VARIABILITÄT DER PLEJADENSTERNE

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

FRIEDRICH-SCHILLER-UNIVERSITÄT JENA PHYSIKALISCH-ASTRONOMISCHE FAKULTÄT ASTROPHYSIKALISCHES INSTITUT UND UNIVERSITÄTS-STERNWARTE

von Dipl.-Phys. Mohammad Ahmad Moualla geboren am 24. 09. 1978 in Lattakia, Syrien

Gutachter

- 1. Prof. Dr. Ralph Neuhäuser (AIU, FSU Jena, Deutschland)
- 2. Prof. Dr. Rolph Chini (AIRUB Bochum, Deutschland)
- 3. Prof. Dr. Nikolaus Vogt (DFA, Universidad de Valparaíso, Chile)

Tag der Disputation: 22.06.2011

Inhaltsverzeichnis

1	Ein	leitung	1
2	Gru	ındlagen	3
	2.1	Veränderliche Sterne	3
		2.1.1 Pulsationsveränderliche Sterne	4
		2.1.2 Eruptive veränderliche Sterne	6
		2.1.3 Rotationsveränderliche	7
		2.1.4 Bedeckungsveränderliche	8
		2.1.4.1 EA- oder Algol-Sterne	9
		2.1.4.2 EB- oder β Lyrae-Sterne	10
		2.1.4.3 EW- oder W Ursae-Maioris-Sterne (W UMa-Sterne)	10
	2.2	Offene Sternhaufen	11
		2.2.1 Der Plejadenhaufen	11
		2.2.2 Die Plejaden in Farb-Helligkeits-Diagramm (FHD)	12
3	Bec	bachtung und Datenreduktion	15
	3.1	Beobachtungsstation Großschwabhausen (GSH)	15
	3.2	CCD-Detektoren	17
		3.2.1 CCD-Typen	18
		3.2.1.1 Surface channel und buried channel CCDs	18
		3.2.1.2 Beleuchtung: Front-side Illuminated und Back-side Illumi-	
		nated CCDs	19
		3.2.2 Charakterisierung von CCDs	19
	3.3	Ziele der Arbeit	20
	3.4	Beobachtungen in Großschwabhausen	21
	3.5	Datenreduktion in der Theorie	25
	3.6	Datenreduktion mit MIDAS	26
4	Dat	enauswertung und Datenanalyse	29
	4.1	Photometrie	29
	4.2	Differentielle Photometrie	30^{-5}
	4.3	Source Detection mit GAIA	31
	44	Apertur-Photometrie mit MIDAS	33
	4.5	Relative Photometrie	35
	4.6	Plot-Stars Programm	36
	4.7	Photometrische Genauigkeit	37
	4 8	Periodensuche	38
	1.0	4.8.1 Bestimmung über Minimazeiten	<u>39</u>

		4.8.2	Methode der kürzesten Stringlänge (engl. Stringlength, SL)	. 39
5	5 Ergebnisse 42			
	5.1	Bekan	nte Sterne im Plejadenfeld	42
	5.2	Das P	leiadenfeld im Farb-Helligkeits-Diagramm	. 50
	5.3	Neu g	efundene Veränderliche in dem Plejadenfeld	. 52
		5.3.1	Bedeckungsveränderliche	54
			5.3.1.1 $V_1 = 2MASS J03402625 + 2527220 \dots \dots \dots \dots \dots \dots$	54
			5.3.1.2 $V2 = 2MASS J03404311 + 2529397 \dots \dots \dots \dots \dots$. 59
			5.3.1.3 $V3 = 2MASS J03402986 + 2547099 \dots \dots \dots \dots \dots$	62
			5.3.1.4 $V4 = 2MASS J03411089 + 2556396 \dots \dots \dots \dots \dots$	65
		5.3.2	Pulsations- oder Rotationsveränderliche	. 68
			5.3.2.1 $V5 = 2MASS J03391116 + 2522064 \dots \dots \dots \dots \dots$. 68
			5.3.2.2 $V6 = 2MASS J03424676 + 2529504 \dots \dots \dots \dots \dots \dots$. 72
			5.3.2.3 $V7 = 2MASS J03423948 + 2529448 \dots \dots \dots \dots \dots$. 76
			5.3.2.4 $V8 = 2MASS J03421308 + 2556439 \dots$. 79
			5.3.2.5 $V9 = 2MASS J0303390375 + 2543121 \dots \dots \dots \dots$. 82
		5.3.3	Flare-Sterne	. 85
6	Zus	amme	nfassung	93
۸	Dro	aromn		96
A		momo	$p^{0} nra$	96
	A 2	nlot-st	tars-a	. 90 99
	A 3	Riassi	uh	105
	A.4	spekty	p aus $BVRIJHK.py$	109
Б	т• 1	41		110
в			en	113
	B.I	Lichtk	curven des Sterns VI	113
	B.2	Lichtk	$\begin{array}{cccc} \text{curven des Sterns V2} & \dots \\ & & & &$	120
	B.3		Rurven des Sterns Vo	123
	В.4 D г		Rurven des Sterns Vo	1.10
	B.0	LICHUK	$\begin{array}{cccc} \text{curven des Sterns V} & \ddots & $	140
	B.0		Rurven des Sterns V8	150
	В.(Lichtk	curven des Sterns V9	. 155
С	Pho	otomet	rie aller untersuchten Feldobjekte	160
Li	terat	ur		179
\mathbf{D}_{i}	anks	agung		184
Le	bens	slauf		186

Abbildungsverzeichnis

$2.1 \\ 2.2$	Positionen der wichtigsten Typen Veränderlicher im HRD (Unsöld und Baschek 2009) Darstellung der periodischen Änderung bei einem δ Cephei-Stern. Die Änderung der Helligkeit (a) der Temperatur (b) des Spektraltyps (c) der Badialgeschwindigkeit (d)	4
	des Radius (e) und der Sternscheibe (f) sind dargestellt (Unsöld und Baschek 2009)	6
2.3	Ein kataklysmisches Doppelsternsystem mit einem massearmen Begleiter (ein weißer	7
24	Zwerg) (Unsold und Baschek 2009)	(8
2.4	Schematische Darstellung der Äquipotentialflächen in einem Doppelsystem mit M_1 und $M_2 = 0.5 M_1$. L1 steht für den inneren Lagrange-Punkt und SP für den gemeinsamen	0
	Schwerpunkt. Die dicke Linie bezeichnet die kritische Roche-Fläche (Weigert u. a. 2009).	9
2.6	Typische Lichtkurven der drei Typen von Bedeckungsveränderlichen; Oben: Algol-Stern (getrenntes System), Mitte: β Lyrae-Stern (halbgetrenntes System), Unten: W Ursae Meiorig Stern (Kontolegustem), a staht fün den Strehlungsstapp und B fün die Beriede	
	(Weigert u. a. 2005)	10
2.7	Hellste Sterne des Pleiadenhaufens.	11
2.8	Offene Sternhaufen im FHD (Unsöld und Baschek 2009)	12
2.9	Ein $(M_{bol}, logT_e)$ Diagramm mit den Isochronen. Jede Isochrone ist logarithmisch ge-	
	kennzeichnet mit einem Alterswert (Patenaude 1978).	13
3.1	Die verwendeten Teleskope in der Sternwarte GSH. Das Linsenteleskop bzw. Refraktor	
	befindet sich rechts vom Haupttubus, das Spiegelteleskop links	16
3.2	Auslesevorgang bei einem CCD-Chip (Howell 2006)	18
3.3	Plejadenfeld aufgenommen in GSH mit der STK (52.8 x52.8) im R-Filter mit 90s Be-	0.1
9.4	lichtungszeit. Norden ist oben und Osten ist links.	21
3.4	Das untersuchte Plejadenfeld (rechts oben) innerhalb des Plejadenhaufens (Zapatero Osorio u. a. 1999).	22
4.1	Eine Messapertur mit ihren drei Kreisen um einen Stern	30
4.2	Eine Darstellung der Objektdetektion	31
4.3	Ein Diagramm mit Deblending eines gemischten Objektes.	32
4.4	GAIA-Tabelle der detektierten Objekte im Feld	33
4.5	Eine MIDAS-Tabelle einer Feld-Aufnahme.	34
4.6	Der Ablauf des künstlichen-Vergleichsstern-Programms (Broeg u. a. 2005)	35
4.7	Die Ausgabe des Programms ohne die aussortierten Sterne. Die 5 Objekte könnten bei	
	Betrachtung der Wichtung (weights) variable Sterne sein	36
4.8	Lichtkurve eines Bedeckungsveränderlichen Sterns im Plejadenfeld, aufgenommen am	
	21. 09. 2009 mit der STK-CCD mit 60s Belichtungszeit.	37

ABBILDUNGSVERZEICHNIS

4.9	Photometrische Genauigkeit der Nacht (10.10.2010) mit der STK links, und der Nacht (04.01.2010) mit der CTKII rechts. STK erreicht ± 100 milli-mag rms bis R = 17 mag,	07
4.10	CTK-II \pm 100 milli-mag rms bis R = 16 mag	37
4.11	Ausgabe des <i>Stringlenth</i> -Programms auf dem Bildschirm.	41
5.1 5.2	Farb-Helligkeits-Diagramm von den Plejaden- und Feldsternen mit Isochronen aus Siess u. a. (2000), noch nicht auf Extinktion korrigiert. Die wenige Außreißer, Plejaden deutlich über oder unter der Hauptreihe, sind solche Sterne, bei denen R und I weder nur von uns noch gleichzeitig gemessen wurden. Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt	50
	terne dargestellt.	51
5.3	Position des Bedeckungsveränderlichen V1 im Plejadenfeld	54
5.4	Phasengefaltete Lichtkurve (mit R-Band Daten) des Sterns V1	57
5.5	Der Bedeckungsveränderliche V2 im Plejadenfeld.	59
5.6	Phasengefaltete Lichtkurve (mit R-Band Daten) des Sterns V2	60
5.7	Der Bedeckungsveränderliche V3 im Plejadenfeld	62
5.8	Lichtkurve des eventuellen Bedeckungsveränderlichen V3. Aufgenommen am 20. 09. 2010	60
F 0	mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit	63
5.9	Lichtkurve des eventuellen Bedeckungsveränderlichen V3. Aufgenommen am 21. 10. 2010	60
F 10	mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.	63
5.10	Lichtkurve des eventuellen Bedeckungsveränderlichen V3. Aufgenommen am 28. 10. 2010	
~	mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit	64
5.11	Der eventuelle Bedeckungsveränderliche V4 im Plejadenfeld	65
5.12	Lichtkurve aus der Nacht 30. 10. 2009 mit der ersten gefundenen Bedeckung des Sterns	
F 10	V4. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit	66
5.13	Lichtkurve aus der Nacht 21. 10. 2010 mit der zweiten gefundenen Bedeckung des Sterns	.
- 14	V4. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit	67
5.14	Position des Veränderlichen V5 im Plejadenfeld	68
5.15	Phasengefaltete Lichtkurve (R-Band Daten) des Sterns V5	69 79
5.10	Position des Sterns V6 im Plejadenfeld.	72
5.17	Phasengefaltete Lichtkurve des Sterns V6 im Plejadenfeld	73
5.18	Position des Sterns V7 im Plejadenfeld.	76
5.19	Phasengetaltete Lichtkurve des Sterns V7	77
5.20	Der Stern V8 im Plejadenfeld.	79
5.21	Phasengetaltete Lichtkurve des Sterns V8	80
5.22	Der Stern V9 im Plejadenfeld.	82
5.23	Phasengetaltete Lichtkurve des Sterns V9 im R-Filter.	83
5.24	Lichtkurven zweier Flares von UV Ceti-Sternen. Links ist Typ I, rechts ist Typ II mit	
	einem sogenannten Vorlaufer, etwa drei Minuten vor dem Ausbruch (Hoffmeister u. a.	05
E OF	$1984). \dots \dots$	85 07
0.25	Die Lage des Flare-Sterns V10a oder V10b im Plejadenhaufen.	81

- 5.26 Ein Zoom im Gesichtsfeld der STK (links) zeigt, dass unser Flare-Stern eines von zwei unaufgelösten Objekten ist. Aufgenommen im R-Filter mit 90s Belichtungszeit. Norden ist oben und Osten ist links. Rechts sind beide Objekte in einem 2MASS Bild, aufgenommen im Ks-Filter (Skrutskie et al. 2006), aufgelöst zu sehen. Norden ist oben und Osten ist links. Die Nummerierung der beiden Objekte ist wie in Tabelle 5.15. 87 5.27 Lichtkurve des Flare-Sterns aus der Nacht vom 21. auf den 22. 09. 2010, aufgenommen 88 mit der STK-CCD in GSH im R-Filter und mit 90s Belichtungszeit. 5.28 Ein Farb-Helligkeits-Diagramm (Korrigiert auf die Extinktion) der bekannten Plejadenmitglieder in dem untersuchten Plejadenfeld. Dargestellt sind bekannte Plejadenmitglieder mit roten Diamanten, fünf Isochrochen mit fünf verschiedenen Alter aus Siess u.a. (2000), korrigiert auf die Entfernung der Plejadensterne und unsere zwei Sterne (grün Asterisks). Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt. 915.29 Ein Farb-Helligkeits-Diagramm (Korrigiert auf die Extinktion) der bekannten Plejadenmitglieder in dem untersuchten Plejadenfeld. die JHK-Helligkeiten der bekannten Plejadenmitglider (rote Diamanten) wurden aus dem 2MASS Katalog (Cutri u. a. 2003)
- entnommen. Die JHK-Helligkeiten für HHJ 2, HHJ 6, PPl 15, Teide 1, Calar 3 und die J-Magnitude für HHJ 3 wurden aus Zapatero Osorio u. a. (1997) entnommen, HK-Helligkeiten für HHJ 3 wurden aus Steele u. a. (1993) entnommen. Isochronen sind wie in Abbildung 5.28. Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt. 91

B.1	Lichtkurve aus der Nacht 21. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
	und mit 60s Belichtungszeit.	113
B.2	Lichtkurve aus der Nacht 20. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
	und mit 60s Belichtungszeit.	114
B.3	Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
	und mit 60s Belichtungszeit.	114
B.4	Lichtkurve aus der Nacht 14. 11. 2009. Aufgenommen mit der CTK-Kamera im R-Filter	
	und mit 180s Belichtungszeit	115
B.5	Lichtkurve aus der Nacht 19. 11. 2009. Aufgenommen mit der CTK-Kamera im R-Filter	
	und mit 180 s Belichtungszeit	115
B.6	Lichtkurve aus der Nacht 05. 01. 2010. Aufgenommen mit der CTK-Kamera im R-Filter	
	und mit 180 s Belichtungszeit	116
B.7	Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
	und mit 60s Belichtungszeit.	116
B.8	Lichtkurve aus der Nacht 13. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
	und mit 90 s Belichtungszeit.	117
B.9	Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
_	und mit 90 s Belichtungszeit.	117
B.10	Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
_	und mit 90 s Belichtungszeit.	118
B.11	Lichtkurve aus der Nacht 10. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
D 4 6	und mit 90 s Belichtungszeit.	118
B.12	Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	440
D 10	und mit 90 s Belichtungszeit.	119
B.13	Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter	100
DA	und mit 60 s Belichtungszeit.	120
B.14	Lichtkurve aus der Nacht 03. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter	100
	und mit 60s Belichtungszeit.	120

B.15 Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 121
B.16 Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 121
B.17 Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 122
B.18 Lichtkurve aus der Nacht 19. 11. 2009. Aufgenommen mit der CTK-Kamera im R-Filter	
und mit 180s Belichtungszeit.	. 123
B.19 Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 123
B.20 Lichtkurve aus der Nacht 13. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 124
B.21 Lichtkurve aus der Nacht 15. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 124
B.22 Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 125
B.23 Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 125
B.24 Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 126
B.25 Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 126
B.26 Lichtkurve aus der Nacht 08. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 127
B.27 Lichtkurve aus der Nacht 13. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 127
B.28 Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 128
B.29 Lichtkurve aus der Nacht 20. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 128
B.30Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 129
B.31 Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit	. 129
B.32 Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit	. 130
B.33 Lichtkurve aus der Nacht 19. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 131
B.34 Lichtkurve aus der Nacht 21. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 131
B.35 Lichtkurve aus der Nacht 24. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit	. 132
B.36Lichtkurve aus der Nacht 19. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 132
B.37Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit	. 133
B.38Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 133

B.39 Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	134
B.40 Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	134
B.41 Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	135
B.42 Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	135
B.43 Lichtkurve aus der Nacht 23. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	136
B.44 Lichtkurve aus der Nacht 08. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	136
B.45 Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	137
B.46 Lichtkurve aus der Nacht 20. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	137
B.47 Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	138
B.48 Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	138
B.49 Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 139
B.50 Lichtkurve aus der Nacht 18. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 140
B.51 Lichtkurve aus der Nacht 19. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 140
B.52 Lichtkurve aus der Nacht 21. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 141
B.53 Lichtkurve aus der Nacht 24. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	. 141
B.54 Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	142
B.55 Lichtkurve aus der Nacht 04. 12. 2009. Aufgenommen mit der CTK-Kamera im R-Filter	
und mit 180s Belichtungszeit	142
B.56 Lichtkurve aus der Nacht 16. 02. 2009. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 60s Belichtungszeit.	143
B.57 Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 143
B.58 Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit.	. 144
B.59 Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit. \ldots	144
B.60 Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90 s Belichtungszeit	145
B.61 Lichtkurve aus der Nacht 23. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90s Belichtungszeit. \ldots	145
B.62 Lichtkurve aus der Nacht 08. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter	
und mit 90 s Belichtungszeit.	146

B.63 Lichtkurve aus der Nacht 13. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit	146
B.64 Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit	147
B.65 Lichtkurve aus der Nacht 20. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	147
B.66 Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	148
B.67 Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	148
B 68 Lichtkurve aus der Nacht 28 10 2010 Aufgenommen mit der STK-Kamera im B-Fil	ter
und mit 90's Belichtungszeit	149
B 69 Lichtkurve aus der Nacht 19 09 2009 Aufgenommen mit der STK-Kamera im R-Fil	110 ter
und mit 60's Belichtungszeit	150
B 70 Lichtkurve aus der Nacht 24.00.2000 Aufgenommen mit der STK-Kamera im B-Fil	••••
und mit 60 a Bolichtungszoit	150
B 71 Lichtluure aug der Nacht 16.02.2010. Aufgenommen mit der STK Kamere im P. Eil	100
D.71 Eichtkurve aus der Nacht 10. 02. 2010. Aufgehömmen mit der STK-Kamera im K-Fi	151
Und mit oos Benchungszeit	101
B. (2 Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter 151
und mit 90's Belichtungszeit.	151
B. (3 Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter 150
und mit 90s Belichtungszeit.	152
B.74 Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90 s Belichtungszeit.	152
B.75 Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	153
B.76 Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	153
B.77 Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	154
B.78 Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 60s Belichtungszeit	155
B.79 Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit	155
B.80 Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	156
B.81 Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90s Belichtungszeit.	156
B.82 Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90 s Belichtungszeit	157
B 83 Lichtkurve aus der Nacht 17–10–2010 Aufgenommen mit der STK-Kamera im B-Fil	ter
und mit 90's Belichtungszeit	157
B 84 Lichtkurve aus der Nacht 21 10 2010 Aufgenommen mit der STK-Kamera im R-Fil	ter
und mit 90 s Belichtungszeit	158
B 85 Lichtkurve aus der Nacht 22 10 2010 Aufgenommen mit der STK Kamere im P Eil	••••
und mit 00 e Belichtungezeit	158
B 86 Lichtkurve aus der Nacht 28 10 2010 Aufgenommen mit der STK Kamere im P Eil	100
und mit 00 a Belichtungszoit	150
	199

ABBILDUNGSVERZEICHNIS

C.1	Das untersuchte Plejadenfeld, aufgenommen mit der STK-CCD in GSH im R-Band und	
	mit 60s Belichtungszeit. Rechts ist das originale Feld, links ist das neue beobachtete	
	Feld. Norden ist oben und Osten ist links. Der schmale Bereich markiert das Gebiet, das	
	im neuen Feld nicht mehr enthalten ist	160

Tabellenverzeichnis

3.1	Eigenschaften der Teleskope und Kameras in GSH (Mugrauer 2009; Mugrauer und Berthold 2010; Mugrauer 2011, in prep.).	16
3.2	Zusammenfassung der Eigenschaften der verwendeten CCDs in GSH (Mugrauer 2009;	
3.3	Mugrauer und Berthold 2010; Mugrauer 2011, in prep.)	$\frac{20}{24}$
5.1	Liste aller bekannten Sterne im Plejadenfeld (ohne Objekte, die nur bei 2MASS detek- tiert sind) mit ihren zugehörigen Eigenschaften, entnommen aus verschiedenen Katalo- ran (Simbad und Viziar)	45
5.2	Helligkeiten, Spektraltypen und Extinktionen aller bekannten Sterne in dem Plejaden- feld, entnommen aus verschiedenen Katalogen (Simbad und Vizier) und aus unserer	40
5.3	Photometrie. Helligkeiten R und I sind nicht auf Extinktion korrigiert Die in der Bestimmung der scheinbaren Helligkeit (absolute Photometrie) der Feldob-	47
	jekte verwendeten Sterne	49
5.4	Zusammenfassung der Eigenschaften der in unserem Plejadenfeld neu detektierten Ver- änderlichen.	52
5.5	Photometrische Eigenschaften des Bedeckungsveränderlichen V1	55
5.6	Ergebnisse der Bestimmung der Minimazeiten JD(Min) und der Beobachtungsepoche E	
	des Sterns V1	58
5.7	Eigenschaften des Bedeckungsveränderlichen V2	60
5.8	Die Minimazeiten JD(Min) und die Beobachtungsepoche E des Sterns V2	61
5.9	Eigenschaften des eventuellen Bedeckungsveränderlichen V3	62
5.10	Die Minimazeiten JD(Min) und Beobachtungsepoche E des Sterns V3.	64
5.11	Photometrische Eigenschaften des Sterns V4.	66
5.12	Die gefundenen Minimazeiten JD(Min) des Sterns V4.	67
5.13	Eigenschaften des Veränderlichen V5.	69
5.14	Ergebnisse der Bestimmung der Maximazeiten JD(Max) und der Beobachtungsepoche	
	E des Sterns V5.	71
5.15	Eigenschaften des Sterns V6.	72
5.16	Ergebnisse der Bestimmung der Maximazeiten JD(Max) und der Beobachtungsepoche	
	E des Sterns V6.	75
5.17	Eigenschaften des Sterns V7.	77
5.18	Ergebnisse der Bestimmung der Maximazeiten JD(Max) und der Beobachtungsepoche	
	E des Sterns V7.	78
5.19	Eigenschaften des Veränderlichen V8	79
5.20	Ergebnisse der Bestimmung der Maximazeiten JD(Max) und der Beobachtungsepoche	
	E des Sterns V8.	81
5.21	Photometrische Eigenschaften des Pulsationsveränderlichen V9	82

TABELLENVERZEICHNIS

5.22	Ergebnisse der Bestimmung der Maximazeiten JD(Max) und der Beobachtungsepoche	
	E des Sterns V9	84
5.23	Die aus der Lichtkurve des Flare-Sterns bestimmten Parameter.	89
5.24	Die mit unserer STK-Kamera gemessenen Helligkeiten beider Objekte. Im V-Filter mit	
	180s Belichtungszeit, im R-Filter mit 90s Belichtungszeit und im I-Filter mit 50s Be-	
	lichtungszeit.	89
5.25	Eigenschaften der einzelne Sterne (siehe Text)	90
C.1	Zusammenfassung der gesicherten Detektionen im Plejadenfeld	178

Kapitel 1

Einleitung

Bei der Suche nach sub-stellaren Objekten und neuen Veränderlichen sind junge, nahe, offene Haufen für die Astronomen wegen der geringen interstellaren Absorption und des Reichtums an jungen, aktiven Objekten von großem Interesse.

Ein Beispiel für einen solchen offenen Haufen ist der berühmteste und schönste Haufen am Winterhimmel, der Plejadenhaufen. Seine Sterne wurden früher mit bloßem Auge beobachtet, nach der Entwicklung der Astronomie und der Erfindung des Teleskops wurde der Plejadenhaufen weiter und intensiver untersucht.

Es wurde im Rahmen dieser Arbeit ein Feld am Rand des Plejadenhaufens, in welchem noch nicht nach braunen Zwergen gesucht wurde, untersucht. Das Ziel ist die Variabilität aller Sterne in diesem Feld auf Zeitskalen von Minuten bis Jahren zu studieren (diese Arbeit), und zusätzlich dort nach braunen Zwergen zu suchen (Eisenbeiss u. a. 2009), (Seeliger 2010, Diplomarbeit).

Dieses Feld wurde mit den in der Beobachtungsstation Großschwabhausen (GSH) (in der Nähe von Jena) verwendeten Teleskopen im Zeitraum 2007-2010 aufgenommen.

Drei verschiedene CCD-Kameras (in GSH) wurden für die Datenaufnahme verwendet. Sie sind die 25 cm Cassegrain-Spiegel-Teleskop bzw. CTK (bis Juli 2010), die 25 cm Cassegrain-Spiegel-Teleskop II bzw. CTKII (ab August 2010) und die Schmidt-Teleskop-Kamera bzw. STK am 90 cm Spiegel.

Nach einer Einführung zu Veränderlichen und zum Plejadenhaufen in Kapitel 2 wird in Kapitel 3 ausführlich die Durchführung der Beobachtung und Datenreduktion erklärt. In Kapitel 4 werden alle Schritte der Datenauswertung sowie der verwendeten Programme beschrieben. Die erhaltenen Ergebnisse werden in Kapitel 5 präsentiert. Eine Zusammenfassung der Ergebnisse und Erkenntnisse dieser Arbei ist im Kapitel 6 zu finden. Zusätzliche Informationen über die verwendeten Programme bei der Datenreduktion und Datenauswertung sind im Anhang A aufgeführt. Die einzelnen Lichtkurven der in unserem Plejadenfeld neu gefundenen Veränderlichen sind im Anhang B dargestellt. Eine große Tabelle für die tatsächlich gesicherten Objekte in dem untersuchten Plejadenfeld mit ihren zugehörigen Helligkeiten in den Bändern VRI, den Spektraltypen und den Extinktionen sind im Anhang C präsentiert.

Kapitel 2

Grundlagen

2.1 Veränderliche Sterne

Sterne entstehen beim Kollaps von interstellaren Staub- und Gaswolken. Das erfolgt, wenn die nach innen (zum Wolkenzentrum) gerichteten Gravitationskräfte größer sind als die nach außen gerichteten Druckkräfte bzw. Strahlungskräfte.

Normale Sterne, wie unsere Sonne, befinden sich im Hertzsprung-Russell-Diagramm bzw. HRD auf einer Linie, der sogenannten Hauptreihe (HR), die von leuchtkräftigen Sternen frühen Spektraltyps (links oben) zu leuchtschwachen Sternen späten Spektraltyps (rechts unten) verläuft. Auf der Hauptreihe halten sich die Sterne auf ihren Wegen durch das HRD relativ lange (der gesamte Wasserstoff wird im Zentrum des Sterns, wo die Temperatur hoch genug ist, langsam in Helium umgewandelt) mit wenig Aktivität auf.

Junge Sterne, die den Wasserstoff im Sternzentrum noch nicht stabil brennen können, gewinnen ihre Energie durch umsetzen der Gravitationsenergie in Strahlungsenergie bzw. Kontraktion. Man bezeichnet sie als Vor-Hauptreihen-Sterne, da sie sich auf die Hauptreihe zu entwickeln. In dieser Phase zeigen die Sterne bzw. Vor-Haupreihen-Sterne starke Aktivität.

Ist der gesamte Wasserstoff durch die Kernreaktionen verbraucht bzw. in Helium umgewandelt, verlassen die Sterne die Hauptreihe zum Gebiet der Riesen- und hellen Riesensterne. Diese Phase wird als Nach-Hauptreihen-Phase bezeichnet.

Man bezeichnet als Veränderliche Sterne, deren Helligkeit sich auf Zeitskalen deutlich kürzer als die Lebenzeit ändert. Sie werden meist nach einem Prototyp und ihrem zugehörigen Sternbild benannt.

Handelt es sich bei einem Stern um eine echte bzw. physikalische Änderung der zugehörigen physikalischen Zustandgrößen, dann wird von einem physischen Veränderlichen gesprochen. Bedeckt ein Stern in einem Doppelsystem den Andern, wird eine Helligkeitsänderung in der Lichtkurve gesehen. Solche Veränderliche zählen nicht als echte Veränderliche, sondern als Bedeckungsveränderliche bzw. optische Veränderliche.

Die wichtigsten Gruppen der physikalischen bzw. physischen veränderlichen Sterne sind in Abbildung 2.1 im Hertzsprung-Russell-Diagramm bzw. HRD dargestellt.

Abbildung 2.1: Positionen der wichtigsten Typen Veränderlicher im HRD (Unsöld und Baschek 2009).

Bedeckungsveränderliche Sterne sind in Abbildung 2.1 nicht eingetragen (siehe Kapitel 2.1.4), da es sich hierbei nicht um tatsächliche, physikalische Veränderlichkeit handelt. Man unterscheidet bei den physikalischen Veränderlichen zwischen zwei Hauptgruppen, regulär (z.B. Rotations- oder Pulsationsveränderliche) und irregulär (z.B. Flare-Sterne).

2.1.1 Pulsationsveränderliche Sterne

Bei dieser werden sich die physikalischen Zustandsgrößen des Sterns aufgrund seiner Pulsastion ändern. In Abbildung 2.1 sind die folgenden Pulsationsveränderlichen dargestellt. Langperiodische Cepheiden Pop.I bzw. klassische Cepheiden (C δ) sowie Pop.II bzw. W-Virginis-Sterne (CW), RR Lyrae-Sterne, Zwerg-Cepheiden bzw. RRs- und δ Scuti-Sterne, langperiodische- bzw. Mira-Sterne, RV Tauri-Sterne bzw. RV Tau, α Canum Venaticorum-Sterne bzw. α CV, halbregelmäßige sowie unregelmäßige Veränderliche und ZZ Cet-Sterne (Unsöld und Baschek 2009; Weigert u. a. 2009; Voigt 1988; Hoffmeister u. a. 1984). Es ist bekannt, dass für die Cepheiden die sogenannte Perioden-Leuchtkraft-Beziehung (2.1) gilt, die absolute Helligkeit M eines Cepheiden hängt mit dem Logarithmus der Pulsationsperiode P zusammen.

$$M = \left(-2.81\log(P) - 1.43\right) \text{mag}$$
(2.1)

Hat man aus der Beobachtung des Lichtwechsels die Periode P des Cepheiden bestimmt, so kann man seine absolute Helligkeit M mit Gleichung 2.1 bestimmen. Aus dem Unterschied zwischen der scheinbaren m und der absoluten Helligkeit M, dem sogenannten Entfernungsmodul (m-M) des Cepheiden, kann man auf seine Entfernung r via (2.2) schließen:

$$(m-M) = \left(5\log\left(\frac{r}{1[\text{pc}]}\right) - 5\right)$$
mag (2.2)

Die δ Sct-Sterne, RRs, RR Lyr, CW und δ Cep-Sterne ordnen sich im HRD (Abbildung 2.1) längs des sogenannten Instabilitätsstreifen der Cepheiden an. Er erstreckt sich von den RRs-Sternen in der Nähe der Hauptreihe bis zu den klassischen Cepheiden.

Im allgemeinen herrscht in einem Stern ein Gleichgewichtszustand. Das heißt, die nach innen gerichtete Gravitationskraft wird durch den nach außen gerichteten Strahlungsdruck ausgeglichen. Abweichungen von diesem Gleichgewicht können dazu führen, dass der Stern pulsiert (Abbildung 2.2). Die durch den κ -Mechanismus erzeugte rücktreibende Kraft kann eine solche Pulsation verursachen.

Durch die Kernreaktionen im Sterninnern wird Energie erzeugt. Wegen der hohen Dichte im Sterninnern kann diese erzeugte Energie nicht direkt zur Oberfläche des Sterns abgestrahlt werden, sondern wird auf dem Weg gestreut. Diese Undurchlässigkeit der Sternatmosphäre heißt Opazität und wird mit dem griechischen Buchstaben κ bezeichnet. Durch äußere Störungen wird das Material (H,He) in einer Zone der Sternatmosphäre komprimiert, so dass diese Schicht sich in Richtung Sternzentrum bewegt. Infolge dieser Kompression steigen Druck und Temperatur. Dadurch steigt die Dichte bzw. Opazität an, so dass mehr neutrales Helium entsteht und weniger Strahlung nach außen dringen kann, wodurch ein größerer Strahlungsdruck im Sterninnern entsteht. Dies führt dazu, dass die Schicht und damit auch die darüber liegenden Schichten sich ausdehnen, also der Stern expandiert. Die expandierten Schichten werden nun kühler und der Druck sinkt, wodurch die Dichte geringer wird. Nun kann die Strahlung schnell entweichen und der Strahlungsdruck unterhalb der Schicht nimmt ab, also wird die Gravitationskraft in Richtung Sternzentrum stärker, was bedeutet, dass der Stern kontrahiert und es zu einem erneuten Dichteanstieg kommt. Wegen der Massenträgheit pendelt der Sternradius um seine Gleichgewichtslage, es entsteht eine Oszillation und der Stern pulsiert.

Bei längeren Perioden und kühleren Sternen, wie den RV Tau- und Mira-Sternen, werden

die Pulsationen unregelmäßiger.

Abbildung 2.2: Darstellung der periodischen Änderung bei einem δ Cephei-Stern. Die Änderung der Helligkeit (a), der Temperatur (b), des Spektraltyps (c), der Radialgeschwindigkeit (d), des Radius (e) und der Sternscheibe (f) sind dargestellt (Unsöld und Baschek 2009).

Da die Wasserstoffkonvektionszonen immer größere Ausdehnung bei den kühlen Sternen haben, gibt es eine Kopplung zwischen Pulsation und turbulenten Strömungen der Konvektion, was die Veränderlichkeit dieser Sterntypen verursacht.

Die verschiedenen Typen der Pulsierenden unterscheiden sich anhand der Amplitude, der Periode, der Lage im HRD und natürlich der Ursache der Variabilität.

2.1.2 Eruptive veränderliche Sterne

Bei den eruptiven Veränderlichen wird der Lichtwechsel durch eruptive (wiederholt auftretende) oder explosionsartige (einmalig auftretende) Vorgänge verursacht.

Diese Vorgänge können in einem Einzelstern oder Doppelstern, im Sternzentrum oder nahe an der Oberfläche, unter Wirkung eines starken oder schwachen magnetischen Feldes stattfinden. Daher unterscheidet man verschieden Gruppen der Eruptiven (Hoffmeister u. a. 1984).

In Abbildung 2.1 sind folgende eruptive Veränderliche dargestellt: RW Aurigae-Sterne (RW), R Coronae Borealis-Sterne (RCB), UV Ceti-Sterne (UV), und Wolf-Rayet-Sterne (WC und WN).

Eruptive veränderliche Doppelsterne werden als *kataklysmische* Veränderliche (Abbildung 2.3) bezeichnet. Diese Bezeichnung kommt aus dem griechischen Wort *Kataklysmos*, wel-

ches Überschwemmung bedeutet.

Beispiele für diese Sterne sind Novae (N), Zwergnovae (UG Geminorum-Sterne bzw. UG Gem) als Untergruppe der Novae, und die Z Camelopardalis Sterne bzw. UG.Z Cam, die eine Untergruppe der Zwergnovae (UG) bilden.

Bei allen drei Typen ist der Hauptstern ein weißer Zwerg, welcher die Helligkeitsausbrüche verursacht.

Abbildung 2.3: Ein kataklysmisches Doppelsternsystem mit einem massearmen Begleiter (ein weißer Zwerg) (Unsöld und Baschek 2009).

2.1.3 Rotationsveränderliche

Bei den Rotationsveränderlichen werden die Helligkeitsschwankungen in den Lichtkurven durch unregelmäßige Oberflächenhelligkeit aufgrund von *Sternflecken*¹ verursacht. Diese Flecken sind auf der Sternoberfläche und meistens kühler, deswegen dunkler. Aufgrund der Sternrotation kann ein dunkler Fleck auf seiner Oberfläche in Sichtlinie zum Beobachter auftauchen, dadurch wird weniger Licht in Richtung dieses Beobachters abgestrahlt und eine Helligkeitsänderung in der Lichtkurve dieses Sterns beobachtet.

In Abbildung 2.1 sind drei Arten Rotationsveränderliche zu identifizieren. Sie sind vor allem die bekannten TTauri-Sterne bzw. TT, die BY Draconis-Sterne und die magnetischen Veränderlichen bzw. α Canum Venaticorum-Sterne (α CV).

Mit Hilfe des sogenannten *Doppler Imaging* hat man die Möglichkeit, solche Flecken sichtbar zu machen. Dabei werden die Einflüsse der Flecken auf die Form der Spektrallinien analysiert, dadurch bekommt man indirekt ein Bild der Oberfläche des Sterns mit den Flecken (Abbildung 2.4).

¹Sternflecken entstehen durch lokale Magnetfelder auf der Oberfläche von Sternen. Dort sind die Felder stark genug, um die konvektive Bewegung zu unterdrücken. Damit wird der Fluss der Energie aus dem Inneren nach außen an die Oberfläche blockiert und es erscheinen lokale kühle und dunkle Regionen gegen eine sonst helle Photosphäre (Strassmeier 2009).

Doppler Images können von der Oberfläche schnell rotierender Sterne gemacht werden, d.h. von Objekten deren Spektrallinien maßgeblich durch den Doppler Effekt verbreitert werden.

Abbildung 2.4: Ein Doppler Image des sehr jungen (1Myr) T Tauri Sterns V Tau 410 (Schmidt u. a. 2005).

Dabei wird ausgenutzt, dass eine Eins zu Eins Abbildung zwischen Position der Spektrallinienverformung und der siderischen Länge des Oberflächenmerkmals besteht. Die siderische Breite des Flecks kann darüber hinaus den durchlaufenen Positionen der Verformung innerhalb der Spektrallinie entnommen werden.

Zu diesem Zweck wurde bei jeder der in Abbildung 2.4 durch Striche markierten Phasen des Umlaufs des Sterns ein hochaufgelöstes Spektrum aufgenommen, um darin die Form der Spektrallinien zu vermessen. Die Abbildung zeigt das sich unter Benutzung von 11 Absorptionslinien der Elemente Fe, Ca, Ni und Li ergebende Doppler Image von V410 Tauri. Zu sehen ist die Oberfläche des Sterns von einem der Rotationspole gesehen bis zu einem Abstand von 120 Grad siderischer Breite von diesem Punkt. Außerdem sind der Äquator des Sterns und die Phasen der Rotationsperiode markiert. Wie zu sehen wird die Oberfläche des Sterns durch einen markanten Fleck nahe des Pols geprägt.

2.1.4 Bedeckungsveränderliche

Bedeckungsveränderliche sind Doppelsterne, die um einen gemeinsamen Schwerpunkt kreisen und sich gegenseitig bedecken können. Diese gegenseitige Bedeckung verursacht einen Lichtwechsel in der zugehörigen Lichtkurve, wenn die Bahnebene dieses Doppelsterns mehr oder minder genau in unserer Sichtlinie liegt. Daher werden diese Sterne als optische Veränderliche bezeichnet.

Sind beide Komponenten des Doppelsystems nahe aneinander, üben sie aufeinander eine starke Gravitationswechselwirkung aus, was zu einem Massenaustausch zwischen den beiden Komponenten und infolge zu einer Beeinflussung der äußeren Form der Sterne führen kann.

Die Äquipotentialflächen, auf denen alle Punkte das gleiche Potential haben, sind nährungsweise kugelförmige Flächen (Abbildung 2.5). Sie werden weiter außen stärker verbeult, bis sich eine Fläche um Stern 1 und die entsprechende um Stern 2 in einem sogenannten *inneren Lagrange-Punkt* L1 schneiden. Diese Fläche wird als *kritische Roche-Fläche* bezeichnet. Noch weiter außen umhüllen die Äquipotentialflächen beide Komponenten. Materie bzw. Gase und Flüssigkeiten können entlang dieser Äquipotentialflächen fließen.

Ein Stern kann sich nur bis zu seiner zugehörigen Roche-Fläche ausdehnen. Hat eine Komponente auf dem Weg zum roten Riesen diese Fläche schon ausgefüllt, dann fließt Materie durch den inneren Lagrange-Punkt L1 zur zweiten Komponenten ab.

Die Bedeckungsveränderlichen werden nach der Form der Lichtkurven in drei Typen unterschieden.

Abbildung 2.5: Schematische Darstellung der Äquipotentialflächen in einem Doppelsystem mit M_1 und $M_2 = 0.5 M_1$. L1 steht für den inneren Lagrange-Punkt und SP für den gemeinsamen Schwerpunkt. Die dicke Linie bezeichnet die kritische Roche-Fläche (Weigert u. a. 2009).

2.1.4.1 EA- oder Algol-Sterne

Bei Algol-Sternen sind beide Komponenten voneinander getrennt und fast kugelförmig. Also sind sie innerhalb der kritischen Roche-Flächen. Daher heißt ein solches System getrenntes System. Die Helligkeit zwischen den Bedeckungen in der Lichtkurve eines Algol-Sterns (Abbildung 2.6) ist konstant. Die entsprechende Periode ist immer größer als ein Tag. Da die Anziehungskräfte zu keiner starken Verformung beider Komponenten führt, ist ihre gegenseitige Bedeckung für die Helligkeitsvariabilität verantwortlich.

2.1.4.2 EB- oder β Lyrae-Sterne

Im Gegenteil zum Algol-Stern ist bei einem β Lyrae-Stern nur eine Komponente innerhalb der Roche-Fläche, während die zweite sie ausfüllt. So wird von einem *halbgetrennten System* gesprochen. Die Komponenten sind nah aneinander, sodass sie sich durch die gegenseitigen Gravitationskräfte zu einem Ellipsoid verformen. Die Lichtkurve eines β Lyrae-Sterns (Abbildung 2.6) zeigt fast keine konstante Helligkeiten und die Periode ist ungefähr 1 Tag oder etwas darunter.

Abbildung 2.6: Typische Lichtkurven der drei Typen von Bedeckungsveränderlichen; Oben: Algol-Stern (getrenntes System), Mitte: β Lyrae-Stern (halbgetrenntes System), Unten: W Ursae Maioris-Stern (Kontaksystem), s steht für den Strahlungsstrom und P für die Periode (Weigert u. a. 2005).

2.1.4.3 EW- oder W Ursae-Maioris-Sterne (W UMa-Sterne)

Bei W Ursae-Maioris-Sternen spricht man von einem Kontaktsystem, wobei beide Komponenten die kritischen Roche-Flächen ausfüllen. Ihre Lichtkurven (Abbildung 2.6) ähneln der der β Lyrae-Sterne mit dem Unterschied, dass hier beide Minima gleich tief sind. Das heißt, beide Komponenten haben die gleiche Effektivtemperatur. Aufgrund des Energieaustausches durch den Kontakt beider Komponenten werden die Effektivtemperaturen beider Komponenten angeglichen.

Die typische Periode eines W UMa-Sterns ist immer kleiner als ein Tag.

2.2 Offene Sternhaufen

Offene Sternhaufen sind Ansammlungen von Sternen, die sich am Himmel entlang der Milchstraße konzentrieren. Sie werden auch als galaktische Haufen bezeichnet. Ihre Sterne entstehen gemeinsam in Gruppen aus Gas- und Staubwolken und können räumlich oft aufgelöst werden.

Manche offene Haufen sind sternreich mit einigen Tausend Sternen, aber dennoch sternärmer als die $Kugelhaufen^2$. Andere enthalten nur wenige Sterne.

Ihre Massen liegen im Bereich von 10^2 bis $10^3 M_{\odot}$. Ihre Durchmesser schwanken zwischen 1 und 20 pc mit einer mittleren Sterndichte von 0.3-6 Sternen pro pc^3 .

Man schätzt eine Gesamtzahl von 20 000 offenen Haufen in unserer Milchstraße, von denen aber wegen der großen Entfernung oder der Dunkelwolken in der Milchstraßenebene nur etwa 1000 beobachtbar sind (Unsöld und Baschek 2009; Weigert u. a. 2009).

2.2.1 Der Plejadenhaufen

Abbildung 2.7: Hellste Sterne des Plejadenhaufens.

Die Plejaden, auch bekannt als M45, sind einer der berühmtesten Sternhaufen am Winterhimmel. Sie sind vom Mitte August bis Ende März (im Sternbild des Stiers) etwa 10° nördlich des Riesensterns Aldebaran (umgeben von dem bekannten offenen Haufen der

²Ein typischer Kugelhaufen besitzt einen Durchmesser im Bereich von 15 bis 150 pc. Der größte Anteil der Sterne (mehrere hunderttausend) konzentriert sich im Haufenzentrum (etwa 30 pc), was sich eine erhebliche mittlere Sterndichte (etwa zehnmal größer als die in einem offenen Haufen) ergibt. Insgesamt wurden etwa 150 Kugelhaufen von den in unserer Milchstraße (~ 200) geschätzten katalogisiert. Die Entwicklung der Sterne in einem Kugelhaufen liegt an ihrer gravitativen Wechselwirkung untereinander (Unsöld und Baschek 2009; Weigert u. a. 2009).

Hyaden) mit bloßem Auge sichtbar. Über ein 2° großes Feld sind mindestens 500 Mitglieder, die nicht besonders dicht beieinander stehen, verteilt.

Mit bloßem Auge sind sechs bis neun helle Sterne im Plejadenhaufen zu erkennen. Sie sind nach der griechischen Mythologie benannt und tragen die Namen der sieben Töchter von Atlas und Pleione: Alcyone, Asterope, Elektra, Maia, Merope, Taygeta und Celaeno (Abbildung 2.7). Sie werden auch Siebengestirn genannt.

Um die Plejadensterne existieren Nebel, die bläulich leuchten (Abbildung 2.7). Dieser Gasnebel leuchtet nicht selbst, es handelt sich also um einen Reflexionsnebel.

Die Entfernung zum Plejadenhaufen wurde via Hipparcos Parallaxen bestimmt (van Leeuwen und Hansen Ruiz 1997; Mermilliod u. a. 1997; van Leeuwen 1999).

Eine Parallaxe von $\pi = 8.32 \pm 0.13$ mas (Milli-bogensekunden), (van Leeuwen 2009), wurde für ausgewählte Plejadenmitglieder gemessen, was einer Entfernung r von

$$r = \frac{1000}{\pi[mas]} \,\mathrm{pc} \simeq 120.2 \,\pm \,1.45 \,\mathrm{pc}$$
 (2.3)

entspricht.

Ein Entfernungsmodul von $m - M = 5.40 \pm 0.05$ mag wurde für den Haufen in der gleichen Studie (van Leeuwen 2009) berechnet.

2.2.2 Die Plejaden in Farb-Helligkeits-Diagramm (FHD)

Eine schematische Form der Farben-Helligkeits-Diagramme $M_{V,0}$ über $(B - V)_0$ für die Plejaden und mehrere andere offene Sternhaufen ist in der Abbildung 2.8 dargestellt.

Abbildung 2.8: Offene Sternhaufen im FHD (Unsöld und Baschek 2009).

Ist der gesamte Wasserstoff im Zentrum zu Helium verbrannt, dann verlassen die Hauptreihesterne die Hauptreihe in kurzer Zeit nach rechts und nach oben zum Gebiet der roten Riesen, wo die Temperatur hoch genug ist um Helium zu verbrennen.

Da die leuchtstarken Hauptreihesterne im Innen sehr heiß sind, können sie den Wasserstoff am schnellsten verbrauchen und infolgedessen biegen sie von der Haupteihe zuerst ab. Später werden auch die leuchtschwachen Hauptreihensterne von der Hauptreihe abbiegen, da sie mehr Zeit brauchen, um den gesamten Wasserstoff zu verbrauchen. Dadurch ergibt sich ein *Abknickpunkt* von der Hauptreihe, welcher das Alter des Sternhaufens andeutet.

Abbildung 2.9: Ein $(M_{bol}, logT_e)$ Diagramm mit den Isochronen. Jede Isochrone ist logarithmisch gekennzeichnet mit einem Alterswert (Patenaude 1978).

Mit Hilfe der theoretischen Isochronen, gezeigt in Abbildung 2.9, kann man das FHD der offenen Sternhaufen verwenden, um das Alter eines offenen Sternhaufens zu bestimmen. Man erkennt aus dem FHD, dass der Doppelsternhaufen $h \& \chi$ Persei im Perseus sowie der Haufen NGC 2362 mit ihren sehr hellen, blauen Sternen am jüngsten, mit nur wenigen Millionen Jahren, sind. Die roten Überriesen von $h \& \chi$ Persei (oben rechts von der Hauptreihe) sind von den blauen $h \& \chi$ Persei Sternen durch die Hertzsprung Lücke getrennt.

Da der Abknickpunkt bei den Plejaden etwas tiefer liegt, sind sie älter als $h \& \chi$ Persei

und NGC 2362. Trotzdem sind sie mit einem Alter von ~ 120 Millionen Jahren relativ jung (Van Leeuven, 2009).

Die Hyaden sind anhand ihrem noch tieferen Abknickpunkt älter als die Plejadensterne, ihr Alter beträgt 630 Millionen Jahre (Patenaude 1978).

Den tiefsten Abknickpunkt in Abbildung 2.8 hat der offene Sternhaufen *NGC* 188, sein Alter beträgt 6.4 Milliarden Jahre (Meibom u. a. 2009). Er ist bekannt als der älteste offene Sternhaufen in unserer Galaxis (Sandage 1962).

Kapitel 3

Beobachtung und Datenreduktion

Die im Rahmen dieser Arbeit verwendeten Daten wurden mit den Teleskopen in der Beobachtungsstation des AIU Jena in Großschwabhausen (GSH) aufgenommen. Die aufgenommenen Bilder (Rohbilder) enthalten Effekte die man korrigieren muss, um beste Ergebnisse zu erhalten. Den Prozess nennt man Datenreduktion bzw. Kalibration. In diesem Kapitel werden alle verwendeten Instrumente, sowie die Durchführung der Beobachtung und der Ablauf des Datenreduktiossprozesses in Theorie und Praxis erklärt.

3.1 Beobachtungsstation Großschwabhausen (GSH)

Die Beobachtungsstation befindet sich in einem Waldstück in der Nähe des kleinen Dorfes Großschwabhausen (GSH), etwa 10 km westlich von Jena, wo wenig Streulicht die Beobachtung des Sternenhimmels stört. Großschwabhausen liegt auf einer Hochfläche 370 m über Normalnull.

Im Winterhalbjahr kommt es oft wegen der Tallage Jenas zur Nebelbildung, deswegen wurde die Sternwarte außerhalb des Saaletals positioniert.

Drei Teleskope mit ihren zugehörigen CCD-Kameras stehen in der Beobachtungsstation (Großschwabhausen) zur Verfügung.

Das Hauptteleskop mit 0.9 m Durchmesser ist auf einer Gabelmontierung installiert und kann entweder als Schmidt-Kamera oder als Nasmyth-Teleskop genutzt werden. Zum Abbilden des Himmels wird die CCD-Kamera im Primärfokus (Schmidtfokus) angebracht. Im Schmidt-Modus (f/D=3) ist eine Korrekturlinse, die Schmidtplatte, mit einem Durchmesser von 0.6 m im Eingang des Teleskops angebracht, und damit ist die Teleskopapertur auf die Apertur der Schmidtplatte beschränkt. Die Schmidt-Teleskop-Kamera wird im weiteren mit STK abgekürzt. Im Nasmyth-Modus wird für die Spektroskopie die Schmidtplatte entfernt und statt der STK ein Spiegel angebracht, um das Licht in Richtung Nasmyth-Fokus zu reflektieren. Von dort aus wird es über eine Glasfaser zum Spektrometer mit Namen FIASCO geleitet. Im Nasmyth-Modus wird die volle Teleskopapertur von D=0.9

m bei f/D=15 ausgenutzt.

Als zweites Teleskop steht ein Refraktor mit einem Objektivdurchmesser von 20 cm und einer Brennweite von 3 m zur Verfügung. Die zugehörige CCD-Kamera wird mit RTK bezeichnet.

Das dritte Teleskop ist ein Spiegelteleskop mit einem 25 cm großen Hauptspiegel, es hat eine Brennweite von 2.25 m, was einem Öffnungsverhältnis von f/D=9 entspricht. Die Kamera ist im Cassagrain-Fokus angebracht und wird mit CTK (bis Juli 2010) oder CTKII (ab August 2010) abgekürzt. Die allgemeinen Eigenschaften der drei Teleskope sind in Tabelle 3.1 zusammengefasst.

Beide Zusatzteleskope, der Refraktor und das Spiegelteleskop, sind am Tubus des 0.9 m Hauptteleskops montiert (Abbildung 3.1).

Abbildung 3.1: Die verwendeten Teleskope in der Sternwarte GSH. Das Linsenteleskop bzw. Refraktor befindet sich rechts vom Haupttubus, das Spiegelteleskop links.

Teleskop	Hauptteleskop	Cassegrain	Refraktor
Kamera	STK / FIASCO	СТК/СТКІІ	RTK
Öffnung	60cm / 90cm	25cm	20cm
f/D	3 / 15	9	15
Pixel	2048 × 2048	1024 \times 1024 / 1056 \times 1027	765×510
Pixelskala $\left[\frac{n}{px}\right]$	1.5463 ± 0.0004	$2.2065\pm0.0008~/~1.1956\pm0.0001$	0.6233 ± 0.0003
Gesichtsfeld	$52.8^{\prime}\times52.8^{\prime}$	$37.7^{'} \times 37.7^{'}/21.0^{'} \times 20.4^{'}$	$7.9^{\prime}\times5.3^{\prime}$
Filter	B, V, R, I, Z	B, V, R, I, Z	B, V, I, clear
Detektor	E2V CCD42-10 / SITe TK1024	SITe TK1024 / E2V CCD47-10	Kodak KAF-0402 ME
Auflösung	0.12 nm bei 650 nm		
Spektr. Bereich	(612.7 - 706.1 nm)		

Tabelle 3.1: Eigenschaften der Teleskope und Kameras in GSH (Mugrauer 2009; Mugrauer und Berthold 2010; Mugrauer 2011, in prep.).

Die drei Teleskope werden vom Kontrollraum aus gesteuert, der sich in der ersten Etage der Sternwarte GSH direkt unter der Teleskopkuppel befindet. Seit Ende 2006 wurden die CTK und RTK für mehrere wissenschaftliche Projekte genutzt, hauptsächlich für phototmetrische Programme zur Untersuchung der Variabilität junger Haufen, Nachfolgebeobachtungen langperiodischer Veränderlicher sowie von Sternen mit Transitplaneten. Seit Anfang 2009 steht die STK für die gleichen wissenschaftlichen Projekte zur Verfügung, während die CTK im Sommer 2010 durch die CTKII ersetzt wurde.

3.2 CCD-Detektoren

Um die von einem Teleskop aufgenommene und gebündelte Strahlungsenergie messen zu können, bedarf es eines Apparats zum Nachweis dieser Strahlung. Ein solcher Apparat oder Detektor beruht ganz allgemein auf dem physikalischen Prinzip der Wechselwirkung zwischen Strahlung und Materie.

"Charged-Coupled-Device", kurz CCD, ist der heutzutage am meisten verwendete Detektor in der Astronomie. CCDs sind auf Silizium integrierte elektronische Bauelemente, deren Wirkungsweise auf dem inneren Photoeffekt beruht.

Ein CCD besteht aus MIS- (Metal Insulator Semiconductor) Strukturen. Diese bestehen aus einem Halbleiter aus Silizium Si, auf dem sich eine optisch transparente Isolierschicht aus Siliziumdioxid SiO_2 befindet. Darauf befinden sich viele transparente Elektroden, die meist aus polykristallinem Silizium konstruiert sind. Man kann die Elektroden auch als Gate bezeichnen.

Die einfallenden Photonen werden durch den inneren Photoeffekt absorbiert. Dabei heben Photonen, deren Energie größer als die Bandlücke des Siliziums (1.14 eV) ist, die Elektronen des Halbleiters aus dem Valenzband ins Leitungsband. Dabei entstehen Elektronen-Loch-Paare.

Die freigesetzten Elektronen können sich frei bewegen. Um sie im Leitungsband zu halten, bis das Auslesen erfolgt, wird eine positive Spannung über eine Elektrode angelegt. Es ergibt sich ein Potentialtopf, in dem sich die Elektronen sammeln. Ihre Anzahl ist proportional zur eingestrahlten Lichtmenge.

Ein Potentialtopf besitzt eine beschränkte Kapazität. Bei Überbelichtung können die Elektronen aus einem Potentialtopf in den Nachbartopf überlaufen. Einen solchen Effekt bezeichnet man als *Blooming*.

Auf jedem Pixel sind drei Elektroden angebracht (Abbildung 3.2). Die an den Elektroden angelegten Spannungen erzeugen eine Barriere zwischen benachbarten Potentialtöpfen. Am Ende der Belichtung werden die Elektronen in den Potentialtöpfen jedes Pixel durch Veränderung der angelegten Spannung benachbarter Elektroden in Richtung Ausleseelektronik verschoben.

Abbildung 3.2: Auslesevorgang bei einem CCD-Chip (Howell 2006).

Der Transfer der Elektronen geschieht mit Verlusten, moderne Werte für die Ladungs-Transfer-Effektivität liegen jedoch nahe 99.99% für jeden Transfer.

Die erhaltene Spannung von jedem Pixel wird durch einen Analog-Digital-Wandler in Counts oder ADU (Analog Digital Units) umgewandelt.

3.2.1 CCD-Typen

Die verschieden CCD-Typen unterscheiden sich in Aufbau, Wellenlängenempfindlichkeit, Rauschverhalten, Effizienz und in der Art des Auslesens.

3.2.1.1 Surface channel und buried channel CCDs

Bei den sogenannten *surface channel* CCDs sammeln sich die freigesetzten Elektronen unterhalb der Isolierschicht an der Oberfläche des Halbleiters. An der Grenzfläche zwischen dem Halbleiter und dem Isolator treten Verluste beim Ladungstransport auf, was Informationenverluste über schwache Sterne bedeutet. Das schon im Kapitel 3.2 beschriebenen CCD ist ein *surface channel* CCD.

Eine andere Bauweise für CCD-Chips bietet eine Lösung dieses Problems bzw. der Ladungsverluste. Dabei wird eine ca. 1 μ m dicke Schicht entgegengesetzter Ladung zwischen dem Isolator und dem Halbleiter angebracht. Dadurch bewegen sich die freigesetzten Elektronen nicht mehr wie bei den *surface channel* CCDs an der Oberfläche, sondern im Halbleiterinneren. Ein solcher Chip heißt *buried channel* CCD.

Buried channel CCDs besitzen ein geringeres Rauschen und eine höhere Effizienz im Vergleich zu den *surface channel* CCDs. Allerdings haben sie den Nachteil, dass weniger Elektronen pro Pixel gespeichert werden können. Dennoch haben *buried channel* CCDs eine höhere Lichtempfindlichkeit und sind deshalb besser geeignet für Aufnahmen von schwachen Lichtquellen.

3.2.1.2 Beleuchtung: Front-side Illuminated und Back-side Illuminated CCDs

CCDs werden nach Montierung und damit Beleuchtungsrichtung in vorderseitig (*front illuminated*) oder rückseitig beleuchtete (*back illuminated*) CCDs unterteilt.

Bei den *front illuminated* CCDs erfolgt die Beleuchtung von vorne. An der Oberfläche befinden sich Strukturen, die nicht lichtempfindlich sind, sodass ein Teil des ankommenden Lichts, insbesondere kurzwelliges, reflektiert und absorbiert wird. Deshalb besitzen diese CCDs eine geringe Effizienz.

Diese Verluste werden bei den sogennanten *back illuminated* CCDs vermieden. Dabei erfolgt die Beleuchtung des Chips von hinten. Die Dicke der Siliziumschicht wird verringert und mit der Rückseite nach oben befestigt. Dadurch werden die einfallenden Photonen ohne Wechselwirkung mit den Elektroden absorbiert, was eine höhere Effizienz bedeutet.

3.2.2 Charakterisierung von CCDs

Eine wichtige Kenngröße eines Detektors ist die sogenannte *Quantenausbeute* (engl. Quantum Efficiency, kurz QE). Als Quantenausbeute bezeichnet man die Wahrscheinlichkeit, dass ein ankommendes Photon auf dem Detektor ein Elektron auslöst. Sie hängt von der Wellenlänge des Lichts und der Dicke des CCD ab.

Da ein Photon bei dickeren CCDs höhere Chancen auf Absorption hat, sind die *front illuminated* CCDs mehr rotempfindlich, während bei dünnen CCDs die langen Wellenlängen nicht absorbiert werden (Howell 2006). Mit einer Antireflexionsschicht kann die Quantenausbeute erhöt werden.

In GSH wurde die *back illuminated* STK mit Antireflexionsschicht verwendet, dadurch erreicht sie eine Quantenausbeute von bis zu 92% (Tabelle 3.2).

Zwei andere Eigenschaften eines Detektors sind von Bedeutung, nämlich die Verstärkung (engl. *Gain*) und das Ausleserauschen (engl. *readout noise*, kurz RN).

Der Gain gibt an, wie viele Elektronen notwendig sind, um ein Count oder ADU zu erhalten. Der A/D Wandler besitzt nur eine bestimmte Kapazität, deswegen kann die Zahl der Elektronen nur bis zu einer bestimmten Anzahl festgestellt werden. Diese Grenze heißt Saturationslevel (engl. Saturation Limit) und soll unterhalb der Zahl, bei der freigesetzte Elektronen in benachbarten Pixel wandern können, liegen. Die größte Count-Zahl, die ein CCD-Bild aus GSH haben kann, liegt bei dem in Jena verwendeten 16-bit A/D Wandler bei 65535 Counts.

Die zweite Kenngröße, das Ausleserauschen (engl. read noise, RN) gibt die Zahl der Elektronen an, die pro Pixel beim Auslesevorgang entstehen und dann im Signal vorhanden sind. Die Verstärkung des Signals und die Umwandlung in ein digitales Signal erzeugen ein zusätzliches Rauschen, welches unreproduzierbar ist, da es sich um eine statistische Verteilung handelt. Weiterhin erzeugt die Elektronik selbst einen Grundwert von einigen Counts für jedes Bild (das sogenannte *Bias*), was eine Unsicherheit für das endgültige Signal ergibt.

Die Dunkelstromwerte in Tabelle 3.2 wurden für die in GSH am häufgsten verwendeten CCD-Temperaturen angegeben.

	STK	CTK	CTKII	RTK
QE [%]	92	80	96	83
$RN [e^-]$	8	7	5.2	8
Gain $\left[\frac{e^-}{ADU}\right]$	1.2	3	1.3	1.5
Dunkelstrom $\left[\frac{ADU}{min}\right]$	$0.5 (-30^{\circ} C)$	$68 \ (-25^{\circ}C)$	$10.4 \ (-40^{\circ} \mathrm{C})$	$1~(-17^{\circ}\mathrm{C})$

Tabelle 3.2: Zusammenfassung der Eigenschaften der verwendeten CCDs in GSH (Mugrauer 2009; Mugrauer und Berthold 2010; Mugrauer 2011, in prep.).

3.3 Ziele der Arbeit

Ziel dieser Arbeit ist es, Variabilität auf verschiedenen Zeitskalen in einem Feld am Rande des Plejadenhaufens zu untersuchen. Dazu wurde dieses Feld in mehreren Dutzend Nächten in drei aufeinander folgenden Jahren beobachtet, meist im R-Band.

Es sollte insbesondere nach bedeckenden Doppelsternen gesucht werden einschliesslich Brauner Zwerge oder gar (Transit-)Planeten als bedeckende Begleiter von Sternen, möglichst natürlich von Plejaden-Mitgliedern. Bedeckende Doppelsterne sind (fast immer) auch doppel-linige spektroskopische Doppelsterne, so dass man die Massen beider Objekte direkt dynamisch mit dem Dritten Keplergesetz bestimmen kann. Dazu benötigt man zusätzlich zur Lichtkurve auch Spektren. Bei allen bedeckenden Doppelsternen und Transit-Planeten kann man auch deren Radien messen. In den Plejaden ist mit PPl 15 ein spektroskopischer doppelter Brauner Zwerg bekannt, der aber nicht bedeckend ist.

Neben bedeckenden Systemen sollte auch nach Rotations- und Pulsationsperioden und Flares gesucht werden. Flares sind eine geeignete Methode, um nach sehr massearmen Haufen-Mitgliedern zu suchen, insbesondere vom Spektraltyp M.

Unsere Aufnahmen wurden im R-Band gemacht, da wir damit auch massearme rote Sterne gut detektieren konnten. Wir haben ja in den Daten nicht nur nach Variabilität gesucht, sondern sie auch aufaddiert, um damit nach neuen Braunen Zwergen zu suchen (Eisenbeiss, Moualla et al. 2009), komplementär zur Flare-Stern-Suche.

Wir wollen zudem untersuchen, ob die Häufigkeit und Amplituden von Flares im R-Band vergleichbar ist mit der in blaueren Bändern wie U und B.

3.4 Beobachtungen in Großschwabhausen

Im Rahmen dieser Arbeit wurde ein Feld (Abbildung 3.3) am Rand des Plejadenhaufens untersucht. Die Koordinaten des Zentrums dieses Feldes sind $\alpha = 3h$ 42m 21s und $\delta = +25^{\circ}$ 36' 54"

Abbildung 3.3: Plejadenfeld aufgenommen in GSH mit der STK (52.8 x52.8') im R-Filter mit 90s Belichtungszeit. Norden ist oben und Osten ist links.

In Abildung 3.4 ist die Position des Feldes, das große Feld oben rechts, innerhalb des Plejadenhaufens gezeigt. Die roten Sterne markieren die hellsten Objekte und ein Kreuz zeigt das Zentrum des Haufens.

Dargestellt sind ebenfalls mehrere kleine Felder, die schon auf sub-stellare Objekte bzw. braune Zwerge (engl. *Brown Dwarfs*, kurz BDs) untersucht wurden. Offene Kreise stehen für gefundene Braune-Zwerg-Kandidaten. Darunter befinden sich die ersten gefundenen braunen Zwerge im Plejadenhaufen wie Teide1 (Zapatero Osorio u. a. 1999).

Das Feld wurde gewählt, weil es bisher kaum per CCD beobachtet wurde und mehrere Plejadenmitglieder enthält, sich aber weit weg von den hellen Quellen im Feld befindet. Das Feld wurde häufig beobachtet, um zwei Studien zu betreiben: Suche nach Braunen Zwergen in aufaddierten Bildern (Eisenbeiss u. a. 2009) und Variabilität aller Feldobjekte (diese Arbeit).

Das Feld wurde im Zeitraum März 2007- Anfang 2010 mit der CCD-Kamera CTK beobachtet. Dafür wurde hauptsächlich der Johnson R-Filter verwendet, weil unser CCD-Chip im R-Band am empfindlichsten ist.

Im Zeitraum August-September 2008 wurden auch Daten im I-Band aufgenommen, um

Abbildung 3.4: Das untersuchte Plejadenfeld (rechts oben) innerhalb des Plejadenhaufens (Zapatero Osorio u. a. 1999).

mit der (R-I)-Farbe rote Sterne zu detektieren, die man bei der Suche nach braunen Zwergen verwenden kann (Eisenbeiss u. a. 2009).

Die neue Schmidt-Teleskop-Kamera bzw. STK wurde seit dem Anfang 2009 an der Beobachtungsstation des AIU in GSH betrieben, deswegen wurden zusätzliche Daten mit dieser Kamera im Zeitraum September 2009 - März 2010 und August-Oktober 2010 aufgenommen. Meistens wurden beide Kameras (CTK (später CTKII) und STK) gleichzeitig verwendet.

Die Belichtungszeit der Aufnahmen des Feldes wurde so festgelegt, dass sich viele Sterne im oberen Count-Bereich befinden (über 30 000 Counts) und keine oder möglicht wenig Sterne saturiert (< 65 000 Counts) sind. Es wurden verschiedene Belichtungszeiten ausprobiert, wobei sich 60s als optimal herausgestellt hat, da relativ wenige Sterne (bei gleichzeitig gutem Fluss der übrigen) saturiert sind.

