of nanoantennas as long as the ensemble properties are dominated by the single
nanoantenna’s properties.

As a summary of chapter 3.1], essential optical properties of dipole nanoantennas have been
presented and explored. At first, the local electric field enhancement associated with the
dipolar LPP resonance has been elaborated. Second, the excitation dependence for dipole
nanoantennas, i.e., the electric dipole LPP mode, has been investigated, whereas special em-
phasis has been given to the polarization dependence. For the analytical modeling ellip-

soidal nanoantennas have been selected, whereas for all numerical simulations a more complex
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nanoantenna geometry, i.e., the bow-tie nanoantenna, has been considered. The reason for the
investigation of the bow-tie nanoantennas is that it has been subject of interest in an internal
collaboration with the Institute of Optics and Quantumelectronics at the Friedrich-Schiller-
Universitat. Finally, the bow-tie nanoantenna represents a timely and prototypical example,

combining various physical concepts that can be conveyed to differing nanoantenna systems.

3.2 Combining localized dipole and propagating surface

plasmon modes

In this chapter, particular optical dipole nanoantennas will be theoretically designed and ex-
perimentally investigated. These nanoantennas sustain local field enhancement and allow for
a large area covering fabrication process. Furthermore, it will be presented how a particu-
lar arrangement of such nanoantennas can be beneficial in order to excite localized plasmon
modes (LPP) as well as propagating plasmon modes (SPP). In the next part of this chapter,
the physics of Surface-Enhanced Raman Scattering (SERS), as a potential application of the
near-field enhancement, will be briefly presented. Finally, this chapter will be concluded by
the application of these doubly resonant plasmonic samples for SERS. Thereby, the angular
polarization dependence of the recorded SERS signals will be investigated, which together with
the results from section [3.1.2] allows to characterize and illustrate the effect of the prepared

nanoantennas.

3.2.1 Doubly resonant nanoantenna arrays

In this section it will be presented, how a particular type of dipole nanoantennas has been pre-
pared for applications in the optical frequency domain. Therefore, the following requirements

have to be fulfilled by a careful design of the nanoantennas:

o At first, the fabrication process should allow for a deterministic and large area covering
with nanoantennas. For this purpose, high throughput electron beam lithography has
been applied, utilizing illumination masks in form of one-dimensional line gratings. The
entire process has been reported in detail in Refs. [HBST08, PYM™10].

e Second, the resonance frequencies should match the optical or near-infrared domain.
Moreover, nanoantennas operating in the electric dipole limit, as the fundamental LPP
mode, are desired. This basically translates into size-limitations for the for nanoan-

tennnas.

e Third, the nanoantennas should possess the field enhancing mechanisms due to the
lightning rod effect and the excitation of dipolar LPPs, reported in section [3.1.1] as well
as due to SPP modes.

As a consequence of these conditions a rhomb-shaped nanoantenna geometry has been selected,

which requires only a two step illumination process as indicated in Fig[3.4(A). By illuminating
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Figure 3.4: (A) Drawing of the principle fabrication scheme for rhomb-shaped nanoantennas, colored
in yellow, utilizing two tilted line gratings (tilting angle #) which cause the removal of the blue-colored
area. (B) SEM image of a particular nanoantenna array to visualize the reproducibility of the overall
nanoantenna’s shape and the homogeneous distribution obtained with the applied fabrication process.
The inset shows a large area scan incorporating the two tilted structured areas. (C) AFM image of a
nanoantenna array to visualize the homogeneity of the nanoantenna thickness, which has a value of
20 nm.

the photo-resist twice with a one-dimensional line grating it is possible to selectively remove
the metal indicated by the two blue bars in Fig(A). The resulting geometry can be adjusted
from rectangular (# = 90°) to rhomb-shaped nanoantennas (0° < § < 90°) by setting the angle
between the two illuminating grating masks. The size of the nanoantennas is also dependent
on the duty cycle of the applied illuminating line gratings. For triangular nanoantennas at
least three fabrication steps utilizing these grating masks are required, while for the bow-tie
nanoantennas an even more complicated scheme must be developed. The detailed fabrication
process is described in [HBST08|. Gold has been selected as the nanoantenna material, since
it is more robust against surface oxidation than silver. Furthermore, Au has a higher compat-
ibility with biological or chemical materials, which is essential since the nanoantenna arrays
will be used as SERS substrates in the following section [3.2.3]

Thus, by this technique large arrays of gold nanoantennas can be realized. In Fig(B)
images recorded by scanning electron microscopy (SEM) of a fabricated sample are shown.
The realized tilting angle 6 for the shown sample is 30°, yielding rhomb-shaped nanoantennas.
In addition, a low magnification SEM image is shown in the inset of Fig(B), illustrating the
two tilted illuminating masks. In Fig(C) a surface topography obtained with atomic force
microscopy (AFM) is shown. The gray-scale color encodes the nanoantenna thickness. The
average value for the thickness of the nanoantennas for this image is equal to the deposited
metal film thickness of 20 nm and applies to all samples. The combination of the SEM and the
AFM characterization is useful in order to check the samples for potential fabrication errors
and to extract the exact geometrical values used for the theoretical calculations later on. With
this step, the first requirement, i.e., a reliable, large area fabrication process, has been met.

To consider the second requirement, i.e., the presence of electric dipole LPP modes, op-
tical far-field measurements, as described in section [2.2.1] as well as numerical simulations
have been performed. Although a large number of samples has been prepared and optically
characterized, only three selected samples covering all relevant properties will be discussed in

the following. The dimensions of these nanoantenna arrays are listed in Tab3.1] They have
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Parameter Sample 1 Sample 2 Sample 3

Period in z-direction A, (nm) 437 800 1243
Period in z-direction A, (nm) 198 187 376
Rhombus length Az (nm) 279 514 810
Rhombus width Ay (nm) 85 125 247
Resonance frequency z-pol. v (THz) 256 164 171
Resonance frequency y-pol. v (THz) 503 490; 417 464; 348

Table 3.1: Parameters of the three nanoantenna samples of interest obtained by structural (SEM)
and optical characterization. Sample 1 corresponds to a regular array of rhombs, which can be
realized by a 34° tilt of both illumination gratings. Sample 2 and 3 are characterized by roughly the
same apex angle for the nanoantenna of (27° and 34°, respectively) but they are fabricated with an
increased period of both crossed gratings. This translates into a larger period of the two-dimensional
nanoantenna array as well as an expansion of the nanoantenna dimensions itself. The thickness of
the Au layer is a final parameter that can be used to tailor the plasmonic properties of the samples.
In all samples it was chosen to be 20 nm and verified by AFM measurements, see Fig(C).

been obtained by evaluating SEM images similar to Fig[3.4[B). After this structural charac-
terization, spectrally resolved optical far-field measurements have been performed with the
Lambda 950 spectrometer, see section [2.2.1] Here, the polarization direction of the illuminat-
ing linearly polarized light has been set either along the short or the long axis of the rhombus.
Results for the measured transmission spectra are shown in Fig3.5(A-C). The arrows indicate
the linear polarization direction with respect to the rhombus orientation. To verify the optical
measurements, numerical simulations of the far-field spectra have been performed. Results
for the corresponding FMM simulations, using the experimental parametersﬂ of Tab are
presented in Fig(D-F). An overall agreement between the experimental and the numeri-
cal data can be observed for all three samples. In the following the nature of the observed
resonances within the optical spectra will be considered in detail.

Starting with sample 1, having the smallest unit cell of the three selected ones, only two
resonances can be observed [Fig[3.5(A,D)]|, denoted by (1) and (2). They are associated to the
electric dipole-type LPP modes along the respective rhombus axis. They can be understood
similar to the dipolar modes along the axes of an ellipsoid with three different semi-axes. The
third mode, associated with the nanoantenna axis in propagation direction, i.e., z-direction,
cannot be probed at normal incidence. This can be explained by regarding an ellipsoid with the
LPP model, i.e., Eq.(3.13) and Eq.(3.14). For a propagation in z-direction and a polarization
in the zy-plane only the dipole modes of the z- and the y-axis can be excited, if the ellipsoid is
oriented with its major axis along the three coordinate axes. The dipole mode along the short
axis occurs at higher frequencies, while the long-axis mode is located at lower frequencies, as
expected from section [2.1.3

For sample 2, an increasing size of the unit cell and of the rhombus dimensions [Tab.
results in a red-shift of the two resonances (1) and (2), as expected. However, the shift for

resonance (1) is comparably larger than the shift of resonance (2). This is due to the relative

For the SiO, substrate a constant bulk permittivity of e = (1.46)% has been applied. The permittivity of
gold has been taken from literature [JCT72].
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Figure 3.5: Results of the experimental measurements of the transmission spectra for (A) sample
1, (B) sample 2, and (C) sample 3. Resonances (1) and (2) are associated with the electric dipole
LPP mode along the respective rhombus axis, while mode (3), approaching only for larger lattice
periods corresponds to a SPP mode. (D),(E),(F) the respective numerical results obtained by FMM
simulations including the experimental parameters of Tab.

change in size of the semi-axes being much larger for the long than for the short rhombus axis.
In addition, to the two resonances (1) and (2) a third resonance (3) occurs, which corresponds
to a SPP mode induced by the grating period, as will be shown later.

Finally, sample 3 with an even further increased period and rhombus size adds no new
resonances, only the SPP resonance (3) and the LPP resonance (2) are now clearly separated.

In the following, the LPP and SPP origin of the resonances will be investigated by probing
for essential properties of the respective plasmonic mode of sample 2. These will finally allow
to verify the LPP or the SPP character of the respective resonances.

At first, a simplified LPP model is derived, taking both electric dipole modes into account
with respect to the x- and y-direction. The molecular dipole moment of a single rhomb-shaped
nanoantenna can be calculated with [Eq.(2.28)]

Dj = q;T;, J €z, yl (3.15)

To account for the carrier dynamics r induced by the microscopic electric field &, a simple

oscillator model may be applied

0? 0 qi
@Tj — ’yjarj + Wo; Ty = m_]JQJ (316)

The damping, due to non-radiative, i.e., dissipative, and radiative losses is described by the
damping constant ;. A resonant excitation of the carriers is assumed at frequencies wy;.
The solution of Eq.(3.16|) can be easily obtained by temporal Fourier transformation ([2.51).
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Figure 3.6: Transmission spectra for sample 2 obtained by (A) numerical FMM simulations, and
(B) by the fitted LPP model according to Eq. for the two polarization directions of interest,
denoted by the arrows. As can be seen, the two resonances (1) and (2) can be reproduced nicely. (C)
The effective permittivities for both polarization directions that are applied to calculate the spectra
of the effective medium slab shown in (B).

Averaging of an ensemble of nanoantennas, described by Eq.(3.15)) and Eq.(3.16|) yields the

macroscopic polarization

g 1
Pi(w) = np;(w) = E, 3.17
(W) = np;(w) Ty 08— — i, i(w), (3.17)

which finally can be used to calculate the associated effective permittivity, see Eq.(2.53]{2.55)),

0F 14
e(w) =1+ : 0= L (3.18)

2 02— ? J €n
Woj — W WY m;€g

The effective permittivity possesses Lorenz-type resonances exactly at the resonance positions
of the LPP excitations. This functional shape is consistent with the previous results of LPP
resonances of the ellipsoids in section [2.1.3] The LPP model for ellipsoids cannot be applied
for the present rhomb-shaped nanoantennas, because the quasi-static description fails due to
retardation effects. Retardation and increased radiation damping become important due to
the increased nanoantennas dimensions, which exceed the limitations for a static description
[BCMS3|.

However, with the introduced dipole model it is possible to describe an ensemble of electric
dipoles by the associated effective permittivity. With Eq. it is possible to calculate
the associated spectra for the two resonances for the respective polarization direction. An
analytical transfer matrix formalism for a slab with the thickness of 20 nm can be applied
IBW99] to calculate the far-field spectra. By adjusting the parameters wy;, €2;, and v; it is
possible to reproduce the numerical spectraﬂ of sample 2. Both spectra, i.e., the numerical
as well as the spectra fitted with this simple model, are shown in Fig{3.6(A,B). The final
effective permittivities for both polarization directions are shown in Fig.m(C). Consequently,
resonance (3) is absent in all spectral quantities, shown in Fig as it is not yet included in
the model.

6The found parameters are wg, = 170 THz, woy = 520 THz, v, = 70 THz, v, = 50 THz, ), = 1.7-105 (THz)?,
Q, =1.6-10° (THz)%.
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Now, the transverse wavevector provided by the lattice of the nanoantennas will be con-
sidered. This will provide the required tangential momentum to launch SPP excitations at
the interface between the dielectric ambient and the effective medium surface described by
Eq.. The applied method is known as the empty lattice approzimation |[TPAAT06].
Therefore, the lattice is considered as a perturbation that just provides additional trans-
verse grating vectors, while the structured medium is described by its effective permittivity.
The transverse wavevector induced by the grating can be calculated by the grating equations
and . The wavevector of a single interface SPP can be calculated by Eq..
Combining these two contributions together with the projection of the incident wavevector for

oblique incidence yields the simple conditionm

2
VT
Z}—Q €a(w) Sin(Bipe ;) + 7;\:% =

(3.19)

which is the conservation of momentum. Obviously Eq. is dependent on the angle
of incidence 6, ; and the grating period A; for the respective direction j € [z,y]. Hence,
there are two possibilities to prove the SPP nature of resonance (3). First, by changing
the lattice period for normal incidence Eq. simplifies, since sin(fi,.;) = 0. For that
particular case the resonance positions, i.e., the frequencies for which Eq. is fulfilled,
are only dependent on the grating periods A;. As it has been discussed in section [2.1.4]
guided solutions for SPP modes can only be obtained if at least one permittivity of the two
adjacent materials €,(w) and €;(w) is negative. Hence, SPP mode propagation is expected
to occur only in z-direction, because only the real part of €,(w) is negative for resonance
position (3), see Figi3.6(C). To check this dependence, the grating vector 27/A, has been
varied in numerical FMM simulations with all other parameters fixed for sample 2. The
frequency of resonance (3) has been evaluated in dependence of the grating vector in z-direction
together with the expected dependence from Eq.(3.19). Results are shown in Fig3.7(A). The
numerically obtained resonance positions agree well with the analytically predicted ones for
m, = 2. Deviations appear for frequencies above &~ 450 THz. This is due to the fact that the
simple oscillator model [Eqs.] describes the transmission only up to this frequency.
For higher frequencies the numerically calculated transmission [Fig[3.6[(A)] is higher than the
modelled one |Fig3.6(B)].

Second, an additional transverse wavevector induced by oblique incidence influences reso-
nance frequency (3), see Eq.(3.19). In turn, resonance frequencies (1) and (2) should appear
unaffected, except for a change in the resonance strengths, as previously discussed for LPP
modes. As for the grating vector manipulation before, the impinging electric fields are polar-
ized along the y-axis. The angle of incidence has been changed in both transverse directions,
i.e., in the yz-plane [Fig]3.7(D)], and the zz-plane |Fig[3.7(E)]. While the resonance positions

"For completeness, the right hand side of Eq.(3.19)) should contain the transverse wavevector contributions
associated with the diffracted orders, see Eq.(2.127) and Eq.. For the considered samples it has been
proven numerically that the intensities in higher diffraction orders are vanishing. Hence, their transverse
momentum can be safely neglected in Eq..
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Figure 3.7: (A) Results for the grating vector variation according to Eq.. The resonance
frequencies are described by the SPP model assuming m, = 2. (B) The corresponding resonance
frequency splitting which is observed for an additional transverse wavevector, provided by oblique
incidence. For both variations, i.e., (A) and (B) sample 2 has been selected. The measured spectra
for oblique incidence with a tilt in the (D) yz- and (E) zz-plane for sample 2. The simulated near-field
distributions for E, for y-polarization of sample 3 at (C) the LPP resonance frequency (2), and (F)
the SPP frequency (3).

for a tilt in the yz-plane should be unaffected, a splitting of resonance (3) is expected for a tilt
in the zz-plane. The reason for this is the additional transverse wavevector which can be either
parallel or anti-parallel to the grating vector £2m,m/A, yielding two solutions for Eq..
Hence, for oblique incidence a splitting of resonance (3) into two resonances is expected to
occur. Since, the manipulation of the angle of incidence does not require the fabrication of new
samples, as for instance the grating vector manipulation would do, the dependence has been
investigated experimentally as well. For this purpose sample 2 has been selected. Results for
the measured transmission spectra for tilted incidence are shown in Fig/3.7(D,E). As discussed
above, a splitting of resonance (3) can be observed for a tilt in the xz-plane. To compare these
results with the numerical and the analytical simulations according to Eq., the resonance
positions have been plotted dependent on the transverse wavevector in Fig.m(B). Again the
grating vector order has been set to m, = 2 as has been found in the grating vector variation
beforeﬂ Comparing the experimental values with the numerical values obtained from FMM
simulations as well as predictions from Eq., it can be seen that the resonance splitting
can be explained well with the SPP model. Deviations of the predicted resonance frequencies
by the SPP model can be observed for frequencies above ~ 450 THz. Again, these deviations
can be explained with the effective permittivity €,(w), which is only valid for lower frequencies.

