
c©2011-TU Ilmenau

56TH INTERNATIONAL SCIENTIFIC COLLOQUIUM
Ilmenau University of Technology, 12 Ű 16 September 2011

URN: urn:nbn:gbv:ilm1-2011iwk:5

DIRECT SIMULATION OF MECHANICAL CONTROL SYSTEMS USING
ALGORITHMIC DIFFERENTIATION

Klaus Röbenack, Jan Winkler, Carsten Knoll

Institute of Control Theory
Technische Universität Dresden

01062 Dresden, Germany
Email: {klaus.roebenack, jan.winkler, carsten.knoll}@tu-dresden.de

ABSTRACT

A method for direct simulation of mechanical systems

is provided which makes use of the algorithmic differ-

entiation package ADOL-C avoiding symbolic or nu-

meric calculation of derivatives. A framework is pro-

posed which makes this software package available un-

der MATLAB/SIMULINK for straightforward simula-

tion purposes. The usefulness of the approach is illus-

trated by the example of Euler-Lagrange control sys-

tems.

Index Terms— Algorithmic differentiation, La-

grangian control system

1. LAGRANGIAN CONTROL SYSTEMS

We consider a mechanical system with n degrees of

freedom, which is locally described in the coordinates

q = (q1, . . . , qn) on a smooth n-dimensional configu-

ration manifold Q. The system q of generalized coor-

dinates induces a tangent-lifted local coordinate system

(q, q̇) = (q1, . . . qn, q̇1, . . . , q̇n) on the tangent bun-

dle TQ. The Lagrangian L(q, q̇) is a map L : TQ →
R. We treat the external forces u = (u1, . . . , un) as

control or input variables. The Euler-Lagrange equa-

tions of a holonomic system are given by

d
d t

∂

∂q̇
L(q, q̇) − ∂

∂q
L(q, q̇) = u . (1)

In Eq. (1) we disregarded dissipative forces. For-

mally, the dissipation of energy can be included in (1)

by adding a dissipation term as an appropriate deriva-

tive of Rayleigh’s dissipation function [1, p. 35]. How-

ever, this approach becomes more difficult for sophis-

ticated friction models. For this reason, we add possi-

bly dissipative forces to the external forces, which also

simplifies the implementation.

Both for computational purposes and to get better

insights into the structure of Eq. (1) we replace the total

derivatives in (1) by partial derivatives:

∂2

∂q̇2 L(q, q̇)q̈ +
∂2

∂q∂q̇
L(q, q̇)q̇ − ∂

∂q
L(q, q̇) = u .

(2)

We assume that the Lagrangian L is regular, i.e.,

det
∂2

∂q̇2 L(q, q̇) �= 0 .

In this case, the second order systems (1) as well as (2)

are equivalent to the first order system:

d
d t

q =q̇ (3a)

d
d t

q̇ =
(

∂2

∂q̇2 L(q, q̇)
)−1

·(
∂

∂q
L(q, q̇) − ∂2

∂q∂q̇
L(q, q̇)q̇ + u

)
.

(3b)

The right-hand side of (3) defines a control-

dependent Lagrangian vector field on TQ, see [2]. Sys-

tem (3) is a special case of the more general form of a

nonlinear state-space model

ẋ = f(x, u) , (4)

where the tangent bundle of the configuration mani-

fold TQ is used as the base manifold M of (4), i.e.,

M = TQ and x = (q, q̇). For a global descrip-

tion of this system one treats the input-dependent vec-

tor field f as a bundle map f : B → TM , where

(B, M, π) is a fiber bundle with the total manifold B
and the canonical projection π : B → M from the total

manifold B to the base manifold M , see [3, 4]. In local

coordinates, which will be used for the simulation, the

bundle map f has the form f : R
2n × R

m → R
2n,

i.e., its domain has locally the structure of a cartesian

product between state space and input space.

Note that the control input u is not necessarily

restricted to external forces as in (1). More gener-

ally, one could formulate the mechanical system with a

URN (Paper): urn:nbn:de:gbv:ilm1-2011iwk-015:6

Lagrangian L(q, q̇, u) depending directly on the con-

trol u, see [5] and [6, Chapter 12]. However, we do not

use this approach for our implementation because it is

only rarely used among control engineers.