Diesselbe Belichtungszeit (60s) wurde später auch mit der STK verwendet. Aufgrund des höheren Flusses und der Qualität der STK-Bilder im Vergleich zu denen der CTK, wurde eine Belichtungszeit von 360s für die CTK und CTKII verwendet, um die schon mit der STK mit 60s Belichtungszeit gefundenen interessanten Objekte abzubilden.

Im Zeitraum August-Oktober 2010 wurden andere Belichtungszeiten verwendet: Da es einen neu gefundenen leuchtschwachen bedeckungsveränderlichen Stern gab, wurde die Belichtungszeit mit der STK um 30s erhöht und statt 60s eine neue von 90s verwendet.

Dann wurden Sequenzen bzw. Zeitreihen gestartet, um die Variabilität der Objekte über mehrere Stunden messen zu können.

Die RTK wurde nicht benutzt, da ihr Gesichtsfeld zu klein ist.

Die Anzahl der Aufnahmen lag im Bereich von etwa 80 bis 250 Aufnahmen pro Nacht. Das war natürlich wetterabhängig.

	Datum	Kamera	Filter	Belichtungszeit	Anzahl der Bilder	Uhrzeit		
				[Sekunden]		[UT]		
1	11.03.2007	CTK	R	60	91	18.24-21.02		
2	12.03.2007	CTK	R	60	89	18.24-20.43		
3	13.03.2007	CTK	R	60	93	18.25-20.54		
4	14.03.2007	CTK	R	60	79	18.32-20.35		
5	15.03.2007	CTK	R	60	74	18.50-20.46		
6	26.03.2007	CTK	R	60	29	19.13-20.02		
7	27.03.2007	CTK	R	60	39	19.01-20.00		
8	04.04.2007	CTK	R	60	26	18.54-19.36		
9	25.09.2008	CTK	Ι	60	109	00.56-03.47		
10	27.09.2008	CTK	Ι	60	136	23.42-04.01		
11	28.09.2008	CTK	Ι	60	147	22.07-02.55		
12	07.10.2008	CTK	Ι	60	60	22.26-23.55		
13	11.10.2008	CTK	Ι	60	61	02.50-04.19		
14	18.10.2008	CTK	Ι	60	22	23.47-00.18		
15	22.10.2008	CTK	Ι	60	107	02.03-04.54		
16	23.10.2008	CTK	Ι	60	110	21.47-00.34		
17	25.10.2008	CTK	Ι	60	62	01.35-03.08		
18	18.01.2009	CTK	R	60	63	00.08-01.40		
19	17.03.2009	CTK	R	60	82	19.55-21.55		
20	18.03.2009	CTK	R	60	33	19.41-20.29		
21	19.03.2009	CTK	R	60	70	18.58-20.41		
22	21.03.2009	CTK	R	60	33	21.11-21.59		
23	31.03.2009	CTK	R	60	36	19.04-19.56		
24	18.09.2009	CTK/STK	R	60/60	76/96	01.50-03.43		
25	19.09.2009	CTK/STK	R	60/60	141/175	00.16-03.45		
26	21.09.2009	CTK/STK	R	60/60	161/161	22.41-01.51		
27	24.09.2009	CTK/STK	R	60/60	115/142	01.01-03.51		
28	26.09.2009	STK	R	60	53	02.56-03.59		
29	19.10.2009	STK	R	60	111	20.18-22.30		
30	20.10.2009	STK	R	60	178	20.05-04.13		
31	30.10.2009	CTK/STK	R	60/60	196/243	23.09-04.50		
32	06.11.2009	CTK/STK	R	180/60	24/95	00.45-02.55		
33	14.11.2009	CTK/STK	R	180/60	55/91	01.02-04.33		
34	19.11.2009	CTK	R	180	169	18.04-03.49		
35	22.11.2009	CTK	R	180	37	23.29-01.36		
36	26.11.2009	CTK	R	180	14	02.58-03.48		
37	27.11.2009	CTK	R	180	5	21.15-21.35		
38	04.12.2009	CTK	R	180	76	22.31-02.52		
39	07.12.2009	CTK	R	180	4	18.46-18.57		
Wird auf der nächsten Seite fortgesetzt								

Eine ausführliche Beschreibung der Beobachtungen des Plejadenhaufens in GSH ist in der folgenden Tabelle dargestellt. (Datum ist für Beginn der Nacht).
	Datum	Kamera	Filter	Belichtungszeit	Anzahl der Bilder	Uhrzeit
				[Sekunden]		[UT]
40	09.12.2009	CTK	R	180	46	18.52-22.43
41	04.01.2010	CTK	R	180	44	23.23-01.53
42	05.01.2010	CTK	R	180	46	16.44-19.23
43	07.01.2010	CTK	R	180	75	17.00-00.13
44	16.01.2010	CTK	R	180	10	19.20-19.52
45	03.02.2010	CTK/STK	R	180/60	26/74	20.42-22.12
46	16.02.2010	CTK/STK	R	180/60	70/206	18.41-22.53
47	20.02.2010	CTK/STK	R	180/60	41/120	20.05-22.30
48	24.02.2010	CTK/STK	R	180/60	41/140	19.27-22.13
49	02.03.2010	CTK/STK	R	180/60	14/41	22.21-23.09
50	03.03.2010	CTK/STK	R	180/60	24/60	20.37-22.00
51	06.03.2010	CTK/STK	R	180/60	4/11	20.40-20.52
52	07.03.2010	CTK/STK	R	180/60	18/58	18.13-19.34
53	23.03.2010	CTK/STK	R	180/60	36/74	18.44-20.49
54	21.08.2010	STK	R	90	72	01.10-03.10
55	11.09.2010	STK	B/V/I	360/180/50	10/10/10	00.54-02.32
56	13.09.2010	CTKII/STK	R	180/90	61/111	23.21-02.29
57	15.09.2010	CTKII/STK	R	180/90	42/75	23.00-02.31
58	17.09.2010	CTKII/STK	R	180/90	102/198	22.21-03.55
59	18.09.2010	CTKII/STK	R	180/90	36/75	00.32-03.50
60	20.09.2010	STK	R	190	221	21.59-04.11
61	21.09.2010	STK	R	190	219	21.58-04.11
62	22.09.2010	STK	R	190	210	21.59-03.53
63	23.09.2010	STK	R	190	96	01.06-03.47
64	05.10.2010	CTKII/STK	R	180/90	29/54	22.09-23.39
65	08.10.2010	STK	R	90	134	21.12-01.00
66	09.10.2010	STK	B/V/I	360/180/50	10/20/20	01.55-04.21
67	10.10.2010	STK	B/R	360/90	10/88	21.00-04.20
68	11.10.2010	STK	R	90	28	21.06-21.52
69	13.10.2010	STK	R	90	92	20.06-22.41
70	17.10.2010	STK	R	90	239	20.31-03.14
71	20.10.2010	STK	R	90	114	20.39-01.12
72	21.10.2010	STK	R	90	280	20.31-04.24
73	22.10.2010	STK	R	90	230	20.29-02.57
74	28.10.2010	STK	R	90	222	19.21-03.02
75	02.11.2010	STK	R	90	79	20.00-22.34
76	09.11.2010	STK	R	90	88	19.05-21.37
Insgesamt	76 Nächte				8723 Bilder	

Tabelle 3.3: Darstellung der Beobachtungen des Plejadenfeldes in der Beobachtungsstation GSH.

3.5 Datenreduktion in der Theorie

Aufgrund der Eigenschaften der CCD Detektoren müssen die additiven Terme des Dunkelstroms und der Ausleseelektronik aus den aufgenommenen Daten bzw. Rohdaten korrigiert werden, bevor man sie auswertet.

Jedes Pixel eines CCD reagiert unterschiedlich auf die ankommenden Photonen, zusätzliche Elektronen können durch den Einfall hochenergetischer Strahlung aus dem Weltraum auf dem CCD-Detektor freigesetzt werden.

Die STK- und die CTKII Bilder haben auf der rechten Bildseite 50 Pixel breite Streifen, den sogenannten Overscan, die Informationen über den *Bias* enthalten. Bei dem Bias handelt es sich um ein Bild, welches mit einem geschlossenen Shutter und einer Belichtungszeit von 0s aufgenommen wird, um nur den Einfluss der Ausleseelektronik messen zu können. Man korrigiert bei Subtraktion eines Bias-Bildes vom Rohbild dieses Rohbild durch das zugrunde liegende Rauschlevel.

Ein kleines Program wurde für diese Korrektur und die Abschneidung der Streifen geschrieben (Siehe Anhang A.3).

Um die Daten weiter zu kalibrieren, benötigt man noch zwei wichtige Kalibrationsbilder, die man zusätzlich zu den Feldbildern am gleichen Tag der Beobachtung aufnehmen muss. Diese sind Dark und Flat-Field (jeweils Median aus mehreren Bildern).

Jedes Material weist bei einer bestimmten Temperatur über dem absoluten Nullpunkt thermisches Rauschen auf. Ist die thermische Bewegung groß genug, dann können einzelne Elektronen die Halbleiter-Bandlücken überspringen. Dadurch findet also auch ohne Lichteinfall ein geringer Stromfluss statt. Es handelt sich um den sogenannten Dunkelstrom. Eine Aufnahme des Dunkelstroms heißt *Dark*. Da dieser Dunkelstrom wie das Ausleserauschen statistisch verteilt ist, schlägt er sich als Rauschen im Bildsignal nieder und erzeugt einen zusätzlichen Fehler.

Die CCD-Kameras werden so tief gekühlt, dass die Zahl der thermischen Elektronen so gering wie möglich bleibt. Das erfolgt entweder mit flüssigem Stickstoff auf etwa -100°C oder mit der thermischen Kühlung mit Hilfe eines Peltier-Elements auf -20 bis -50°C. Je tiefer die Temperatur ist, desto kleiner ist der Dunkelstrom und das dadurch bedingte Rauschen.

Unter Kühlung mit flüssigen Stickstoff ist der Dunkelstrom so gering, dass man ihn vernachlässigen kann. Die thermoelektrischen Systeme kühlen aber nicht genug, so dass der Dunkelstrom ein Teil des Bildes ist.

Um zu vermeiden, dass das thermische Rauschen das Signal beeinflusst, nimmt man ein Dark mit der gleichen Belichtungszeit wie der des Feldes, aber bei geschlossenen Shutter, auf. Wenn der CCD-Chip beider Aufnahmen bzw. Feld- und Dark-Aufnahme diesselbe Temperatur hat, ergibt sich für beide Bilder der gleiche Dunkelstrom. Dieses Dark muss dann von den Feldaufnahmen subtrahiert werden. Das zweite Kalibrationsbild ist das sogenannte *Flat-Field* (kurz *Flat*). Da die Pixel eines CCD unterschiedliche Quantenausbeuten und geringfügig verschiedene Gains im Vergleich zu einander besitzen, braucht man eine Flat-Field-Aufnahme, um die verschiedenen Reaktionen der einzelnen Pixel auszugleichen.

Die meisten Sternwarten haben in der Kuppel einen speziellen Flat-Field-Schirm, der in einer Farbe gestrichen ist, die das Licht aller Wellenlängen so gleichmäßig wie möglich reflektiert. Eine Aufnahme von dem angestrahlten Schirm ist das sogenannte *Domeflat*. Die Kalibration erfolgt auch mittels sogennanter *Skyflats*. Diese sind Aufnahmen des wolkenfreien Himmels in der Dämmerung. In dieser Arbeit wurden die zwei schon beschriebenen Flats bzw. Domeflats und Skyflats für die Datenreduktion verwendet.

Die Hauptaufgabe des Flat-Field Bildes ist die Korrektur der Pixel-zu-Pixel-Schwankungen. Um das Feldbild um die Pixel-zu-Pixel-Schwankungen zu korrigieren, muss man ein Flat im gleichen Filter des Feldes aufnehmen, von dem schon ein Dark mit der gleichen Belichtungszeit dieses Flats subtrahiert wurde. Das Flat muss auch normiert werden, d.h. die normal reagierenden Pixel bekommen den Wert 1, die zu stark reagierenden Pixel bekommen einen Wert größer als 1 und die zu schwach reagierenden einen Wert kleiner als 1.

Dividiert man nun die Feld-Aufnahme durch das normierte Flat, dann werden alle Pixel des Feldbildes auf die gleiche Sensitivität gebracht. Gleichzeitig werden die Vignettierungen in den Ecken und Absorption durch Staub korrigiert.

Zusammenfassend benötigt die Datenreduktion vier Kalibrationsbilder, nämlich ein Bias (B), ein Dark (D_1) mit der gleichen Belichtungszeit des Feldes, ein weiteres Dark (D_2) mit der gleichen Belichtungszeit des Flats, ein Flat (F) im gleichen Filter wie das Feld und natürlich das Rohbild (O).

Der mathematischen Vorgang der Reduktion kann durch die folgende Gleichung:

Reduziertes
$$Bild = \frac{(O-B) - (D_1 - B)}{\|(F-B) - (D_2 - B)\|}$$
 (3.1)

zusammengefasst werden.

Dabei steht || || für die Flat-Normierung.

Das Dark enthält nicht nur Informationen über den Dunkelstrom, sondern auch über das Bias-Level. Dadurch vereinfacht sich die letzte Gleichung zur folgenden:

Reduziertes
$$Bild = \frac{(O - D_1)}{\parallel (F - D_2) \parallel}$$
 (3.2)

3.6 Datenreduktion mit MIDAS

Die Datenreduktion, die im Rahmen dieser Arbeit nötig ist, wurde mit dem Programm MIDAS (Munich Image Data Analysis System) durchgeführt. Es wurde durch die ESO (European Southern Observatory) entwickelt und stellt allgemeine Befehle für Bildbearbeitung, Datenreduktion und einschließlich spezielle Reduktionspakete für ESO Instrumente am La Silla Observatorium in Chile zur Verfügung.

Im folgenden werden alle Schritte der Datenreduktion mit MIDAS erklärt.

Da Midas nur BDF (Bitmap Distribution Format) Format akzeptiert, müssen erst alle FITS (Flexible Image Transport System) Dateien in BDF-Format umgewandelt werden, dies geschieht durch den Befehl:

$$INDISK/FITS$$
 $Bild.fits$ $Bild.bdf$ (3.3)

Bild steht für ein Feldbild, ein Flat oder ein Dark.

Um zu gewährleisten, dass kein verfälschendes Signal in den Daten vorhanden ist, wurden jeweils mehrere Darks und Flats aufgenommen und zu einem so genannten Masterdark oder Masterflat, jeweils der Median der Einzelbilder, zusammengefasst. Das Masterdark kann durch die folgenden Befehle:

$$CREAT/ICAT$$
 Dark $60s * Dark * 60s * bdf$ (3.4)

$$READ/ICAT$$
 Dark 60s.cat (3.5)

$$AVERAGE/IMAGE \quad Dark_{60s}Median.bdf = Dark_{60s.cat}$$

av option = Median (3.6)

$$LOAD/IMAGE \quad Dark_{60s} Median.bdf \quad cuts = f, sig$$
 (3.7)

erzeugt werden.

Der erste Befehl (3.4) erzeugt einen Katalog (ICAT = Image Catalog) von allen Dark-Aufnahmen, die mit 60s Belichtungszeit aufgenommen wurden. Man kann den erzeugten Katalog durch den zweiten Befehl (3.5) anschauen. Der Median kann durch den dritten Befehl (3.6) bestimmt werden. Mit dem vierten Befehl (3.7) kann schließlich das erhaltene Medianbild bzw. Masterdarks angeschaut werden.

Das gleiche Verfahren wurde für die zweiten Dark-Aufnahmen mit der gleichen Belichtungszeit der Flats durchgeführt.

Ein Himmelflat bzw. Skyflat enthält Sternspuren, sowie Spuren von hellen Quellen sowie Partikeln kosmischer Strahlung, deswegen wurden mehrere Flats aufgenommen. Um diese Spuren zu entfernen, werden sie erst auf den selben Mittelwert normiert und dann mittels Median zu dem Masterflat zusammengefasst.

Zuerst muss das thermische Rauschen aus den Flats entfernt werden, dazu benötigt man das zweite Masterdark mit der gleichen Belichtungszeit des Flats. Dies wird mit dem Befehl:

$$COMPUTE/IMAGE \quad Flat_001_R_10s_Dark.bdf = (Flat_001_R_10s.bdf) - (Dark_10s_Median.bdf)$$
(3.8)

erzeugt.

Das erhaltene Bild kann nun normiert werden

$$STATISTIC/IMAGE Flat_001_R_10s_Dark.bdf$$
 (3.9)

Durch diesen Befehl erhält man Informationen über die Eigenschaften des Bildes. Beim Dividieren durch den Mean des Bildes erhält man ein normiertes Bild

$$COMPUTE/IMAGE \quad Flat_001_R_10s_Dark_Norm.bdf = (Flat \ 001 \ R \ 10s \ Dark.bdf)/Mean$$
(3.10)

Das gleiche Verfahren erfolgt ür alle Flat-Aufnahmen.

Ähnlich wie bei den Masterdarks erhält man das Masterflat

$$Flat_001_R_10s_Dark_Norm_Median.bdf$$
 (3.11)

Abschließend wird durch den letzten Befehl ein kalibriertes Bild berechnet.

$$COMPUTE/IMAGE \quad Feld_001_R_60s_cal.bdf =$$

$$\frac{(Feld_001_R_60s.bdf) - (Dark_60s_Median.bdf)}{(Flat_001_R_10s_Dark_Norm_Median.bdf)}$$
(3.12)

Dabei steht cal für Kalibriertes Bild.

So wird schließlich ein reduziertes Bild erhalten. Das gleiche Verfahren wurde auf alle Feld-Aufnahmen aus jeder Nacht angewendet.

Die Darks und Flats wurden jede Nacht aufgenommen und in der Datenreduktion verwendet. Flats wurden mit verschiedenen Belichtungszeiten aufgenommen. Die für diese Arbeit verwendeten Flats lagen im Bereich von 10 bis 30s.

Kapitel 4

Datenauswertung und Datenanalyse

Nach der Datenreduktion kann man sich nun der bestmöglichen wissenschaftlichen Auswertung zuwenden.

Dafür wurden drei Photometrie-Programme und ein *plot-stars*-Programm angewendet. In diesem Kapitel werden die Vorgehensweise bei der Datenauswertung erklärt und auf die einzelnen Programme eingangen.

4.1 Photometrie

Als Photometrie bezeichnet man den Prozess der Helligkeitsmessung von Sternen und Himmelshintergrund. Photometrie kann mittels verschiedener Methoden durchgeführt werden.

Bei der *differentiellen Photometrie* misst man den Helligkeitsunterschied zwischen einem Stern und einem oder mehreren konstanten Sternen im gleichen Feld.

Um die scheinbare Helligkeit eines Sterns genau zu messen, muss man die Extinktion in der Erdatmosphäre berücksichtigen. Dazu braucht man so genannte Standardsterne, deren scheinbare Helligkeiten in den verwendeten Filtern bekannt sind. Diese Methode heißt *absolute Photometrie*.

Im Fall eines dicht gefüllten Feldes, wo man das Licht von nahe beieinander stehenden Sternen nicht gut trennen kann, kommt die PSF - Photometrie zum Eisatz.

Es wird von einigen Sternen im Bild die PSF (Punktbildfunktion, engl. Point Spread Function) bestimmt und daraus eine Master-PSF für das Bild erstellt. Die erhaltene Master-PSF wird an alle Sterne im Feld gefittet und aus dem Fit die Helligkeit aller Sterne im Bild bestimmt.

Da das Plejadenfeld nicht so dicht ist und es um Variabilität geht, wurde hauptsächlich die differentielle Photometrie in dieser Arbeit verwendet.

4.2 Differentielle Photometrie

Die differentielle Photometrie kann durch das so genannte *Blenden*- oder *Apertur*-Verfahren durchgeführt werden. Dabei wird der Fluss des Sterns mit dem Himmelshintergrundfluss verglichen.

Bei der Apertur-Verfahren werden die Sterne von einer Apertur (Abbildung 4.1) umfangen, die drei Kreise besitzt.

Abbildung 4.1: Eine Messapertur mit ihren drei Kreisen um einen Stern.

Die Sternhelligkeit wird durch den inneren Kreis der Apertur, der den Stern umfasst, bestimmt. Der Radius dieses Kreises wurde als das zwei- bis dreifache der Halbwertsbreite (engl. Full Width at Half Maximum, kurz FWHM) des mittelhellen Sterns gewählt, um alles Licht des Sterns messen zu können. Der äußere Kreisring bzw. die Hintergrundapertur schließt eine sternenleere Fläche ein, in der der Fluss des Himmelshintergrunds gemessen wird. Dieser äußere Kreis soll nahe genug am Stern liegen, um den Fluss des Hintergrunds im Bereich des Sterns messen zu können, aber weit genug vom Stern entfernt, um das Streulicht des Sterns zu vermeiden. Diese äußere Fläche wird in Segmente geteilt, sodass alle hellen zu anderen Sternen gehörigen Pixel aussortiert werden und aus den übrigen der Median bestimmt wird. Der Hintergrundfluss wird vom Sternfluss abgezogen. Die Radien müssen für alle Sterne im Feld gleich sein.

Die instrumentelle Magnitude des Sterns wird dann mittels

$$m_{Stern} - m_{Hintergrund} = -2.5 \log \left(\frac{F_{Stern}}{F_{Hintergrund}} \right)$$
(4.1)

bestimmt, wobei F und m Fluss beziehungsweise Magnitude kennzeichnen.

4.3 Source Detection mit GAIA

GAIA (Graphical Astronomy and Image Analysis) ist eine interaktive astronomische Bildanzeige und ein Analyseprogramm, welches die astrometrische Kalibration, automatische Objektedetektion, Apertur- und Optimal-Photometrie macht .

GAIA akzeptiert Bilder mit unterschiedlichen Datenformaten, insbesondere FITS- (Flexible Image Transport System) Bilder. Da die kalibrierten Bilder im BDF-Format (Bitmap Distribution Format) bereitgestellt werden, müssen sie in das FITS-Format umgewandelt werden. Dies geschieht durch den MIDAS-Befehl

```
OUTDISK/FITS Image.bdf Image.fits (4.2)
```

Aus der Konsole kann man nun ein GAIA Display öffnen.

Der Menüpunkt *Image – Analysis* (in der oberen Symbolleiste des GAIA-Displays) stellt mehrere Aufgaben zur Verfügung, aus denen man *Object Detection* wählen kann. So erhält man ein neues Display (Abbildung 4.2) mit verschiedenen Parametern, welche die Detektion beeinflussen.

File	<u>O</u> ption	ıs				<u>H</u> elp		
)etectio	n image	:	NONE		Cho	ose file		
atalogu	e name:		GaiaCatalog0					
atalogu	e type:			ASCII —				
- Config parameters: 🛛			default.sex					
atalogu	ie param	neters:	default.param					
Ext	traction	Obiec	t size:	3				
Phot D	ometry etector	Thres	hold type:	Back	ground RMS			
Classi	fication	Detec	tion threshold:	1.5				
Isoph	ot Radii	Analy	sis threshold:	1.5				
Back	kground kimage	Detec	tion filter:	,	default	-		
Ca	talogue	Deble	nd thresholds:	64				
		Contr	ast parameter:	0.005				
		Clean	detections:	—				
		Clean	efficiency:	1.0	•			
Dete	ct objec	ts	Reset All Page	es Res	et Page	Close		
						2		
						5		

Abbildung 4.2: Eine Darstellung der Objektdetektion.

Die Parameter der Detektion wurden so gewählt, dass alle möglichen Objekte (auch sehr leuchtschwache) detektiert werden können. Die wichtigsten dieser Parameter werden im Folgenden kurz beschrieben.

 $(OBJECT \ SIZE = 3)$ Dies ist Objektsgröße in Pixeln, welche wichtig ist um wirkliche

Sterne von Störungen zu unterscheiden. Mehrere Werte im Bereich von eins bis fünf wurden durch Vergleich zur visuellen Detektion getestet. Bei Wahl der Wert 1 oder 2 detektiert GAIA noch hunderte Objekte, die entweder schlechte Pixel oder extrem leuchtschwache Objekte sind. Hingegen verliert man mit der Auswahl der Werte 4 und 5 hunderte Objekte, die wahrscheinlich gute mittelhelle Objekte sind. Mit der Auswahl des Wertes 3 konnte GAIA alle für diese Arbeit interessanten Objekte im Feld detektieren.

 $(DETECTION\ THRESHOLD = 1.5)$ Dieser Parameter bestimmt den Grenzwert der Detektion. Wählt man den Wert 1.5, dann wird die Grenze der Detektion auf 1.5 σ über den lokalen Hintergrund gesetzt. Alle Objekte, die über dieser Grenze liegen, gelten als Sterne, während die darunter liegenden als schlechte Pixel interpretiert werden. Wenn man zum Beispiel einen großen Wert im Bereich von 3 - 5 verwendet, dann werden nur wenige Objekte detektiert.

(APERTURE SIZE = 5) Dieser Wert gibt die Größe des inneren Kreises der Apertur an. Da die Objektgröße (OBJECT SIZE = 3) schon festgelegt wurde, muss die Größe des inneren Kreises größer als 3 sein, um alles Licht des Objektes messen zu können. Mehrere Werte, die größer als 3 sind, wurden getestet. Das beste Ergebniss wurde bei Wahl des Wertes 5 erreicht.

 $(SEEING\ FWHM=1.2$) Dies bezeichnet die mittlere FWHM (Full-Width at Half-Maximum) für die Bilder in Bogensekunden.

(DEBLEND THRESHOLD = 64) Diese Angabe beruht auf multi-Thresholding und funktioniert für alle Arten von Objekten, außer denen, die sehr nahe beieinander stehen und deren Profile keine Sattelflächen besitzen.

Abbildung 4.3: Ein Diagramm mit Deblending eines gemischten Objektes.

Abbildung 4.3 zeigt das Bereichsprofil des Objektes (einhüllende Kurve), das durch eine

Baumstruktur (starke Linien) beschrieben werden kann. Die Entscheidung, ob eine Ableitung als ein eindeutiges Objekt betrachtet werden kann oder nicht, hängt von seiner jeweiligen Stärke (getönter Bereich) ab. In diesem Fall spaltet sich das ursprüngliche Objekt in zwei Teile, A und B, auf. Die restlichen Pixel werden zu ihren wahrscheinlichsten Stammeltern vorwärts zugeordnet.

Es ist hier wichtig zu erwähnen, dass es keine allgemeingültigen Werte für GAIA-Parameter gibt. Man muss mit mehreren Werte experimentieren, um diejenigen zu finden, welche zu besten Ergebnissen führen.

Nach der Festlegung der Parameter kann GAIA alle vorhandene Sterne im Feld detektieren. Alle Objekte, die sehr nahe am Rand liegen, müssen außer Acht gelassen werden, weil die Apertur sie nicht umfassen kann. Auch die schlechten Pixel müssen entfernt werden. Mit der Aufgabe *Main X & Y Profiles* besteht die Möglichkeit zu prüfen, ob ein detektiertes Objekt ein Stern ist (Gauß-Profil).

Man erhält schließlich für jede Feld-Aufnahme eine GAIA-Tabelle (Abbildung 4.4) mit mehreren Parametern.

Abbildung 4.4: GAIA-Tabelle der detektierten Objekte im Feld.

4.4 Apertur-Photometrie mit MIDAS

Die instrumentellen Helligkeiten aller Feldobjekte in jedem Bild wurden mittels Apertur-Photometrie bestimmt.

Ein spezielles Programm für die Apertur-Photometrie (momo2.prg, siehe Anhang A.1)

wurde geschrieben. Das Programm benötigt die GAIA-Tabellen bzw. zwei wichtige Parameter, X_Image und Y_Image (die Koordinaten des Zentrums jedes detektierten Objektes im Feld) aller Sterne im Feld.

Zunächst muss man ein Referenzbild, in dem es die höchste Anzahl von Sternen gibt, für jede Nacht wählen. Zusätzlich braucht man ebenfalls einen Referenzstern, welcher folgende Bedingungen erfüllen muss: Er darf nicht sehr nah am Rand liegen, nicht sehr leuchtstark, leuchtschwach oder saturiert sein, sowie auf keinem schlechten Pixel liegen. Man muss den gleichen Referenzstern für jedes Bild wählen.

Dann kann das Programm (momo2.prg) gestartet werden. Es liest die GAIA-Tabellen bzw. die Koordinaten (X_Image, Y_Image) ein und sucht alle Sterne im Feld relativ zum Referenzstern und bestimmt die hintergrundsubtrahierten instrumentellen Magnituden aller detektierten Sterne im Feld mit den zugehörigen Fehlern. Dies erfolgt durch den folgenden MIDAS-Befehl:

```
MAGNITUDE/CIRCLE \ CURSOR \ DISPLAY \ @a \ @b \ @c (4.3)
```

Wobei zudem folgende Parameter zu spezifizieren sind:

a ist der Radius der inneren Apertur.

a+b ist der Radius der mittleren Apertur.

a+b+c ist der Radius der äußeren Apertur.

1idas 005 Table :	: READ/TABL re res_feld0053	es_feld0053.t .tbl	bl 01 02				
Sequence	XSTART		YSTART				
1 2	5.950000 2.780000	0000000e+02 00000000e+02	2.410000 9.130000	0000000e+02			
Sequence	XEND		YEND		MAGNIT	MAG_SI	
1 2	6.390000 3.220000	00000000e+02 00000000e+02	2.850000 9.570000	0000000e+02 0000000e+02	-10.23 -5.854	0.006 0.307	
Sequence	SKY	SKY_SIGMA	XCEN				
1 2	3.4994e+02 3.1116e+02	7.1212e+00 6.7366e+00	6.17000 3.00000	000000000e+02 000000000e+02			
Sequence	YCEN		MAGPIX	FLUX	JD_245	4443	
1 2	2.630000 9.350000	00000000e+02 00000000e+02	7.8600e+01 7.8600e+01	1.2414e+04 2.1964e+02		414 414	

Abbildung 4.5: Eine MIDAS-Tabelle einer Feld-Aufnahme.

Als Ergebnis erhält man neue Tabellen (Abbildung 4.5) mit mehreren Parametern, von dennen uns zwei wichtig sind. Die instrumentelle Magnitude (MAGNITUDE) aller detektierten Sterne im Feld und die zugehörigen Fehler (MAG_SIGMA) dazu.

4.5 Relative Photometrie

Die instrumentellen Magnituden aller Sterne im Feld wurden mit der Apertur- Photometrie bestimmt.

Wie bereits erwähnt, benötigt man für die differentielle Photometrie einen geeigneten Vergleichstern. Es ist jedoch oft schwerig einen solchen geeigneten Stern zu finden, da das Ergebnis durch unbekannte Veränderlichkeit dieses Vergleichsterns verfälscht werden kann.

Um einen geeigneten Vergleichstern zu finden, rechnet man so viele Sterne wie möglich zu einem künstlichen Vergleichstern zusammen.

Alle vorhandenen Sterne im Feld wurden hierfür verwendet. Sie wurden daher als CS (Comparison Star) Sterne bezeichnet. Die Berechnungen wurden mit dem Programm *Photometry* durchgeführt (Broeg u. a. 2005).

Das Programm besteht aus zwei Schritten. Im ersten Schritt wird festgelegt, welche Sterne konstant sind, dann wird ein gewichteter Mittelwert aller Vergleichssterne (CSs) gebildet. Die schematische Darstellung des Programms ist in Abbildung 4.6 gezeigt.

Abbildung 4.6: Der Ablauf des künstlichen-Vergleichsstern-Programms (Broeg u. a. 2005).

Alle Sterne werden auf ihre Konstanz in der Nacht analysiert und entsprechend gewichtet. Ein künstlicher Vergleichstern wird aus dieser Wichtung konstruiert. Seine Helligkeit gibt den Referenzwert für einen konstanten Stern vor. Und so wird die differentielle Magnitude aller Sterne als ihre Differenz zu diesem Vergleichstern bestimmt.

Nach dem ersten Durchlauf des Programms werden alle Vergleichssterne (CSs) aussortiert,

welche aufgrund von Verdunkelung durch Schleierwolken oder Drifts auf dem CCD-Chip nicht in jedem Bild sind. Saturierte Sterne und Sterne mit schlechten S/N besitzen ebenfalls nur eine sehr kleine Wichtung im Bereich von 10^{-10} bis 10^{-16} . Solche Sterne werden außer Acht gelassen. Variable Sterne mit genauen Messungen erhalten eine hohe Wichtung im Bereich von 10^{-4} bis 10^{-7} , während konstante Sterne eine Wichtung von 10^{-1} bis 10^{-2} besitzen.

Nach einem zweiten Durchlauf des Programms, nachdem die schwach gewichteten Sterne aussortiert wurden, erhält man, wie in Abbildung 4.7 gezeigt, *dphotR*-Tabellen mit den besten Objekten, nämlich konstanten und variablen Sternen.

star number:	1	Err_Obj	2	3	4	5	6
CS number:	Object		CS 1	CS 2	CS 3	CS 4	CS 5
std. dev.:	0.1023		0.1052	0.0568	0.0818	0.0252	0.0214
avg. error:	0.0051		0.0050	0.0218	0.0674	0.0072	0.0052
instr. mag: diff. mag: weights:	-15.6030 -3.1674		-15.6119 -3.1862 3.11E-3	-10.3698 2.0662 1.64E-4	-8.9029 3.5327 1.72E-5	-11.9731 0.4631 1.51E-3	-13.0854 -0.6517 2.88E-3

Abbildung 4.7: Die Ausgabe des Programms ohne die aussortierten Sterne. Die 5 Objekte könnten bei Betrachtung der Wichtung (weights) variable Sterne sein.

Die Absicht dieser Arbeit ist alle möglichen variablen Sterne im Feld zu finden. Aus diesem Grund wird das Programm *Photometry* nur einmal ausgeführt, damit keine Sterne aussortiert werden.

Genaue Details zum Programm findet man in Broeg u. a. (2005).

Bei mehreren Programmdurchlaufen hintereinander, nachdem man die aussortierten Sterne bei jedem Durchlauf entfernt, erhält man die besten Vergleichsterne mit den besten instrumentellen Magnituden. Mit dem Mittelwert dieser instrumentellen Magnituden kann die differentielle Magnitude des interessierenden Objektes bestimmt werden.

4.6 *Plot-Stars* Programm

Das Programm *Plot-Stars* (siehe Anhang A.1) wurde geschrieben, um die Lichtkurven von allen vorhandenen Sternen zu erzeugen, d.h differentielle Helligkeit gegen Beobachtungszeit plotten.

Es liest die aus dem Programm *Photometry* für relative Photometrie resultierenden Tabellen ein, normiert die differentiellen Magnituden auf eins und erzeugt schließlich die Lichtkurven aller Sterne.

Die Ausgabe beeinhaltet eine Datei, in der die Helligkeiten (mit ihren Fehlern) über die Zeit (Abbildung 4.8) aufgetragen werden.

Abbildung 4.8: Lichtkurve eines Bedeckungsveränderlichen Sterns im Plejadenfeld, aufgenommen am 21. 09. 2009 mit der STK-CCD mit 60s Belichtungszeit.

4.7 Photometrische Genauigkeit

Mit den vorhandenen Sternen im Plejadenfeld wurde ein Diagramm erstellt, in dem die Standardabweichung der einzelnen differentiellen Magnituden für jeden Stern über der weiter unten gemessenen scheinbaren Helligkeit der Sterne dargestellt ist. Daraus gewinnt man einen Überblick über die Qualität der Daten in bzw. für jede Nacht.

Abbildung 4.9: Photometrische Genauigkeit der Nacht (10.10.2010) mit der STK links, und der Nacht (04.01.2010) mit der CTKII rechts. STK erreicht ± 100 milli-mag rms bis R = 17 mag, CTK-II ± 100 milli-mag rms bis R = 16 mag.

Die photometrische Genauigkeit der STK für die photometrisch beste Nacht (10.10.2010) ist in Abbildung 4.9 gezeigt. Insgesamt gab es in dieser Nacht 3373 Sterne im Feld. Es

ergibt sich, dass acht Sterne eine photometrische Genauigkeit kleiner als 10 mmag besitzen. Des weiteren besitzen 1051 Sterne eine Genauigkeit zwischen 10 und 50 mmag. Sterne, welche sich weit oberhalb der einhüllenden Kurve befinden, sind entweder variable Sterne oder liegen sehr nah an einem helleren Stern, so dass der Fluss des helleren Sterns gemessen wurde.

Es ergeben sich in den anderen Nächten ähnliche Verteilungen der photometrischen Genauigkeit.

Für die CTK-Daten (Abbildung 4.9) war die Genauigkeit etwas schlechter. Von 1071 Sternen haben 302 Sterne eine photometrische Genauigkeit kleiner als 50 mmag.

Ein Histogramm (Abbildung 4.10) für die Variabilitätsamplitude wurde für die Daten der besten Nacht (10.10.2010) erzeugt, indem die Standardabweichung gegen die Anzahl der Sterne gezeigt ist.

Abbildung 4.10: Variabilitätsamplitude der 3373 Sterne im Feld in der Nacht 10.10.2010: etwa 31% sind nicht als variable Sterne erkannt wurden.

4.8 Periodensuche

An Hand der Lichtkurve kann man variable Sterne identifizieren. Nach der Identifikation eines Kandidaten, muss seine Periode bestimmt werden.

Die Auswertung mit dem Programm *Photometry* ist nur für Daten aus einer Nacht geeignet. Da das Programm für jede Nacht einen anderen Vergleichsstern erzeugt, können die Helligkeiten der Sterne über mehrere Nächte nicht direkt verglichen werden.

Um die Daten mehrerer Nächten miteinander in Verbindung zu bringen, muss man alle Nächte bzw. alle Magnituden auf die des Vergleichsterns der ersten Nacht anpassen. Dazu wurde der Median der Helligkeiten in jeder Nacht für die konstanten Sterne in der jeweiligen Nacht gebildet. Dann wurde für diese Sterne die Differenz der Mediane zwischen jeder Nacht und der ersten Nacht berechnet. Diese Differenz ergibt den Helligkeitsunterschied des künstlichen Vergleichsterns zwischen zwei Nächten. Schließlich wurde dieser Wert bzw. die Differenz zu den instrumentellen Magnituden aller Sterne der jeweiligen Nacht addiert bzw. subtrahiert. Dadurch werden alle Nächte auf den Vergleichstern der ersten Nacht angepasst.

Im Fall eines Bedeckungsveränderlichen entspricht die Periode der Zeit, in der beide Komponenten einmal um ihren gemeinsamen Schwerpunkt gedreht sind, Während sie bei einem rotierenden Sterns einer vollen Rotation um seine Rotationsachse entspricht.

Die Perioden wurden zum einen an Hand der Minimazeiten der Lichtkurve bestimmt und zum andern mit Hilfe der Methode der kürzesten Stringlänge.

4.8.1 Bestimmung über Minimazeiten

Durch Bestimmung der genauen Minimazeiten in der Lichtkurve kann man die Periode eines variablen Sterns ermitteln.

Sieht man in den Lichtkurven eines Sterns mehrere Minima (oder Maxima) der gleichen Tiefe und Form, dann kann die Periode dieses Sterns aus den Differenzen der Zeiten dieser Minima (oder Maxima) bzw. dem kleinsten gemeinsamen Vielfachen bestimmt werden. Die gefundene Periode kann aber ein Vielfaches der wahren Periode sein. Deswegen muss sie überprüft werden, indem man so viele Daten wie möglich aufnimmt, und andere Methoden für die Periodenbestimmung anwendet.

4.8.2 Methode der kürzesten Stringlänge (engl. Stringlength, SL)

Die Stringlength Methode beruht auf der Methode der kleinsten Quadrate (Lafler und Kinman 1965). Dabei wird die Summe der Quadrate vom Abstand benachbarter Datenpunkte bestimmt, nachdem die Datenpunkte mit einer Testperiode in Phase berechnet wurden. Die Testperiode mit der kleinsten Summe entspricht dann der wahren Periode. Burke u. a. (1970) entwickelte diese Methode weiter. Dabei werden alle Datenpunkte für viele Testperioden in Phase gefaltet. Die verwendeten Testperioden sollen größer als zweimal der Abstand zweier benachbarter Datenpunkte und kleiner als der Beobachtungszeitraum sein.

Die benachbarten Datenpunkte (φ_i, m_i) werden dann mit einer Linie verbunden. Die Länge der kompletten Kurve entspricht dann der Summe der Länge der Liniensegmente:

$$L = \sum_{i=0}^{n} [(m_i - m_{i-1})^2 + (\varphi_i - \varphi_{i-1})^2]^{\frac{1}{2}} + [(m_1 - m_n)^2 + (\varphi_1 - \varphi_n)^2]^{\frac{1}{2}}$$
(4.4)

 $m_k \dots$ Phase der k – ten Datenpunktes, $\varphi_k \dots$ Magnitude des k – ten Datenpunktes.

Dworetsky (1983) berechnete die zu erwartende Stringlänge L_0 ohne Berücksichtigung zufälliger Fehler. Für einen Sinus ergibt sich $L_0 = 1.4637$ und für einen Sägezahn ist L = 2. Unter Berücksichtigung, dass die verwendeten Daten fehlerbehaftet sind, kann die Stringlänge mittels:

$$L = L_0 + \delta L = L_0 + 0.34 \left(\varepsilon - \frac{\varepsilon^2}{2}\right) \left(n - \sqrt{\frac{10}{\varepsilon}}\right)$$
(4.5)

 $L \dots$ Stringlänge der Kurve durch die Messwerte,

 $\delta L \dots$ zufällige Fehler,

 ε ... mittlerer Messfehler,

n ... Anzahl der Beobachtungen,

bestimmt werden.

Mit der Stringlength-Methode können beliebige periodische Signale, wie z.B. Transits und Bedeckungsveränderliche analysiert werden.

Diese Methode hat aber den Nachteil, dass sie für wenige, verteilte Datenpunkte ungeeignet ist. Je größer die Anzahl der Datenpunkte ist, desto genauer ist die berechnete Periode.

Stringlength-Programm

Der von Christopher Broeg geschriebenen Algorithmus *Stringlength*, welcher auf dem Prinzip der kürzesten Stringlänge basiert, faltet die Beobachtungsdaten für verschiedene Testperioden, die innerhalb eines vom Benutzer angegebenen Periodenbereiches liegen, in Phase.

Das Programm gibt die minimale bzw. kürzeste Stringlänge des angegebenen Periodenbereiches mit der dazugehörigen Periode aus. Zusätzlich wird eine Datei (*sl.dat*) mit den Stringlängen aller möglichen Perioden, die man zur weiteren Untersuchung verwenden kann, ausgegeben.

In Abbildung 4.11 ist die berechnete Stringlänge für die Daten von

2MASS03391116+2522064 (siehe Kapitel 5.2.1.2) gezeigt.

Die minimale Stringlänge beträgt SL = 4.6919, was einer Periode von P = 0.41 Tagen entspricht.

Und so ergibt sich für den Stern 2MASS03391116+2522064 eine Periode von P = 0.41 Tagen.

```
2.455498616400000E+06 2.06220000000000E+00
2.455498617600000E+06 2.03940000000000E+00
2.455498618800000E+06 2.04430000000000E+00
2.455498619900000E+06 2.01360000000000E+00
2.455498621100000E+06 2.03690000000000E+00
2.455498622300000E+06 2.04780000000000E+00
2.455498623500000E+06 2.02530000000000E+00
2.455498624600000E+06 2.01690000000000E+00
2.455498625800000E+06 2.06710000000000E+00
2.455498627000000E+06 2.07290000000000E+00
---Harmonic mean of sampling:
   Nyquist Periode (minmale detektierbare): 0.00E+0 [t]
  Nyquist Frequenz (maximale): +Inf**** [1/t]
---Arithmetic mean Sampling:
                                        4.20E-1 [t]
   Nyquist Periode von:
                                          2.38E+0 [1/t]
   Nyquist Frequenz:
Eingabe von P1, P2: 0.1 0.5
minimum SL:
4.691973690479113E+01
minimum period:
4.101588134925843E-01
```

Abbildung 4.11: Ausgabe des Stringlenth-Programms auf dem Bildschirm.

Kapitel 5

Ergebnisse

In diesem Kapitel werden die im Rahmen dieser Arbeit erhaltenen Ergebnisse präsentiert. Erst werden die schon bekannten Sterne in unserem Plejadenfeld vorgestellt, dann werden die interessanten neu gefundenen Objekte präsentiert. Eine Liste für alle vorhandenen Sterne im Plejadenfeld mit den zugehörigen Helligkeiten, Farbinformationen, Spektraltypen und den Extinktionen wird ebenfalls präsentiert.

5.1 Bekannte Sterne im Plejadenfeld

Aufgrund seines jungen Alters bzw. seiner jungen Sterne wurde der Plejadenhaufen bereits von vielen Astronomen beobachtet und untersucht. Mit Hilfe von *SIMBAD* (the Set of Identifications, Measurements, and Bibliography for Astronomical Data) und den ALADIN Himmelsatlas kann man herausfinden, ob es sich um ein schon bekanntes Objekt handelt oder nicht.

Insgesamt wurden 118 bekannte Sterne, von denen 57 Plejadenmitglieder sind, im Feld gefunden. Die Eigenschaften dieser Sterne sind in drei Tabellen (5.1, 5.2 und 5.3) aufgeführt. Sie enthalten die Eigennamen, die Koordinaten, die zugehörigen Magnituden (im R- und I-Band) und Spektraltypen aus den Katalogen und aus unserer Photometrie, Hipparcosund Tychonummern sowie einige Bemerkungen. Diese verzeichneten Eigenschaften wurden aus verschiedenen Katalogen (2MASS Katalog (Cutri u. a. 2003), UCAC3 Katalog (Zacharias u. a. 2009), USNO-B1.0 Katalog (Monet u. a. 2003) und NOMAD-Katalog (Zacharias u. a. 2004)) entnommen.

Die ersten zwei Tabellen (5.1 und 5.2) fassen alle bekannten Sterne und die bekannten Plejadenmitglieder im Feld zusammen, während in der dritten Tabelle (5.4) nur die konstanten, bekannten Sterne eingetragen sind, mit denen der Nullpunkt des Detektors bestimmt wurde.

	Sternname	RA(J2000.0)	Dec(J2000.0)	Hip	Tycho	Bemerkungen
		[h m s]	[°′″]			Simbad
1	V494 Tau	03 42 08.80	+25 45 24.0			variabler Stern
2	Melotte 22-HHJ 342	03 41 54.30	+25 43 48.0			Plejadenmitglied
3	Melotte 22-DH 210	03 42 04.85	+25 39 48.0			Plejadenmitglied
4	Melotte 22-DH 209	03 42 04.70	+25 53 09.1			Plejadenmitglied
5	LL Tau	03 42 06.00	+25 53 00.0			Flare-Stern
6	Melotte 22-DH 199	03 41 59.06	+25 55 15.1			Plejadenmitglied
7	Tyc-1803-1318-1	03 41 26.90	+25 50 47.1		1803-1318-1	Tycho Stern
8	Melotte 22-DH 164	03 41 10.26	+25 45 56.1			Plejadenmitglied
9	BD+25 592	03 42 42.00	+25 45 33.8		1803-313-1	Stern
10	HD 23075	03 43 06.52	+25 40 52.8		1803-387-1	Doppelsystem
	BD+25 593B	03 43 06.53	+25 41 06.3		1803-1587-1	
11	Tyc-1803-55-1	03 42 55.63	+25 39 44.3		1803-55-1	Tycho Stern
12	Tyc-1803-1423-1	03 42 50.20	+25 51 30.0		1803-1423-1	Tycho Stern
13	618 Tau	03 43 05.30	+25 44 39.0			variabler Stern
14	BD+25 596	03 43 22.57	+25 39 06.0		1803-1115-1	Stern
15	HD 23092	03 43 20.32	+25 35 58.4		1803-833-1	Stern
16	Melotte 22 AK-I-2-148-a	03 43 43.30	+25 44 00.0		1803-593-1	Plejadenmitglied
17	V 845 Tau	03 43 07.56	+25 34 29.1			Flare-Stern
18	V 1035 Tau	03 43 08.00	+25 37 00.0			Flare-Stern
19	V 622 Tau	03 43 34.15	+25 35 25.8			variabler Stern
20	Melotte 22 MT 36	03 43 11.50	+25 51 19.0			Plejadenmitglied
21	Tyc-1803-1059-1	03 43 05.06	+25 52 18.1		1803-1059-1	Tycho Stern
22	V 503 Tau	03 42 47.90	+25 54 58.0			Plejadenmitglied
23	HD 23132	03 43 38.94	+25 46 15.1		1803-377-1	Stern
24	Melotte 22 DH 276	03 43 36.69	+25 47 00.1			Plejadenmitglied
25	Melotte 22 SRS 79639	03 42 48.90	+25 43 29.0			Plejadenmitglied
26	BD+25 591	03 41 36.16	+25 37 09.5	17245	1803-1527-1	Plejadenmitglied
27	Melotte 22 HHJ 270	03 42 08.27	+25 37 00.1			Plejadenmitglied
28	V 1034 Tau	03 42 57.00	+25 31 00.0			Flare-Stern
29	Melotte 22 SRS 79717	03 42 43.80	+25 32 06.1			Plejadenmitglied
30	V 508 (708)Tau	03 43 11.00	+25 25 00.0			variabler Stern
31	Melotte 22 SK 650	03 43 11.60	+25 25 25.0			Plejadenmitglied
32	Melotte 22 MSH 17	03 43 04.40	+25 26 13.0			Plejadenmitglied
33	Melotte 22 SRS 79752	03 42 40.20	+25 27 00.0			Plejadenmitglied
34	Melotte 22 SSHJ G221	03 43 27.10	+25 23 16.0		1803-1406-1	Plejadenmitglied
35	Melotte 22 SK 622	03 43 35.20	+25 24 31.1			Plejadenmitglied
36	Melotte 22 HHJ 377	03 43 37.30	+25 24 33.0			Plejadenmitglied
37	Melotte 22 SK 656	03 42 57.00	+25 22 47.0			Plejadenmitglied
38	Tyc-1803-1248-1	03 43 25.27	+25 20 46.4		1803-1248-1	Tycho Stern
39	V 615 Tau	03 43 03.90	+25 20 17.0			variabler Stern
40	Melotte 22 SRS 78186	03 43 15.70	+25 20 30.0			Plejadenmitglied
41	Tyc-1803-1398-1	03 43 37.67	+25 19 54.1		1803-1398-1	Tycho Stern
42	V 425 Tau	03 43 36.40	+25 21 37.0			variabler Stern
43	HD 22915	03 41 41.51	+25 22 11.7		1803-1437-1	Stern
44	LHS 1579	03 41 34.52	+25 20 47.9			Stern hoher
						Eigenbewegung
45	KY lau	03 41 58.93	+25 19 44.1			Flare-Stern
46	Melotte 22 HHJ 117	03 41 24.60	+25 23 07.0			Plejadenmitglied
47	Melotte 22 DH 206	03 42 03.41	+25 22 39.1		1000 1	Plejadenmitglied
48	Tyc-1803-1487-1	03 42 00.37	+25 28 21.9		1803-1487-1	Tycho Stern
49	HD 23170	03 43 50.66	+25 16 08.3		1002 1077 -	Plejadenmitglied
50	Tyc-1803-1077-1	03 43 52.85	+25 17 05.4		1803-1077-1	Tycho Stern
51	Welotte 22 DH 300	03 43 56.6	+25 15 44.2			Plejadenmitglied
<u>э</u> ∠	IVIEIOLLE ZZ IVI I 44	103 UU 43.8U	+20 10 UU.U	rt geset-t		riejauenmitglied

	Sternname	RA(J2000.0)	Dec(J2000.0)	Hip	Tycho	Bemerkungen
		[h m s]	[° ′ ″]			Simbad
53	HD 23154	03 43 46.67	+25 24 48.0		1803-999-1	Pleiadenmitglied
54	Tyc-1803-947-1	03 43 48 45	$+25\ 26\ 05\ 4$		1803-947-1	Tycho Stern
55	MO Tau	03 43 53 87	$\pm 25 28 30 2$		1000 511 1	Flare-Stern
56	Melotte 22 DH 208	03 43 52 78	+25 20 30.5			Pleisdenmitglied
57	Melotte 22 DI 7 L 50	03 43 55 00	+25 29 30.5			Plaiadanmitglied
57	Melotte 22 MBSC 72	03 43 55.99	+25 30 25.5			Plaiadonmitglied
50		03 43 44.08	+25 39 49.7		1902 1005 1	Flejadellillitglied
59 60	Malatta 22 DH 204	03 43 55.15	+25 45 51.5		1803-1003-1	Disingermitalised
61	Melotte 22 DH 294	03 43 94.01	+25 45 40.0			Plejadenmitglied
62	NEW 1242	03 43 42.89	+25 51 37.2			Plejadenmitglied
62	Malatta 22 DU 207	03 43 44.00	+25 59 41.0			
64	Melotte 22 DH 267	03 43 47.07	+20 04 30.0			Plejadenmitglied
04	Melotte 22 DH 200	03 43 19.05	+26 04 44.1		1002 001 1	
65	Tyc-1803-981-1	03 43 24.54	+26 03 05.5		1803-981-1	Tycho Stern
66	V 619 Tau	03 43 26.19	+26 02 31.0		1000 507 1	Flare-Stern
67	Tyc-1803-537-1	03 43 12.54	+26 02 06.6		1803-537-1	Tycho Stern
68	V 434 Tau	03 42 56.65	+25 58 51.0			Flare-Stern
69	11 lau	03 40 46.30	+25 19 46.1	17181	1803-1582-1	spektroskopisches
						Doppelsystem
70	Tyc-1803-1023-1	03 40 45.71	+25 20 56.8		1803-1023-1	Tycho Stern
71	Melotte 22 MT 18	03 40 30.40	+25 21 43.0			Plejadenmitglied
72	Melotte 22 MT 17	03 40 27.80	+25 20 18.0			Plejadenmitglied
73	Melotte 22 SK 785	03 40 14.80	+25 19 20.0			Plejadenmitglied
74	Melotte 22 SK 750	03 40 54.66	+25 17 50.9			Plejadenmitglied
75	Melotte 22 MT 22	03 40 58.40	+25 17 43.0			Plejadenmitglied
76	Melotte 22 DH 129	03 40 11.03	+25 23 26.9			Plejadenmitglied
77	V 839 Tau	03 39 46.90	+25 25 43.0			Flare-Stern
78	LHS 1574	03 39 40.51	+25 28 47.7			Stern hoher
						Eigenbewegung
79	Melotte 22 MT 15	03 39 40.30	+25 29 08.0			Plejadenmitglied
80	LHS 1573	03 39 36.21	+25 28 20.3			Stern hoher
						Eigenbewegung
81	KR Tau	03 39 12.20	+25 14 50.0			variabler Stern
82	Melotte 22 DH 144	03 40 32.57	+25 28 41.0			Plejadenmitglied
83	Melotte 22 HHJ 343	03 40 23.10	+25 29 49.0			Plejadenmitglied
84	HD 22831	03 40 57.95	+25 27 54.1		1803-867-1	Stern
85	Tyc-1803-879-1	03 40 57.32	+25 36 29.7		1803-879-1	Tycho Stern
86	IRAS 03379+2526	03 40 55.50	+25 36 21.0			infrarot quelle
87	Melotte 22 SK 792	03 40 05.00	+25 31 38.0			Plejadenmitglied
88	Tyc-1803-1802-1	03 40 11.40	+25 37 59.7		1803-1802-1	Tycho Stern
89	Melotte 22 PELS 22	03 40 12.00	+25 00 38.6			Plejadenmitglied
90	NVSS J034035+253859	03 40 35.57	+25 39 00.6			Radioquelle
91	Melotte 22 DH 124	03 40 05.97	+25 40 21.2			Plejadenmitglied
92	Tyc-1803-1160-1	03 39 46.16	+25 39 15.4		1803-1160-1	Tycho Stern
93	Tyc-1803-1281-1	03 39 38.33	+25 34 13.5		1803-1281-1	Tycho Stern
94	Tyc-1803-1329-1	03 39 34.94	+25 41 52.5		1803-1329-1	Tycho Stern
95	BD+25 583	03 39 16.97	+25 33 33.8		1803-365-1	Stern
96	Тус-1803-793-1	03 39 09.90	+25 34 08.6		1803-793-1	Tycho Stern
97	Melotte 22 HHJ 359	03 39 29.00	+25 34 57.0			Plejadenmitglied
98	Melotte 22 MT 16	03 39 53.90	+25 45 44.0			Plejadenmitglied
99	BD+25 585	03 40 01.65	+25 48 35.8		1803-741-1	Stern
100	Melotte 22 DH 119	03 39 53.51	+25 46 46.1			Plejadenmitglied
101	Melotte 22 SK 781	03 40 14.79	+25 50 05.6			Plejadenmitglied
102	Melotte 22 DH 100	03 39 13 32	+25 43 49 8		1	Pleiadenmitolied
103	Tyc-1803-331-1	03 39 05 87	+25 48 27 6		1803-331-1	Tycho Stern
	,	Wird ouf day	nächsten Seite fo	rtaocotat		,

	Sternname	RA(J2000.0)	Dec(J2000.0)	Hip	Tycho	Bemerkungen
		[h m s]	[°′″]			Simbad
104	NLTT 11470	03 39 08.90	+25 58 43.8			Stern hoher
						Eigenbewegung
105	V 606 Tau	03 40 42.57	+25 42 19.8			Flare-Stern
106	Melotte 22 DH 164	03 41 10.26	+25 45 56.2			Plejadenmitglied
107	V 602 Tau	03 40 57.38	+25 50 58.2			Flare-Stern
108	Melotte 22 DH 148	03 40 40.31	+25 50 48.4			Plejadenmitglied
109	HD 22816	03 40 54.56	+25 53 24.3		1803-789-1	Stern
110	Тус-1803-575-1	03 41 07.58	+25 56 04.5		1803-575-1	Tycho Stern
111	HD 22850	03 41 09.21	+25 59 43.2		1803-431-1	Stern
112	Tyc-1803-595-1	03 41 21.10	+26 01 44.4		1803-595-1	Tycho Stern
113	Melotte 22 DH 153	03 40 49.89	+26 03 33.5			Plejadenmitglied
114	Melotte 22 SK 769	03 40 24.60	+26 03 26.0			Plejadenmitglied
115	Melotte 22 AK III-679	03 40 21.90	+26 04 20.0		1803-1096-1	Plejadenmitglied
116	Тус-1803-197-1	03 40 13.55	+26 03 13.7		1803-197-1	Tycho Stern
117	Tyc-1803-583-1	03 40 10.79	+25 54 00.1		1803-583-1	Tycho Stern
118	Melotte 22 DH 120	03 39 57.85	+25 55 29.9			Plejadenmitglied

Tabelle 5.1: Liste aller bekannten Sterne im Plejadenfeld (ohne Objekte, die nur bei 2MASS detektiert sind) mit ihren zugehörigen Eigenschaften, entnommen aus verschiedenen Katalogen (Simbad und Vizier).

Nur 42 Objekte besitzen Tychonummern, während zwei eine Hipparcosnummer haben. Mehrere Sterne im Feld besitzen keine Eigennamen, sondern nur eine Tychonummer. Daher wurden Sie als Tycho Sterne bezeichnet.

In der folgenden Tabelle 5.2 wurden die in Katalogen (Simbad und Vizier) gefundenen Daten für R, I und Spektraltyp angegeben sowie die hier von uns gemessenen Daten (GSH), die Extinktion A_V wurde selbst bestimmt (s.u.). Sterne, die heller als 10 bis 11 mag sind, sind bei uns überbelichtet.