To conclude this section, the field distributions for each resonance (2) and (3) will be shown.
This also provides the necessary condition for the SPP excitation, while Eq. can be

8For the first order, i.e., my = 1, the associated grating vector is still to small to match the required k of the
SPP.
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considered as a required condition for the existence. In order to observe SPP excitations in the
spectra the field overlap between the SPP mode and the fields at the effective medium interface
must be non-zero, additionally. Therefore, sample (3) has been selected, since for this sample
both resonances are clearly separated, which allows an almost undisturbed observation of both
different field distributions. For simplicity, normal incidence has been assumed. Considering
the field distributions for E, for resonance (2), the field distribution of an electric dipole,
directed in y-direction can be observed in the z-cut of Fig[3.7(C). In addition to the electric
dipole response, a standing wave pattern can be observed for resonance (3) in the y-cut, see
FigB.7(F). It is important to note that the shown y-cuts have been recorded not in the center
at y = 0, but at the position y = A,/4. In the center the electric field component of an
electric dipole is vanishing, see Figl2.3] in section 2.1.2] Hence, the field component normal
to the surface which is required to excite SPP’s is only available off the center. Furthermore,
this can be used to explain the splitting of the SPP resonance for oblique incidence. For
normal incidence two SPP modes are launched in opposite directions which are degenerated
with respect to their resonance frequencies. One SPP mode in the half-space y > 0 and
the other SPP mode in the half-space y < 0. Their degeneracy will be lifted for oblique
incidence as shown in Fig[3.7(B). Finally, it can be seen that the launched mode corresponds
to the fundamental SPP mode, since one plasmon wavelength fits in the entire unit cell in
z-direction, indicated by the black-dashed line in Figl3.7(F).

Thus, the numerical near-field calculations together with the variations of the grating vec-
tor and the illumination clearly reveal the SPP character of resonance (3). Hence, with all
performed investigations from this section the observed resonance (3) will be considered as a
surface plasmon polariton that is excited at a effective medium interface. Such an SPP mode,
propagating on periodically corrugated surfaces, has been investigated at first on flat interfaces
with periodically arranged holes and coined the term spoof plasmon mode [PMMGV04, HES05),
GVMMPO05, WAMT08|. Recently, such SPP modes have been observed in various other
geometries, e.g., periodically corrugated channels [FDMMMGV09, NMCFDT10| or wedges
[IEDMMMO09], and tapered tips [MAMMGV06|. Later on, these samples are of special interest
for application to SERS. Before this will be performed, a brief recapitulation of some basic
properties of the SERS effect will be given in the following section [3.2.2]

3.2.2 Surface-Enhanced Raman Scattering

In this section the principles of the SERS effect will be repeated. Due to the huge number of
different theories [KMKO6] it is almost impossible to give a detailed explanation within a few
pages. A comprehensive review about SERS theories has been presented by M. Moskovits in
1985 [Mos85]. The following explanation will be as compact as possible in order to understand
how near-field enhancing nanoantennas improve the efficiency of the Raman scattering.

In general, SERS describes increase of magnitude of the Raman signals emitted by molecules
in the vicinity of metal electrodes, rough surfaces or metal nanostructures. Among other

contributions to this effect, there are two substantial mechanisms that a are considered as
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Figure 3.8: Simplified presentation of the frequency shift that is characteristic for Raman scattering.
The re-emitted photon can have (A) a lower (Stokes-shift), or (B) a higher energy (Anti-Stokes-shift)
compared with the incident photon energy.

the dominant ones, i.e., the chemical and the electromagnetic enhancement. The first can be
considered as a chemical modification on the Raman tensor of the molecule when adsorbed to a
metal surface [LBLXS86] [CK98]|. This effect can improve the Raman signals by approximately a
factor of 10 [Mos85]. The second contribution, i.e., the electromagnetic enhancement, has been
shown to provide enhancement factors that can exceed the chemical enhancement by orders
of magnitude [KMKO6]. Hence, the electromagnetic enhancement will be solely discussed in
this work.

A simplified scheme of the Raman scattering process is illustrated in Fig[3.8 Incident radi-
ation induces the transition between the molecular vibrational states of a particular molecule.
If the photon energy hwy matches the energy for such a transition the respective vibrational
state will be excited. This state can relax into one with a higher or lower energy level as
compared with the initial state. The radiated photon associated with this transition will then
have a lower (Stokes shift) or a higher energy (Anti-Stokes shift) compared to the incident
photon energy, see Fig(A,B), respectively. The transitions between the molecular vibra-
tional states in an external electromagnetic field with the frequency wy can be considered as

dipole transitions with a classically introduced molecular electric dipole momentﬂ

P (T, wr) = um(wo, wr) By (T, wp). (3.20)

Equation (3.20]) states that an electric field with the frequency wy will induce an electric dipole
moment at the Raman-shifted (Stokes or Anti-Stokes) frequency wgr. Moreover, Eq.([3.20)
represents a classical approximation neglecting the tensorial character of the molecular po-
larizability, while the exact process requires a full-vectorial, quantum-mechanical treatment,
including perturbation theory. Nevertheless, this simplified approach has been established
and is frequently applied to phenomenologically explain the SERS effect by classical means
[KMKO06, LBC*81|. If the molecule is adsorbed on the surface of a metal nanoantenna, e.g.,
an ellipsoidal particle, the incident field E(r,wy) has to be replaced by the enhanced near-field

of the nanoantenna. The induced molecular dipole moment of the adsorbed molecule may

9A physically thorough and classical examination of the SERS effect including ellipsoidal-shaped metal
nanoantennas has been performed by Gersten and Nitzian |[GN80, [GNS8I].
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then be written as [LBC*81]

2

€alw)r3

Py (T, wR) = O (wo, wr )y (wo) By (1, wp).- (3.21)

In Eq. a;(wp) is the component of the ellipsoid’s polarizability, while r is the distance from
the center of the ellipsoid to the molecule. This molecular dipole moment p,,(r, wg)oscillating
at the Raman-shifted frequency wgr induces a dipole moment in the ellipsoid pe(r,wr) at the
Raman-shifted frequency as well
2
Pei(r,wr) = (@) @ (WR )P 1 (T, WR)
4

= W%(WR)az(Wo)am(wo,wR)Ez(r,wo). (3.22)

The ratio between the dipole moments with [Eq.(3.22))| and without the presence of the nanoan-
tenna [Eq.(3.20))] is defined as the enhancement factor g

Pealrswn) x iOzl(wo)Ozl(wR). (3.23)

pm,l(r; WR) 76

9

Since in SERS measurements the intensity is recorded, its enhancement factor is defined as

2

I'=|g]* x (3.24)

r—lﬁal (wo)ay(wr)

Having arrived at the final equation , some important aspects of the SERS mechanism
can be explained. As intuitively expected, the enhancement is largest, if the molecule is lo-
cated directly at the surface of the nanoantenna due to the 1/r% dependence of T'. Since the
polarizability is directly proportional to the local electric field for a fixed position, see, e.g.,
Eq., the enhancement factor g is proportional to F(wg)FE(wr). Furthermore, if
the Raman-shifted frequency wg is close to the incident frequency wy, the intensity enhance-
ment can be approximated as I' oc |E(wo)E(w;)|* = |E(wo)|*. This fourth power dependence
is a frequently applied argument to explain the dramatical SERS enhancement factors I' > 10°
that have been reported for single molecules at resonant metal nanoantennas [FSDOS['Y} In
the previous section it has been shown that the polarizabilities of nanoantennas «o(w)
show a resonant behavior that coincides with a strong near-field enhancement. This local field
enhancement is induced by the excitation of LPP resonances of the nanoantennas. Hence,
nanoantennas supporting a local field enhancement are preferable to observe improved SERS
signals. Moreover, Eq. highlights that efficient SERS signals can be achieved if the elec-
tric near-fields at both frequencies, the excitation wy as well as the emission frequency wg are
enhanced. Thus, the frequency range for typical SERS samples is limited by the linewidth

of the excited LPP resonance. By increasing this linewidth of the LPP resonance the near-

10Tt has been shown by Stockman and others that for particular aggregates the intensity is dependent on the
third power rather than on the fourth [Sto97, GABT99].
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field enhancement decreases yielding weaker SERS signals. In the forthcoming section a new
type of samples will be introduced, circumventing this limitation by exploiting two tunable
plasmonic resonances as presented in section [3.2.1]

From the beginning of the SERS effect, which has been discovered by Fleischmann et al.
in 1974 [FHMT4] on rough silver electrodes, more and more sophisticated nanoantenna ap-
proaches have been developed to continuously improve the enhancement factors. Present
nanoantennas have been shown to enable even single molecule detection [NE97|. It is also
worth noting that the Raman spectra contains unique features that are characteristic for the
particular analyte. A recorded SERS spectra can be used to unambiguously prove the presence
of particular substances in a very small volume. Exactly this property makes SERS attractive

as a highly sensitive bio-chemical sensing approach.

3.2.3 Application of doubly resonant nanoantenna arrays to

Surface-Enhanced Raman Scattering

In this section the samples, which simultaneously exhibit LPP and SPP resonances, will be
used for SERS measurementg'’} Due to the fabrication process yielding reproducible nanoan-
tenna arrays with a high surface density of near-field enhancing elements the samples will
be applied for surface-averaged SERS measurements. For this purpose, sample 2 has been
selected as a substrate, while crystal-violet as a standard adsorbate for SERS detection has
been applied. To illustrate the improvements that can be achieved with a doubly resonant
substrate, sample 1 will be applied as a reference. In contrast to sample 2, sample 1 shows
only a LPP mode at the same frequency as sample 2. On the basis of the optical properties
of sample 2, an enhanced SERS efficiency is expected, due to the presence of two near-field
enhancing plasmonic modes. These are associated with the LPP mode of the rhombus and
the SPP mode induced by the lattice. It is important to point out that the SPP mode rather
than the LPP mode, is typically non-radiating in the same manner as it cannot be excited
by normally incident plane waves. As has been shown in section [2.1.4] SPPs are confined at
a metal-dielectric interface. But since the interface comprises an additional grating vector,
this mode can be excited and thus becomes radiative. This is important for the SERS process
since this guarantees that if the emission frequency approaches the SPP resonance, the SERS
molecules require a radiative mode to couple. Otherwise, the enhanced SERS signals would
be confined to the surface until their energy will be dissipated into heat.

Since with the fabrication process, described in section [3.2.1] large areas can be covered
with nanoantennas, the resulting substrates are suitable for averaged SERS measurements.
Compared to the measurement at isolated nanoantennas, the recorded surface-averaged SERS
enhancements are typically several orders of magnitude lower. This is caused by areas of the
substrates that possess no near-field enhancement or that the are not homogeneously covered

with the adsorbed analyte. Hence, they are not contributing to the detected SERS intensity.

' Measurements have been performed by Dana Cialla in collaboration with the Institute of Photonic Tech-
nology Jena as well as the Institute of Physical Chemistry at the Friedrich-Schiller-Universitét Jena.
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Figure 3.9: The transmission spectra indicating the LPP (1) and the SPP resonances (3) for sample
1 and 2. Additionally, the SERS interval is sketched starting with excitation frequency marked by
the dashed-dotted line until the solid line. Hence, both resonances are included in the investigated
frequency interval. (B) Comparision between the measured SERS spectra of sample 1 (blue solid
line) and 2 (black dotted line). (C) The calculated SERS surface enhancement factor (SSEF) for
sample 2 for a polarization along the short rhombus axis (black dotted line) exhibiting for LPP and
SPP modes. As a reference, the SSEF for the long axis for which no plasmonic resonance is within
the measured SERS interval is shown (blue solid line). (D) Angular dependence of the SERS signal
for three selected bands, as indicated in (C) together with the calculated absorption of sample 2
(normalized units).

In turn, the averaged measurements have the important advantage that the required setup is
comparably simple and fast in contrast to the measurements at isolated nanoantennas.
Results for the recorded SERS intensities for sample 1 and sample 2 are shown in Fig[3.9
In Fig.(A) the measured transmission spectra for sample 1 and 2 are presented again to
show that both samples have their LPP resonance (2) at around 500 THz. In addition, the
excitation frequency has been indicated by the dashed-dotted line. This line corresponds to the
emission wavelength of a He-Ne laser (A = 633 nm). Starting from the associated frequency the
scattered SERS signals are recorded at decreasing, i.e., Stokes-shifted, frequencies overlapping
with the SPP resonance (3) at v = 417 THz. Results are shown in Figl3.9(B) As can
be clearly seen, the peaks, i.e., the scattered SERS features{l—_g-]7 are much more pronounced
and sharp for sample 2 when compared to sample 1. Especially for larger Stokes-shifts the
quality of the SERS signal for sample 2 remains quite sharp and clearly exceeds the signal of
sample 1. This can be attributed to the presence of the SPP resonance (3) which appears at
a Stokes-shift of Av > 20 THz. In order to quantitatively investigate the SERS effect, the

12Typically, the Raman signals for the Stokes-shift are presented by inverting the frequency axis, while for the
Anti-stokes case the frequency axis is not inverted.

13The peaks in the SERS spectra of FigB) are typically accompanied by a characteristic background
continuum whose physical origin is still discussed [MCS™10).
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SERS surface enhancement factor (SSEF) has been calculated [RBMEQT]

_ Isprs(w)Crs Het
Trs(w)pnips An -

FSSEF(W) (325)
In Eq.(3.25)) Isgrs(w) is the recorded SERS intensity, Irs(w) is the recorded Raman intensity
measured without the nanoantennas. The remaining parameters characterize the crystal violet

solution and the nanoantenna array. Crg = 6.02 - 10?* m~3 is the concentration of crystal-
violet for the measurement of the Raman scattering without the nanoantenna sample, pug =
1.7-10"® m~2 and py = 2/(A,A,) = 1.34- 10" m~2 are the average densities of the molecules
on the nanoantenna array and of the nanostructures per unit area, respectively.

Considering the calculated SSEF in F ig(C) for sample 2, a value for the averaged en-
hancement of > 2000 can be obtained. As a reference the polarization has been changed along
the major axis of the rhombus (z-direction), where the averaged enhancement decreases to
~ 200. This control experiment is a very reliable proof that the produced sample 2 enhances
the SERS signal significantly for the polarization direction parallel to the minor axis (y-axis).
The reason for this is that only the polarization direction of the illumination has been turned,
while all other parameters remained fixed. Typically, the number of adsorbed molecules, the
structure quality, etc., are differing from sample to sample. With the possibility to tilt the
polarization direction the plasmonic resonances of the prepared samples can be easily switched
on and off. Moreover, one observes that the SSEF is larger than unity even for a polarization
direction along the major axis of the nanoantennas. In the SERS measurement interval, shown
in Fig[3.9(A), no resonance will be excited. The only mechanism that still provides a near-field
enhancement in this off-resonant case is the lightning-rod effect attributed to the sharp-edged
geometry, see section [3.1.1] This effect is of course weaker in amplitude when compared with
the field enhancement associated with LPP excitation, but still able to induce an enhanced
SERS signal.

Finally, the polarization dependence of the SERS signals of sample 2 has been measured
for three characteristic SERS bands, as indicated by the bars in Fig[3.9(C). The observed
dependence shows a maximum for a polarization along the minor axis (6 = 0°), while the
SERS intensity is lowest for a polarization direction along the minor axis of the nanoantennas
(0 = 90°). The overall shape of this dependence is very similar the the characteristic behavior
for the extinction cross sections for dipole nanoantennas, shown in Fig(B). Thus, the mea-
sured SERS intensity follows the excitation strength of the nanoantenna sample, as represented
by the calculated absorption for sample 2 upon changing the incident polarization angle, see
the magenta-colored line in Fig(D). Hence, the polarization resolved SERS signals can be

used to indirectly visualize the plasmonic nature of the underlying dipole nanoantenna samples.