2. ALGORITHMIC DIFFERENTIATION

2.1. Basic principles

In order to obtain (1), (2) or (3) from the Lagrangian L
we have to compute first and second order deriva-

tives. Numerical differentiation by divided differences

is not well-suited for this task due to truncation and

cancellation error. Therefore, the derivatives occur-

ring in these equations are usually computed symbol-

ically with computer algebra packages or libraries, e.g.

MATHEMATICA [7], MAPLE [8] or MAXIMA [9].

We suggest the use of an alternative differentiation

technique known as automatic or algorithmic differen-
tiation [10]. Assume that the function F : R

N → R
M

under consideration is a sequence of elementary func-

tions and operations. Derivatives of F can be calcu-

lated by applying elementary differentiation rules to

this sequence. In algorithmic differentiation, all inter-

mediate values are floating point numbers instead of

symbolic expressions.

Let the function evaluation of F map a given vector

x ∈ R
N into z = F (x) ∈ R

N . In the forward mode of

algorithmic differentiation, the elementary differentia-

tion rules are applied simultaneuosly to the evaluation

of the function values. With this method, a tangent vec-

tor v ∈ R
N is mapped into the directional derivative

w = F ′(x)v ∈ R
M (5)

at x in the direction v. An example is shown in Tab. 1.

The so-called reverse mode of algorithmic differ-

entiation can be interpreted as a generalization of the

backpropagation algorithm known from neuronal net-

works. The differentiation of the elementary functions

is carried out in reverse order (compared to the function

evaluation). For a given row vector z̄T with z̄ ∈ R
M

we can calculate the weighted derivative

x̄T = z̄T F ′(x) (6)

with x̄ ∈ R
N in one pass. Therefore, the reverse mode

is recommended if M < N , especially for M = 1,

where the full gradient is computed in a single pass.

Carrying out a reverse sweep after a forward pass

of algorithmic differentiation allows the efficient calcu-

lation of second order derivatives, see [10, Chapter 5]

and [11]. In particular, consider F as a function map-

ping the curve

x(t) = x0 + x1t + O(t2) (7)

with the Taylor coefficients x0, x1 ∈ R
N into a curve

z(t) = F (x(t)) = z0 + z1t + O(t2) (8)

with the coefficients z0, z1 ∈ R
M . The Taylor coeffi-

cients

z0 = F (x) and z1 = F ′(x0) x1 (9)

can be computed directly in the forward mode. Ap-

plying the reverse mode with the weighting vector z̄T

yields

aT
0 = z̄T ∂z0

∂x0
= z̄T F ′(x0) (10)

aT
1 = z̄T ∂z1

∂x0
= z̄T F ′′(x0) x1 . (11)

Arbitrary second order derivatives can be obtained

from (11) by an appropriate choice of the vectors x1

and z̄, see [10].

2.2. Derivatives in the Euler-Lagrange equations

For the computation and simulation we treat q and q̇ as

independent variables and introduce v := q̇. In local

coordinates, the Lagrangian L is a map L : R
2n → R

with the isomorphism R
2n ∼= R

n × R
n. Having the

2n-dimensional state-vector

x =
(

q
q̇

)
=

(
q
v

)
,

the gradient of L is given by

∂L

∂x
=

(
∂L

∂q
,
∂L

∂v

)
. (12)

The derivative ∂L
∂q is required to formulate the equa-

tions of motion (2). The second part of the gradi-

ent (12), namely

p :=
∂L

∂q̇
=

∂L

∂v
, (13)

consists of the conjugate or generalized momenta oc-

curring in the Legendre transform [2, Section 1.4].

The second order derivative of L is represented by

the (2n × 2n)-Hessian matrix

∂2L

∂x2
=

⎛
⎝ ∂2L

∂q2
∂2L

∂q∂v

∂2L
∂v∂q

∂2L
∂v2

⎞
⎠ . (14)

Due to the symmetry of second derivatives we have

∂2L

∂q∂v
=

(
∂2L

∂v∂q

)T

.