	Sternname	R	I	R (GSH)	I (GSH)	SpT	SpT (GSH)	$A_v(GSH)$
		[mag]	[mag]	[mag]	[mag]			[mag]
1	V494 Tau	13.05	12.59	$12.962{\pm}0.013$	$12.314{\pm}0.014$		F3V	0.00
2	Melotte 22-HHJ 342	15.90	14.10	$15.664 {\pm} 0.022$	$13.878 {\pm} 0.012$		M3V	0.51
3	Melotte 22-DH 210	14.71	13.32	$14.681{\pm}0.015$	$12.842{\pm}0.101$		M3V	0.09
4	Melotte 22-DH 209	12.23	11.21	$12.101{\pm}0.015$	$11.294{\pm}0.011$		A7V	0.09
5	LL Tau	11.98	11.11	$11.942{\pm}0.016$	$11.335 {\pm} 0.012$		A7V	0.47
6	Melotte 22-DH 199	12.12	11.74	$12.113{\pm}0.013$	$11.337{\pm}0.009$		K4V	0.09
7	Тус-1803-1318-1	10.90	10.46					
8	Melotte 22-DH 164	16.50	14.79	$16.294{\pm}0.024$	$14.276{\pm}0.012$		M1V	0.90
9	BD+25 592	10.54	10.41			F8		
10	HD 23075	06.91	06.72			A9V		
	BD+25 593B	09.10	08.24			G5		
11	Тус-1803-55-1	11.96	11.80	$11.615 {\pm} 0.019$	$11.072{\pm}0.015$		B9V	0.10
12	Тус-1803-1423-1	10.90	09.92	$10.951{\pm}0.032$				
13	V 618 Tau	15.60		$16.415 {\pm} 0.033$	$14.562{\pm}0.018$		B0V	0.48
14	BD+25 596	10.39	10.11			G0		
15	HD 23092	09.38	09.15			G0		
16	Melotte 22 AK-I-2-148-a	10.77	10.63	11.061 ± 0.039				
17	V 845 Tau	16.76	14.90	$16.362{\pm}0.026$	$14.345{\pm}0.013$		M3V	0.60
18	V 1035 Tau	13.90	13.26	14.043±0.013	$13.402{\pm}0.010$		A7V	0.28
19	V 622 Tau	15.76	14.45	15.975±0.022	$14.048 {\pm} 0.016$		A7V	0.48
20	Melotte 22 MT 36	11.20	09.03					
		Wir	d auf der	nächsten Seite fo	ortgesetzt			

KAPITEL 5. ERGEBNISSE

Image Image Image Image Image Image Image 21 Tyc002-1059-1 11.10 16.68 15.41 15.773±0.020 15.501±0.015 G9V 0.19 23 HO 23122 06.28 06.31 Image Sol1±0.015 G9V 0.79 24 Moletic 22 DH 276 16.07 14.44 16.1961.020 15.472±0.046 Image Moletic 22 SFS 7970 16.80 Image 14.393±0.017 Image MdV 0.36 26 PD+25 SFS 7917 15.80 15.472±0.000 13.813±0.017 Image MdV 0.01 27 Meletic 22 SFS 7917 15.80 15.47 16.482±0.020 13.813±0.01 Image 0.01 28 Moletic 22 SFS 7917 15.80 15.03 15.754±0.013 15.282±0.021 Image MdV 0.01 29 Moletic 22 SFH 17 17.75 15.30 15.754±0.013 15.884±3.020 Image MJV 0.48 30 Moletic 22 SH 17 17.13 <t< th=""><th></th><th>Sternname</th><th>R</th><th>I</th><th>R (GSH)</th><th>I (GSH)</th><th>SpT</th><th>SpT (GSH)</th><th>$A_v(GSH)$</th></t<>		Sternname	R	I	R (GSH)	I (GSH)	SpT	SpT (GSH)	$A_v(GSH)$
12 Tyr-1002-1095-1 11.0 10.00 P P P 22 V 303 Taw 15.83 15.41 15.7734.020 15.5014.0135 GPV 019 24 Melotte 22 DH 276 16.07 14.44 15.0744.0033 M3V 0.24 24 Melotte 22 SKS 7639 17.34 17.29 15.0724.0046 T T 26 DE-25 S91 0.688 0.641 E E T 27 Melotte 22 SKS 769717 15.80 13.67 15.6471.0020 13.8131.0011 M4V 0.56 28 V 1034 Taw 15.80 13.67 15.6471.0020 13.8131.0011 M4V 0.66 29 Melotte 22 SKS 79717 15.80 13.75 15.6461.0027 15.80 0.82 0.83 31 Melotte 22 SK 672 15.90 14.10 15.7243.0016 M4Y 0.93 34 Melotte 22 SK 622 15.90 13.67 15.6461.001 15.8245.0027 M33V 0.151 36 </td <td></td> <td></td> <td>[mag]</td> <td>[mag]</td> <td>[mag]</td> <td>[mag]</td> <td></td> <td></td> <td>[mag]</td>			[mag]	[mag]	[mag]	[mag]			[mag]
12 14 15.73±0.020 15.50±0.015 C G9V 019 23 HD 23132 06.23 06.13 F8	21	Tyc-1803-1059-1	11.10	10.65					
23 HD 23132 08.28 08.13 F8 Mask 24 Malotte 22 SRF 3630 17.34 16.196±0.025 15.474±0.033 M3V 0.24 26 B0+25 591 09.88 09.41 16.702±0.664 27 Molette 22 SRF 3630 17.34 17.40 14.00 14.125±0.015 18.07 MAV 0.36 28 V 1034 Tau 14.00 14.125±0.012 13.813±0.011 M2V 0.60 29 Molette 22 SRF 57917 15.58 15.647±0.020 13.813±0.011 M2V 0.60 31 Malotte 22 SRF 50 16.57 14.65 16.042±0.024 14.415±0.027 MSV 0.48 33 Malette 22 SRF 579752 16.49 14.73 16.448±0.032 14.812±0.019 M3V 0.39 34 Malotte 22 SRF 57172 15.56 13.80 13.791±0.011 K7V 0.09 35 Tyr=1803.1248±1 11.31 10.62±0.030 14.812±0.010 M3V 0.51 36	22	V 503 Tau	15.83	15.41	15.773±0.020	$15.501{\pm}0.015$		G9V	019
24 Melotte 22 DH 276 16.07 14.44 16 196±0025 15.474±0033 M3V 0.24 25 Melotte 22 SFS 79639 17.34 17.29 16.702±0.064 1 3 3 0 1 3 3 1	23	HD 23132	08.28	08.13			F8		
25 Melotite 22 SHS 79639 17.34 17.29 16.702±0.064 Image: Constraint of the constrain	24	Melotte 22 DH 276	16.07	14.44	16.196±0.025	15.474±0.033		M3V	0.24
26 BD+25 591 0.9.8 09.41 P Mater MAV 0.36 27 Malotte 22 HHJ 270 16.70 14.60 16.712-10.01 13.93±0.017 MAV 0.36 29 V1034 Tau 14.00 14.125±0.015 13.13±0.011 MAV 0.01 29 Malotte 22 SK 579717 15.88 13.87 15.647±0.020 14.451±0.017 MAV 0.01 30 V 506 (70917au 15.30 17.544±0.021 18.13±0.011 MAV 0.01 31 Malotte 22 SK 575757 16.49 14.73 16.448±0.023 14.81±0.019 MAV 0.39 34 Malotte 22 SK 575757 16.49 14.73 16.464±0.011 13.66±0.012 M3V 0.51 35 Malotte 22 SK 5656 13.30 13.791±0.015 12.73±0.011 KTV 0.09 36 Ty-16.30±1248-1 11.31 10.85±0.016 CaV 0.15 40 Malotte 22 SK 578186 14.69 13.86±0.011 KTV 0.09 4	25	Melotte 22 SRS 79639	17.34	17.29		16.702 ± 0.064			
27 Melotte 22 HHJ 270 16.70 14.60 16.571±0.030 14.393±0.017 M4V 0.36 28 V 1034 Tau 14.00 14.125±0.015 13.501±0.015 BOV 0.01 29 Molette 22 SFS 79171 15.58 15.642±0.021 15.445±0.027 FPV 0.14 31 Melotte 22 SK 5020 16.27 14.66 16.185±0.023 14.127±0.011 M4V 0.01 32 Melotte 22 SK 5020 16.49 14.73 15.448±0.023 14.812±0.019 MMV 0.48 33 Melotte 22 SK 5021 11.00 1042 11.082±0.016 G2IV T 7 34 Melotte 22 SK 562 13.80 13.791±0.015 12.723±0.011 KTV 0.09 35 Melotte 22 SK 652 13.80 13.791±0.015 12.723±0.011 KTV 0.09 36 Tyc-1803-128±1 11.31 10.85 10.852±0.016 KTV 0.15 36 14.69 13.48 14.664±0.013 13.151±0.011 KT MU	26	BD+25 591	09.88	09.41					
28 V 1034 Tau 14.00 14.125±0.015 13.501±0.015 BOV 0.01 29 Melotte 22 SRS 79117 15.58 13.87 15.647±0.020 13.81±0.011 M2V 0.60 30 V 508 (708)Tau 15.80 15.642±0.024 15.445±0.027 F9V 0.14 31 Melotte 22 SK 50 16.27 14.65 16.185±0.026 14.127±0.011 M4V 0.01 32 Melotte 22 SK 51 15.04 14.73 16.44±0.032 14.812±0.019 M3V 0.39 34 Melotte 22 SK 52 15.90 11.065 13.669±0.012 M3V 0.51 36 Melotte 22 SK 562 13.80 13.791±0.015 12.723±0.011 M3V 0.51 37 Melotte 22 SK 57186 14.69 13.86 13.669±0.012 M3V 0.51 38 Tyc-1803-1389-1 11.59 11.17 M2 M22 M3V 0.15 41 Tyc-1803-1398-1 11.59 13.40 13.51±0.010 K2 M2	27	Melotte 22 HHJ 270	16.70	14.60	16.571 ± 0.030	14.393±0.017		M4V	0.36
29 Melotte 22 SRS 79717 15.58 13.87 15.647±0.020 13.81±0.011 M2V 0.60 30 V 508 (708)Tau 15.80 16.642±0.024 15.445±0.027 F.9V 0.14 31 Melotte 22 SRS 10 16.71 14.55 16.55±0.024 14.72±0.011 M4V 0.01 32 Melotte 22 SRS 79752 16.49 14.73 16.448±0.032 14.812±0.019 M3V 0.39 33 Melotte 22 SK 622 15.90 14.10 15.75±0.019 13.669±0.012 M3V 0.17 36 Melotte 22 SK 656 13.80 13.791±0.015 12.723±0.011 K7V 0.09 38 Tyc-1803-1248-1 11.31 10.85 10.852±0.016 G6V 0.15 40 Melotte 22 SK 578186 14.69 13.48 14.654±0.016 13.218±0.011 M1.5 M2V 0.09 41 Tyc-1803-1386-1 11.59 11.70 12.39 13.191±0.014 H.167±0.014 M3V 0.15 42 V425 Tsu <td>28</td> <td>V 1034 Tau</td> <td>14.00</td> <td></td> <td>14.125±0.015</td> <td>13.501±0.015</td> <td></td> <td>B0V</td> <td>0.01</td>	28	V 1034 Tau	14.00		14.125±0.015	13.501±0.015		B0V	0.01
30 V 508 (708)Tau 15.80 16.042±0.024 15.445±0.027 F9V 0.14 31 Melotte 22 SK 565 16.27 14.65 16.185±0.026 14.127±0.011 M4V 0.01 32 Melotte 22 SK 57752 16.49 14.73 16.446±0.032 15.856±0.021 M3V 0.39 34 Melotte 22 SK 52 15.90 17.546±0.019 13.869±0.012 M3V 0.51 36 Melotte 22 SK 62 15.90 14.10 15.762±0.019 13.869±0.012 M3V 0.51 36 Melotte 22 SK 626 13.80 13.791±0.015 12.723±0.011 K7V 0.09 41 Tyc-1803-1386-1 14.69 13.48 14.65±0.016 13.218±0.011 M1.5 M2V 0.09 41 Tyc-1803-1386-1 14.59 13.48 14.65±0.006 13.218±0.011 M1.5 M2V 0.09 41 Tyc-1803-1386-1 14.59 13.49 13.71±0.016 15.56±0.021 M4V 0.23 44 U4S 579 14.40 <td>29</td> <td>Melotte 22 SRS 79717</td> <td>15.58</td> <td>13.87</td> <td>15.647±0.020</td> <td>13.813±0.011</td> <td></td> <td>M2V</td> <td>0.60</td>	29	Melotte 22 SRS 79717	15.58	13.87	15.647±0.020	13.813±0.011		M2V	0.60
31 Melotte 22 SK 650 16.27 14.65 16.185±0.026 14.127±0.011 IMAV 0.01 32 Melotte 22 SKS 7975 16.49 17.544±0.013 15.258±0.021 MAV 0.39 34 Melotte 22 SKS 7975 16.49 11.08±0.036 G2IV - - 35 Melotte 22 SK 662 15.00 14.10 15.76±0.017 13.86±0.014 M3V 0.17 36 Melotte 22 SK 666 13.80 13.791±0.015 12.723±0.011 KKV 0.09 38 Tyc-1803-1248-1 11.31 10.85 - 10.852±0.016 G2V - 40 Melotte 22 SK 5718.66 13.49 13.35 14.921±0.014 13.152.0±0.016 G8V 0.15 41 Tyc-1803-1398-1 11.59 11.40 9.58 - K2 -	30	V 508 (708)Tau	15.80		16.042±0.024	15.445±0.027		F9V	0.14
32 Melotte 22 MSH 17 17.75 15.30 17.544±0.013 15.258±0.021 MSV 0.48 33 Melotte 22 SKF 379752 16.49 14.73 16.448±0.032 14.812±0.019 M3V 0.39 34 Melotte 22 SKF 622 15.00 14.10 15.726±0.019 13.869±0.012 M3V 0.51 36 Melotte 22 SK 662 13.80 13.791±0.015 12.723±0.011 K7V 0.09 37 Melotte 22 SK 56 13.80 13.791±0.015 12.723±0.011 K7V 0.09 38 Tyc-1803±1248±1 11.31 10.85 10.852±0.016 G8V 0.15 41 Tyc-1803±1398±1 11.59 11.17 K2 V425 M3V 0.15 43 HD 22915 11.40 9.98 13.682±0.016 K2 K2 44 LHS 1579 14.40 12.99 13.682±0.018 13.151±0.010 K2 K2 44 LHS 1579 14.00 12.99 13.682±0.018 13.151±0.011 M4V	31	Melotte 22 SK 650	16.27	14.65	16.185 ± 0.026	14.127±0.011		M4V	0.01
33 Melotte 22 SRS 79752 16.49 14.73 16.448±0.032 14.812±0.019 M3V 0.39 34 Melotte 22 SRS 221 15.00 14.01 15.762±0.019 13.869±0.012 M3V 0.51 35 Melotte 22 SR 622 15.90 14.01 15.762±0.019 13.869±0.012 M3V 0.17 37 Melotte 22 SR 565 13.80 13.791±0.015 12.723±0.011 K7V 0.09 38 Tye:1803+1248-1 11.31 10.85 10.852±0.016 G8V 0.15 40 Melotte 22 SR 78186 14.69 13.48 14.664±0.016 13.218±0.011 M1.5 M2V 0.09 41 Tye:1803+1398-1 11.40 9.58 C K2 C 42 V425 Tau 14.90 13.35 14.921±0.014 14.167±0.014 M M2V 0.23 43 HD 22915 11.40 0.58 C K2 C 44 LHS 1579 14.00 12.39 13.194±0.019 11.87±0.011 M<	32	Melotte 22 MSH 17	17.75	15.30	17.544±0.013	$15.258 {\pm} 0.021$		M5V	0.48
34 Melotte 22 SKJ G221 11 00 10.42 11.082±0.36 G2/V G2/V 35 Melotte 22 SK 622 15.90 14.10 15.726±0.019 13.869±0.012 M3V 0.51 36 Melotte 22 SK 622 15.90 13.87 15.66±0.017 13.86±0.014 M3V 0.17 37 Melotte 22 SK 656 13.80 13.791±0.015 12.723±0.016 K7V 0.09 38 Tyc.1803-128±1 11.50 11.17 15.208±0.016 G8W 0.15 40 Melotte 22 SK 78186 14.69 13.48 14.654±0.016 13.218±0.011 M1.5 M2V 0.09 41 Tyc.1803-1398-1 11.50 11.17 K2	33	Melotte 22 SRS 79752	16.49	14.73	16.448±0.032	14.812±0.019		M3V	0.39
35 Melotte 22 SK 622 15.90 14.10 15 726±0.017 13.869±0.012 M3V 0.51 36 Melotte 22 SK 656 13.80 13.791±0.015 12.723±0.011 K7V 0.09 37 Melotte 22 SK 656 13.80 13.791±0.015 12.723±0.016 K7V 0.09 38 Tyc-1803-1248-1 11.31 10.85 10.852±0.016 G8V 0.15 40 Melotte 22 SK 578186 14.60 13.48 14.654±0.016 13.281±0.011 M1.5 M2V 0.09 41 Tyc-1803-1398-1 11.59 11.17 K2 K2 </td <td>34</td> <td>Melotte 22 SSHJ G221</td> <td>11.00</td> <td>10.42</td> <td>11.082 ± 0.036</td> <td></td> <td>G2IV</td> <td></td> <td></td>	34	Melotte 22 SSHJ G221	11.00	10.42	11.082 ± 0.036		G2IV		
36 Melotte 22 HHJ 377 15.36 13.87 15.40 ±0.017 13.616±0.014 M3V 0.17 37 Melotte 22 SK 656 13.80 13.791±0.015 12.723±0.011 K7V 0.09 38 Tyc-1803-1248-1 11.31 10.85 10.852±0.016 GeV 0.15 40 Melotte 22 SK5 78186 14.69 13.48 14.654±0.016 13.218±0.011 M1.5 M2V 0.09 41 Tyc-1803-1398-1 11.59 13.49 13.151±0.010 K G9V 0.15 42 V425 Tau 14.49 13.35 14.921±0.014 14.167±0.014 M3V 0.15 43 HD 22915 11.40 09.58 K2 K2	35	Melotte 22 SK 622	15.90	14.10	15.726 ± 0.019	13.869+0.012		M3V	0.51
37 Mebute 22 SK 656 13.80 13.791±0.015 12.723±0.011 K7V 0.09 38 Tyc.1803-1248-1 11.31 10.85 10.852±0.016 C C 39 V 615 Tau 15.60 15.896±0.021 15.208±0.016 G&V 0.15 40 Melotte 22 SR5 78166 14.69 13.48 14.654±0.016 M2V 0.09 41 Tyc.1803-1398-1 11.99 11.17 K K C C 42 V425 Tau 14.90 13.85 14.921±0.014 14.167±0.014 M3V 0.15 43 HD 22915 11.40 09.58 C K G V 0.49 45 KY Tau 12.95 12.39 13.194±0.019 11.87±0.011 M M2V 0.24 47 Melotte 22 DH 206 17.20 15.00 16.990±0.039 14.73±0.014 M4V 0.24 49 HD 23170 09.27 09.01 C C C C 50	36	Melotte 22 HHJ 377	15.36	13.87	15.405 ± 0.017	13.616 ± 0.014		M3V	0.17
38 Tyc-1803-1248-1 11.31 10.85 10.852±0.016 Image: Constraint of the state of t	37	Melotte 22 SK 656	13.80		13.791 ± 0.015	12.723+0.011		K7V	0.09
1000000000000000000000000000000000000	38	Tyc-1803-1248-1	11.31	10.85		10 852+0 016			
1000000000000000000000000000000000000	39	V 615 Tau	15.60	10.00	15 896+0 021	$15,208\pm0,016$		G8V	0 15
Type-1803-1398-1 11.59 11.17 Intermediate Mathematical Mathmatical Mathmathmatical Mathematical Mathmatematical Mathematic	40	Melotte 22 SRS 78186	14 69	13 48	14.654 ± 0.016	13 218+0 011	M1.5	M2V	0.09
10 100 100 114 14.90 13.35 14.921±0.014 14.167±0.014 M3V 0.15 43 HD 22915 11.40 09.58 K2 K2 K2 44 LHS 1579 14.00 12.95 12.39 13.162±0.008 13.151±0.010 K G9V 0.49 45 KY Tau 12.95 12.39 13.19±0.011 M M2V 0.23 46 Melotte 22 HHJ 117 17.60 15.60 17.371±0.158 15.265±0.021 M4V 0.24 47 Melotte 22 DH 206 17.20 15.00 16.990±0.039 14.732±0.014 M4V 0.55 48 Tyc-1803-1077-1 10.01 09.84 C C C C 50 Tyc-1803-1077-1 10.01 09.84 C C C C C 51 Melotte 22 MT 44 17.85 16.87 17.974±0.017 16.742±0.013 M M1V 0.25 C C C C	41	Tyc-1803-1398-1	11.59	11 17	11001201010	10.210±0.011			0.00
11 11.00 10.05 11.00 11.00 0.13 13 HD 22915 11.40 09.58 K2 11.00 K2 44 LHS 1579 14.00 12.90 13.682±0.008 13.151±0.010 K G9V 0.49 45 KY Tau 12.95 12.30 13.194±0.019 11.872±0.011 M M2V 0.23 46 Melotte 22 HH J 117 17.60 15.00 16.90±0.039 14.732±0.014 M4V 0.25 48 Tyc-1803-1487-1 12.15 11.70 12.331±0.018 11.746±0.009 K4V 0.02 49 HD 23170 09.27 09.01 G C C C 50 Tyc-1803-1077-1 10.01 09.84 C <td< td=""><td>42</td><td>V425 Tau</td><td>14 90</td><td>13 35</td><td>14 921+0 014</td><td>14 167+0 014</td><td></td><td>M3V</td><td>0.15</td></td<>	42	V425 Tau	14 90	13 35	14 921+0 014	14 167+0 014		M3V	0.15
13 11.10 12.90 13.682±0.008 13.151±0.010 K G9V 0.49 44 LHS 1579 14.00 12.95 12.39 13.194±0.019 11.872±0.011 M M2V 0.23 45 KY Tau 12.95 12.39 13.194±0.019 11.872±0.011 M M2V 0.23 46 Melotte 22 DH 206 17.20 15.00 16.909±0.039 14.732±0.014 M4V 0.24 47 Melotte 22 DH 206 17.20 15.00 16.909±0.039 14.732±0.014 M4V 0.55 48 Tyc-1803-1487-1 12.15 11.70 12.311±0.018 11.746±0.001 G	43	HD 22915	11.30	09.58	11.521±0.011	11.101 ± 0.011	К2	1010	0.15
Hors Lab 2	44	LHS 1570	14.00	12.00	13 682+0 008	13 151+0 010	ĸ	G9V	0.49
International state International state International state International state International state 46 Melotte 22 HHJ 117 17.60 15.50 17.371±0.158 15.265±0.021 MAV 0.24 47 Melotte 22 DH 206 17.20 15.00 16.990±0.039 14.732±0.014 MAV 0.02 49 HD 23170 09.07 09.01 G G	45	KY Tau	12.00	12.30	13.002 ± 0.000 13.194 ± 0.019	13.131 ± 0.010 11 872+0 011	M	M2V	0.43
No. Model 11 and 11 a	46	Melotte 22 HH I 117	17.60	15.60	13.134 ± 0.019 17 371 ±0.158	15.265 ± 0.021	101	M4V	0.23
Instruction 11.70 12.15 11.70 12.331±0.018 11.74±0.009 K4V 0.02 49 HD 23170 09.27 09.01 0 G 0 0 50 Tyc-1803-1487-1 10.01 09.84 0 G 0 0 51 Melotte 22 DH 300 14.77 13.54 0 G 0 0 52 Melotte 22 MT 44 17.85 16.87 17.974±0.017 16.742±0.013 M M1V 0.255 53 HD 23154 09.36 09.01 G 0	40	Melotte 22 DH 206	17.00	15.00	16 990±0 039	13.203 ± 0.021 14 732+0 014		M4V	0.24
16 17.10 17	48	Tyc-1803-1487-1	12 15	11 70	12.330 ± 0.033 12.331 \pm 0.018	11 746+0 009		K4V	0.02
10 10 10 09.84 0 0 0 0 50 Tyc-1803-1077-1 10.01 09.84 </td <td>49</td> <td>HD 23170</td> <td>09.27</td> <td>09.01</td> <td>12:00120:010</td> <td>11.1.10±0.000</td> <td>G</td> <td></td> <td>0.02</td>	49	HD 23170	09.27	09.01	12:00120:010	11.1.10±0.000	G		0.02
10 10000 10	50	Tyc-1803-1077-1	10.01	09.84			<u> </u>		
11 INSIGNATION 14.11 15.54 17.974±0.017 16.742±0.013 M M1V 0.25 52 Melotte 22 MT 44 17.85 16.87 17.974±0.017 16.742±0.013 M M1V 0.25 53 HD 23154 09.36 09.01 G G	51	Melotte 22 DH 300	14 77	13 54					
No. 53 HD 23154 09.36 09.01 G G	52	Melotte 22 MT 44	17.85	16.87	17 974+0 017	16 742+0 013	M	M1V	0.25
Sing No. 100 O. 300 O. 300 </td <td>53</td> <td>HD 23154</td> <td>09.36</td> <td>09.01</td> <td>11.514±0.017</td> <td>10.742±0.013</td> <td>G</td> <td>10110</td> <td>0.23</td>	53	HD 23154	09.36	09.01	11.514±0.017	10.742±0.013	G	10110	0.23
1/10 11.30 11.30 11.30 13.41 15.001 13.354±0.010 A7V 0.74 55 MQ Tau 15.01 13.41 15.001±0.016 13.354±0.010 A7V 0.74 56 Melotte 22 DH 298 16.69 15.06 16.762±0.032 14.696±0.015 A7V 0.76 57 Melotte 22 MBSC 72 17.64 15.36 15.334±0.023 C C 59 HD 23169 08.09 07.79 C G2 C C 60 Melotte 22 DH 294 11.26 10.78 L C C C 61 Melotte 22 MBSC 81 18.40 15.80 15.45±0.027 C C C 62 NSV 1242 15.53 15.05 15.724±0.019 15.001±0.018 K4V 0.03 63 Melotte 22 DH 287 16.14 14.38 16.032±0.020 14.05±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 C C C	54	Tyc-1803-947-1	11 30	11.08			0		
55 Mix rat 13.01 13.01 13.01 10.00110.010 10.03410.010 10.03410.010 10.03410.010 10.04110.010 56 Melotte 22 DH 298 16.69 15.06 16.762±0.032 14.696±0.015 A7V 0.76 57 Melotte 22 PLZJ 50 19.55 17.23 Image: Comparison of the comp	55	MO Tau	15.01	13/1	15.001 ± 0.016	13 354+0.010		Δ7\/	0.74
30 Melotte 22 DH 290 10.03 13.00 10.02±0.022 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.030±0.015 14.00 14.030±0.015 14.015 15.01 15.0	56	Melotte 22 DH 208	16.60	15.41	15.001 ± 0.010 16.762 \pm 0.032	13.554 ± 0.010 14.696 ±0.015			0.74
S1 Melotte 22 MBSC 72 17.64 15.36 17.23 15.334±0.023 C C 58 Melotte 22 MBSC 72 17.64 15.36 15.334±0.023 C C 59 HD 23169 08.09 07.79 C G2 C C 60 Melotte 22 DH 294 11.26 10.78 IS.452±0.027 C C C 61 Melotte 22 DH 287 15.53 15.05 15.724±0.019 15.001±0.018 K4V 0.03 63 Melotte 22 DH 287 16.14 14.38 16.032±0.026 14.057±0.028 M3V 0.38 64 Melotte 22 DH 260 16.69 15.07 16.561±0.030 14.406±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 IS.823±0.020 13.948± 0.013 M2V 0.70 66 619 Tau 15.66 13.87 15.823±0.020 13.948± 0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 IS.91±0.015 M4V 0.31 68 434 Tau 16.39 14.40 <td< td=""><td>57</td><td>Melotte 22 PL7 50</td><td>10.09</td><td>17.00</td><td>10.702±0.052</td><td>14.090±0.013</td><td></td><td></td><td>0.70</td></td<>	57	Melotte 22 PL7 50	10.09	17.00	10.702±0.052	14.090±0.013			0.70
30 Melotite 22 MBSC 12 11.04 13.30 15.30 15.354±0.023 1 1 1 59 HD 23169 08.09 07.79 C G2 C 1 60 Melotte 22 DH 294 11.26 10.78 15.452±0.027 C C 1 61 Melotte 22 DH 281 15.33 15.05 15.724±0.019 15.001±0.018 K4V 0.03 63 Melotte 22 DH 287 16.14 14.38 16.032±0.026 14.057±0.028 M3V 0.38 64 Melotte 22 DH 260 16.69 15.07 16.561±0.030 14.406±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 0.70 66 619 Tau 15.66 13.87 15.823±0.020 13.948± 0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 68 434 Tau 16.39 14.40 16.213±0.010 14.079± 0.015 M4V 0.31 69	58	Melotte 22 MBSC 72	17.64	15.36		15 334+0 023			
60 Melotte 22 DH 294 11.26 10.78 Image: constraint of the state of the	50	HD 23169	08.09	07 79		13.334±0.023	62		
60 Melotte 22 DH 254 11.20 10.70 15.70 15.72 15.72 15.72 15.72 15.72 15.72 15.72 15.72 15.72 15.72 16.14 14.38 16.032±0.026 14.057±0.028 M3V 0.38 64 Melotte 22 DH 287 16.14 14.38 16.032±0.026 14.057±0.028 M3V 0.38 64 Melotte 22 DH 260 16.69 15.07 16.561±0.030 14.406±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 0.70 66 619 Tau 15.66 13.87 15.823±0.020 13.948± 0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26	60	Melotte 22 DH 204	11.26	10.78			02		
61 Melotic 22 Mibbe 61 10.40 13.00 10.402 10.38 10.33 10.33 0.38 0.38 0.38 64 Melotte 22 DH 260 16.69 15.07 16.561±0.030 14.406±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 0.70 66 619 Tau 15.66 13.87 15.823±0.020 13.948±0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 0.70	61	Melotte 22 MBSC 81	18.40	15.80		15 452+0 027			
62 Nov 1242 15.35 15.05 15.724±0.019 15.001±0.010 NAV 0.03 63 Melotte 22 DH 287 16.14 14.38 16.032±0.026 14.057±0.028 M3V 0.38 64 Melotte 22 DH 260 16.69 15.07 16.561±0.030 14.406±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 15.823±0.020 13.948± 0.013 M2V 0.70 66 619 Tau 15.66 13.87 15.823±0.020 13.948± 0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 Image: Construction of the second s	62	NSV 1242	15.53	15.00	15 724+0 010	15.001 ± 0.018		K V V	0.03
03 Melotte 22 DH 207 10.14 14.33 10.032±0.020 14.03±0.025 14.03±0.025 14.03±0.025 14.03±0.025 14.04 A7V 0.37 64 Melotte 22 DH 260 16.69 15.07 16.56±0.030 14.406±0.014 A7V 0.87 65 Tyc-1803-981-1 11.13 10.63 14.406±0.014 A7V 0.87 66 619 Tau 15.66 13.87 15.823±0.020 13.948±0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 68 434 Tau 16.39 14.40 16.213±0.010 14.079±0.015 M4V 0.31 69 11 Tau 06.10 06.02 A2 70 Tyc-1803-1023-1 10.36 09.72 71 Melotte 22 MT 18 09.86 08.13 72 Melotte 22 MT 17 11.86 11.25 11.773±0.012 M3V	63	Molotto 22 DH 287	16.14	14.39	15.724 ± 0.019	14.057 ± 0.028		N3//	0.03
65 Tyc-1803-981-1 11.13 10.63 10.051±0.030 14.400±0.014 AVV 0.07 66 619 Tau 15.66 13.87 15.823±0.020 13.948±0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 0.70 68 434 Tau 16.39 14.40 16.213±0.010 14.079±0.015 M4V 0.31 69 11 Tau 06.10 06.02 A2 70 Tyc-1803-1023-1 10.36 09.72 A2 71 Melotte 22 MT 18 09.86 08.13 72 Melotte 22 MT 17 11.86 11.25 11.773±0.012 </td <td>64</td> <td>Melotte 22 DH 260</td> <td>16.60</td> <td>15.07</td> <td>16.552 ± 0.020</td> <td>14 406+0 014</td> <td></td> <td>Δ7\/</td> <td>0.30</td>	64	Melotte 22 DH 260	16.60	15.07	16.552 ± 0.020	14 406+0 014		Δ7\/	0.30
66 619 Tau 15.66 13.87 15.823±0.020 13.948±0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26 0.01 0.70 68 434 Tau 16.39 14.40 16.213±0.010 14.079±0.015 M4V 0.31 69 11 Tau 06.10 06.02 A2 70 Tyc-1803-1023-1 10.36 09.72 A2 71 Melotte 22 MT 18 09.86 08.13 72 Melotte 22 MT 17 11.86 11.25 11.773±0.012 </td <td>65</td> <td>Tvc-1803-081-1</td> <td>11 12</td> <td>10.63</td> <td>10.301±0.030</td> <td>17.700±0.014</td> <td></td> <td></td> <td>0.07</td>	65	Tvc-1803-081-1	11 12	10.63	10.301±0.030	17.700±0.014			0.07
60 619 rat 15.00 15.07 15.023±0.020 15.945±0.013 M2V 0.70 67 Tyc-1803-537-1 11.30 11.26	66	610 Tau	11.13	12.03	15 922-0 020	12 049 + 0 012		M2)/	0.70
or ryc 100-5071 11.20 11.20 11.20 11.20 68 434 Tau 16.39 14.40 16.213±0.010 14.079± 0.015 M4V 0.31 69 11 Tau 06.10 06.02 A2 A2 10.31 70 Tyc-1803-1023-1 10.36 09.72 A2 10.31 10.31 71 Melotte 22 MT 18 09.86 08.13 10.31 10.31 10.31 72 Melotte 22 MT 17 11.86 11.25 11.773±0.012 10.31 10.32 73 Melotte 22 SK 785 15.20 13.60 15.003±0.019 13.316±0.014 M3V 0.32	67	Tvc-1803-537-1	11 20	11.07	13.023±0.020	13.9401 0.013		IVIZ V	0.70
10.50 10.50 14.40 10.213±0.010 14.079±0.015 10.4V 00.31 69 11 Tau 06.10 06.02 A2 A2 70 Tyc-1803-1023-1 10.36 09.72 A2 A2 71 Melotte 22 MT 18 09.86 08.13 A2 A2 72 Melotte 22 MT 17 11.86 11.25 11.773±0.012 A3 A3 73 Melotte 22 SK 785 15.20 13.60 15.003±0.019 13.316±0.014 M3V 0.32	69	134 Tau	16.20	14.40	16 213 - 0.10	14 070± 0.015		N///	0.21
05 11 rad 00.10 00.02 A2 A2 70 Tyc-1803-1023-1 10.36 09.72	60	דעד ומט 11 Tau	06 10	06.02	10.213±0.010	14.019 0.013	42	1V14 V	0.31
10 192-1003-1023-1 10.30 09.72 Image: Constraint of the second se	70	Tue 1902 1022 1	10.10	00.02			HZ		
71 Melotte 22 MT 16 09.00 00.13 Image: Constraint of the state of the	71	1 yc-1003-1023-1 Malatta 22 MT 19	10.30	09.72					
72 Melotte 22 NF 17 11.00 11.25 11.773±0.012 11.773±0.012 73 Melotte 22 SK 785 15.20 13.60 15.003±0.019 13.316±0.014 M3V 0.32	72	Melotte 22 MT 17	11.96	11.05	11 773⊥0 010				
13 IVIEIOLIE 22 STA 103 13.20 13.00 13.003±0.019 13.310±0.014 IVISV 0.32 Wird auf der nächsten Seite fortgesetzt	72	Melotte 22 WI 11	15.00	12.60	11.775 ± 0.012 15.003±0.010	13 316±0 014		M3/1	0.30
	13	INCIULLE 22 SIX 103	15.20	d 2115 d 2	13.003±0.019	13.310±0.014		VCIVI	0.32

	Sternname	R	I	R (GSH)	I (GSH)	SpT	SpT (GSH)	$A_v(GSH)$
		[mag]	[mag]	[mag]	[mag]			[mag]
74	Melotte 22 SK 750	16.39	14.67	16.532±0.034	14.717±0.018		M2V	0.65
75	Melotte 22 MT 22	13.00	12.09	13.084±0.015	12.426±0.012		A7V	0.25
76	Melotte 22 DH 129	17.40	15.30	17.246±0.057	15.054±0.020		M4V	0.49
77	V839 Tau	13.50	12.39	13.438±0.037	12.479±0.012		A7V	0.34
78	LHS 1574	12.00	10.10	11.934±0.016		M3.5		
79	Melotte 22 MT 15	17.04	14.65	16.873±0.043	14.975±0.020		M4V	0.68
80	LHS 1573	11.40	10.18	11558±0.014	10.082±0.021	M3	M3V	0.25
81	V KR Tau	14.20	12.76	14.086±0.021	12.882±0.010	М	A7V	0.71
82	Melotte 22 DH 144(HHJ101)	17.90	15.80	17.361±0.062	15.324±0.029	M5	M4V	0.05
83	Melotte 22 HHJ 343	16.00	14.10	$15.842 {\pm} 0.025$	13.751±0.014		M4V	0.30
84	HD 22831	09.16	09.10			A0		
85	Тус-1803-879-1	08.51	07.69					
86	IRAS 03379+2526	18.80	16.82	$16.495{\pm}0.033$	15.671 ± 0.043		B1V	0.75
87	Melotte 22 SK 792	14.75	13.71	$15.032{\pm}0.016$	13.767 ± 0.010		K4V	0.10
88	Тус-1803-1802-1	10.11	09.97					
89	Melotte 22 PELS 22	11.23	10.71					
90	NVSS J034035+253859	14.07	12.79	$13.857 {\pm} 0.017$	$13.152{\pm}0.015$		A8V	0.70
91	Melotte 22 DH 124	17.45	15.78	$17.174{\pm}0.052$	15.077 ± 0.017		M3V	0.25
92	Тус-1803-1160-1	11.88	11.49	$11.801{\pm}0.017$	$11.178 {\pm} 0.021$		G8V	0.00
93	Тус-1803-1281-1	11.99	11.69	$11.952{\pm}0.017$	$11.351{\pm}0.010$		B8V	0.05
94	Тус-1803-1329-1	10.93	10.31					
95	BD+25 583	10.04	09.91			F8		
96	Тус-1803-793-1	11.74	11.45	$12.053{\pm}0.013$	$11.562{\pm}0.012$		B8V	0.01
97	Melotte 22 HHJ 359	15.70	14.00	$15.591{\pm}0.032$	$13.678 {\pm} 0.012$		M3V	0.26
98	Melotte 22 MT 16	08.92	08.36					
99	BD+25 585	10.06	09.64			G0		
100	Melotte 22 DH 119	17.37	15.70	17.102±0.048	15.268±0.033		M3V	0.38
101	Melotte 22 SK 781	16.48	14.86	16.392±0.034	14.238±0.012		M3V	0.18
102	Melotte 22 DH 100	16.19	14.42	15.921±0.034	13.769±0.013		M3V	0.36
103	Тус-1803-331-1	10.73	10.17					
104	NLTT 11470	12.40	10.90	12.557±0.022	11.053±0.008		M3V	0.16
105	V606 Tau	12.49	11.86	12.102±0.016	11.218±0.013		A7V	0.13
106	Melotte 22 DH 164	16.23	14.49	16.298±0.081	14.213±0.014		M4V	0.00
107	V602 Tau	13.30	12.98	13.28±0.0123	12.558±0.014		B8V	0.14
108	Melotte 22 DH 148	16.36	14.34	16.192 ± 0.027	14.252±0.021		M4V	0.46
109	HD 22816	08.31	07.56			K2		
110	Тус-1803-575-1	10.62	10.32					
111	HD 22850	09.11	08.92			A2		
112	Tyc-1803-595-1	10.55	10.11					
113	Melotte 22 DH 153	13.53	12.04	13.506±0.028	12.159±0.010		M2V	0.48
114	Melotte 22 SK 769	13.30	12.61	13.551±0.018	12.746±0.013	K2	K4V	0.10
115	Melotte 22 AK III-679	11.12	10.26					
116	Тус-1803-197-1	10.96	10.26					
117	Tyc-1803-583-1	11.70	11.16	11.569±0.014				
118	Melotte 22 DH 120	16.47	15.72	17.142 ± 0.056	15.671 ± 0.025		G9V	0.01

Tabelle 5.2: Helligkeiten, Spektraltypen und Extinktionen aller bekannten Sterne in dem Plejadenfeld, entnommen aus verschiedenen Katalogen (Simbad und Vizier) und aus unserer Photometrie. Helligkeiten R und I sind nicht auf Extinktion korrigiert.

Bei der Bestimmung der Spektraltypen gibt es nur einen Außreißer (KR Tau): wir erhalten etwa A7, in den Katalogen fanden wir M, es ist ein bekannter variabler Stern, daher wohl der Abweichung.

Einige Sterne sind entweder sehr leuchtschwach, wie Stern 57, sehr hell, wie Stern 10, oder sehr nahe am Rand. Für solche Sterne im Feld gab es keine Messwerte bzw. keine R(GSH) und I(GSH) Werte in Tabelle 5.2.

Das erhaltene Licht wird durch das interstellare Medium teilweise absorbiert, daher lässt sich die beobachtete (extingierte) scheinbare Helligkeit (V) aus:

$$V = V_0 + A_v \tag{5.1}$$

berechnen.

Wobei V_0 die absorptionskorrigierte scheinbare Helligkeit und mit A_v die Absorption bezeichnet wird.

Die Farbexzess (E_{X-Y}) kann mit Hilfe der Farben (X-Y) und der Eigenfarben $(X - Y)_0$ bzw. extinktionsfreien Farben nach

$$E_{X-Y} = (X - Y) - (X - Y)_0 \tag{5.2}$$

bestimmt werden, wobei X und Y zwei verschiedene Bänder bezeichnen, z.B. R und I oder B und V.

Aus der Eigenfarbe kann man den Spektraltyp mit Hilfe von Tabellen, wie z.B. aus Kenyon und Hartmann (1995), bestimmen (siehe Anhang A.4).

Die Extinktion (A_v) lässt sich nach

$$A_{v} = \frac{(B-V) - (B-V)_{0}}{\frac{A_{B}}{A_{V}} - 1}$$
(5.3)

berechnen. Die Werte $\frac{A_B}{A_V}$ wurden aus Schmidt-Kaler (1982) und Rieke und Lebofsky (1985) entnommen. Stellt man Gleichung 5.3 auch für eine andere Eigenfarben auf, z.B. (V-R) dann hat man zwei Gleichungen mit zwei Unbekannten. Man erhält dann die zwei Unbekannten A_V und Spektraltyp (bzw. die Eigenfarbe, d.h. Spektraltyp).

Die für die Spektraltypen und Absorptionen verwendeten Helligkeiten im R- und I-Band wurden mit der STK-CCD Kamera in GSH aufgenommen, während andere Bänder VJHK aus den Katalogen entnommen wurden.

Mit dem *Photometry* Programm bekommt man die differentielle Magnitude aller Sterne im Feld, bzw. ihre Helligkeiten relativ zu einem konstanten Vergleichstern im Feld. Um nun die scheinbare Helligkeit der Sterne zu bestimmen, benötigt man konstante (an Hand der Lichtkurve), bekannte Sterne, deren Helligkeiten in verschiedenen Bändern bekannt sind.

Man benötigt die folgende Gleichung

$$\mathbf{m} = \mathbf{C} + \mathbf{m}_{\text{instr}} - \mathbf{k} \cdot \mathbf{z} \tag{5.4}$$

Für die Filter R und I verwendet man die folgenden Gleichungen

$$R = C_R + R_{instr} - k_R \cdot z \tag{5.5}$$

$$I = C_I + I_{instr} - k_I \cdot z \tag{5.6}$$

Wobei mit R und I die bekannten Magnituden der Sterne (aus den Katalogen) bezeichnet werden, während mit R_{instr} und I_{instr} die gemessenen differentiellen bzw. relativen Helligkeiten bezeichnet werden. k steht für den Extinktionskoeffizent und z für die Luftmasse. C_R und C_I sind die Nullpunkte des Detektors im R- und I-Filter.

Für die absolute Photometrie (Tabelle 5.2 und 5.3) wurden die besten R und I Bilder aus der besten Nacht (20. 20. 2009) verwendet, sodass sowohl für R als auch für I aller Sterne jeweils k und z gleich sind, aufgrund der gleichen Luftmasse zum Aufnahmezeitpunkt. Die folgende Liste fasst die am besten geeigneten, bekannten, konstanten Sterne im Plejadenfeld zusammen:

	Sternname	R	Ι	$(C_R - kz)$	$(C_{I} - kz)$
		[mag]	[mag]	[mag]	[mag]
1	Melotte 22-DH 209	12.23	11.21	$13.64{\pm}0.013$	12.71 ± 0.013
2	Тус-1803-1487-1	12.15	11.70	13.40 ± 0.011	12.75 ± 0.010
3	Melotte 22 MT 17	11.86	11.25	$13.59 {\pm} 0.009$	saturiert
4	Melotte 22 SK 785	15.20	13.60	13.70 ± 0.022	13.02 ± 0.017
5	Melotte 22 MT 22	13.00	12.09	$13.42 {\pm} 0.015$	12.40 ± 0.013
6	LHS 1574	12.00	10.10	$13.57 {\pm} 0.016$	saturiert
7	LHS 1573	11.40	10.00	13.35 ± 0.012	saturiert
8	Melotte 22 SK 792	14.75	13.71	13.22 ± 0.017	$12.67 {\pm} 0.009$
9	NVSS J034035+253859	14.07	12.79	$13.72 {\pm} 0.018$	$12.36 {\pm} 0.018$
10	Tyc-1803-1160-1	11.88	11.49	$13.58 {\pm} 0.019$	$13.05 {\pm} 0.009$
11	Tyc-1803-1281	11.99	11.69	$13.54{\pm}0.019$	$13.07 {\pm} 0.008$
12	Tyc-1803-793-1	11.74	11.45	$13.19 {\pm} 0.010$	$12.61 {\pm} 0.013$
13	NLTT 11470	12.40	10.90	13.34 ± 0.029	$12.58 {\pm} 0.005$
14	Melotte 22 DH 153	13.53	12.04	13.53 ± 0.012	12.62 ± 0.009
15	Melotte 22 SK 769	13.30	12.61	13.25 ± 0.020	$12.59 {\pm} 0.014$
16	Tyc-1803-583-1	11.70	11.16	$13.64{\pm}0.012$	saturiert
	Mittelwert			13.48 ± 0.015	12.70 ± 0.012

Tabelle 5.3: Die in der Bestimmung der scheinbaren Helligkeit (absolute Photometrie) der Feldobjekte verwendeten Sterne.

Addiert man den Mittelwert des Nullpunkts in einem bestimmten Filter (letzte Zeile in Tabelle 5.3) zur gemessenen relativen Magnitude $(m-C+k\cdot z)$ eines Sterns, erhält man

dann die scheinbare Magnitude (m) dieses Sterns.

Auf diese Art und Weise wurden die scheinbaren Magnituden bzw. R(GSH) und I(GSH) aller Sterne im Plejadenfeld bestimmt. Im V-Band ist die gleiche Berechnung möglich, allerdings wurde ein Detektorproblem für die entsprechende Nacht festgestellt, so dass die V-Daten ungenau sind.

5.2 Das Plejadenfeld im Farb-Helligkeits-Diagramm

Mit Hilfe der mit unserer Photometrie gemessenen Helligkeiten im Optischen (VRI) wurde ein Farb-Helligkeits-Diagramm (Abbildung 5.1, 5.2) für das untersuchte Plejadenfeld erstellt. Obwohl die infraroten Bänder (JHK) weniger Extinktion aufweisen, sodass die Farbe der Sterne sich kaum ändert, wurden unsere eigenen Messungen im Optischen verwendet.

Abbildung 5.1: Farb-Helligkeits-Diagramm von den Plejaden- und Feldsternen mit Isochronen aus Siess u. a. (2000), noch nicht auf Extinktion korrigiert. Die wenige Außreißer, Plejaden deutlich über oder unter der Hauptreihe, sind solche Sterne, bei denen R und I weder nur von uns noch gleichzeitig gemessen wurden. Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt.

Die Schwarzen Punkte in dem Diagramm zeigen die in den VRI Bändern gefundenen Sterne (Tabelle C.1), bekannte Feldsterne im Plejadenfeld (die aber keine Mitglieder des Plejadenhaufens sind) wurden in blau durch Pluszeichen dargestellt, die bekannten Plejadenmitglieder in dem Feld wurden mit roten Diamanten symbolisiert. Grüne Sterne stehen für die in dem untersuchten Plejadendeld gefundenen Veränderlichen. Die drei hellgrünen Sterne stehen für diejenigen, die keine Helligkeit im I-Band (auch in den Katalogen) haben. Ihre $(R - I)_o$ Werte wurden aus Kenyon und Hartmann (1995) entnommen, da ihre Spektraltypen aus anderen Farben bekannt sind.

Mit dem Entfernungsmodul (Gleichung 2.2), dem Alter und der Entfernung der Plejaden (r = 120 pc) können die absoluten Magnituden der Isochronen aus Siess u. a. (2000) in scheinbaren Helligkeiten umgerechnet werden, sodass die Isochronen in Abbildung 5.1 und 5.2 zum Vergleich geplottet werden können.

Die nicht extingierten scheinbaren Helligkeiten aller Feldsterne lassen sich mit Hilfe der Tabelle 3 von Rieke und Lebofsky (1985) so bestimmen:

$$R_0 = R - A_R = R - 0.75 A_V \tag{5.7}$$

$$I_0 = I - A_I = I - 0.48 A_V \tag{5.8}$$

 A_V wurde für alle Feldsterne schon bestimmt (siehe Kapitel 5.1).

Mit Hilfe dieser extinktionsfreien Werte wurde ein zweites Farb-Helligkeits-Diagramm (Abbildung 5.2) für alle Sterne des untersuchten Plejadenfeldes erstellt.

Abbildung 5.2: Extinktionskorrigiertes Farb-Helligkeits-Diagramm von den Plejaden- und Feldsternen mit Isochronen aus Siess u. a. (2000). Die wenige Außreißer, Plejaden deutlich über oder unter der Hauptreihe, sind solche Sterne, bei denen R und I weder nur von uns noch gleichzeitig gemessen wurden. Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt.

Sind die Sterne extingiert, wirken sie röter und schwächer. Korrigiert man diese Extinktion, dann werden sie blauer und heller.

Man bemerkt in den beiden Diagrammen, dass die Sterne 1 und 10 Mitgliederkandidaten des Plejadenhaufens sind. Sie sind konsistent mit dem Alter bzw. der Entfernung der Plejadensterne. Im folgenden werden diese zehn neu gefundenen Veränderlichen ausführlich studiert.

5.3 Neu gefundene Veränderliche in dem Plejadenfeld

Im Rahmen dieser Arbeit wurden vier Arten von Veränderlichen in dem Plejadenfeld gefunden. Sie sind Bedeckungsveränderliche, Rotations- und Pulsationsveränderliche und ein Flare-Stern.

2MASS-Name	R(GSH)	I(GSH)	Р	Amplitude (R-Filter)
	[mag]	[mag]	[Tage]	[mag]
Bedeckungsveränderliche				
V1 = J03402625+2527220	14.740 ± 0.146	13.380 ± 0.028	1.2024282 ± 0.000006	$ riangle m_1 pprox $ 0.7
				$ riangle m_2 pprox { extbf{0.2}}$
V2 = J03404311+2529397	16.585 ± 0.069	15.743 ± 0.056	2.2320673 ± 0.0000011	$ riangle m_1 pprox $ 0.5
				$ riangle m_2 pprox 0.2$
Ev. Bedeckungsveränderliche				
V3 = J03402986+2547099	15.604 ± 0.041	14.514 ± 0.011	3.44296 ± 0.0025	pprox 0.1
V4 = J03411089+2556396	15.502 ± 0.041	14.493 ± 0.034		≈ 0.1
Rot oder PulVer.				
V5 = J03391116+2522064	14.140 ± 0.246	13.923 ± 0.029	0.20508247 ± 0.00000098	pprox 0.4
V6 = J03424676+2529504	15.482 ± 0.251		0.1447696 ± 0.0000013	pprox 0.1
V7 = J03423948+2529448	14.315 ± 0.282		0.3034938 ± 0.0000019	pprox 0.15
V8 = J03421308+2556439	17.047 ± 0.098	16.085 ± 0.075	0.108851012 ± 0.0000015	pprox 0.1
V9 = J03033903+2543121	16.544 ± 0.034		0.14780835 ± 0.0000033	pprox 0.2
Flare-Stern				
V10/1 = J03400665+2514276	17.533 ± 0.089	15.523 ± 0.052		
V10/2 = J03400685+2514256	17.946 ± 0.105	15.674 ± 0.075		

Die Eigenschaften dieser neu gefundenen Veränderlichen sind in der folgenden Tabelle zusammengefasst.

Tabelle 5.4: Zusammenfassung der Eigenschaften der in unserem Plejadenfeld neu detektierten Veränderlichen.

V5 bis V8 sind entweder Rotations- oder Pulsationsveränderliche. Sie könnten aber auch Bedeckungsveränderliche sein.

V9 ist ein sicherer Pulsationsveränderlicher, da er als Rotationsveränderlicher bei dieser Periode bzw. P = 0.14780835 ± 0.0000033 Tage auseinander brechen wurde.

Es wird bei der Apertur-Photometrie nicht nur die instrumentelle Helligkeit des Sterns gemessen, sondern auch der Einfluss der Atmosphäreneffekte. Es besteht also die Gefahr, dass Variationen dadurch hervorgerufen seien können. Um das zu vermeiden wurde die relative bzw. differentielle Photometrie (siehe Kapiel 4.5) durchgeführt. In Lichtkurven¹ wird immer "relative Helligkeit" angegeben: Relativ zum besten künstlichen Vergleichstern nach der Prozedur von Broeg u. a. (2005).

¹Die Variabilität wurde hauptsächlich im R-Band studiert. Das Feld wurde mit der STK-Kamera in den anderen Bändern nur paar Stunden beobachtet (siehe Kapitel 3.3). Mit der CTK-Kamera wurde das Feld für paar Nächte in 2008 beobachtet, aber konnte aufgrund des kleinen Gesichtsfeldes und des geringeren Flusses der CTK-Kamera keiner von den zehn neuen Veränderlichen detektiert werden. Sie wurden erst mit der STK-Kamera in 2009 detektiert.

5.3.1 Bedeckungsveränderliche

Wie schon in Kapitel 2.3 erklärt wurde, zählen die Bedeckungsveränderlichen nicht zu den echten Veränderlichen, sondern sie tragen den Namen optische Veränderliche.

Trotzdem ist es interessant, neue Bedeckungsveränderliche zu finden und ihre physikalischen Parameter möglichst genau zu bestimmen, z.B. für die Bestimmung der Masse-Leuchtkraft-Beziehung.

In dem untersuchten Plejadenfeld wurden vier Bedeckungsveränderliche im Rahmen dieser Arbeit gefunden. Die genauen bzw. wahren Orbitperioden wurden nur für einen von diesen Sternen bestimmt, während keine genauen bzw. wahren Orbitperioden für die anderen identifiziert werden konnten.

Nach einer Durchsuchung des GCVS- (General Catalog for Variable Stars) Katalogs (Samus u. a. 2009) wurde festgestellt, dass sie noch nicht als Veränderliche bekannt sind, da es keine Einträge über diese vier Sterne in diesem Katalog gibt.

Informationen über diese Sterne wurden aus verschiedenen Katalogen, hauptsächlich: 2MASS-Katalog (Cutri u. a. 2003), UCAC3-Katalog (Zacharias u. a. 2009), USNO-B1.0-Katalog (Monet u. a. 2003) und NOMAD-Katalog (Zacharias u. a. 2004), entnommen.

5.3.1.1 V1 = 2MASS J03402625+2527220

Abbildung 5.3: Position des Bedeckungsveränderlichen V1 im Plejadenfeld.

Der erste gefundene Veränderliche (V1) ist ein Algol-Stern (siehe Kapitel 2.1.4.1). Abbildung 5.3 verdeutlicht seine Lage in dem untersuchten Plejadenfeld.

Dieses Objekt und alle anderen gefundenen Veränderlichen wurden zum ersten mal mit der STK in 2009 gefunden, weil sie ein großes Gesichtsfeld im Vergleich zur CTK hat. Später wurden die CTK und CTKII verwendet, um sie zu beobachten, als die STK nicht verfügbar war.

Die wichtigsten Informationen dieses Sterns sind in Tabelle 5.5 dargestellt. Die Koordinaten und die Helligkeiten im B-Band und im Infraroten wurden aus verschiedenen Katalogen entnommen, während die anderen Parameter anhand unserer Photometrie, bezeichnet mit der Ergänzung GSH (Beobachtungsstation Großschwabhausen), bestimmt wurden.

Parameter	Wert
Rektaszension (2000) [h m s]	03 40 26.25
Deklination (2000) [° $^\prime$ $^\prime\prime]$	$+25 \ 27 \ 22.00$
B [mag]	16.721
V^2 (GSH) [mag]	14.876 ± 0.261
R (GSH) [mag]	14.740 ± 0.146
I (GSH) [mag]	13.380 ± 0.028
J [mag]	12.518 ± 0.024
H [mag]	11.851 ± 0.033
K [mag]	11.661 ± 0.024
SpT_A (GSH)	G9V (G6VK2V)
SpT_B (GSH)	M4V (M2VM6V)
$A_V (GSH) [mag]$	2.132 ± 0.058
$T_{eff,A}$ (GSH) [K]	5410(57004730)
$T_{eff,B}$ (GSH) [K]	$3366\ (35803050)$
$M_A (GSH) [M_\odot]$	$0.81 \ (0.900.71)$
M_B (GSH) $[M_{\odot}]$	$0.18 \ (0.400.16)$
$R_A (GSH) [R_{\odot}]$	$0.87 \ (0.900.77)$
$R_B (GSH) [R_{\odot}]$	$0.25 \ (0.500.10)$
T_0 (JD) [Tage]	2455096.4869 ± 0.0002
P [Tage]	1.2024282 ± 0.0000006
$\triangle(m_1) \text{ [mag]}$	~ 0.7
$\triangle(m_2) \text{ [mag]}$	~ 0.2

Das Plejadenfeld wurde in ein paar Nächten (Tabelle 3.3) auch im B-Band aufgenommen, aber da ihre Qualität nicht gut war, wurden diese Daten in dieser Arbeit nicht verwendet.

Tabelle 5.5: Photometrische Eigenschaften des Bedeckungsveränderlichen V1.

Es wurde angenommen, dass die Helligkeit des Hauptsterns dominiert. daher wurde der durch die Helligkeiten bestimmte Spektraltyp (siehe 5.1) als Spektraltyp des Haupsterns

²Bei der Datenreduktion wurde gefunden, dass der Messfehler des V-Filters den von R- und I-Filtern stark übersteigt. Es wurde festgestellt, dass im gleichen Zeitraum von August 2010 bis März 2011 der V-Filter Verschmutzung aufwies, was somit die Messungen im V-Filter von September und Oktober 2010 verschlechtert hat.

A angenommen. Dann lassen sich seine Effektivtemperatur $(T_{eff,A})$ mittels der Tabelle A5 aus Kenyon und Hartmann (1995), Masse (M_A) und Radius (R_A) näherungsweise aus Schmidt-Kaler (1982) bestimmen, unter Annahme, dass er ein Hauptreihenstern ist.

Für die Bestimmung der Parameter des Begleiters B wurden zwei Gleichungen (5.9 und 5.10) verwendet.

$$\Delta(m_1) = -2.5 \log\left(\frac{F_A}{F_B}\right) = -2.5 \log\left(\frac{L_A}{L_B}\right)$$
(5.9)

$$\Delta(m_2) = -2.5 \log\left(\frac{F_C}{F_B}\right) = -2.5 \log\left(\frac{L_C}{L_B}\right)$$
(5.10)

Wobei F und L den Fluss und die Leuchtkraft bezeichnen.

 $\Delta(m_1)$ ist die Tiefe der Primärbedeckung und beträgt $\Delta(m_1) \sim 0.7 \text{ mag}$, während $\Delta(m_2)$ die Tiefe der Sekundärbedeckung bezeichnet und $\Delta(m_2) \sim 0.2 \text{ mag}$ beträgt (Abbildung 5.4).

In Gleichung 5.9 besteht L_A aus drei Termen. Der Erste $(4\pi\sigma R_1^2 T_{eff,1}^4)$ entspricht der Leuchtkraft des Hauptsterns, der Zweite $(4\pi\sigma R_2^2 T_{eff,2}^4)$ gibt die Leuchtkraft des Begleiters, während der Dritte $(4\pi\sigma R_2^2 T_{eff,1}^4)$ die Leuchtkraft des durch den Begleiter bedeckten Teils des Hauptsterns beschreibt. L_B steht für die Leuchtkraft beider Komponenten (außerhalb der Bedeckungen). Und so lässt sich Gleichung 5.7 so schreiben

$$\Delta(m_1) = -2.5 \log \left(\frac{4\pi\sigma R_1^2 T_{eff,1}^4 + 4\pi\sigma R_2^2 T_{eff,2}^4 - 4\pi\sigma R_2^2 T_{eff,1}^4}{4\pi\sigma R_1^2 T_{eff,1}^4 + 4\pi\sigma R_2^2 T_{eff,2}^4} \right)$$
(5.11)

In Gleichung 5.10 wird der Begleiter durch die hellere Komponente bedeckt (Sekundärbedeckung), das heißt man sieht nur den Hauptstern und die Gleichung lässt sich so schreiben

$$\Delta(m_2) = -2.5 \log \left(\frac{4\pi\sigma R_1^2 T_{eff,1}^4}{4\pi\sigma R_1^2 T_{eff,1}^4 + 4\pi\sigma R_2^2 T_{eff,2}^4} \right)$$
(5.12)

Aus der Photometrie gewinnt man den Spektraltyp des Haupsterns mit der Annahme, dass sein Licht dominiert. Dann kann man unter Annahme, dass er ein Zwergstern ist, mit Hilfe von Tabellen aus Schmidt-Kaler (1982) seine Masse und seinen Radius bestimmen. Mit den Gleichungen (5.9 und 5.10 bzw. 5.11 und 5.12) kann man dann die Masse und den Radius des Begleiters bestimmen, da sie nur zwei Unbekannte ($T_{eff,2}$ und R_2) enthalten.

Für die genaue Bestimmung der physikalischen Parameter (T_{eff} , R und M) beider Komponenten muss man das System spektroskopieren.

Mit den aufgenommenen Daten wurde eine phasengefaltete Lichtkurve (Abbildung 5.4) für diesen Stern erzeugt, nachdem eine Periode von P = 1.20 Tage gefunden wurde. Mit dem Stringlength-Programm (siehe Kapitel 4.8.2) wurde eine Umlaufperiode von P = 1.20 Tage (das Stringlength-Programm gibt keinen Fehler aus) bestimmt. Die genaue Umlaufperiode wurde anhand der Minimazeiten bestimmt (s.u.)

Man sieht aus der Lichtkurve, dass der Stern immer eine konstante Helligkeit außerhalb der Bedeckungen aufweist (vor dem Hauptminimum beträgt die Standardabweichung $\sigma = 0.0261 \text{ mag}$ und zwischen den beiden Minima $\sigma = 0.0244 \text{ mag}$, für beide Strecken ist $\sigma = 0.0251 \text{ mag}$). Das liegt an der Tatsache, dass sich beide Komponenten nicht berühren (getrenntes System), und kein Materialaustausch zwischen den Beiden stattfindet.

In einem solchen System sind beide Komponenten kugelförmig mit verschiedenen Helligkeiten. Zieht die dunklere Komponente vor der Helleren vorbei, entsteht ein tiefes Minimum, das sogenannte Hauptminimum bzw. die Primärbedeckung, mit einer Amplitude von etwa 0.7 mag. Zum späteren Zeitpunkt bedeckt die hellere Komponente die Dunklere, dann entsteht ein nicht so tiefes Minimum, das sogenannte Nebenminimum bzw. die Sekundärbedeckung, mit einer Amplitude von etwa 0.2 mag.

Abbildung 5.4: Phasengefaltete Lichtkurve (mit R-Band Daten) des Sterns V1.

Dieser Stern hat eine Eigenbewegung von $\mu_{\alpha} = -18.6 \pm 3.8 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = 18.8 \pm 3.8 \ mas \cdot (yr)^{-1}$ (UCAC3 Katalog (Zacharias u. a. 2009)), welche inkonsistent mit der Mittleren der Plejadenmitglieder $\mu_{\alpha} = 20.10 \pm 0.28 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \ mas \cdot (yr)^{-1}$ (van Leeuwen 2009) ist.

Das schließt aber nicht aus, dass er Mitglied des Haufens ist, da ein Mitglied eines Haufens vorrangig das gleiche Alter und die gleiche Entfernung des Haufens haben muss. Der Stern könnte aus dem Plejadenhaufen herausgeschleudert worden sein. Er bewegt sich in die Gegenrichtung (Nord-Westen) der Plejadensterne. Sein Spektrum müsste auch Lithium zeigen, dazu benötigt man ein mittlerer bis hoher Auflösung Spektrum.

Die Lage dieses Sterns im Farb-Helligkeits-Diagramm (Stern 1 in Abbildung 5.1, 5.2) wäre konsistent zu den bekannten Plejadenmitgliedern in dem Feld. Die Tatsache, dass er ein Bedeckungsveränderlicher ist, bedeutet er bzw. der Hauptstern muss in Wirklichkeit dunkler sein, das heißt er muss tiefer im FHD liegen. Wegen der großen Extinktion ($A_V = 2.132 \pm 0.058$ mag) ist dieser Stern kein Plejadenmitgliedskandidat.

Von den 11 beobachteten Minima (Tabelle 5.6) konnten 6 als Hauptminimum und 5 als Nebenminimum identifiziert werden.

Ein linearer Anstieg des Least Square-Fit JD(Min) über E ergibt folgendes Resultat für die Ephemeride des Lichtwechsels:

$$JD(Min) = T_0 + P \cdot E = 2455096.4859(6) + 1.2024282(6) \cdot E$$
(5.13)

$$HJD(Min) = T_0 + P \cdot E = 2455096.4888(6) + 1.2024282(6) \cdot E$$
(5.14)

Wobei JD(Min), HJD(Min) der Zeitpunkt (JD: Julianisches Datum, HJD: Heliozentrisches Julianisches Datum) des Minimums in einer Bedeckungslichtkurve bezeichnet. T_0 ist der Zeitpunkt des ersten beobachteten Hauptminimums (für E = 0), P ist die Umlaufperiode und E steht für die Epoche.

Ein künftiger Beobachter kann neue Daten mit diesen Daten kombinieren und die Lichtwechselelemente (Gleichung 5.13) verbessern.

Datum	Min	JD(Min)	Е	O-C(·0.0001)
		[Tage]		[Tage]
09/21/2009	Н	2455096.4869 ± 0.0002	0	+10
10/20/2009	Н	2455125.3451 ± 0.0007	24	+9
10/30/2009	N	2455135.5672 ± 0.0004	32.5	+24
11/14/2009	Н	2455150.5950 ± 0.0001	45	-2
11/19/2009	Н	2455155.4029 ± 0.0003	49	-20
01/05/2010	Н	2455202.2983 ± 0.0017	88	-13
02/16/2010	Н	2455244.3902 ± 0.0008	123	+56
09/21/2010	N	2455461.4233 ± 0.0002	303.5	+5
09/22/2010	N	2455462.6254 ± 0.0009	304.5	+1
10/10/2010	N	2455480.6647 ± 0.0053	319.5	+30
10/21/2010	N	2455491.4832 ± 0.0003	328.5	-4

Tabelle 5.6: Ergebnisse der Bestimmung der Minimazeiten JD(Min) und der Beobachtungsepoche E des Sterns V1.

5.3.1.2 V2 = 2MASS J03404311 + 2529397

Es handelt sich bei diesem Objekt um einen leuchtschwachen Bedeckungsveränderlichen. Die Lage dieses Sterns in dem untersuchten Feld ist in Abbildung 5.5 gezeigt, während seine Eigenschaften in Tabelle 5.7 präsentiert sind.

Abbildung 5.5: Der Bedeckungsveränderliche V2 im Plejadenfeld.

Da dieses Objekt sehr leuchtschwach ist und die Fehlerbalken in den zugehörigen Lichtkurven mit 60s Belichtungszeit im R-Band mit der STK-CCD ziemlich groß waren, wurde die Belichtungszeit auf 90s erhöht.

Parameter	Wert			
Rektaszension (2000) [h m s]	03 40 43.118			
Deklination (2000) [° $^{\prime}$ $^{\prime\prime}]$	$+25 \ 29 \ 39.77$			
2MASS-Name	$J03404311 \!+\! 2529397$			
B [mag]	17.73			
V (GSH) [mag]	$16.539 {\pm} 0.320$			
R (GSH) [mag]	$16.585 {\pm} 0.069$			
I (GSH) [mag]	$15.743 {\pm} 0.056$			
J [mag]	$15.286 {\pm} 0.049$			
H [mag]	$14.772 {\pm} 0.072$			
K [mag]	$14.690 {\pm} 0.076$			
SpT_A (GSH)	F6V (F4VF8V)			
SpT_B (GSH)	G8V (G6VG9V)			
$A_V (GSH) [mag]$	1.329 ± 0.076			
Wird auf der nächsten Seite fortgesetzt				
Parameter	Wert			
--	---------------------------			
$T_{\rm eff,A} (\rm GSH) [\rm K]$	6360 (65906200)			
$T_{eff,B}$ (GSH) [K]	$5520 \ (57005410)$			
$M_A (GSH) [M_{\odot}]$	$1.33 \ (1.440.35)$			
$M_B (GSH) [M_{\odot}]$	$0.84 \ (0.890.81)$			
${ m R}_{ m A}~({ m GSH})~[R_{\odot}]$	1.26 (1.341.18)			
$R_B (GSH) [R_{\odot}]$	$0.87 \ (0.900.86)$			
T_0 (JD) [Tage]	2455135.6382 ± 0.0016			
P [Tage]	3.682341 ± 0.000019			
$\triangle(m_1) \text{ [mag]}$	~ 0.5			
$\triangle(m_2) \text{ [mag]}$	~ 0.2			

Tabelle 5.7: Eigenschaften des Bedeckungsveränderlichen V2.

Man bemerkt aus der Lichtkurve (Abbildung 5.6), dass es sich wahrscheinlich um einen Algol-Stern bzw. ein getrenntes System handelt, da man konstante Helligkeiten außerhalb der Bedeckungen sieht. Wie schon in Kapitel 2.1.4.1 erwähnt, ist die typische Umlaufperiode eines Algol-Sterns größer als ein Tag.

Ähnlich wie bei dem schon in Kapitel 5.3.1.1 beschriebenen Algol-Stern (V1) wurden die Parameter dieses Sterns (V2) bestimmt.

Trotz der sehr guten Anzahl der Beobachtungen (Tabelle 3.3) des Plejadenfeldes, wurden die Primär- und Sekundärbedeckungen nur viermal gesehen (Tabelle 5.8).

Abbildung 5.6: Phasengefaltete Lichtkurve (mit R-Band Daten) des Sterns V2.

Die Umlaufperiode wurde anhand der Minimazeiten bestimmt. Es war uns unklar, ob es

sich in der Nacht 03. 02. 2010 (siehe Anhang B.2) um eine Primär- oder Sekundärbedeckung handelt. Deshalb wurden beide Fälle berücksichtigt und mehrere Werte für die Umlaufperiode ausprobiert. Es wurde eine Periode von $P = 3.682341 \pm 0.000019$ Tage für den Fall einer Primärbedeckung in der Nacht 03. 02. 2010 gefunden, was zu den anderen Bedeckungen passt (Tabelle 5.8).

Mit dem Stringlength-Programm konnte keine genaue Periode gefunden werden.

Mit den aufgenomenen Daten und der berechneten Umlaufperiode dieses System wurde eine Phasengefaltete Lichtkurve (Abbildung 5.6) erstellt. Man sieht, dass die Bahn kreisförmig und nicht exzentrich ist, und noch mehreren Bedeckungen nötig sind, um eine bessere Lösung zu erreichen.

Ein linearer Anstieg des Least Square-Fit JD(Min) über E ergibt folgendes Resultat für die Ephemeride des Lichtwechsels:

$$JD(Min) = T_0 + P \cdot E = (2455135.6380 \pm 0.0016) + (3.682341 \pm 0.000019) \cdot E \quad (5.15)$$

$$HJD(Min) = T_0 + P \cdot E = (2455135.6433 \pm 0.0016) + (3.682341 \pm 0.000019) \cdot E$$
 (5.16)

Datum	Min	JD(Min)	Е	$(O-C) \cdot (0.0001)$
		[Tage]		[Tage]
10/30/2009	Н	2455135.6382 ± 0.0016	0	+2
02/03/2010	Н	2455231.4253 ± 0.0701	26	+464
09/21/2010	N	2455461.5177 ± 0.0029	88.5	-75
10/28/2010	N	2455498.3492 ± 0.0009	98.5	+7

Tabelle 5.8: Die Minimazeiten JD(Min) und die Beobachtungsepoche E des Sterns V2.

Seine Eigenbewegung beträgt $\mu_{\alpha} = -5.1 \pm 8.1 \, mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -49.9 \pm 8.7 \, mas \cdot (yr)^{-1}$ (UCAC3 Katalog (Zacharias u. a. 2009)), welche inkonsistent mit der Mittleren der Plejadenmitglieder $\mu_{\alpha} = 20.10 \pm 0.28 \, mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \, mas \cdot (yr)^{-1}$ (van Leeuwen 2009) ist.

Er gilt nicht als Mitgliedskandidat des Plejadenhaufens.

5.3.1.3 V3 = 2MASS J03402986+2547099

Es handelt sich bei diesem Objekt eventuell um einen Bedeckenden Doppelstern. Die Lage und die Eigenschaften dieses Objekts sind in Abbildung 5.7 und Tabelle 5.9 dargestellt.

Abbildung 5.7: Der Bedeckungsveränderliche V3 im Plejadenfeld.

Parameter	Wert
Rektaszension (2000) [h m s]	03 40 29.868
Deklination (2000) [° ′ ″]	$+25 \ 47 \ 09.96$
B [mag]	17.21
V (GSH) [mag]	$15.689 {\pm} 0.284$
R (GSH) [mag]	$15.604{\pm}0.041$
I (GSH) [mag]	$14.514{\pm}0.011$
J [mag]	$13.806 {\pm} 0.028$
H [mag]	$13.165 {\pm} 0.036$
K [mag]	$13.033 {\pm} 0.033$
SpT_A (GSH)	F6V (F5VG9V)
$A_V (\text{GSH}) [\text{mag}]$	$2.459 {\pm} 0.040$
$T_{\rm eff,A}$ (GSH) [K]	$6360 \ (64405410)$
$M_A (GSH) [M_{\odot}]$	$1.33\ (1.400.81)$
$R_A (GSH) [R_{\odot}]$	$1.26 \ (1.300.86)$
T_0 (JD) [Tage]	2455460.496 ± 0.016
P [Tage]	3.4430 ± 0.0012
$\bigtriangleup(m)$ [mag]	≈ 0.1

Tabelle 5.9: Eigenschaften des eventuellen Bedeckungsveränderlichen V3.

Innerhalb der Beobachtungen des Plejadenfeldes wurde nur dreimal eine Bedeckung (immer mit der gleichen Tiefe, ($\Delta(m) \approx 0.1 \text{ mag}$) (Abbildung 5.8, 5.9 und 5.10) gesehen.

Abbildung 5.8: Lichtkurve des eventuellen Bedeckungsveränderlichen V3. Aufgenommen am 20. 09. 2010 mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung 5.9: Lichtkurve des eventuellen Bedeckungsveränderlichen V3. Aufgenommen am 21. 10. 2010 mit der STK-Kamera im R-Filter und mit 90 s Belichtungszeit.