In summary of part [3} the main physical concepts of optical nanoantennas operating in
the electric dipole regime have been presented. As one of the most important properties, the
local field enhancement has been discussed. In a next step, specially designed nanoantenna

arrangements have been shown to support SPP mode propagation, additionally. Thereby, the
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planar arrangement of the nanoantennas has been described by an effective permittivity, while
its lattice has been considered by an additional transverse grating vector. As an application,
SERS measurements on such samples have been performed, which led to an improved SERS
signal when compared to samples supporting LPP modes only. These samples have been
investigated in a collaboration with the Institute of Photonic Technology as well as the Institute
of Physical Chemistry of the Friedrich-Schiller-Universitit. Besides the results shown here
[PYM™10], the presented nanoantennas have been applied in for various SERS experiments
[CSH™09, (CPH"10].

In the next part, metamolecules operating in higher multipole regimes will be investigated.
Thereby, similar to the description of the nanoantenna arrangements in this part, ensembles

of structures will be considered and described by their effective material parameters.
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4 Higher-order multipole properties of optical

metamaterials

4.1 Linear optical properties

In part 4] particular metamolecules possessing a higher-order multipolar response will be pre-
sented. Additionally to the electric dipole modes, as they have been subject of part [3| now
both multipolar excitations of second order, i.e., the electric quadrupole and the magnetic
dipole moments, will be considered. For ordinary matter the appearance of higher-order mul-
tipoles is caused by a more complex atomic assembly of molecular carriers, e.g., as for the
carbon dioxide molecule [BD63|. Consequently, the geometry of the required metamolecules
possessing higher multipolar contributions is expected be more complex, as well. Thus, par-
ticularly coupled and more complex-shaped geometries are investigated in the following as
compared to the electric dipole nanoantennas of the previous part [3|

The most interesting application of metamaterials obeying higher-order multipolar responses
is the possibility to alter the wave propagation in the metamaterial by structural modifications
on the individual metamolecules. A major difference between metamaterials and natural
materials is the possibility to include magnetic effects at optical frequencies. As it has been
derived in section [2.1.1] this can be achieved by the excitation of magnetic dipole moments,
induced by particularly designed mesoscopic currents. This results in a dispersion in the
magnetization which is typically absent for optical frequencies in any natural material |[LL85].

Hence, this part will focus on how dispersive properties of metamaterials can be influenced
by taking into account second order multipole moments. In chapter emphasis is put on
the linear optical properties, while in chapter nonlinear optical properties, induced by
second-order multipolar contributions, will be discussed. Since both of these effects will be
investigated on the basis of averaged metamaterials, the final chapter will conclude by
revealing the multipole moments of isolated and thus microscopic metamolecules. It will be
presented how this can be performed by a rigorous decomposition of the scattered field into

multipolar contributions.

4.1.1 Cut-Wire metamolecule

In the first section a particular metamolecule, i.e., the cut-wire pairs (CW) [SZO01
SCCT05, DEWT05, ICMET08|, will be considered. It is selected since it is one of the simplest
metamolecules, possessing a second-order multipolar response. The CW metamolecule concep-
tually consists of two sub-wavelength metal wires that are closely spaced. Each of the wires is
acting like an electric dipole-type nanoantenna. Upon external illumination the narrow spac-
ing provides a coupling due to the overlap of the near-fields of both nanoantennas [CMET08].

Hence, a splitting of the two isolated dipole modes into two energetically separated modes can
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Figure 4.1: (A) Sketch of the CW metamolecule with the charge carriers representing the dynamics
denoted by red dots. Each of the dots accounts for two carriers. A positively and a negatively charged
one being at the same position when there is no an external electric field. (B) The numerically obtained
far-field reflectance (dashed) and transmittance (solid) for a periodic arrangement of CW pairs. The
spectra have been calculated for plane wave propagation in z-direction presuming z-polarized electric
fields. The numbers denote the two fundamental resonances: (1) anti-symmetric and (2) symmetric
resonance. (C) Top: Electric field (Ey) inside the CW pairs for resonance (1). Bottom: Electric field
for resonance (2).

be observed. Thereby, the two electric dipole moments are oriented either in-line (symmetric
mode) or opposite (anti-symmetric mode) to each other. The anti-symmetric mode is respon-
sible for the second-order multipole response, whereas the symmetric mode contributes solely
to the electric dipole response.

This can be easily illustrated by the multipole series. Considering an isolated electric dipole
nanoantenna, the total charge, being the sum over all positively and negatively charged car-
riers, vanishes for neutrally charged nanoantennas. Thus, the next order in the expansion
series has to be considered, i.e., the electric dipole moment. For the isolated dipole nanoan-
tennaﬂ the electric dipole response suffices to understand the optical interaction, see part .
Now, considering a metamolecule that is created by two near-field coupled electric dipole-
type nanoantennas, the total charge is vanishing as well. If the symmetric mode is excited,
the response of the metamolecule is dictated by the lowest-order multipole moment. For
this particular mode it is just the constructive superposition of two electric dipoles. For the
anti-symmetric mode the two oppositely directed dipoles annihilate and the next order of the
multipole expansion becomes important, i.e., the magnetic dipole and the electric quadrupole
moments?

Similar to section [3.2.2] where the electromagnetic response of an isolated nanoantenna has
been transformed into multipolar contributions, the same procedure will be performed for the
CW metamolecule. The remaining missing part for this task is the access to the bound carrier
dynamics in the CW metamolecule ry,,), see section @ With an underlying understanding
of these carrier motions all multipole contributions of interest [Eqgs.(2.282.29]2.45)] as well

I'Note that this holds for nanoantennas with sub-wavelength dimensions, only. In particular, for extended
nanoantenna wires exceeding this limitation, the nanoantenna will expose standing surface modes that can
no longer be described by electric dipole excitations [Nov06, [DVK™10).

2In section it has been derived that both modes, the electric quadrupole and the magnetic dipole
moment, are of equivalent order and thus have to be simultaneously considered for consistency.
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as the dispersion relation and the material responses according to Eqs. will be
obtained.

In Fig[t.1(A) the CW metamolecule is sketched. The red dots in Fig[d.1[A) account for
the positions of the carriers which will be used to model the microscopic currents. In order to
illustrate the resonance splitting the reflection and transmission spectra for a periodic array
of CW metamolecules have been computed with the FMM and are shown in Figi4.1(B). Two
distinct resonances emerge that can be associated with the before-mentioned anti-symmetric
(1) and symmetric (2) modes. To visualize the symmetry of the modes, numerically calculated
near-fields for the two resonance frequencies (1) and (2) are shown in Figld.1|C).

In order to account for the numerically observed dynamics, a suitable carrier configuration of
two negatively charged (superscript "-") and two positively charged (superscript "+") carriers
is assumed with their positions as sketched in Fig[d.1[A)

rii- = [070720]T7 ry = [gl(t),(), ZO]T’
ry = (0,0, —2]7, ry = [&(t),0, —z]". (4.1)

Thereby, only negatively charged carriers are considered to perform oscillation:ﬂ &1 2(t) which

are induced by the microscopic electric field aﬁ

2
G+ N )+ RGO +o6t) = —Lels+ 20,0 (4.2
0? 0
wfg(t) + ’}/2&62(15) + OJSQISQ(t) + (761 (t) = —%@x(z — 20, t). (43)

In addition to the well-known terms in the oscillator equations such as the damping
constants «y; and the eigenfrequencies wy;, the two equations are coupled denoted by the cou-
pling constant o. This coupling accounts for the near-field interaction that takes place between
the two metal wires forming the CW metamolecule. Without this coupling the symmetric and
the anti-symmetric modes would be degenerated in their resonance frequencies. A decoupling
could be achieved by separating both wires far beyond the typical near-field coupling distances,
which are in the order of ~ 20 nm for optical frequencies. This case would clearly violate the
sub-wavelength restriction in propagation direction [ZDUT08]. With the oscillator equations
it is possible to calculate the bound carrier dynamics for an isolated CW metamolecule and

to find the desired molecular quantities: electric dipole moment ([2.28)), electric quadrupole

3This assumption corresponds to the approximation of the quasi-free-electron motion above a positively
charged background.

4Note that the interaction of the magnetic field with charged carriers is neglected since a non-relativistic
dynamic is assumed (O¢|r|/c << 1).
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moment (2.29), and the magnetic dipole moment ([2.45))

—q[&i (1) + &(1)]

Pcw = qu = 0 ; (4.4)
=1 0
) N (&) = &@)] 0 =z[&(t) — &(t)]
Qcw = 32Ql[rl]a[rl]ﬁ = —3q 0 0 ;
=t z[&1(t) —&()] 0
(4.5)
1 0 ’
mew = 5 Y am X = —% Dien(t) — &) |- (4.6)
=1 0

For the sake of simplicity, a symmetric CW metamolecule is assumed with v; = v = 7,
Wo1 = Wp2 = wp, and g1 = ¢o = ¢. It is obvious from Eqs. that all moments depend
either on the sum or the difference of the oscillator elongations &;. Explicitly, the electric dipole
resonance depends on the sum, while both second order multipole moments are proportional
to the difference. Hence, for the symmetric mode (£ = &) the electric dipole moment is
maximized and both second order moments vanish. In turn, for a completely anti-symmetric
elongation (£ = —¢&;) second order moments are maximal and the electric dipole moment is
zero. The respective wave equation which describes the propagation of electromagnetic fields

inside a macroscopic material comprising up to second order multipoles upon temporal Fourier

transformation [Egs.(2.51))] reads as
AE(r,w) + —E(r,w) + — {P(r,w) —V-Q(r,w)+ éV X M(r,w)] = 0. (4.7)

For x-polarized transverse electric fields propagating in z-direction and by Fourier transfor-
mation and substitution of the multipole moments (4.444.6)), Eq.(4.7) simplifies to the scalar
equation

2 2 2

w w
@EZ(Z,W) + gEx(zaw) + %

[Px(z,w) - %Qm(z,w) — é%My(z,w)} =0. (4.8)

Prior to solving this equation for particular field distributions, there is one important point to
be mentioned. The macroscopic quantities P, Q, M according to Eqs. have
been obtained by basically summing up over all molecular quantities. It is assumed that the
corrections due to interactions of metamolecules can be neglected, since the metamolecules
are well separated. This decoupling is hard to achieve for realistic metamaterials since even a
weak coupling between adjacent metamolecules causes a shift of resonance frequencies when
compared to the isolated metamolecule [FKH™10, [SEVKQ9, [DLW09]. To include this effect,

either a more sophisticated averaging procedureﬂ or adapted oscillator parameters can be used.

°In principle the Clausius Mosotti formalism can be applied where the Lorenz field interaction between
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Because properties of isolated metamolecules are hardly accessible since typically ensembles of
metamaterials are considered this interaction will be incorporated in form of adapted oscillator

parameters, being the numerically and experimentally accessible ensemble values.

Determining the averaged quantities [Eqs. (2.34 2.44))| from the molecular moments (4.4
in the Fourier domain [Eq.(2.51)]

P(r,w) = npcw(r,w), (4.9)
Q(r,w) = chw(r,w), (4.10)
M(r,w) = nmew(r,w), (4.11)

with the number density 7 and substituting them into Eq.(4.8)) yields

2 2

FaBee) + 5 Ele) - {1610 + 6] - 20y 66) — )]} =0

072 e

(4.12)

The first term & (w) 4+ &2 (w) in the brackets represents the electric dipole interactions whereas
the second term o< 0,[¢;(w) — &(w)] arises from both the electric quadrupole and the mag-
netic dipole interactions. Now, the remaining task is to evaluate these two contributions as
functions of the averaged electric field E,(z,w). Thus, from Eqs., and by replacing
the microscopic with the macroscopic field according to Eq. one ends up with

g Ex(z+ 2,w) + Eu(2 — 20,w)

(w) +&(w) = - AW+ o : (4.13)
R e (1.14)
with A(w) = wi —w?® —iwy. (4.15)

Now, if an ansatz for the propagating modes inside the metamaterial like
E,(z,w) = Eyet=)= (4.16)

is substituted into the wave equation (4.12)), the dispersion relation can be obtained as

k2 (w) =

: {1 nq°2 cos[k:(w)zo] | 14”2 zok= (W) sin[k. (w)z] } - (4.17)

E em Alw)+o €om Alw) —0o

Analyzing the functional form of the implicit equation , it can be easily verified that this
equation has various solutions k,(w) for a fixed frequency. These solutions represent different
branches of the dispersion relation, i.e., different propagating modes. For CW metamolecules
having larger dimensions zy in propagation direction, higher-order propagationg modes have to
be considered. For CW metamolecules with a small extend in the propagation direction only

the fundamental mode occurs. Hence, for such metamaterials operating in the fundamental

metamolecules can be considered in dependence on the metamaterial’s volume density, see section m
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mode regime the trigonometric functions in Eq.(4.17)) may be expanded in a Taylor series up

to the first non-constant contribution

coslk,(w)zo] = 1 — %, sin[k,(w)zo] = k. (w)zo0, (4.18)

which provides an explicit form of the dispersion relation k,(w) for the fundamental mode

1 —I— _<¢ 2 2
2 W A(w)+o . _ ngq
ki (w) = 2T 2203 A with C' = mer (4.19)

2 2 Aw)2-o2

In addition to the dispersion relation Eq.(4.19), also the effective material properties according
to Eqs.(2.55, [2.56) may be assigned. For the effective electric permittivity one ends up with

Co

_ 2 2
ex(kr,w) =1+ —A(w) = + kZ(w)ZO—AQ(w) —

(4.20)

Considering Eq.(4.20]) it can be inferred that spatial dispersion occurs, as indicated by the
intrinsic k,(w)-dependence of the permittivity for the fundamental mode approximation.
The magnetic permeability can be similarly obtained according to Eq.(2.56)

:uy(zaw) = By(sz)[By(Zaw) - MOMy(zﬂ"j)]ilv (4‘21)

where the magnetic induction By(z,w) = [k,(w)/w]|E;(2,w) has to be replaced by the electric

field. Finally, this results again in a spatially dispersive expression

w2 ng?  zosinlks(w)z) ] }1.

ty (k) = {1 @ mep k(W) [Aw) — o (422)

Upon substitution of the approximations (4.18)), one ends up with

2

i) = {1 “’—m} (123

which, in contrast to the effective permittivity, is not spatially dispersive, i.e., p,(k,,w) =
py(w) for the applied fundamental mode approximation of k,(w)zy << 1.

In order to apply the developed formalism to a realistic CW metamaterial [PMCT08|, nu-
merical FMM simulations of a slab of periodically arranged CW metamolecules have been
performed. The lateral periods of A, = 600 nm and A, = 500 nm have been used. The
CW metamolecule has a single wire extension in z- and y-direction of 400 nm and 150 nm,
respectively, and a thickness of 40 nm in z-direction. Both wires are 25 nm separated, yielding
a total slab thickness of 105 nm. The far-field reflection and transmission spectra for such a
slab have been already shown in Figlf.1(B). On the basis of these spectral results the effec-
tive parameters for normal incidence can be estimated [SVKS05]. These are approximative
since they are associated to a homogeneous slab for which the spatial dispersion is neglected.

Considering the spatial dispersion in Egs.(4.20[4.23)) one can anticipate that this is solely con-
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Figure 4.2: In the first row the (A) dispersion relation, (B) permittivity, and (C) permeability values
for the multipole model are shown, whereas on the second row the respective numerically obtained
observables are shown for a slab of periodically arranged CW metamolecules. Solid lines represent
the real part, while dashed lines label the imaginary part.

nected to the parameter zy. This is due to several reasons. At first, 2z is the dimension of
metamolecules in propagation direction, enabling the observation of second order multipoles.
It can be easily proven that for vanishing z;, second order multipoles become zero. Second, z
is related to the phase accumulation of the electric field evolution upon propagating through
the metamaterial according to Eqs. . This field difference is essential in order to ex-
cite any anti-symmetric currents that are required for second order excitations, i.e., magnetic
dipoles. Due to the dependence of multipole moments on the fields, the non-local response
translates into the dispersion relation as well as into the effective material parameters.