With (12) and (14) we have all derivative required in (2)

and (3).

2.3. The principle of operator overloading

The software package ADOL-C used in the following

as a variant for implementing algorithmic differentia-

tion makes use of the principle of operator overload-

ing [10]. In this section this principle is discussed in

Function value F (x, y) Derivative values ∂F (x, y)/∂x ∂F (x, y)/∂y

x 3.0 ẋ 1.0 0.0

y 4.0 ẏ 0.0 1.0

v1 := y2 16.0 v̇1 := 2yẏ 0.0 8.0

v2 := x + v1 19.0 v̇2 := ẋ + v̇1 1.0 8.0

v3 := sin(v2) 0.149877 v̇3 := v̇2 cos(v2) 0.988705 7.90964

v4 := xv3 0.449632 v̇4 := ẋc3 + xv̇3 3.11599 23.7289

z := v4 0.449632 ż := v̇4 3.11599 23.7289

Table 1. Simultaneous calculation of the function value and the values of directed derivatives of the example

function z = F (x, y) = x sin(x + y2) in the forward mode of algorithmic differentiation

more detail. The key idea of operator overloading in

algorithmic differentiation is to make use of the fact

that every mathematical expression can be decomposed

into a sequence of basic mathematical operations like

+, −, ∗, /, sin, log, etc. For each of these opera-

tions the differentiation rules can be easily applied, e.g.

(xy)′ = x′y + xy′. If one introduces a new C++ class

ddouble holding not only the value of the variable

but also its derivative, e.g.

c l a s s ddoub le

{

p u b l i c :

double v a l ; / / f u n c t i o n v a l u e
double d e r ; / / d e r i v a t i v e v a l u e

} ;

one is able to utilize operator overloading in order to

easily compute the derivatives of each element of an

expression and by making use of the chain rule of arbi-

trary complex expressions as well.

For that we have to provide the usual binary opera-

tions for the new class ddouble. For example, in case

of multiplication we have

ddoub le operator ∗ (ddoub le x , ddoub le y)

{

ddoub le z ;

z . v a l = x . v a l ∗y . v a l ;

z . d e r = x . v a l ∗y . d e r +y . v a l ∗x . d e r ;

}

Furthermore, we have to replace all differentiable

functions (e.g. sin, cos, exp, log) that act on the

type double by appropriate methods for the class

ddouble such that in addition to the function value

one also computes the derivative value using elemen-

tary differentiation rules in connection with the chain

rule. For example, one has

ddoub le s i n (ddoub le x)

{

ddoub le z ;

z . v a l = s i n (x . v a l) ;

z . d e r = x . d e r ∗ cos (x . v a l) ;

}

By this approach it is guaranteed that all derivatives

are computed using floating point accuracy, i.e., avoid-

ing truncation and cancellation errors.

3. THE SOFTWARE-PACKAGE ADOL-C

In this section we describe the software-package

ADOL-C [12, 13] offering one possibility of imple-

menting algorithmic differentiation. It is based on the

programming language C/C++ and uses the method of

operator overloading. Other variants for implemen-

tation of algorithmic differentiation exist like source-

code transformation which are not discussed here (e.g.,

see [10, 14, 15] for more details).

3.1. Preparation of code

In ADOL-C in a first step the code representing e.g. a

scalar valued function F : R
N → R is marked as a

so called active section. Input and output variables are

assigned as variables of type adouble, similar to the

type ddouble discussed above. For example, if one

has the function

z = F (x1, x2) =
√

x1 + x3
2

a possible implementation could look like this:

t r a c e _ o n (t a g) ; / / Active section start

/ / Active variables
a d o u b l e ax1 , ax2 , az ;

double x1 , x2 / / point of expansion
double z ; / / function value

/ / Assignment of independents
ax1 <<= x1 ;

ax2 <<= x2 ;

/ / Evaluation
az = s q r t (x1)+pow (x2 , 3) ;

/ / Assignment of dependents
az >>= z ;

t r a c e _ o f f () ; / / Active section end

Fig. 1. Workflow in ADOL-C for generating and ac-

cessing the tape.