Abbildung 5.10: Lichtkurve des eventuellen Bedeckungsveränderlichen V3. Aufgenommen am 28. 10. 2010 mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Ein linearer Anstieg des Least Square-Fit JD(Min) über E ergibt folgendes Resultat für die Ephemeride des Lichtwechsels:

$$JD(Min) = T_0 + P \cdot E = (2455460.475 \pm 0.013) + (3.4430 \pm 0.0012) \cdot E$$
(5.17)

 $HJD(Min) = T_0 + P \cdot E = (2455460.478 \pm 0.013) + (3.4430 \pm 0.0012) \cdot E$ (5.18)

Datum	Min	JD(Min)	Е	$(O-C) \cdot (0.01)$
		[Tage]		[Tage]
09/20/2009	Н	2455460.496 ± 0.016	0	+2
10/21/2010	Н	2455491.454 ± 0.004	9	+1
10/28/2010	Н	2455498.349 ± 0.002	11	-0.1

Tabelle 5.10: Die Minimazeiten JD(Min) und Beobachtungsepoche E des Sterns V3.

Diese gefundene Umlaufperiode (P = 3.4430 ± 0.0012 Tage) anhand der Minimazeiten ist nicht unbedingt die genaue Periode, wegen der sehr geringen Anzahl der gefundenen Bedeckungen und der Tatsache, dass zwei der drei möglichen Bedeckungen jeweils am Anfang der Beobachtung unvollständig sind. Um die genaue Periode dieses Systems zu bestimmen, muss das Feld noch häufiger beobachtet werden.

Seine Eigenbewegung beträgt $\mu_{\alpha} = -24.3 \pm 10.6 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -0.6 \pm 9.0 \ mas \cdot (yr)^{-1}$ (UCAC3 Katalog (Zacharias u. a. 2009)), welche inkonsistent mit der Mittleren der Plejadenmitglieder $\mu_{\alpha} = 20.10 \pm 0.28 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \ mas \cdot (yr)^{-1}$ (van Leeuwen 2009) ist.

Seine Lage im FHD ist durch die Nummer 9 in Abbildung 5.1, 5.2 dargestellt.

Er gilt nicht als Plejadenmitgliedskandidat.

Nimmt man an, dass die gefundene Bedeckung mit der Tiefe von etwa 0.1 mag die Primärbedeckung ist und der Begleiter ein Planet oder ein Brauner Zwerg mit $T_B \ll T_A \Rightarrow$ $T_{eff,B} = 0$ ist, dann ist $R_B \simeq 0.37 R_{\odot}$ (nach Gleichung 5.11). Somit könnte es ein Stern mit Spektraltyp spät M sein oder auch ein brauner Zwerg.

$5.3.1.4 \quad \mathrm{V4} = 2\mathrm{MASS} \,\, \mathrm{J03411089} {+} 2556396$

Es handelt sich bei diesem Stern (V4) auch eventuell um einen bedeckungsveränderlichen Stern. In Abbildung 5.11 ist die Lage dieses Sterns innerhalb des untersuchten Plejadenfeldes zu sehen, seine Eigenschaften sind in Tabelle 5.11 dargestellt.

Abbildung 5.11: Der eventuelle Bedeckungsveränderliche V4 im Plejadenfeld.

Parameter	Wert		
Rektaszension (J2000) [h m s]	03 41 10.894		
Deklination (J2000) [° $^\prime$ $^\prime\prime]$	+25 56 39.69		
2MASS-Name	$\rm J03411089{+}2556396$		
B [mag]	16.65		
V [mag]	15.287 ± 0.263		
R [mag]	15.502 ± 0.041		
I [mag]	$14.493 {\pm} 0.034$		
J [mag]	13.782 ± 0.029		
H [mag]	13.226 ± 0.035		
K [mag]	13.029 ± 0.028		
Wird auf der nächsten Seite fortgesetzt			

Parameter	Wert
SpT_A (GSH)	G8V (F5VK2V)
A_V (GSH) [mag]	$1.567 {\pm} 0.042$
$T_{eff,A}$ (GSH) [K]	$5520 \ (64404900)$
$M_A (GSH) [M_{\odot}]$	0.84(1.400.74)
$R_A (GSH) [R_{\odot}]$	$0.88\ (1.300.80)$
T_0 (JD) [Tage]	2455135.6611 ± 0.0045
$\triangle(m) \text{ [mag]}$	≈ 0.1

Tabelle 5.11: Photometrische Eigenschaften des Sterns V4.

Der Spektraltyp und die Extinktion wurden anhand der Photometrie bestimmt. Die Effektivtemperatur wurde mit Hilfe der Tabelle A5 aus Kenyon und Hartmann (1995) bestimmt, während die Masse und der Radius unter der Annahme, dass er ein Hauptreihenstern ist, bestimmt wurden. Innerhalb der Beobachtungen des Plejadenfeldes wurde eine Bedeckung mit einer Tiefe von etwa 0.1 mag nur zweimal gesehen (Abbildung 5.12, 5.13), sonst hat der Stern nur einen konstanten Verlauf gezeigt.

Abbildung 5.12: Lichtkurve aus der Nacht 30. 10. 2009 mit der ersten gefundenen Bedeckung des Sterns V4. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Seine Eigenbewegung von $\mu_{\alpha} = 12.7 \pm 3.7 \, mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -12.8 \pm 3.7 \, mas \cdot (yr)^{-1}$ (PPMXL Katalog (Roeser, 2010)) ist inkonsistent mit der Mittleren der Plejadenmitglieder $\mu_{\alpha} = 20.10 \pm 0.28 \, mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \, mas \cdot (yr)^{-1}$ (van Leeuwen 2009). Seine Lage im FHD ist durch die Nummer 6 in Abbildung 5.1, 5.2 dargestellt. Er gilt nicht als Plejadenmitgliedskandidat.

Eine ähnliche Annahme wie bei dem Stern V3 liefert für den Begleiter einen Radius von

 ${\rm R}\simeq 0.26\,R_{\odot}.$ Der Begleiter kann ein Stern mit einem Spektraltyp Mitte M oder ein Brauner Zwerg sein.

Abbildung 5.13: Lichtkurve aus der Nacht 21. 10. 2010 mit der zweiten gefundenen Bedeckung des Sterns V4. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit

Die zwei gefundenen Minimazeiten sind in der folgenden Tabelle dargestellt:

Datum	JD(Min)	
	[Tage]	
10/30/2009	2455135.6611 ± 0.0045	
10/21/2010	2455491.3743 ± 0.0031	

Tabelle 5.12: Die gefundenen Minimazeiten JD(Min) des Sterns V4.

5.3.2 Pulsations- oder Rotationsveränderliche

Es wurden in dem untersuchten Plejadenfeld fünf Sterne gefunden, welche entweder pulsationsveränderliche oder rotationsveränderliche Sterne sind. Im folgenden werden diese Objekte mit ihren zugehörigen Eigenschaften präsentiert.

5.3.2.1 V5 = 2MASS J03391116+2522064

Die Lage dieses Veränderlichen und seine Eigenschaften sind in Abbildung 5.14 und Tabelle 5.13 dargestellt.

Abbildung 5.14: Position des Veränderlichen V5 im Plejadenfeld.

Parameter	Wert		
Rektaszension (2000) [h m s]	03 39 11.168		
Deklination (2000) [° $^\prime$ $^{\prime\prime}]$	$+25 \ 22 \ 06.44$		
2MASS-Name	$\rm J03391116{+}2522064$		
B [mag]	15.67		
V (GSH) [mag]	14.177 ± 0.264		
R (GSH) [mag]	14.140 ± 0.246		
I (GSH) [mag]	13.923 ± 0.029		
J [mag]	13.585 ± 0.023		
H [mag]	13.284 ± 0.032		
K [mag]	13.215 ± 0.033		
SpT (GSH)	F6V (F2VF6V)		
$A_V (\text{GSH}) [\text{mag}]$	0.200 ± 0.065		
Wird auf der nächsten Seite fortgesetzt			

Parameter	Wert
T_{eff} (GSH) [K]	6360 (68906360)
M (GSH) $[M_{\odot}]$	1.33 (1.521.33)
R (GSH) $[R_{\odot}]$	1.26 (1.421.26)
T_0 (JD) [Tage]	2455095.6590 ± 0.0023
P [Tage]	$0.20508247 \pm 0.00000098$
Amplitude [mag]	~ 0.4

Tabelle 5.13: Eigenschaften des Veränderlichen V5.

Der Spektraltyp und die Extinktion des Sterns wurden anhand der Photometrie bestimmt. Mit Hilfe der Tabellen aus Kenyon und Hartmann (1995) und Schmidt-Kaler (1982) kann man die Effektivetemperatur, die Masse und den Radius des beobachteten Sterns bestimmen.

Abbildung 5.15: Phasengefaltete Lichtkurve (R-Band Daten) des Sterns V5.

Seine Rotationsgeschwindigkeit beträgt

$$V_{rot} = \frac{2\pi \cdot R}{P} = 311^{+39}_{-0.0015} \ km \cdot s^{-1} \tag{5.19}$$

Wobei mit R und P der Radius und die Periode des Sterns bezeichnet werden. Die sogenannte Zerreißgeschwindigkeit (engl. break up velocity) dieses Sterns beträgt

$$V_{zer} = \sqrt{\frac{G \cdot M}{R}} = 448^{+32}_{-28} \ km \cdot s^{-1} \tag{5.20}$$

G, M und R stehen hierbei für die Gravitationskonstante, die Sternmasse und den Sternradius.

Der Stern kann entweder ein Rotations- oder Pulsationsveränderlicher sein. Im Fall eines Rotationsveränderlichen sind die Flecken auf der Sternoberfläche für die Veränderlichkeit des Sterns verantwortlich (siehe Kapitel 2.1.3).

Für den Fall eines Pulsationsveränderlichen wird die Veränderlichkeit des Sterns durch den κ -Mechanismus verursacht (siehe Kapitel 2.1.1).

Als Pulsationsveränderlicher gilt dieser Stern bzw. V5 als ein Zwergcepheid. Zwergcepheiden sind kurzperiodische Veränderliche mit Perioden zwischen 0.03 und 0.2 Tagen, Amplituden im Bereich von 0.3 bis 0.8 mag, Spektraltypen A bis F und Massen von 1 bis $2 M_{\odot}$ (Unsöld und Baschek 2009). Sie befinden sich in der Nähe der Hauptreihe im HRD (RRs Sterne in Abbildung 2.1).

Der Stern könnte auch ein Bedeckungsveränderlicher sein. Man bemerkt aus der phasengefalteten Lichtkurve (Abbildung 5.15), dass keine konstanten Abschnitte existieren. Beide Minima wären gleich tief, sodass man die Primärbedeckung und die Sekundärbedeckung nicht voneinander unterscheiden könnte.

Der Begleiter hat die gleichen Werte wie der Hauptstern in Tabelle 5.13, da es sich um ein Kontaktsystem bzw. um einen W Ursae-Majoris-Stern handelt. Die Umlaufperiode des System ist in diesem Fall das Doppelte bzw. P = $0.41016494 \pm 0.00000098$ Tage. Die hohe Genauigkeit erhält man sowohl mit *Stringlenth*-Programm als auch mit der Maxima-Methode. Möglicherweise ist der systematische Fehler größer, d.h. P $\simeq 0.2$ Tage oder $\simeq 0.4$ Tage.

Die Eigenbewegung dieses Sterns beträgt $\mu_{\alpha} = -4.8 \pm 8.2 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -0.9 \pm 8.3 \ mas \cdot (yr)^{-1}$ (UCAC3 Katalog (Zacharias u. a. 2009)), welche inkonsistent mit der Mittleren der Plejadenmitglieder $\mu_{\alpha} = 20.10 \pm 0.28 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \ mas \cdot (yr)^{-1}$ (van Leeuwen 2009) ist. Seine Lage im FHD ist durch Nummer 3 in den Abbildungen 5.1, 5.2 dargestellt. Er ist kein Mitgliedskandidat des Plejadenhaufens. Mit Hilfe der beobachteten Maximas (Tabelle 5.14) wurde die folgende Ephe-meride für den Lichtwechsel gefunden:

$$\begin{aligned} JD(Max) &= T_0 + P \cdot E = (2455095.670882 \pm 0.001721) + (0.20508247 \pm 0.00000098) \cdot E \\ (5.21) \\ HJD(Max) &= T_0 + P \cdot E = (2455095.673743 \pm 0.001721) + (0.20508247 \pm 0.00000098) \cdot E \end{aligned}$$

(5.22)

Datum	JD(Max)	Е	$(O-C)(\cdot 0.01)$
	[Tage]		[Tage]
10/20/2009	2455095.6590 ± 0.0023	0	-1
11/19/2009	2455155.3513 ± 0.0055	291	+0.1
11/19/2009	2455155.5525 ± 0.0043	292	-0.2
02/16/2010	2455244.3727 ± 0.0022	725	+2
09/13/2010	2455453.5521 ± 0.0035	1745	+1
09/20/2010	2455460.5310 ± 0.0162	1779	+2
09/21/2010	2455461.5499 ± 0.0023	1784	+1.2
09/22/2010	2455462.5801 ± 0.0299	1789	+1.6
10/17/2010	2455487.3732 ± 0.0242	1910	-0.5
10/17/2010	2455487.5772 ± 0.0008	1911	-0.6
10/20/2010	2455490.4603 ± 0.0013	1925	+0.5
10/21/2010	2455491.4811 ± 0.0021	1930	+0.1
10/22/2010	2455492.5097 ± 0.0045	1935	+0.4
10/28/2010	2455498.4652 ± 0.0150	1964	+1.2

Tabelle 5.14: Ergebnisse der Bestimmung der Maximazeiten $\rm JD(Max)$ und der Beobachtungsepoche E des Sterns V5.

5.3.2.2 V6 = 2MASS J03424676 + 2529504

Der Stern V6 ist ein leuchtschwacher Stern (Tabelle 5.15) und liegt am Rand des untersuchten Plejadenfeldes (Abbildung 5.16).

Abbildung 5.16: Position des Sterns V6 im Plejadenfeld.

Parameter	Wert
Rektaszension (J2000) [h m s]	03 42 46.763
Deklination (J2000) [° ′ ″]	$+25 \ 29 \ 50.46$
2MASS-Name	$ m J03424676 {+} 2529504$
B [mag]	16.17
V(GSH) [mag]	15.185 ± 0.216
R(GSH) [mag]	15.482 ± 0.251
I [mag]	
J [mag]	14.38 ± 0.036
H [mag]	14.09 ± 0.042
K [mag]	13.94 ± 0.050
SpT(GSH)	F6V (A3VF6V)
A_V (GSH) [mag]	0.227 ± 0.112
$T_{\rm eff}$ (GSH) [K]	6360 (87206360)
M(GSH) $[M_{\odot}]$	$1.33\ (2.361.33)$
$R(GSH) [R_{\odot}]$	$1.26 \ (1.981.26)$
P [Tage]	0.1447696 ± 0.0000013
T_0 (JD) [Tage]	2455096.5166 ± 0.0036
Amplitude [mag]	~ 0.1

Die Bestimmung des Spektraltyps und der Extinktion A_V wurde schon in Kapitel 5.2 ausführlich erklärt. Mit Hilfe der Tabelle A5 aus Kenyon und Hartmann (1995) kann die Effektivtemperatur des Sterns bestimmt werden. Masse und Radius lassen sich aus Schmidt-Kaler (1982) bestimmen.

Eine phasengefaltete Lichtkurve (Abbildung 5.17) für Stern V6 wurde erstellt, nachdem mit dem *Stringlength*-Programm eine Periode von P = 0.14 Tagen bestimmt wurde.

Abbildung 5.17: Phasengefaltete Lichtkurve des Sterns V6 im Plejadenfeld.

Es ergab sich eine vergleichbare Periode P = 0.1447696 ± 0.0000013 Tage anhand der Maximabestimmung (s.u.).

Seine Rotationsgeschwindigkeit beträgt

$$V_{rot} = \frac{2\pi \cdot R}{P} = 441^{+252}_{-0.0040} \text{ km} \cdot \text{s}^{-1}$$
(5.23)

Wobei mit R und P der Radius und die Periode des Sterns bezeichnet werden. Die sogenannte Zerreißgeschwindigkeit (engl. break up velocity) dieses Sterns beträgt

$$V_{zer} = \sqrt{\frac{G \cdot M}{R}} = 449^{+174}_{-128} \,\mathrm{km} \cdot \mathrm{s}^{-1} \tag{5.24}$$

G, M und R stehen hierbei für die Gravitationskonstante, die Sternmasse und den Sternradius.

Anhand der fast gleichen Geschwindigkeiten (V_{rot} und V_{zer}) dieses Sterns und der geringen Periode gilt er nicht als Rotationsveränderlicher, sondern als Pulsationsveränderlicher. Anhand der Lichtkurve (Abbildung 5.17), der Periode und der Amplitude gilt dieser Stern als ein δ Scuti-Stern (δ Sct).

Es handelt sich bei den δ Scuti-Sternen um pulsationsveränderliche Sterne mit sehr kur-

zen Perioden von 0.03 bis 0.2 Tagen und Amplituden $\leq 0.1 \text{ mag}$. Sie sind vom Spektraltyp A bis F, haben Leuchtkraftklassen V bis III und besitzen Massen von 1 bis $2 M_{\odot}$ (Unsöld und Baschek 2009). Im HRD (Abbildung 2.1) liegen Sie zwischen der Hauptreihe und den RR-Lyrae-Sternen.

Die Ursache der Variabilität dieses Sterns ist wie schon in Kapitel 2.1.1 erklärt wurde, Kontraktion und Expansion der Schichten des Sterns (κ -Mechanismus).

Dieser Stern kann auch eventuell ein Bedeckungsveränderlicher (Kontaktsystem) sein. Man benötigt Spektren, welche bestimmen, ob es sich um ein Einzelsystem (Pulsationsveränderlicher) oder ein Doppelsystem (Bedeckungsveränderlicher) handelt.

Seine Eigenbewegung von $\mu_{\alpha} = 2.2 \pm 6.6 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = 6.5 \pm 8.4 \ mas \cdot (yr)^{-1}$ (UCAC3 Katalog (Zacharias u. a. 2009)) ist inkonsistent mit der Mittleren der Plejadenmitglieder $\mu_{\alpha} = 20.10 \pm 0.28 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \ mas \cdot (yr)^{-1}$ (van Leeuwen 2009), seine Lage im FHD (Stern 4 in Abbildung 5.1, 5.2) ist inkonsistent mit der Lage der Plejaden. Er gilt nicht als Plejadenmitgliedskandidat.

Mit den beobachteten Maximas (Tabelle 5.16) wurde die folgende Ephemeride für den Lichtwechsel gefunden:

 $JD(Max) = T_0 + P \cdot E = (2455096.522188 \pm 0.003452) + (0.1447696 \pm 0.0000013) \cdot E (5.25)$

 $HJD(Max) = T_0 + P \cdot E = (2455096.525052 \pm 0.003452) + (0.1447696 \pm 0.0000013) \cdot E (5.26)$

Datum	JD(Max)	Е	$(O-C)(\cdot 0.001)$
	[Tage]		[Tage]
09/21/2009	2455096.5166 ± 0.0036	0	-5.5
09/24/2009	2455099.5650 ± 0.0114	21	+2.6
10/30/2009	2455135.6226 ± 0.0395	270	-12.6
02/16/2010	2455244.3432 ± 0.0521	1021	+11.3
09/17/2010	2455457.5843 ± 0.0012	2494	-93.2
09/20/2010	2455460.4862 ± 0.0048	2514	+13.2
09/20/2010	2455460.6090 ± 0.0194	2515	-8.7
09/21/2010	2455461.4910 ± 0.0073	2521	+4.6
09/21/2010	2455461.6254 ± 0.0128	2522	-5.6
09/22/2010	2455462.4949 ± 0.0105	2528	-4.7
09/22/2010	2455462.6449 ± 0.0146	2529	+0.4
10/17/2010	2455487.4087 ± 0.0152	2700	+8.6
10/17/2010	2455487.5343 ± 0.0018	2701	-10.5
10/20/2010	2455490.4377 ± 0.0230	2721	-2.5
10/21/2010	2455491.4578 ± 0.0063	2728	+4.2
10/21/2010	2455491.5917 ± 0.0038	2729	-6.6
10/22/2010	2455492.4647 ± 0.0074	2735	-2.2
10/22/2010	2455492.6121 ± 0.0025	2736	+0.3
10/28/2010	2455498.5332 ± 0.0042	2777	-14

Tabelle 5.16: Ergebnisse der Bestimmung der Maximazeiten $\rm JD(Max)$ und der Beobachtungsepoche E des Sterns V6.

5.3.2.3 V7 = 2MASS J03423948+2529448

Es handelt sich bei diesem Objekt V7 entweder um einen Rotationsveränderlichen oder Pulsationsveränderlichen.

Er liegt nahe am Rand (Abbildung 5.18) und nahe an V6 im Plejadenfeld. In Tabelle 5.17 sind seine Eigenschaften dargestellt. Die Helligkeiten sind aus den Katalogen und unserer Photometrie, die anderen Parameter (SpT, A_V , T_{eff} , M_{\odot} und R_{\odot}) wurden wie bei dem schon beschriebenen Stern V6 bestimmt.

Abbildung 5.18: Position des Sterns V7 im Plejadenfeld.

Parameter	Wert		
Rektaszension (J2000) [h m s]	03 42 39.480		
Deklination (J2000) [° $'$ $'']$	$+25 \ 29 \ 44.86$		
2MASS-Name	$ m J03423948{+}2529448$		
B [mag]	14.82		
V (GSH) [mag]	14.093 ± 0.241		
R (GSH) [mag]	14.315 ± 0.282		
I [mag]			
J [mag]	13.44 ± 0.022		
H [mag]	13.16 ± 0.031		
K [mag]	13.13 ± 0.036		
SpT(GSH)	F4V (A0VF4V)		
A_V (GSH) [mag]	0.210 ± 0.111		
T_{eff} (GSH) [K]	6590 (95206590)		
Wird auf der nächsten Seite fortgesetzt			

Parameter	Wert
M (GSH) $[M_{\odot}]$	1.44 (2.91.44)
R (GSH) $[R_{\odot}]$	1.34(2.41.34)
P [Tage]	0.3034938 ± 0.0000019
T_0 (JD) [Tage]	2455094.6333 ± 0.1025
Amplitude [mag]	~ 0.15

Tabelle 5.17: Eigenschaften des Sterns V7.

Mit dem Stringlength-Programm wurde für Stern V7 eine Periode von P = 0.3035039 Tage bestimmt (das Stringlength-Programm gibt keinen Fehler aus). Anhand der Maximazeiten (s.u.) wurde eine Periode von $P = 0.3034938 \pm 0.0000019$ Tage bestimmt.

Die Rotationsgeschwindigkeit dieses Sterns beträgt $V_{rot} = 223^{+177}_{-0.0014} \text{ km} \cdot \text{s}^{-1}$, während die Zerreißgeschwindigkeit $V_{zer} = 453^{+229}_{-179} \text{ km} \cdot \text{s}^{-1}$ beträgt. Daher kann dieser Stern entweder ein Rotations- oder ein Pulsationsveränderlicher sein. Im Fall eines Rotationsveränderlichen ist die Ursache der Variabilität dieses Sterns die Existenz von Flecken auf seiner Oberfläche. Sie sind, wie schon in Kapitel 2.1.3 erklärt wurde, kühler bzw. dunkler als die restliche Oberfläche, sodass die Rotation des Sterns eine solche Variabilität (Abbildung 5.19) verursacht.

Abbildung 5.19: Phasengefaltete Lichtkurve des Sterns V7.

Falls der Stern mit rotiert (mit einer Helligkeitsamplitude A ~ 0.15 mag), dann muss er wohl ein junger Vorder- oder Hintergrundstern sein, deutlich jünger als die Plejaden. Im Fall eines Pulsationsveränderlichen wird seine Variabilität durch den κ -Mechanismus (siehe Kapitel 2.1.1) hervorgerufen. Noch eine dritte Möglichkeit besteht hier, und zwar ein Bedeckungsveränderlicher bzw. Kontaktsystem. Dafür muss man den Stern spektroskopieren, um diese Möglichkeit auszuschließen.

Anhand seiner Eigenbewegung, welche $\mu_{\alpha} = 2.2 \pm 8.6 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = 6.5 \pm 8.4 \ mas \cdot (yr)^{-1}$ (UCAC3 Katalog (Zacharias u. a. 2009)) beträgt, und seiner Lage im FHD (Stern 5 in Abbildung 5.1, 5.2) gilt er nicht als Plejadenmitgliedskandidat.

Mit den beobachteten Maximas (Tabelle 5.18) wurde die folgende Ephemeride für den Lichtwechsel gefunden:

$$JD(Max) = T_0 + P \cdot E = (2455094.6366 \pm 0.0019) + (0.3034938 \pm 0.0000019) \cdot E (5.27)$$

Datum	JD(Max)	Е	$(O-C)(\cdot 0.001)$
	[Tage]		[Tage]
09/19/2009	2455094.6333 ± 0.1025	0	-3.1
10/30/2009	2455135.6082 ± 0.0017	135	+0.002
09/21/2010	2455461.6002 ± 0.0532	1209	+39.6
09/22/2010	2455462.4852 ± 0.0128	1212	+14.2
10/13/2010	2455483.4138 ± 0.0166	1281	+1.7
10/20/2010	2455490.4039 ± 0.0042	1304	+11.5
10/21/2010	2455491.5896 ± 0.0034	1308	-16.7
10/22/2010	2455492.5181 ± 0.0019	1311	+1.2
10/28/2010	2455498.6011 ± 0.0060	1331	+14.2

 $HJD(Max) = T_0 + P \cdot E = (2455094.5393 \pm 0.0019) + (0.3034938 \pm 0.0000019) \cdot E (5.28)$

Tabelle 5.18: Ergebnisse der Bestimmung der Maximazeiten JD(Max) und der Beobachtungsepoche E des Sterns V7.

5.3.2.4 V8 = 2MASS J03421308 + 2556439

Der Stern V8 ist ein sehr leuchtschwacher (Tabelle 5.19) Veränderlicher im Plejadenfeld (Abbildung 5.20).

Abbildung 5.20: Der Stern V8 im Plejadenfeld.

Parameter	Wert
Rektaszension (J2000) [h m s]	03 42 13.080
Deklination (J2000) [° ′ ″]	+25 56 43.96
2MASS-Name	$J03421308 {+} 2556439$
B [mag]	18.83
V (GSH) [mag]	16.879 ± 0.307
R (GSH) [mag]	17.047 ± 0.098
I (GSH) [mag]	16.085 ± 0.075
J [mag]	15.24 ± 0.056
H [mag]	14.50 ± 0.052
K [mag]	14.45 ± 0.071
SpT (GSH)	K3V(G6VK7V)
$A_V (GSH) [mag]$	0.894 ± 0.085
T_{eff} (GSH) [K]	4730 (57004060)
M (GSH) $[M_{\odot}]$	$0.72 \ (0.900.61)$
R (GSH) $[R_{\odot}]$	$0.77 \ (0.910.67)$
P [Tage]	$0.1085012\ {\pm}0.0000015$
T_0 (JD) [Tage]	2455094.5639 ± 0.0053
Amplitude [mag]	~ 0.1

Ta	belle	5.19:	Eigenschaften	des	Veränderlichen	V8.
----	-------	-------	---------------	----------------------	----------------	-----

Die erhaltene Periode dieses Sterns aus dem Stringlength-Programm beträgt

P = 0.10850555 Tage. Die Amplitude ist etwa 0.2 mag. Eine phasengefaltete Lichtkurve (Abbildung 5.21) des Sterns V8 mit dieser Periode wurde erstellt.

Anhand der Maximazeiten wurde eine Periode von P = 0.1085012 ± 0.0000015 bestimmt (s.u.).

Die Rotationsgeschwindigkeit dieses Sterns ist $V_{rot} = 359^{+65}_{-47} \text{ km} \cdot \text{s}^{-1}$, während die Zerreißgeschwindigkeit $V_{zer} = 422^{+59}_{-50} \text{ km} \cdot \text{s}^{-1}$ beträgt. Dieser Stern kann entweder ein Rotationsveränderlicher oder ein Pulsationsveränderlicher sein.

Seine Eigenbewegung beträgt $\mu_{\alpha} = 0.3 \pm 3.9 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -13.5 \pm 3.9 \ mas \cdot (yr)^{-1}$ (PPMXL Katalog (Roeser u. a. 2010)) und seine Position im FHD (Stern 7 in Abbildung 5.1, 5.2) ist auch inkonsistent mit den bekannten Plejadenmitgliedern. Daher gilt er nicht als Plejadenmitgliedskandidat.

Abbildung 5.21: Phasengefaltete Lichtkurve des Sterns V8.

Mit den beobachteten Maximas (Tabelle 5.20) wurde die folgende Ephemeride für den Lichtwechsel gefunden:

$$JD(Max) = T_0 + P \cdot E = (2455094.5628 \pm 0.0052) + (0.1085012 \pm 0.0000015) \cdot E \quad (5.29)$$
$$HJD(Max) = T_0 + P \cdot E = (2455094.5655 \pm 0.0052) + (0.1085012 \pm 0.0000015) \cdot E \quad (5.30)$$

Datum	JD(Max)	Е	$(O-C)(\cdot 0.001)$
	[Tage]		[Tage]
09/19/2009	2455094.5639 ± 0.0053	0	+1
09/17/2010	2455457.5122 ± 0.0027	3345	+12.8
09/17/2010	2455457.6199 ± 0.0112	3346	+12
09/20/2010	2455460.5407 ± 0.0034	3373	+3.3
09/21/2010	2455461.4978 ± 0.0083	3382	-16.1
09/21/2010	2455461.6134 ± 0.0018	3383	-1
10/17/2010	2455487.4419 ± 0.0052	3621	-3.8
10/17/2010	2455487.5560 ± 0.0023	3622	+1.8
10/21/2010	2455491.4649 ± 0.0031	3658	+4.6
10/21/2010	2455491.5762 ± 0.0791	3659	+7.4
10/22/2010	2455492.4382 ± 0.0269	3667	+1.4
10/22/2010	2455492.5486 ± 0.0060	3668	+3.3

Tabelle 5.20: Ergebnisse der Bestimmung der Maximazeiten $\rm JD(Max)$ und der Beobachtungsepoche E des Sterns V8.

5.3.2.5 V9 = 2MASS J0303390375+2543121

Der Stern V9 ist ein sehr leuchtschwacher (Tabelle 5.21) Pulsationsveränderlicher im Plejadenfeld (Abbildung 5.22).

Abbildung 5.22: Der Stern V9 im Plejadenfeld.

Parameter	Wert
Rektaszension (J2000) [h m s]	$03 \ 39 \ 03.755$
Deklination (J2000) [° $^\prime$ $^\prime\prime]$	$+25 \ 43 \ 12.14$
2MASS-Name	$ m J0303390375 {+} 2543121$
B [mag]	17.57
V (GSH) [mag]	16.941 ± 0.281
R (GSH) [mag]	16.544 ± 0.0342
I [mag]	
J [mag]	15.98 ± 0.079
H [mag]	15.88 ± 0.168
K [mag]	15.85 ± 0.247
SpT (GSH)	B2V (B0VF3V)
$A_V (GSH) [mag]$	2.152 ± 0.115
T_{eff} (GSH) [K]	$22000 \ (300006740)$
M (GSH) $[M_{\odot}]$	$10.9\ (17.51.18)$
R (GSH) $[R_{\odot}]$	5.6(7.41.38)
P [Tage]	0.1478084 ± 0.0000033
T_0 (JD) [Tage]	2455244.3660 ± 0.0040
Amplitude [mag]	~ 0.2

Tabelle 5.21: Photometrische Eigenschaften des Pulsationsveränderlichen V9.

Der Spektraltyp und die Extinktion wurden anhand unserer Photometrie ermittelt, die Effektivtemperatur, die Masse und der Radius mit Hilfe der Tabellen aus Kenyon und Hartmann (1995) und Schmidt-Kaler (1982).

Da die Rotationsgeschwindigkeit dieses Sterns $V_{rot} = 1918^{+616}_{-1445} \text{ km} \cdot \text{s}^{-1}$ beträgt, während die Zerreißgeschwindigkeit $V_{zer} = 609^{+294}_{-289} \text{ km} \cdot \text{s}^{-1}$ beträgt, ist dieser Stern ein Pulsationsveränderlicher.

Eine Periode von P = 0.1478174 Tage mit dem *Stringlength*-Programm wurde bestimmt (siehe Kapitel 4.8.2). Mit dieser Periode wurde eine phasengefaltet Lichtkurve für Stern V9 (Abbildung 5.23) erstellt.

Mit Hilfe der Maximazeiten wurde eine Periode von P = 0.1478084 \pm

0.0000033 Tage bestimmt (s.u.).

Die Eigenbewegung dieses Veränderlichen $\mu_{\alpha} = 0.0 \pm 3.3 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -6.0 \pm 1.0 \ mas \cdot (yr)^{-1}$ (NOMAD Katalog (Zacharias u.a. 2009)) und seine Lage im FHD (Stern 8 in Abbildung 5.1, 5.2) sagen aus, dass er kein Plejadenmitgliedskandidat ist.

Abbildung 5.23: Phasengefaltete Lichtkurve des Sterns V9 im R-Filter.

Mit den beobachteten Maximas (Tabelle 5.22) wurde die folgende Ephemeride für den Lichtwechsel gefunden:

$$JD(Max) = T_0 + P \cdot E = (2455244.3660 \pm 0.0041) + (0.1478083 \pm 0.0000033) \cdot E (5.31)$$
$$HJD(Max) = T_0 + P \cdot E = (2455244.3661 \pm 0.0041) + (0.1478083 \pm 0.0000033) \cdot E (5.32)$$

Datum	JD(Max)	Е	$(O-C)(\cdot 0.0001)$
	[Tage]		[Tage]
02/16/2010	2455244.3660 ± 0.0040	0	-0.2
09/17/2010	2455457.5081 ± 0.0204	1442	+25.8
09/20/2010	2455460.4654 ± 0.0411	1462	+36.5
09/20/2010	2455460.6055 ± 0.0253	1463	-40.4
09/21/2010	2455461.5040 ± 0.0057	1469	+76.7
09/22/2010	2455462.5221 ± 0.0061	1476	-89
10/17/2010	2455487.5128 ± 0.0092	1645	+21.3
10/21/2010	2455491.5025 ± 0.0113	1672	+10.3
10/21/2010	2455491.6461 ± 0.0951	1673	-32
10/22/2010	2455492.5340 ± 0.0074	1679	-20.6
10/28/2010	2455498.6012 ± 0.0217	1720	+49.7

Tabelle 5.22: Ergebnisse der Bestimmung der Maximazeiten $\rm JD(Max)$ und der Beobachtungsepoche E des Sterns V9.

5.3.3 Flare-Sterne

Flare-Sterne gehören zu den eruptiven Veränderlichen. Der erste Flare-Stern wurde 1924 durch Hertzsprung (Herzsprung 1924) gefunden. Später wurde ein neuer Typ von Flare-Sternen in der Sonnenumgebung gefunden, sie tragen den Namen UV Ceti-Sterne (Joy und Humson 1949) und sind bekannt als massearme, leuchtschwache Sterne. Der erste Flare-Stern im Plejadenhaufen wurde von Johnson und Mitchell (1958) gefunden. Es wurde nach einer Studie der statistischen Eigenschaften der Plejaden durch Ambartsumyan u. a. (1970, 1971b,a) herausgefunden, dass alle Sterne leuchtschwächer als V = 13.3 mag Flare-Sterne sein könnten. Ein anderer Vorteil der Flare-Sterne Untersuchung in nahen offenen Haufen wie dem Plejadenhaufen ist neue Mitglieder des Haufens zu detektieren. Die Mehrheit der leuchtschwachen Plejadenmitglieder wurden in Flare-Stern Suchen (Jones (1981); Haro u. a. (1982); Stauffer u. a. (1991)) gefunden.

Die Sterne wurden nach ihrem Prototyp benannt, dem Stern UV Cet (ein roter Zwergstern mit einer Entfernung von r = 2.7 pc, sein Spektrum zeigt Wasserstoff-Emissionslinien und seine minimale visuelle Helligkeit beträgt 13 mag (Hoffmeister u. a. 1984)). Die Lage der UV Ceti-Sterne im HRD ist in Abbildung 2.1 am unteren Ende der Hauptreihe dargestellt. Viele kühle Hauptreihensterne, meist vom Spektraltyp M mit Wasserstoff-Emissionslinien zeigen in unregelmäßigen Abständen Flares. Dabei steigt die Helligkeit des Sterns in 3 s bis 300 s um bis zu 7 mag an, der Abstieg der Helligkeit zum normalen Licht des Sterns erfolgt wesentlich langsamer. Man findet eine große Anzahl von Flare-Sternen in den jungen T-Assoziationen und in jungen Sternhaufen, z.B. in den Plejaden.

Abbildung 5.24: Lichtkurven zweier Flares von UV Ceti-Sternen. Links ist Typ I, rechts ist Typ II mit einem sogenannten Vorläufer, etwa drei Minuten vor dem Ausbruch (Hoffmeister u. a. 1984).

Man kann anhand der Lichtkurve zwischen zwei Typen unterscheiden. Bei dem ersten Typ bzw. Typ I geschieht der Anstieg der Helligkeit des Sterns bis zum Maximum extrem steil und dauert nur ein paar Sekunden oder Minuten, der Abstieg der Helligkeit erfolgt langsamer und kann 10 Minuten bis etwa 2 Stunden dauern (Abbildung 5.24).

Die größte Anzahl der UV Ceti-Sterne zeigen nur den ersten Typ (Typ I), während bei anderen beide Typen beobachtbar sind.

V10/1 = 2MASS J03400665 + 2514276 & V10/2 = 2MASS J03400685 + 2514256

In dem untersuchten Plejadenfeld wurde ein Stern gefunden, der in einer Nacht einen Flare zeigt. Abbildung 5.25 verdeutlicht seine Position in dem Plejadenfeld.

Abbildung 5.25: Die Lage des Flare-Sterns V10a oder V10b im Plejadenhaufen.

Das Objekt besteht eigentlich aus zwei beinahe gleich hellen Objekten, die mit unserer Kamera nicht aufgelöst weden konnten. Diese beiden Objekte sind jedoch aufgelöst in einem 2MASS Bild (Abbildung 5.26) sichtbar.

Abbildung 5.26: Ein Zoom im Gesichtsfeld der STK (links) zeigt, dass unser Flare-Stern eines von zwei unaufgelösten Objekten ist. Aufgenommen im R-Filter mit 90 s Belichtungszeit. Norden ist oben und Osten ist links. Rechts sind beide Objekte in einem 2MASS Bild, aufgenommen im Ks-Filter (Skrutskie et al. 2006), aufgelöst zu sehen. Norden ist oben und Osten ist links. Die Nummerierung der beiden Objekte ist wie in Tabelle 5.15.

Beide Objekte bzw. V10/1 & V10/2 sind in den Katalogen der variablen Sterne nicht eingetragen.

Der Stern zeigt den Flare in der Nacht vom 21. auf den 22. 09. 2010 (Abbildung 5.27),

Abbildung 5.27: Lichtkurve des Flare-Sterns aus der Nacht vom 21. auf den 22. 09. 2010, aufgenommen mit der STK-CCD in GSH im R-Filter und mit 90s Belichtungszeit.

während er in allen anderen beobachteten Nächten nur einen konstanten Verlauf zeigt. Der Stern zeigte zuerst ein konstantes Licht und kurz vor dem Flare geschieht der sogenannte negative Flare (eng. negative preflare) mit einer Dauer von etwa acht Minuten. Der physikalische Grund dafür ist immer noch unbekannt. Dann steigt seine Helligkeit rasch in etwa vier Minuten mit einer Amplitude von etwa 1.08 mag bis zum Maximum an, danach kühlt er langsam, bis er sein normales Licht wieder erreicht.

Um das Ende des Flares genau zu bestimmen wurden zwei Modelle der Lichtkurve erzeugt und eingezeichnet.

Das erste Modell hat die Form

$$Fluss = Konst + A \cdot e^{B \cdot Zeit}$$
(5.33)

In Abbildung 5.27 ist es in Grün dargestellt und mit den Werten:

$$A = 0.0637 \pm 0.0022$$

$$B = -189.64 \pm 10.86$$

 ${\rm Konst} = 0.04219 \, \pm \, 0.00031$

Das zweite Modell ist eine Gerade bzw. Konstante.

Beide Modelle wurden miteinander verglichen, um zu sehen, ab welchem Zeitpunkt die abfallende e-Funktion und die Gerade innerhalb der Fehler nicht mehr unterscheidbar sind.

Die Parameter des Flare-Sterns aus der Lichtkurve sind in der folgenden Tabelle darge-

stellt.

Parameter	Wert
Beginn des Flares [h:m]	00:52(3) UT
Dauer des negativen Flares [min]	8 ± 2
Maximum des Flares [h:m]	01:04(1.5) UT
Anstieg Obergrenze [min]	≤ 4
Abfalldauer des Flares [h:m]	00:52(2)
Ende des Flares [h:m]	01:56(4) UT
Gesamtdauer des Flares [min]	64 ± 5
Amplitude des Flares [mag]	≥ 1.08

Tabelle 5.23: Die aus der Lichtkurve des Flare-Sterns bestimmten Parameter.

Da wir beide Objekte mit unserer CCD-Kamera nicht auflösen können, sind die gemessenen Helligkeiten (Tabelle 5.24) die gemeinsamen Helligkeiten beider Objekte.

V^3	R	Ι
[mag]	[mag]	[mag]
17.302 ± 0.290	16.968 ± 0.084	14.844 ± 0.041

Tabelle 5.24: Die mit unserer STK-Kamera gemessenen Helligkeiten beider Objekte. Im V-Filter mit 180s Belichtungszeit, im R-Filter mit 90s Belichtungszeit und im I-Filter mit 50s Belichtungszeit.

Um die einzelnen Helligkeiten für jeden Stern zu bestimmen wurde das folgende gemacht. Im 2MASS Katalog sind die einzelnen Helligkeiten von jedem Stern in den JHK-Bändern gegeben. Diese Helligkeiten wurden auf die Extinktion der Plejadensterne ($A_V = 0.2$ mag, Van Leeuwen (2009)) korrigiert, dann wurde der Spektraltyp anhand der Farben (J-H, J-K, H-K) für jeden Stern bestimmt, unter Annahme, dass beide Sterne Hauptreihensterne sind. Anhand des Spektraltyps wurden die Helligkeiten für jeden Stern in den anderen Bändern bzw. BVRI-Bändern mit Hilfe von Tabelle A5 in Kenyon und Hartmann (1995) bestimmt. Daraus wurde das Flussverhältnis in allen Bändern bestimmt. Die endgültigen Helligkeiten für jeden Stern wurden dann aus den Flussverhältnissen und den gemeinsamen Helligkeiten bestimmt. Da wir die Spektraltyp und Extinktion für jeden Stern gleichzeitig bestimmen wollen, wurden die am Anfang subtrahierte Extinktion am Ende für alle Helligkeiten wieder hinzuaddiert. Die resultierenden Extinktionen sind konsistent mit der der Plejadensterne.

³Bei der Datenreduction wurde festgestellt, dass der Messfehler des V-Filters den von R- und I-Filtern stark übersteigt. Es wurde festgestellt, dass im gleichen Zeitraum von August 2010 bis März 2011 der V-Filter Verschmutzung aufwies, was somit die Messungen im V-Filter von September und Oktober 2010 verschlechtert hat.

In Tabelle 5.25 sind die Eigenschaften des Sterns dargestellt. Die Koordinaten und die extingierten Helligkeiten im Infraroten wurden aus verschiedenen Katalogen entnommen. Die BVRI-Helligkeiten (extingiert) wurden selbst bestimmt. Der Spektraltyp und die Extinktion wurden, wie schon in Kapitel 5.1 erklärt wurde, anhand der Farben bestimmt. Die Effektivtemperatur kommt aus Tabelle A5 in Kenyon und Hartmann (1995), während Masse und Radius aus Schmidt-Kaler (1982) sind unter der Annahme, dass beide Sterne Hauptreihensterne sind.

Parameter	Stern 1	Stern 2
$\alpha [h m s]$	03 40 06.657	03 40 06.857
δ [° ′ ″]	$+25 \ 14 \ 27.65$	$+25 \ 14 \ 25.63$
2MASS-Name	J03400665+2514276	$J03400685{+}2514256$
B [mag]	18.766 ± 0.032	19.358 ± 0.063
V [mag]	17.817 ± 0.291	18.359 ± 0.296
R [mag]	17.533 ± 0.089	17.946 ± 0.105
I [mag]	15.523 ± 0.052	15.674 ± 0.075
J [mag]	14.368 ± 0.072	14.437 ± 0.032
H [mag]	13.764 ± 0.088	13.833 ± 0.050
K [mag]	13.536 ± 0.074	13.563 ± 0.038
SpTy	M1V (M0M2)	M2V (M1M4)
$A_V [mag]$	0.231 ± 0.024	0.266 ± 0.020
$T_{\rm eff}$ [K]	3720 (38503580)	$3580 \ (37203370)$
M $[M_{\odot}]$	$0.45 \ (0.510.40)$	$0.40 \ (0.510.27)$
R $[R_{\odot}]$	$0.55\ (0.600.50)$	$0.50 \ (0.550.34)$

Tabelle 5.25: Eigenschaften der einzelne Sterne (siehe Text).

Die Eigenbewegung des Sterns 2MASS J03400685+2514256 (Stern 2) beträgt

 $\mu_{\alpha} = 43.9 \pm 3.8 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -44.3 \pm 3.8 \ mas \cdot (yr)^{-1}$ (PPMXL Katalog (Roeser u. a. 2010)), welche inkonsistent mit der des Plejadenhaufens

 $\mu_{\alpha} = 20.10 \pm 0.28 \ mas \cdot (yr)^{-1}$ und $\mu_{\delta} = -45.39 \pm 0.27 \ mas \cdot (yr)^{-1}$ (van Leeuwen 2009) ist. Er bewegt sich in die gleiche Richtung wie die Plejadensterne aber schneller in Richtung Rektaszension.

Für den ersten Stern 2MASS J03400665+2514276 (Stern 1) sind keine Messungen seiner Eigenbewegung in den Katalogen verfügbar.

Die Lagen der Sterne in den Farb-Helligkeits-Diagrammen (Abbildung 5.28, 5.29) sind konsistent mit vielen bekannten Plejadenmitgliedern. In Abbildung 5.29 sind zwei Braune Zwerge (Teide 1 und Calar 3), drei massearme Sterne

(HHJ 2, 3, 6) und der Stern PPl 15, der die Grenzlinie zwischen Braunen Zwergen und massearmen Sternen definiert, dargestellt. Beide Sterne bzw. V10/1 & V10/2 sind keine

Abbildung 5.28: Ein Farb-Helligkeits-Diagramm (Korrigiert auf die Extinktion) der bekannten Plejadenmitglieder in dem untersuchten Plejadenfeld. Dargestellt sind bekannte Plejadenmitglieder mit roten Diamanten, fünf Isochrochen mit fünf verschiedenen Alter aus Siess u. a. (2000), korrigiert auf die Entfernung der Plejadensterne und unsere zwei Sterne (grün Asterisks). Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt.

Abbildung 5.29: Ein Farb-Helligkeits-Diagramm (Korrigiert auf die Extinktion) der bekannten Plejadenmitglieder in dem untersuchten Plejadenfeld. die JHK-Helligkeiten der bekannten Plejadenmitglider (rote Diamanten) wurden aus dem 2MASS Katalog (Cutri u. a. 2003) entnommen. Die JHK-Helligkeiten für HHJ 2, HHJ 6, PPl 15, Teide 1, Calar 3 und die J-Magnitude für HHJ 3 wurden aus Zapatero Osorio u. a. (1997) entnommen, HK-Helligkeiten für HHJ 3 wurden aus Steele u. a. (1993) entnommen. Isochronen sind wie in Abbildung 5.28. Unten links ist der mittlere Fehlerbalken der Plejadensterne dargestellt.

Braunen Zwerge sondern massearme Sterne.

Die verwendeten Isochronen liegen im Optischen (Abbildung 5.28) tiefer und im Infraroten (Abbildung 5.29) höher als die Plejadensterne. Das könnte an den Anfangsbedingungen oder den Vereinfachungen der Isochronen liegen.

Da Stern 1 bzw. 2MASS J03400665+2514276 konsistent mit dem Alter bzw. der Entfernung und der Extinktion der Plejaden ist, und seine Eigenbewegung bisher nicht gemessen wurde, gilt er als Plejadenmitgliedskandidat. Aber beide Sterne gelten als Flare-Stern Kandidaten Typ UV-Ceti Sterne, die am unteren Ende (M-Sterne) der Hauptreihe (Abbildung 2.1) liegen und Flare-Sterne sind.

In der Gesamtbelichtungszeit von 132 Stunden haben wir einen Flare mit einer Amplitude von ~ 1 mag im R-Band beobachtet. Haro u. a. (1982) haben in den Plejaden insgesamt 1800 Flares bei 519 Sternen in 3500 Stunden beobachtet, dies i.w. im Blauen mit mittleren Amplituden von ~ 2.5 mag, d.h. einen Flare im Mittel alle 972 Stunden.

Wir haben in unserem Feld 11-12 Plejaden Flare-Sterne beobachtet (11 bekannte und ein wohl neuer Flare-Stern der Plejaden). Somit hätten wir im Mittel alle (972 / 12 =) 81 Stunden einen Flare erwartet - bei einer Gesamtbeobachtungszeit von 132 Stunden somit 1,6 Flares. Dies ist nicht inkonsistent mit einem tatsächlich beobachteten Flare.

Zusätzlich ist zu erwähnen, dass der von uns beobachtete Flare im R-Band beobachtet wurde und nur ~ 1 mag Amplitude hatte.

Kapitel 6

Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Feld am Rand des Plejadenhaufens untersucht, mit dem Ziel physikalische Veränderliche und Bedeckungsveränderliche zu finden.

Dieses Feld wurde mit den an der Universitäts-Sternwarte Großschwabhausen verwendeten CCD-Kameras (CTK, CTKII und STK) im Zeitraum von 2007 bis 2010 im R-Filter bei verschiedenen Belichtungszeiten abgebildet.

Die Rohbilder enthalten Effekte, die man beseitigen muss. Ein solches Verfahren nennt man Datenreduktion bzw. Datenkalibration. Dazu benötigt man zwei Kalibrationsbilder, ein Dark zur Korrektur des Dunkelstromes und ein Flat zur Ausgleichung der verschiedenen Reaktionen der einzelnen Pixel.

Nach der Datenreduktion wurden die Daten wissenschaftlich ausgewertet. Dazu wurden drei *Photometrie*-Programme und ein *Plot-stars*-Programm verwendet.

1. Source Detection mit GAIA (Graphical Astrometric Interferometer for the Astrophysics). Damit wurden die Koordinaten aller detektierten Objekte in dem untersuchten Plejadenfeld berechnet.

2. Aperture Photometry mit MIDAS (Munich Image Data Analysis System). Hierbei wurde ein Programm in MIDAS für die Apertur Photometry (momo2.prg) geschrieben. Es liest die GAIA-Tabellen bzw. die Koordinaten des Zentrums aller detektieren Objekte im Feld ein und berechnet die instrumentellen Magnituden dieser Objekte.

3. *Relative Photometry*. Bei diesem Schritt wurde die differentielle bzw. relative Helligkeit aller Feldobjekte berechnet. Dazu wurde ein *Photometry* Programm (Broeg et al. 2005) geschrieben. Das Programm erzeugt einen künstlichen Vergleichstern und berechnet die relative bzw. differentielle Helligkeit der Feldobjekte als ihre Differnz zu dem künstlichen Vergleichstern.

4. *Absolute Photometrie*: Es wurden für alle Sterne im Feld absolute Photometrie für VRI gemacht.

5. *Plot-stars* Programm. Es liest die aus der relativen Photometrie resultierenden Tabellen ein, normiert die differentiellen Helligkeiten auf eins und erzeugt schließlich die Lichtkurven (die differentielle Helligkeit mit dem zugehörigen Fehler gegen die Zeit) aller Sterne im Feld.

Es wurden 118 bekannte Sterne, von denen 57 Plejadenmitglieder sind, in dem untersuchten Plejadenfeld identifiziert. Die mit der Photometrie gemessenen Helligkeiten dieser Sterne wurden mit den bekannten Helligkeiten (aus den Katalogen) verglichen, zusätzlich wurden die Spektraltypen und die Extinktionen von diesen Sternen bestimmt.

Es wurden in dem untersuchten Plejadenfeld zehn neue Veränderliche gefunden. Es sind bis zu vier Bedeckungsveränderliche, mehrere Rotations- oder Pulsationsveränderliche und ein Flare-Stern.

Für einen der Bedeckungsveränderlichen (ein Algol-Stern bzw. ein getrenntes System) wurde die genaue bzw. wahre Umlaufperiode bestimmt, während für zwei wegen der geringen Anzahl der gefundenen Bedeckungen keine genauen bzw. wahren Umlaufperioden bestimmt werden konnten. Für den vierten konnte keine Periode bestimmt werden, weil nur zwei gleich tief Minimas in den Lichtkurven beobachtet wurden.

Bei den anderen fünf gefundenen Veränderlichen konnten ihre Rotations- und Pulsationsperioden genau bestimmt werden, da sie kurz periodisch Veränderliche sind. Von denen sind zwei entweder Rotations- oder Pulsations- oder Bedeckungsveränderliche, da die Differenz zwischen der Rotations- und der Zerreißgeschwindigkeit dieser Sterne nicht so groß ist. Ein noch zu bestimmendes Spektrum wird ausschließen, ob es sich um einen einzelnen Stern (ein rotierender oder pulsierender) oder um ein Doppelsystem (ein Bedeckungsveränderlicher) handelt.

Es wurden mittels Photometrie die Farben in den Bändern VRI, die Spektraltypen und die Extinktionen dieser zehn Sterne sowie aller Feldobjekte untersucht außer die GSHSTK-Sterne (siehe Anhang C), da dort keinen Spektraltyp und keine Extinktion bestimmt wurden. Die Massen, und Radien wurden unter der Annahme, dass sie Hauptreihensterne sind, bestimmt.

Zwei Farb-Helligkeits-Diagramme wurden für alle Feldsterne mit und ohne Extinktion mit den gemessenen Helligkeiten erstellt. Einer von den zehn gefundenen Veränderlichen, nämlich der Flare-Stern gilt als Plejadenmitgliederkandidat hoher Wahscheinlichkeit.

Als Nächstes soll das Feld noch öfters beobachtet werden, um die genauen Umlaufperioden der drei Bedeckungsveränderlichen zu bestimmen. In anderen Bändern muss das Feld auch länger beobachtet werden, um Farbinformationen über die Sterne zu gewinnen. Die zehn Veränderlichen sollten auch spektroskopiert werden, damit man noch genauere Massen und Radien bestimmen kann. Die Eigenbewegung des Flare-Sterns soll gemessen werden.

Im Vergleich mit den Zielen der Arbeit kann bemerkt werden, dass zehn neue variable Sterne gefunden wurden, von denen mindestens einer Mitglieder der Plejaden sein sollte, der eine Flare-Stern. Leider wurden keine bedeckenden Doppelsterne gefunden, die sicher Mitglieder der Plejaden sind. Es wurden zwei bis vier neue bedeckende Systeme gefunden, die aber von Eigenbewegung und Extinktion her keine Mitglieder sind. Bei zwei dieser Systeme wurden zudem nur so wenige Bedeckungen beobachtet, dass noch keine Orbit-Lösung vorliegt. Die Amplituden der Bedeckungen dieser zwei Systeme sind jedoch so gering, dass es sich um sub-stellare Begleiter handeln könnte. Sie müssten nun weiter beobachtet werden. Zusätzlich zu den bedeckenden Systemen wurden mehrere Rotations- und/oder Pulsations-Veränderliche gefunden, die jedoch wohl auch keine Plejaden-Mitglieder sind.

Desweiteren wurde ein Flare detektiert, der etwa eine Stunde dauerte und eine Maximal-Amplitude von mindestens 1 mag im R-Band hatte. Der Stern, der diesen Flare gezeigt hat, hat einen photometrischen Spektraltyp von früh-M, so dass es ein typischer Flare-Stern sein dürfte, also wohl auch ein Mitglied der Plejaden. An der Stelle des Flares sind zwei 2MASS-Sterne, einer davon hat eine Eigenbewegung, die nicht konsistent mit den Plejaden ist, der andere sollte der neue Plejaden-Mitglieds-Flare-Stern sein.

Es wurde bei diesem Stern ein Flare (1h, 1 mag in R) innerhalb von insgesamt 132 Stunden beobachtet. Unter den 11 bis 12 Plejaden-Mitgliedern in diesem Feld (11 ohne den neuen Flare-Stern, 11 mit ihm) hat nur der eine Flare-Stern in 132 Stunden einen Flare gezeigt. Dennoch wäre dies innerhalb eines Faktors von 2 konsistent mit der Flare-Rate, die von Haro et al. in blauen Bändern für die Plejaden gefunden wurde.
Anhang A

Programme

A.1 momo2.prg

```
!
! midas program to do aperture photometry for
! many stars in many images
!
! written by Ralph Neuhaeuser & Mohammad Moualla
! last update on 10-Nov-2010 by MM
!
! lines starting with ! are commented out
!
! next lines define variables to be integer numbers, hence I
! to have the value 0 at start
!
! e.g. DEFINE/LOCAL N/I/1/1 0
                   ~ ~
                           ^
!
! variable name N
! should be integer, hence I,
! with starting value 0
! hence N = 0
1
DEFINE/LOCAL N/I/1/1 0
DEFINE/LOCAL M/I/1/1 0
DEFINE/LOCAL Q/I/1/1 0
DEFINE/LOCAL X/I/1/1 0
DEFINE/LOCAL Y/I/1/1 0
DEFINE/LOCAL P/I/1/1 0
DEFINE/LOCAL A/I/1/1 0
DEFINE/LOCAL B/I/1/1 0
DEFINE/LOCAL C/I/1/1 0
DEFINE/LOCAL D/I/1/1 0
DEFINE/LOCAL E/I/1/1 0
```

```
DEFINE/LOCAL F/I/1/1 0
Т
Т
load/image F2R0004_90s_cal_ill.bdf scal=-4 cuts=f,sig
! load image with maximum number of stars
clear/chan o
write/out "*selection of reference star in first image:
                                                  *"
write/out "*should not be near edge of field
                                                  *"
                                                  *"
write/out "*nor near bad pixel or bad row
                                                 *"
write/out "*should not be too bright nor too faint
write/out "*should not have another star too close nearby *"
write/out "*click with cursor (left mouse buttom) on reference star for center/gauss *"
                                                                         *"
write/out "*(always the same star in all images)
                                                                         *"
write/out "*then click on right mouse buttom to end interaction
write/out " "
center/gauss cursor
A = \{OUTPUTD(5)\}
B = \{OUTPUTD(6)\}
1
Т
! in the next line, a loop starts with DO N = \dots
! loop ends with ENDDO
I.
DO N = 1 79
! variable N runs from first number to last number
! normaly, we start with 1 and end with number of images
! change last number in previous line to total number of images
!
! next line creates table with input data from gaia *txt
crea/table gsh2010Nov11_{N}g.tbl 10 ? gsh2010Nov11_{N}g.txt
I.
! next lines rename columns
name/col gsh2010Nov11_{N}g.tbl #1 :SID I3
name/col gsh2010Nov11_{N}g.tbl #2 :X_IMA "pixel" R F7.3
name/col gsh2010Nov11_{N}g.tbl #3 :Y_IMA "pixel" R F7.3
name/col gsh2010Nov11_{N}g.tbl #4 :X_PIX "pixel" R F7.3
name/col gsh2010Nov11_{N}g.tbl #5 :Y_PIX "pixel" R F7.3
name/col gsh2010Nov11_{N}g.tbl #6 :Mag "mag" R F7.4
name/col gsh2010Nov11_{N}g.tbl #7 :ErrMag "mag" R F7.4
name/col gsh2010Nov11_{N}g.tbl #8 :IsoArea "pixel" I7
name/col gsh2010Nov11_{N}g.tbl #9 :Theta "degree" R F5.2
name/col gsh2010Nov11_{N}g.tbl #10 :elong R F5.3
```

```
97
```

```
! next lines delete those stars at the edge of the field from gsh2010Nov11_{N}g.tbl
! and write good inner stars into gsh2010Nov11_{N}gs.tbl
                                                ^ selected
1
!!!sel/tab gsh2010Nov11_0001g.tbl :X_IMA.ge.50.and.:X_IMA.le.974.and.:Y_IMA.ge.50.and.
:Y_IMA.le.974
!!!sel/tab gsh2010Nov11_0004g.tbl :X_IMA.ge.25.and.:X_IMA.le.999.and.:Y_IMA.ge.25.and.
:Y_IMA.le.999
sel/tab gsh2010Nov11_0004g.tbl :X_IMA.ge.25.and.:X_IMA.le.2025.and.:Y_IMA.ge.25.and.
:Y_IMA.le.2025
P = \{OUTPUTI(1)\}
!!!copy/tab gsh2010Nov11_0001g.tbl gsh2010Nov11_0001gs.tbl
copy/tab gsh2010Nov11_0004g.tbl gsh2010Nov11_0004gs.tbl
!!!sel/tab gsh2010Nov11_0001g.tbl all
sel/tab gsh2010Nov11_0004g.tbl all
I.
! sel/tab gives number of selected stars as output
! written into variable OUTPUTI(1)
! and we write this number into our variable P
! by P = \{OUTPUTI(1)\}
!
1
! next line creates result table for image number N, one table per image
crea/tab res_feld{N}.tbl
1
load/image F2R{N}_90s_cal_ill.bdf scal=-4 cuts=f,sig
clear/chan o
! get X,Y of ref star in this image
write/out " "
¥"
write/out "*now image no {N}
write/out "*click with cursor (left mouse buttom) on reference star for center/gauss*"
write/out "*(always the same star in all images)
                                                                                *"
write/out "*then click on right mouse buttom to end interaction
                                                                                *"
write/out " "
center/gauss cursor
C = \{OUTPUTD(5)\}
D = \{OUTPUTD(6)\}
! then calculate shift
E = \{A\} - \{C\}
F = \{B\} - \{D\}
! \texttt{E}, \texttt{F} \texttt{ are X}, \texttt{Y} \texttt{ shifts of all stars in this image in first table}
!!!comp/table gsh2010Nov11_0001gs.tbl :X_IMAshift = :X_IMA - {E}
comp/table gsh2010Nov11_0004gs.tbl :X_IMAshift = :X_IMA - {E}
!!!comp/table gsh2010Nov11_0001gs.tbl :Y_IMAshift = :Y_IMA - {F}
```

1

```
comp/table gsh2010Nov11_0004gs.tbl :Y_IMAshift = :Y_IMA - {F}
!
! next line starts another loop for variable M from M=1 to M=P
! variables in such cases to be given {P} with curly brackets
! P is number of stars in that image
Т
DO M = 1 \{P\}
I.
! next 2 lines write some value into the variables X and Y
! namely the value found in row M ( \ensuremath{\mathbb{Q}}\{M\} )
!
                      in column X_IMA
!
                      in table gsh2010Nov11_{N}gs.tbl
T
!!!X = {gsh2010Nov11_0001gs.tbl,:X_IMAshift,@{M}}
X = {gsh2010Nov11_0004gs.tbl,:X_IMAshift,@{M}}
!!!Y = {gsh2010Nov11_0001gs.tbl,:Y_IMAshift,@{M}}
Y = {gsh2010Nov11_0004gs.tbl,:Y_IMAshift,@{M}}
!
! in next line we use the variables X and Y as Q{X},Q{Y}
! result to be written in res_feld{N}.tbl
! A means to append results for next star at end of table in next line
magn/circ F2R{N}_90s_cal_ill.bdf,@{X},@{Y} res_feld{N}.tbl @6,@9,@5 A
!
!
ENDDO
! end of inner loop
!
I.
ENDDO
! end of outer loop
I.
write/out " "
write/out "program finished: results are tables res_feld0001.tbl to res_feld{N}.tbl*"
write/out " "
1
!
```