In order to evaluate the dispersion relation , the permittivity and the perme-
ability the unknown values wy, 7, o and C have to be determined. This can be achieved
by fitting one of the quantities k,(w), €,(w), or u,(w) to the respective numerical result. The
remaining two quantities are then fixed and can be computed without further adaption. For
the results shown in Fig[d.2(A-F) the numerical dispersion relation has been used to fix the
parameters of the model, whereas the permittivity and the permeability follow directly. When
comparing analytical and numerical results major discrepancies can be only observed in the
magnetic permeability |Fig[l.2(C,F)|. There an anti-resonance feature of the numerical data
is not present in the multipole model. To conclude this comparison for the CW metamaterial,
it is stated that all relevant numerically observed effects can be simultaneously observed in
the multipole model.

After the comprehensive presentation of the approach at the example of the CW meta-
molecule, which allowed to calculate experimentally accessible and relevant quantities, the
model can be applied to describe various other metamolecules [PMCT08, PCT™09|. A major
advantage of the presented modeling is that numerically obtained results can be unambigu-

ously linked to a physical meaning beyond the phenomenological interpretation of observed
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effects in terms of multipolar excitations. It has been even shown that also quantitative results
can be achieved. But since the model is based on parameters that have to be determined the
prediction of new metamolecule properties is only possible to a certain extent, as will be shown
in the following section [4.1.2]

Before this is done, a brief explanation why the presented model for a certain metamaterial
has to be fitted to either experimental or numerical data is given. For ordinary materials
operating in the electric dipole limit a similar oscillator ansatz is typically chosen, where
usually one uncoupled oscillator is sufficient. In order to fix the material parameters, i.e.,
the permittivity, this model has to be compared to experimental measurements, preferably by
means of reflection and transmission measurements at thin films [JC72]. However, depending
on the microscopic carrier dynamics these parameters are different for each material. Strictly
speaking, the presented model requires that for each metamaterial these parameters have to be
determined again. By changing the mesoscopic geometry, the entire metamaterial is modified,
and thus requires a new fitting of the parameters. To illustrate that the presented model is
just a consequent continuation of the description of natural materials, we set zg = 0, which
is equivalent to consider only one oscillator in the origin which makes o meaningless. With
this step all second order multipole moments (2.52] vanish. The magnetic permeability
becomes unity and the electric permittivity takes the form of

C C

«(w) * A(w) * wd — w? —iwy’

(4.24)

which, depending on the presence of wy in A(w), provides the well-known Drude metal or a
polar material featuring a Lorenzian resonance. Although the CW metamolecule described in
this section is rather simple, several important physical features have been already observed,
such as optical magnetism, the occurrence of spatial dispersion and higher-order dispersion
branches, which help to facilitate the understanding of metamaterials by means of fundamental

electrodynamic principles.

4.1.2 Split-Ring Resonator metamolecule and planar modifications

enabling asymmetric transmission

In this section, metamaterials composed of planar metamolecules are investigated [PCTT10].
The major part of this section is devoted to the question, to what extend the introduced
multipole model of section [4.1.1] allows to predict the properties of new metamaterials. Hence,
an original metamolecule is considered at first, which will be modified later on. As will
be shown, the parameters of the modified metamolecule will be correctly predicted by the
multipole model.

These modifications are extended to cover effects associated with asymmetric transmis-
sion for circularly polarized light [ZNGO09, [ESZT07, SPM™09, ZDWT09|. The planar SRR
[LEWT04], Fig[4.3(A), serves as the original metamolecule. The SRR, similar to the CW meta-

molecule before, is a pioneering metamolecule being subject of many investigations [DLW09,
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Figure 4.3: Illustration of (A) the SRR, and (B) the L metamolecule [CKK¥05]. Both metamolecules
are arranged in the xy-plane, hence the propagation vector is assumed to be normal to the surface,
i.e., parallel to the z-direction. The dots denote the carrier configuration assumed for the analytical
model.

KKK*05, RLET06, HKF*08, LGET08, LLZG09, PWABI(]. The structure has been initially
proposed for microwave frequencies [PHRS99, [Tre05]. Thereby, the SRR can be conceptually
replaced by a miniaturized LC—circuitﬂ Here, the SRR will be discussed in the optical fre-
quency domain, but already from the simple LC-model it may be anticipated that the SRR
exhibits both a magnetic and an electric response.

In the following the polarization eigenstates of metamaterials consisting of SRR meta-
molecules are shown to be linearly polarized. Moreover, the optical response in terms of
effective parameters and the reflection and transmission coefficients will be calculated. Next,
it will be revealed that for particular geometrical modifications |Fig/d.3(B)| on the SRR meta-
molecule the polarization eigenstates change toward elliptical polarization. Even though this is
a drastic change in the optical functionality, it is shown that the multipole model will correctly
predict the changed optical response for these modifications.

In order to describe the internal carrier dynamics for the SRR, conceptually consisting of

three connected straight wire pieces, the following microscopic carrier configuration is assumed

ri_ = [07 Yo, O]T> rl_ = [gl(t)v Yo, O]T7
r2+ = [_x())OaO]Ta I‘; = [_x07€2(t)70]T7
I‘; = [07 —Yo, O]T7 r?? = [53@)7 —Yo, O]T (425)

A set of three coupled microscopic oscillators is proposed to account for the coupling between

the conductively connected wires

62

atgg (0) + 1 (6) + )+ onbalt) = - Les(z,),

atz&( ) + 72—52(t) + wipba(t) + on&i(t) — 093&s(t) = —%éy(z,t),
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SSE0) + 23 SEa(t) + whatal) — omtalt) = ~ Ly (z,1). (4.26)

It is assumed that wire 1 and wire 3 are equal, but different to the SRR base wire 2. Hence,

Eqgs.(4.26) can be simplified with: wp = wos = Wy, Wo2 = Wy, Y1 = V3 = Vay V2 =

6'T," is an abbreviation for an inductor, while "C" accounts for a capacitor in circuit theory.
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Yy, O12 = 023 = 0, and ¢1 = ¢3 = ¢z, @2 = qy. Next, the mesoscopic multipole contribu-
tions Egs. (2.2 2.45|) have been evaluated for the carrier distribution (4.25)). The resulting

molecular SRR multipole moments are

2161 (1) + &3(1)]
PSRR = qy&a(1) , (4.27)
0
) —q. 67 (t) + &5(1)] —q:Yol61(t) — E3(1)] + qyoéa(t) O
Qsrr = 3| —q[&(t) — &(1)] + quaoéa(t) —q,&5(t) 01,
0 0 0
(4.28)
. 0
MSRR = 5 0 : (4.29)

@Yo &) — &(1)] + qymo2bo(t)

For arbitrary carrier dynamics &;(t), j € [1, 2, 3], molecular electric dipole moments in z- and y-
direction, a magnetic moment in z-direction and electric quadrupole moments Q;;, [, j| € [z, Y]
are induced. Hence, even after the transition to averaged quantities the wave equa-
tion , describing z-polarized electric fields propagating in z-direction, has no contributions
stemming from second order multipole moments. As can be easily verified, these conclusions
hold for y-polarized electric fields propagating in z-direction as well. Thus, the entire optical

response is described by the macroscopic polarization

2:[&1(w) + & (w)]
P(z,w) = npsrr(z,w) = —n ¢yéa(w) ) (4.30)
0

Similar to the CW metamolecule the oscillator elongations according to the set of equations

(4.26]) are simply obtained in Fourier domain (2.51]). For z-polarization one obtains

¢z 1
gl(w) &’)(w) mAx(UJ) x(sz)v ( 3 )
&) = 0, (432
whereas for y-polarized electric fields we have
4y o
51(&)) = _53(("-)) = Ey(Z,W), (433)

m Ay (W) A, (w) — 202

qy Ay(w)
= —= E 4.34
&(w) m Az (w)Ay(w) — 202 y(zw), (4:34)
with Agy(w) = wl, —w® — iwyey. (4.35)

Considering Egs.(4.31H4.35]) it becomes obvious that z-polarized electric fields induce only a

polarization in z-direction, because £ (w) = 0. In turn, y-polarized light induces a polarization
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Figure 4.4: The SRR far-field spectra obtained by numerical simulation (T circles, R triangles)
and for the developed model (T solid, R dashed) for (A) z-polarization and (B) for y-polarization.
(C,D) The corresponding complex permittivities obtained by the parameter retrieval of the numerical
spectra in comparison to predictions from Eq. for the respective polarization direction.

solely in y-direction due to the annihilation of the carrier dynamics in wire 1 and 3 [ (w) =
—&3(w)]. In other words, the electric permittivity (2.55)) is a diagonal tensor and consequently

the polarization eigenstates are linearly polarized

€ze(W) 0 0
é(w) = 0 eyy(w) 0 |, (4.36)
0 0 1
2ng; 1
= 1 4.
€2z(W) + meo An(@)’ (4.37)
2
Ay
(@) = 1+ ) (4.38)

mey Az (w)Ay(w) — 202

In turn, the magnetic permeability is unity for both polarization directions as expected for
media comprising electric dipole interaction only. With Eqs. it is now possible to
calculate the reflection and transmission coefficients by applying a standard transfer matrix
formalism for films [BW99|. For reference, the SRR spectrum has been computed at first nu-
merically with the FMM and secondly by calculating and fitting the spectra of a metamaterial
slab incorporating the permittivity derived above.

Spectra for polarization in x- and y-directions are shown in Fig(A,B), respectively.
The SRR metamaterial has been selected similarly to the one investigated in the literature
[ILEWT04, PCTT10]. The SRR wires are 200 nm long and 50 nm wide, the SRR base has a
length of 100 nm and a width of 80 nm. The entire SRR thickness is 25 nm and it is made of
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gold [JCT2]. A periodical arrangement with a period of 400 nm in both z- and y-direction has
been assumed. The thickness of the metamaterial corresponds to the thickness of the SRR.
In addition, the permittivity has been obtained from the numerical spectra by the parameter
retrieval that has been used for the CW pairs before. Comparing this retrieved permittivity
to the one that has been found in the spectral fit for the reflection and transmission spectra
almost perfect coincidence is observed [Fig[t.4[C,D)|. Hence, the developed formalism can
be applied as a kind of parameter retrieval procedure. In addition to the permittivity, the
formalism may be useful in order to quantify the coupling between the SRR wire pieces.
Next, the SRR metamolecule is modified yielding the L metamolecule [CKK™05], see Fig
(B), where one of the SRR arms (3) has been removed. This modification prevents the mutual
cancellation of the carrier dynamics in wire 1 and 3 when compared to the original SRR

metamolecule. The solutions for the oscillator elongations are

z( _q_x Ay(w) W
51( ) m Ax(w)Ay(w) — g2 Ex( ’ )7 (439)
55(&)) = _q_90 d Ez(Z,W), (440)

m Ay (w)Ay(w) — o2

for polarization in z-direction and

Y(w) = _Y U Z,Ww i
51( ) mAx(w)Ay(w) o O_QEZJ( ) )7 (4 41)
gy = b A g (1.42)

in y-direction. Since one of the SRR arms has been removed, one oscillator elongation can
be set to zero. Hence, an electric field polarized in z-direction induces a cross-polarization in
y-direction and wvice versa. For the permittivity that is calculated from the polarization (4.30))

upon setting &3(w) = 0 these cross-polarizabilities result in non-zero off-diagonal elements

€r2(W)  €gy(w) 0
Ew) = | eplw) eyw) 0], (4.43)
0 0 1
ern(w) = 1+ng Ax(w)iyy(é))_ay (4.44)
€ (w) = 1+§j€"0 Ax(w)iz(& )>_0_2, (4.45)
€el(w) = ny(w) = qjjon ) A;w)_O_Q. (4.46)

If A,(w) # Ay(w), which is fulfilled for different geometries of wires (1) and (2), the per-
mittivity tensor cannot be diagonalized. Thus, the polarization eigenstates are in general
elliptically polarized |[ZNGO9|. In order to verify these analytical considerations the spectral
response of the L. metamolecule has been numerically modeled using FMM. For media which
are described by a permittivity according to Eq. the reflectivity and transmissivity have
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Figure 4.5: The (A) far-field spectra, (B) the cross-polarized spectral quantities Ty, Ry, and (C)
the permittivity for x-polarization. (D,E,F) The respective results for y-polarization. The spectra
predicted by the SRR values in (A,B,D,E) are labeled by dashed dotted lines, whereas the directly
fitted values correspond to the solid lines. The permittivities (C,F,I) have been calculated with
Eq. using the directly fitted values. (G) The L structure made of two wires with different
widths together with the two polarization directions of interest are shown. (H) The asymmetric
transmission in terms of a difference between T, _ and 7T_, is shown for the numerical and the
adapted transmissivities.

to be calculated requiring more sophisticated methods. Here a homogeneous slab with the
permittivity and a thickness corresponding to the thickness of the metamolecules has
been simultaneously modeled [Lie03]. In a first step, the parameters of the SRR that have
been found before are applied while considering the removal of one wire. The results for both
polarization directions are shown in Fig(A,B,D,E). As can be seen, the resonance positions
as well as the resonance widths are predicted with only minor differences in the resonance
strength, see Fig(A,C). Second, the permittivity for the L. metamolecule has been
used directly to fit the numerical spectra. This improves the coincidence between the spectra
predicted by the model and the numerical spectra toward almost perfect agreement. Con-
sidering the cross-polarized quantities T;;, R;;, ¢ # j, agreement with sufficient accuracy is
observed even for the SRR parameters |Figll.5(B,E)|. As a further outcome of the spectral
adaption, the entire permittivity tensor can be directly obtained [Fig[.5[C,F,I)] which is, for
media that do not posses linearly polarized eigenstates, a non-trivial task. Additionally, it is
mentioned that the anti-resonance observed in Fig(I) can be fully explained by the mutual
interplay of the coupled carriers|PCT*10).
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Finally, it will be proven that asymmetric transmission [ZNG09, [FSZ07, SPM™09, ZDW*09]
for circularly polarized light occurs, as expected from the shape of the permittivity tensor
(4.43). The connection between left- ("-") and right-("+") handed circularly and linearly
polarized light may be written as [ZDW™09|

2

Tro Too | _L( (Tt Ty) +i(Tey = Te)  (Tow = Ty,) = i(Tiy + Ty)
T—+ T—— (le - Tyy) + Z(TQ?J + Tyx) (Tl’x + Tyy) - Z(Txy - Tyx)

(4.47)

Considering Eq. it becomes obvious that for non-zero, cross-polarized transmission co-
efficients T, T, the difference T, — 1" is non-zero, too, requiring that 7}, +T,, # 0. For
the investigated L metamolecule the results for the modulus of the difference between T, _
and T_, are shown in Fig[{.5(H). The two lines correspond to the results for the numerical
transmission and the ones predicted by the model. Again all main features are correctly de-
scribed by the developed formalism, see Fig(H). In passing, it is mentioned that typically
the effects of asymmetric transmission in planar metamolecules [PZ09, PEZ11] are rather small
compared to metamolecules that additionally exhibit chiral properties due to an extension and
particular shape in the propagation direction [PFMZ09, [PZD*09, PLET09, ZDW™*09].

To conclude this section, it has been shown that the planar SRR metamolecule upon nor-
mal incidence possesses electric dipole response only, which simplifies the model significantly.
These findings are consistent with experimental observations, where magnetic effects, i.e., a
magnetic resonance, could be only observed for angular incidence [LEW'04|. Furthermore,
the transition from linear toward elliptically polarized eigenstates has been performed by geo-
metrical variations of the SRR yielding the L metamolecule. In doing so the optical response
of a metamaterial composed of these L. metamolecules could be estimated solely from knowing
the parameters of the original SRR metamaterial [PCT710]. The formalism has been utilized
to determine the permittivity tensor which can be accessed by comparing with experimental
or theoretical far-field intensities without requiring the spectral phase. The developed descrip-
tion supports and simplifies the physical understanding of asymmetric transmission effects by
the simple mutual interaction of electric dipoles. Beyond this qualitative understanding it has
been shown that also quantitative agreement can be achieved.

It is furthermore mentioned that the same procedure has been also examined for an S-
shaped metamolecule where similar results have been obtained [PCTT10|. As an important
physical property, all derived permittivities are consistent with the Casimir-Onsager relations

[Ons31l, [Cas45) [TSJ02] which require the symmetry in the permittivity tensor €,,(w) = €, (w).
This relation can be proven by considering Eq.([(1.46) or Figl.5(T).