This code creates a data structure called tape hold-

ing the trace of the function evaluation. This tape is

used in the following for the calculation of the sev-

eral types of derivatives using so called drivers which

are discussed in the next section. The tape has only

to be created once a time for an aribitrary input value

x0. This holds as long as there are no user defined

quadratures and all comparisons involving adouble
variables yield the same result. Thus, repetitive calls

of the drivers for different input values differing from

the values the tape was generated from may follow. The

drivers acting on these tapes provide a C as well as C++

interface, i.e., once a tape is generated it can be used

even in environments that do not support C++. The

tape is referenced by the integer tag.

3.2. ADOL-C Drivers

In this section we describe four of the several

drivers that ADOL-C provides: forward, reverse,

gradient, and hessian. Each of these drivers acts

on the tapes generated before.

3.2.1. Drivers for forward and reverse mode

Given a tape of the sufficiently smooth function F :
R

N → R
M and the Taylor coefficients X = (xk) of

the series expansion

x(t) = x0 + x1t + · · · + xd + O(td+1) (15)

of the curve x of the independent variable one can com-

pute the Taylor coefficients Z = (zk) of the series ex-

pansion

z(t) = F (x(t)) = z0+z1t+· · ·+zd+O(td+1) (16)

using the ADOL-C function forward:

i n t f o r w a r d (tag ,M, N, d , keep , X, Z)

s h o r t i n t t a g ; / / tape tag of F
i n t M; / / number of dependent variables
i n t N; / / number of independent variables
i n t d ; / / highest derivative degree d
i n t keep ; / / flag for reverse mode preparation
double X[N] [d + 1] ; / / Taylor coeffs. X = (xk)
double Z [M] [d + 1] ; / / Taylor coeffs. Z = (zk)

In reverse mode, ADOL-C computes the vectors

a0,a1, . . . as given in (10), (11). They are obtained

by calling the ADOL-C function reverse:

i n t r e v e r s e (tag ,M, N, d , z ,A)

s h o r t i n t t a g ; / / tape tag of F
i n t M; / / number of dependent variables
i n t N; / / number of independent variables
i n t d ; / / highest derivative degree d
double z [M] ; / / weighting vector z
double A[N] [d + 1] ; / / resulting A = (ak)

Note that the 2-dimensional arrays are allocated as

arrays of pointers.

3.2.2. Gradient

Next to several other drivers, ADOL-C provides some

easy-to-use drivers computing the most frequently used

derivative objects. The gradient F ′(x) of a scalar val-

ued function F : R
N → R can be obtained by the

driver gradient:

i n t g r a d i e n t (t ag , N, x , g)

s h o r t i n t t a g ; / / tape tag of F
i n t N; / / number of independent variables
double x [N] ; / / independent vector x
double g [N] ; / / resulting gradient F ′(x)

3.2.3. Hessian

If one is interested in the N×N -Hessian matrix F ′′(x)
of the function F one may call the driver hessian:

i n t h e s s i a n (tag , N, x ,H)

s h o r t i n t t a g ; / / tape tag of F
i n t N; / / number of independent variables
double x [N] ; / / independent vector x
double H[N] [N] ; / / resulting Hessian matrix F ′′(x)

The full operating principle of ADOL-C is sketched

in Figure 1.

4. MATLAB INTERFACE TO ADOL-C

When simulating complex mechanical systems using

MATLAB/SIMULINK one may be confronted with

the fact that the gradient and the Hessian of the La-

grangian L may be required as discussed in Sections 1

and 2. In order to avoid calculating these elements,

e.g. by hand or by a computer algebra system, we of-

fer an interface from MATLAB to ADOL-C. As will be

shown it is only required to provide the Lagrangian on

its own as a snippet of C++ code while the gradient and

Hessian are computed by the corresponding ADOL-C

drivers wrapped into Matlab.

MATLAB by itself provides an API to the program-

ming language C. Using this API it is possible to write

functions which can be called from MATLAB using

its usual syntax. However, these functions are exe-

cuted as compiled code in contrast to functions written

in MATLAB’s scripting language which is interpreted.