A.2 plot-stars-g

```
; NAME:
; PLOT_STARS_GROSS
;
; PURPOSE: Read data created by Christopher Broeg's code to produce
```

```
; an artificial comparison star and plot the results.
;
;
; CALLING SEQUENCE: plot_stars_g, file, Nstars [xtitle=xtitle, ytitle=ytitle,
JDsub=JDsub]
;
:
; INPUTS: file:
                 Name of the file to be read in
; (in apostrophes!)
; Nstars: Number of stars in file
; (sum of target and all comparison stars)
; xtitle: xtitle of plots
; ytitle: ytitle of plots
; JDsub: time span to be subtracted in days
:
:
; REVISION HISTORY:
       Written by T. Schmidt
                                          May 2007, Jena
;
        (With help of A. Seifahrt)
:
PRO plot_stars_g,file,Nstars,xtitle=xtitle,ytitle=ytitle,
JDsub=JDsub
;Nstars=6
Spalten=(Nstars-1)*2+4
aiuread_ascii,file,daten,NCOL=Spalten
aiuread_ascii, '/home/momo/Documents/2009.STK/28.10.10/
nr_to_name',nrtoname,NCOL=2
daten(2,*)=-(daten(2,*)+(1-median(daten(2,*))))+2
FOR i=2,Nstars DO BEGIN
daten(i+2,*)=-(daten(i+2,*)+(1-median(daten(i+2,*))))+2
ENDFOR
SET_PLOT, 'ps'
DEVICE,FILENAME=strcompress(nstars-1,/remove_all)+
'Lightcurve_star1_g.eps',/palatino,xsize=28,ysize=20,
yoffset=29,inches=0,font_size=9,bits=8,/landscape,
isolatin=1,/encapsulated
loadct,0
!p.font=0
IF n_elements(JDsub) EQ 1 THEN BEGIN
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*)
-JDsub,daten(2,*),psym=1,yrange=[0.0,1.5],/ystyle
```

```
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*)
-JDsub,daten(2,*),xtitle=xtitle,psym=1,
yrange=[0.0,1.5],/ystyle
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 1 THEN plot,daten(0,*)
-JDsub,daten(2,*),ytitle=ytitle,psym=1,
yrange=[0.0,1.5],/ystyle
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 1 THEN plot,daten(0,*)
-JDsub,daten(2,*),xtitle=xtitle,ytitle=ytitle
,psym=1,yrange=[0.0,1.5],/ystyle
        oploterr,daten(0,*)-JDsub,
daten(2,*),daten(3,*)
ENDIF ELSE BEGIN
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*),
daten(2,*),psym=1,yrange=[0.0,1.5],/ystyle
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 0 THEN plot,
daten(0,*),daten(2,*),xtitle=xtitle,
psym=1,yrange=[0.0,1.5],/ystyle
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 1 THEN plot,
daten(0,*),daten(2,*),ytitle=ytitle,
psym=1,yrange=[0.0,1.5],/ystyle
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 1 THEN plot,
daten(0,*),daten(2,*),xtitle=xtitle,
ytitle=ytitle,psym=1,yrange=[0.0,1.5],/ystyle
        oploterr,daten(0,*),daten(2,*),daten(3,*)
ENDELSE
device,/close
set_plot,'x'
SET_PLOT, 'ps'
;name=strcompress(i,/remove_all)
DEVICE,FILENAME=strcompress(nstars-1,/remove_all)+
'Lightcurves_further_stars_g.ps',/palatino,xsize=28,
xoffset=0.5,ysize=20,yoffset=29,inches=0,font_size=9,
bits=8,isolatin=1,/landscape,encapsulated=0
loadct,0
!p.font=0
IF n_elements(JDsub) EQ 1 THEN BEGIN
FOR i=2,Nstars DO BEGIN
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*)
```

```
-JDsub,daten(i+2,*),psym=1,yrange=[0.0,1.5],
/ystyle,title='Star number: '+string(nrtoname(1,i-2),
format='(I)')
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*)
-JDsub,daten(i+2,*),xtitle=xtitle,psym=1,
yrange=[0.0,1.5],/ystyle,title='Star number:
 '+string(nrtoname(1,i-2),format='(I)')
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 1 THEN plot,daten(0,*)
-JDsub,daten(i+2,*),ytitle=ytitle,psym=1,
yrange=[0.0,1.5],/ystyle,title='Star number:
 '+string(nrtoname(1,i-2),format='(I)')
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 1 THEN plot,daten(0,*)
-JDsub,daten(i+2,*),xtitle=xtitle,ytitle=ytitle,
psym=1,yrange=[0.0,1.5],/ystyle,title='Star number:
 '+string(nrtoname(1,i-2),format='(I)')
oploterr,daten(0,*)-JDsub,
daten(i+2,*),daten(i+Nstars+1,*)
ENDFOR
ENDIF ELSE BEGIN
FOR i=2,Nstars DO BEGIN
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*),
daten(i+2,*),psym=1,yrange=[0.0,1.5],/ystyle,
title='Star number: '+string(nrtoname(1,i-2),
format='(I)')
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 0 THEN plot,daten(0,*),
daten(i+2,*),xtitle=xtitle,psym=1,yrange=[0.0,1.5],
/ystyle,title='Star number: '+string(nrtoname(1,i-2),
format='(I)')
IF n_elements(xtitle) EQ 0 AND
n_elements(ytitle) EQ 1 THEN plot,daten(0,*),
daten(i+2,*),ytitle=ytitle,psym=1,yrange=[0.0,1.5],
/ystyle,title='Star number: '+string(nrtoname(1,i-2),
format='(I)')
IF n_elements(xtitle) EQ 1 AND
n_elements(ytitle) EQ 1 THEN plot,daten(0,*),
daten(i+2,*),xtitle=xtitle,ytitle=ytitle,psym=1,
yrange=[0.0,1.5],/ystyle,title='Star number:
 '+string(nrtoname(1,i-2),format='(I)')
oploterr,daten(0,*),daten(i+2,*),
daten(i+Nstars+1,*)
ENDFOR
ENDELSE
```

```
device,/close
set_plot,'x'
end
; $Log: read_ascii.pro,v $
;Revision 1.2 1998/09/01 15:40:42 rklein
;Added ability to skip comment lines
;
;Revision 1.1 1997/08/21 07:14:44 loewe
;Initial revision
;
; Read ascii tables into data array
;+
; NAME:
       AIUREAD_ASCII
;
; PURPOSE: Read data stored in an ascii table into an IDL data
; structure. The array must be organised in rows and columns,
; with the columns separated by at least one whitespace.
; The number of columns is assumed to be 2, this can be
; changed using the 'ncol' keyword. Lines with '!', '%',
; ';' or 'C' as first character are skipped in the
; processing as comment lines but are echoed on the screen.
;
;
; CALLING SEQUENCE: aiuread_ascii, filename, array [, NCOL=ncol, ...]
:
:
; INPUTS: filename: Name of the file to be read
; array:
          Logical Name of the array the data will be stored
   in, will be created.
;
;
; KEYWORDS: ncol: If the number of columns in your array is not 2,
   but, e.g. 3, just use 'ncol=3'
:
   You can use ncol, to read the file as seperate strings
;
  (line by line) and process these later yourself.
   to do this, set 'ncol=0'. aiuread_ascii then returns a
   a string array containing the lines of the file.
;
; comment: NOW OBSOLETE: routine reads always only the
                        first "ncol" columns.
;
                        If this keyword is set, READ_ASCII reads only the
;
```

```
first ncol records of each line of the input file.
;
    Additional columns may then contain comments (or
;
   useless data), which are ignored.
;
;
                comm_char: may contain a differnt set of characters
;
                           idicating comments lines. Example: If
;
                           comments start with 'c' or '$', set
:
                           comm_char='c$'.
;
;
                           skip the first SKIP lines while reading the
                skip:
;
                           file. This is convenient if the first lines
;
                           are comment lines but do not have a leading
;
                           comment char.
;
                quiet:
                           Set this key word to Supress any output.
;
;
; NOTES: Rather primitive, but useful.
;
;
; REVISION HISTORY:
        Written by M. Feldt
                                         May 1996, Jena
;
;
        Added ability to read string arrays, May 1997, MFeldt
;
:
        Added ability to skip comment lines, Sep 1998, rklein
;
;
        Keyword SKIP added, May 1999, rklein
;
;
        datatype deleted (old) and double instead of float, May 2007,
;
                                                 tschmidt
;
;-
pro aiuread_ascii, fn, a, NCOL=ncol, QUIET=quiet, COMMENT=comment, $
                       COMM_CHAR=comm_char, skip=skip
   IF NOT keyword_set(comm_char) THEN comm_char = '!%;C'
   IF NOT keyword_set(skip) THEN skip = 0
   get_lun,fu
   t=string('xxxx')
   n=0L
   openr,fu,fn
   FOR i=1, skip DO BEGIN
      readf,fu,t
      IF not keyword_set (quiet) THEN print,t
```

```
ENDFOR
repeat begin
  readf,fu,t
  IF strpos(comm_char,strmid(t,0,1)) EQ -1 $
   THEN n=n+1 $
    ELSE IF not keyword_set (quiet) THEN print,t
                             ; ##### determine the number of rows
endrep until eof(fu)
if not keyword_set (quiet) then print,n,' valid rows found'
close,fu
if ncol eq 0 then BEGIN
  a = strarr(n)
  c = 'xxx'
  ncol = 1
ENDIF ELSE BEGIN
  a = dblarr(ncol,n)
  c = dblarr(ncol)
ENDELSE
openr,fu,fn
FOR i=1,skip DO readf,fu,t
for i=0L,n-1 do begin
  REPEAT $
   readf,fu,t $
  UNTIL strpos(comm_char,strmid(t,0,1)) EQ -1
  reads,t,c
  a(i*ncol:(i+1)*ncol-1)=c
endfor
close,fu
free_lun,fu
```

```
end
```

A.3 Biassub

```
; NAME:
; BIASSUB
;
; PURPOSE: Read STK images, correct for BIAS using the median
; value in the biassection [2049:2098,1:2048], trim the images
; and put out corrected images with Extension "_ext"
;
;
; CALLING SEQUENCE: biassub, pathbegin
;
```

```
;
            pathbegin: Path in which images lie (has to end with "/"!)
; INPUTS:
; input.txt: An ASCII file must lie within "pathbegin" in which
       all image names (one per line), which should be handled,
:
; are given
;
; NOTES: So far new images are named the same as at beginning with extension
; "_ext" before ".fits".
;
; REVISION HISTORY:
       Written by T. Schmidt
                                        August 2009, Jena
;
PRO biassub, pathbegin
aiuread_ascii,pathbegin+'input.txt',data,ncol=0
Anzahl1=n_elements(data)
FOR i=0, Anzahl1-1 DO BEGIN
im=readfits(pathbegin+data(i),h)
biasvalue=median(im(2048:2097,0:2047))
imbiassub=im-biasvalue
namelength=strlen(data(i))
newnamepart = strmid(data(i),0,namelength-5)
writefits, pathbegin+newnamepart+'_ext.fits', imbiassub(0:2047,0:2047), h
ENDFOR
end
;------
; $Log: read_ascii.pro,v $
;Revision 1.2 1998/09/01 15:40:42 rklein
;Added ability to skip comment lines
;
;Revision 1.1 1997/08/21 07:14:44 loewe
;Initial revision
;
; Read ascii tables into data array
;+
; NAME:
       AIUREAD_ASCII
;
;
; PURPOSE: Read data stored in an ascii table into an IDL data
```

```
; structure. The array must be organised in rows and columns,
; with the columns separated by at least one whitespace.
; The number of columns is assumed to be 2, this can be
; changed using the 'ncol' keyword. Lines with '!', '%',
; ';' or 'C' as first character are skipped in the
; processing as comment lines but are echoed on the screen.
;
:
; CALLING SEQUENCE: aiuread_ascii, filename, array [, NCOL=ncol, ...]
; INPUTS: filename: Name of the file to be read
; array: Logical Name of the array the data will be stored
    in, will be created.
;
:
; KEYWORDS: ncol:
                    If the number of columns in your array is not 2,
   but, e.g. 3, just use 'ncol=3'
;
   You can use ncol, to read the file as seperate strings
;
   (line by line) and process these later yourself.
:
   to do this, set 'ncol=0'. aiuread_ascii then returns a
    a string array containing the lines of the file.
;
; comment: NOW OBSOLETE: routine reads always only the
                          first "ncol" columns.
;
                          If this keyword is set, READ_ASCII reads only the
;
   first ncol records of each line of the input file.
;
   Additional columns may then contain comments (or
;
   useless data), which are ignored.
;
;
                comm_char: may contain a differnt set of characters
;
                          idicating comments lines. Example: If
                          comments start with 'c' or '$', set
                          comm_char='c$'.
:
                          skip the first SKIP lines while reading the
                skip:
:
                          file. This is convenient if the first lines
;
                          are comment lines but do not have a leading
                          comment char.
:
                          Set this key word to Supress any output.
                quiet:
;
; NOTES: Rather primitive, but useful.
;
;
; REVISION HISTORY:
       Written by M. Feldt
                                        May 1996, Jena
;
```

```
;
        Added ability to read string arrays, May 1997, MFeldt
;
        Added ability to skip comment lines, Sep 1998, rklein
;
;
        Keyword SKIP added, May 1999, rklein
;
:
        datatype deleted (old) and double instead of float, May 2007, tschmidt
;
;
pro aiuread_ascii, fn, a, NCOL=ncol, QUIET=quiet, COMMENT=comment, $
                       COMM_CHAR=comm_char, skip=skip
   IF NOT keyword_set(comm_char) THEN comm_char = '!%;C'
   IF NOT keyword_set(skip) THEN skip = 0
   get_lun,fu
   t=string('xxxx')
   n=0L
   openr,fu,fn
   FOR i=1, skip DO BEGIN
      readf,fu,t
      IF not keyword_set (quiet) THEN print,t
   ENDFOR
   repeat begin
      readf,fu,t
      IF strpos(comm_char,strmid(t,0,1)) EQ -1 $
       THEN n=n+1 $
       ELSE IF not keyword_set (quiet) THEN print,t
                                ; ##### determine the number of rows
   endrep until eof(fu)
   if not keyword_set (quiet) then print, n,' valid rows found'
   close,fu
   if ncol eq 0 then BEGIN
      a = strarr(n)
      c = 'xxx'
      ncol = 1
   ENDIF ELSE BEGIN
      a = dblarr(ncol,n)
      c = dblarr(ncol)
   ENDELSE
   openr,fu,fn
   FOR i=1,skip DO readf,fu,t
   for i=0L,n-1 do begin
      REPEAT $
```

;

```
readf,fu,t $
 UNTIL strpos(comm_char,strmid(t,0,1)) EQ -1
 reads,t,c
 a(i*ncol:(i+1)*ncol-1)=c
endfor
close,fu
free_lun,fu
```

```
end
```

A.4 spektyp_aus_BVRIJHK.py

```
import math
#Bestimmt den besten fittenden Spektraltyp bei gegebenen Helligkeiten
#Autor: Ronny Errmann
#Variable Parameter
sigma=3 #Fehlerbereich entgueltiger Spektraltyp
zwischen=5 #Referenzraster in diese Teile unterteilen
einschr_av=[0.2,10] #Einschraenkung fuer Av
minerror=0.5 #Wenn kein Fehler vorhanden, nutze diesen
sigma=sigma**2
anzband=7 #Wie viele Helligkeiten sollen maximal genutz werden
av_inp=[1.324,1,0.748,0.482,0.282,0.175,0.112] #Ab/Av,Av/Av,...,Ak/Av aus Rieke,
Lebofsky
av_ref=[]
for i in range(anzband-1):
for j in range(i+1,anzband):
av_ref.append(av_inp[i]-av_inp[j]) #Ab-Av,Ab-Ar,...,Ah-Ak, jeweils geteilt durch Av
referenz=[]
file=open('referenz2.dat','r')
#SpTyp \t LK \t B \t V \t RC \t IC...., wobei B=M_V+(B-V) aus Kenyon, Hartmann
for line in file:
if line[0] == '#': #Titel weglassen
continue
line=line[:-1].split('\t')
for i in range(2,anzband+2):
line[i]=float(line[i])
zufueg=[line[0]+'.0',line[1],line[3]] #SpTyp,LK,Mv
for i in range(2,anzband+1): #Farben hinzufuegen
for j in range(i+1,anzband+2):
zufueg.append(line[i]-line[j]) #Fuehrt zu SpTyp,LK,B-V,B-R,...,B-K,V-R,V-I,...,H-K
if len(referenz)==0: #erste Zeile -> nicht interpolieren
referenz.append(zufueg)
continue
```

```
refzw=[]
for k in range(1,zwischen): #Interpolieren
strstep=str(round(k*1./zwischen,2))
refzw.append([referenz[-1][0][:-2]+strstep[1:],referenz[-1][1]]) #SpTyp, LK
for j in range(2,len(zufueg)): #Mv, Farben berechnen
step=(zufueg[j]-referenz[-1][j])/zwischen
for k in range(1,zwischen):
refzw[k-1].append(k*step+referenz[-1][j])
for i in refzw:
referenz.append(i)
referenz.append(zufueg)
file.close()
sterne=[]
fehler=[]
file=open('sterne2.dat','r') #B \t V \t RC ....
for line in file:
line=line[:-1].split('\t')
for i in range(len(line)):
try:
line[i]=float(line[i])
except:
k=0 #unnuetzer Befehl, aber notweniger
temp=[line[1]] #V
for i in range(anzband-1): #Farben
for j in range(i+1,anzband):
if line[i]<>"" and line[j]<>"":
temp.append(line[i]-line[j]) #Fuehrt zu B-V,B-R,...
else:
temp.append(100)
sterne.append(temp) #Fuehrt zu V,B-V,B-R,...,B-K,V-R,V-I,...,H-K
temp=[]
del line[0:anzband] #Helligkeiten loeschen
for i in range(anzband-1): #Fehler addieren
for j in range(i+1,anzband):
if line[i]<>"" and line[j]<>"":
if line[i]+line[j]>0:
temp.append(math.sqrt(pow(line[i],2)+pow(line[j],2)))
#Fuehrt zu den Addierten Fehlern -> Gauss
else:
temp.append(minerror)
else:
temp.append(minerror)
fehler.append(temp) #Fuehrt zu Fehlern B-V,B-R,...,B-K,V-R,V-I,...,H-K
file.close()
sptyp=[]
```

```
for j in range(len(sterne)): #alle Sterne mit...
```

```
vergleich=[]
for k in range(len(referenz)): #...allen Refernzwerten und in...
Av=[]
entfernung=[]
for i in range(len(sterne[j])-1): #...allen Farben vergleichen.
if i in [6,7,12,13,14,15,16,17]:#auslassen von V-RI,R-JHK,I-JHK
continue
if sterne[j][i+1]<100: #Messwert vorhanden
Av.append([(sterne[j][i+1]-referenz[k][i+3])/av_ref[i],fehler[j][i]])
#Av und Fehler fuer alle Farben bestimmen
if len(Av)<=1: #keine Messwerte
continue
gew_err=sum(1/pow(Avi[1],2) for Avi in Av) #Summe 1/Fehler^2->Anfang Fehler
gew_mit=sum(Avi[0]/pow(Avi[1],2) for Avi in Av)/gew_err #gewichteter Mittelwert
if gew_mit<einschr_av[0] or gew_mit>einschr_av[1]: #Av nicht im passenden Bereich
continue
gew_err=math.sqrt(1/gew_err) #Fehler zum gewichtetem Mittelwert
chi=sum(pow(Avi[0]-gew_mit,2)/pow(Avi[1]+gew_err,2) for Avi in Av) #Chi^2
vergleich.append([chi,len(Av), gew_mit, gew_err, k]) #Jeden SpTyp hinzufuegen
if len(vergleich)>2: #ausreichend passende Spektraltypen
vergleich.sort() #Sortieren nach Chi<sup>2</sup>
best=vergleich[0] #Bester Werte bei minimalem Chi^2
minmax=[[[best[4],0]],[[best[4],0]]] #Bestimmen der x Sigmagrenzen
for i in range(1,len(vergleich)):
if vergleich[i][0]>best[0]+sigma: #groesser als Bereich der Fehlergrenzen
break
#->Hinzufuegen vom Verweis auf Referenz und Verweis auf Zeile
if vergleich[i][4]<best[4]: #frueherer Spektraltyp</pre>
minmax[0].append([vergleich[i][4],i])
else: #spaeterer SpTyp
minmax[1].append([vergleich[i][4],i])
grenzen=[min(minmax[0]),max(minmax[1])] #Grenzwerte
minbest=vergleich[grenzen[0][1]] #Zeile mit Grenzwert
maxbest=vergleich[grenzen[1][1]] #Zeile mit Grenzwert
sptyp.append(referenz[minbest[4]][0]+referenz[minbest[4]][1]+
'\t'+ referenz[best[4]][0]+referenz[best[4]][1]+ '\t'+ referenz[maxbest[4]][0]+
referenz[maxbest[4]][1]+ '\t'+ str(round(minbest[2],3))+ '\t'+ str(round(best[2],3))
+ '\t'+ str(round(best[3],3))+ '\t'+ str(round(maxbest[2],3))+ '\t'+
str(round(best[0],5))+
'\t'+ str(best[1])) #Ergebnis vorbereiten
else:
sptyp.append('kein passender')
file=open('erg2','w') #Ausgabe
file.write('minSpTyp\tbestSpTyp\tmaxSpTyp\tAv(minST)\tAv(best)\tErr_Av\tAv(maxST)
\tChi^2\tAnzahl Farben\n')
for line in sptyp:
file.write(line+'\n')
```

file.close()

Anhang B

Lichtkurven

In diesem Anhang werden die einzelnen Lichtkurven der im Rahmen dieser Arbeit neu gefundenen Veränderlichen dargestellt. Sternnummer (Star number) bedeutet die Nummer des Sterns in der zugehörigen Nacht. Da die Wetterbedingungen von einer Nacht zu einer anderen unterschiedlich sind und in der Apertur-Photometrie mit MIDAS nicht der gleiche Referenzstern für alle Nächte verwendet wurde, bekommen die Sterne unterschiedlicher Nummern in den verschiedenen Nächten.

Für die Bedeckungsveränderlichen werden nur die Bedeckungen gezeigt und für die Rotations- und Pulsationsveränderlichen werden nur die besten Lichtkurven präsentiert.

B.1 Lichtkurven des Sterns V1

Abbildung B.1: Lichtkurve aus der Nacht 21. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60 s Belichtungszeit.

Abbildung B.2: Lichtkurve aus der Nacht 20. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60 s Belichtungszeit.

Abbildung B.3: Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60 s Belichtungszeit.

Abbildung B.4: Lichtkurve aus der Nacht 14. 11. 2009. Aufgenommen mit der CTK-Kamera im R-Filter und mit 180 s Belichtungszeit.

Abbildung B.5: Lichtkurve aus der Nacht 19. 11. 2009. Aufgenommen mit der CTK-Kamera im R-Filter und mit 180s Belichtungszeit.

Abbildung B.6: Lichtkurve aus der Nacht 05. 01. 2010. Aufgenommen mit der CTK-Kamera im R-Filter und mit 180s Belichtungszeit.

Abbildung B.7: Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60 s Belichtungszeit.

Abbildung B.8: Lichtkurve aus der Nacht 13. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90 s Belichtungszeit.

Abbildung B.9: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90 s Belichtungszeit.

Abbildung B.10: Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.11: Lichtkurve aus der Nacht 10. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.12: Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

B.2 Lichtkurven des Sterns V2

Abbildung B.13: Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.14: Lichtkurve aus der Nacht 03. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.15: Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.16: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.17: Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

B.3 Lichtkurven des Sterns V5

Abbildung B.18: Lichtkurve aus der Nacht 19. 11. 2009. Aufgenommen mit der CTK-Kamera im R-Filter und mit 180s Belichtungszeit.

Abbildung B.19: Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.20: Lichtkurve aus der Nacht 13. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.21: Lichtkurve aus der Nacht 15. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.22: Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.23: Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.24: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.25: Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.26: Lichtkurve aus der Nacht 08. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.27: Lichtkurve aus der Nacht 13. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.28: Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.29: Lichtkurve aus der Nacht 20. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.30: Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.31: Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.32: Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

B.4 Lichtkurven des Sterns V6

Abbildung B.33: Lichtkurve aus der Nacht 19. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.34: Lichtkurve aus der Nacht 21. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.35: Lichtkurve aus der Nacht 24. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.36: Lichtkurve aus der Nacht 19. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.37: Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.38: Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.39: Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.40: Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.41: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.42: Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.43: Lichtkurve aus der Nacht 23. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.44: Lichtkurve aus der Nacht 08. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.45: Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.46: Lichtkurve aus der Nacht 20. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.47: Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.48: Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.49: Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

B.5 Lichtkurven des Sterns V7

Abbildung B.50: Lichtkurve aus der Nacht 18. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.51: Lichtkurve aus der Nacht 19. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.52: Lichtkurve aus der Nacht 21. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.53: Lichtkurve aus der Nacht 24. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.54: Lichtkurve aus der Nacht 30. 10. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.55: Lichtkurve aus der Nacht 04. 12. 2009. Aufgenommen mit der CTK-Kamera im R-Filter und mit 180s Belichtungszeit.

Abbildung B.56: Lichtkurve aus der Nacht 16. 02. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.57: Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.58: Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.59: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.60: Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.61: Lichtkurve aus der Nacht 23. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.62: Lichtkurve aus der Nacht 08. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.63: Lichtkurve aus der Nacht 13. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.64: Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.65: Lichtkurve aus der Nacht 20. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.66: Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.67: Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.68: Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

B.6 Lichtkurven des Sterns V8

Abbildung B.69: Lichtkurve aus der Nacht 19. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.70: Lichtkurve aus der Nacht 24. 09. 2009. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.71: Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.72: Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.73: Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.74: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.75: Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.76: Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.77: Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

B.7 Lichtkurven des Sterns V9

Abbildung B.78: Lichtkurve aus der Nacht 16. 02. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 60s Belichtungszeit.

Abbildung B.79: Lichtkurve aus der Nacht 17. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.80: Lichtkurve aus der Nacht 20. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.81: Lichtkurve aus der Nacht 21. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.82: Lichtkurve aus der Nacht 22. 09. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.83: Lichtkurve aus der Nacht 17. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.84: Lichtkurve aus der Nacht 21. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.85: Lichtkurve aus der Nacht 22. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Abbildung B.86: Lichtkurve aus der Nacht 28. 10. 2010. Aufgenommen mit der STK-Kamera im R-Filter und mit 90s Belichtungszeit.

Anhang C

Photometrie aller untersuchten Feldobjekte

Das untersuchte Plejadenfeld wurde am 20. 10. 2009 (ohne Absicht) in Richtung Osten verschoben (Abbildung C.1), dadurch wurden andere interessante Veränderliche in diesem neuen Feld identifiziert. Deswegen wurde dieses (neue) Feld weiter beobachtet.

Abbildung C.1: Das untersuchte Plejadenfeld, aufgenommen mit der STK-CCD in GSH im R-Band und mit 60s Belichtungszeit. Rechts ist das originale Feld, links ist das neue beobachtete Feld. Norden ist oben und Osten ist links. Der schmale Bereich markiert das Gebiet, das im neuen Feld nicht mehr enthalten ist.

Mit dem STK-CCD in GSH konnten etwa 3000 Objekten im R-Band mit 90s Belichtungszeit in dem untersuchten Plejadenfeld identifiziert werden. In einigen Nächten (Tabelle 3.3) wurde das Plejadenfeld in den Bändern BVRI aufgenommen. Die Qualität der B-Aufnahmen war nicht so gut. Deswegen wurden sie nicht berücksichtigt.

Alle Sterne, die in allen Bändern (V, R und I) detektiert sind, gelten nicht als Rauschen, sondern als tatsächlich vorhandene Quellen.

Diese Sterne liegen in dem ab 20. 10. 2009 beobachteten Plejadenfeld (das linkere Feld in Abbildung C.1) und in dem vor 20. 10. 2009 beobachteten Plejadenfeld (Kasten des rechten Feldes in Abbildung C.1).

Der Spektraltyp und die Extinktion aller Sterne in Tabelle C.1 wurden, wie in Kapitel 5.2 erklärt wurde, bestimmt. Da die Helligkeiten im Optischen Bereich (VRI) nicht gleichzeitig (in der gleichen Nacht) aufgenommen wurden, kamen keine guten Ergebnise für den Spektraltyp und die Extinktion aller Sterne Zustande. Deswegen wurden die bekannten Helligkeiten (aus den Katalogen) im Infraroten (JHK) für diesen Zweck verwendet .

Die bekannten Sterne sind in dieser Tabelle (Tabelle C.1) nicht dargestellt, da sie bereits in zwei Tabellen (Tabelle 5.1, 5.2) mit ihren zugehörigen Parametern presäntiert wurden . Objekte, welche keine 2MASS-Namen in den Katalogen haben, wurden als GSHSTK bezeichnet. GSH steht für die Beobachtungsstation Großschwabhausen, während STK die verwendete STK-Kamera bezeichnet. Für diese neu detektierten Objekte gibt es keine Spektraltyp- und Extinktionswerte, weil sie keine gemessene Helligkeiten im Infraroten haben .

Sternname	V(GSH)	R(GSH)	I(GSH)	SpTy(GSH)	$A_V(GSH)$
	[mag]	[mag]	[mag]		[mag]
2MASS03393016+2524454	14.73±0.25	15.19±0.05	14.34±0.03	A7.8V(B0.8VA9.8V)	1.59±0.03
2MASS03392802+2526241	16.19±0.28	$16.44 {\pm} 0.06$	$15.44 {\pm} 0.06$	K1.8V(K1.6VK1.8V)	$0.20 {\pm} 0.04$
2MASS03392559+2527444	16.64±0.29	17.00±0.09	16.00±0.07	F5.2V(F5.2VF5.2V)	0.27±0.08
2MASS03393577+2522365	17.46±0.42	17.48±0.11	16.37±0.12	K3.4V(G6.0VK4.8V)	0.57±0.08
2MASS03392084+2531015	18.05±0.43	$17.91 {\pm} 0.17$	16.66±0.13	B3.4V(B0.0VF5.2V)	4.84±0.10
2MASS03393925+2521386	15.63±0.27	$15.83 {\pm} 0.05$	14.80±0.04	G5.6V(G2.4VG9.2V)	0.58±0.04
2MASS03393314+2525062	17.81±0.40	18.22 ± 0.22	17.14±0.23	M3.2V(B0.6VM6.0V)	3.67±0.29
2MASS03392930+2527151	14.81±0.26	14.97±0.04	13.94±0.03	K2.8V(K2.6VK2.8V)	$0.22 {\pm} 0.02$
2MASS03393535+2523591	16.56±0.27	16.89±0.07	15.90±0.07	K1.8V(G5.2VK3.0V)	0.48±0.06
2MASS03393134+2526531	15.73±0.26	$16.10 {\pm} 0.05$	$15.22 {\pm} 0.06$	F5.4V(F5.4VF5.4V)	0.24±0.05
2MASS03393212+2526565	17.29±0.36	17.66±0.14	16.87±0.18	A1.0V(B9.4VA4.4V)	5.70±0.23
2MASS03392683+2529510	16.99±0.35	$17.30 {\pm} 0.11$	16.38±0.14	A1.0V(B9.8VA4.2V)	$2.24 {\pm} 0.13$
2MASS03392520+2530441	$18.12 {\pm} 0.56$	18.34±0.24	17.32±0.18	A1.0V(A0.0VA4.2V)	6.61±0.29
2MASS03392930+2528412	14.34±0.25	$14.64 {\pm} 0.04$	13.76±0.03	F3.4V(B0.0VF4.4V)	$1.26 {\pm} 0.03$
2MASS03393476+2525526	14.22±0.25	14.45±0.03	13.49±0.03	K1.0V(G5.8VK1.2V)	0.26±0.02
2MASS03391558+2536152	16.05±0.27	16.33±0.06	15.40±0.07	G5.2V(G5.0VG5.2V)	0.23±0.05
2MASS03395229+2517096	17.52±0.38	17.35 ± 0.12	16.07±0.10	K2.8V(G5.8VK5.0V)	0.76±0.08
2MASS03394043+2523432	17.22±0.39	17.50±0.14	16.67±0.12	A1.0V(A0.4VA2.0V)	3.54±0.13
2MASS03394416+2522089	17.56±0.46	17.41 ± 0.11	16.12 ± 0.05	K1.0V(G5.0VK2.8V)	$1.69 {\pm} 0.05$
2MASS03393101+2529293	16.40±0.29	16.57±0.06	$15.61 {\pm} 0.08$	F0.2V(B0.0VF4.0V)	3.27±0.05
2MASS03392767+2531253	13.30±0.27	13.56±0.04	12.66±0.02	F7.4V(F3.8VG5.4V)	0.76±0.06
2MASS03393239+2528585	15.59±0.28	15.67±0.04	14.61±0.03	K3.2V(K2.4VK3.2V)	$0.21 {\pm} 0.03$
2MASS03393912+2525497	17.70±0.41	17.47±0.11	15.75±0.05	K7.0V(K4.4VM0.2V)	0.58±0.04
2MASS03392833+2532066	16.41±0.31	16.75±0.08	$15.81 {\pm} 0.10$	F5.4V(F5.2VF5.4V)	0.24±0.08
2MASS03400114+2514240	15.61±0.26	15.66±0.04	14.54±0.03	K3.2V(K3.2VK3.2V)	0.23±0.03
2MASS03392492+2534068	14.20±0.25	14.73±0.03	14.11±0.03	B0.0V(B0.0VB0.4V)	2.12±0.04
2MASS03391756+2538116	17.15±0.35	17.20±0.10	15.97±0.05	G3.2V(F5.2VK0.6V)	2.24±0.06
2MASS03391625+2539121	16.95±0.35	17.14±0.10	16.17±0.09	K0.0V(G8.6VK0.0V)	0.22±0.08
2MASS03392096+2536544	17.22 ± 0.36	17.46±0.12	16.48±0.07	F5.2V(B0.0VG8.0V)	1.39±0.14
2MASS03393518+2529292	15.99±0.28	16.26±0.06	15.32±0.06	G3.6V(F5.2VG7.6V)	0.71±0.05
2MASS03395310+2519588	17.89+0.48	17.82 ± 0.17	16.70 ± 0.10	K4.0V(K3.8VK4.0V)	0.24+0.10
2MASS03395286+2520086	17.42 ± 0.39	17.57 ± 0.14	16.69 ± 0.14	G5.6V(G5.0VG5.6V)	0.20 ± 0.16
2MASS03395928+2516421	16.23±0.31	16.55±0.07	15.66±0.06	G9.8V(G5.4VG9.8V)	0.22±0.09
2MASS03395050+2521282	14.05 ± 0.24	14.28 ± 0.03	13.38+0.03	F2.6V(B0.0VF4.0V)	1.86 ± 0.03
2MASS03392337+2536304	14 89+0 25	15.29 ± 0.04	14 47+0 04	E5.6V(E5.6V E5.6V)	0.28+0.03
2MASS03393768+2529240	15.81 ± 0.27	15.93 ± 0.05	14.89 ± 0.04	K0.6V(G9.0VK0.6V)	0.20+0.03
2MASS03395608+2519326	15.82 ± 0.27	16.03 ± 0.00 16.17 ± 0.06	15.31 ± 0.04	F5 6V(F5 2V F5 6V)	0.22+0.06
2MASS03395917±2518011	14 69±0 25	15 03±0 04	14 23+0 03	F5 2V(F5 2V F5 2V)	0.23+0.03
2MASS03392741+2535175	15.27 ± 0.26	15.03 ± 0.04 15.57 ±0.04	14.23 ± 0.03 14.68±0.04	F6.0V(F6.0V - F6.0V)	0.23 ± 0.03
2MASS03303316±2532131	16 66±0 29	16 85±0.08	15.85±0.07	$K_{1,0}V(G_{5,2}V, K_{1,0}V)$	0.24+0.06
2MASS03394644±2525205	17.38 ± 0.36	17.05 ± 0.08	15.03 ± 0.07 15.32 ± 0.05	$G_{2,2}V(E_{5,6}V, G_{5,2}V)$	2 92+0 03
2MASS03395153±25223205	13 88+0 25	14.03 ± 0.08	12.32 ± 0.05	K2 0V(K1 2V K2 6V)	0.03+0.02
2MASS03400685±2514256	17.30 ± 0.29	16.07+0.09	14.84 ± 0.04	F4.2V(F1.6V = F5.2V)	3.55 ± 0.02
2MASS03305417±25214230	15.81 ± 0.29	16.06+0.05	15 08+0 05	$G_{4.2}V(F_{5.6}V - G_{4.8}V)$	0.23+0.04
2MASS03302876±2525265	16.03±0.20	16.00 ± 0.05	15.00 ± 0.05	RU 8/(C0 0/ K0 0/)	0.23 ± 0.04
21017330339201072333205	Wird auf der	nächsten Seite	13.20±0.04	10.00(09.0010.00)	0.22±0.03

1	00
	6.1
	117.
	· · · ·

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	$A_V(GS)$
2MASS03400616+2515146	18.06±0.59	17.71±0.15	16.40±0.08	F1.2V(B0.0VM3.2V)	4.24±0
2MASS03391499+2542501	16 07+0 30	15 98+0 05	14 67+0 04	K7 0V(K6 8V K7 2V)	0.29+0
2MASS03395326+2522293	16 17+0 30	1634 ± 0.06	15 33+0 04	G5 0V(F5 6V G8 8V)	1 19+0
2MASS03302142+2530377	14 33±0 26	14 64 ± 0.03	13 73+0.03	$G_{3,0}$ (E5.8) $G_{5,4}$ (V)	0.75+0
2101A5503392142+2539377	14.33±0.20	16.04±0.05	15.73±0.05	$G_{3.0}(F_{5.8})$	1.75±0
2MASS03393150+2534202	15.94±0.28	16.24±0.06	15.33±0.05	G0.0V(F5.2VG5.6V)	1.75±0
2MASS03392578+2537248	16.76 ± 0.34	17.04 ± 0.10	16.11 ± 0.10	F5.6V(F5.6VF5.6V)	0.21 ± 0
2MASS03394294+2528176	$17.90 {\pm} 0.50$	18.09 ± 0.20	16.93 ± 0.12	A1.0V(B9.8VA4.2V)	4.39±0
2MASS03392710+2536514	$15.17 {\pm} 0.26$	$15.53 {\pm} 0.04$	$14.65 {\pm} 0.03$	F7.8V(F5.2VG4.4V)	0.48±0
2MASS03392591+2537467	$15.26 {\pm} 0.26$	$15.54 {\pm} 0.04$	14.61±0.03	B0.6V(B0.0VF3.2V)	4.45±0
2MASS03392160+2540089	$14.36 {\pm} 0.25$	14.71 ± 0.03	13.80±0.03	F3.8V(F1.4VF5.0V)	1.67 ± 0
2MASS03391942+2541280	12.42 ± 0.25	12.78 ± 0.03	11.93+0.02	G2.2V(F6.0VG2.2V)	0.20 ± 0
2111 (0000000000000000000000000000000000	15 21 + 0 25	15 20-0 04	14.22+0.04		0.24±0
200200000000000000000000000000000000000	13.21 ± 0.23	13.50 10.04	14.25 10.04		0.24_0
2MASS03393325+2534223	17.47 ± 0.39	17.55 ± 0.14	16.45 ± 0.10	K7.0V(K4.6VK7.4V)	0.35±0
2MASS03394918+2526021	18.09 ± 0.49	18.20 ± 0.21	17.10 ± 0.24	A1.0V(B7.8VA6.2V)	7.01 ± 0
2MASS03391906+2542162	$16.69 {\pm} 0.31$	17.11 ± 0.10	16.27 ± 0.08	G3.0V(F6.0VG3.8V)	0.22±0
2MASS03393765+2532214	15.93 ± 0.27	$16.29 {\pm} 0.06$	15.47±0.07	A4.2V(B0.8VA9.8V)	2.21 ± 0
2MASS03392181+2540510	14.61 ± 0.24	$14.95 {\pm} 0.04$	14.03±0.03	F9.6V(F5.4VG4.8V)	1.31 ± 0
2MASS03392406+2539465	17 87+0 47	18 34+0 24	17 32+0 19	K7 0V(K3 8V M0 2V)	1 63+0
211145505552400 2555405	15 56 10.26	15.44 \ 0.04	14.00 \ 0.03		0.47 \ 0
2MASS03395590+2522383	15.50 ± 0.20	15.44 ± 0.04	14.20±0.03	K0.4V(K3.0VK7.4V)	0.47±0
2MASS03391611+2544053	$15.39 {\pm} 0.26$	15.84 ± 0.06	14.98 ± 0.05	F4.8V(F1.2VG4.0V)	0.93±0
2MASS03400733+2516366	16.00 ± 0.29	16.21 ± 0.05	15.25 ± 0.06	K0.8V(G5.6VK0.8V)	0.22 ± 0
2MASS03393162+2535570	$13.79 {\pm} 0.25$	$14.04{\pm}0.04$	$13.10 {\pm} 0.03$	G4.8V(F6.0VG5.4V)	0.80±0
2MASS03392346+2540175	16.95±0.32	17.53±0.14	$15.96 {\pm} 0.06$	F0.6V(B0.0VF3.8V)	3.88±0
2MASS03392893+2537356	15.52±0.28	15.79±0.05	14.89±0.05	F7.8V(F5.0VG5.0V)	1.45+0
21445502202458 2520540	16 76 + 0 21	17 10 - 0 00	16 15 + 0.09	K(0,2)/(CE(4)/(K(0,2)/))	0.21
200405003092400+2539549	17.02 \ 0.31	17.10 10.09	10.15 ± 0.00		0.21_0
2MASS03401128+2514443	17.03±0.37	17.29±0.12	10.48±0.12	A1.0V(B0.4VF0.4V)	3.70±0
2MASS03393023+2537227	17.63 ± 0.36	17.96 ± 0.18	17.03 ± 0.12	A1.0V(B1.6VA9.0V)	5.72 ± 0
2MASS03391646+2544530	15.82 ± 0.27	16.22 ± 0.05	$15.34 {\pm} 0.06$	F0.4V(B0.0VF4.2V)	1.66 ± 0
2MASS03395459+2524359	16.61 ± 0.29	$16.80 {\pm} 0.08$	15.88±0.07	G4.6V(F5.2VG9.8V)	0.92±0
2MASS03394817+2528063	16.34±0.28	16.70±0.07	15.82±0.08	F3.8V(F3.6VF3.8V)	0.22+0
2MASS03395781+2523004	16 16+0 28	16 49+0 07	15 57+0 04	G6 0V(G5 4V G8 2V)	0.36+0
2004050000000000	16.00 \ 0.20	16.50 \ 0.07	14.50 \ 0.02		0.50±0
2MA3303394280+2531176	10.80±0.32	10.56±0.07	14.56±0.05	G5.0V(F0.0VG7.4V)	2.50±0
2MASS03394198+2531473	13.75 ± 0.25	14.04 ± 0.04	13.07 ± 0.03	F5.0V(F4.0VF5.4V)	1.38 ± 0
2MASS03395764+2523310	17.44 ± 0.33	17.69 ± 0.14	16.75 ± 0.09	G6.0V(G5.4VG7.8V)	0.30±0
2MASS03393122+2537488	$18.01 {\pm} 0.48$	18.29 ± 0.23	17.27 ± 0.25	A1.0V(B0.0VF3.4V)	4.62±0
2MASS03392760+2540037	17.73 ± 0.38	$18.08 {\pm} 0.21$	17.26±0.25	F3.2V(B0.0VM6.0V)	5.90±0
2MASS03392418+2542089	13.60±0.26	14.03±0.03	13.20±0.02	F6.0V(F6.0VF6.2V)	0.30±0
2MASS03401468+2515011	15.06 ± 0.27	15.43 ± 0.05	14.71+0.04	A1.0V(B7.8VA6.4V)	2.55 ± 0
2MASS0220E607 2E2E112	17 79±0 E1	17 99 - 0 17	16.67±0.00		0.07±0
2MA3303393007+2523112	17.78±0.51	17.88±0.17	10.07±0.09	A4.2V(A4.2VA4.4V)	9.97±0
2MA5503393133+2538304	17.76±0.43	18.04±0.18	17.25±0.19	K7.0V(K2.8VIVI0.4V)	1.03±0
2MASS03394351+2531591	17.28 ± 0.36	17.63 ± 0.14	16.71 ± 0.13	G6.0V(G5.6VG7.8V)	0.28 ± 0
2MASS03392868+2540153	$16.90 {\pm} 0.45$	17.06 ± 0.09	16.03 ± 0.09	F1.8V(B0.0VF5.0V)	3.81±0
2MASS03395397+2527088	$17.45 {\pm} 0.36$	$17.85 {\pm} 0.17$	$16.93 {\pm} 0.20$	K7.0V(K4.6VK7.0V)	0.21±0
2MASS03395621+2525571	14.83±0.26	15.15 ± 0.04	14.28±0.04	F5.4V(F4.8VG4.4V)	0.91±0
2MASS03395585+2526115	17.29+0.32	17.66 ± 0.14	16.89 ± 0.10	A1.0V(A0.0VA4.0V)	5.93+0
2MASS03302086+2540180	16 64 ± 0.20	17.08+0.10	16 26+0.08		0.21 ± 0
2111455055552500 2540100	10.04 \ 0.25	12.27 \ 0.02	10.20 10.00		0.21_(
2MA3303395919+2524340	12.94±0.25	15.57±0.05	12.00±0.02	F3.8V(F3.8VF3.8V)	0.22±0
2MASS03392765+2541322	15.96 ± 0.30	16.30 ± 0.06	15.42 ± 0.05	G9.0V(G8.4VG9.0V)	0.21 ± 0
2MASS03400726+2520176	17.18 ± 0.36	17.45 ± 0.11	16.54 ± 0.10	A1.0V(B0.0VF1.2V)	1.75 ± 0
2MASS03401178+2518052	$16.05 {\pm} 0.31$	$16.27 {\pm} 0.06$	$15.42 {\pm} 0.05$	A1.0V(A0.8VA1.6V)	3.95 ± 0
2MASS03401213+2517556	$16.69 {\pm} 0.34$	$16.75 {\pm} 0.07$	$15.84 {\pm} 0.08$	K0.4V(G8.8VK0.4V)	0.22±0
2MASS03394584+2532211	15.89±0.27	16.31±0.05	15.51±0.04	F1.4V(F0.8VF1.4V)	0.21+0
2MASS03394361±2533364	15.94+0.28	16.00+0.05	14.95+0.05	G5.2V(F6.0V C8.8V)	1 90+1
2MASS03401664 25155004	17 70±0 41	17 91 + 0 15	16.01±0.14	A1 0\/(P2 0\/ A6 0\/)	1 10 10
2101703303401004+2315523	15.02 - 2.25	11.01±0.15	14.74 0.14	$ = 2 \times (E_{1} \times (E_{2} \times (E_$	4.42±0
∠IVIA55U34U1351+2517346	15.03±0.26	15.39±0.04	14.74±0.03	г5.2V(F5.2VF5.2V)	0.27±0
2MASS03393961+2536036	$15.85 {\pm} 0.27$	$16.02 {\pm} 0.05$	$15.01 {\pm} 0.04$	B4.0V(B0.0VF1.6V)	4.65 ± 0
2MASS03401211+2518312	$15.74 {\pm} 0.29$	$16.04{\pm}0.05$	$15.31 {\pm} 0.05$	F4.4V(B0.0VF7.8V)	1.11 ± 0
2MASS03395588+2527258	$16.10 {\pm} 0.27$	$16.35 {\pm} 0.06$	$15.34 {\pm} 0.06$	A2.2V(B2.0VA8.8V)	3.75±0
2MASS03395031+2530411	16.16 ± 0.28	16.57 ± 0.07	15.72 ± 0.09	F4.8V(B0.0VG4.4V)	1.01 ± 0
2MASS03304070+2531027	16 34 ± 0.28	16.64 ± 0.07	15 70±0.06	$F_3 6V(B0.0V) = F_4V(b)$	2 60+1
200200000000000000000000000000000000000	10.54_0.20	10.04 \ 0.00	15.70±0.00		2.001
2101A5503400150+2524526	10.05±0.31	10.64±0.06	15.65±0.05	G9.8V(G8.8VG9.8V)	0.21±0
2IVIASSU3394218+2535193	16.83±0.33	17.23 ± 0.11	16.31±0.10	A1.0V(A0.2VA4.0V)	5.92±0
2MASS03394495+2533514	$15.15 {\pm} 0.25$	$15.47 {\pm} 0.04$	$14.57 {\pm} 0.04$	G3.0V(G2.4VG3.2V)	0.30±0
2MASS03393074+2541458	$17.17 {\pm} 0.39$	$17.69 {\pm} 0.14$	$16.84 {\pm} 0.19$	K2.4V(G3.0VK2.4V)	0.22±0
2MASS03400997+2520462	17.94±0.50	18.06±0.20	17.26±0.18	A1.0V(B4.8VA8.4V)	3.88±0
2MASS03402078±2514570	17 29+0 44	17 06+0 09	15 54+0.06	K2 0V(G9 0V M2 0V)	1 02+1
2111-0505402070-2514570	16 01 0 22	16.40 \ 0.05	15.3410.00		1.541
2IVIA5503400858+2521374	10.01±0.32	10.40±0.06	15.74±0.06	F4.8V(F4.2VF4.8V)	0.21±0
2MASS03400725+2522383	15.74 ± 0.27	16.00 ± 0.05	15.07 ± 0.05	G3.0V(F5.6VG8.2V)	0.99±0
2MASS03392127+2547244	$12.01 {\pm} 0.25$	$12.43{\pm}0.04$	$11.60 {\pm} 0.02$	F0.2V(B0.0VF2.6V)	1.40 ± 0
2MASS03392008+2548033	16.38±0.30	16.78±0.08	15.93±0.09	K1.4V(K1.2VK1.4V)	0.23+0
2MASS03393805-2538000	15 90+0 26	16 16+0.06	15 16+0 04	E5 2V(E3 8V G4 2V)	1 95-1
	15 73-0 27	15.03-0.05	14 03 - 0 04	E7 2)/(E5 2)/ C4 6)/)	2.00-14
20102203203500 1 2520306	15.15±0.27	15.95±0.05	14.95±0.04	1 1.2V(F3.2VG4.0V)	2.09±0
2MASS03393598+2539396	A 20 10 4 1 1 1 1 1 1		10 0 11	AI (V(B4.8V M6.0V))	7.17±0
2MASS03393598+2539396 2MASS03401530+2518335	17.51 ± 0.43	17.61 ± 0.14	10.52 ± 0.11	/12/07 (2 //07////0/07/)	
2MASS03393598+2539396 2MASS03401530+2518335 2MASS03401187+2520357	17.51±0.43 16.27±0.30	17.61 ± 0.14 16.60 ± 0.07	16.52 ± 0.11 15.95 ± 0.08	A1.6V(B0.0VF0.6V)	3.30±0
2MASS03393598+2539396 2MASS03401530+2518335 2MASS03401187+2520357 2MASS03393030+2543024	17.51 ± 0.43 16.27 ± 0.30 17.35 ± 0.40	17.61 ± 0.14 16.60 ± 0.07 17.68 ± 0.15	16.52 ± 0.11 15.95 ± 0.08 16.77 ± 0.13	A1.6V(B0.0VF0.6V) F3.4V(F3.2VF3.4V)	3.30±0 0.21±0
2MASS03393598+2539396 2MASS03401530+2518335 2MASS03401187+2520357 2MASS03393030+2543024 2MASS03392923+2543376	17.51 ± 0.43 16.27 ± 0.30 17.35 ± 0.40 14.97 ± 0.25	17.61 ± 0.14 16.60 ± 0.07 17.68 ± 0.15 15.29 ± 0.04	16.52 ± 0.11 15.95 ± 0.08 16.77 ± 0.13 14.35 ± 0.03	A1.6V(B0.0VF0.6V) F3.4V(F3.2VF3.4V) K0.0V(G9.0VK0.0V)	3.30±0 0.21±0 0.23+0

1	00
	62
	().)
_	00

					(0055)
Sternname	V(GSH)	R(GSH)	I(GSH)	SpTy(GSH)	A _V (GSH)
2MASS03400103+2526380	13 14±0 25	13 52+0.04	12 66±0 03		0.21+0.02
2MASS03400103+2520500 2MASS03401000+2521503	15.14 ± 0.25 16.65 ± 0.34	16.97 ± 0.04	16.27 ± 0.09	A1.0V(B0.0VA3.0V)	0.21 ± 0.02 0.40 ± 0.12
2MASS03401888+2517027	14.53±0.26	14.84±0.04	14.13±0.03	G5.4V(G2.4VG7.2V)	0.32±0.03
2MASS03395246+2531272	$15.94{\pm}0.29$	$16.18{\pm}0.06$	$15.16{\pm}0.04$	G6.0V(G5.6VG7.8V)	$0.32{\pm}0.23$
2MASS03392638+2545335	16.37±0.28	16.82 ± 0.08	15.93 ± 0.07	G4.8V(F5.4VG4.8V)	0.22 ± 0.08
2MASS03400602+2524231 2MASS03395193+2532052	13.33 ± 0.25 16.08 ± 0.27	13.80 ± 0.03 16.27 ± 0.06	13.07 ± 0.03 15.27 ± 0.03	F1.2V(B0.0VF3.6V) F5.2V(F3.8VG4.0V)	0.83 ± 0.02 2.16 ± 0.04
2MASS03400065+2527232	16.01±0.26	16.26±0.06	15.33±0.06	F5.4V(F3.8VG4.6V)	1.01 ± 0.05
2MASS03401516+2519347	$16.87{\pm}0.35$	$16.96{\pm}0.09$	$16.04{\pm}0.09$	G5.2V(F5.4VK1.8V)	$1.42{\pm}0.06$
2MASS03402162+2516173	15.58±0.27	15.85±0.05	15.12±0.04	K1.0V(G5.4VK2.2V)	0.56±0.04
2MASS03400786+2523462	17.31 ± 0.37	17.32 ± 0.11	16.18 ± 0.11	K5.6V(K4.8VK5.6V)	0.22 ± 0.06
2MASS03395485+2528135	15.89 ± 0.28 17.55 ± 0.37	17.87 ± 0.17	15.02 ± 0.04 17.10 ± 0.18	A1.0V(B9.4VA4.4V)	5.76 ± 0.17
2MASS03392825+2545158	16.19±0.29	16.47±0.07	15.49±0.04	G8.8V(G5.8VG8.8V)	0.21 ± 0.05
2MASS03400914+2523181	$17.77{\pm}0.48$	$17.46{\pm}0.12$	$16.29{\pm}0.09$	A2.0V(B1.2VM6.0V)	$6.28{\pm}0.06$
2MASS03400272+2526530	16.42 ± 0.32	16.88±0.08	16.06 ± 0.06	F5.6V(F5.4VF5.6V)	0.23±0.10
2MASS03392777+2546082	15.11 ± 0.27	15.45 ± 0.06	14.44 ± 0.04 14.77 ± 0.03	K2.0V(G6.0VK3.8V)	0.92 ± 0.05
2MASS03395055+2534028	15.21 ± 0.20 16.89 ± 0.28	17.02 ± 0.04	14.77 ± 0.03 16 39+0 11	E5 4V(E5 2V E5 4V)	3.84 ± 0.04 0.24 \pm 0.11
2MASS03392412+2548183	16.37±0.31	16.66±0.07	15.76 ± 0.05	F5.4V(F3.2VG5.2V)	1.29 ± 0.06
2MASS03400294+2527307	$16.69{\pm}0.30$	$17.06{\pm}0.09$	$16.16{\pm}0.11$	A1.0V(B8.0VA6.2V)	$4.11{\pm}0.10$
2MASS03393420+2543408	16.04±0.28	$16.43{\pm}0.06$	$15.56{\pm}0.04$	A1.0V(A0.4VA2.0V)	$3.98{\pm}0.05$
2MASS03394811+2536087	18.22±0.49	18.32±0.24	17.08 ± 0.13	A1.0V(B8.8VM6.0V)	9.57 ± 0.14
2MASS03400157+2529057 2MASS03304633+2537190	14.94 ± 0.26 14.90 \pm 0.25	15.20 ± 0.04 15.09±0.04	14.24 ± 0.03 14.05 ± 0.03	K1.8V(G9.0VK2.4V) G5.2V(G2.4VK2.4V)	0.87 ± 0.03 0.81 ± 0.02
2MASS03392148+2550418	16.37±0.30	16.60 ± 0.07	15.61 ± 0.04	K1.8V(G9.0VK1.8V)	0.22 ± 0.05
2MASS03395496+2532585	17.73±0.45	$17.83{\pm}0.16$	$16.73 {\pm} 0.15$	M2.4V(F5.2VM3.2V)	$0.34{\pm}0.09$
2MASS03402229+2518124	$16.99{\pm}0.39$	$17.19{\pm}0.10$	$16.38{\pm}0.12$	G5.4V(F5.8VG5.4V)	$0.23{\pm}0.11$
2MASS03394314+2539274	15.23±0.26	15.60±0.05	14.69±0.04	F5.2V(F3.8VG4.0V)	1.66 ± 0.04
2MASS03395861+2531161 2MASS03401278+2523386	14.84 ± 0.25 12.03 \pm 0.25	14.81 ± 0.04 12.40 \pm 0.03	13.34 ± 0.03 11.72 ± 0.03	K7.0V(K6.8VM0.0V)	0.50 ± 0.02
2MASS03394210+2540117	17.11 ± 0.39	12.40 ± 0.03 17.36 ± 0.11	16.42 ± 0.03	K3.6V(K1.4VK3.6V)	0.25 ± 0.08
2MASS03402833+2515173	15.38±0.28	15.77±0.05	$15.11 {\pm} 0.05$	B4.2V(B0.0VF3.2V)	3.27±0.05
2MASS03394520+2538526	$16.06 {\pm} 0.27$	$16.47 {\pm} 0.07$	$15.55{\pm}0.05$	G9.6V(G8.8VG9.6V)	$0.23{\pm}0.05$
2MASS03393447+2544520	15.55±0.26	15.98±0.06	15.11 ± 0.05	F4.4V(F4.2VF4.4V)	0.22 ± 0.05
2MASS03401796+2521386	16.12 ± 0.30 14.36 \pm 0.25	16.45 ± 0.07 14.69 ± 0.04	15.77 ± 0.07 13.73 ± 0.03	K1.4V(G2.8VK2.0V)	0.32 ± 0.07
2MASS03333270+2540014 2MASS03401939+2520569	14.30 ± 0.23 16.27 ±0.28	16.64 ± 0.07	15.97 ± 0.08	F5.2V(B0.0VF5.4V)	0.40 ± 0.02 0.37 ± 0.10
2MASS03402200+2519324	16.07±0.29	16.29±0.05	15.56±0.06	G5.2V(G2.6VG5.2V)	0.20±0.05
2MASS03402358+2518447	$14.74{\pm}0.26$	$14.87{\pm}0.04$	$14.03{\pm}0.03$	K2.8V(K2.2VK3.2V)	$0.31{\pm}0.03$
2MASS03400903+2526538	17.50±0.43	17.83±0.15	17.18±0.20	G3.0V(F5.8VG4.2V)	0.22±0.19
2MASS03392459+2551004 2MASS03401000+2521188	15.27 ± 0.25 16 57 ± 0.34	15.71 ± 0.05 16.70 ± 0.08	14.96 ± 0.04 16.01 ± 0.07	A1.0V(A0.0VA4.0V)	2.41 ± 0.05
2MASS03401990+2521100 2MASS03393635+2544512	10.37 ± 0.34 14.39 ± 0.25	14.82 ± 0.04	10.01 ± 0.01 14.00 ± 0.04	F5.2V(F4.0VF7.0V)	0.77±0.03
2MASS03395006+2537337	15.46±0.27	15.76±0.04	14.85±0.04	G6.2V(G5.2VG7.2V)	0.20±0.04
2MASS03394923+2538061	$14.77 {\pm} 0.25$	$15.10{\pm}0.05$	$14.19{\pm}0.04$	G5.2V(F6.0VG5.4V)	$0.26{\pm}0.03$
2MASS03394456+2540433	17.43±0.39	17.76 ± 0.16	16.79 ± 0.15	A1.0V(A0.2VA4.0V)	5.63 ± 0.12
2MASS03401017+2523439	17.35 ± 0.38 17.12 ± 0.37	17.72 ± 0.15 16.87 ± 0.09	17.07 ± 0.18 15.11 ± 0.05	G5.0V(F5.8VG8.2V)	0.35 ± 0.15 3.00 ± 0.03
2MASS03394001+2543249	16.45±0.27	16.75±0.07	15.76 ± 0.08	A1.0V(A0.6VA1.6V)	4.35±0.06
2MASS03393980+2543368	$15.56{\pm}0.26$	$15.87{\pm}0.06$	$14.88{\pm}0.04$	A5.8V(B1.4VA9.2V)	$2.79{\pm}0.04$
2MASS03393671+2545191	16.87±0.34	$17.07 {\pm} 0.10$	$16.07 {\pm} 0.08$	G5.2V(F5.2VK2.0V)	$1.37{\pm}0.07$
2MASS03400150+2532060	15.10±0.27	15.40 ± 0.04	14.38 ± 0.04	G6.0V(G5.4VG7.8V)	0.30±0.03
2MASS03395118+2537405	17.27 ± 0.38 15 35 ± 0.26	17.41 ± 0.12 15.63±0.04	16.42 ± 0.11 14 71+0 04	A1.0V(A0.4VA2.0V) G6.6V(G5.0VG9.2V)	3.28 ± 0.08 0.52 \pm 0.03
2MASS03400816+2528409	15.87±0.28	15.90±0.05	14.99±0.04	K3.2V(K3.0VK3.2V)	0.25±0.03
2MASS03395378+2536267	$11.87{\pm}0.25$	$12.06{\pm}0.03$	$11.03 {\pm} 0.02$	K3.0V(K2.4VK3.0V)	$0.24{\pm}0.02$
2MASS03403110+2516204	17.15±0.41	17.44±0.12	16.72 ± 0.13	A1.0V(B7.4VA7.0V)	4.11±0.21
2MASS03402115+2521494	18.37 ± 1.00	18.45 ± 0.31	17.71 ± 0.31	A1.0V(B7.4VA7.0V)	9.28 ± 0.18
2MASS03394962+2538423	17.00 ± 0.33 15.28 ± 0.27	15.56 ± 0.04	15.42 ± 0.00 14.59 ± 0.03	G9.0V(G6.0VG9.0V)	0.23 ± 0.03
2MASS03394877+2539282	15.35±0.26	15.50±0.04	14.45±0.03	K1.8V(G9.6VK2.6V)	0.58±0.02
2MASS03401815+2524093	$12.66{\pm}0.25$	$13.02{\pm}0.03$	$12.39{\pm}0.02$	F4.6V(F3.6VF5.2V)	$0.72{\pm}0.02$
2MASS03401287+2527031	15.99±0.28	16.22±0.06	15.47±0.05	F4.2V(F4.0VF4.2V)	0.22±0.06
2MASS03400020+2533541 2MASS03400559+2531038	16.47 ± 0.31 17.22 ± 0.36	16.85 ± 0.08 17.28 \pm 0.10	15.93 ± 0.08 16.12 ± 0.09	A1.0V(B8.0VA4.6V)	2.85 ± 0.09 3.14 ± 0.06
2MASS03400635+2531036	17.22 ± 0.30 16.18 ±0.28	16.34 ± 0.06	15.28 ± 0.05	K3.6V(K2.4VK6.2V)	0.78 ± 0.03
2MASS03394260+2543293	17.86±0.50	18.11±0.21	17.11±0.25	K7.0V(K3.6VM0.2V)	0.66±0.16
2MASS03400502+2531368	$15.28{\pm}0.26$	$15.16{\pm}0.04$	$13.73{\pm}0.02$	K2.2V(K1.6VM0.8V)	$1.77{\pm}0.02$
2MASS03392705+2552127	15.74±0.27	16.01±0.05	15.15±0.04	G8.6V(G5.6VG8.6V)	0.22±0.04
2MASS03402115+2523156	16.83 ± 0.36	16.63±0.07	15.45 ± 0.04 13.01 ± 0.02	$G_{5.4V}(F_{6.0V}M_{2.6V})$	3.42 ± 0.04
2MASS03403460+2516100	15.97 ± 0.29	15.90 ± 0.05 16.23 ± 0.06	15.51 ± 0.03	B3.0V(B0.0VF3.2V)	4.25 ± 0.02
2MASS03395184+2539224	17.91±0.50	18.30±0.22	17.23±0.20	A1.0V(B6.8VA8.0V)	4.73±0.21
2MASS03400401+2533013	$14.34{\pm}0.26$	$14.43{\pm}0.03$	$13.45{\pm}0.03$	G8.0V(G5.2VK1.0V)	0.94±0.02
2MASS03393208+2550070	17.34±0.38	17.51±0.13	16.48±0.12	F3.6V(B0.0VG4.0V)	2.94±0.08
∠IVIASSU3393517+2548299	10.98±0.34	11.30±0.12	10.50±0.11	F1.0V(B0.0VK1.6V)	2.97±0.19

-1	0	- 4
	h	Δ.
	v	-

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	$A_V(GSH)$ [mag]
2MASS03400604+2532244	17.66±0.40	17.84±0.17	16.91±0.15	A1.0V(B7.8VA6.2V)	6.68±0.17
2MASS03401471+2528020	13.76±0.26	13.85±0.03	13.03±0.03	F6.4V(F5.6VG4.6V)	1.79±0.02
2MASS03403757+2515387	16.88±0.38	17.15±0.10	16.47±0.11	A1.0V(B9.2VA4.4V)	$2.90 {\pm} 0.10$
2MASS03395334+2539525	16.81±0.32	$16.95 {\pm} 0.08$	15.87±0.07	K3.2V(K2.0VK3.2V)	0.21±0.06
2MASS03403922+2515086	13.93±0.25	14.27±0.03	13.63±0.02	A7.4V(B1.4VA9.2V)	1.97±0.03
2MASS03401008+2531017	16.67±0.35	16.84±0.08	16.05±0.08	G3.0V(F6.0VG3.6V)	0.23±0.08
2MASS03392914+2553007	14.87±0.26	14.98±0.04	$13.94 {\pm} 0.03$	K2.2V(K1.2VK2.8V)	$0.56 {\pm} 0.02$
2MASS03393477+2550028	$15.02 {\pm} 0.26$	$15.16{\pm}0.04$	$14.20{\pm}0.04$	K2.6V(K1.6VK3.2V)	0.33±0.03
2MASS03394150+2546440	16.44±0.29	$16.31 {\pm} 0.05$	$15.01 {\pm} 0.05$	K7.0V(K5.0VK7.8V)	0.45±0.03
2MASS03401709+2527419	$15.55 {\pm} 0.27$	$15.79 {\pm} 0.05$	$15.05 {\pm} 0.04$	G3.2V(F5.4VG7.8V)	$1.02 {\pm} 0.04$
2MASS03400184+2535571	$15.61 {\pm} 0.26$	$15.62 {\pm} 0.04$	$14.52{\pm}0.04$	K4.0V(K3.0VK5.4V)	$0.51 {\pm} 0.02$
2MASS03395093+2542008	$16.26 {\pm} 0.29$	$16.68 {\pm} 0.07$	$15.84 {\pm} 0.06$	A1.0V(B9.8VA4.2V)	$3.55 {\pm} 0.08$
2MASS03394026+2547495	15.99±0.27	$15.86 {\pm} 0.05$	14.53±0.03	K1.6V(G8.6VM2.2V)	$2.21 {\pm} 0.02$
2MASS03393216+2552106	$16.87 {\pm} 0.32$	$17.24 {\pm} 0.10$	$16.40 {\pm} 0.11$	A1.0V(B8.4VA4.6V)	$3.42 {\pm} 0.12$
2MASS03400514+2534356	$17.10 {\pm} 0.34$	$17.21 {\pm} 0.11$	$16.26 {\pm} 0.10$	G5.0V(F5.8VG5.0V)	0.23±0.09
2MASS03394709+2544285	$14.92 {\pm} 0.26$	$15.24 {\pm} 0.03$	$14.37 {\pm} 0.03$	G8.4V(G5.8VG8.4V)	0.21±0.03
2MASS03395114+2542245	$17.37 {\pm} 0.42$	$17.76 {\pm} 0.14$	$16.96 {\pm} 0.23$	F5.0V(B0.0VG1.0V)	0.77±0.18
2MASS03401124+2531385	$16.36 {\pm} 0.31$	$16.42 {\pm} 0.07$	$15.56 {\pm} 0.05$	F6.8V(F4.6VG5.2V)	$2.24 {\pm} 0.05$
2MASS03400938+2532470	$16.79 {\pm} 0.31$	$17.05 {\pm} 0.10$	$16.36{\pm}0.11$	K1.2V(F6.0VK1.2V)	$0.22 {\pm} 0.12$
2MASS03393750+2550078	16.12 ± 0.27	$16.53 {\pm} 0.06$	$15.71 {\pm} 0.04$	A1.0V(A0.0VA4.2V)	3.17±0.08
2MASS03395242+2542213	$17.24{\pm}0.41$	$17.16{\pm}0.10$	$15.81{\pm}0.03$	K7.0V(K6.0VM0.0V)	0.58±0.04
2MASS03395060+2543327	$16.88{\pm}0.31$	$17.17{\pm}0.10$	$16.22{\pm}0.13$	G6.6V(G5.0VG7.2V)	$0.22 {\pm} 0.13$
2MASS03394650+2545511	$14.74{\pm}0.26$	$15.24{\pm}0.04$	$14.56{\pm}0.03$	A1.0V(A0.6VA1.6V)	$2.61{\pm}0.04$
2MASS03394483+2546484	$17.19{\pm}0.37$	$17.28{\pm}0.11$	$16.29{\pm}0.09$	G8.8V(F5.8VK0.0V)	0.42±0.08
2MASS03394633+2546168	$15.89{\pm}0.28$	$16.16{\pm}0.05$	$15.29{\pm}0.05$	F5.6V(F5.6VF5.6V)	0.28±0.06
2MASS03401144+2532576	$15.31{\pm}0.26$	$15.36{\pm}0.04$	$14.46{\pm}0.04$	F5.0V(F3.4VF7.4V)	$2.66 {\pm} 0.04$
2MASS03401795+2529493	$17.31{\pm}0.49$	$17.29{\pm}0.10$	$16.39{\pm}0.09$	K7.0V(K6.4VM0.0V)	$1.49 {\pm} 0.07$
2MASS03395292+2543171	$14.95{\pm}0.25$	$15.09 {\pm} 0.04$	$14.10 {\pm} 0.04$	K3.4V(K3.2VK3.4V)	$0.25 {\pm} 0.02$
2MASS03402793+2524265	$16.31{\pm}0.32$	$16.63 {\pm} 0.07$	$15.90 {\pm} 0.07$	A1.0V(B2.0VA8.8V)	$3.59 {\pm} 0.07$
2MASS03402127+2528089	$16.58{\pm}0.33$	$16.55{\pm}0.06$	$15.59{\pm}0.07$	G8.6V(G2.6VK0.0V)	$0.45 {\pm} 0.05$
2MASS03394501+2547386	14.71 ± 0.26	$15.09 {\pm} 0.04$	$14.28{\pm}0.04$	F5.6V(F5.6VF5.6V)	0.23±0.03
2MASS03401155+2533289	$15.34 {\pm} 0.28$	$15.61 {\pm} 0.04$	$14.96 {\pm} 0.03$	F5.6V(F5.6VF5.6V)	$0.24 {\pm} 0.04$
2MASS03402331+2527093	$17.22 {\pm} 0.34$	$17.22 {\pm} 0.10$	$16.30 {\pm} 0.11$	F6.0V(F5.8VG1.4V)	$0.35 {\pm} 0.10$
2MASS03393635+2552398	$14.18 {\pm} 0.26$	$14.34 {\pm} 0.05$	$13.32 {\pm} 0.02$	G8.6V(G5.6VK1.4V)	0.91 ± 0.02
2MASS03394545+2547538	15.11 ± 0.26	$15.40 {\pm} 0.04$	$14.51 {\pm} 0.05$	F2.2V(B0.0VF4.2V)	$1.70 {\pm} 0.03$
2MASS03394018+2550533	$15.59 {\pm} 0.26$	$15.96 {\pm} 0.06$	$15.11 {\pm} 0.04$	F3.2V(B0.0VF5.2V)	$1.49 {\pm} 0.05$
2MASS03395333+2544023	16.73±0.34	$17.04 {\pm} 0.10$	$16.16 {\pm} 0.09$	F2.0V(F1.0VF2.0V)	$0.23 {\pm} 0.12$
2MASS03401414+2532575	16.11 ± 0.30	$16.30 {\pm} 0.05$	15.59 ± 0.05	G6.4V(G5.8VG7.2V)	0.20 ± 0.06
2MASS03395695+2542144	17.81±0.40	18.12 ± 0.23	17.10 ± 0.11	B0.0V(B0.0VA4.8V)	1.98 ± 0.25
2MASS03401770+2531212	16.00±0.30	16.12 ± 0.05	15.30±0.04	G8.8V(G5.0VK0.0V)	0.41 ± 0.04
2MASS03393364+2554562	14.76±0.25	14.65 ± 0.04	13.38 ± 0.02	K6.6V(K4.0VM0.2V)	0.77±0.02
2MASS03393503+2554154	18.08±0.46	18.02 ± 0.20	16.81 ± 0.11	G9.0V(G5.2VG9.0V)	0.23±0.11
2MASS03395949+2541247	14.68±0.26	14.85±0.03	13.93±0.03	G3.0V(F5.8VG5.4V)	1.61 ± 0.03
2MASS03395542+2543357	15.01 ± 0.25	15.28 ± 0.04	14.39±0.04	F5.2V(F3.4VF9.0V)	1.09±0.04
2MASS03393266+2555515	14.99±0.25	15.41 ± 0.04	14.55±0.03	F5.0V(F3.8VF5.4V)	0.99±0.03
2MASS03401848+2531277	17.71±0.50	17.71±0.14	16.88±0.15	A1.0V(B9.8VA4.2V)	5.89±0.13
2MASS03395441+2544282	15.60±0.28	15.72 ± 0.04	14.70 ± 0.05	K3.0V(K3.0VK3.0V)	0.22±0.03
2MASS03402625+2527220	14.88±0.26	14.74±0.15	13.38±0.03	K2.0V(K0.8VK2.6V)	1.57±0.02
2MASS03395069+2546358	16.17±0.28	16.44±0.06	15.01±0.07	F5.4V(F5.2VF5.4V)	0.28±0.07
2111A3303400099+2541057	13.35±0.27	15.00±0.04	14.05±0.03	$G_{3,0V}(F_{0,0V}, G_{3,4V})$	0.27±0.04
2MASS03304037+ 2541347	16 00 - 0 21	17.35±0.11	16.02 ± 0.00	F(0.6V)(R(1.4V)(V(2.0V))	3.28+0.11
2MASS0330405242552244	17 80+0 51	17 87+0 16	16 03+0 15	K7 OV(K3 6V K7 6V)	0 41+0 11
2MASS03393711±2554300	13.61 ± 0.26	13 74+0 05	12 78+0.05	G5 4V(G2 4V K0 4V)	0.87+0.03
2MASS03394482+2550233	16.97+0.38	16.64+0.07	15.03+0.03	F5.4V(F4.8V., G4.0V)	3,01+0.03
2MASS03395543+2544461	16.90+0 36	17.06+0.09	16,16+0 11	G6.0V(F6.0V., G7.8V)	0.31+0.20
2MASS03403384+2524110	15.94+0.28	16.17+0.05	15.43+0.05	A7.6V(B0.0V. F1.6V)	3,11+0.06
2MASS03403063+2525584	17.48+0.37	17.74 ± 0.15	17.05+0.20	A1.0V(B8.2VM6.0V)	9.42+0.29
2MASS03394412+2551028	17.29+0.44	17.57 ± 0.13	16.77 ± 0.10	A1.0V(B6.8VA8.0V)	2.13+0.17
2MASS03394771+2549201	12.66+0.25	12.99 ± 0.03	12.20+0.03	G2.4V(F6.0VG2.4V)	0.21+0.02
2MASS03394393+2551406	12.99+0.25	13.29 ± 0.03	12.47+0.03	E3.8V(E2.0VE5.0V)	0.60+0.02
2MASS03394987+2548441	13.77±0.25	14.07±0.05	13.19±0.02	F4.8V(F3.6VF5.4V)	1.20±0.02
2MASS03400582+2540301	17.05±0.34	17.26±0.11	16.52±0.11	B0.0V(B0.0VA8.6V)	2.26±0.18
2MASS03394205+2553133	16.34±0.30	16.70±0.08	15.91±0.07	F3.6V(B0.0VF5.2V)	0.57±0.09
2MASS03394545+2551299	17.68±0.41	18.00±0.19	16.95±0.12	K1.4V(B0.0VM4.6V)	3.07±0.17
2MASS03400803+2539316	15.89±0.28	16.21±0.05	15.53±0.05	F5.6V(F5.2VF5.6V)	0.29±0.06
2MASS03403504+2525032	14.22±0.25	14.37±0.03	13.62±0.03	, F5.2V(F4.2VF5.4V)	1.73±0.02
2MASS03393890+2555198	16.19±0.26	16.43±0.07	15.43±0.05	K0.0V(G6.0VK0.0V)	0.22±0.05
2MASS03401355+2537021	13.37±0.26	13.59±0.04	12.94±0.03	F3.6V(B0.0VF4.8V)	1.14±0.03
2MASS03394876+2550227	17.53±0.37	17.70±0.15	16.86±0.17	G3.0V(F5.0VG4.4V)	0.31±0.17
2MASS03403118+2527396	12.58±0.25	12.88±0.03	12.24±0.03	F3.2V(F1.0VF4.0V)	0.85±0.02
2MASS03400143+2543421	15.51±0.27	15.78±0.05	14.97±0.05	F6.0V(F6.0VF6.4V)	0.22±0.05
2MASS03402658±2530362	17.89±0.73	17.85±0.15	17.06±0.21	G8.4V(F6.0VG8.4V)	0.22±0.19
211123303402030 2330302					7 10 0 10
2MASS03401546+2536390	17.77±0.73	17.87 ± 0.16	17.10 ± 0.17	A1.0V(B0.0VM6.0V)	7.10±0.10
2MASS03401546+2536390 2MASS03401202+2538321	17.77±0.73 11.37±0.26	$17.87{\pm}0.16$ $11.49{\pm}0.03$	17.10±0.17 10.73±0.04	F4.4V(F3.4VF5.0V)	2.18 ± 0.02
2MASS03401546+2536390 2MASS03401202+2538321 2MASS03394819+2551160	17.77 ± 0.73 11.37 ± 0.26 16.84 ± 0.31	17.87±0.16 11.49±0.03 17.07±0.09	17.10 ± 0.17 10.73 ± 0.04 16.22 ± 0.09	A1.0V(B0.0VM6.0V) F4.4V(F3.4VF5.0V) K3.4V(K2.2VK3.4V)	2.18±0.02 0.21±0.10