4.2 Nonlinear optical properties

In the first section of chapter the intrinsic nonlinear optical response of particular meta-

materials will be discussed at the example of the SRR metamolecule. As will be shown a
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quadratic nonlinearity can be obtained, which is solely attributed to the appearance of the
electric quadrupole and the magnetic dipole moments. Thus, among other nonlinear contri-
butions of second order, e.g., due to symmetry-breaking at the substrate interfaces or the
presence of an adjacent nonlinear material, this multipole nonlinearity can be observed solely
due to the intrinsic carrier dynamics of the isolated metamolecule. As an example the sec-
ond harmonic generation (SHG) will be investigated as one of the most prominent nonlinear
optical frequency conversion processes.

In the second section the obtained results are discussed and compared with other
approaches that are used in order to account for the intrinsic nonlinear interactions in meta-

molecules.

4.2.1 Multipole nonlinearity - Second-harmonic generation

In this section, nonlinear optical effects induced by multipole moments will be discussed. At
first, the origin of this second-order nonlinearity will be motivated. Second, the SRR meta-
molecule will be re-examined as an example geometry. The SRR has been already discussed in
section [4.1.2] In this section it will be oriented differently as compared to the planar alignment
that has been considered before. As will be shown, this adapted orientation causes second-
order multipoles, i.e., the magnetic dipole and the electric quadrupole moments, to become
radiating in addition to the first-order electric dipole moments.

With the presented approach it will be shown that the considered nonlinear optical response
of a metamaterial can be predicted solely from knowing the linear optical properties, such as
the dispersion relation, or any other effective material property.

In order to motivate the source term of the nonlinearity, the definitions of the electric

quadrupole (2.29) and the magnetic dipole moments (2.45)) can be considered

Nbound 1 Nbound
(Qu)as =3 Y @) (o) )a(Tom)g M = 3 > @ [Tom) X Vogm)-
b(m)=1 b(m)=1

It becomes obvious that both are depending on terms o< (7p(m))a - (To(m))s- Assuming that
the spatial coordinate ry(,,) of a bound carrier is proportional to the microscopic electric ﬁeldﬂ
¢, both second-order multipoles produce the quadratic expressions € : €. Hence, it can be
expected that quadratic, i.e., second-order, nonlinear effects emerge.

Conveying this knowledge to the SRR metamolecule, this multipole nonlinearity may be
anticipated at all 90°-bends of the SRR. There, the carrier motion exhibits a two-dimensional
oscillation, i.e., in z- and y-direction, simultaneously. The SRR metamolecule is shown
in Figll.6[A), where the currents for the first two fundamental LPP modes are sketched
[RLET06]. The metamolecule is excited by plane waves with a polarization direction of the
impinging electric field along the z-direction with a propagation along the y-axis. In order

to illustrate the two modes, FDTD simulations have been performed of a particular gold

"This has been inherently used by the oscillator equations for the CW and the SRR metamolecule, e.g., in

B (L2G).
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Figure 4.6: (A) The SRR metamolecule together with the two fundamental currents associated with
the magnetic LPP resonance (mode 1) and electric LPP resonance (mode 2). (B) The corresponding
carrier distribution proposed to resolve the currents shown in (A) and to particularly account for
the two-dimensional oscillations at the SRR bends [carriers (1) and (3)]. (C) FDTD results for the
electric field distributions inside the SRR for the two fundamental modes.

SRR metamolecule [PCT*09], showing the electric field distributionsﬁ for both modes, see
Fig(C)ﬂ. For such illumination conditions, also higher-order modes of the SRR can be ex-
cited. As it will be shown, they can be observed at higher frequencies, when compared to
the resonance frequencies of the two lowest-order modes. For simplicity, emphasis will be put
on these two lowest-order modes only. However, this simplification is not a restriction since
higher-order LPP modes can be considered in complete analogy to the following approach. A
comprehensive numerical investigation of the LPP modes of the SRR at optical frequencies
has been performed by Rockstuhl et al. [RLET06].

In order to precisely account for the two-dimensional carrier oscillations in the SRR bends,
a deviating carrier configuration as compared to the one of section has to be applied, see
Fig(B). It can be depicted that the charge configuration consists of four carriers, whereas
carriers (1) and (3) are located in the center of the bends. The additionally sketched arrows
in Figli.6[B) indicate the degree of freedom for the carrier motion. Moreover, this carrier
configuration represents the simplest alignment, with only one additional carrier, compared
with the three-carrier-setup in the previous section. The carrier configuration applied for the
SRR here can be regarded as a balance between the following requirements. It is chosen to
be able to account for the two lowest-order LPP modes, the two-dimensional carrier motion
at the bends and finally it should be as simple as possible for the calculation of the nonlinear

response in the following.

8The respective currents can be easily obtained by multiplying the microscopic electric fields with the con-
ductivity oconq. of the respective SRR composite metal, i.e., j = oconq. €. Hence, it can be assumed that
j x €.

9The dimensions of the SRR are shown in Fig(D)
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Thus, a suitable carrier configuration for this task could be

rf = [~0,10,0]", 7 = [~20 — &, 90 — &, 0],

ry = [20,%0,0]", r3 = [zo — &, 0,0]",

ry = [—x0, —4,0]", 3 = [~x0 — &, —yo + &, 0],

r = [0, —0,0]", r; = [w0 — &, —¥0,0]". (4.48)

Again, the dynamic variables &; »(t) account for the elongation of the negatively charged carrier
oscillations driven by the external electric field €. The parameters xy and yq are defined by
the size of the SRR and correspond to the locations shown in Fig[d.6[(B). Thus, the carrier

motion reduces to a set of two oscillator equations according to

0? 0
a6 0 T 1360 T a0 +06(t) = —Le(y+y0.1), (4.49)
o 0
F6e(0) +156(l) + Wa(D) T oba(t) = — L Euly —o.1). (4.50)

The set of equations is exactly the same as applied for the CW metamolecule, see
Eqs. in section , but the carrier configuration and their degrees of freedom are
substantially different, see Eqs. . In Eqs. it has been assumed that all positively
charged carriers qj = ¢, while for all negatively charged carriers ¢; = —q, V j € [1,2,3,4].
Again, the constant o accounts for the coupling of the carrier dynamics & (¢) in the top
SRR arm |[carriers (1) and (3)] and the oscillations described by &(t) in the bottom SRR
arm [carriers (2) and (4)]. The physical origin of this coupling is, as for the metamolecules
discussed before, the Coulomb interaction of carriers in the horizontal SRR arms excited by
an electric field parallel to the arms and the carriers in the vertical arm that are excited by the
local fields of the horizontally oscillating charges. This produces a current inside the entire
SRR. With the carrier distribution together with the oscillator equations (4.49}i4.50))

the macroscopic quantities [Egs.(2.34 2.44)| can be obtained

P = e 26 ) +&(0]) + e mlca) - (0] (451
M) = —e{ Do+ 20 160 - 000, (4.52)
0l = (D) - &)z - 6O +&0) ). (@)

Regarding Eqs. the first- and second-order moments are depending on the sum
& (t) + &(t) and the difference & (t) — &»(t). The first-order electric dipole moment causes a
polarization in x- and in y-direction. For a symmetric carrier oscillation, i.e., & (t) = &(t),
only an electric dipole moment in x-direction will be induced, whereas the dipole moment in
y-direction vanishes. In turn, a perfectly anti-symmetric oscillation mode, i.e., &(t) = =& ()
causes the vanishing of the electric dipole moment in z-direction, while the electric dipole

moment in y-direction is maximized. In addition to the first-order multipole response all
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second-order multipole moments are non-zero for a non-symmetric oscillation, i.e., & (t) #
& (t), only. With these properties, the numerically observed dynamics for mode 1 and mode
2 in Fig(C) can be modeled by the proposed microscopic carrier arrangement.

As it has been initially motivated, the electric quadrupole tensor comprises con-
tributions that are proportional to the product of two carrier elongations, here o [£;(t) —
E()][E1(t) + &(t)]. In the next step, it will be shown that exactly this moment causes a
quadratic nonlinear source term, since both & (t) 4+ & (t) and & (t) — &»(t) are proportional to

the electric ﬁeldm. Hence, the macroscopic electric field ansatz
E,(r,t) = (€,(r, 1)) = B!ty 4 B efk@y=2w) o ¢ ¢ (4.54)

has been selected. In Eq. E,, and FEs, correspond to the macroscopic electric field
amplitudes for the fundamental (FF) and the second harmonic (SH) frequency, respectively.
This field decomposition will be used to describe the second harmonic generation (SHG)
[Boy92], which will be investigated later on. Solving Eqgs.([4.484.49) upon temporal Fourier
transformation yields for the before-mentioned electric field ansatz

<§1(t) ﬂ:fg(t)> _ fi:Ewei[k(w)y—wt] +€§;E2w€i[k(2w)y_2wﬂ +c.c., (455)

where the amplitudes are given by

& = 2x7 cos[k(w)yo), (4.56)

= . + 9 1
£, = 2ix, sin[k(w)yol, with x, = T it (4.57)

With the knowledge about the carrier dynamics (4.55) together with Eqs.(4.51] 4.53)) the

wave equation (4.7) incorporating multipolar contributions up to second order can be evalu-

ated. A separation of the wave equation into two parts yields for the FF

{88_; - C;}—j + w’Hopw — Ho [WP g — twmy,] gy} E,et@y —
—WQMOQw;Qw,—w% (B Ey /MY (4.58)
and the SH[H]
{86_;2 + 4@%2 + 4w P — o [40° gy — 2iwma, | Gﬁy} B, =
—4w2,u0q2w;w7wé% [Egeizk(”)y] ) (4.59)

In Egs.(4.584.59) the following abbreviations for the linear termg'? i.e., the linear parts of

10Such terms have been already observed for the planar SRR, see Eq.(4.28)) in section and for the CW,

see Eq.(4.5) in section but there these contributions are not radiating in propagation direction.
1The operator * in Eq. 1) accounts for the complex conjugation.

12For the SH, the respective expressions are obtained by substituting w by 2w.
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the multipole moments

nq(2yo + o) ~qn(2yo — o) e

P = 2n¢ES, my, = w8 G = 5 o (4.60)
as well as for the nonlinear source terms
qn (e— 4« — et qn ._
Qu;2w,—w = 7 (gw 5;2; - 62015:5 ) s Puww = ?5“; 5:7 (461)

have been defined. The nonlinear set of equations , connecting the FF and the SH,
is coupled by the nonlinear source terms . Considering the wave equation for the SH,
one can derive that all appearing quantities are simultaneously present in the wave equation
for the FF. These circumstances will allow to predict the nonlinear response solely on the basis
of the linear optical material response.

In order to estimate the linear properties of a realistic SRR metamaterial with the developed
formalism, the nonlinear source terms are firstly dropped. This is a standard procedure in
nonlinear optics [Boy92] which is valid for weak interaction between FF and SH. This causes a
decoupling of the SH and the FF wave equations and allows to evaluate the dispersion relation
and the effective material properties. Secondly, the source terms will be included and the SHG
will be described with the determined parameters from the linear regime.

At first, the linear properties are investigated in terms of the dispersion relation. Therefore
the nonlinear source term on the right-hand side of Eq. is set to zero. Equivalently, the
same can be performed for the SH wave equation. As required, the result is the same equation
as for the FF, but with 2w instead of w. The dispersion relationﬁ for a linear propagation in
y-direction becomes [PCTT09|

2 2 1+ fnay+
2 _ w 2 _ w € w
k (w) - 2 neff(w> - c? 1+ w? 2nq 2[[) +_9 _]' (4.62)
2 € y() Xw Xw

In Eq.(4.62)) the approximations for the trigonometric functions, see Eqs.(4.18) have been

applied. In addition, the effective material parameters, i.e., the electric permittivity according

to Eqs. @535

(b, ) = 1+ ig(w) %, (4.63)
€0 €0
as well as the magnetic permeability [Eqgs.([2.54]/2.56])]
(k) 1 (4.64)
off(F, W) = :
- L mo s

can be derived. In analogy to the CW metamaterial in section [£.1.1] these parameters have

been introduced for the fundamental mode approximation and are valid for a fixed propagation

I3Frequently the refractive index neg is applied to describe the propagation properties of metamaterials. But
since this quantity is a derived quantity of the dispersion relation, see Eq.(4.62)), here the propagation
constant is considered as the fundamental parameter, describing the light propagation characteristics.
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Figure 4.7: (A) The real and the imaginary part of the dispersion relation obtained numerically
(circles, triangles) and analytically (solid and dashed lines). As it can be inferred, the analytical
solution only reproduces the first two modes (1) and (2), while mode (3) is absent. The effective
material properties (B) electric permittivity and (C) magnetic permeability obtained with the mul-
tipole description. The respective numerical values are shown in (E) and (F), respectively. (D) The
dimensions and arrangement of the investigated SRR metamolecules. All dimensions are given in
units of nm.

direction (along the y-axis), solely.

In order to evaluate the developed formalism, the dispersion relation as well as the effective
material properties have been computed by FMM for a realistic SRR metamaterial. Results
are presented in Figld.7] The geometry of the SRR metamolecules as well as the parameters of
the lattice arrangement are shown in Figld.7(D). At first, the unknown oscillator parameters
wo, 7, o, and ¢°n are determined by fitting the dispersion relation (4.62)) to the numerical
ond™] Results are shown in Fig[t.7[(A). The first two modes, denoted as (1) and (2), can be
nicely reproduced by the multipole model, while the next higher-order mode (3) is not consid-
ered within the applied carrier ansatz. As it may be concluded from the numerical effective
permeability this mode (3) corresponds to an effective magnetic mode as well. This mode
comprises a similar anti-symmetric current distributions as mode (1), but with an oppositely
directed current in the SRR base, not shown here.

With the parameters found by fitting the numerical with the analytical dispersion relation,
the effective permittivity and the magnetic permeability can be computed without
any further adaption, see (B,C). These parameters match the numerically retrieved param-
eters [SVKS05], shown in Fig[t.7(E,F). Similar to the CW metamaterial, the anti-resonance
in the numerical calculations for the magnetic permeability is observed for resonance (2), i.e.,
the fundamental electric resonance, see [Fig[4.7(F)]. Summarizing the comparison between the
multipole and the numerical modeling a good agreement can be achieved. For this purpose, the

optical response in the multipole formalism is restricted to the two fundamental resonances,

The fitting can be performed manually, since the effect of each parameter is quite distinct. Parameters can
be found in [PCTT09)
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i.e., the fundamental magnetic (1) and electric (2) modes, as initially adopted.

In the following, the nonlinear optical effects of these two fundamental LPP modes will be
considered. Therefore the linear dispersion relation describing the wave propagation properties
in the linear regime will be applied, while the nonlinearity will be treated as a perturbation
rather than solving the nonlinearly coupled set of equations exactly. The usually
applied method for this procedure is the slowly varying envelope approzimation (SVEA) [BCI0,
Boy92|. With this method the fast underlying oscillation o exp|ik(w)y] is separated from
a slowly varying amplitude A(y), which contains all information about the generation and
depletion of the fundamental (E, = A,(y)explik(w)y]) and the second-harmonic (Fa, =
Ao, (y) explik(2w)y]). Prior to plugging the SVEA ansatz into the complete set of equations
the following substitutions are performed for conveniance

2

w
o, = ) + w2 oo, (4.65)
Bo = po (WP —iwmy), (4.66)
ww;2w,7w = wz,uoqw;Qw,fwy (467)
wa;w,w = 4W2N0q2w;w,w~ (468)
The set of equations (4.584.59) simplifies upon substituting Eqs. (4.65H4.68))
o? 0 , 0 : .
—4+6,—B,— ¢+ E, ikwy _  _ o — A E* Fay, ilk(2w)—k(w)*]y 4.69
T
d” d : ) .
-~ 5 o — Bow— E " ik(2w)y = o — E2 2k(w)y ) 4.70
{8y2+2 5263/}26 %”Gy[“’e } (4.70)
Afterwards, the application of the SVEA ansatz to Eqgs.(4.694.70) yields
a waw —w a a .
—A, = ——2 = A (y)=—Au(y)" + Au(y)" = Aag, k(2
sl = g Lo ) AL+ A 5 Aaulo) + k(20
—k* ()] A (y)" Asu(y) } ! FEI R =R, (4.71)
8 wQ : a . 2 i _
— Ay, = ey 194 (y)—A, 2ik(wW)A i2k(w) =k (2w)]y
Say) = g A )5 ) + 20k A
(4.72)

Now, the set of equations can be solved by standard routines. For this purpose,
the ordinary differential equation solver 0DE45solve, embedded in MATLAB, has been applied
[SR97]. In order to describe the generation of the SH, the two initial values A,(0) = 1 and
Ay, (0) = 0 together with the dispersion relation with the underlying parameters from the
linear response have been applied. Results are shown in Figid.§(A,B). For the evolution of
the FF in Figld.§(A) a strong damping according to the increased imaginary part around
resonances (1) and (2) is observed. Spectrally separated from these resonances, the FF prop-
agates almost without losses, as intuitively expected. In turn, the SH is generated exactly at
both resonance positions. In detail, the signal from resonance (1) is much stronger damped

in comparison to the signal from resonance (2). The strong damping of the generated SH
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Figure 4.8: Numerical results for the evaluation of the normalized intensities oc |E|? of the (A)
FF and (B) the SH. The respective results are shown for the undepleted pump approximation in
(C) and (D), respectively. In addition, the real (dashed line) and the imaginary part (solid line) of
the dispersion relation are presented. It can be observed that the FF is damped at the resonances
in the dispersion relation, while the generated SH is confined exactly to the two fundamental LPP
resonances.

for resonance (1) can be easily explained. The SH generated by mode (1), propagates at the
doubled frequency, i.e., at ~ 220 THz. At this frequency an enhanced imaginary part due to
the presence of resonance (2) is still present, see Fig[l.8(A,B). Contrarily, the SH generated
by mode (2) propagates at ~ 400 THz where the imaginary part is almost zero due to the
absence of any further resonances. Thus, the SH for mode (1) appears to be much weaker
than the respective SH from mode (1).