While the first ones are in fact binary libraries (with

the file extension mexw32 under 32-bit MS Windows

and .mexglx under 32-bit Linux), the latter ones are

textfiles with the extension .m.

Now the idea is to use this API as a wrapper for

the call of the required ADOL-C functions. This is an

easy task for wrapping the ADOL-C drivers since one

only has to pass the arguments from MATLAB to the

ADOL-C functions in an appropriate manner and vice

versa. A little bit more complicated is the generation of

the tapes from the C++ source code. In order to make

this procedure as easy as possible for the user the fol-

lowing procedure is specified by the framework:

1. The user provides the function which is going to

be taped as pure C++ code, without any headers,

preprocessor derictives, etc. For example, if one

wants to generate the tape of the function z =√
x1 + x3

2, the user just has to provide a file with

a single line of valid C++ code:

z [0] = s q r t (x [0]) + pow (x [1] , 3) ;

The only prerequisite is that the independents

x1, x2, . . . are named as x[0], x[1], The

same holds for the dependents z1, z2.

Fig. 2. Workflow under Matlab for generating and ac-

cessing the tape.

2. The user has to call the mex-function

madTapeCreate with appropriate parameters

telling MATLAB the number of dependents and

independents. Then a script is called building an

intermediate C++ file which is than compiled,

linked against ADOL-C and executed in order

to generate the corresponding tape. This tape is

stored on the hard disk using the name of the file

which contained the code snippet.

3. By opening the previously generated tape

using madTapeOpen one receives a handle

to the tape which can be used to access the

tape using the ADOL-C drivers wrapped into

MATLAB. The tape is kept persistently into

mi ... link masses

li ... link lengths

ri ... distances of the

centers of gravity

Ii ... moments of inertia

of the links

qi ... joint angles

u1 ... torque of active joint

Fig. 3. Underactuated two link manipulator in horizon-

tal plane (top view).

memory between successive calls of the drivers

until the function madClose is called. The

drivers are prefixed by mad in MATLAB.

Thus, the drivers discussed in Section 3.2

are called madForward, madReverse,

madGradient, and madHessian.

The workflow of this procedure is sketched in Fig-

ure 2. This procedure requires a C/C++ compiler in-

stalled on the system. Our wrapper has been suc-

cessfully tested under Windows using MS Visual C++

2008/2010 and MinGW/GCC as well as under Linux

using GCC.

5. EXAMPLE: UNDERACTUATED
MANIPULATOR

In this section we consider the underactuated two-

link manipulator in the horizontal plane (cf. Fig. 3)

as a simple but famous mechanical benchmark sys-

tem [16, 17, 18]. As shown in [19] this system violates

the so called Brockett condition [3], which means that a

single equilibrium point cannot be stabilized by means

of a continous time-invariant state feedback. From a

perspective of linear time-invariant systems theory this

leads to an uncontrolable linearization.

Due to the absence of potential energy the La-

grangian is identical to the kinetic energy

L = T =
1
2
(a1q̇

2
1+a2(q̇1+q̇2)2+2a3q̇1(q̇1+q̇2) cos q2)

(17)

with the parameters a1 = I1 + m1r
2
1 + m2l

2
1, a2 =

I2 + m2r
2
2 and a3 = m2l1r2.

From (3) together with (17) it is obvious that the

manipulator system is in rest whenever the angular ve-

locities and the input torque vanish. This means that the

set of equilibrium points consists of the whole config-

uration manifold Q. One of the simplest control strate-

gies is to stabilize not a single equilibrium point but a

submanifold Q1 of Q. In particular, this can be done

by applying a simple PD-feedback law on the first joint

u1 = −kdq̇1 − kp(q1 − q1,d), kd, kp > 0 (18)

with the desired position q1,d. In [19] it is shown that

this controller renders the set

Q1 := {q ∈ Q : q1 = q1,d} (19)

asymptotically stable.