1	0 1
	hh.
	().)
т	00

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	$A_V(G)$ [mag
2MASS03400553+2542025	15.03±0.26	15.19±0.04	14.51±0.04	F3.4V(B0.0VF4.8V)	1.26±0
2MASS03393965+2555523	13.87±0.25	14.25±0.03	13.42±0.04	A3.4V(B7.2VA7.4V)	2.65±0
2MASS03402441+2532017	15.40±0.26	15.43±0.04	14.61±0.03	K2.0V(G9.8VK2.8V)	0.66±0
2MASS03402507+2531522	13.38±0.25	13.54±0.03	12.84±0.03	G3.0V(G2.6VG4.6V)	0.38±0
2MASS03402995+2529202	17.13 ± 0.36	17.17 ± 0.10	16.30 ± 0.07	G4.2V(F3.6VK1.2V)	2.27+0
2MASS03394549+2553092	15.63 ± 0.28	15.84 ± 0.05	14 89±0.05	$K_2 4V(K_2 4V - K_2 4V)$	0.22+0
2MASS03395021±2550407	13.66 ± 0.24	13.78 ± 0.03	12 80+0.03	K2 8V(K2 2V K3 0V)	0.28+0
2MASS03400000+2540163	15.00±0.24	15.00±0.05	15 10+0.04	K3 2V(K3 2V K3 2V)	0.20±0
211/45503400999+2540105	15.95 ± 0.28	15.99±0.05	15.10±0.04	$(K_{3,2})(K_{3,2})(K_{3,2})$	0.25±0
2MASS03403217+2528309	10.35±0.31	16.40±0.06	15.57 ± 0.05	F4.4V(B0.0VF7.2V)	2.01±0
2MASS03400633+2542266	17.88 ± 0.49	17.90 ± 0.16	17.10 ± 0.21	G3.0V(B0.0VG4.6V)	0.39 ± 0
2MASS03395824+2546488	16.04 ± 0.27	$16.08 {\pm} 0.05$	$15.06 {\pm} 0.04$	K0.8V(G9.0VK0.8V)	0.22±0
2MASS03405832+2514253	$14.53 {\pm} 0.26$	$14.43 {\pm} 0.04$	$13.72 {\pm} 0.03$	K1.4V(G8.6VK1.6V)	0.23±0
2MASS03403094+2529192	$17.43 {\pm} 0.46$	$17.18 {\pm} 0.10$	$16.17 {\pm} 0.08$	K3.2V(K2.0VK3.2V)	0.24±0
2MASS03394552+2553439	16.03±0.28	$16.41 {\pm} 0.07$	$15.53 {\pm} 0.06$	A1.0V(A0.4VA2.0V)	2.82±
2MASS03393969+2556496	15.25±0.26	15.44 ± 0.04	14.38±0.03	K4.4V(K4.0VK4.4V)	0.22+
2MASS03394129+2556005	16 23+0 28	16.61 ± 0.06	15.64 ± 0.07	G7 4V(F6 0V K2 0V)	1 59+
21145503334123 2530003	16.23±0.20	15 26 - 0 04	14 64 ± 0.07	CEAV(CEAV, CEAV)	0.22
2101A3303402477+2532500	13.22±0.27	13.30±0.04	14.04±0.03		7.42
2MASS03395446+2549098	17.49±0.42	17.77±0.16	17.01 ± 0.29	M6.0V(M5.8VM6.0V)	7.43±
2MASS03403933+2525114	15.48 ± 0.28	15.73 ± 0.04	15.03 ± 0.04	F5.2V(F3.4VG4.2V)	$1.24\pm$
2MASS03403456+2527477	12.85 ± 0.25	$13.17 {\pm} 0.03$	12.59 ± 0.02	F3.8V(F3.4VF3.8V)	$0.23\pm$
2MASS03400115+2545503	$15.70 {\pm} 0.27$	$15.97 {\pm} 0.05$	$15.15 {\pm} 0.04$	K0.2V(G5.0VK0.2V)	0.22±
2MASS03402531+2532578	13.41±0.25	$13.52 {\pm} 0.03$	$12.80 {\pm} 0.02$	G3.0V(G2.4VG4.6V)	$0.38\pm$
2MASS03402637+2532252	15.60±0.27	15.69±0.04	14.91±0.04	G5.2V(G5.2V., G5.2V)	0.20+
2MASS03394345+2555406	16.87+0.32	17.26 ± 0.01	16.19+0.07	A1.0V(B9.2V A4 4V)	4.43+
2MASS03400010 + 2545520	15.51 ± 0.32	15.92±0.05	15.02±0.04	E5 6V(E5 2V	1.4JI
2MA3503400019+2546530	15.54±0.20	15.65±0.05	15.02±0.04	F5.0V(F5.2VF5.0V)	0.21±
2MASS03403550+2527592	16.12 ± 0.31	16.14 ± 0.06	15.26 ± 0.05	K0.2V(G5.4VK2.2V)	$0.79\pm$
2MASS03393888+2558293	16.40 ± 0.31	16.92 ± 0.08	16.00 ± 0.07	F2.6V(F1.4VF2.6V)	$0.21\pm$
2MASS03394797+2553517	17.67±0.39	$17.56 {\pm} 0.13$	$16.26 {\pm} 0.10$	K5.0V(K4.8VK5.0V)	$0.23\pm$
2MASS03403127+2530442	17.83±0.93	$17.50 {\pm} 0.13$	$16.63 {\pm} 0.14$	F5.2V(B0.0VG5.4V)	$1.44\pm$
2MASS03403278+2530050	14.21±0.25	14.34±0.03	13.65±0.02	F4.0V(F2.8VF5.0V)	$0.90 \pm$
2MASS03404062+2526220	12.19 ± 0.25	12 42+0 04	11.76 ± 0.02	F5 2V(F4 4V F5 4V)	0.65+
2MASS03304703+2555070	16 75±0.20	17.11 ± 0.09	16 10+0.08	A1 0V(B0 4V A4 4V)	2 17+
20040500394703+2535079	10.75±0.55	16.52 - 0.05	10.19 10.00		2.17
2MASS03410143+2515131	10.54±0.34	10.52±0.00	15.76±0.08	G9.6V(G8.6VG9.6V)	0.20±
2MASS03403459+2529545	17.30 ± 0.51	17.27 ± 0.10	16.48 ± 0.10	F6.0V(F5.8VG1.4V)	$0.35\pm$
2MASS03410219+2515031	17.28 ± 0.40	17.44 ± 0.13	$16.75 {\pm} 0.11$	A1.0V(B7.2VA7.4V)	$4.47\pm$
2MASS03395068+2553356	16.61 ± 0.30	$16.83 {\pm} 0.08$	$15.89 {\pm} 0.07$	G5.0V(G4.8VG5.0V)	$0.20\pm$
2MASS03404383+2525094	$14.34 {\pm} 0.25$	$14.60 {\pm} 0.03$	13.99 ± 0.03	F5.0V(F4.0VF5.0V)	$0.23\pm$
2MASS03394582+2556145	17.33±0.36	$17.76 {\pm} 0.17$	17.01 ± 0.14	F3.6V(B0.0VM6.0V)	$4.96\pm$
2MASS03395166+2553223	17.33+0.36	17.37 ± 0.10	16.33 ± 0.13	K5.4V(K3.8VK5.4V)	0.23+
2MASS03404109±2526551	1222 ± 025	12 25+0.03	11 43+0 03	K1 2V(G8 8V K1 8V)	0 74+
2MASS03401702+2530240	17.22 ± 0.23	17.69 ± 0.03	16.73 ± 0.00	$G_{5,0}V(E_{1,0}V) = K(4,2V)$	1 05+
200405003401792+2539249	17.92±0.01	17.09±0.14	10.73 ± 0.10	G5.0V(F1.0VR4.2V)	1.95±
2MASS03410071+2516180	17.71±0.62	17.96±0.18	17.12±0.16	A1.0V(B7.6VA0.6V)	7.96±
2MASS03395752+2550244	17.23 ± 0.31	17.26 ± 0.10	16.16 ± 0.08	K7.0V(K4.4VM0.0V)	$0.51\pm$
2MASS03401022+2543381	15.63 ± 0.30	$15.88 {\pm} 0.05$	15.18 ± 0.05	F5.4V(F5.2VF5.4V)	$0.26\pm$
2MASS03394911+2554556	16.27 ± 0.28	16.61 ± 0.07	$15.74 {\pm} 0.06$	A5.0V(B0.0VF3.4V)	$2.08\pm$
2MASS03395088+2554033	14.39±0.25	$14.79 {\pm} 0.04$	$14.01 {\pm} 0.04$	A1.0V(B9.4VA4.4V)	$2.39\pm$
2MASS03395607+2551213	17.57±0.41	17.17±0.09	15.17±0.05	A3.2V(B4.8VA8.2V)	4.73±
2MASS03401533+2541075	16.91+0.40	17.13+0.10	16.44 ± 0.10	F3.2V(B0.0VG5.4V)	1.95+
2MASS03404234±2526411	16 18+0 20	16 45 +0.06	15 73±0 0F	F3 2V/(F3 2V/ F3 2V/)	0.001
2117-330340423472320411	17.63 0.29	17.62 0.00	16.05 0.00	13.2V(13.2VF3.2V)	1.20
2IVIASSU34U2307+2530483	17.03±0.38	17.02±0.14	10.85±0.19	WI2.4V(BU.UVM5.6V)	1.30±
ZMASSU3394193+2559068	10.51±0.30	10.60±0.06	15.40±0.05	KO.UV(K4.0VK6.0V)	0.24±
2MASS03401068+2543559	$17.02 {\pm} 0.41$	$17.20 {\pm} 0.09$	$16.45 {\pm} 0.12$	A1.0V(B7.6VA6.6V)	$4.15\pm$
2MASS03402356+2537174	$17.70 {\pm} 0.45$	$17.31 {\pm} 0.11$	$16.24 {\pm} 0.08$	K2.6V(G6.0VK4.2V)	$0.67\pm$
2MASS03410507+2514509	12.84±0.25	$12.99 {\pm} 0.03$	$12.35 {\pm} 0.03$	B3.6V(B0.2VF0.6V)	$2.94\pm$
2MASS03400476+2547349	17.68±0.41	17.64±0.13	16.88±0.16	A1.0V(B7.0VA7.8V)	$4.50\pm$
2MASS03403557+2531095	16.03+0.30	16.06+0.05	15.27+0.05	F5.2V(F3.6V. G4.2V)	1.87+
2MASS03404502+2526062	15 31+0 27	15 53+0 04	14 88+0 03	F0.8V(B0.0V F0.8V)	0.22
21017550540450272520002	15.51 ± 0.27	16 50 10.04	15 71 0 00	= O((BOO) - COV)	0.22±
2101A3303394231+2559401	10.00±0.29	10.39±0.07	10.71±0.00	-5.0V(D0.0VG4.2V)	0.93±
2IVIASS03403493+2531505	17.19±0.39	17.33±0.11	10.59±0.10	A1.0V(B1.6VA9.0V)	1.48±
2MASS03394735+2557184	$16.84 {\pm} 0.34$	17.27 ± 0.10	$16.40 {\pm} 0.12$	G6.0V(F5.0VK3.8V)	$1.48\pm$
2MASS03404820+2524482	$15.55 {\pm} 0.27$	$15.66{\pm}0.04$	$14.95{\pm}0.05$	F5.4V(F3.8VG4.4V)	$1.70\pm$
2MASS03400851+2546131	16.34±0.32	$16.49 {\pm} 0.06$	$15.73 {\pm} 0.05$	F4.2V(B0.0VG4.0V)	$2.21\pm$
2MASS03400889+2546275	17.15±0.38	17.19±0.10	16.34±0.08	G1.8V(F3.2V., K2.0V)	2.19+
2MASS03410793±2514446	17 57+0 42	17 72+0 15	16 94+0 16	A3 2V(B0 0V E5 2V)	3 78+
21117330341079372314440	16.02.0.20	16 74 10.13	10.54 ±0.10	$K_{2} = A V (K_{2} = 0) (K_{$	1 63 1
211/1/2003402312+25390/6	10.95±0.30	10.74±0.07	10.05±0.05	$(1.3.4 \text{ V} (1.2.0 \text{ V} \dots \text{ W} 10.8 \text{ V})$	1.03±
2MASS03401142+2545320	13.99±0.25	14.24 ± 0.03	13.54 ± 0.02	G5.2V(G4.8VG5.2V)	$0.21\pm$
2MASS03403153+2534480	$15.93{\pm}0.28$	$15.78{\pm}0.05$	$14.80{\pm}0.03$	K3.4V(K2.6VK4.8V)	$0.58\pm$
2MASS03394341+2600328	14.49±0.26	$14.70 {\pm} 0.04$	13.47±0.03	K7.0V(K6.4VK7.2V)	0.28±
2MASS03400975+2546428	17.67±0.43	$17.60 {\pm} 0.13$	16.63±0.16	K2.2V(K1.6VK2.2V)	0.21+
2MASS03394817+2558209	14.73+0.26	15.23+0.04	14.37+0.04	$A1.0V(A0.0V \Delta4.0V)$	3 40+
211/2000000007 + 0500/00	17.00 0.41	17 20 0 10	16 67 0.04	K1 0V/(CE AV K1 0V)	0.20
2IVIA5503403597+2532499	17.29±0.41	17.38±0.12	10.07±0.12	K1.8V(G5.4VK1.8V)	0.20±
2MASS03394998+2557252	16.06±0.28	16.52 ± 0.07	15.69 ± 0.06	G2.2V(F5.6VG2.2V)	0.21±
	14.15 ± 0.25	$14.24 {\pm} 0.03$	$13.55{\pm}0.03$	G5.0V(G4.8VG5.0V)	0.23±
2MASS03402970+2536145					
2MASS03402970+2536145 2MASS03395789+2553219	17.16±0.33	$17.46 {\pm} 0.13$	$16.62 {\pm} 0.13$	F5.0V(F3.8VF5.0V)	$0.30\pm$
2MASS03402970+2536145 2MASS03395789+2553219 2MASS03395713+2553522	17.16±0.33 16.46±0.28	$17.46{\pm}0.13$ $16.84{\pm}0.08$	$16.62{\pm}0.13$ $16.05{\pm}0.06$	F5.0V(F3.8VF5.0V) F5.6V(B0.0VK1.6V)	0.30± 1.84+
2MASS03402970+2536145 2MASS03395789+2553219 2MASS03395713+2553522 2MASS03403525+2533200	17.16±0.33 16.46±0.28 17.47±0.43	17.46 ± 0.13 16.84 ± 0.08 17.63 ± 0.12	16.62 ± 0.13 16.05 ± 0.06 16.00 ± 0.16	F5.0V(F3.8VF5.0V) F5.6V(B0.0VK1.6V) F4.0V(B0.0VK1.6V)	0.30± 1.84± 2.15±

1	c.c.	
	hh	
L	UUU	

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	$A_V(GSH$ [mag]
2MASS03395554+2554540	15.94±0.30	15.97±0.05	14.82±0.04	K1.2V(G5.8VK2.4V)	0.88±0.03
2MASS03402557+2538533	11.74±0.25	11.81±0.03	11.00±0.02	G2.8V(F5.8VG5.2V)	1.21 ± 0.02
2MASS03405127+2525033	16.51±0.33	16.49±0.07	15.71±0.06	A1.0V(B8.0VA4.6V)	3.38±0.06
2MASS03395835+2553294	16.40±0.29	16.71±0.08	15.83±0.08	G5.0V(F6.0VG5.0V)	0.22+0.08
2MASS03403953+2531276	14.51+0.26	14.68 ± 0.04	14.03+0.04	F5.6V(F5.6VF5.6V)	0.27+0.03
2MASS03400475±2550097	16 36±0 33	16.48±0.06	15 74+0.06	$G_{6,2}V(G_{2,4}V) = G_{7,2}V$	0.21±0.0
2MASS03394827+2558565	14.94 ± 0.26	15.40 ± 0.05	1450 ± 0.03	G7.0V(G4.8V K0.0V)	0.68+0.0
2MASS03404311+2520307	14.54 ± 0.20 16 54 ± 0.32	16.50 ± 0.03	14.30 ± 0.05 15 74±0.06		0.23+0.0
200000000000000000000000000000000000000	10.34 ± 0.32	10.39 ± 0.07	13.74_0.00		1.03 \ 0.03
2MASS03400877+2548093	14.19±0.26	14.33 ± 0.03	13.58 ± 0.02	F7.0V(F5.2VG4.2V)	1.03±0.0
2MASS03405315+2524213	17.21±0.42	17.29±0.11	16.58±0.13	A1.0V(B9.2VA4.4V)	3.96±0.1
2MASS03405072+2525448	17.23 ± 0.38	17.27 ± 0.11	16.53 ± 0.10	G5.0V(G3.0VG5.0V)	0.22 ± 0.1
2MASS03400593+2549496	17.04 ± 0.38	17.08 ± 0.09	16.28 ± 0.07	A7.4V(B0.0VF3.6V)	2.91 ± 0.08
2MASS03395118+2557472	$16.85 {\pm} 0.30$	$17.51 {\pm} 0.12$	$16.96 {\pm} 0.18$	B0.0V(B0.0VB0.6V)	1.36 ± 0.2
2MASS03403954+2531586	17.38±0.42	$17.48 {\pm} 0.11$	$16.75 {\pm} 0.12$	K2.4V(K1.6VK2.4V)	0.23±0.1
2MASS03394555+2600471	$15.56 {\pm} 0.26$	$15.75 {\pm} 0.04$	$14.53 {\pm} 0.04$	K4.2V(K3.0VK7.2V)	0.88±0.0
2MASS03402840+2538028	15.79±0.29	$15.96 {\pm} 0.05$	$15.32 {\pm} 0.05$	F1.4V(B0.0VF5.0V)	0.78±0.0
2MASS03410787+2516468	15.72±0.27	$15.46 {\pm} 0.04$	14.49±0.03	K2.0V(K1.2VK2.8V)	1.48±0.0
2MASS03403641+2533584	15.29 ± 0.28	15.28 ± 0.04	14.47+0.03	A1.0V(B9.4VA4.4V)	3.85+0.0
2MASS03402071+2537341	18 10+0 76	18 28 + 0 24	17 50±0 23	$E_{4.8V(B0.0V/K1.2V)}$	3 51+0 1
20040503402971-2557541	16.10 ± 0.70	16.20 ± 0.24	17.50±0.25		3.31 1 0.1
2MASS03395896+2554112	10.33±0.30	10.51±0.07	15.57±0.00	F3.4V(B0.0VF5.2V)	3.24±0.0
∠IVIASSU3400936+2548525	17.52±0.49	11.54±0.14	10.79±0.13	A1.UV(B0.UVF1.6V)	4.94 ± 0.1
2MASS03402352+2541248	13.14 ± 0.25	13.37 ± 0.03	12.75 ± 0.02	F5.8V(F5.8VF5.8V)	0.26±0.0
2MASS03402080+2542581	16.21 ± 0.32	$15.77 {\pm} 0.05$	$14.05{\pm}0.03$	G7.0V(G5.2VM2.4V)	$2.69 {\pm} 0.0$
2MASS03395241+2558067	$16.06 {\pm} 0.28$	$16.44 {\pm} 0.07$	$15.41 {\pm} 0.05$	G5.0V(G5.0VG5.0V)	0.21±0.0
2MASS03403433+2535451	$15.47 {\pm} 0.27$	$15.33{\pm}0.04$	$14.38{\pm}0.04$	K5.4V(K4.0VK5.4V)	$0.22 {\pm} 0.0$
2MASS03403922+2533167	17.84±0.44	17.61 ± 0.13	$16.62 {\pm} 0.16$	B4.2V(B0.0VM6.0V)	7.25±0.0
2MASS03411293+2515032	16.64±0.32	$16.80 {\pm} 0.07$	16.21 ± 0.10	B4.8V(B0.0VF5.0V)	3.37±0.1
2MASS03402936+2538437	11.53 ± 0.25	11.67+0.03	10.97+0.03	F5.0V(F4.2VF5.2V)	1.05 ± 0.0
2MASS03402527±2540574	17 47+0 41	17.63 ± 0.15	16.95+0.16	A1.0V(B1.2V, M6.0V)	7 59+0 2
2MASS02410691 2519255	1F 64±0 20	1F 20 ± 0.15	15.25±0.10	$E_{4,6}V(E_{1,6}V) = E_{6,6}V(E_{1,6}V)$	1.55±0.2
21/145505410081+2518355	15.04±0.29	15.69±0.05	15.25±0.04	F4.0V(F1.0VF5.0V)	1.52±0.0
2MASS03404810+2528490	14.98 ± 0.26	14.98 ± 0.03	14.16±0.03	K0.4V(G9.6VK0.4V)	0.23 ± 0.0
2MASS03402100+2543286	13.19 ± 0.25	13.31 ± 0.04	12.61 ± 0.03	G9.8V(G9.0VG9.8V)	0.23 ± 0.0
2MASS03402313+2542247	11.70 ± 0.26	11.83 ± 0.03	11.18 ± 0.02	G6.2V(G5.4VG7.4V)	0.26 ± 0.0
2MASS03401118+2548583	15.76 ± 0.28	$15.98 {\pm} 0.05$	$15.30 {\pm} 0.05$	G5.6V(G5.0VG5.6V)	0.23±0.0
2MASS03401097+2549052	$16.89 {\pm} 0.34$	$17.26 {\pm} 0.13$	$16.39 {\pm} 0.16$	G8.8V(G6.0VG8.8V)	0.21 ± 0.1
2MASS03400050+2554408	$16.75 {\pm} 0.32$	$16.80 {\pm} 0.08$	$15.65 {\pm} 0.05$	B4.4V(B0.0VF2.6V)	$5.67 {\pm} 0.0$
2MASS03411005+2517166	13.80±0.26	13.74±0.03	$12.92 {\pm} 0.03$	K1.0V(G6.0VK1.8V)	0.83±0.0
2MASS03395473+2557477	17.44±0.36	$17.81 {\pm} 0.16$	16.85±0.12	F3.2V(B0.0VG5.0V)	3.15±0.1
2MASS03402087+2543527	17.14±0.40	$17.16 {\pm} 0.10$	16.32±0.08	K3.2V(K2.6VK3.2V)	0.25±0.0
2MASS03404558+2530419	17.83+0.35	17.74 ± 0.14	16.90 ± 0.16	A1.0V(B0.0VF3.6V)	1.76 ± 0.1
2MASS03404222+2532390	1757 ± 051	1759 ± 013	16.81 ± 0.13	A1 2V(B0 0V E3 6V)	4 54+0 1
2MASS03305440±2558174	15 67±0 26	16 18 ± 0.05	15 38+0.05	B0.0V(B0.0V E5.0V)	4 16+0 0
211/2505555445 2550174	13.07 ±0.20	12.27 ± 0.02	12.68±0.02	$C_{2} \otimes V(EE \otimes V = C_{4} \otimes V)$	4.10±0.0
2101A3303400489+2532470	13.12±0.23	13.37 ± 0.03	12.08±0.03		0.40±0.0
21/1A5503404409+2531512	17.01±0.00	17.71±0.15	10.95±0.15	K4.8V(K3.8VK4.8V)	0.21±0.1
2MASS03404792+2529471	13.96±0.25	14.14±0.03	13.46±0.03	F0.0V(F5.8VF9.6V)	0.31±0.0
2MASS03403696+2535560	17.68 ± 0.47	17.52 ± 0.12	16.69 ± 0.13	A2.6V(B0.0VF3.0V)	4.89 ± 0.0
2MASS03400025+2555369	$16.80 {\pm} 0.33$	$17.26 {\pm} 0.12$	$16.43 {\pm} 0.12$	A1.0V(B9.8VA4.2V)	2.18 ± 0.1
2MASS03405951+2524049	14.24 ± 0.26	$14.32 {\pm} 0.04$	13.57 ± 0.03	K0.6V(G9.0VK0.6V)	0.22±0.0
2MASS03395238+2600043	$16.37 {\pm} 0.29$	$16.92{\pm}0.08$	$16.08{\pm}0.08$	G5.4V(F4.8VG7.2V)	0.34±0.0
2MASS03400532+2553189	$16.18{\pm}0.31$	$15.95 {\pm} 0.05$	$14.91{\pm}0.04$	G2.4V(F5.8VM2.8V)	3.21±0.0
2MASS03401942+2545486	17.13±0.42	17.21 ± 0.10	$16.23 {\pm} 0.08$	A1.0V(A0.2VA4.0V)	$7.54{\pm}0.1$
2MASS03395756+2557417	17.06±0.27	17.34±0.10	$16.39 {\pm} 0.11$	K0.6V(G6.0VK0.6V)	0.23±0.0
2MASS03401087+2550411	14.60±0.25	14.79±0.04	14.04±0.03	G6.0V(G5.8VG7.4V)	0.22+0.0
2MASS03405729+2525483	15.53+0.27	15.74+0.04	15.12+0.04	G5.2V(G5.0V G5.2V)	0.23+0.0
2MASS03405933+2524441	16.47+0.35	16.65+0.07	16.04+0.06	F0.4V(B0.0V F5.4V)	2.67+0.0
2MASS02402012 2545524	16.09±0.40	17.00 ± 0.01	16 E7±0.12		4.64±0.2
2101A3303402013+2545524	10.98±0.40	17.20±0.10	10.57±0.13	A1.0V(B8.8VA4.0V)	4.04±0.2
2MASS03402682+2542243	15.47±0.27	15.67±0.04	14.97±0.04	G9.2V(G5.2VG9.4V)	0.25 ± 0.0
2MASS03403008+2540469	16.52 ± 0.32	16.38 ± 0.06	15.54 ± 0.07	K5.2V(K3.4VK5.2V)	0.20 ± 0.0
2MASS03405070+2529532	16.12 ± 0.29	$15.95 {\pm} 0.05$	15.01 ± 0.04	K3.4V(K2.4VK6.6V)	0.92 ± 0.0
2MASS03411079+2518586	$15.08 {\pm} 0.27$	$15.09 {\pm} 0.04$	$14.38 {\pm} 0.03$	G6.4V(G5.2VG9.8V)	0.61 ± 0.0
2MASS03410025+2524475	$16.47 {\pm} 0.30$	$16.10 {\pm} 0.05$	$14.98 {\pm} 0.05$	K1.8V(G9.0VM2.0V)	$1.89 {\pm} 0.0$
2MASS03400995+2551560	$17.87 {\pm} 0.40$	$17.92 {\pm} 0.17$	17.13 ± 0.19	A8.0V(B0.0VG4.4V)	4.35±0.1
2MASS03400140+2556332	17.41±0.39	17.83±0.16	$16.93 {\pm} 0.14$	A1.0V(B8.6VA4.6V)	5.23±0.2
2MASS03403142+2540361	14.02±0.25	13.92±0.03	13.03±0.02	K2.2V(K1.6VK2.8V)	0.68±0.0
2MASS03400418+2555104	15.25±0.27	15.65±0.05	14.98±0.04	F4.0V(B0.0V., F5.4V)	0.84+0 0
2MASS03400121+2556461	16.62+0.31	17.05+0.00	16.26+0.08	A1.0V(B1 2V Δ0 4V)	2.87+0 1
2MASS03304053-1 2602660	15 22+0.26	15.82+0.04	14 83+0.04		0.03700
210173303394953+2002509	16.47 0.20	16.52±0.04	15 80 0 80	G3.0V(G0.0VG3.0V)	0.23±0.0
2111A3503404309+2534335	10.47±0.33	10.57±0.07	15.69±0.06	A1.UV(B9.4VA4.4V)	3.31±0.0
2MASS03403050+2541209	16.52 ± 0.32	16.62 ± 0.07	$15.90 {\pm} 0.05$	F5.8V(F5.6VF5.8V)	0.25±0.0
2MASS03402475+2544268	$15.96 {\pm} 0.28$	$16.10 {\pm} 0.05$	$15.39{\pm}0.05$	G8.4V(G5.2VG8.4V)	$0.20 {\pm} 0.0$
2MASS03403508+2538573	$13.77 {\pm} 0.25$	$13.88{\pm}0.04$	$13.17{\pm}0.03$	F5.4V(F5.2VF9.2V)	$1.37 {\pm} 0.0$
2MASS03404279+2534521	$16.01{\pm}0.28$	$15.85 {\pm} 0.04$	$14.96{\pm}0.04$	F5.0V(F3.8VF5.4V)	3.08±0.0
2MASS03410152+2524539	17.79±0.46	17.74±0.16	16.86±0.10	K5.4V(G9.6VK5.4V)	0.20±0.1
2MASS03401479+2550056	16.96+0.43	16.41+0.06	14.25+0.03	A9.6V(B0.0VF1.0V)	3,94+0.0
01446602411700 + 0516004	15 84+0 27	16 07+0 05	15 42+0.06	F6 0V(F5 4V = 0.0V)	0.27+0.0
	10.07 ± 0.21	TO:01 TO:00	10.42_0.00	· · · · · · · · · · · · · · · · · · ·	0.21 ±0.0
2MASS03411798+2510094	17 57-0 43	17 20 - 0 16	17 07 10 10	A1 0\/(P0 0\/ F2 0\/)	5 /1. 0 C
2MASS03411798+2516094 2MASS03401380+2551010	17.57±0.43	17.80±0.16	17.07±0.19	A1.0V(B0.0VF3.8V)	5.41±0.2

Sternname	v(GSH) [mag]	к(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	A _V (G [mag
2MASS03411676+2517197	17.89±0.52	17.77±0.16	16.94±0.19	F5.0V(F3.8VF5.0V)	0.23±0
2MASS03404115+2536395	17.54±0.44	17.59±0.14	16.81±0.13	B9.8V(B0.0VM4.4V)	5.78±0
2MASS03410728+2522327	$16.32 {\pm} 0.31$	$16.41 {\pm} 0.06$	$15.65 {\pm} 0.06$	G5.2V(G5.2VG5.2V)	0.24±0
2MASS03395298+2602290	$16.21 {\pm} 0.30$	$16.69 {\pm} 0.07$	$15.72 {\pm} 0.08$	G9.4V(G4.8VK0.6V)	0.43±0
2MASS03412211+2514426	$17.41 {\pm} 0.40$	$17.51{\pm}0.12$	$16.79{\pm}0.09$	F3.0V(B0.0VG4.4V)	3.78±0
2MASS03402813+2544095	$16.46{\pm}0.31$	$16.19{\pm}0.05$	$15.08{\pm}0.03$	K3.6V(K2.6VM0.2V)	1.34±0
2MASS03404499+2535104	$14.22 {\pm} 0.25$	$14.30{\pm}0.03$	$13.57 {\pm} 0.03$	F0.8V(B0.0VF3.4V)	$1.82\pm$
2MASS03403555+2540152	$16.24{\pm}0.31$	$16.50{\pm}0.06$	$15.88{\pm}0.07$	F3.6V(F3.4VF3.6V)	0.21±0
2MASS03401194+2552538	$17.51 {\pm} 0.44$	$17.50 {\pm} 0.12$	$16.67 {\pm} 0.12$	K1.8V(G8.8VK1.8V)	0.23±
2MASS03395183+2603392	$16.34 {\pm} 0.28$	17.09 ± 0.09	$16.20 {\pm} 0.11$	A1.0V(B9.4VA4.4V)	3.58±
2MASS03405347+2530496	$14.90 {\pm} 0.27$	$14.87 {\pm} 0.04$	$13.95 {\pm} 0.03$	K5.0V(K3.8VK5.0V)	0.22±
2MASS03400593+2556198	17.88 ± 0.48	18.02 ± 0.17	17.16 ± 0.21	A1.0V(B4.8VA8.4V)	$5.32\pm$
2MASS03401967+2549026	17.12 ± 0.39	17.22 ± 0.10	16.35±0.08	K5.2V(K2.8VK5.2V)	0.21±
2MASS03395404+2602589	12.30 ± 0.25	12.99±0.04	12.13 ± 0.02	F9.8V(F5.6VG4.8V)	0.85±
2MASS03411873+2517312	14.05±0.25	14.35±0.03	13.82 ± 0.03	F3.2V(B0.0VF4.2V)	0.56±
2MASS03403951+2538588	17.69 ± 0.45	17.77 ± 0.15	16.86 ± 0.17	K7.0V(K5.0VM0.0V)	0.82±
2MASS03395493+2602501	15.75±0.27	16.47±0.06	15.60±0.04	G5.4V(G5.2VG5.4V)	0.23±
2MASS03412249+2515510	12.61 ± 0.25	12.73 ± 0.03	12.03 ± 0.03	F5.6V(F5.2VG4.0V)	1.14±
2MASS03403875+2539414	16.75 ± 0.35	16.80 ± 0.08	16.08 ± 0.06	A1.0V(B8.0VA6.0V)	3.18±
2MASS03400368+2558228	17.51±0.39	17.87 ± 0.19	16.99±0.15	G5.2V(F2.4VK5.8V)	2.63±
2MASS03405128+2533084	16.30±0.31	16.38±0.06	15.63±0.06	F4.6V(B0.0VG4.0V)	1.73±
2MASS03402190+2548589	15.81±0.31	15.96 ± 0.05	15.21 ± 0.05	K1.4V(G5.6VK2.2V)	0.37±0
211/145503404198+2538140	16.24 ± 0.47	17.81±0.16	17.07±0.15	$r_1.0v(F5.8VM2.8V)$	1.45±
2111/03003404000 + 2534345	10.24 ± 0.31	10.12±0.05	11.61 0.00	$r_{1.2}v(r_{5.2}vG4.0V)$	2.53±
2MASS03404099+2538502	12.60 ± 0.25	12.52 ± 0.03	11.61 ± 0.02	K2.8V(K2.4VK3.6V)	0.75±
2MASS03403857+2540088	13.67±0.25	13.81 ± 0.03	13.14 ± 0.02	F7.4V(F5.4VG4.2V)	0.65±
2MASS03410787+2524192	17.24 ± 0.30	17.32±0.11	16.70±0.09	A1.0V(A0.2VA4.0V)	4.55±
2MASS03410811+2524119	15.72 ± 0.27	15.64 ± 0.05	15.06±0.04	K3.0V(K3.0VK3.0V)	0.22±
2MASS03412197+2510400	17.24 ± 0.41	17.30 ± 0.11	10.70 ± 0.13	A1.0V(A0.0VA4.0V)	2.52±
2MASS03404302+2537373	17.03 ± 0.39 16.80±0.32	17.74 ± 0.15 16.05±0.08	17.09 ± 0.19 16.16±0.10	G5.0V(B0.0VK2.0V)	1.34± 0.22±
2MASS03402139+2549278	10.80 ± 0.32 16.78 \pm 0.35	10.95 ± 0.08 17.01 ± 0.09	16.10 ± 0.10	F5.8V(F5.0VF5.8V)	0.22±
2MASS03412323+2510122	10.78 ± 0.33	17.01 ± 0.09 17.52 ± 0.14	16.20 ± 0.08	$G_{3,2} \vee (G_{3,0} \vee \dots G_{3,2} \vee)$	0.25±
2MASS03395010+2003050	17.13 ± 0.33 15.23 ±0.27	17.52 ± 0.14 15.43±0.04	10.20 ± 0.07 14 78±0.03	G7.0V(F3.8V(2.4V))	2.20±
2MASS03403229+2544122	15.23 ± 0.27 16.46 \pm 0.30	15.43 ± 0.04 16.28 \pm 0.05	14.78 ± 0.03 15.10±0.04	F5.0V(F5.4VF7.2V)	1.34±
2MASS03402045+2540288	16.37 ± 0.28	16.20 ± 0.05	15.19 ± 0.04 15.70 \pm 0.06	$(1.0)((1.0.4) \dots (1.2))$	2 04+
2MASS03403930+2540200	15.37 ± 0.20 15.32 ± 0.27	15.52 ± 0.00 15.58 \pm 0.05	13.79 ± 0.00 14 90 \pm 0.04	G3 0V(E5 8V G4 4V)	2.94± 0.31±
2MASS03412186+2517395	14.71 ± 0.26	13.30 ± 0.03 14 81 + 0 03	14.30 ± 0.04 14.11+0.03	F5 4V(F4 8V G4 0V)	1 58+
2MASS03403305+2544073	15.38 ± 0.27	15.64 ± 0.04	14.98 ± 0.04	B0.0V(B0.0VF4.2V)	4.13+
2MASS03410735+2525404	15.03 ± 0.21	15.01 ± 0.04	14 20+0 03	K2 8V(K2 6V K2 8V)	0.21+
2MASS03400059+2601267	16.51±0.33	16.99±0.08	16.00±0.05	K5.2V(K4.6VK5.2V)	0.21+
2MASS03403952+2540509	17.83±0.50	18.07±0.21	17.26±0.21	A1.0V(B4.6VA8.6V)	2.47±
2MASS03412635+2515351	16.89±0.37	17.05±0.09	16.39±0.10	G2.0V(F6.0VG2.0V)	0.21±
2MASS03410915+2525181	16.23±0.33	16.45±0.06	15.78±0.04	F5.2V(F5.2VF5.2V)	0.24±
2MASS03400542+2559450	13.90±0.25	14.41±0.03	13.69±0.03	G3.0V(G2.6VG4.6V)	$0.36\pm$
2MASS03410762+2526319	15.28±0.27	$15.50 {\pm} 0.04$	14.85±0.04	B7.8V(B1.4VA9.2V)	$3.00\pm$
2MASS03401201+2556237	17.93±0.52	17.76±0.15	16.77±0.17	K7.0V(K3.8VM0.2V)	$1.09\pm$
2MASS03404661+2538078	17.28±0.47	$17.11 {\pm} 0.09$	16.23±0.08	A1.0V(B9.6VA4.2V)	$2.90\pm$
2MASS03402986+2547099	$15.69 {\pm} 0.28$	$15.60 {\pm} 0.04$	14.51 ± 0.11	K4.6V(K3.0VK5.6V)	$0.41\pm$
2MASS03400437+2600440	13.77±0.25	$14.40 {\pm} 0.03$	13.75±0.03	F0.0V(B0.0VF3.0V)	$1.48\pm$
2MASS03411022+2525350	$13.79 {\pm} 0.25$	$13.64 {\pm} 0.03$	$12.73 {\pm} 0.02$	K2.0V(K1.4VK2.6V)	$1.00\pm$
2MASS03404212+2540457	$13.68{\pm}0.25$	$13.64{\pm}0.03$	$12.79 {\pm} 0.02$	K4.0V(K3.2VK4.8V)	$0.39\pm$
2MASS03404083+2541311	$16.69{\pm}0.36$	$16.53{\pm}0.06$	$15.69{\pm}0.05$	K2.0V(G5.6VK2.2V)	$0.27\pm$
2MASS03403351+2545274	$16.11{\pm}0.30$	$16.29{\pm}0.06$	$15.57{\pm}0.05$	A5.2V(B0.4VF0.4V)	$2.12\pm$
2MASS03402266+2551263	$14.85 {\pm} 0.26$	$15.09{\pm}0.04$	$14.38{\pm}0.03$	G5.6V(G4.8VG5.6V)	$0.22\pm$
2MASS03412315+2519032	$17.32{\pm}0.43$	$17.10 {\pm} 0.09$	16.16±0.09	F6.8V(F4.4VG5.4V)	$2.46\pm$
2MASS03402049+2552529	$16.58 {\pm} 0.30$	$16.76 {\pm} 0.08$	$16.05 {\pm} 0.08$	G5.4V(F5.4VK2.4V)	$1.52\pm$
2MASS03404405+2540192	17.44 ± 0.44	17.51 ± 0.13	16.83 ± 0.16	K7.0V(K2.6VM0.6V)	0.80±
2MASS03410767+2527388	11.45 ± 0.25	11.83 ± 0.03	$11.38 {\pm} 0.02$	B7.2V(B1.8VA8.8V)	$1.91\pm$
2MASS03404318+2540554	$16.90 {\pm} 0.36$	17.08 ± 0.08	$16.36 {\pm} 0.11$	F5.2V(B0.0VG8.4V)	$2.06\pm$
2MASS03400003+2603537	15.44 ± 0.27	$15.96 {\pm} 0.05$	14.92 ± 0.03	K3.8V(K3.6VK3.8V)	$0.24\pm$
2MASS03410510+2529116	17.62 ± 0.75	$17.78 {\pm} 0.16$	17.13 ± 0.18	K6.2V(F6.0VM2.8V)	$1.62\pm$
2MASS03404136+2542024	14.62±0.26	14.81±0.04	14.09±0.03	F5.4V(F4.8VG4.0V)	1.36±
2MASS03401258+2557346	13.34±0.24	13.78±0.04	13.15±0.02	F5.8V(F5.8VF5.8V)	0.22±
2MASS03395992+2604184	17.06±0.32	17.80±0.17	16.85±0.18	K2.0V(F1.0VM4.4V)	2.90±
2MASS03411785+2522353	12.12±0.25	12.24±0.03	11.50±0.02	F4.2V(F3.4VF5.0V)	1.68±
2MASS03411376+2525044	14.35±0.26	14.64±0.04	14.06±0.03	F4.0V(F2.0VF5.0V)	0.70±
2MASS03403077+2548231	14.59±0.26	14.89±0.04	14.26±0.03	F7.8V(F5.4VG1.0V)	0.27±
2MASS03401116+2558540	15.21±0.26	15.61±0.04	14.84±0.04	G8.6V(G5.0VK1.4V)	0.68±
2MASS03410444+2530276	17.42±0.57	17.31 ± 0.11	15.69±0.05	K2.6V(F5.8VK7.8V)	1.48±
2MASS03411626+2524011	16.17±0.28	16.30±0.05	15.57±0.05	G6.0V(G5.6VG7.6V)	0.26±
	17.75 ± 0.43	17.95 ± 0.18	17.29±0.21	ВЗ.8V(B0.0VM4.4V)	6.40±
2MASS03411578+2524171					5 06+
2MASS03411578+2524171 2MASS03412813+2517379	17.53±0.49	17.48±0.12	16.57 ± 0.15	A1.0V(B7.0VA0.4V)	5.001
2MASS03411578+2524171 2MASS03412813+2517379 2MASS03404256+2542197	17.53±0.49 12.07±0.25	17.48 ± 0.12 12.12 ± 0.03	16.57 ± 0.15 11.25 ± 0.03	K2.8V(K2.2VK3.0V)	0.25±
2MASS03411578+2524171 2MASS03412813+2517379 2MASS03404256+2542197 2MASS03410523+2530094	17.53±0.49 12.07±0.25 17.08±0.41	17.48 ± 0.12 12.12 ± 0.03 17.11 ± 0.10	16.57 ± 0.15 11.25 ± 0.03 16.31 ± 0.09	K1.6V(K1.6VK3.6V) K1.4V(K1.6VK1.4V)	0.25±
otormanie	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	A _V (0 [m
---	---	--	--	---	--------------------------------------
2MASS03402767+2550267	14.77+0.27	15.06 ± 0.04	14.38+0.03	B0.4V(B0.0VF3.0V)	4.12-
2MASS03412510±2510346	17.02 ± 0.36	17.06 ± 0.20	16 28±0.08	A1 0V(B7 6V A6 6V)	4 23-
2MASS03402966+2549341	14 46±0 26	14.60 ± 0.03	13 78+0 03	K2 0V(K2 0V K2 0V)	0.22-
21445503402900-2549541	16.24 \ 0.20	14.00 ± 0.05	15.70 ± 0.05	FE OV(F2 AV C OV)	1.21
2MASS03413412+2514495	10.24±0.32	10.44±0.00	15.77±0.07	F5.8V(F3.4VG8.8V)	1.21
2MASS03404097+2543382	15.43 ± 0.28	15.54 ± 0.04	14.80 ± 0.03	G4.8V(F5.8VG8.0V)	0.99
2MASS03410549+2530411	14.80 ± 0.26	14.95 ± 0.04	14.27 ± 0.03	F5.0V(F3.8VF5.4V)	0.87
2MASS03400876+2601161	15.55 ± 0.28	$16.02 {\pm} 0.05$	$15.20 {\pm} 0.04$	K0.6V(G9.0VK0.6V)	0.22
2MASS03412614+2519479	$16.46 {\pm} 0.31$	$16.64 {\pm} 0.07$	$16.00 {\pm} 0.05$	G5.4V(G5.2VG5.4V)	0.20;
2MASS03410666+2530326	17.74±0.48	17.87±0.17	17.26±0.23	K3.6V(K2.8VK3.6V)	0.25
2MASS03401971+2555417	14 16+0 25	14 57+0 04	13 98+0 03	E3.6V(E1.4V E5.0V)	0 70
214455034011FE 2600000	15.28 \ 0.26	15.32 \ 0.04	14.06 \ 0.03		2.25
2MASS03401155+2600099	15.28±0.20	15.32 ± 0.04	14.06±0.03	KU.4V(G5.8VVI2.2V)	2.25
2MASS03403726+2546358	14.78 ± 0.26	15.03 ± 0.04	14.35 ± 0.03	F7.8V(F5.4VG4.8V)	0.74
2MASS03404444+2542468	$17.84 {\pm} 0.45$	$17.98 {\pm} 0.19$	$17.30 {\pm} 0.22$	A1.0V(B7.2VA7.4V)	5.70
2MASS03412987+2518131	17.07 ± 0.39	$17.35 {\pm} 0.12$	$16.70 {\pm} 0.12$	F5.0V(F3.8VF5.0V)	0.30
2MASS03403867+2545568	15.41±0.27	15.16±0.04	13.97±0.03	K7.0V(K6.4VK7.0V)	0.23
2MASS03410832±2530145	15 14+0 27	15 34 + 0.04	14 67+0.03	C7.0V(C4.8V, C9.2V)	0.54
200200000000000000000000000000000000000	13.14_0.27	10.17 \ 0.04	17.00 \ 0.00		0.54
2MA3503400078+2003230	17.05±0.59	10.17±0.24	17.20±0.18	K7.0V(K3.0VIVI0.4V)	0.92
2MASS03404729+2542031	14.60 ± 0.26	14.68 ± 0.04	13.95 ± 0.03	A1.0V(A0.0VA4.0V)	2.74
2MASS03401842+2557303	$15.48 {\pm} 0.27$	$15.81 {\pm} 0.05$	$15.06 {\pm} 0.05$	G5.4V(F6.0VG9.2V)	0.62
2MASS03403180+2550282	16.64±0.34	16.96 ± 0.09	16.28 ± 0.10	G9.2V(G5.8VG9.2V)	0.23
2MASS03411770±2525582	16 43 +0 35	1671 ± 0.07	16 09+0 07	F5.4V(F1.6V) = F5.4V()	0.23
2MASS03412200 2517370	14 32-0.05	14 24 ± 0.02	13 26 - 0 02	K3 8/(K3 0/) K6 4//	1 05
2101A3303413300+251/3/9	14.32±0.25	14.24±0.03	13.20±0.02	N3.6V(N3.UVK0.4V)	1.05
2MASS03401086+2601478	16.68±0.31	17.32 ± 0.10	16.68 ± 0.17	K2.2V(F5.6VM0.6V)	1.75
2MASS03404222+2545111	$15.46 {\pm} 0.27$	$15.75 {\pm} 0.05$	$15.13 {\pm} 0.05$	F5.4V(F4.0VG4.2V)	1.14
2MASS03400472+2605067	17.29±0.38	$17.43 {\pm} 0.14$	$16.37 {\pm} 0.11$	K3.4V(K1.4VM2.0V)	1.64
2MASS03401273+2600582	16.04+0.28	16.65+0.07	15.94+0.08	F3.6V(B0.0VG4.2V)	1.64
2MASS03412607±2521042	13 26+0 27	13 63+0 10	12 04+0 04	F5 8V(F5 8V/ F5 8V/	0.20
200405003412097 +2521042	16.10 \ 0.20	15.05 ± 0.10	12.94_0.04		0.20
2MASS03401176+2601350	16.12 ± 0.32	16.63±0.07	15.84 ± 0.07	G5.2V(G5.0VG5.2V)	0.21
2MASS03410423+2533408	16.38 ± 0.33	16.50 ± 0.07	$15.80 {\pm} 0.07$	A1.0V(A0.4VA2.0V)	2.97
2MASS03402020+2557171	$14.26 {\pm} 0.25$	$14.62 {\pm} 0.03$	$13.92 {\pm} 0.03$	F6.6V(F5.4VG4.6V)	0.61
2MASS03413584+2516493	15.88±0.29	$16.06 {\pm} 0.05$	$15.35 {\pm} 0.05$	B5.4V(B0.0VF2.6V)	4.22
2MASS03413722+2516065	14 64 +0 25	14 77+0.03	14 06+0 03	$E_{4} = 6 \sqrt{(E_{3} - 4)} = E_{2} \sqrt{(E_{3} - 4)} = 0$	1 00
200003413722-2310003	14.04_0.25	14.77 ± 0.03	14.00 ± 0.05	14.0V(13.4V13.2V)	1.90
2MASS03412013+2525316	10.98±0.37	17.11±0.09	10.38±0.10	G5.2V(G2.6VG5.2V)	0.24
2MASS03412933+2520348	15.49 ± 0.28	15.60 ± 0.04	14.87 ± 0.05	F5.2V(F4.2VF7.8V)	1.82
2MASS03400791+2604160	16.69 ± 0.34	17.41 ± 0.12	16.67 ± 0.08	B7.6V(B0.0VG5.2V)	3.84
2MASS03405571+2538550	$15.83 {\pm} 0.29$	$15.88 {\pm} 0.05$	$15.10 {\pm} 0.05$	F4.0V(F1.2VF5.2V)	1.92
2MASS03401114+2602434	15.62±0.27	16.23 ± 0.06	15.46 ± 0.06	K1.6V(G9.6VK1.6V)	0.20
2MASS03401618±2600055	17 05+0 36	17.44 ± 0.12	16.68 ± 0.12	A10V(B10V A96V)	3 03
2000003	16.04 \ 0.21	16.26 \ 0.06	15.00 10.12		0.00
2MASS03402380+2550038	16.04±0.31	10.30±0.00	15.02 ± 0.05	F5.0V(B0.0VG4.4V)	0.98
2MASS03411519+2528337	16.73 ± 0.34	16.91 ± 0.08	16.26 ± 0.09	A7.2V(B0.0VF3.4V)	2.87
2MASS03404688+2543502	12.67 ± 0.25	12.71 ± 0.03	$11.89 {\pm} 0.02$	G4.4V(F5.8VG5.0V)	1.52
2MASS03403387+2550476	14.42 ± 0.25	14.22 ± 0.04	$12.99 {\pm} 0.03$	G2.0V(F5.8VG5.0V)	2.65
2MASS03410662+2533153	18 19+0 65	1772 ± 017	16.11 ± 0.10	K7 0V(K6 2V K7 4V)	0.36
2MASS03402857±2553385	18 13+0 52	18 02+0 18	16.02 ± 0.12	$K_{2} OV(K_{4} 2) / MO 2) / $	0.71
20140503402037 +25353505	10.13_0.32	15.02 ± 0.10	10.92 10.12		0.71
2MA5503410417+2534382	15.14±0.27	15.17 ± 0.04	14.40 ± 0.03	G9.4V(G9.0VG9.4V)	0.20
2MASS03412309+2524265	12.35 ± 0.25	12.66 ± 0.03	12.08 ± 0.02	F5.8V(F5.8VF5.8V)	0.21
2MASS03402810+2554038	14.01 ± 0.25	$14.33 {\pm} 0.03$	13.67 ± 0.03	F6.0V(F5.8VG1.6V)	0.36
2MASS03404262+2546195	$12.83 {\pm} 0.25$	$13.19 {\pm} 0.03$	$12.60 {\pm} 0.02$	B4.0V(B0.2VF0.6V)	2.74
2MASS03403661+2549324	17 10+0 37	17 13+0 10	16 10+0 09	M3 4V(B0 0V M4 6V)	1 38
2MASS03411891 + 2526504	15 47-0.07	15 77-0 05	15 15 +0.02	EQ AV(ES 2V - CAAV)	0.40
	17.00 0.21	17.20 - 0.12	16.00 0.00	$-5.4 \vee (-5.2 \vee G4.4 \vee)$	0.49
∠wASSU3411609+2528256	11.08±0.36	11.32 ± 0.10	10.08±0.14	F0.UV(F5.8VF9.8V)	0.30
2MASS03414159+2514367	14.01 ± 0.25	14.09 ± 0.03	$13.50 {\pm} 0.03$	G5.2V(G2.2VG8.2V)	0.93
2MASS03413772+2516477	$15.59 {\pm} 0.30$	$15.88{\pm}0.07$	$15.24 {\pm} 0.06$	B3.0V(B0.0VF3.0V)	4.32
2MASS03403823+2548581	17.35±0.42	$17.55 {\pm} 0.13$	16.73±0.17	A1.0V(B0.4VF0.4V)	3.59
2MASS03410750+2533288	14.63+0.26	14.56+0.04	13.70+0.03	K1.6V(G9.0VK2.2V)	0.62
21445502410512 2524492	16 44 - 0 20	16 20 - 0 06	15 56-0.06	C7.6V(C2.8V/-K1.6V)	1 / 0
2MA3303410312+2534482	10.44±0.30	10.39±0.00	15.50±0.00	G7.0V(G2.8VK1.0V)	1.40
2MASS03404467+2545597	13.19 ± 0.25	13.31 ± 0.03	12.54 ± 0.02	F7.2V(F5.4VG4.2V)	1.22
2MASS03412289+2525315	17.29 ± 0.41	17.02 ± 0.09	16.07 ± 0.12	K3.6V(K3.6VK3.6V)	0.22
2MASS03404652+2545172	15.77 ± 0.28	$15.82 {\pm} 0.04$	$14.99 {\pm} 0.04$	F5.2V(F4.2VF9.0V)	2.06
2MASS03402748+2555369	15.99±0.29	16.17±0.05	15.34±0.06	F0.0V(B0.0VF3.4V)	2,77
2MASS03401002±2604522	16 10+0 30	16 60 +0 07	15 71±0.0F		0.22
	10.10±0.30	10.00±0.07	10.07 0.05	$G_{2} = 0 \times (G_{2} = 0 \times (G_{$	0.22
∠wASSU3405494+2541017	12.18±0.25	12.83±0.03	12.07±0.02	F3.4V(F1.4VF4.2V)	1.74
2MASS03401733+2601083	16.79 ± 0.37	17.29 ± 0.11	$16.58 {\pm} 0.11$	A1.8V(B0.0VF4.2V)	1.67
2MASS03411827+2528311	17.36±0.42	$16.93 {\pm} 0.08$	$15.22 {\pm} 0.04$	F5.2V(F4.0VF7.0V)	3.32
2MASS03404599+2546025	16.07±0.31	16.09±0.05	15.20±0.06	F5.4V(F3.8VG4.6V)	2.54
2MASS03413004±2522110	12 27+0 24	12 48 + 0 02	11 84+0.02	$F_{3,6}V(F_{1,8}V) = 4.6V)$	1 22
21117030341300472522119	10.24	17.00 0.03	11.04±0.02	1 0) (C2 0) (1.22
	16.97±0.38	17.30 ± 0.11	16.57 ± 0.10	A1.0V(B8.2VA4.6V)	2.63
2MASS03403833+2550095	16.98 ± 0.36	$17.23 {\pm} 0.10$	$16.55 {\pm} 0.12$	G2.0V(F5.8VG2.0V)	0.21
2MASS03403833+2550095 2MASS03403221+2553245			$15.70 {\pm} 0.05$	A8.2V(B0.0VF3.0V)	2.84
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173	16.32±0.31	16.43 ± 0.06			1.84
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS03412359+2525549	16.32 ± 0.31 16.38 ± 0.33	16.68±0.06	16,11+0.00	A5.0V(B0.0V F4.2V)	
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS03412359+2525549	16.32±0.31 16.38±0.33	16.43 ± 0.06 16.68 ± 0.11	16.11±0.09	A5.0V(B0.0VF4.2V)	0.4-
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS03412359+2525549 2MASS03414417+2514483	16.32 ± 0.31 16.38 ± 0.33 16.76 ± 0.35	16.43 ± 0.06 16.68 ± 0.11 17.00 ± 0.10	16.11±0.09 16.37±0.08	A5.0V(B0.0VF4.2V) K1.8V(F5.2VK2.8V)	0.45
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS034141359+2525549 2MASS03414417+2514483 2MASS03404979+2544260	16.32 ± 0.31 16.38 ± 0.33 16.76 ± 0.35 16.13 ± 0.33	16.43 ± 0.06 16.68 ± 0.11 17.00 ± 0.10 16.08 ± 0.06	16.11±0.09 16.37±0.08 15.20±0.04	A5.0V(B0.0VF4.2V) K1.8V(F5.2VK2.8V) B6.6V(B0.2VF0.6V)	0.45 4.68
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS03412359+2525549 2MASS03414417+2514483 2MASS03404979+25424260 2MASS03412097+2527418	$16.32 \pm 0.31 \\ 16.38 \pm 0.33 \\ 16.76 \pm 0.35 \\ 16.13 \pm 0.33 \\ 17.74 \pm 0.46$	16.43 ± 0.06 16.68 ± 0.11 17.00 ± 0.10 16.08 ± 0.06 17.83 ± 0.16	16.11±0.09 16.37±0.08 15.20±0.04 17.18±0.17	A5.0V(B0.0VF4.2V) K1.8V(F5.2VK2.8V) B6.6V(B0.2VF0.6V) A1.0V(B8.2VA4.6V)	0.45 4.68 5.30
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS03412359+2525549 2MASS03414417+2514483 2MASS03404979+2544260 2MASS03412097+2527418 2MASS03410834+2534379	$16.32 \pm 0.31 \\ 16.38 \pm 0.33 \\ 16.76 \pm 0.35 \\ 16.13 \pm 0.33 \\ 17.74 \pm 0.46 \\ 15.19 \pm 0.27 \\ \end{array}$	16.43 ± 0.06 16.68 ± 0.11 17.00 ± 0.10 16.08 ± 0.06 17.83 ± 0.16 15.09 ± 0.04	$16.11 \pm 0.09 \\ 16.37 \pm 0.08 \\ 15.20 \pm 0.04 \\ 17.18 \pm 0.17 \\ 14.23 \pm 0.03$	A5.0V(B0.0VF4.2V) K1.8V(F5.2VK2.8V) B6.6V(B0.2VF0.6V) A1.0V(B8.2VA4.6V) K4.2V(K4.0VK4.2V)	0.45 4.68 5.30 0.20
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS03414109+2516173 2MASS03414417+2514483 2MASS03414417+2514483 2MASS03404979+254260 2MASS03410834+2534379 2MASS03401611-260236	$\begin{array}{c} 16.32 \pm 0.31 \\ 16.38 \pm 0.33 \\ 16.76 \pm 0.35 \\ 16.13 \pm 0.33 \\ 17.74 \pm 0.46 \\ 15.19 \pm 0.27 \\ 16.55 \pm 0.36 \end{array}$	16.43 ± 0.06 16.68 ± 0.11 17.00 ± 0.10 16.08 ± 0.06 17.83 ± 0.16 15.09 ± 0.04 17.19 ± 0.10	$16.11 \pm 0.09 \\ 16.37 \pm 0.08 \\ 15.20 \pm 0.04 \\ 17.18 \pm 0.17 \\ 14.23 \pm 0.03 \\ 16.53 \pm 0.09 \\ 16.53 \pm 0.09 \\ 16.53 \pm 0.09 \\ 10.0$	A5.0V(B0.0VF4.2V) K1.8V(F5.2VK2.8V) B6.6V(B0.2VF0.6V) A1.0V(B8.2VA4.6V) K4.2V(K4.0VK4.2V) F4.8V(F1.8V_F4.8V)	0.45 4.68 5.30 0.20
2MASS03403833+2550095 2MASS03403221+2553245 2MASS03414109+2516173 2MASS034142159+2525549 2MASS03414417+2514483 2MASS034140479+2542480 2MASS03410297+2527418 2MASS03410245+2534379 2MASS03410146+1552222	$16.32\pm0.31 \\ 16.38\pm0.33 \\ 16.76\pm0.35 \\ 16.13\pm0.33 \\ 17.74\pm0.46 \\ 15.19\pm0.27 \\ 16.55\pm0.36 \\ 16.12\pm0.22 \\ 16.55\pm0.36 \\ 16.12\pm0.22 \\ 16.55\pm0.36 \\ 16.12\pm0.22 \\ 16.55\pm0.36 \\ 16.12\pm0.22 \\ 16.$	16.43 ± 0.06 16.68 ± 0.11 17.00 ± 0.10 16.08 ± 0.06 17.83 ± 0.16 15.09 ± 0.04 17.19 ± 0.10 16.25 ± 0.25	16.11 ± 0.09 16.37 ± 0.08 15.20 ± 0.04 17.18 ± 0.17 14.23 ± 0.03 16.53 ± 0.09 15.57 ± 0.06	A5.0V(B0.0VF4.2V) K1.8V(F5.2VK2.8V) B6.6V(B0.2VF0.6V) A1.0V(B8.2VA4.6V) K4.2V(K4.0VK4.2V) F4.8V(F1.8VF4.8V) E1.8V(P0.0VF5.2V)	0.45 4.68 5.30 0.20 0.21