However, the overall conversion efficiency from FF to SH, i.e., |Ea,|?/|E,|* & 107® is rather
weak. Hence, the influence of the SHG on the fundamental can be neglected. This assumption
is known as the undepleted pump approzimation (UDPA) [Boy92, BC90] and can be expressed
by the dropping of all spatial derivatives acting on A, (y). With this approximation and the
before-mentioned initial value Ay, (0) = 0, Eq.(4.72) can be directly integrated

0 Vorow

oy =W = o) - (ZE@AW)] T, 47)

2w;iw,w k w 2 i[2k(w)—k(2w)
Ags(y) = 22'1{:(%2@57—5% 2k<w2)£k)(2w)z4w(y){1— )kl (4.74)

If the undepleted pump approximation, i.e., Eq.(4.74), is applied to calculate E,(y) and
Es,(y), as shown in Fig[d.§(C,D), one observes almost exactly the same results as for the
numerical computation. The agreement between the numerical results and the UDPA calcu-
lations can be considered as a proof for the validity of the applied approximations as well as a

check for the numerical simulations. Furthermore, the UDPA formalism in form of Eq.(4.73))
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may be applied to introduce an effective quadratic nonlinear susceptibility tensor ngﬁ) (2w; w,w)

[Boy92] for the SRR metamaterial investigated here

4020wk (W) k(2w)
Bay — 2ik(2w)

ng)(Qw;w,w) =

(4.75)

With these final calculations the wave propagation in a quadratic nonlinear medium, where
the nonlinearity arises due to multipolar moments, has been completed including the applied
approximations. It has been shown that the required parameters to predict the nonlinear
response can be determined by comparing any linear effective material response with the
introduced multipole approach. Here, this has been achieved by a direct fitting of the analytical
dispersion relation to a numerically calculated one. In general, this could have been similarly
achieved by fitting to, e.g., the permittivity or the permeability as well. In
contrast to section the SRR metamolecules have been oriented uprightly, which causes
that besides the electric dipole also second order moments are radiating.

Recently, the nonlinear optical response of SRR metamolecules has been subject of interest
in its planar configuration [KWFLOT7, [FLK™08|. In these works, a single layer of periodically
arranged SRRs that have been oriented planar on the substrates was investigated. The ob-
served SHG signal is expected to be much weaker, since only the electric field components
parallel to the substrate interface contribute to the multipole nonlinearity. These components
are typically included in the illumination as soon as a focussed illumination is applied, or the
illumination is slightly tilted. Thus, the reported conversion efficiency of |Ey,|?/|E,|? &~ 1071
[FLK™08] is not contradicting with the results presented in this section. The single layer con-
version efficiency for the SRR metamaterial investigated herein is ~ 107, For an experimen-
tal proof and in order to further increase the measured SHG signal arising from second-order
multipoles, an upright orientation of SRRs would be required. But in contrast to the planar
orientation, the upright arrangement is a much more challenging task from the viewpoint of
sample fabrication.

Summarizing this section, the linear response of metamaterials has been extended toward
quadratic nonlinear optical effects. Most importantly, the appearance of second-order multi-
poles, being an essential ingredient in metamaterials, coincides with an additional nonlinear
source. Thereby, the nonlinear optical properties are fully determined by the linear optical
response. In the following section the nonlinear source term will be discussed in the framework
of different existing and recently reported approaches applied for nonlinear studies involving

metamaterials.

4.2.2 Comparison with other nonlinear approaches

As one of the most important references, N. Bloembergen the pioneer in nonlinear optics,
mentioned the quadrupolar nonlinearity in his seminal work in 1965 [Blo65]. In this work
Bloembergen considered the enhanced second harmonic signal observed by Terhune et al.
[TMS62| who applied an additional electric DC (direct current) field to a calcite crystal with
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inversion symmetry. The result of this additional field is a symmetry breaking which enhances
quadratic nonlinear effects. These effects have been interpreted by a nonlinear effect that is
induced by an additional quadrupole moment caused by the DC field. Moreover, Bloembergen
mentioned in his book when writing down the averaged current density:

... The volume averaged current density is usually expanded into a multipole series after the

part due to convection currents has been splitt off

J:Jcond+%P+cV XM—%(V-Q)+..., (CGS units), (4.76)

... It is, nevertheless, a useful expansion if the volume can be divided into unit cells for which
these moments can be calculated as successive approximations to J. They all may contain
nonlinear parts besides the linear parts..H

Eq. is very similar to Eq. derived in section , but additionally with the
electric dipole and quadrupole tensor considered in the current density as well. Since, the
multipole moments can be either considered within the averaged current density or the electric
displacement, as it has been described in section [2.1.1] this formulation is equivalent to the
one applied in this work. Thus, it is indeed expected that as soon as second-order multipoles
emerge, an additional quadratic nonlinear source term appears.

Finally, Bloembergen found that the quadrupole nonlinearity results in a nonlinear source

term for the second harmonic according to [Blo65]

Ja(2w) = 2iw Y Vi Xioma Bi(w) Bi(w). (4.77)

klm

For a particular orientation, certain properties of the second-order nonlinear susceptibility

tensor, and for linearly polarized light Eq.(4.77)) can be simplified to

Jn(2w) = inxgg@w;w,w)z%ZEl(w)Ek(w), (4.78)
Jo(2w) = ¢QW;w,W§y{Ex(w)1 . (4.79)

Thus, for this particular case, the quadrupole source term exactly corresponds to the non-
linear source term in Eq.. Hence, the multipole nonlinearity considered for the case of
metamaterials in section |4.2.1| coincides with the one proposed by Bloembergen, as expected.

After recalling these historical issues an alternative procedure that has been recently applied
to account for quadratic nonlinear effects in metamaterials will be compared to the multipole
nonlinearity. This method is based on the hydrodynamic theory of electrons [FLK™ 08, |ZHL™09]
as it is typically applied in plasma physics [Fre07|. Taking into account both the electric
and the magnetic field interactions in the Lorenz force and taking into account a more

sophisticated oscillator ansatz as it is described in [ZHLT09] yields the second order nonlinear

15In this section all cited equations have been written as they have been originally published for consistency.
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source term

0 9 €p€ e > 0 Jw<Jw)l
EJQW = Gowplng — wcongw (V E ) EJW X Bw + Z 8_7"17 (480)

Besides the first two linear terms in Eq. there are three nonlinear source terms. The
third and the fourth™ term account for the nonlinear contributions of the Lorenz force for
the selected ansatz, while the last expression accounts for the convective contribution. This
contribution is the result of local changes of electron momentum being induced by the external
electric fields [FLKT08|. Feth et al. investigated the effect of all these nonlinear contributions
in nonlinear FDTD simulations, where they found that this last nonlinear source term is
dominating over all others in Eq.(4.80) [FLKT08].
In the following the last term in Eq. will be considered in detail

3
0 J
Za_

=3

en (4.81)

As it has been shown in the numerical simulations of the SRR in Fig}.6|C), the SRR comprises

currents in z- and y-direction, induced by an external electric field polarized in x-direction.

Thus, one can substitute (J,,), x (E,), and (J,), < (E,), in Eq.(4.81)) which results in

(Jo)y Z { ]2 (4.82)

=1

and which is again mathematically equivalent to the nonlinear source term applied in Eq.
in the previous section. Hence, even though the nonlinear source terms predicted by the
hydrodynamic electron model are physically different from the multipolar induced nonlinear
effects, mathematically conform relations for the SHG could be obtained.

In conclusion, two methods have been shown to be consistent with the multipole nonlin-
earity, investigated in section Thereby, the multipole approach has been shown to be
conform with the quadrupolar nonlinearity predicted by Bloembergen. Secondly, the multipole
nonlinearity provides mathematically the same nonlinear source terms as predictions from a
hydrodynamic electron model that originates from a very different field of physics. Hence,
all derivations performed in this chapter are not contradicting the other methods. Thus, the
introduced formalism can be considered as an alternative way to understand and motivate
the extraordinary intrinsic nonlinear properties of metamaterials from the viewpoint of sim-
ple electrodynamic considerations. As a very exceptional property of such a description, all
nonlinear coefficients are directly accessible as soon as the linear response of the respective

metamaterial has been described by the multipole method as well.

16The curl operator in the fourth term in reference [FLKT08] is missing, but a correct version can be found
in the detailed derivation, published later on |[ZHL™09].
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4.3 Scattering patterns of isolated metamolecules

In this final chapter of part [ the microscopic properties of isolated metamolecules will be con-
sidered in the framework of the multipole expansion. In contrast to the previous two sections,
i.e., section [4.1 and where macroscopic ensemble properties such as effective parameters or
the dispersion relation have been determined, now the microscopic properties will be investi-
gated. For this purpose, the near-field patterns of the SRR and the CW metamolecules will be
investigated in this chapter. Thus, the near-fields of the respective metamolecule will be cal-
culated and decomposed into their multipolar contributions up to the second order in the first
section With this technique it is possible to identify and quantify the impact of a partic-
ular multipolar contribution in the near-field patterns of an arbitrary metamolecule. Thereby;,
the connection between Mie theory and the multipole expansion series will be revealed. Lastly,
in section the influence of the required origin for the multipole expansion will be inves-
tigated. For simplicity, all these results are presented in two dimensions, but in general the

introduced technique can be similarly extended toward three-dimensional metamolecules.

4.3.1 Multipole decomposition of the scattered field

Before the scattered fields of metamolecules will be decomposed into a combination of eigen-
functions of the free space, the general scattering properties of isolated two-dimensional objects
will be briefly discussed. For this reason, apparently the most important analytical method
in the field of nanoplasmonics, i.e., the Mie theory [Mie08] will be revisited. This method
is one of the few rigorous methods that allows analytical calculations to exactly describe the
light-matter interaction with particular types of scattering objects. Initially, the method has
been introduced for spheres, but can be similarly applied to two-dimensional cylindrical scat-
tering objects as well [BHS83|. As it will be shown, the method makes use of a particular
field expansion into a set of eigenfunctions. In the next step, it will be revealed how these
eigenfunctions relate to the scattered field of multipole moments. This will finally allow to
calculate the expansion coefficients that weight the impact of a particular eigenfunction, i.e.,
multipole expansion order. In the end, the introduced technique will be applied to calculate
these expansion coefficients not for cylinders, but for two-dimensional metamolecules.

For the two-dimensional case the general three dimensional wave equation, e.g. Eq.,
can be separated into two scalar equations for TE- and TM-polarization. Thus, for transla-

tional invariance in z-direction, the scalar wave equation in two dimensions can be found as

[JacT5|

2

ApyFolz,y) + B2 (W) F.(z,y) =0,  with k(W) = —. (4.83)

c2

In Eq.(4.83) F.(z,y) denotes the tangential component of either the electric field for TE
(electric component out of plane) or the magnetic field for TM (magnetic component out
of plane). For objects with cylindrical symmetry it is appropriate to transform Eq.(.83)
into cylindrical coordinates by substituting x = Rcos(¢) and y = Rsin(¢), with the radius
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R = /2?2 + y2. Thereby ¢ denotes the enclosed angle of the position vector with the z-axis.

The wave equation (4.83) including these substitutions yields

10 0
{R

on |FaFo)| + 4 |Ri R0 + #RR6) =0 (459

0¢?
The resulting wave equation (4.84]) corresponds to a Bessel-type differential equation, whose

linearly independent solutions can be found as

e}

F.R,¢)= Y Zn(kR)e ™. (4.85)
In Eq.(4.85)) the azimuthal part Z,,(kR) can be represented by combinations of Bessel func-
tions of the first kind [J,,,(kR)| and the second kind [Y;,,(kR]|, while the angular dependence
is described by an exponential function. Thus, any radiating field in a two-dimensional cylin-
drical basis that fulfills the Sommerfeld radiation condition [FMO03| at infinity can be written

as

o0

F.o(R,¢)= Y ani™H) (kR)e™™?, (4.86)

m=—00

with Hﬁ)(kR) = Jn(kR) +iY,,(kR) being the Hankel functions of the first kind and a,, the
expansion coefficients, termed Mie scattering coefficients of the respective expansion order m.
With Eq. any field outside a virtual cylinder that contains the entire scattering object
can be described. This is possible, since the summation is equivalent to a complete and
orthogonal set of eigenfunctions weighted by the expansion coefficients a,,. Additionally, the
scattered field in Eq. always consists of two parts, i.e., the contributions from m and
—m. Hence, the scattered field F,(R, ¢) can be rewritten as

oo

F.o(R¢) = Y [aff (R ¢ k) — anon (R, 6, k)] | (4.87)
VR, ¢, k) = imHWY(kR) cos(me), (4.88)
U (R, ¢, k) = ™ HD(R)sin(me), (4.89)
Gy = (am T am), (4.90)

taking advantage of the property H,(,P(kR) = (—1)mH£1721(k:R), Vm € 7 |AS72|. Now,
Eq. can be considered as a usual series expansion with respect to eigenfunctions of
increasing order. These eigenfunctions ¥ (R, ¢, k) are simply products of radially and az-
imuthally varying functions. Regarding the azimuthal terms it can be seen from Eq.
that they split into two contributions that are 7/2 phase-shifted indicated by the super-
scripts +. This is related to the fact that each expansion order is composed of two physically
identical but azimuthally rotated contributions of order m. For realistic metamolecules the

fundamental azimuthal part can be selected regarding the symmetries of the scattering ob-
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Figure 4.9: Evaluation of the eigenfunctions |1, (r, ¢, k)| for the first three orders, i.e., m € [0, 1, 2].
(A) The eigenfunction for m = 0, (B) for m = 1, and (C) for m = 2. The insets show the magnetic
field distribution |B,| for (A) the magnetic dipole moment, (B) electric dipole, and (C) the electric
quadrupole moment. All moments are oriented in the xy-plane, as shown in Fig[2:3] The dark spot
in the center of each plot is caused by the singularity of ,,(0, ¢, k) as well as the multipole moments
at the origin, see section @

ject; in general both linear independent contributions have to be considered for the respective
order m. Having arrived at the final expansion, i.e., Eq., the physics behind the under-
lying set of eigenfunctions has to be considered. As it may be deduced from Eqs.,
they are related to Hankel functions of the first kind. However, it will be shown that each
of these eigenfunctions can be assigned to a particular multipole order. To briefly motivate
this, the eigenfunctions 1/1({ 12(R, ¢, k) have been evaluated and compared with the tangential
magnetic fields B, (z,y) for the first- and second-order multipole moments in Fig. In order
to calculate the respective fields for the multipole moments, the formalism derived in section
has been applied, i.e., Egs.(2.58]2.672.74[2.78). For this comparison, primitive multi-
pole moments have been assumed that are located in the xy-plane. The magnetic moment,
see inset in FigA), can be associated to the eigenfunction of the order m = 0. Therefore,
the underlying magnetic dipole moment has been induced by a ring current in the xy-plane,
as it can be depicted from Fig[2.3]in section 2.1.2] For the computation of the electric dipole
moment, as shown in the inset of Fig(B), a dipole oriented in y-direction has been applied.