Sternname	V(GSH)	R(GSH)	I(GSH)	SpTy(GSH)	A _V (GSH)
21446602414214	[10 60 0 05		[1148]		[mag]
2MASS03414314+2516033	13.63 ± 0.25	13.90 ± 0.04	13.30 ± 0.03	B0.4V(B0.0VF3.0V)	3.62 ± 0.02
2MASS03413791+2518595	15.95 ± 0.29	16.17 ± 0.05	15.47 ± 0.05	G5.2V(G5.0VG5.2V)	0.20 ± 0.06
$2M\Delta SS03412021 + 2524174$	16.74±0.34	10.00 ± 0.00	16.52±0.06	$\Delta 1.0V(B0.0VA0.0V)$	5.55±0.00
2MASS03402104+2000270	10.79 ± 0.35 15.16±0.26	17.33 ± 0.11 15.43±0.04	10.32 ± 0.10 14.73±0.04	$R_{1.0V}(B_{0.0V}, F_{3.2V})$	4.40 ± 0.13
21/1A3503403940+2550402	15.10 ± 0.20 17.10±0.24	15.43 ± 0.04 17 41 ± 0.12	14.73 ± 0.04	$\Delta 1.0V(\Delta 0.2V - \Delta 4.0V)$	3.99 ± 0.03
2MASS03413932+2518318 2MASS03405524+2542347	17.19 ± 0.34 14.09±0.25	17.41 ± 0.12 14.06±0.03	13.24 ± 0.03	F4.0V(F2.0V = F5.0V)	4.25 ± 0.13 2 14 ±0.02
2MASS03405334±2543401	15.86 ± 0.29	15.67 ± 0.04	14.72 ± 0.03	$K_{3,0}V(K_{2,4}V - K_{4,4}V)$	0.96+0.02
2MASS03405567+2542280	15.00 ± 0.25 15.15 \pm 0.26	15.07 ± 0.04 15.17 ± 0.05	14.12 ± 0.03 14.41±0.04	F5 4V(F4 8V G4 0V)	1 29+0 03
2MASS03412180+2528289	17.66±0.42	17.96 ± 0.19	17.34±0.20	A1.0V(A0.2VA4.0V)	9.24±0.29
2MASS03404031+2550483	16.53±0.33	16.23±0.05	14.27±0.04	G1.6V(F5.6VG4.8V)	3.01±0.02
2MASS03412999+2524050	15.66±0.28	15.89±0.05	15.23±0.07	G9.0V(G8.8VG9.0V)	0.20±0.04
2MASS03412928+2524299	15.67±0.27	15.82 ± 0.05	15.11±0.04	G6.4V(G5.8VG6.8V)	0.20±0.03
2MASS03401482+2604275	17.00±0.35	$17.34 {\pm} 0.11$	16.25±0.07	A4.0V(B0.0VF0.8V)	4.55±0.08
2MASS03412237+2528197	16.45±0.30	16.76±0.07	16.21±0.08	F3.2V(F1.2VF3.2V)	0.23±0.10
2MASS03402990+2556392	17.29±0.39	$17.50 {\pm} 0.14$	16.67±0.13	B8.2V(B0.0VF4.2V)	4.30±0.11
2MASS03404430+2549029	$14.76 {\pm} 0.26$	$15.06 {\pm} 0.03$	$14.37 {\pm} 0.04$	B0.2V(B0.0VF3.2V)	$4.31{\pm}0.03$
2MASS03405530+2543104	$17.24 {\pm} 0.40$	$17.07 {\pm} 0.09$	$16.19 {\pm} 0.07$	A1.0V(B4.8VA8.4V)	$4.24 {\pm} 0.05$
2MASS03403148+2555562	17.26±0.49	$17.57 {\pm} 0.13$	$16.90 {\pm} 0.13$	F6.0V(F6.0VF6.4V)	$0.26{\pm}0.17$
2MASS03401729+2603316	$15.94 {\pm} 0.29$	$15.92 {\pm} 0.05$	$13.87 {\pm} 0.03$	G4.8V(F6.0VG5.4V)	$2.60{\pm}0.02$
2MASS03412506+2527292	$15.02 {\pm} 0.27$	$15.18{\pm}0.04$	$14.48{\pm}0.03$	A9.6V(B0.0VF3.0V)	$2.49{\pm}0.03$
2MASS03404411+2549402	$17.58{\pm}0.53$	$18.00{\pm}0.18$	$17.42{\pm}0.34$	A1.0V(B6.8VA8.0V)	$5.02{\pm}0.23$
2MASS03403559+2554182	$14.84{\pm}0.26$	$15.05{\pm}0.04$	$14.25{\pm}0.03$	K1.2V(G9.0VK1.2V)	$0.22{\pm}0.02$
2MASS03403221+2556071	$17.37{\pm}0.43$	$17.68{\pm}0.14$	$16.97{\pm}0.19$	A1.0V(B7.4VA7.0V)	$2.76{\pm}0.14$
2MASS03402760+2558366	$17.57{\pm}0.47$	$17.93{\pm}0.17$	$17.22{\pm}0.16$	B0.0V(B0.0VB3.4V)	$0.61{\pm}0.22$
2MASS03414127+2518562	$16.64 {\pm} 0.35$	$16.84 {\pm} 0.08$	$16.25{\pm}0.08$	A1.0V(B0.0VG5.4V)	$4.21{\pm}0.29$
2MASS03405548+2543500	$17.38 {\pm} 0.46$	$17.45 {\pm} 0.12$	$16.63 {\pm} 0.11$	K2.8V(K2.8VK2.8V)	$0.25 {\pm} 0.08$
2MASS03412616+2527186	$14.28 {\pm} 0.26$	$14.39 {\pm} 0.03$	$13.57 {\pm} 0.03$	K3.4V(K2.6VK4.8V)	$0.72 {\pm} 0.02$
2MASS03412065+2530275	$16.20 {\pm} 0.30$	$16.15 {\pm} 0.05$	$15.27 {\pm} 0.05$	K2.2V(K1.2VK3.0V)	$0.42 {\pm} 0.03$
2MASS03414572+2516545	11.87 ± 0.25	12.21 ± 0.03	11.69 ± 0.02	B5.8V(B0.8VA9.8V)	2.24 ± 0.02
2MASS03403057+2557305	17.57 ± 0.51	17.89 ± 0.17	17.19±0.17	A1.0V(B0.0VG4.4V)	4.64±0.29
2MASS03412636+2527411	13.35 ± 0.25	13.74 ± 0.03	13.21 ± 0.03	B4.0V(B0.0VF0.6V)	2.79 ± 0.02
2MASS03401794+2604193	12.96 ± 0.25	13.57 ± 0.04	12.74 ± 0.02	G6.2V(G5.4VK1.2V)	1.21 ± 0.02
2MASS03411227+2535267	16.19±0.34	16.46 ± 0.07	15.83 ± 0.06	G3.0V(F5.6VG4.4V)	0.33±0.07
2MASS03411481+2534047	16.17±0.29	16.37 ± 0.06	15.71 ± 0.06	A1.0V(B9.4VA4.4V)	3.40±0.06
2MASS03402197+2602233	15.59 ± 0.28	16.31 ± 0.06	15.66 ± 0.07	F6.2V(F5.8VF6.6V)	0.20 ± 0.07
2MASS03412584+2528219	17.12 ± 0.35	17.41 ± 0.13	16.76 ± 0.16	A1.0V(B7.8VA6.2V)	3.97 ± 0.16
2MASS03410468+2539566	17.54 ± 0.43	17.76 ± 0.15	17.03±0.24	A1.0V(B4.8VA8.4V)	5.40 ± 0.22
2MASS03410247+2541090	14.96±0.26	15.08 ± 0.04	14.35±0.03	F4.0V(F2.6VF5.0V)	1.49±0.03
2MASS03404816+2548525	16.81 ± 0.35	17.15 ± 0.10	16.53 ± 0.13	A1.0V(B5.0VA8.2V)	3.38 ± 0.11
2MASS03413009+2526187	17.70 ± 0.55	17.95 ± 0.18	17.30±0.27	A1.0V(B0.0VF5.4V)	3.80±0.20
2MASS03405855+2543213	12.37 ± 0.25	12.51 ± 0.03	11.78±0.02	A7.2V(B1.8VA8.8V)	1.79±0.02
2MASS03412068+2531285	12.37 ± 0.24	12.48 ± 0.03	11.68 ± 0.02	K2.2V(K2.2VK2.2V)	0.22 ± 0.02
2MASS03401984+2604024	16.29 ± 0.33	17.10 ± 0.10	16.48±0.12	A1.0V(B8.4VA4.6V)	4.26±0.12
2101A3503414460+2516199	10.03 ± 0.37	10.64 ± 0.06 14.27 \pm 0.02	13.69 ± 0.00	K4.2V(K1.2VW2.0V)	1.65±0.08
210/45503414446+2516502	14.31 ± 0.23 15 71±0.27	14.27 ± 0.03	13.40 ± 0.03	$(K_{2,2}V, K_{3,0}V)$	0.80±0.02
2MASS03403365+2540045	15.71 ± 0.27 15.57±0.28	15.95 ± 0.04	14.39 ± 0.03 15.10±0.04	(3.0)(3.4)((1.4))	1.80 ± 0.03
2MASS03415000+2515482	15.37 ± 0.20 16.02 ± 0.33	15.90 ± 0.05 16.88 \pm 0.08	15.19 ± 0.04 15.87 \pm 0.07	A1.0V(A0.4VA2.0V)	6.32±0.04
2MASS03413143+25255572	12 48±0 2F	12 53 + 0.00	11 67+0.02	$K_2 4V(K_1 6V K_2 0V)$	1 20+0.00
2MASS03410816+2530035	16.90+0.36	16.50 ± 0.05	15.16 ± 0.03	K2.8V(K2.2V M0.8V)	1.95+0.02
2MASS03403830+2555068	13.38+0.25	13.72+0.03	12.99+0.03	G5.4V(G5.0V G7.2V)	0.32+0.02
2MASS03405401+2546478	17.00+0 39	17.11+0.10	16.39+0.09	A1.0V(B4.6V., A8.6V)	4.13+0.08
2MASS03410377+2541368	17.09+0.39	17.04+0.09	16.20+0.09	F4.0V(B0.0VF7.8V)	2.82+0.06
2MASS03410117+2543046	16.19±0.30	15.78±0.04	14.60±0.03	K7.0V(K6.6VM0.0V)	0.91±0.02
2MASS03411343+2536316	16.54±0.32	16.41±0.06	15.58±0.04	G2.4V(F5.4VG7.2V)	2.63±0.04
2MASS03403193+2558521	16.96±0.39	17.25±0.10	16.42±0.12	F5.2V(B0.0VG5.0V)	2.42±0.07
2MASS03411443+2536203	17.22±0.37	16.86±0.08	15.74±0.06	G4.8V(F5.8VG8.2V)	2.61±0.04
2MASS03404345+2553053	15.29±0.25	15.76±0.05	15.06±0.04	B2.4V(B0.0VF1.2V)	4.00±0.04
2MASS03410298+2542511	17.16±0.37	17.14±0.09	16.33±0.11	G6.0V(G5.6VG7.4V)	0.23±0.07
2MASS03405381+2547480	17.88±0.52	17.91±0.19	16.97±0.19	A1.0V(B7.2VA7.2V)	4.22±0.11
2MASS03412854+2529102	14.12±0.25	14.40±0.03	13.76±0.02	F5.4V(F5.4VF5.4V)	0.26±0.02
2MASS03404145+2554315	13.71±0.25	14.01±0.03	13.26±0.02	G2.4V(F5.8VG5.0V)	$1.21 {\pm} 0.02$
2MASS03404432+2552595	14.14±0.24	14.61±0.03	13.93±0.03	F4.4V(F3.6VF5.2V)	0.99±0.02
2MASS03402472+2603242	13.10±0.25	13.58±0.04	12.77±0.03	K3.6V(K3.6VK3.6V)	0.21±0.02
2MASS03402377+2603572	15.16±0.27	15.83±0.04	$15.10 {\pm} 0.05$	G5.4V(G5.0VG5.4V)	0.21±0.04
2MASS03404972+2550272	$16.50{\pm}0.34$	16.86±0.08	16.19±0.09	F4.2V(F3.2VF4.2V)	$0.21 {\pm} 0.09$
2MASS03403180+2600026	$15.61 {\pm} 0.27$	$16.12 {\pm} 0.05$	$15.38{\pm}0.05$	G5.8V(G5.6VG7.0V)	$0.20{\pm}0.04$
2MASS03415343+2516060	$17.57{\pm}0.44$	$17.74 {\pm} 0.16$	17.00±0.18	F5.8V(F5.4VF7.0V)	0.27±0.17
2MASS03402925+2601274	15.13±0.27	$15.78 {\pm} 0.05$	$15.12 {\pm} 0.06$	F3.6V(B0.0VF5.2V)	$1.31 {\pm} 0.04$
2MASS03404495+2553088	16.19±0.29	16.55±0.07	15.69±0.06	G8.4V(G3.0VK0.4V)	0.52±0.04
2MASS03413443+2526306	$14.29{\pm}0.25$	$14.32{\pm}0.03$	13.55±0.04	G2.4V(F5.8VG5.2V)	1.48±0.02
2MASS03411569+2536523	17.67±0.47	$17.77 {\pm} 0.15$	17.13±0.26	A1.0V(B9.6VA4.2V)	5.94±0.22
	16 22+0 20	15 96+0 05	14.92±0.04	K1.4V(G5.8VK2.6V)	$1.84{\pm}0.03$
2MASS03415165+2517247	10.22 ± 0.29	10.00 ± 0.00		,	
2MASS03415165+2517247 2MASS03411937+2535034	18.04±0.46	18.37±0.28	17.64±0.29	G5.2V(F1.2VG5.2V)	$0.23 {\pm} 0.25$
2MASS03415165+2517247 2MASS03411937+2535034 2MASS03404385+2554297	18.04±0.46 17.65±0.51	18.37 ± 0.28 17.80 ± 0.16	17.64±0.29 16.87±0.11	G5.2V(F1.2VG5.2V) A1.0V(B0.0VF1.8V)	$0.23 {\pm} 0.25$ $3.04 {\pm} 0.14$

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	A _V (GS [mag
2MASS03413066+2529356	14.22±0.26	14.46±0.03	13.78±0.03	G2.2V(F5.8VG5.2V)	0.74±0
2MASS03410395+2544020	$16.77 {\pm} 0.35$	$16.88{\pm}0.08$	$16.10{\pm}0.07$	A1.0V(B5.0VA8.0V)	4.14±0
2MASS03412513+2532395	17.18 ± 0.40	$17.30 {\pm} 0.11$	$16.69 {\pm} 0.15$	K1.8V(G5.0VK1.8V)	0.21±0
2MASS03404152+2556100	15.67 ± 0.30	16.07 ± 0.05	$15.38 {\pm} 0.06$	A1.0V(A0.6VA1.8V)	2.65 ± 0
2MASS03404413+2554549	17.64 ± 0.60	17.87 ± 0.16	16.93±0.12	K7.0V(G5.8VM2.2V)	2.60±0
2MASS03413747+2526393	16.80±0.39	16.89 ± 0.08	16.14 ± 0.06	B3.8V(B0.0VF4.4V)	4.30±0
2MASS03404231+2556221	17.27 ± 0.37	17.63 ± 0.13	16.91 ± 0.17	A1.0V(B0.6VF0.0V)	3.81±0
2MASS03405747+2548174	17.81 ± 0.47	17.86 ± 0.16	17.02 ± 0.17	A1.0V(B0.8VM5.8V)	6.22±0
2MASS03404431+2555230	15.88 ± 0.28	16.24 ± 0.06	15.49 ± 0.05	G3.0V(G2.6VG4.6V)	0.36±0
2MASS03410741+2543113	13.95±0.20	14.15 ± 0.03 17.07 ±0.20	13.49 ± 0.04 17.26 \pm 0.21	D1.4V(D0.2VF0.0V)	5.70±0
210145503403000+2559411	17.40 ± 0.43 17.15 ± 0.42	17.97 ± 0.20 17.95 ± 0.16	17.20 ± 0.21 17.18 ± 0.17	R0.0V(R0.0V, E0.4V)	0.29±0
210143503402702+2004287	17.15 ± 0.42 17.66±0.42	17.85 ± 0.10 17.77 ± 0.16	17.18 ± 0.17 17.04 ± 0.15		2.55±0
2MASS03411074+2541330	17.00 ± 0.42 14.66±0.26	17.77 ± 0.10 14.60 ± 0.04	17.04 ± 0.13 13.77 ±0.03	$K_{2} = 6V(K_{2} = 0V) = K_{3} = 0V)$	0.33+0
2MASS03403648+2559559	14.00 ± 0.20 16 40±0 33	14.00 ± 0.04 16.83 ±0.08	16.06 ± 0.08	K1 2V(G5 8V K1 2V)	0.20+0
2MASS03412829+2532131	17.93 ± 0.47	17.86 ± 0.16	16.00 ± 0.00 16.91 ±0.12	K3 8V(K2 0V K3 8V)	0.20±0
2MASS03412915+2531528	15.69 ± 0.27	15.84 ± 0.04	15.13 ± 0.04	G5.6V(G5.2VG5.6V)	0.23+0
2MASS03413887+2526365	15.84 ± 0.29	15.71 ± 0.04	14.74+0.03	K2.2V(K1.4VK3.2V)	1.30+0
2MASS03404909+2553247	13.53 ± 0.25	13.95 ± 0.03	13.30+0.03	B6.6V(B1.0VA9.6V)	2.94+0
2MASS03403794+2559219	13.41 ± 0.25	13.94 ± 0.03	13.33 ± 0.03 13.27 ± 0.02	F1 2V(B0 0V F4 0V)	1 04+0
2MASS03403193+2602344	17.05 ± 0.40	17.35 ± 0.11	16.28 ± 0.09	K5.0V(K3.6VK5.0V)	0.23+0
2MASS03410840+2543133	16.16 ± 0.29	16.32 ± 0.06	15.56 ± 0.05	G8 8V(G5 4V G8 8V)	0 20+0
2MASS03413648+2528034	16.97 ± 0.40	16.70 ± 0.07	15.47 ± 0.06	K7.0V(K6.2VM0.0V)	0.68+0
2MASS03410352+2545536	16.75±0.36	17.03±0.08	16.37±0.08	A1.0V(B1.4VA9.2V)	2.47±0
2MASS03412854+2532344	14.51 ± 0.26	14.71 ± 0.03	14.05 ± 0.02	F5.4V(F5.0VG4.2V)	1.07+0
2MASS03404290+2557041	17.46 ± 0.40	17.88 ± 0.17	17.17 ± 0.21	A1.0V(B9.4VA4.4V)	7.93+0
2MASS03405411+2551109	17.09±0.39	17.17 ± 0.09	16.49±0.09	G1.8V(F5.8VG1.8V)	0.21+0
2MASS03411477+2540138	17.65±0.48	17.89±0.17	17.27±0.23	F5.4V(F5.2VF5.4V)	0.27±
2MASS03411891+2538048	16.35±0.34	16.39±0.06	15.63±0.06	G4.8V(F5.6VG8.4V)	1.44±
2MASS03410726+2544316	15.33±0.28	15.51±0.04	14.81±0.04	G3.8V(F5.4VG4.8V)	0.41±0
2MASS03403313+2602448	15.57±0.29	16.27±0.05	15.59±0.05	F5.2V(F5.2VF5.2V)	0.25±0
2MASS03411471+2540385	17.24±0.54	17.37±0.11	16.82±0.15	F2.6V(B0.0VF2.6V)	0.21±0
2MASS03411577+2540087	17.59±0.43	17.39±0.11	16.38±0.10	A9.0V(B0.0VF5.4V)	4.37±0
2MASS03403445+2602170	16.61±0.34	17.22 ± 0.10	16.42±0.08	B4.4V(B0.0VF5.2V)	3.84±0
2MASS03411713+2539440	17.33±0.42	17.35 ± 0.11	16.67±0.13	F5.4V(B0.0VG9.2V)	1.45±0
2MASS03404450+2557136	16.74±0.33	17.17±0.09	16.47±0.10	G5.6V(G5.2VG5.6V)	0.22±0
2MASS03412230+2537083	16.59±0.32	16.70±0.17	15.98±0.09	F6.0V(F6.0VF6.4V)	0.27±0
2MASS03403888+2600293	15.79±0.28	16.33±0.06	$15.55 {\pm} 0.06$	F6.0V(F6.0VG1.4V)	0.35±0
2MASS03413411+2530549	$17.58 {\pm} 0.51$	17.59±0.14	16.75±0.12	F3.6V(B0.0VG8.0V)	1.91±0
2MASS03412457+2536086	$15.26 {\pm} 0.26$	$15.00 {\pm} 0.03$	14.00±0.03	K3.0V(K2.4VK4.2V)	1.09±0
2MASS03404441+2557453	$13.80 {\pm} 0.26$	$14.23 {\pm} 0.04$	13.47±0.03	F7.4V(F5.4VG4.4V)	1.00±0
2MASS03403139+2604488	$14.84 {\pm} 0.26$	$15.52 {\pm} 0.04$	$14.71 {\pm} 0.03$	F8.0V(F5.4VG4.8V)	1.54 ± 0
2MASS03412090+2538265	$13.44 {\pm} 0.25$	$13.74 {\pm} 0.04$	$13.21 {\pm} 0.03$	F3.8V(F3.4VF3.8V)	0.21±0
2MASS03404831+2555564	$13.79 {\pm} 0.26$	$14.19{\pm}0.03$	$13.48 {\pm} 0.03$	F4.4V(F3.4VF5.2V)	1.20±0
2MASS03413360+2531428	$14.08{\pm}0.25$	$14.27{\pm}0.03$	$13.60{\pm}0.02$	G2.0V(F5.8VG5.0V)	0.62±0
2MASS03412672+2535277	$13.96{\pm}0.25$	$13.93{\pm}0.03$	$13.09{\pm}0.03$	K1.2V(G8.6VK2.0V)	0.72±0
2MASS03411814+2540077	$15.41{\pm}0.26$	$15.49{\pm}0.04$	$14.74{\pm}0.04$	G6.0V(G6.0VG6.6V)	0.24±0
2MASS03410948+2545007	$16.24{\pm}0.32$	$16.49 {\pm} 0.06$	$15.80{\pm}0.07$	F3.2V(B0.0VF5.4V)	1.08 ± 0
2MASS03412794+2535091	$16.53{\pm}0.28$	$16.58{\pm}0.07$	$15.83{\pm}0.05$	K3.8V(K2.2VK3.8V)	0.21±0
2MASS03411099+2544225	$16.58{\pm}0.34$	$16.62{\pm}0.06$	$15.86{\pm}0.07$	G9.6V(G9.0VG9.6V)	0.21±0
2MASS03410368+2548260	$13.96{\pm}0.25$	$14.21{\pm}0.03$	$13.44{\pm}0.02$	F9.6V(F5.6VG4.6V)	0.79±0
2MASS03410251+2549044	$14.50{\pm}0.25$	$14.79{\pm}0.03$	$14.08{\pm}0.03$	F4.2V(F3.2VF5.0V)	0.67±0
2MASS03413394+2532097	$17.39{\pm}0.38$	$16.91{\pm}0.08$	$15.51{\pm}0.06$	G5.4V(G2.2VM2.6V)	3.03±0
2MASS03414256+2527379	$17.36{\pm}0.46$	$17.47{\pm}0.12$	$16.80{\pm}0.13$	M3.4V(B0.0VM5.0V)	0.63±0
2MASS03411885+2540291	17.69±0.43	$17.29{\pm}0.11$	$16.17 {\pm} 0.09$	K7.0V(K6.8VK7.4V)	0.32±0
2MASS03403612+2603210	$16.15 {\pm} 0.29$	$16.72 {\pm} 0.08$	$15.92 {\pm} 0.07$	A1.0V(A0.4VA2.0V)	3.47±
2MASS03412938+2534535	$14.59 {\pm} 0.27$	$14.73 {\pm} 0.04$	$14.04 {\pm} 0.03$	G6.2V(G5.6VG7.2V)	0.20±
2MASS03414561+2526168	16.51 ± 0.32	16.25 ± 0.06	15.21 ± 0.05	K4.6V(K3.0VM0.0V)	$1.00\pm$
2MASS03410097+2550238	$16.95 {\pm} 0.41$	16.72 ± 0.07	15.67 ± 0.06	K6.8V(K4.8VK6.8V)	0.23±
2MASS03410491+2548208	11.85 ± 0.25	12.15 ± 0.03	11.51 ± 0.03	F4.4V(F3.6VF5.0V)	0.84±
2MASS03405060+2555591	14.20 ± 0.26	14.49 ± 0.03	13.70 ± 0.03	F4.2V(F3.2VF5.0V)	2.07±
2MASS03413112+2534154	16.37 ± 0.31	16.04 ± 0.05	14.93±0.03	K7.0V(K6.2VM0.0V)	0.69±
2MASS03404955+2556365	13.71 ± 0.25	13.94 ± 0.03	13.08 ± 0.02	G3.0V(F6.0VG5.2V)	1.79 ± 0
2MASS03404733+2557491	14.69±0.26	15.14 ± 0.04	14.44 ± 0.03	B5.2V(B0.8VA9.8V)	3.41±0
2MASS03403456+2604426	14.03±0.26	14.80 ± 0.04	14.11 ± 0.03	F3.4V(F0.8VF4.4V)	$1.16 \pm$
2MASS03411005+2546063	16.35±0.31	16.54±0.06	15.77±0.08	A7.8V(B0.0VF1.8V)	2.33±0
2MASS03411779+2542178	17.72±0.58	17.60±0.13	16.72±0.15	F3.6V(B0.0VG4.4V)	2.06±0
2MASS03412471+2538392	14.79±0.26	14.97±0.04	14.35±0.03	F5.6V(F5.6VF5.6V)	0.22±0
2MASS03411729+2542401	16.36±0.30	16.29±0.05	15.23±0.05	M5.6V(B0.0VM6.0V)	1.71±0
2MASS03410146+2551236	15.84±0.30	15.83±0.05	14.86±0.04	K1.8V(G9.0VK2.6V)	1.22±0
2MASS03412944+2536236	14.37±0.27	14.32±0.03	13.52±0.03	K2.2V(K1.8VK2.2V)	0.22±0
2MASS03414791+2526324	17.96±0.54	17.81±0.16	16.91±0.18	K7.0V(K5.2VK7.0V)	0.22±0
2MASS03414570+2527447	12.50±0.25	12.74±0.03	12.13±0.02	B0.6V(B0.0VF1.8V)	3.31±0
2MASS03412226+2540298	12.41±0.25	12.45±0.03	11.67±0.02	K1.2V(G6.0VK1.8V)	0.36±0
2MASS03412081+2541156	15.89±0.30	15.70±0.04	14.76±0.04	K1.8V(G9.0VK2.6V)	1.35±0
2MASS03413926+2531221	14.62 ± 0.26	$14.86 {\pm} 0.04$	14.19±0.03	A9.0V(B0.2VF0.6V)	1.82 ± 0

Sternname	V(GSH)	R(GSH)	I(GSH)	SpTy(GSH)	A _V (C
	[mag]	[mag]	[mag]		Įma
2MASS03404837+2558478	16.00 ± 0.29	16.40 ± 0.06	15.63 ± 0.06	F3.6V(B0.0VF5.2V)	2.59±
2MASS03404613±2600080	14.00 ± 0.20 17 34+0 43	14.94 ± 0.04 17 77 ± 0.15	14.21 ± 0.05 16.91±0.14	F5.4V(F5.4VF5.4V)	3.00+
2MASS03411192+2546266	14.47 ± 0.45	14.65 ± 0.04	13.92 ± 0.03	G2 0V(E5 8V G5 0V)	1 05+
2MASS03403999+2603285	15.09 ± 0.27	15.71 ± 0.05	14.95 ± 0.03	K1.4V(G5.8VK2.0V)	0.30+
2MASS03410834+2548246	17.58 ± 0.55	17.90 ± 0.17	17.21 ± 0.11	K7.0V(K3.2VM0.4V)	0.92
2MASS03403705+2605063	12.89±0.25	13.60±0.03	12.94±0.03	G1.4V(F5.6VG4.8V)	0.69
2MASS03412701+2538577	16.43±0.31	$16.50 {\pm} 0.06$	15.74±0.07	K1.2V(G9.6VK1.2V)	0.23
2MASS03403900+2604403	17.32±0.38	$18.04 {\pm} 0.19$	17.16±0.20	G5.2V(B0.0VM5.0V)	3.75
2MASS03415420+2524197	$14.57 {\pm} 0.27$	$14.76{\pm}0.04$	$14.17 {\pm} 0.03$	B6.6V(B0.8VA9.8V)	3.01
2MASS03411663+2544542	$15.18 {\pm} 0.27$	$15.46 {\pm} 0.04$	$14.83 {\pm} 0.04$	F6.0V(F5.6VF9.6V)	0.31
2MASS03404943+2559364	$16.95{\pm}0.39$	$17.47 {\pm} 0.12$	$16.71 {\pm} 0.16$	G1.8V(F4.0VG1.8V)	0.20
2MASS03414641+2529177	$17.30{\pm}0.44$	$17.24 {\pm} 0.10$	$16.42{\pm}0.13$	K3.4V(K2.6VK3.4V)	0.25
2MASS03404131+2604221	$13.34 {\pm} 0.25$	$14.13 {\pm} 0.03$	$13.46 {\pm} 0.02$	F3.6V(F1.6VF4.8V)	1.02
2MASS03410484+2551572	$16.46 {\pm} 0.32$	$16.70 {\pm} 0.07$	$15.89 {\pm} 0.06$	G6.0V(G2.0VG7.6V)	0.28
2MASS03404739+2601172	$14.59 {\pm} 0.26$	$15.18 {\pm} 0.04$	$14.43 {\pm} 0.03$	G6.4V(G5.2VG7.2V)	0.21
2MASS03411031+2549137	$14.83 {\pm} 0.26$	15.05 ± 0.03	$14.28 {\pm} 0.03$	G5.0V(G5.0VG5.0V)	0.24
2MASS03414554+2530331	16.25 ± 0.30	16.21 ± 0.05	15.37 ± 0.04	K3.0V(K2.6VK3.0V)	0.25
2MASS03412287+2542535	16.93 ± 0.39	17.13 ± 0.10	$16.50 {\pm} 0.12$	F5.8V(F5.4VF5.8V)	0.21
2MASS03410690+2551347	$16.65 {\pm} 0.36$	$16.89 {\pm} 0.08$	16.03 ± 0.07	G9.4V(G8.8VG9.4V)	0.23
2MASS03415748+2524249	16.14 ± 0.29	15.87 ± 0.05	14.81 ± 0.04	K1.2V(G6.0VK2.0V)	1.55
2MASS03412871+2540045	16.33±0.31	16.47±0.06	15.78±0.05	G3.0V(F5.8VG4.0V)	0.24
2MASS03414101+2533377	17.58±0.44	17.76±0.14	17.20±0.25	A1.0V(B7.6VA6.6V)	7.12:
2MASS03412164+2544161	16.59±0.34	16.75±0.16	16.05 ± 0.06	F7.0V(F3.6VG5.6V)	1.77:
2IVIA5503411218+2549276	14.92±0.26	15.18±0.04	14.45±0.03	$G_{3.0V}(G_{2.0V}G_{4.6V})$	0.36
2MASS03410743+2552017	16.80 ± 0.31	16.98±0.08	16.12 ± 0.09	K0.2V(G9.0VK0.2V)	0.22:
2MASS03411737+2546434	15.67±0.31	15.85±0.04	15.12±0.04	G4.8V(G4.8VG4.8V)	0.23:
21145503410548+2555009	13.00±0.28	13.63±0.04	15.02 ± 0.04	$(G_{2,0})($	0.23
20145503413402+2520427	12.55 ± 0.25	12.09 ± 0.03	12.04 ± 0.02	$G_{3.0V}(G_{1.0V}G_{4.4V})$	0.32
2MASS03411528+2548036	16.44 ± 0.32 15.64 ± 0.28	16.08 ± 0.07 15.83 ± 0.04	16.02 ± 0.07 15.05±0.04	F5.0V(F5.2VF5.0V)	0.25
20045503410504+2553334	15.04 ± 0.28 16.08 \pm 0.30	15.83 ± 0.04 16.34 \pm 0.06	15.05 ± 0.04	$G_{0.0V}(G_{0.4V}G_{1.0V})$	1 11-
2MASS03412601+2541510	15.00 ± 0.30	16.04 ± 0.05	15.49 ± 0.05 15.32 ±0.05	$G_{2,0}(G_{2,0}(1, 5, 6)) = G_{2,0}(1, 5, 6)$	0.20-
2MASS03412091+2548449	15.94 ± 0.29 15.49 \pm 0.27	15.69 ± 0.04	13.32 ± 0.03 14.91 ±0.04	G0.4V(G5.6VG0.4V)	0.20
2MASS03404628+2603491	17.47 ± 0.21	17.67 ± 0.14	1659 ± 0.01	A1 0V(B9 6V A4 2V)	4 70
2MASS03410769+2552295	17.15 ± 0.43	17.07 ± 0.11 17.28 ± 0.10	16.03 ± 0.10 16.42 ± 0.10	$K_0 2V(G6 0V K_0 2V)$	0.23
2MASS03405158+2601133	17.67+0.49	18.04 ± 0.20	17.38 ± 0.19	G6.0V(F2.0VG8.0V)	0.32
2MASS03414727+2531238	15.04±0.27	15.23±0.04	14.56±0.04	F5.8V(F5.6VF5.8V)	0.28
2MASS03411868+2547005	13.82±0.25	14.09±0.03	13.39±0.03	F7.2V(F5.4VG4.4V)	0.81
2MASS03414196+2534298	16.76±0.37	16.98±0.09	16.37±0.12	A1.0V(A0.4VA2.0V)	3.43
2MASS03405892+2557449	$14.91 {\pm} 0.26$	$15.24 {\pm} 0.04$	14.44±0.03	G6.0V(G6.0VG8.2V)	0.35
2MASS03420041+2524430	12.58±0.25	12.76±0.04	12.15±0.03	F0.6V(B0.0VF3.0V)	1.11
2MASS03415057+2530077	17.37±0.46	17.43±0.11	16.72 ± 0.15	A1.0V(A0.2VA4.0V)	3.32
2MASS03414910+2530576	$17.14 {\pm} 0.33$	$17.33 {\pm} 0.11$	$16.64 {\pm} 0.14$	A2.2V(B0.0VF5.2V)	1.84
2MASS03405338+2600519	$12.70 {\pm} 0.25$	$13.33 {\pm} 0.03$	$12.68{\pm}0.03$	F4.8V(F3.8VF5.2V)	0.64
2MASS03411067+2551418	$14.80{\pm}0.26$	$15.09 {\pm} 0.04$	$14.30{\pm}0.03$	G6.0V(G5.2VG9.2V)	0.49
2MASS03405385+2600459	$13.97{\pm}0.26$	$14.50{\pm}0.07$	$13.91{\pm}0.03$	F5.0V(F4.0VF5.4V)	1.22
2MASS03411873+2547412	$15.91{\pm}0.28$	$16.19 {\pm} 0.05$	$15.54 {\pm} 0.05$	F1.0V(B0.0VF4.8V)	2.18
2MASS03412643+2543379	$12.71 {\pm} 0.25$	$12.97 {\pm} 0.03$	$12.35{\pm}0.02$	B0.6V(B0.0VF1.8V)	3.40
2MASS03405897+2558273	$14.89{\pm}0.26$	$15.19{\pm}0.04$	$14.33{\pm}0.03$	F8.0V(F5.4VG4.6V)	1.89
2MASS03405863+2558402	$12.28{\pm}0.25$	$12.65 {\pm} 0.04$	$11.83{\pm}0.02$	K2.0V(K1.6VK2.0V)	0.23
2MASS03405828+2558567	$16.82 {\pm} 0.40$	17.21 ± 0.10	$16.50 {\pm} 0.13$	A7.0V(B0.0VF5.4V)	4.42
2MASS03415038+2531040	$17.52{\pm}0.45$	$17.05 {\pm} 0.09$	$15.76 {\pm} 0.06$	K7.0V(K4.4VK7.6V)	0.40
2MASS03415213+2530130	16.67±0.36	16.49±0.07	15.47±0.06	K5.4V(G6.0VK5.4V)	0.20
2IVIASSU3415956+2526104	14.01±0.25	14.58±0.04	13.72±0.02	K2.6V(K2.0VK3.4V)	0.63
2MASS03405774+2559349	17.30±0.37	17.48±0.12	16.61±0.10	K2.6V(K1.2VK2.6V)	0.22
21/145503404936+2604038	10.56±0.34	17.22 ± 0.10	10.50±0.11	K3.8V(BU.UVK7.4V)	1.02
21VIA3303420043+2525591	12.03±0.25	16.62 0.03	12.22±0.02	r4.2v(r3.4vF5.0V)	0.61
2101A3503412792+2543392	10.32±0.32	10.02±0.07	15.00±0.08	r(0.0V(G9.2VKU.8V)	0.21
2101A3303410390+2555279	13.99±0.33	17.09 ± 0.05	15.25 ± 0.04	$1^{-3.4}v(r^{-4.0}vG^{4.4}v)$	2.19
2MASS0341445412534545	17.09±0.53	17.39 ± 0.12 17.01+0.00	16.03+0.09	$\frac{1}{10} \left(\frac{1}{10} \frac{1}{10$	4.08
2MASS03410325±2557105	14 24+0 25	14 48+0 03	13 57+0 03	K34V(K26V K44V)	0.48
2MASS03415207257149	16 35+0 30	16 30+0.05	15.66+0.05	$G_{6} = (1 \times 10^{\circ} \dots 1 \times 4.4^{\circ})$	0.40
2MASS03420646+2523167	14.99 ± 0.36	15.08+0.04	14.40+0.03	G6.0V(G5.8V G7.8V)	0.30
2MASS03405334+2602398	16.89+0.36	17.24 ± 0.11	16.27+0.10	K7.0V(K4.0VK7.8V)	0.47
2MASS03411414+2551372	17.57+0.46	17.63+0.13	16.77+0.14	B7.0V(B0.0V., M4.0V)	5.97
2MASS03412401+2546287	17.16 ± 0.42	17.41 ± 0.12	16.69+0.12	A1.0V(B9.4VA4.4V)	3.18
2MASS03411712+2550120	15.29+0.28	15.67+0.04	14.96+0.03	B0.2V(B0.0VF3.6V)	4.00
2MASS03412554+2545475	17.86+0.46	18.09+0.20	17.36+0.24	F0.6V(B0.0V., G7.6V)	3.11
2MASS03405692+2601230	17.26+0.45	17.70+0.14	16.85+0.18	B0.8V(B0.0V., G4 2V)	4.91
21446602414000 + 2522270	17.15 ± 0.44	17.11 ± 0.10	16.17 ± 0.11	A1.0V(A0.6VA1.8V)	7.63
2IVIA5503414898+2533379		17 38+0 11	16.38 ± 0.10	K7.0V(K4.8VK7.4V)	0.36
2MASS03414898+2533379 2MASS03415027+2532597	17.60 ± 0.45	11.00			2.00
2MASS03414898+2533379 2MASS03415027+2532597 2MASS03414685+2534548	17.60 ± 0.45 16.36 ± 0.31	16.47±0.06	15.72±0.07	G6.0V(G5.2VG8.2V)	0.35
2MASS03414898+2533379 2MASS03415027+2532597 2MASS03414685+2534548 2MASS03414840+2534114	17.60 ± 0.45 16.36 ± 0.31 15.24 ± 0.28	16.47 ± 0.06 15.40 ± 0.04	15.72 ± 0.07 14.75 ± 0.03	G6.0V(G5.2VG8.2V) A7.4V(B0.8VA9.8V)	0.35 2.00
2MASS03414898+2533379 2MASS03415027+2532597 2MASS03414685+2534548 2MASS03414840+2534114 2MASS03413819+2539473	17.60 ± 0.45 16.36 ± 0.31 15.24 ± 0.28 16.02 ± 0.30	16.47 ± 0.06 15.40 ± 0.04 16.08 ± 0.05	15.72 ± 0.07 14.75 ± 0.03 15.31 ± 0.05	G6.0V(G5.2VG8.2V) A7.4V(B0.8VA9.8V) G9.2V(G8.6VG9.2V)	0.35 2.00 0.21

1	70	
	1.1	
т	14	

Sternr	ame	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	$A_V(GS)$ [mag]
2MAS	S03420200+2527035	17.02±0.46	16.86±0.09	16.06±0.06	K5.2V(K4.2VK5.2V)	0.21±0
2MAS	S03411833+2550428	12.76±0.25	13.13±0.03	12.44±0.02	F5.4V(F5.2VF9.0V)	0.62±0
2MAS	S03411770+2551031	13.49±0.25	13.75±0.03	12.94±0.02	K1.4V(K1.2VK1.4V)	0.22±0
2MAS	S03412843+2545287	13.72 ± 0.25	13.63+0.03	12.59+0.03	K7.0V(K6.6VM0.0V)	0.74+0
2MAS	S03415809+2529309	17.51 ± 0.38	17.74 ± 0.16	16.96 ± 0.19	A1.0V(B9.2VA4.4V)	5.38+0
2MAS	S03415135+2533095	15.51 ± 0.28	15.46 ± 0.04	14 62±0.03	K3 6V(K3 6V K3 6V)	0.21+0
2MAS	S03420242+2527095	16.01 ± 0.20 16.15 \pm 0.31	16.13 ± 0.06	15.42 ± 0.04	$K_{2} = K_{1} = K_{2} = K_{1} = K_{1$	0.24+0
2111/45	S03413432+2542204	17.13 ± 0.31	17.33 ± 0.12	16.77 ± 0.17	$K_2 AV(K_1 6V K_2 AV)$	0.24±0
211/143	503413432+2542294	17.13±0.39	17.33 ± 0.12	16.45 \ 0.00	$K_{2,4} \vee (K_{1,0} \vee K_{2,4} \vee)$	0.24±0
ZIVIAS	503412297+2548305	17.06±0.40	17.28 ± 0.11	10.45 ± 0.08	K3.6V(K2.0VK3.6V)	0.23±0
20045	503420052+2528215	12.06 ± 0.25	12.29 ± 0.03	11.71 ± 0.02	B3.2V(B0.4VF0.2V)	2.65±0
2MAS	S03420199+2527418	14.36 ± 0.26	14.74 ± 0.07	14.10 ± 0.06	G2.8V(G2.4VG2.8V)	0.20±0
2MAS	S03414241+2538247	14.97 ± 0.27	14.67 ± 0.04	13.64 ± 0.03	K1.8V(G5.8VK3.4V)	1.47 ± 0
2MAS	S03405753+2602285	15.51 ± 0.27	$16.11 {\pm} 0.05$	$15.34 {\pm} 0.06$	F5.6V(F4.8VG4.6V)	$1.90{\pm}0$
2MAS	S03415356+2532288	$15.63 {\pm} 0.30$	$15.55 {\pm} 0.04$	$14.69 {\pm} 0.03$	G9.6V(G5.6VK2.0V)	$1.62{\pm}0$
2MAS	S03411076+2555428	16.02±0.32	$16.08 {\pm} 0.05$	15.23±0.04	G8.8V(G5.4VK1.8V)	1.45 ± 0
2MAS	S03410588+2558197	12 62+0 25	13 10+0 03	12 44+0 03	F5 2V(F4 2V F5 4V)	0.56+0
21445	S03414060+2534513	16.04±0.20	16 23 +0.05	15 50+0.07	A1 OV(A0 OV A4 OV)	3.65±0
210145	503414509 ⁺ 2534515	10.04_0.29	10.23 ± 0.03	14.00 \ 0.07	A1.00 (A0.00 A4.00)	0.co⊥o
2MAS	503413669+2541597	15.54 ± 0.29	15.22 ± 0.04	14.09 ± 0.03	K7.0V(K5.6VM0.0V)	0.60±0
2MAS	S03413708+2541518	15.84 ± 0.30	15.93 ± 0.05	15.23 ± 0.05	G7.0V(G5.6VG7.0V)	0.20±0
2MAS	S03411016+2556277	$14.40 {\pm} 0.25$	$14.84 {\pm} 0.04$	14.13 ± 0.03	F5.4V(F4.8VG4.0V)	0.87 ± 0
2MAS	S03420491+2527166	$14.91 {\pm} 0.26$	$14.95 {\pm} 0.04$	$14.26 {\pm} 0.03$	G6.2V(G6.2VG6.6V)	0.21±0
2MAS	S03415254+2534005	$17.08 {\pm} 0.36$	17.21 ± 0.10	$16.47 {\pm} 0.09$	G4.8V(F6.0VG4.8V)	0.23±0
2MAS	S03415893+2530352	17.88±0.39	17.96±0.18	17.27±0.13	A1.0V(A0.2VA4.0V)	8.46±0
2MAS	S03411089+2556396	15.29±0.26	15.50±0.04	14.49±0.03	F6.4V(F5.4VG4.8V)	2.43+0
21445	S03420384±2528160	17.01 ± 0.20	17 10+0.00	16 40 ±0.11	$K_{A} \rightarrow V(K_{1} \rightarrow V \rightarrow K_{A} \rightarrow V)$	0.33+0
2101743	505420504 <u>+</u> 2520100	17.01_0.29	17.10 ± 0.09	10.40 10.11		0.2310
ZIVIAS	503415307+2534138	15.00±0.20	15.17 ± 0.04	14.47±0.03	B8.4V(B1.6VA9.0V)	3.19±0
2MAS	503412796+2547469	16.81±0.33	17.19±0.10	16.59 ± 0.12	F2.8V(B0.0VG4.4V)	2.14 ± 0
2MAS	S03414943+2536151	16.38 ± 0.35	16.54 ± 0.07	15.82 ± 0.06	F4.2V(B0.0VG4.2V)	1.25 ± 0
2MAS	S03411034+2557153	$11.96 {\pm} 0.25$	$12.06 {\pm} 0.03$	$11.07 {\pm} 0.02$	K7.0V(K6.6VK7.8V)	0.47 ± 0
2MAS	S03415526+2533121	$15.10 {\pm} 0.28$	$15.23 {\pm} 0.03$	$14.54 {\pm} 0.03$	F4.4V(F2.2VF5.4V)	1.37 ± 0
2MAS	S03405697+2604262	$14.54 {\pm} 0.26$	$15.05 {\pm} 0.04$	14.20±0.03	F6.0V(F5.6VG5.0V)	1.76 ± 0
2MAS	S03414080+2541119	16.90+0.34	16.64 ± 0.07	15.09 ± 0.04	G6.4V(G5.0VK1.6V)	2.49 ± 0
21445	S03414050±2541308	16 68+0 33	16.81 ± 0.08	16 15+0 08	E0.8V(B0.0V) $E5.4V)$	1 51+0
21/1/45	S03420571±2528028	15.05±0.33	15.01 ± 0.00	13.82 ± 0.03	$F_{3,4}^{(E1,0)}$ $F_{4,2}^{(E1,0)}$	3 60+0
20145	503420371+2520020	12.49 0.31	12.51 ± 0.04	11.75 \ 0.02		0.01 1 0
211/1/45	303413819+2543022	12.46±0.25	12.50±0.05	11.75±0.02	K2.2V(K2.0VK2.2V)	0.21±0
2MAS	503410954+2558242	13.50 ± 0.25	14.03 ± 0.03	13.40 ± 0.03	F3.6V(F1.6VF4.8V)	0.89 ± 0
2MAS	503414693+2538270	15.76 ± 0.27	15.90 ± 0.05	15.25 ± 0.05	F0.0V(B0.0VF3.8V)	2.71 ± 0
2MAS	S03415692+2533075	14.48 ± 0.26	14.57 ± 0.04	13.84 ± 0.03	F9.2V(F5.4VG4.6V)	1.68 ± 0
2MAS	S03411488+2555563	$17.20 {\pm} 0.38$	$17.64 {\pm} 0.13$	$16.98 {\pm} 0.16$	K4.6V(G5.2VK4.6V)	0.23 ± 0
2MAS	S03413865+2543251	16.75±0.38	17.07±0.09	16.43±0.13	F5.0V(B0.0VF5.0V)	0.30±0
2MAS	S03415193+2536286	17.35±0.37	17.71 ± 0.15	17.01±0.22	G8.4V(G2.4VG8.4V)	0.20±0
2MAS	S03412833+2549209	16.33±0.33	16.30±0.06	15.20±0.05	K7.0V(K3.8VK7.0V)	0.20±0
2MAS	S03414887+2538185	16 71+0 34	16 97+0 08	16 48+0 09	A1 0V(B1 6V A9 0V)	4 00+0
21445	S03412542+2551032	12 28+0 25	12.37 ± 0.03	12.05±0.03	FE 4V(FE 2V - G4 0V)	0.72+0
211/1/43	503412342+2551032	12.28±0.23	12.72 ± 0.03	12.05±0.03	$F_{5.4} \vee (F_{5.2} \vee, G_{4.0} \vee)$	0.72±0
211/145	303411829+2555150	15.00±0.29	15.60±0.05	15.05±0.04	G9.2V(G0.0VG9.2V)	0.25±0
2MAS	S03410508+2602185	15.62 ± 0.28	15.75 ± 0.04	14.53 ± 0.04	K1.2V(G6.0VM2.2V)	2.19 ± 0
2MAS	\$03412181+2553253	16.93 ± 0.39	17.04 ± 0.10	16.01 ± 0.08	A2.6V(B0.6VM5.4V)	5.79±0
2MAS	S03420322+2531093	$17.99 {\pm} 0.42$	$18.09 {\pm} 0.19$	17.41 ± 0.19	A1.0V(B0.0VM5.2V)	5.77 ± 0
2MAS	S03420276+2531285	$17.74 {\pm} 0.46$	$17.74 {\pm} 0.15$	$16.92{\pm}0.18$	K7.0V(K2.0VK7.2V)	0.30±0
2MAS	S03420773+2528472	16.46±0.31	16.41±0.06	15.61±0.07	G9.4V(G6.0VG9.4V)	0.23±0
2MAS	S03415807+2534030	15.63±0.28	16.06±0.07	15.38±0.06	F5.0V(F4.4VF5.0V)	0.22+0
2MAS	S03415329+2536418	15.13+0.27	15.28+0.04	14.58+0.04	F3.8V(F1.0V F5.0V)	1.13+0
21/1/6	S03415864-2533546	12 60±0 2F	12 83+0.02	12 15+0 02	$F_{3,0}V(B_{0,0}V) = f_{4,0}V(V)$	1 30 - 0
214140	S03410126 0FF4060	14.25±0.25	14 26 - 0.03	13 AE±0.03	K3 8//(K2 0// K4 6//)	0 41 1 4
ZIVIAS	503412130+2554000 503415016 + 2530400	12 52 0 25	12.01 ± 0.03	12.45±0.02	(12.0V)(12.0V(14.0V))	1 20 1
ZIVIAS	503415010+2538420	13.55±0.25	15.61±0.03	13.24±0.03	A0.2V(D1.2VA9.4V)	1.38±0
2MAS	S03414478+2541383	15.29 ± 0.27	15.50 ± 0.04	14.74 ± 0.03	K0.2V(G8.6VK0.2V)	0.23 ± 0
2MAS	S03420086+2533009	14.55 ± 0.26	14.59 ± 0.03	13.83 ± 0.03	F1.6V(B0.0VF3.8V)	2.49 ± 0
2MAS	S03412088+2554464	16.23 ± 0.33	$16.31 {\pm} 0.06$	$15.34 {\pm} 0.04$	K2.6V(K1.6VK4.2V)	0.84±0
2MAS	S03413134+2549109	$16.43 {\pm} 0.31$	$16.69 {\pm} 0.08$	$15.91 {\pm} 0.06$	A4.4V(B0.6VF0.0V)	4.28±0
2MAS	S03414693+2541091	$11.14 {\pm} 0.26$	11.38±0.04	10.79±0.03	F7.8V(F5.4VG4.4V)	0.60±0
2MAS	S03410293+2604410	16.72±0.35	17.28 ± 0.10	16.40±0.09	A1.0V(B6.8VA8.0V)	3.87±0
2MAS	S03412934+2550408	11 97+0 25	1241 ± 0.03	11.75 ± 0.02	G3 2V(E5 8V G4 2V)	0.27+0
21/10	S03411761+2557069	14 58±0 2F	14 87+0.02	14 03+0 02	E5 4V(E5 2V - C4 2V)	2 30 + 0
211/1/43	S03411/01+233/000	17.02 0.23	17.07 ± 0.03	16 62 0 10	(13.40(13.2004.20))	2.30±0
∠IVIAS	203413535+254/395	12.03±0.30	11.31 ± 0.10	10.03±0.12	G9.2V(G5.8VG9.2V)	0.23±0
2MAS	503411523+2558301	13.47±0.25	13.90±0.03	13.20±0.03	F9.2V(F5.6VG4.6V)	0.76±0
2MAS	S03412805+2551468	16.13 ± 0.31	$16.42 {\pm} 0.06$	$15.63 {\pm} 0.06$	K1.2V(K1.0VK1.2V)	0.20±0
2MAS	S03411724+2557424	$12.22{\pm}0.25$	$12.57{\pm}0.03$	$11.85{\pm}0.03$	G4.6V(F5.8VG5.2V)	0.54 ± 0
2MAS	S03410423+2604383	$15.41 {\pm} 0.27$	$15.86 {\pm} 0.05$	$14.92 {\pm} 0.04$	K3.6V(K2.6VK5.6V)	0.65±0
2MAS	S03420326+2533022	15.52±0.29	15.69±0.04	15.01±0.04	G5.0V(G3.0VG5.0V)	0.21±0
2MAS	S03420610+2531431	17.11+0.43	17.18+0.00	16.50+0.09	G2.2V(F5.8V G2.2V)	0 20+0
21440	S03412702 2552472	16.71 ± 0.43	16.91 ± 0.03	15.97±0.05	KA 2V/(K2 0V/ KA 2V/)	0.20 - 0
ZIVIAS	SO3414034 + 2545403	17.10 ± 0.42	10.01 ± 0.07	16 72 0 12	$\frac{1}{1} = \frac{1}{2} \sqrt{\frac{1}{2} \sqrt{\frac{1}$	1.00 1.0
ZIVIAS	505414054+2545420	17.10±0.43	17.41±0.11	10.73±0.13	БU.UV(ВU.UVА5.6V)	1.99±0
2MAS	503414314+2544211	15.81 ± 0.28	15.87 ± 0.05	15.00 ± 0.04	F3.6V(B0.0VF5.0V)	2.69 ± 0
2MAS	S03412324+2555038	$16.48 {\pm} 0.32$	$16.73 {\pm} 0.07$	$15.90{\pm}0.07$	K1.2V(G9.6VK1.2V)	0.23±0
2						2 83+0
2MAS	S03413649+2548008	16.37 ± 0.29	$16.61 {\pm} 0.07$	15.88 ± 0.06	F1.2V(D0.0VF5.0V)	2.05_0
2MAS 2MAS	S03413649+2548008 S03414680+2542327	16.37±0.29 15.38±0.26	$16.61{\pm}0.07$ $15.53{\pm}0.04$	$15.88 {\pm} 0.06$ 14.82 ${\pm} 0.04$	B1.8V(B0.0VF0.8V)	2.65±0 3.57±0

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	A _V (GS [mag
2MASS03410936+2602460	16.23±0.29	16.70±0.11	15.93±0.10	G6.6V(G5.0VG7.0V)	0.21±0
2MASS03413945+2546448	16.12 ± 0.30	16.09 ± 0.05	15.11±0.04	K1.6V(G5.8VK2.8V)	0.88±0
2MASS03412461+2554490	13.29 ± 0.25	13.69±0.03	12.97±0.02	G5.0V(G1.8VG5.2V)	0.25±0
2MASS03411189+2601362	15.40 ± 0.27	16.05 ± 0.05	15.39 ± 0.04	F5.2V(F3.6VG4.0V)	0.80±0
2MASS03412208+2556147	17.02 ± 0.55	17.75 ± 0.14	10.80 ± 0.20	K1.2V(F5.0VK5.2V)	1.15±0
2MASS03410990+2002490 2MASS03413922+2547295	14.00 ± 0.20 11.35 ± 0.25	13.20 ± 0.04 11.76 ± 0.03	14.40 ± 0.03 11.14 ± 0.03	E2.0V(B0.0VE3.6V)	1.27±0
2MASS03415664+2538081	17.14±0.39	17.23±0.10	16.53±0.08	K2.0V(G5.6VK2.0V)	0.20±0
2MASS03420365+2534279	16.63±0.34	16.72±0.07	16.02±0.06	G6.0V(G6.0VG6.6V)	0.23±0
2MASS03410740+2604586	$14.91 {\pm} 0.27$	$15.51 {\pm} 0.04$	$14.68{\pm}0.03$	F5.4V(F4.6VG4.0V)	1.93±0
2MASS03412519+2555350	$14.96{\pm}0.26$	$15.30{\pm}0.04$	$14.52{\pm}0.03$	G6.4V(G5.6VG7.2V)	0.20±0
2MASS03415318+2540424	$17.12 {\pm} 0.39$	$17.00 {\pm} 0.08$	$16.16 {\pm} 0.10$	K1.4V(G3.0VK3.6V)	0.78±0
2MASS03421181+2530394	$16.04 {\pm} 0.29$	$15.69 {\pm} 0.05$	$14.58{\pm}0.04$	K7.0V(K6.6VM0.0V)	0.79±0
2MASS03414200+2546503	15.51 ± 0.28	15.66 ± 0.04	14.86±0.04	K0.6V(G9.0VK0.6V)	0.23±0
2MASS03420995+2531509	12.85 ± 0.25	13.08 ± 0.03	12.48±0.02	F4.6V(F4.4VF4.6V)	0.21±0
2MASS03412718+2554567	16.57 ± 0.30	16.80 ± 0.07	15.96 ± 0.07	G4.2V(F5.2VG7.4V)	1.73±0
2MASS03420254+2535588	15.78 ± 0.27	15.87 ± 0.05	15.13 ± 0.05	B3.8V(B0.0VF2.6V)	4.40±0
2MASS03414043+2544438	17.05 ± 0.41	17.22 ± 0.11	16.49 ± 0.09	G5.0V(F5.2VK3.2V)	2.31±0
2MASS03413110+2542203	15.74 ± 0.27 17.45±0.48	15.79 ± 0.04 17 50 \pm 0.12	15.02 ± 0.04	F9.6V(F5.2VG5.2V)	1.27±0
2MASS03413278+2551000	17.45 ± 0.46 17.20 ±0.37	17.50 ± 0.12 17.60±0.14	16.57 ± 0.11 16.94 ± 0.16	A1.0V(R2.6VM0.6V)	0.70±0
2MASS03413276+2552225	17.29 ± 0.37 13.11 \pm 0.25	17.09 ± 0.14 13.42 \pm 0.03	12.94 ± 0.10 12.61 \pm 0.2	G5 2V(G2 8V G8 0V)	1 22+0
2MASS03412107±2558467	16.17 ± 0.23	16.50 ± 0.06	15.72 ± 0.02	$\Delta 1.0V(B8.2V, \Delta 4.6V)$	3 41+0
2MASS03420821+2533429	16.93±0.37	16.91 ± 0.08	16.11 ± 0.11	F7.0V(F3.6VM3.6V)	3.37±0
2MASS03414517+2546110	14.01±0.26	14.35±0.03	13.71±0.03	F6.0V(F5.8VF9.8V)	0.32±0
2MASS03415000+2543361	17.83±0.47	17.78±0.15	16.88±0.16	A1.0V(B8.2VA4.6V)	6.58±0
2MASS03411418+2602522	16.03±0.29	$16.35 {\pm} 0.06$	$15.33 {\pm} 0.05$	F4.4V(F1.6VF5.4V)	3.41±0
2MASS03420095+2537540	$16.74 {\pm} 0.31$	$16.89 {\pm} 0.08$	$16.18 {\pm} 0.09$	B0.0V(B0.0VA9.4V)	2.42±0
2MASS03412511+2557096	$15.01 {\pm} 0.27$	$15.43 {\pm} 0.04$	$14.71 {\pm} 0.03$	G5.4V(G5.0VG5.4V)	0.23±0
2MASS03414943+2544100	$17.61{\pm}0.90$	$17.76{\pm}0.15$	$17.07{\pm}0.13$	A1.0V(B0.0VM6.0V)	7.09±0
2MASS03415640+2540326	$13.39 {\pm} 0.25$	$13.63 {\pm} 0.03$	$13.03 {\pm} 0.03$	F5.6V(F5.6VF5.6V)	0.21±0
2MASS03413581+2551599	$14.80 {\pm} 0.26$	$15.25 {\pm} 0.04$	$14.54 {\pm} 0.03$	G3.0V(G2.4VG4.6V)	0.38±0
2MASS03421689+2529570	16.53 ± 0.31	16.70 ± 0.07	16.04±0.08	A1.0V(B0.0VF0.8V)	3.44±0
2MASS03420636+2535404	17.22 ± 0.37	17.34 ± 0.12	16.50 ± 0.10	K0.2V(G8.8VK0.2V)	0.22±0
2MASS03414425+2547408	16.08 ± 0.31	16.15 ± 0.05	15.25 ± 0.05	K2.8V(K2.8VK2.8V)	0.23±0
2MASS03420627+2535512	14.98±0.26	15.12 ± 0.03	14.42 ± 0.03	G6.0V(G5.8VG7.6V)	0.28±0
2MASS03412349+2559027	14.01 ± 0.26 14.27±0.26	14.34 ± 0.03 14.31±0.04	13.54 ± 0.03 13.48±0.03	F7.2V(F5.4VG4.4V)	1.33±0
2MASS03415143+2544091	14.27 ± 0.20 17 21 ± 0.36	14.31 ± 0.04 17 32+0 11	15.48 ± 0.03 16.67 \pm 0.11	$\Delta 1.0V(B2.0V \Delta 8.8V)$	2 75+1
2MASS03412285+2600176	15.21 ± 0.30 15.49±0.29	15.93 ± 0.05	15.07 ± 0.01 15.12 ± 0.04	F5 4V(F4 4V G4 6V)	0.99+0
2MASS03421051+2534421	13.06 ± 0.25	12.95 ± 0.03	12.02 ± 0.03	K4.0V(K3.0VK6.6V)	0.88+0
2MASS03412831+2557268	13.48±0.25	13.93±0.03	13.23±0.02	G1.8V(F5.8VG5.0V)	0.65±0
2MASS03420957+2535193	14.62±0.25	14.59±0.04	13.71±0.03	K3.6V(K3.4VK3.6V)	0.23±0
2MASS03421646+2531470	$16.91 {\pm} 0.36$	$16.66 {\pm} 0.07$	$15.68 {\pm} 0.05$	G6.2V(G3.0VM2.6V)	2.75±0
2MASS03415893+2541241	$12.16{\pm}0.25$	$12.42{\pm}0.03$	$11.84 {\pm} 0.03$	F5.6V(F5.6VF5.6V)	0.24±0
2MASS03411853+2603118	$17.14{\pm}0.32$	$17.14 {\pm} 0.21$	$15.61{\pm}0.06$	G5.8V(G5.0VM2.4V)	3.27±0
2MASS03420104+2540329	$15.76 {\pm} 0.28$	$15.96 {\pm} 0.05$	$15.29 {\pm} 0.04$	G2.6V(F6.0VG2.6V)	0.21±0
2MASS03413222+2556094	$14.03 {\pm} 0.25$	$14.30 {\pm} 0.04$	13.41 ± 0.03	K5.2V(K4.6VK5.2V)	0.21±0
2MASS03413480+2554481	17.25 ± 0.38	17.45 ± 0.12	16.55 ± 0.13	K3.0V(G5.6VK5.0V)	0.75±0
2MASS03412562+2600274	13.15 ± 0.25	13.64 ± 0.03	12.93±0.03	G1.6V(F5.8VG4.8V)	0.51±0
2MASS03413020+2558101	15.66 ± 0.27	16.18 ± 0.05	15.50 ± 0.05	G3.0V(F6.0VG3.6V)	0.26±0
2MASS03414471+2550276	16.49 ± 0.31	16.72±0.06	15.87 ± 0.07	KU.UV(G5.UVK2.0V)	1.05±0
20045503413911+2553287	10.01 ± 0.31	15.99±0.05	14.00 ± 0.04	$K_{1.0V}(K_{0.0V}K_{1.0V})$	0.45±0
2MASS03412089+2000018	14.30 ± 0.20 12 52±0 25	13.10 ± 0.04 12.00±0.03	14.40 ± 0.04 12 27 ±0.03	F5.4V(F4.0VG4.0V) F5.6V(F5.2VG4.0V)	0.95+
2MASS03414715+2549450	15.27 ± 0.27	15.75 ± 0.04	15.09 ± 0.04	F1.2V(B0.0VF4.4V)	1.95+
2MASS03413892+2554210	16.79±0.33	16.93±0.08	16.03±0.07	K5.0V(K4.8VK5.0V)	0.22+
2MASS03412081+2604064	13.59±0.25	14.33±0.03	13.65±0.02	F5.0V(F3.8VF5.2V)	0.81±
2MASS03421170+2537019	15.29±0.27	$15.21 {\pm} 0.04$	$14.32 {\pm} 0.03$	K3.0V(K3.0VK3.0V)	0.24±
2MASS03412254+2603369	$14.18 {\pm} 0.25$	$14.60{\pm}0.04$	$13.64 {\pm} 0.03$	K6.4V(K3.8VK7.4V)	0.45±
2MASS03415631+2545392	$11.78{\pm}0.25$	$12.09{\pm}0.03$	$11.49 {\pm} 0.02$	G1.2V(F5.6VG4.4V)	0.42±
2MASS03414825+2550060	$16.57{\pm}0.40$	$16.96{\pm}0.08$	$16.32{\pm}0.07$	F8.0V(B0.0VK0.4V)	$1.39\pm$
2MASS03412363+2603272	$16.54 {\pm} 0.31$	17.14 ± 0.09	$16.39 {\pm} 0.10$	K0.8V(G8.6VK0.8V)	0.20±
2MASS03413935+2555062	14.51 ± 0.26	$15.09 {\pm} 0.04$	$14.45 {\pm} 0.03$	F2.4V(B0.0VF4.2V)	$1.05\pm$
2MASS03420425+2542283	15.64 ± 0.28	15.69 ± 0.04	14.91 ± 0.05	G2.2V(F5.6VG5.4V)	$1.86\pm$
2MASS03420937+2539505	16.13±0.30	16.24±0.05	15.42±0.06	K1.8V(G6.0VK2.4V)	0.32±
2MASS03412716+2602274	15.30±0.27	15.89±0.05	15.14±0.04	G5.0V(F5.8VG8.8V)	0.88±
2IVIASSU3413801+2557009	14.95±0.26	15.35±0.04	14.56±0.03	KU.6V(G9.6VK0.6V)	0.23±
2WIASS03421688+2536073	16.00±0.33	16.87±0.08	16.12 ± 0.09	F4.4V(F3.2VF4.4V)	0.22±
21VIASS03414003+2552263	10.21 ± 0.32	16.10 0.05	10.19±0.09	$r_{5.4V}(B0.0VF5.4V)$	0.27±0
ZIVIASSU3415322+2548541	15.75±0.30	10.19 ± 0.05	15.52±0.04	G4.8V(G3.0VG4.8V)	0.21±0
211173303413040+2001120 2MASS03414840+2551265	10.94±0.30	14 72+0 02	13 00±0.08	F5.4V(F5.0V = 0.0V)	0.05±0
211173303414049+2331305 2MASS03420463+2543127	14.39±0.20	14.72 ± 0.03 17 30 ±0.11	15.90 ± 0.03 16.67 ± 0.11	$\Delta 1.0V(B0.0V = 1.4V)$	2.47±0
2MASS03413818+2557267	16.73+0 34	17.30 ± 0.11 17.18 ± 0.10	16.41 ± 0.11	K2.4V(G5.6V K2.4V)	1.45±0
	20.13-0.34	11.10 10.10	10.41_0.10		0.2010
2MASS03421519+2537439	14.16+0.25	14.31+0.03	13.58+0.03	G5.4V(G4.8V G8.4V)	0 50+0