Finally, for the calculation of the electric quadrupole moment two oppositely directed electric
dipoles have been assumed, as shown in Fig2.3] The resulting magnetic fields are shown in
the inset of Fig(C), which can be furthermore assigned to the eigenfunction of the order
m = 2. In conclusion, an excellent qualitative agreement between the multipolar fields and
the eigenfunctions applied in the series expansion is obtainedﬂ.

In the following, it will be shown that the qualitative agreement between = (r, ¢, k) and
the multipolar fields can be obtained rigorously as well. For this task, the three-dimensional
multipolar fields have to be transformed into their two-dimensional representatives. Hence,

the analytically found three-dimensional field components will be integrated along the z-axis.

7In contrast to the ordinary multipole expansion series, the second-order multipole moments, i.e., the electric
quadrupole and magnetic dipole, are now discriminated by two different expansion orders (m = 1: magnetic
dipole, and m = 2: electric quadrupole) in the series (4.87).
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The vector potential for the electric dipole has been already derived in Eq.(2.67))

etk
Agp(r,w) = 57? r

The associated z-component of the magnetic field for an electric dipole moment in the zy-

plane, i.e., p = p,e, + pye,, can be calculated with

B(r,w) = V xA(r,w),
ikr

. Mo € . Y . T
Bpp,»(r,w) = W [py (zky - T—2> — Dz (zkx - ﬁ)] : (4.91)

The two-dimensional representation can be maintained by an integration along the z-axis of

Eq.(4.91)) which can be finally compared with Eq.(4.87) [PYM™10, [MP9S|

k
BR.(v.y.w) = whi= [cos(@)p, —sin(@)p,] H}" (kR) (4.92)
HY(kR) [ia} cos(¢) — i*ay sin(¢)], (4.93)
aj = —i%px, a; = —%py. (4.94)

Considering Eqs., the connection between the electric dipole moment and the eigen-
functions 1F (R, ¢, k) can be directly inferred. Thus, the electric dipole moments oriented along
the z- and y-direction are proportional to the expansion coefficients af and a;, respectively.
Strictly speaking, the expansion for m = 1 can be physically interpreted by a decom-
position into the fields of two electric dipole moments rotated by 90° (¢ = 7/2). Very similar,
this can be performed for the magnetic dipole (m = 0) and the electric quadrupole moment
(m = 2) as well. Upon such an analysis, each multipole order can be related to a certain
expansion coefficient o= [PYMT10].

Having explored the physical background of the expansion, the remaining task is to cal-
culate the expansion coefficients a® for arbitrary metamolecules. The knowledge about the
determined coefficients will directly allow to quantify the participating multipole moments.
As usual the expansion coefficients are calculated by evaluating the overlap integral between

the respective eigenstate and the field distribution under consideration

+
m

o7 do [ ARRE.(R, $)vs* (R, 6, k)
2T de [ dRRIVE(R, 6, k)2

(4.95)

With Eq. it is possible to rigorously calculate the expansion coefficients a for a given
field distribution F,(R, ¢) on an annulus with the two radii Ry and R;. Beneficial for any cal-
culations is the orthogonality of both the angular and the radial part of the overlap integration
(4.95). Hence, it is enough to perform the overlap integration for a ring, rather than for the

entire cross section. To prove the orthogonality, one can substitute F.(R, ¢) by a particular
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Figure 4.10: The illumination conditions, the orientation, and the definition of the geometrical
parameters of (A) the CW and (B) the SRR metamolecule. The calculated Mie expansion coefficients
(am), related to the magnetic dipole (MD), the electric dipole (ED) and the electric quadrupole (EQ)
for (C) the CW and (D) the SRR metamolecule. Finally, the scattered magnetic fields for (E) the
magnetic and (F) the electric resonance of the CW and the SRR in (G,H) are shown, respectively.
The gray-scaled insets show the exact multipole magnetic field distributions as in Fig[4.9]to underline
the similarities to the exact scattering field patterns.

eigenfunction of the order [, e.g., ¥, (R, ¢, k) according to Eq.(4.87)), which yieldﬂ

ST do [ dRRy; (R, ¢, k)6 (R, 6, k)
JZTdo [ dRR|E(R, ¢, k)2
(% dRRHM (R, k)HS (R, k)

Rq

JoTde [ ARRIW (R, ¢, k)2

gt /027T do [cos(lgp) cos(mp)] = O (4.96)

Thus, it is sufficient to evaluate the overlap integral at a fixed value of R rather than on
the annulus to obtain af. However, performing the integration on an annulus may be ad-
vantageous compared to the ring integration. The reason for this is that the numerical (or
experimental) data for F, (R, ¢) is typically given on a discrete mesh. In general, this mesh is
not aligned with the cylinder aligned around the scattering object and an appropriate inter-
polation may be required. Although a sufficiently fine grid improves the numerical stability

of the ring integration, this issue can be circumvented if the annulus integration is performed.

Lastly, the developed formalism to retrieve the multipolar contributions will be applied
for two metamolecules of interest, namely the CW and the SRR. The dimensions of both
metamolecules are given in Figld.10(A,B).

18Tn Eq.(4.96) the overlap integration has been performed for the "+" (cosine) case. The overlap between
the eigenfunctions @[Jfr and 1, yields an additional d4, due to the orthogonality of the sine and cosine
functions.
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Since LPP resonances in the metamolecules can only be excited for TM polarization the
magnetic fields B, (x,y), representing F. (R, ¢)have been calculated numerically with COMSOL
[COMI0]. Rather than determining the multipolar contributions in the scattering patterns
for a single frequency, the fields have been calculated over a frequency interval. This allows
to compare and to visualize the different multipole contributions that are selectively excited
for the characteristic resonance frequencies of LPP modes for the respective metamolecule, as
described in the previous chapters.

For the CW metamolecule two resonances are obtained, indicated by the two peaks in
Fig[d.10(C). The low-frequency resonance is dedicated to the magnetic, i.e., anti-symmetric,
mode while the high-frequency resonance stems from the excitation of the electric, i.e., sym-
metric, mode. As expected from section the anti-symmetric mode, indicated by the
facing currents in the inset of Fig[4.10|C), coincides with the excitation of second-order mul-
tipoles. Consequently, the respective expansion coefficients ay and as; are dominating over
the fundamental electric dipole moment (a;). In turn, the electric dipole moment has a clear
maximum for the symmetric resonance, while second order multipoles are almost vanishing.
A similar behavior can be observed for the SRR metamolecule in Fig[t. 10(D). In addition to
the CW structure, the SRR comprises a connecting wire in between. As it has been found in
section [4.2.1], this wire results in an electric dipole moment in propagation direction for the
anti-symmetric mode. Besides this additional electric dipole moment, the scattering response
for the anti-symmetric mode is dominated by second-order multipoles. A closer examination
shows that the electric quadrupole moment has an almost vanishing magnitude when com-
pared with the magnetic dipole moment. This is different to the CW metamolecule where both
the magnetic dipole moment and the electric quadrupole provide strong contributions. For
the symmetric mode, analogously to the CW metamolecule, the optical response is dictated
by the in-line excitation of the electric dipoles in the z-directed SRR arms.

In order to further illustrate the multipolar response of both metamolecules, the field pat-
terns of the CW and the SRR are presented for the magnetic and the electric resonance posi-
tions in Fig[4.10(E-H). The magnetic fields at the electric resonance for both metamolecules are
nicely described by the corresponding fields of an electric dipole, as shown in the gray-scaled
insets in Fig.(F,H), respectively. For the magnetic resonance, the fields of the CW meta-
molecule indicate a much stronger contribution from the electric quadrupole, see Fig.(A).
In turn, the SRR field distribution at the magnetic resonance seems to be dominated by the
fields of a magnetic dipole, see Fig(G), which is consistent with the interpretation of
Fig[d.10(C,D) from above.

In conclusion, a rigorous method has been presented to reveal the multipolar contributions
in the scattering patterns of arbitrary metamolecules. In contrast to the multipole prop-
erties of an ensemble of metamolecules, this method is useful to investigate isolated meta-
molecules. With the developed formalism one can immediately determine the electric and
magnetic properties of the isolated object. Hence, this method might be a suitable tool to
determine electromagnetic properties of isolated metamolecules and provide a tool to tune the

optical response of a metamolecule for a desired effect, e.g., to enhance the magnetic dipole
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moment, etc. In addition, the connection between Mie theory and the multipole approach has
been presented, where the multipole moments can be directly related to the eigensolutions of

the two-dimensional wave equation.

4.3.2 Origin dependence for the multipole expansion

In this final section, the dependence on the origin for the applied multipole expansion, pre-
sented in the previous section will be investigated. A general statement considering the
origin dependence has been given by R. E. Raab and O. L. de Lange: "...only the leading
non-vanishing electric multipole moment is independent of the origin..." [dLRO5|. As an illus-
tration for this property the electric quadrupole can be considered upon a spatial displacement

according to ¥ = r — d. Substituting this displacement into the molecular electric quadrupole

moment ([2.29) yields

Nbound
@m)as = 3 D @m[rsm) — domalrsm) — dom)]s
b(m)=1

Nbound

= 3 Z {qb (m)[Toem)lalroem)ls = Qoem) [roem))aldbim)ls = Qoem) [roem)]8[dbem) )

—I—qb(m) [db(m)]a [db(m)]ﬂ} [substituting Eqs. ‘ ]

= (@m)ap — 3[Pmlaldbom)ls — 3[pmlsldoim)la + 3@mldbon)laldbim)s- (4.97)

Hence, the electric quadrupole moment in Eq. is independent of the origin [(Qm)as =
(Qm)ag), if the total charge ¢, and the molecular electric dipole moment p,, are vanishing.
Thus, since all metamolecules investigated throughout this work are considered to be neutrally
charged, the total charge can be safely neglected, i.e., ¢, = 0. In turn, the electric dipole
moment has a strong contribution in all metamolecules and in particular in the metamaterials
investigated in the previous section  i.e., Figd. (C D). Consequently, the electric dipole
moment should be independent of the origin of the expansion. In order to prove this issue, the
center of the annulus for the overlap integration, i.e., Eq. has been varied. The only re-
striction for such a variation is that the annulus entirely contains the metamolecule. The center
positions of each annulus for the overlap integration with respect to the SRR metamolecule
are shown in Fig{l.11(A). As it can be depicted, both second order multipole moments, i.e.,
the magnetic dipole [Fig[4.11(B)| and the electric quadrupole moment [Fig[d.11(D)] are clearly
dependent on the choice of the origin. In turn, the electric dipole moment remains invariant
upon all manipulations on the origin position. It can be concluded that the electric dipole
moment is independent of the choice of the expansion origin and thus behaves as expected
from above.

With the performed analysis, an important property regarding the multipole expansion has

been revealed for the case of metamaterials, which concludes this chapter.
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Figure 4.11: (A) The three investigated center positions for the annulus relative to the SRR meta-
molecule under investigation. The retrieved expansion coefficients for (A) the magnetic dipole moment
(m = 0), (C) the electric dipole moment (m = 1), and (D) the electric quadrupole moment (m = 2).
As it can be depicted only the electric dipole, is inert against variations of the origin for the expansion
series, which corresponds to the expected behavior for the leading multipole moment.

In summary of part 4] the concept of the multipole properties, as it has been known and
widely applied for the case of electric dipole-type metamolecules, i.e., nanoantennas, etc., has
been extended toward the description of more complex metamolecules. Therefore, second-
order multipoles have been taken into account in order to describe effects such as optical
magnetism, effective material properties, multipole-induced nonlinearity, as well as scattering
properties of isolated metamolecules.

The major achievement in order to describe ensembles of metamolecules, i.e., metamaterials,
is that the complex currents in the metamolecules can be represented by an appropriate carrier
configuration. With such a procedure the multipole moments can be calculated and compared
with experimental or numerical accessible quantities. As an example, this has been firstly
performed for the CW metamolecule [PMCT08]. In the same manner the linear response of the
SRR metamaterial can be described, whereas the second-order multipole response inherently
induces quadratic nonlinear optical effects [PCTT09|. Thereby, the prediction of the nonlinear
response can be completely performed on the basis of the parameters known from the linear
material response, which is a first application of the method. A second possibility to apply
the parameters that have been found for a particular metamolecule is to perform substantial
geometrical modifications on the metamolecule. By considering these changes in the oscillator
models, the optical response of modified metamolecules can be predicted as well. Therefore,
modifications that change the character of the polarization eigenstates from linear to elliptical,
have been investigated, whereas the optical response could be successfully predicted [PCT*10].

Since up to this point only ensemble, i.e., averaged or macroscopic, properties have been in-
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vestigated, the microscopic response of isolated metamolecules has been the subject of the last
chapter of this part. Thereby, the role of multipolar excitations within the scattering patterns
of the metamolecules has been rigorously proven [PYMT™10]|. For this purpose metamolecules
have been considered that were investigated in ensemble arrangements before. With this pro-
posed method the individual strength of a certain multipole could be quantified, which verifies

and finally reveals the presence of multipolar excitations in the considered metamaterials.
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5 Summary and perspective

Summary

The major focus of this work was devoted to the investigation of first- and second-order mul-
tipolar excitations in metal nanostructures. Hence, the investigation of the complex optical
response of metal nanostructures that typically requires a three-dimensional, full-vectorial, nu-
merical description including the material dispersion was performed in terms of the multipole
expansion. Moreover, a microscopic model on the basis of coupled harmonic oscillators has
been introduced to treat the carrier dynamics in complex metal nanostructures. This proce-
dure is similar to the treatment of carriers and atoms in crystal lattices in solid state physics
by simply considering the mutual interplay in terms of coupled oscillators to determine the
dispersion relation of the lattice oscillations [Kit95]. This description allows for a simplified
but intuitive microscopic understanding of localized plasmon-polariton resonances in terms of
the oscillation eigenmodes of the coupled oscillator system. Upon excitation, the microscopic
dynamics can be translated into macroscopic quantities, such as the polarization, the magneti-
zation as well as the quadrupole density. Finally, this allows to describe the wave propagation
inside such materials in a very consistent manner since the role of microscopic excitations
can be directly related to the macroscopic response in terms of reflection and transmission
coefficients as well as the effective material properties or the dispersion relation.

The advantage of such a modeling is that the multipole expansion can be applied for this
carrier model. This allows for a physically thorough understanding and a simplification of the
modeling by analytical calculations. Thus, in this work it has been shown, how textbook elec-
trodynamics can be applied and modified to develop a qualitative and quantitative description
of nanostructures.

Consequently, this work started by revisiting the electrodynamic principles of the multipole
expansion as well as the rigorous numerical techniques that are required for an exact modeling.
The most important result of this part is the understanding of the role of multipolar excita-
tions in the transition from microscopic to macroscopic Maxwell’s equations. These initial
considerations allowed the application of the multipole expansion to describe metamaterials
as effective materials with properties that are determined by the multipolar contributions of
its intrinsic building blocks, i.e., the metamolecules. Secondly, it allowed to get a clear picture
of the near-field properties of isolated metamolecules. In the next two parts of this thesis,
both properties, i.e., the near-fields of isolated metamolecules as well as the effective mate-
rial properties of ensembles, have been successively investigated for particular metamolecules
exposing particular multipolar orders.

In the next part of this thesis, nanostructures exhibiting the first order, i.e., the electric
dipole, mode were investigated. These nanostructures, or similarly termed nanoantennas,
have been the result of a precise design with the aim to achieve several near-field enhanc-

ing features. For this purpose, arrays of rhomb-shaped nanoantennas have been developed
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that simultaneously exhibit an off-resonant enhancement due to the lightning rod effect and
a resonant enhancement due to the excitation of localized and propagating surface plasmon-
polaritons. The propagating surface plasmon-polaritons take explicit advantage of the periodic
arrangement and the dipolar properties of the isolated nanoantennas forming a metamaterial
in the electric dipole limit. A simple description on the basis of the dipolar response of the
nanoantennas and the transverse wavevector induced by the lattice allowed to describe the
spectral behavior of the localized and the propagating plasmon-polaritons in consistency with
the rigorous description. Moreover, experimental measurements of the far-field intensities of
the fabricated samples agreed well with the rigorous numerical simulations and verified the
theoretically predicted effects. Finally, the near-field enhancement of the doubly resonant
nanoantenna arrays has been applied to measure the scattered Raman signals of the adsorbed
crystal violet analyte. As a result, enhanced signals have been recorded due to the simulta-
neous presence of the resonant field enhancement at the excitation and the shifted Raman
frequency by the two before-mentioned plasmonic excitations. The enhancement provided by
the lightning rod effect could be measured on the basis on the polarization dependence of
the excitation of the plasmonic resonances. But as expected, it is much weaker than for the
resonant plasmon-polaritons. Furthermore, the polarization dependence of the Raman scat-
tering could be used to illustrate the underlying physics of the enhancement process, i.e., the
excitation of dipolar and localized surface plasmon-polaritons.