Sternname	V(GSH)	R(GSH)	I(GSH)	SpTy(GSH)	$A_V(0)$
	[mag]	[mag]	[mag]		լու
2MASS03415695+2547471	$17.35 {\pm} 0.42$	$17.64 {\pm} 0.14$	$16.95 {\pm} 0.13$	A1.0V(B9.4VA4.4V)	8.97
2MASS03413088+2601437	16.59 ± 0.31	16.91 ± 0.08	15.77 ± 0.07	A1.0V(A0.0VA4.0V)	6.24
2MASS03415236+2550203	15.44±0.27	15.93 ± 0.05	15.26 ± 0.05	A1.0V(B9.8VA4.2V)	2.14
2MASS03414809+2552471	15.99±0.28	16.37 ± 0.06	15.55 ± 0.05	F4.8V(F1.0VF9.2V)	2.23
2MASS03421355+2539082	15.92 ± 0.30	16.06 ± 0.05	15.32 ± 0.04	G2.0V(F6.0VG2.0V)	0.21
2MASS03413613+2559168	17.57 ± 0.42	17.97 ± 0.18	17.12 ± 0.13	A1.0V(A0.2VA4.0V)	9.17
2MASS03415851+2547302	16.92±0.40	17.10±0.09	16.26±0.08	K1.2V(F6.0VK3.0V)	0.01
2MASS03421370+2539192	15.58±0.27	15.57 ± 0.04	14.74 ± 0.04	KU.8V(G9.4VKU.8V)	0.22
2MASS03414403+2534590	14.00 ± 0.25 18.10±0.71	15.11 ± 0.04 18.08±0.18	14.36 ± 0.03 17 31 ±0.24	F7.0V(F5.2VG2.0V) F2.0V(B0.0VG2.0V)	3 70-
2MASS03421337+2530500	10.10 ± 0.71 14.63 ±0.26	10.00 ± 0.10 14 50 ± 0.03	17.51 ± 0.24 13 56 ± 0.03	K1 6V(C8 8V K2 2V)	1 23-
2MASS03421134+2540300	14.03 ± 0.20 13.61 ±0.25	14.50 ± 0.03 13.00±0.03	13.08 ± 0.02	K1.8V(G0.8V K2.4V)	0.78-
2MASS03421969+2536453	17.78 ± 0.44	17.83 ± 0.03	17.06 ± 0.02	A1 0V(B9 8V A4 2V)	4 97-
2MASS03420283+2545582	15.54 ± 0.29	15.88 ± 0.05	15.21 ± 0.05	G6.0V(G5.8VG7.8V)	0.31
2MASS03421665+2538348	16.70±0.33	16.88±0.07	16.16±0.08	A1.0V(B1.8VA8.8V)	2.91
2MASS03422044+2536343	15.37±0.27	15.55±0.04	14.84±0.03	G8.8V(G5.4VG9.6V)	0.35
2MASS03414513+2555344	11.56 ± 0.26	12.13 ± 0.03	11.49±0.02	F5.2V(F4.8VF5.6V)	0.51
2MASS03415336+2551229	15.90±0.29	16.37±0.06	15.67±0.07	G6.0V(G5.8VG8.2V)	0.37
2MASS03414193+2557310	16.64±0.35	17.03±0.09	16.25±0.09	B1.0V(B0.0VF5.0V)	5.41
2MASS03421473+2539574	14.63±0.26	14.73±0.04	13.97±0.04	K2.4V(K2.0VK2.4V)	0.23
2MASS03415292+2551483	15.23±0.28	15.63±0.04	14.84±0.04	F5.0V(F3.4VF5.4V)	2.12
2MASS03415651+2549576	14.44±0.26	14.76±0.04	13.95±0.03	G5.0V(F6.0VG5.6V)	1.38
2MASS03421478+2540144	16.96±0.40	17.19±0.10	16.53±0.15	G5.6V(F4.0VK2.2V)	1.16-
2MASS03420767+2544116	17.17±0.37	17.12±0.10	16.17±0.08	G2.8V(F5.2VK0.6V)	2.56
2MASS03412854+2605080	17.21±0.43	17.87±0.16	17.06±0.15	A1.0V(B9.6VA4.4V)	5.25
2MASS03413255+2603021	13.57+0.25	14.25 ± 0.03	13.51 ± 0.02	G0.0V(E5.6VG4.8V)	0.79
2MASS03415608+2550343	16.84±0.39	16.73±0.07	15.43±0.06	G5.2V(F6.0VM2.6V)	3.11
2MASS03421880+2538271	16.17±0.30	16.27±0.05	15.46±0.04	K2.2V(G8.6VK3.0V)	0.39
2MASS03420511+2545535	13.43±0.25	13.79±0.03	13.15±0.02	F6.0V(F5.8VF9.8V)	0.31
2MASS03414380+2557225	17.08±0.36	17.52±0.13	16.72±0.10	G6.2V(B0.0VK2.4V)	1.27
2MASS03421209+2542186	17.19±0.35	17.42±0.12	16.67±0.11	G5.2V(F1.6VK4.8V)	2.30
2MASS03415333+2552276	14.07±0.25	14.42±0.03	13.55±0.03	K3.8V(K3.0VK3.8V)	0.22
2MASS03420684+2545142	17.45±0.38	17.67±0.15	16.75±0.12	A1.0V(B7.2VA7.4V)	5.62
2MASS03413764+2600545	17.00±0.37	17.35±0.11	16.41±0.11	K1.8V(G5.0VK5.2V)	1.25
2MASS03414538+2557005	12.41±0.25	12.74±0.03	11.81 ± 0.03	K2.4V(K1.8VK3.2V)	0.76
2MASS03413565+2602148	13.61±0.25	14.22 ± 0.03	13.47±0.03	F5.2V(F4.4VF7.4V)	1.03
2MASS03420312+2547594	16.76±0.36	16.98±0.08	16.16±0.07	G5.4V(G5.2VG5.4V)	0.24
2MASS03414985+2555268	15.10±0.27	$15.68 {\pm} 0.04$	15.02±0.04	A1.0V(B9.8VA4.2V)	2.73
2MASS03421362+2542452	17.76±0.44	17.90±0.18	17.25±0.16	A1.0V(B9.8VA4.2V)	6.24
2MASS03422239+2538150	14.72±0.27	14.98±0.04	14.33±0.03	G3.0V(F5.8VG4.6V)	0.38
2MASS03413736+2602263	15.65±0.27	15.74±0.04	14.41±0.04	K1.2V(G6.0VM2.2V)	2.31
2MASS03420413+2548079	15.51±0.28	15.80±0.04	14.96±0.04	K2.0V(K2.0VK2.0V)	0.21
2MASS03422195+2538389	16.64±0.35	16.40±0.06	15.33±0.06	K5.4V(K4.0VK5.4V)	0.22
2MASS03421519+2542225	17.64±0.46	$17.92 {\pm} 0.18$	$17.15 {\pm} 0.21$	A1.0V(B7.0VA7.6V)	5.71
2MASS03415803+2551445	15.72±0.29	$15.96 {\pm} 0.05$	$15.01 {\pm} 0.05$	F4.0V(F1.0VF5.2V)	2.80
2MASS03421456+2543054	$16.90 {\pm} 0.48$	$17.17 {\pm} 0.10$	$16.51 {\pm} 0.11$	A1.0V(A0.0VA4.0V)	4.03
2MASS03413241+2605408	16.24±0.27	16.75±0.07	15.96±0.09	F1.8V(B0.0VF5.2V)	3.43
2MASS03414447+2559175	$16.48 {\pm} 0.34$	$16.70 {\pm} 0.07$	$15.66 {\pm} 0.07$	K6.4V(K5.0VK6.4V)	0.21
2MASS03414038+2601303	$16.26 {\pm} 0.29$	$16.41 {\pm} 0.06$	$15.27 {\pm} 0.06$	K3.8V(K2.6VM0.6V)	1.82
2MASS03421230+2544315	17.75±0.50	$17.28 {\pm} 0.10$	$15.65 {\pm} 0.13$	K2.0V(G9.0VM2.0V)	2.15
2MASS03420294+2549384	$16.42{\pm}0.31$	$16.87{\pm}0.08$	$16.17{\pm}0.10$	F1.6V(B0.0VG4.0V)	1.84
2MASS03420973+2545596	$16.53{\pm}0.33$	$16.42{\pm}0.06$	$15.35{\pm}0.05$	K1.4V(G5.8VM2.2V)	2.21
2MASS03421574+2543062	$15.84{\pm}0.29$	$16.12{\pm}0.05$	$15.44{\pm}0.06$	A1.0V(B9.4VA4.4V)	2.72
2MASS03421087+2545497	$16.09{\pm}0.29$	$16.48{\pm}0.06$	$15.81{\pm}0.07$	A1.0V(B7.6VA6.4V)	3.76
2MASS03414755+2558206	$17.07 {\pm} 0.39$	$17.39{\pm}0.13$	$16.53 {\pm} 0.10$	K7.0V(K3.0VM0.4V)	1.02
2MASS03413728+2604010	$15.22{\pm}0.27$	$15.74{\pm}0.05$	$14.80{\pm}0.04$	K1.8V(G8.8VK2.6V)	0.48
2MASS03414562+2559388	$15.09{\pm}0.26$	$15.55{\pm}0.04$	$14.75{\pm}0.03$	K1.0V(G5.8VK2.0V)	0.75
2MASS03414759+2558488	$16.52 {\pm} 0.34$	$17.18 {\pm} 0.10$	$16.47 {\pm} 0.10$	A1.0V(B7.4VA7.0V)	2.77
2MASS03414959+2557441	$15.40 {\pm} 0.27$	$15.81 {\pm} 0.04$	$14.96{\pm}0.04$	K3.8V(K2.8VK3.8V)	0.21
2MASS03420360+2550212	$16.58 {\pm} 0.38$	$16.53 {\pm} 0.06$	$15.31 {\pm} 0.05$	K4.2V(K2.8VM0.4V)	1.71
2MASS03414635+2559352	$16.62 {\pm} 0.38$	$17.19 {\pm} 0.11$	$16.34 {\pm} 0.13$	A1.0V(A0.8VA1.6V)	5.31
2MASS03420240+2551055	$16.98{\pm}0.35$	$16.90{\pm}0.08$	$15.29{\pm}0.04$	M2.4V(F6.0VM2.6V)	0.38
2MASS03413611+2605056	$15.18{\pm}0.27$	$15.75{\pm}0.04$	$14.83{\pm}0.04$	K1.2V(G5.8VK2.2V)	0.72
2MASS03414414+2600547	$17.37{\pm}0.40$	$17.38{\pm}0.12$	$16.03{\pm}0.07$	K7.0V(K3.6VM0.2V)	0.99
2MASS03420404+2550362	$16.82{\pm}0.37$	$16.80{\pm}0.08$	$15.62 {\pm} 0.08$	G7.0V(G2.6VM2.6V)	2.85
2MASS03414189+2602290	$15.29{\pm}0.27$	$15.94{\pm}0.05$	$15.20{\pm}0.05$	B0.8V(B0.0VF3.4V)	3.91
2MASS03420753+2548532	$17.00{\pm}0.38$	$17.26{\pm}0.11$	$16.47{\pm}0.10$	F9.4V(F0.8VK1.8V)	1.85
2MASS03414052+2603264	$16.52{\pm}0.36$	$16.92{\pm}0.08$	$15.93{\pm}0.09$	K1.6V(G5.6VK3.2V)	1.50
2MASS03415914+2553375	$15.29{\pm}0.28$	$15.76{\pm}0.04$	$14.97{\pm}0.05$	F3.2V(B0.0VF5.0V)	1.73
2MASS03420575+2550201	$17.37{\pm}0.44$	$17.76{\pm}0.15$	$17.09{\pm}0.19$	B0.0V(B0.0VB9.2V)	1.48
2MASS03415488+2556161	$17.26{\pm}0.40$	$17.68{\pm}0.14$	$17.01 {\pm} 0.20$	K3.8V(K0.4VK3.8V)	0.23
2MASS03414512+2601313	$12.31{\pm}0.25$	$13.02{\pm}0.03$	$12.35{\pm}0.02$	F5.6V(F5.2VF5.8V)	0.33
2MASS03414375+2602161	$18.09{\pm}0.95$	$18.50{\pm}0.28$	17.71 ± 0.33	K7.0V(K3.8VM0.2V)	2.87
	17.46±0.49	$17.19 {\pm} 0.10$	$16.02{\pm}0.08$	K7.0V(K5.0VK7.0V)	0.23
2MASS03421862+2543418				,	
2MASS03421862+2543418 2MASS03415603+2555517	$13.87{\pm}0.25$	$14.39{\pm}0.03$	$13.67 {\pm} 0.03$	G6.0V(G6.0VG8.0V)	0.33
2MASS03421862+2543418 2MASS03415603+2555517 2MASS03414360+2602447	$13.87{\pm}0.25$ $16.26{\pm}0.31$	14.39±0.03 16.83±0.08	$13.67{\pm}0.03$ $15.96{\pm}0.07$	G6.0V(G6.0VG8.0V) F0.8V(B0.0VF5.0V)	0.33: 2.18:

Sternname	V(GSH) [mag]	R(GSH) [mag]	l(GSH) [mag]	SpTy(GSH)	$A_V(GS)$ [mag
MASS03420611+2551097	17.15±0.42	17.47±0.12	16.62±0.14	K7.0V(K4.6VM0.0V)	0.63±0
MASS03413998+2605135	16.20±0.29	16.44±0.25	15.33±0.05	M0.0V(K3.6VM0.2V)	0.81±0
2MASS03413924+2605394	17.25 ± 0.37	17.94 ± 0.19	17.29 ± 0.13	A0.4V(B0.0VG5.2V)	4.78±0
2MASS03414187+2604203	14.86±0.27	15.48 ± 0.04	14.63 ± 0.03	G9.8V(G8.8VG9.8V)	0.23±0
2MASS03415997+2554531	11.02 ± 0.25	11.64 ± 0.03	11.01 ± 0.03	F5.2V(F4.6VF5.6V)	0.52±0
2MASS03421511+2540474	17.34 ± 0.40 15.00±0.28	17.12 ± 0.10 16.61 ± 0.06	15.87 ± 0.07 15.85 ± 0.07	$(K_{2}, 0V) (K_{2}, 0V) \dots (W_{1}, 0V)$	1.00±0 3.46±0
2MASS03414507+2002505	13.90 ± 0.28 13.98±0.25	10.01 ± 0.00 14 31+0.03	13.63 ± 0.07 13.68 \pm 0.03	G3 2V(F5 8V G4 8V)	0.41±0
2MASS03415337±2558422	15.98 ± 0.25 16.00 ± 0.38	14.31 ± 0.03 17.26±0.10	15.08 ± 0.03 16.30 \pm 0.08	$G_{3.2} (F_{3.6} V \dots G_{4.6} V)$	1.85±0
2MASS03415557 +2550422	15.90 ± 0.30 15.99+0.30	16.20 ± 0.10	15.30 ± 0.05 15.41 ±0.05	G5 2V(F6 0V G5 2V)	0.21+0
2MASS03414908+2601128	16.60 ± 0.35	17.12 ± 0.09	16.37 ± 0.08	B9 4V(B0 0V E3 0V)	4 79+0
2MASS03422149+2543573	16.65 ± 0.34	16.99 ± 0.09	16.31 ± 0.09	A1.0V(B7.4VA6.8V)	3.08+0
2MASS03415436+2558452	16.63 ± 0.32	17.33 ± 0.12	16.57 ± 0.10	G9.8V(G5.4VG9.8V)	0.23+0
2MASS03420346+2553593	16.46+0.31	16.79±0.07	15.99±0.06	K3.0V(K1.6VK3.0V)	0.22+0
2MASS03421355+2548395	15.82±0.30	16.11 ± 0.05	15.23±0.04	G9.8V(G5.4VK2.2V)	1.14±0
2MASS03420305+2554233	14.04±0.25	14.64±0.03	13.95±0.02	F4.2V(F3.2VF5.2V)	0.90±0
2MASS03422077+2545008	17.05±0.36	17.31±0.11	16.61±0.12	F4.2V(B0.0VG5.6V)	3.14±0
2MASS03421618+2547371	14.63±0.26	15.00±0.04	14.24±0.03	G9.8V(G8.6VG9.8V)	0.23±0
2MASS03414829+2602329	16.93±0.36	17.55±0.13	16.72±0.14	A3.6V(B0.0VF4.0V)	4.32±0
2MASS03415626+2558297	11.54 ± 0.25	12.00±0.03	11.13±0.02	K2.0V(K1.4VK2.6V)	0.87±0
2MASS03420726+2552545	11.37±0.25	11.93±0.03	11.30±0.03	G3.0V(G2.6VG4.6V)	0.36±0
2MASS03420525+2553594	16.62 ± 0.31	17.24±0.10	16.58±0.13	A1.0V(A0.0VA4.0V)	7.26±0
2MASS03415069+2601524	16.77±0.33	17.40±0.11	16.65±0.13	A1.0V(B9.2VA4.4V)	2.50±0
2MASS03421513+2548481	15.01±0.26	15.28±0.04	14.48±0.03	K1.8V(K1.4VK1.8V)	0.20±0
2MASS03415258+2600537	14.94±0.26	15.72±0.04	15.09±0.04	G1.8V(F6.0VG1.8V)	0.21±0
2MASS03415173+2601367	16.08±0.30	$16.88 {\pm} 0.08$	16.29±0.09	A1.0V(B9.8VA4.2V)	2.23±0
2MASS03421745+2547528	12.71±0.25	13.06±0.03	12.29±0.03	K0.6V(K0.0VK0.6V)	0.22±0
2MASS03420033+2557064	17.43±0.54	18.04±0.19	17.35±0.27	A1.0V(B1.6VA9.0V)	4.31±0
2MASS03422717+2542481	16.32±0.31	16.69±0.07	16.07±0.09	G8.6V(G6.0VG8.6V)	0.21±0
2MASS03421186+2551108	13.61±0.25	14.20±0.04	13.60±0.03	F6.0V(F5.8VF7.8V)	0.27±0
2MASS03415947+2557501	14.81±0.26	$15.42 {\pm} 0.04$	14.70±0.04	F5.2V(F4.2VG4.0V)	1.61 ± 0
2MASS03415356+2601120	16.25±0.30	16.48±0.06	15.39±0.05	K4.6V(K3.0VM0.4V)	1.44 ± 0
2MASS03421166+2551554	16.68±0.31	17.01±0.09	16.21±0.09	G5.0V(F5.2VG9.6V)	0.81±0
2MASS03421947+2547469	16.25±0.30	16.82±0.07	16.16±0.18	A1.0V(A0.0VA4.0V)	4.03±0
2MASS03420910+2553389	14.32±0.27	14.90±0.04	14.29±0.03	F5.6V(F5.0VF5.6V)	0.23±0
2MASS03421285+2551550	17.12±0.36	17.69±0.14	17.04±0.15	F4.4V(B0.0VM0.0V)	3.42±0
2MASS03422532+2545164	16.72±0.34	17.11±0.09	16.43±0.10	G9.2V(F5.0VG9.2V)	0.23±0
2MASS03422328+2546226	14.55±0.26	$14.92 {\pm} 0.04$	14.21±0.03	G1.2V(F5.6VG5.0V)	0.95±0
2MASS03415842+2600134	15.59±0.30	16.26±0.06	15.57±0.05	G3.0V(G2.0VG4.6V)	0.35±0
2MASS03421905+2549231	16.06±0.30	16.65±0.08	$16.02 {\pm} 0.07$	F5.0V(F4.6VF5.0V)	0.27±0
2MASS03420024+2559324	$13.19 {\pm} 0.25$	$13.85 {\pm} 0.03$	13.17±0.03	F4.2V(F3.2VF5.0V)	1.08 ± 0
2MASS03421836+2549579	$16.01 {\pm} 0.31$	$16.47 {\pm} 0.06$	15.75±0.07	G6.0V(G5.8VG7.8V)	0.30±0
2MASS03421713+2551010	$14.82 {\pm} 0.26$	$15.40 {\pm} 0.04$	14.77±0.03	F5.8V(F5.8VF5.8V)	0.22±0
2MASS03415945+2600284	$15.94 {\pm} 0.29$	$16.55 {\pm} 0.07$	$15.73 {\pm} 0.06$	K2.4V(K2.0VK2.4V)	0.20±0
2MASS03421775+2550582	$16.24{\pm}0.31$	$16.80{\pm}0.09$	$16.13{\pm}0.08$	B8.0V(B0.0VF3.0V)	4.84±0
2MASS03421608+2552147	$14.77 {\pm} 0.26$	$15.22 {\pm} 0.04$	$14.44 {\pm} 0.03$	G2.4V(F5.6VG5.2V)	1.54 ± 0
2MASS03422362+2548180	$16.90 {\pm} 0.39$	$17.14 {\pm} 0.09$	$16.17 {\pm} 0.08$	A7.2V(B0.0VM5.6V)	5.42±0
2MASS03420752+2557158	$16.73 {\pm} 0.38$	$17.13 {\pm} 0.09$	$16.30 {\pm} 0.08$	G1.8V(F6.0VG1.8V)	0.21±0
2MASS03415619+2603190	$15.83{\pm}0.30$	$16.62{\pm}0.07$	$15.88{\pm}0.07$	F6.0V(F4.0VG4.8V)	0.67±0
2MASS03422044+2550297	$16.80{\pm}0.40$	$17.28{\pm}0.10$	$16.62{\pm}0.11$	K7.0V(K3.8VK7.6V)	0.43±0
2MASS03422967+2545429	$16.69 {\pm} 0.36$	$17.11 {\pm} 0.10$	$16.32 {\pm} 0.10$	K3.8V(G5.4VK4.2V)	0.32±0
2MASS03415475+2604284	$16.83 {\pm} 0.47$	$17.40 {\pm} 0.12$	$16.51 {\pm} 0.14$	A1.0V(A0.0VA4.2V)	4.92±0
2MASS03421247+2555215	$15.92 {\pm} 0.28$	$16.44 {\pm} 0.06$	$15.66 {\pm} 0.06$	B6.4V(B0.0VF1.8V)	4.55±0
2MASS03422927+2546452	$16.52 {\pm} 0.34$	$16.89 {\pm} 0.08$	$16.17 {\pm} 0.09$	F3.0V(B0.0VG4.2V)	1.84 ± 0
2MASS03420794+2558219	$17.48 {\pm} 0.44$	$17.86 {\pm} 0.17$	16.71 ± 0.11	M5.4V(B0.0VM6.0V)	2.05 ± 0
2MASS03421023+2557312	$14.78 {\pm} 0.26$	$15.31 {\pm} 0.04$	14.51 ± 0.03	K2.4V(K2.4VK2.4V)	0.24±0
2MASS03422833+2547538	14.40 ± 0.26	14.90 ± 0.04	$14.28 {\pm} 0.03$	G4.8V(F5.8VG5.6V)	0.81 ± 0
2MASS03420343+2601233	16.54 ± 0.33	17.28 ± 0.11	16.63 ± 0.12	F3.2V(B0.0VK1.8V)	3.49±0
2MASS03420998+2558039	13.90 ± 0.25	14.46±0.03	13.73 ± 0.03	K0.2V(G8.8VK0.2V)	0.23±0
2MASS03421926+2553208	14.81 ± 0.26	15.46 ± 0.04	14.85 ± 0.04	B6.0V(B0.0VF1.0V)	2.89 ± 0
2MASS03421308+2556439	16.88 ± 0.31	17.05 ± 0.10	16.09 ± 0.08	K1.4V(G5.4VK3.0V)	1.51±0
2MASS03422398+2550541	16.10 ± 0.31	16.67 ± 0.07	16.04 ± 0.09	F3.4V(F0.8VF3.4V)	0.22±0
2MASS03421700+2554536	14.73±0.25	15.40 ± 0.04	14.77±0.04	A1.2V(B5.0VA8.2V)	1.22 ± 0
2MASS03421031+2558341	17.31 ± 0.53	17.81 ± 0.16	17.07 ± 0.22	F5.0V(B0.0VK0.8V)	3.22±0
2MASS03421735+2555104	17.14 ± 0.42	17.74 ± 0.16	17.03±0.19	K3.8V(F6.0VK3.8V)	0.22±0
2IVIA5503422340+2552536	17.40±0.41	18.02±0.19	17.55±0.27	A1.0V(B0.4VM6.0V)	7.06±0
2IVIASSU3420844+2600561	10.42±0.31	17.08±0.21	16.32±0.09	K1.0V(G9.0VK1.0V)	0.20±0
2IVIA5503422259+2553353	17.64±0.48	1/.9/±0.18	17.10±0.28	A1.0V(B7.4VA6.8V)	9.10±0
2IVIASSU3420202+2604384	13.69±0.25	14.58±0.03	13.88±0.03	G2.UV(F6.0VG2.0V)	0.21±0
2IVIASSU3420176+2604529	14.55±0.26	15.38±0.04	14.62±0.04	K1.0V(G9.0VK1.0V)	0.22±0
2MASS03422773+2551162	14.65±0.26	14.99±0.04	14.18±0.03	G8.4V(G5.4VK1.4V)	1.21±0
2IVIASSU3422080+2555086	14.04±0.26	14.63±0.04	13.97±0.03	G5.2V(G5.0VG5.2V)	0.22±0
2MASS03423593+2547040	16.50±0.30	16.97±0.09	16.30±0.09	A1.0V(B8.0VA6.0V)	4.21±0
2MASS03423274+2548595	17.24±0.42	17.81±0.17	17.13±0.19	A1.0V(B9.4VA4.4V)	7.09±0
ZIVIASSU3421417+2559168	17.34±0.39	17.41±0.12	16.02±0.07	K7.UV(K3.4VM0.0V)	0.53±0
ziviASSU3422424+2553547	14.81±0.26	15.38±0.04	14.70±0.04	G3.0V(G2.6VG3.0V)	0.22±0
	44.60	4 = 40 1	4 4 8 6 7 7 7 7 7		

Sternname	V(GSH)	R(GSH)	I(GSH)	SpTy(GSH)	A _V (GSH)
2MASS03423359±2549070	14 72+0 25	15 17+0.04	14 44+0 03	G5 4V(G2 0V G8 8V)	0.61±0.03
2MASS03421965+2556379	15.25 ± 0.26	15.86 ± 0.05	14.44 ± 0.03 15.17 ±0.04	G3.0V(F6.0VG4.4V)	0.32 ± 0.04
2MASS03421318+2600180	$17.50{\pm}0.40$	$18.14{\pm}0.40$	17.44±0.21	K7.0V(G5.4VM2.4V)	$0.80 {\pm} 0.21$
2MASS03421107+2601404	$13.77{\pm}0.25$	$14.27{\pm}0.03$	$13.37{\pm}0.02$	K2.6V(K2.2VK3.4V)	$0.93 {\pm} 0.02$
2MASS03421711+2558407	17.40±0.41	17.51 ± 0.12	16.38±0.12	K7.0V(K5.0VM0.0V)	1.98±0.06
2MASS03423060+2551397	14.73±0.26	15.18 ± 0.04	14.41±0.03	G9.6V(G8.8VG9.6V)	0.22±0.03
2MASS03422167+2556381	17.52 ± 0.41	17.68 ± 0.14	16.68 ± 0.09	A1.0V(A0.0VA4.0V)	6.31 ± 0.08
2MASS03420982+2605396	15.29 ± 0.26 16.99 \pm 0.36	15.09 ± 0.04 17.28 ±0.11	14.04 ± 0.04 16.05 \pm 0.08	$G_{5.2V}(G_{2.0V}M_{2.0V})$	2.80 ± 0.02 1.37 ±0.05
2MASS03422145+2557389	16.42 ± 0.30	16.97 ± 0.09	16.20 ± 0.09	G4.8V(G2.6VG4.8V)	0.21±0.08
2MASS03422021+2558267	15.73±0.28	16.39±0.06	15.69±0.08	F3.6V(B0.0VF5.0V)	0.41±0.07
2MASS03423218+2552186	$15.92{\pm}0.28$	$16.15{\pm}0.05$	$15.25 {\pm} 0.05$	K4.8V(K4.0VK4.8V)	0.23±0.04
2MASS03421148+2603523	$16.99{\pm}0.37$	$17.62{\pm}0.13$	$16.87{\pm}0.13$	A1.0V(B9.4VA4.4V)	$5.44{\pm}0.12$
2MASS03422892+2554417	14.63±0.27	$15.25 {\pm} 0.04$	$14.62 {\pm} 0.03$	F6.6V(F5.2VG4.8V)	$1.02 {\pm} 0.03$
2MASS03422026+2559248	15.72±0.27	16.34±0.24	15.65±0.06	G6.6V(G5.6VG7.0V)	0.20±0.06
2MASS03421920+2600096	12.88 ± 0.25	13.47 ± 0.04	12.65 ± 0.03	K2.0V(K1.2VK2.6V)	0.45 ± 0.02
2MASS03421047+2004380	15.04 ± 0.28 17.60 \pm 0.43	13.40 ± 0.04 18.06±0.20	14.28 ± 0.03 16.87 \pm 0.13	K5.6V(K3.4V, K5.6V)	0.40 ± 0.00
2MASS03422386+2557479	14.66 ± 0.26	15.24 ± 0.04	14.51 ± 0.03	G5.2V(F6.0VG8.6V)	1.07 ± 0.03
2MASS03422572+2556534	15.41±0.28	15.99±0.05	15.27±0.05	G2.6V(F5.4VG8.4V)	1.08±0.05
2MASS03420929+2605464	$12.01 {\pm} 0.25$	$12.80 {\pm} 0.03$	$12.05 {\pm} 0.02$	G1.8V(F5.8VG4.8V)	0.73±0.02
2MASS03423964+2549449	$16.85{\pm}0.36$	$17.03{\pm}0.09$	$16.09{\pm}0.08$	F5.0V(B0.0VG4.2V)	$3.53{\pm}0.06$
2MASS03422968+2555125	$16.10 {\pm} 0.29$	$16.24{\pm}0.06$	$14.74{\pm}0.04$	G7.0V(G5.0VK1.0V)	$1.84{\pm}0.03$
2MASS03422101+2559551	17.71±0.37	18.38±0.44	17.63±0.31	B0.0V(B0.0VB0.6V)	1.77±0.20
2MASS03423542+2552392	17.53±0.46	18.08 ± 0.20	17.12 ± 0.13	B0.0V()B3.4V	0.23±0.25
2MASS03422970+2556320	16.40 ± 0.33	16.95 ± 0.08	16.19 ± 0.10	G6.0V(G5.6VG8.2V)	0.36 ± 0.15
2MASS03422307+2559037	10.31 ± 0.31 11 30±0 25	17.00 ± 0.09 12.18±0.03	10.40 ± 0.11 11 56±0.03	F4.4V(B0.0VG2.0V)	0.91 ± 0.13 0.21 ±0.02
2MASS03422210+2000371	17.39 ± 0.23 17.19 ±0.36	12.10 ± 0.05 17 68 \pm 0.15	16.83 ± 0.03	A1 0V(A0 2V A4 0V)	5.12 ± 0.02
2MASS03421933+2603072	15.49±0.27	16.33±0.06	15.66 ± 0.07	F5.8V(F4.2VG7.6V)	1.09±0.06
2MASS03421414+2606017	16.60±0.33	$17.45 {\pm} 0.12$	16.63±0.09	F5.6V(F5.2VF5.6V)	$0.25 {\pm} 0.18$
2MASS03422887+2558251	$15.79 {\pm} 0.28$	$16.34 {\pm} 0.06$	$15.49{\pm}0.05$	K2.8V(K2.8VK2.8V)	$0.24 {\pm} 0.05$
2MASS03422252+2602132	$16.70 {\pm} 0.33$	$17.47 {\pm} 0.13$	$16.76 {\pm} 0.13$	G5.6V(G5.0VG5.6V)	$0.24 {\pm} 0.18$
2MASS03423591+2555106	17.52 ± 0.49	$17.63 {\pm} 0.14$	$16.45 {\pm} 0.09$	A1.0V(A0.2VA4.0V)	$6.05 {\pm} 0.06$
2MASS03423005+2558485	11.20 ± 0.25	11.92 ± 0.04	11.28 ± 0.02	F5.0V(F4.0VF5.4V)	0.77±0.02
2MASS03422231+2603023	17.44 ± 0.61	17.58 ± 0.13	16.47 ± 0.13	K7.0V(K3.6VM0.2V)	0.86 ± 0.07
2MASS03423270+2557504 2MASS03422415+2602416	16.92 ± 0.33 13.49 \pm 0.25	17.48 ± 0.13 14 29 \pm 0.4	10.74 ± 0.10 13.60 \pm 0.03	G9.4V(G5.6VG9.4V) $\Delta 9.6V(B0.0V = F1.2V)$	0.22 ± 0.13 2 20 \pm 0.22
2MASS03422413+2002410 2MASS03423506+2557390	13.49 ± 0.25 13.63 ± 0.25	14.29 ± 0.04 14.16 ±0.04	13.34 ± 0.03	K2.6V(K2.0VK3.4V)	0.54 ± 0.02
2MASS03423726+2556446	17.77±0.39	18.14±0.30	17.26±0.21	K7.0V(K3.0VM0.4V)	3.19±0.19
2MASS03422150+2605279	11.49±0.25	12.37±0.03	$11.67 {\pm} 0.02$	F5.8V(F5.6VG4.0V)	0.52±0.02
2MASS03423430+2559081	$16.41{\pm}0.33$	$16.80{\pm}0.08$	$15.98{\pm}0.08$	G6.6V(F5.8VK0.2V)	$0.69{\pm}0.07$
2MASS03423085+2601135	$14.39 {\pm} 0.25$	$14.98{\pm}0.03$	$14.20{\pm}0.03$	G5.4V(G2.4VG8.4V)	0.70±0.03
2MASS03424838+2552210	16.00±0.34	17.23 ± 0.10	15.53 ± 0.05	A1.0V(B9.8VA4.2V)	7.62±0.09
2MASS03434921+2520011	14.93±0.27	16.87±0.08	14.01±0.03	K2.0V(K1.6VK2.0V)	0.24±0.10
2MASS03422946+2603149	15.15 ± 0.27	15.86±0.05	15.12 ± 0.04	A1.0V(A0.8VA1.4V)	3.83±0.04
2MASS03423032+2602305	14.88 ± 0.20 12.66 ± 0.25	15.00 ± 0.04 13.50 \pm 0.03	15.00 ± 0.03 12.86±0.03	$G_{5.2V}(F_{5.6V}G_{9.4V})$ $F_{4.8V}(F_{3.8V} = F_{5.2V})$	0.89±0.04
2MASS03422305+2602511	13.69 ± 0.25	14.53 ± 0.04	13.91 ± 0.03	A6.0V(B4.8VA8.4V)	1.89 ± 0.03
2MASS03423806+2600159	14.61±0.26	15.35±0.04	14.70±0.04	G3.0V(F5.8VG4.0V)	0.24±0.04
2MASS03423264+2603194	14.98±0.27	15.79±0.04	15.12±0.05	G3.0V(G2.0VG4.4V)	0.32±0.05
2MASS03422967+2605464	$15.78{\pm}0.30$	$16.62{\pm}0.07$	$15.84{\pm}0.08$	F3.8V(B0.0VG4.4V)	$1.53 {\pm} 0.08$
2MASS03423672+2602157	$15.31{\pm}0.26$	$15.96{\pm}0.05$	$15.16{\pm}0.04$	K1.2V(G5.6VK2.0V)	0.37±0.04
2MASS03424329+2603320	17.13±0.40	17.49±0.12	16.54±0.14	M1.0V(G2.2VM2.6V)	0.86±0.08
ZMASS03434451+2535275	17.21 ± 0.36	15.05±0.07	10.86±0.09	F0.2V(F5.8VF7.2V)	0.20 ± 0.10
21VIA33U343U812+20U3160 2MASS03431800⊥2550225	12.00±0.20	15.23 ± 0.12 17.15 ± 0.29	12.80±0.03	$r_{3.4v}$ (r_3.0vK3.4V) $\Delta 4.0V(R1.6V) = M5.4V$	0.20±0.03 5.68±0.05
2MASS03431819+2602109	15.20 ± 0.20 16.38 ±0.33	15.59 ± 0.26	15.56 ± 0.04 16.56 ±0.12	G5.6V(G2.4VG7.8V)	0.40 ± 0.03
2MASS03433906+2554096	11.98±0.25	13.49±0.03	11.96±0.02	G5.2V(G3.0VG8.0V)	1.20±0.02
CSHSTK0330384±252425	17 71+0 35	18 13+0 20	17 33+0 22	, ,	
GSHSTK0339364+252812	11.91 ± 0.25	11.68 ± 0.03	10.05 ± 0.05		
GSHSTK0339492+252235	18.09±0.48	18.52±0.30	17.59±0.24		
GSHSTK0339263+253522	17.65±0.42	18.00±0.22	$16.98 {\pm} 0.15$		
GSHSTK0339407+252840	$12.30 {\pm} 0.25$	$12.06{\pm}0.03$	$10.29{\pm}0.05$		
GSHSTK0339428+252845	17.08±0.33	$17.55 {\pm} 0.17$	$16.46{\pm}0.13$		
GSHSTK0340034+251748	18.50±0.64	18.47±0.31	17.58±0.32		
GSHSTK0340138+251418	17.72 ± 0.51	18.09±0.20	17.36±0.19		
GSHSTK0220269 + 252740	17.0 ± 0.40	18.20 ± 0.22	17.39 ± 0.18		
GSHSTK0340092±252233	17.79±0.55	10.20±0.24 17.99+0.10	17.23+0.21		
GSHSTK0340148+252011	17.88 ± 0.44	18.01 ± 0.19	17.21 ± 0.23		
GSHSTK0340178+252106	17.96±0.50	18.13±0.23	17.39±0.24		
GSHSTK0339278+254916	18.04±0.47	$18.58 {\pm} 0.36$	17.35±0.20		
GSHSTK0339336+254642	$17.52{\pm}0.41$	$17.89{\pm}0.18$	$16.94{\pm}0.17$		
GSHSTK0340167+252354	$18.35{\pm}0.52$	$18.61 {\pm} 0.32$	$17.80{\pm}0.20$		
GSHSTK0340217+252252	17.74±0.50	17.96±0.18	17.37±0.21		
	Wird auf der	nächsten Seite	fortgesetzt		

1	7	7
Т	1	1

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	A _V (GS [mag
GSHSTK0339321+255045	18.28±0.65	18.31±0.26	17.50±0.36		
GSHSTK0339498+254121	17.65±0.41	18.10±0.18	17.26±0.21		
GSHSTK0340200+252558	17.79±0.45	$17.78 {\pm} 0.17$	16.87±0.14		
GSHSTK0339292+255433	17.89±0.54	$17.97 {\pm} 0.17$	16.97±0.14		
GSHSTK0339356+255159	$17.73 {\pm} 0.46$	$18.19{\pm}0.22$	$17.42 {\pm} 0.27$		
GSHSTK0339414+254933	$17.41 {\pm} 0.31$	$17.85 {\pm} 0.17$	$17.04 {\pm} 0.21$		
GSHSTK0339387+255137	$17.68{\pm}0.50$	$18.05 {\pm} 0.18$	$17.18 {\pm} 0.13$		
GSHSTK0339573+254247	$17.70 {\pm} 0.40$	$18.11 {\pm} 0.22$	$17.21 {\pm} 0.26$		
GSHSTK0340151+253331	18.79 ± 1.12	$18.53 {\pm} 0.29$	$17.86 {\pm} 0.33$		
GSHSTK0339536+254643	$17.59 {\pm} 0.41$	$17.23 {\pm} 0.10$	$15.22 {\pm} 0.07$		
GSHSTK0340358+252927	$17.78 {\pm} 0.53$	$18.08 {\pm} 0.18$	$17.47 {\pm} 0.15$		
GSHSTK0339440+255714	18.27±0.49	18.64±0.37	$17.45 {\pm} 0.51$		
GSHSTK0340055+254553	18.30±0.52	18.40±0.26	17.99±0.27		
GSHSTK0340166+254259	17.69±0.43	17.83±0.17	$17.23 {\pm} 0.21$		
GSHSTK0341078+251518	18.21 ± 0.80	18.26±0.24	17.52 ± 0.19		
GSHSTK0340116+254716	18.34±0.53	18.24±0.24	17.53±0.22		
GSHSTK0339582+255444	17.35±0.33	17.77±0.15	17.08±0.08		
GSHSTK0340149+254654	17.52 ± 0.40	17.81 ± 0.14	17.02 ± 0.13		
GSHSTK0339520+255934	17.74 ± 0.46	18 34+0 24	17.71 ± 0.32		
CSHSTK0340075±255143	17.14 ± 0.38 17.44 ± 0.38	17.66 ± 0.15	16.97 ± 0.14		
GSHSTK0340243±254345	17.44 ± 0.36 17.94 ± 0.45	18.05 ± 0.19	10.97 ± 0.14 17 17 ± 0.21		
	17.94±0.45	19.65±0.19	17.27±0.26		
CELETK0240067 2553131	10.92±0.50	10.05±0.34	17.67±0.30		
CSHSTK0330520 + 260125	18.20±0.08	10.30±0.22	17.07±0.31		
CELETK0240060 + 255250	17 00 0 50	10.00±0.29	17 50 20.10		
GSHSTK0340068+255358	17.89±0.52	18.23±0.23	17.58±0.28		
GSHSTK0341202+251439	17.90 ± 0.52	17.90±0.15	17.49±0.24		
GSHS1K0340154+255123	18.22 ± 0.55	18.27±0.22	17.55 ± 0.25		
GSHSTK0341226+251526	17.97 ± 0.57	18.27 ± 0.25	17.48 ± 0.25		
GSHSTK0340348+254210	18.01 ± 0.68	18.38 ± 0.24	17.64 ± 0.34		
GSHSTK0340537+253239	$17.68 {\pm} 0.51$	$17.80 {\pm} 0.16$	17.13 ± 0.21		
GSHSTK0340458+253704	$17.93 {\pm} 0.60$	$18.06 {\pm} 0.20$	17.10 ± 0.12		
GSHSTK0340212+255041	18.12 ± 0.82	$18.19 {\pm} 0.21$	17.52 ± 0.24		
GSHSTK0340065+255912	$17.96 {\pm} 0.57$	$18.30 {\pm} 0.25$	$17.32 {\pm} 0.24$		
GSHSTK0339565+260431	$17.66 {\pm} 0.46$	$18.51 {\pm} 0.28$	$17.70 {\pm} 0.24$		
GSHSTK0341165+252210	$17.85 {\pm} 0.61$	$18.08{\pm}0.21$	$17.32 {\pm} 0.19$		
GSHSTK0341230+252120	$17.95 {\pm} 0.48$	$17.88 {\pm} 0.16$	$17.28 {\pm} 0.19$		
GSHSTK0340597+253438	$12.59 {\pm} 0.25$	$12.75 {\pm} 0.03$	$12.10 {\pm} 0.03$		
GSHSTK0340458+254236	$18.19 {\pm} 0.84$	$18.26 {\pm} 0.23$	$17.51 {\pm} 0.34$		
GSHSTK0340253+255342	$17.24 {\pm} 0.52$	$17.54 {\pm} 0.12$	16.83±0.13		
GSHSTK0340056+260416	$17.59 {\pm} 0.40$	$18.42 {\pm} 0.31$	17.76±0.30		
GSHSTK0341116+253003	$17.83 {\pm} 0.58$	$18.06 {\pm} 0.18$	17.40±0.20		
GSHSTK0341125+253143	17.57±0.54	17.80±0.14	$17.21 {\pm} 0.15$		
GSHSTK0341400+251647	18.24±0.82	18.18±0.22	17.51 ± 0.30		
GSHSTK0341433+251629	18.48±0.74	18.56±0.32	17.66±0.39		
GSHSTK0341319+252407	17.78 ± 0.58	18.02±0.18	17.42 ± 0.24		
GSHSTK0341497+251513	17.85±0.65	18.15±0.22	17.60±0.26		
GSHSTK0341201+253218	18.14±1.30	18.15±0.20	17.64±0.32		
GSHSTK0341315+252823	17.91 ± 0.50	18.28+0.23	17.84±0.23		
GSHSTK0340535+254908	17.78+0.30	18.19+0.22	17.49+0.23		
GSHSTK0340381±255724	17.62 ± 0.59	17 98+0 10	17 31+0 10		
GSHSTK0340560±254742	17 27+0 45	17 60+0 14	17 17+0 15		
CSHSTK0341400 + 25255	17.27±0.43	17.09 ± 0.14 17.01 ± 0.16	17.17 ± 0.13 17.10 ± 0.10		
CELETK0240402 - 200040	17.75 0.52	10 45 10 20	17.19±0.19		
CSUSTK0241470 + 250010	19.00 0 52	10.45±0.28	17.46 0.10		
GSHSTK0241200 + 252918	17 55 0 40	10.20±0.22	17.40±0.19		
G5H51K0341368+253527	17.55±0.42	10.00±	17.03±0.16		
GSHS1K0340472+260207	17.76±0.52	18.23±0.25	17.38±0.31		
GSHSTK0341108+255157	17.72 ± 0.44	18.40±0.28	17.95±0.77		
GSHSTK0342062+252208	17.41 ± 0.39	17.65 ± 0.15	17.12 ± 0.19		
GSHSTK0341169+254907	18.22 ± 0.75	18.46 ± 0.28	$17.65 {\pm} 0.46$		
GSHSTK0341434+253507	$17.79 {\pm} 0.46$	$18.05 {\pm} 0.18$	$17.37 {\pm} 0.23$		
GSHSTK0340566+260457	$17.25{\pm}0.39$	$17.98{\pm}0.19$	$17.75 {\pm} 0.28$		
GSHSTK0342138+252326	$17.87{\pm}0.39$	$18.17{\pm}0.23$	$17.63 {\pm} 0.27$		
GSHSTK0341440+254549	$17.25{\pm}0.43$	$17.54{\pm}0.13$	$16.83{\pm}0.10$		
GSHSTK0342337+252712	$17.84 {\pm} 0.47$	$19.29{\pm}0.59$	$17.20 {\pm} 0.22$		
GSHSTK0342029+254448	$17.46 {\pm} 0.41$	$17.80{\pm}0.16$	$17.06 {\pm} 0.17$		
GSHSTK0341385+255831	$17.48 {\pm} 0.45$	$17.63{\pm}0.15$	$16.39 {\pm} 0.08$		
GSHSTK0342098+254212	17.64±0.43	$18.02 {\pm} 0.20$	17.36±0.16		
GSHSTK0341376+255935	17.63±0.50	$18.15 {\pm} 0.21$	17.50±0.30		
GSHSTK0342047+254536	17.65±0.38	18.19±0.21	17.62±0.27		
GSHSTK0341303+260456	17.23±0.42	17.78±0.16	16.71±0.17		
GSHSTK0342041+255001	17.70+0.46	18,23+0.24	17.47+0.22		
GSHSTK0342188+254315	13.87+0.26	14.00+0.03	13.20+0.03		
GSHSTK0342197±254326	17.93+0.55	18.32+0.30	17.51+0.28		
GSHSTK0342197 + 204020	17 71 + 0.55	17 72±0.50	16.78 ± 0.20		
CSHSTK0342322 + 254602	16 08±0 27	17 37±0.13	16.70 ± 0.11		
CELETK0242116 - 255252	17.06 0.70	10.20 10.20	10.75 ± 0.12		
G3H3 I NU342110+255253	11.90±0.79	10.30±0.26	11.05±0.31		
CELIETI/02 401 00 · 0550 · -	17 (1) 0	10 15 10 00	17 65 10 10		

Sternname	V(GSH) [mag]	R(GSH) [mag]	I(GSH) [mag]	SpTy(GSH)	$A_V(GSH)$ [mag]
GSHSTK0342353+254111	18.16±0.54	18.63±0.35	18.43±0.47		
GSHSTK0342236+254744	18.39±0.57	18.86±0.41	18.27±0.53		
GSHSTK0342059+255715	17.14±0.37	17.82±0.18	17.19±0.14		
GSHSTK0341532+260507	17.37±0.48	18.25±0.23	17.28±0.17		
GSHSTK0342091+255743	17.80±0.50	18.53±0.32	17.81±0.30		
GSHSTK0342014+260240	17.73±0.43	18.71±0.48	17.77±0.18		
GSHSTK0342037+260156	17.71 ± 0.44	$18.51 {\pm} 0.49$	$17.64 {\pm} 0.16$		
GSHSTK0342249+255254	$17.91 {\pm} 0.81$	$18.36 {\pm} 0.25$	17.83±0.27		
GSHSTK0342062+260258	$17.84 {\pm} 0.45$	$18.36 {\pm} 0.25$	$17.56 {\pm} 0.16$		
GSHSTK0342378+254719	$17.53 {\pm} 0.42$	$18.09 {\pm} 0.21$	$17.43 {\pm} 0.26$		
GSHSTK0342100+260246	$17.41 {\pm} 0.45$	$18.05 {\pm} 0.18$	17.41 ± 0.33		
GSHSTK0342126+260530	$17.45 {\pm} 0.45$	$18.13 {\pm} 0.20$	$17.19 {\pm} 0.29$		
GSHSTK0342319+255514	$17.18 {\pm} 0.45$	$17.74 {\pm} 0.15$	$17.04 {\pm} 0.19$		
GSHSTK0342223+260152	$17.62 {\pm} 0.53$	$18.24 {\pm} 0.23$	$17.47 {\pm} 0.23$		
GSHSTK0342332+255718	$17.69 {\pm} 0.47$	$18.20 {\pm} 0.23$	$17.42 {\pm} 0.25$		
GSHSTK0342381+255551	$17.36 {\pm} 0.38$	$17.96 {\pm} 0.18$	$17.34 {\pm} 0.20$		
GSHSTK0342432+255537	$17.75 {\pm} 0.56$	$18.41 {\pm} 0.28$	$17.83{\pm}0.26$		
GSHSTK0342276+260538	$17.60 {\pm} 0.47$	$18.40 {\pm} 0.28$	$17.61 {\pm} 0.30$		
GSHSTK0342446+255709	$17.95{\pm}0.48$	$18.80 {\pm} 0.36$	$17.71 {\pm} 0.51$		
GSHSTK0342473+260555	$17.27 {\pm} 0.48$	$18.05 {\pm} 0.42$	$18.13 {\pm} 0.29$		

Tabelle C.1: Zusammenfassung der gesicherten Detektionen im Plejadenfeld.

Literaturverzeichnis

- [Ambartsumyan u. a. 1971a] AMBARTSUMYAN, V. A. ; MIRZOYAN, A. V. ; PARSAMYAN,
 É. S. ; CHAVUSHYAN, O. S. ; ERASTOVA, L. K.: Flare stars in the Pleiades. II. In: Astrophysics 7 (1971), Juli, S. 189–196
- [Ambartsumyan u. a. 1970] AMBARTSUMYAN, V. A.; MIRZOYAN, L. V.; PARSAMYAN,
 E. S.; CHAVUSHYAN, O. S.; ERASTOVA, L. K.: Flare stars in the Pleiades. In: Astrophysics 6 (1970), Januar, S. 1–10
- [Ambartsumyan u. a. 1971b] AMBARTSUMYAN, V. A.; MIRZOYAN, L. V.; PARSAMYAN, E. S.; CHAVUSHYAN, O. S.; ERASTOVA, L. K.: Flare stars in the Pleiades. II. In: *Astrofizika* 7 (1971), S. 319–331
- [Bertin] BERTIN, E.: *SExtractor, User's manual.* Edition 2.5. Institut d'Astrophysique, Observatoire de Paris (Veranst.)
- [Broeg u. a. 2005] BROEG, C. ; FERNÁNDEZ, M. ; NEUHÄUSER, R.: A new algorithm for differential photometry: computing an optimum artificial comparison star. In: Astronomische Nachrichten 326 (2005), Februar, S. 134–142
- [Burke u. a. 1970] BURKE, E. W.; ROLLAND, W. W.; BOY, W. R.: A Photoelectric Study of Magnetic Variable Stars. In: *JRASC* 64 (1970), Dezember, S. 353-+
- [Cutri u. a. 2003] CUTRI, R. M.; SKRUTSKIE, M. F.; VAN DYK, S.; BEICHMAN, C. A.; CARPENTER, J. M.; CHESTER, T.; CAMBRESY, L.; EVANS, T.; FOWLER, J.; GIZIS, J.; HOWARD, E.; HUCHRA, J.; JARRETT, T.; KOPAN, E. L.; KIRKPATRICK, J. D.; LIGHT, R. M.; MARSH, K. A.; MCCALLON, H.; SCHNEIDER, S.; STIENING, R.; SYKES, M.; WEINBERG, M.; WHEATON, W. A.; WHEELOCK, S.; ZACARIAS, N.; CUTRI, R. M., SKRUTSKIE, M. F., VAN DYK, S., BEICHMAN, C. A., CARPENTER, J. M., CHESTER, T., CAMBRESY, L., EVANS, T., FOWLER, J., GIZIS, J., HOWARD, E., HUCHRA, J., JARRETT, T., KOPAN, E. L., KIRKPATRICK, J. D., LIGHT, R. M., MARSH, K. A., MCCALLON, H., SCHNEIDER, S., STIENING, R., SYKES, M., WEIN-BERG, M., WHEATON, W. A., WHEELOCK, S., & ZACARIAS, N. (Hrsg.): 2MASS All Sky Catalog of point sources. Juni 2003

- [Dworetsky 1983] DWORETSKY, M. M.: A period-finding method for sparse randomly spaced observations of 'How long is a piece of string?'. In: MNRAS 203 (1983), Juni, S. 917–924
- [Eisenbeiss u. a. 2009] EISENBEISS, T. ; MOUALLA, M. ; MUGRAUER, M. ; SCHMIDT, T. O. B. ; RAETZ, S. ; NEUHÄUSER, R. ; GINSKI, C. ; HOHLE, M. M. ; KOELTZSCH, A. ; MARKA, C. ; RAMMO, W. ; REITHE, A. ; ROELL, T. ; VAŇKO, M.: New brown dwarf candidates in the Pleiades. In: Astronomische Nachrichten 330 (2009), Mai, S. 439–+
- [European Southern Observatory 1990a] EUROPEAN SOUTHERN OBSERVATORY: MI-DAS, ESO Operating Manual No.1, May 1990. – Volume A: System
- [European Southern Observatory 1990b] EUROPEAN SOUTHERN OBSERVATORY: MI-DAS, ESO Operating Manual No.1, May 1990. – Volume B: Data Reduction
- [Haro u. a. 1982] HARO, G.; CHAVIRA, E.; GONZALEZ, G.: A catalog and identification charts of the Pleiades flare stars. In: *Boletin del Instituto de Tonantzintla* 3 (1982), Juli, S. 3–68
- [Hoffmeister u. a. 1984] HOFFMEISTER, C. ; RICHTER, G. ; WENZEL, W.: Veränderliche Sterne. Auflage 2. Springer-Verlag, 1984
- [Howell 2006] HOWELL, B. S.: Handbook of CCD Astronomy. Auflage 2. Cambridge University Press, 2006
- [Johnson und Mitchell 1958] JOHNSON, H. L. ; MITCHELL, R. I.: The Color-Magnitude Diagram of the Pleiades Cluster. II. In: *ApJ* 128 (1958), Juli, S. 31–+
- [Jones 1981] JONES, B. F.: Proper-motion membership probabilities for Pleiades flare stars. In: AJ 86 (1981), Februar, S. 290–297
- [Kenyon und Hartmann 1995] KENYON, S. J. ; HARTMANN, L.: Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud. In: ApJS 101 (1995), November, S. 117-+
- [Kopka 1992] KOPKA, H.: LATEX Eine Einführung. Auflage4. ADDISON-WESLEY, 1992
- [Lafler und Kinman 1965] LAFLER, J. ; KINMAN, T. D.: An RR Lyrae Star Survey with Ihe Lick 20-INCH Astrograph II. The Calculation of RR Lyrae Periods by Electronic Computer. In: ApJS 11 (1965), Juni, S. 216-+
- [Meibom u. a. 2009] MEIBOM, S. ; GRUNDAHL, F. ; CLAUSEN, J. V. ; MATHIEU, R. D. ; FRANDSEN, S. ; PIGULSKI, A. ; NARWID, A. ; STESLICKI, M. ; LEFEVER, K.: Age and

Distance for the Old Open Cluster NGC 188 from the Eclipsing Binary Member V 12. In: AJ 137 (2009), Juni, S. 5086–5098

- [Mermilliod u. a. 1997] MERMILLIOD, J.-C.; TURON, C.; ROBICHON, N.; ARENOU, F.;
 LEBRETON, Y.: The Distance of the Pleiades and Nearby Clusters. In: R. M. BONNET,
 E. HØG, P. L. BERNACCA, L. EMILIANI, A. BLAAUW, C. TURON, J. KOVALEVSKY,
 L. LINDEGREN, H. HASSAN, M. BOUFFARD, B. STRIM, D. HEGER, M. A. C. PERRY-MAN, & L. WOLTJER (Hrsg.): *Hipparcos Venice '97* Bd. 402, August 1997, S. 643–650
- [Monet u. a. 2003] MONET, D. G.; LEVINE, S. E.; CANZIAN, B.; ABLES, H. D.; BIRD, A. R.; DAHN, C. C.; GUETTER, H. H.; HARRIS, H. C.; HENDEN, A. A.; LEGGETT, S. K.; LEVISON, H. F.; LUGINBUHL, C. B.; MARTINI, J.; MONET, A. K. B.; MUNN, J. A.; PIER, J. R.; RHODES, A. R.; RIEPE, B.; SELL, S.; STONE, R. C.; VRBA, F. J.; WALKER, R. L.; WESTERHOUT, G.; BRUCATO, R. J.; REID, I. N.; SCHOENING, W.; HARTLEY, M.; READ, M. A.; TRITTON, S. B.: The USNO-B Catalog. In: AJ 125 (2003), Februar, S. 984–993
- [Mugrauer 2009] MUGRAUER, M.: CTK: A new CCD Camera at the University Observatory Jena. In: Astronomische Nachrichten 330 (2009), Mai, S. 419–+
- [Mugrauer 2011] MUGRAUER, M.: In: AN (2011). In Preparation
- [Mugrauer und Berthold 2010] MUGRAUER, M. ; BERTHOLD, T.: STK: A new CCD camera at the University Observatory Jena. In: Astronomische Nachrichten 331 (2010), S. 449–+
- [Patenaude 1978] PATENAUDE, M.: Age determinations of open clusters. In: A&A 66 (1978), Mai, S. 225–239
- [Rieke und Lebofsky 1985] RIEKE, G. H.; LEBOFSKY, M. J.: The interstellar extinction law from 1 to 13 microns. In: ApJ 288 (1985), Januar, S. 618–621
- [Roeser u. a. 2010] ROESER, S. ; DEMLEITNER, M. ; SCHILBACH, E.: The PPMXL Catalog of Positions and Proper Motions on the ICRS. Combining USNO-B1.0 and the Two Micron All Sky Survey (2MASS). In: AJ 139 (2010), Juni, S. 2440–2447
- [Samus u. a. 2009] SAMUS, N. N. ; DURLEVICH, O. V. ; ET AL.: General Catalogue of Variable Stars (Samus+ 2007-2010). In: VizieR Online Data Catalog 1 (2009), Januar, S. 2025–+
- [Sandage 1962] SANDAGE, A.: The Ages of M67, NGC 188, M3, M5, and M13 According to Hoyle's 1959 Models. In: ApJ 135 (1962), März, S. 349-+

- [Schmidt u. a. 2005] SCHMIDT, T. ; GUENTHER, E. ; HATZES, A. P. ; RIES, C. ; HART-MANN, M. ; OHLERT, J. M. ; LEHMANN, H.: A new Doppler image of the weak-line T Tauri star V410 Tauri. In: AN 326 (2005), August, S. 667–667
- [Schmidt-Kaler 1982] SCHMIDT-KALER, T.: Landolt-Börnstein. Springer-Verlag, 1982. – 4.1.1 Classification of stellar spectra
- [Siess u. a. 2000] SIESS, L. ; DUFOUR, E. ; FORESTINI, M.: An internet server for premain sequence tracks of low- and intermediate-mass stars. In: A&A 358 (2000), Juni, S. 593–599
- [Stauffer u. a. 1991] STAUFFER, J. ; KLEMOLA, A. ; PROSSER, C. ; PROBST, R.: The search for faint members of the Pleiades. I - A proper motion membership study of the Pleiades to M(V) of about 12.5. In: AJ 101 (1991), März, S. 980–1005
- [Steele u. a. 1993] STEELE, I. A.; JAMESON, R. F.; HAMBLY, N. C.: RIJHK Photometry of Low-Mass Stars and Brown Dwarfs in the Pleiades. In: MNRAS 263 (1993), August, S. 647-+
- [Strassmeier 2009] STRASSMEIER, K. G.: Starspots. In: A&AR 17 (2009), September, S. 251–308
- [Unsöld und Baschek 2009] UNSÖLD, A.; BASCHEK, B.: *Der neue Kosmos.* Auflage 7. Springer, 2009
- [van Leeuwen 1999] VAN LEEUWEN, F.: Open Cluster Distances from Hipparcos parallaxes. In: D. EGRET & A. HECK (Hrsg.): Harmonizing Cosmic Distance Scales in a Post-HIPPARCOS Era Bd. 167, 1999, S. 52–71
- [van Leeuwen 2009] VAN LEEUWEN, F.: Parallaxes and proper motions for 20 open clusters as based on the new Hipparcos catalogue. In: A&A 497 (2009), April, S. 209– 242
- [van Leeuwen und Hansen Ruiz 1997] VAN LEEUWEN, F. ; HANSEN RUIZ, C. S.: The Parallax of the Pleiades Cluster. In: R. M. BONNET, E. HØG, P. L. BERNACCA, L. EMILIANI, A. BLAAUW, C. TURON, J. KOVALEVSKY, L. LINDEGREN, H. HASSAN, M. BOUFFARD, B. STRIM, D. HEGER, M. A. C. PERRYMAN, & L. WOLTJER (Hrsg.): *Hipparcos Venice '97* Bd. 402, August 1997, S. 689–692
- [Voigt 1988] VOIGT, H. H.: Abriss der Astronomie. Auflage 4. Wissenschaftsverlag, 1988
- [Weigert u. a. 2005] WEIGERT, A.; WENDKER, H. J.; WISOTZKI, L.: Astronomie und Astrophysik. Auflage 4. WIELY-VCH, 2005

- [Weigert u. a. 2009] WEIGERT, A. ; WENDKER, H. J. ; WISOTZKI, L.: Astronomie und Astrophysik. Auflage 5. WIELY-VCH, 2009
- [Zacharias u. a. 2009] ZACHARIAS, N. ; FINCH, C. ; GIRARD, T. ; HAMBLY, N. ; WY-COFF, G. ; ZACHARIAS, M. I. ; CASTILLO, D. ; CORBIN, T. ; DIVITTORIO, M. ; DUTTA, S. ; GAUME, R. ; GAUSS, S. ; GERMAIN, M. ; HALL, D. ; HARTKOPF, W. ; HSU, D. ; HOLDENRIED, E. ; MAKAROV, V. ; MARTINEZ, M. ; MASON, B. ; MONET, D. ; RAFFERTY, T. ; RHODES, A. ; SIEMERS, T. ; SMITH, D. ; TILLEMAN, T. ; URBAN, S. ; WIEDER, G. ; WINTER, L. ; YOUNG, A.: Third U.S. Naval Observatory CCD Astrograph Catalog (UCAC3). In: VizieR Online Data Catalog 1315 (2009), S. 0–+
- [Zacharias u. a. 2004] ZACHARIAS, N. ; URBAN, S. E. ; ZACHARIAS, M. I. ; WYCOFF, G. L. ; HALL, D. M. ; MONET, D. G. ; RAFFERTY, T. J.: The Second US Naval Observatory CCD Astrograph Catalog (UCAC2). In: AJ 127 (2004), Mai, S. 3043– 3059
- [Zapatero Osorio u. a. 1997] ZAPATERO OSORIO, M. R. ; MARTIN, E. L. ; REBOLO, R.: Brown dwarfs in the Pleiades cluster. II. J, H and K photometry. In: A&A 323 (1997), Juli, S. 105–112
- [Zapatero Osorio u. a. 1999] ZAPATERO OSORIO, M. R. ; REBOLO, R. ; MARTÍN, E. L. ; HODGKIN, S. T. ; COSSBURN, M. R. ; MAGAZZÙ, A. ; STEELE, I. A. ; JAMESON, R. F.: Brown dwarfs in the Pleiades cluster. III. A deep IZ survey. In: A&AS 134 (1999), Februar, S. 537–543

Danksagung

Ich möchte an dieser Stelle allen Personen danken, die mich die ganze Zeit unterstützt haben und zum Zustandekommen dieser Arbeit beigetragen haben.

Vor allem bedanke ich mich ganz herzlich bei Herrn Prof. Dr Neuhäuser für die ausgezeichnete Betreuung dieser Dissertation. Er stand mir die ganze Zeit zur Seite und war stets offen für ein Gespräch oder zur Beantwortung meiner Fragen.

Dieser Dank betrifft ebenso Frau Dagmar Neuhäuser für ihre Unterstützung und freundlichen Wünsche.

Besonderer Dank gilt Dr. Tobias Schmidt und Stefanie Rätz. Ich danke Ihnen ganz herzlich, da sie immer Zeit für meine Fragen und Probleme hatten.

Ebenso herzlich danke ich Claudia Marka und Nina Tetzlaff für die Korrektur dieser Arbeit.

Nicht weniger möchte ich mich bei Herrn Jürgen Weiprecht bedanken. Er fand immer Zeit für meine Rechner- und Latexprobleme.

Besonderer Dank gilt dem GSH-Observer-Team für die Daten und schönen Zeiten in GSH bestehend asu Markus Mugrauer, Tobias Schmidt, Stefanie Rätz, Alexandra Berndt, Claudia Marka, Christian Ginski, Tristan Röll, Thomas Eisenbeiss, Ronny Errmann, Nina Tetzlaff, Markus Hohle, Ludwig Trepl, Simone Fiedler, Christian Adam, Martin Seeliger und Janos Schmidt.

Weiterhin danke ich allen Mitarbeitern des Instituts in Jena für die schönen und freundlichen Zeiten. Ich hab mich die ganze Zeit zu Hause gefühlt.

Besonderer Dank gilt Dr. Christopher Brög der mir die Benutzung seines Photometry-Programm ermöglichste.

Schlussendlich danke ich meiner Familie in Syrien, insbesondere meinen Eltern für die

DANKSAGUNG

Unterstützung.

Last but not least danke ich meiner Nichte Maya und meinem besten Kumpel in Syrien Jakob für die Unterstützung.

Lebenslauf

Name: Vornamen: Geburtsdatum: Geburtsort: Staatsangehörigkeit: E-mail:	Moualla Mohammad 24. September 1978 Lattakia-Syrien Syrier p7momo2@uni-jena.de
Schul- und Hochschulausbildung:	
1985 - 1991	Grundschule Saker Kouraisch in Lattakia, Syrien
1991 - 1997	Gymnasium Rafik Skaf in Lattakia, Syrien, Abitur- 1997
1997 - 2002	Studium der Mathematik an der Tischrin Universi- tät in Lattakia-Syrien, Diplom Mathematiker-2002
2003 - 2004	Assistant an der Tischrin Universität, Lattakia- Syrien
2005 - 2007	Studium der Mathematik an der TU-Berlin
2007 - 2008	Studium der Physik an der FSU-Jena, Diplom Physiker-2008
Seit Oktober 2008	Doktorand am AIU Jena

186

Mohammad Ahmad Moualla

Ehrenwörtliche Erklärung

Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit selbständig, ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend aufgeführten Personen in der jeweils beschriebenen Weise entgeltlich/unentgeltlich geholfen:

- 1. Dr. Tobias Schmidt hat mir die Programme plot-stars-g und Biassub für meine Arbeit zur Verfügung gestellt.
- 2. Dipl.-Phys. Ronny Errmann hat mir das Programm spektyp_aus_BVRIJHK.py für meine Arbeit zur Verfügung gestellt.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungsbzw. Beratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Die geltende Promotionsordnung der Physikalisch-Astronomischen Fakultät ist mir bekannt.

Ich versichere ehrenwörtlich, dass ich nach bestem Wissen die reine Wahrheit gesagt und nichts verschwiegen habe.

.....

.....

Ort, Datum

Unterschrift des Verfassers