In the last part of this thesis, metamolecules possessing second-order multipole moments
have been considered. Firstly, an oscillator model has been developed for a simplified analyt-
ical description of the inner carrier dynamics of a particular metamolecule, i.e., the cut-wire
pairs. With the knowledge about these dynamics, the multipole moments associated with each
metamolecule could be calculated and transformed into macroscopic quantities, such as the
dispersion relation or the associated electric permittivity and magnetic permeability. For this
purpose, the multipole model could be used to reproduce the numerically obtained effective
parameters as well as the dispersion relation. Thus, the entire response could be described
by the excitation of first- and second-order multipoles. In the following the effects due to
a change in the polarization eigenstates from linear toward elliptical have been investigated
by the same approach. Therefore the reflection and transmission coefficients of the split-ring
resonator metamaterial have been described with the oscillator and multipole formalism. This
matamaterial has linearly polarized eigenstates and again the effective parameters as well
as the spectral reflection and transmission coefficients predicted numerically could be nicely
reproduced with the multipole model. Now, particular modifications on the metamolecule
were performed which led to a change in the polarization eigenstates from linear to ellipti-
cal. By simultaneously considering these changes in the oscillator model, it could be shown
that besides the spectral reflectance and transmittance the effective material tensors could be
predicted. With this step, it has been shown how the introduced model can be successfully
applied to describe and predict the optical properties of different metamolecules which is a
further application of the model beyond the possibility to use it as a parameter retrieval.

Furthermore, the split-ring resonator has been considered to investigate quadratic nonlinear
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effects, solely described by second-order multipoles. Such a multipole nonlinearity has been
mentioned already by Bloembergen, and could be simultaneously observed for metamaterials
in this work. A comparison between an alternative approach, i.e., the hydrodynamic electron
model, verified that the multipole nonlinearity produces exactly the same source terms. Very
interestingly, on the basis of the multipole model all nonlinear effects can be determined
as soon as the linear response of the investigated metamaterial is described. While up to
this point only the far-field properties of ensembles of metamolecules, exhibiting also second-
order moments, have been considered, the multipole properties of isolated metamolecules have
been investigated lastly. Therefore, the near-field patterns of the before-mentioned split-ring
resonator and the cut-wire metamolecules have been calculated numerically and afterwards
rigorously decomposed into their multipolar contributions. With this approach, the excitation
of first- and second-order multipoles could be rigorously proven. Furthermore, it could be
shown, how such an approach is conform with the Mzie theory, which is one of the most
important rigorous and exact methods to describe light matter interactions with particular
objects.

In conclusion, the role of multipolar excitations in metamaterials has been discussed. The
main intention was to develop a versatile analytical model to describe the desired meta-
molecules’ properties of interest. The major focus was to understand how microscopic optical
properties of isolated metamolecules translate into the optical properties of an ensemble, i.e., a
metamaterial. As the most important result of this thesis it could be shown that the multipole

expansion provides an excellent tool for this purpose.

Perspective

There are several important points raised by this work that might be subject of further re-
search. First, the transition and the investigation of bulk metamaterials beyond single layers of
metamolecules might be of interest [LLZG09, [KZS05|. For extended bulk metamaterials also
higher-order propagation modes can be important [MRGCT10| that might be described by the
multipole formalism as well. Thus, the multipole formalism with its underlying connection
between microscopic and macroscopic Maxwell’s equations could contribute to the homog-
enization procedure [ST10, MSI10| for metamaterials, being an important and fundamental
research topic.

Second, the coupling of metamolecules is an important topic, since it can be used to cre-
ate new optical properties by coupling two known metamolecules with an initially different
response [LCZG10, [PLGT10|. Therefore the coupling constant, introduced in this work could
be subject of a more thorough physical investigation. Additionally, this method of coupling
metamolecules might be a promising approach to describe a third-order multipolar response,
i.e., electric octupoles and magnetic quadrupoles. Up to now, the wave propagation in media
possessing such multipolar contributions has not been investigated.

Third, there is a strong development in the combination of metamaterials with gain ma-
terials [NFLT09, WPT™10, [PHSTIOb, XDKT10| and quantum dots [TPOT10, MRL™10]|, etc.
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[OSZ709|. Therefore, the multipole formalism to describe the properties of individual meta-
molecules as well as ensembles might be a valuable tool. In this context the interaction of
a quantum system, for example a three level system, with the carrier dynamics of a single
metamolecule might be a physically interesting topic. The entire carrier dynamics can then
be transformed into the multipole contribution to describe the macroscopic wave propagation
properties as well. Hence, the known physics of the interaction of discrete molecular energy
levels and electrodynamic multipoles can be extended for the case of metamaterials.

Lastly, there are systems that provide a resonant field confinement which is not based
on localized plasmon-polaritons. For such systems, the description by propagating surface
plasmon-polaritons might be much more appropriate. First examples of such arrangement
have been reported recently [PHS™10a| and might be an alternative approach to alter the
wave propagation in artificial materials.

Strongly connected to such kind of delocalized excitations is the double fishnet metama-
terial [ZEMT05, [ZFPT05] whose plasmonic mechanisms are still subject of ongoing research
IMRMMGV09|. The fishnet material consists of a metal film with periodically arranged rect-
angular voids . The entire fishnet metamaterial comprises two of such layers that are closely
spaced, similar to the cut-wire metamolecule. Due to the transverse conductive connection of
adjacent unit cells, the isolated unit cell can no longer be reduced to a confined structure as it
was the case for the metamolecules investigated in this work. For such structures the models
applied for the microscopic carrier dynamics have to be modified and it has to be checked if
a truncation of the multipole expansion up to the second order is sufficient to appropriately

describe the optical response.
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6 Zusammenfassung

Die vorliegende Arbeit beschéftigt sich mit der Wechselwirkung von Licht mit metallischen
Partikeln. Die charakteristischen Léngenskalen fiir die Partikelabmessungen liegen dabei im
Subwellenldngenbereich. Bei optischen Frequenzen ist dies gleichbedeutend mit typischen
Partikeldimensionen im Bereich von 10 bis wenigen 100 Nanometern. Eine Besonderheit bei
der Wechselwirkung von elektromagnetischer Strahlung mit derartigen Nanopartikeln ist die
Anregung von an der Oberfliche lokalisierten Plasmon-Polaritonen. Dabei handelt es sich
um einen Hybridzustand aus kollektiver Ladungstragerbewegung (Plasmon) und lokaler Feld-
verteilung (Polariton). Sowohl die Feldverteilung als auch die intrinsische Ladungstriagerdy-
namik solcher Anregungen lassen sich bei sehr kleinen Partikeln, wie etwa kleinen Metallkugeln
[BH83|, mit der Anregung eines induzierten elektrischen Dipols beschreiben [BAAOS].

Ein wesentliches Ziel dieser Dissertation bestand darin, Effekte der elektrischen Dipol-
anregung in metallischen Nanopartikeln zu untersuchen. In Teil [3| dieser Arbeit wurden
zwei definierende Eigenschaften dipolartiger Nanostrukturen erforscht. Zum einen ist dies
die Verstarkung des elektromagnetischen Lokalfeldes in der Umgebung des Nanopartikels und
zum anderen die Moglichkeit, mit Ensembles von Nanostrukturen ein effektives Medium,
ein sogenanntes Metamaterial, mit einer gezielt manipulierbaren elektrischen Permittivitat
zu realisieren. Die Permittivitdt wird dabei allein durch die makroskopische Polarisation
aller mikroskopischen Dipolmomente bestimmt. Besonders die Ensembleanordnung im Git-
ter mit hohem Fiillfaktor war hierbei bedeutend, denn diese erméglichte die Anregung von
propagierenden Oberflaichen-Plasmon-Polaritonen. Dabei war die Gitteranordnung essentiell,
da diese die notwendige Existenzbedingung in Form des transversalen Gittervektors bereit
stellte. Beide plasmonischen Effekte konnten im Rahmen einer ausfiihrlichen Untersuchung
sowohl theoretisch anhand von rigorosen Rechnungen und analytischen Modellen als auch
experimentell durch Transmissionsmessungen im Fernfeld beobachtet und zugeordnet wer-
den. Zuletzt wurden beide plasmonischen Effekte angewandt, um Nanopartikel-Substrate
zu etablieren, die mit zwei getrennt voneinander kontrollierbaren plasmonischen Anregung-
en spezifisch auf die Anforderungen der oberflichenverstirkte Ramanstreuung zugeschnit-
ten wurden. Es konnte gezeigt werden, dass beide Effekte, die Anregung der elektrischen
Dipolmode, also des lokalisierten Oberflachenplasmon-Polaritons, als auch die des propagieren-
den Plasmon-Polaritons in einer Verstarkung der Ramanstreuung des Analytes Kristallviolett
resultieren.

In Teil |4 dieser Arbeit wurde eine weitere Klasse von Nanopartikeln untersucht, deren
Beschreibung die Beriicksichtigung héherer Momente erforderlich macht. Diese ermoglicht
neben der Beeinflussung der effektiven elektrischen Permittivitét auch eine magnetische Wech-
selwirkung. Derartige Strukturen wurden erstmals 1999 von J. B. Pendry eingefiihrt [PHRS99).
Seit dieser Pionierarbeit wurde eine Vielzahl von verschiedenen Nanostrukturen untersucht,
welche den Zugang zu vollig neuartigen Propagationseigenschaften im daraus aufgebauten

Metamaterial zugénglich machten. Grundlegend bei den in diesem Teil der Arbeit durchge-

II



fithrten Untersuchungen war die Einfiihrung eines mikroskopisches Modellsystems welches die
real vorkommenden komplexen Ladungstriagerbewegungen beriicksichtigt. In dieser Arbeit
wurde ein System bestehend aus gekoppelten Oszillatoren zu Grunde gelegt, um die feldin-
duzierte Ladungstragerdynamik in der Nanostruktur zu modellieren.

Diese Art der mikroskopischen Beschreibung wurde bereits fiir die Beschreibung der Nano-
strukturen im elektrischen Dipollimit benutzt. In dquivalenter Weise wird diese Art der Model-
lierung auch verwendet, um natiirlich vorkommende Materialien, aufgebaut aus realen Atomen,
bzw. Molekiilen, zu beschreiben. Besonders in der festkorpertheoretischen Beschreibung von
atomaren Gittern werden als eine erste Naherung oftmals Systeme von gekoppelten Oszilla-
toren verwendet, um die Ensembleeigenschaften des gesamten Gitters zu bestimmen.

Basierend auf der Kenntnis dieser mikroskopischen Ladungsbewegungen in den untersuchten
Nanostrukturen war es moglich die Multipolentwicklung anzuwenden, und dabei die mikros-
kopischen Eigenschaften der Nanostruktur in makroskopische Ensembleeigenschaften zu iiber-
fiihren. Auf der Basis dieser Methode wurden in der vorliegenden Arbeit verschiedene Nano-
strukturen behandelt. Als erstes wurde die Cut-Wire Struktur [SZO01, ISCCT05, DEW™05]
erforscht, um die effektiven Propagationseigenschaften im zugehorigen Metamaterial zu be-
stimmen. Dabei wurden die im Modellsystem unbekannten Oszillatorparameter durch den
Vergleich der Dispersionsrelationen aus dem Modell mit denen rigoroser Rechnungen ermittelt.
Die zweite untersuchte Struktur war der sogenannte Split-Ring Resonator [LEW™04|. Es konn-
te auch hier gezeigt werden, dass die effektiven Materialparameter sowie die Reflexions- und
Transmissionskoeffizienten an einem Film solcher Strukturen sehr gut durch das eingefiihrte
Modell beschrieben werden kénnen. In weiteren Untersuchungen konnte gezeigt werden, dass
mit den einmal bestimmten Modellparametern auch Vorhersagen iiber die optische Response
von Strukturen gemacht werden kénnen, die Verdnderungen in ihrer Geometrie erfahren haben.
Selbst bei Modifikationen, die eine Anderung der Polarisationseigenzusténde von linearer zu
elliptischer Polarisation hervorrufen, konnten die Reflexions- und Transmissionskoeffizienten
fiir die parallel und die kreuzpolarisierten Komponenten vorhergesagt werden.

Ein weiterer wichtiger Punkt stellte die Untersuchung nichtlinearer Effekte in Metamat-
erialien dar. Dabei wurden Nichtlinearitdten betrachtet, die einzig durch die Geometrie der
beleuchteten Nanostrukturen induziert werden. Diese strukturelle Nichtlinearitat wird einzig
durch spezielle intrinsische Ladungstragerbewegungen induziert, anders als nichtlineare Ef-
fekte, die etwa durch die Anwesenheit eines nichtlinearen Kristalls hervorgerufen werden kon-
nen. Solche intrinsischen Nichtlinearitdten konnen mit Multipolmomenten zweiter Ordnung
erfasst werden. Basierend auf diesem Verfahren konnte gezeigt werden, dass diese Beschrei-
bung zu den gleichen Quelltermen fiihrt, wie sie auch bei einer Methode vorkommen, die als
hydrodynamisches Plasmamodell [FLKT08, ZHLT09] bezeichnet wird. Als besonderer Vorteil
einer solchen Modellierung ist zu erwéhnen, dass alle nichtlinearen Koeffizienten bereits aus
den linearen Metamaterialeigenschaften folgen.

Den letzten Punkt der Arbeit bilden die Nahfeldeigenschaften einzelner Nanostrukturen.
Bis zu diesem Zeitpunkt wurden stets makroskopische Propagationseigenschaften in Metamat-

erialien im Rahmen der Multipolmethode untersucht. Dabei wurde zwar implizit angenommen,
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dass sich jede Nanostruktur des Metamaterials durch Multipolmomente beschreiben lasst, un-
tersucht wurde jedoch immer nur die optische Response des Ensembles. Im letzten Punkt
dieser Arbeit wurden auch die Strahlungseigenschaften einzelner Strukturen in Multipolmo-
mente zerlegt. Diese Zerlegung der rigoros ermittelten Nahfelder konnte benutzt werden, um
die Multipolmomente erster und zweiter Ordnung anhand der Feldverteilung in unmittelbarer
Umgebung um die jeweilige Struktur eindeutig nachzuweisen. Dieser Schritt vervollstandigt
somit diese Arbeit, in dem gezeigt werden konnte, dass auch auf mikroskopischer Ebene Mul-
tipolmomente erster und zweiter Ordnung zur Beschreibung der optischen Eigenschaften von
Nanostrukturen verwendet werden konnen.

Zusammenfassend konnte gezeigt werden, dass mit der Multipolentwicklung bis zur zweiten
Ordnung sowohl die mikroskopischen als auch die makroskopischen optischen Eigenschaften
von Metamaterialien in konsistenter Form beschrieben werden kénnen. Zu Grunde liegt der
dabei eingesetzten und sehr allgemeinen Methode ein spezielles mikroskopisches Modell zur
Beschreibung der Ladungstréagerdynamik in der Struktur. In dieser Arbeit wurde dafiir ein
System gekoppelter Oszillatoren eingesetzt, welches allerdings auch durch andere Modelle
oder Methoden ersetzt werden kann. Diese einfachen Annahmen reichten jedoch aus, um eine
qualitative und quantitative Beschreibung der komplizierten Licht-Materie Wechselwirkung
in den untersuchten Metamaterialien zu erhalten. Diese Art der Modellierung bestehend aus
mikroskopischer Ladungstragerbeschreibung und anschlieffender Multipolentwicklung ist ein
wesentliches Resultat dieser Arbeit. Fiir die Erforschung der Metamaterialien stellt diese
Methode ein physikalisches, analytisches und methodisch intuitives Werkzeug dar, um auch

komplexere Strukturen verstehen oder gezielt entwerfen zu koénnen.
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From a long view of the history of mankind - seen from, say, ten thousand years from now,
there can be little doubt that the most significant event of the 19th century will be judged as

Maxwell’s discovery of the laws of electrodynamics.

R. P. Feynman, The Feynman Lectures on Physics, Vol. II, 1964.
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