To simulate this control system using the proposed

method, in principle one only needs to implement the

Lagrangian (17) and the control law (18). However,

if there are additional non-conservative generalized

forces acting on the joints, they have to be introduced

seperately. For example we assume a viscous friction

in the second joint, i.e.,

u2 = −dq̇2 (20)

with the coefficient d > 0. Given the Lagrangian (17)

as a snippet of C++ code and treating q, q̇ as indepen-

dent variables (cf. Section 2.2, then, after having cre-

ated the corresponding tape using madTapeCreate,

the functions madGradient and madHessian can

be used for implementation of the model under MAT-

LAB/SIMULINK.

The simulation was carried out with the normalized

parameters a1 = 0.025, a2 = 0.01, a3 = 0.009, kp =
0.5, kd = 0.2, d = 0.002, the desired position q1,d and

the initial values q(0) = (90◦, 45◦)T and q̇(0) = 0.

The simulation results are shown in Fig. 4 and 5.

0 2 4 6 8 10
t in s

0.0
0.2
0.4
0.6
0.8
1.0

q i
/π

q1

q2

Fig. 4. Angles of the underactuated manipulator.

0 2 4 6 8 10
t in s

−3
−2
−1

0
1
2
3
4
5

q̇ i
in

s−
1

q̇1

q̇2

Fig. 5. Angular velocities of the underactuated manip-

ulator.

6. SUMMARY AND OUTLOOK

We suggested a method for a direct simulation of holo-

nomic mechanical systems based on its Lagrangian.

The derivatives required by the Euler-Langrange equa-

tions are calculated using algorithmic differentiation.

In principle, this approach can be extended to non-

holonomic systems [20], because the same types of

derivatives are required. However, the systems dy-

namics are formulated in terms of differential-algebraic

equations, whose numerical solution is much more

complicated [21, 22].

A similar concept was introducted in [23], where

the mechanical system is formulated in terms of the

Hamilton equations of motion. This approach requires

only first order derivatives, but the usage of the Hamil-

ton equations is less common in engineering.

7. REFERENCES

[1] W. Nolting, Grundkurs Theoretische Physik 2,
Analytische Mechanik, Springer-Verlag, Berlin,

4th edition, 2004.

[2] D. D. Holm, T. Schmah, and C. Stoica, Geometric
Mechanicas and Symmetry: From Finite to Infi-
nite Dimensions, Oxford University Press, 2009.

[3] R. W. Brockett, “Control theory and analyti-

cal mechanics,” in Geometric Control Theory,
Lie Groups: History, Frontiers, and Applications,

C. F. Martin and R. Hermann, Eds., vol. VII, pp.

1–46. Math Sci Press, Brookline, MA, 1976.

[4] J. Baillieul, “The geometry of controlled mechan-

ical systems,” in Mathematical Control Theory,

J. Baillieul and J. C. Willems, Eds., chapter 9, pp.

322–354. Springer-Verlag, New York, 1998.

[5] A. J. van der Schaft, “System theory and me-

chanic,” in Three Decades of Mathematical Sys-
tem Theory, H. Nijmeijer and J. M. Schumacher,

Eds., vol. 135 of Lecture Notes in Control and In-
formation Science. Springer, 1989.

[6] H. Nijmeijer and A. J. van der Schaft, Nonlinear
Dynamical Control systems, Springer, New York,

1990.

[7] S. Wolfram, The MATHEMATICA Book, Cam-

bridge University Press, 1999.

[8] J.-M. Cornil and P. Testud, An Introduction to
Maple V, Springer, 2001.

[9] “Maxima, a computer algebra system,” http:
//maxima.sourceforge.net/.

[10] A. Griewank and A. Walther, Evaluating Deriva-
tives: Principles and Techniques of Algorithmic
Differentiation, SIAM, 2nd edition, 2008.

[11] A. Walther, “Computing sparse hessians with au-

tomatic differentiation,” ACM Transactions on
Mathematical Software (TOMS), vol. 34, no. 1,

pp. 3:1–3:15, 2008.

[12] A. Griewank, D. Juedes, and J. Utke, “ADOL-

C: A package for automatic differentiation of al-

gorithms written in C/C++,” ACM Trans. Math.
Software, vol. 22, pp. 131–167, 1996.

[13] A. Walther, A. Griewank, and O. Vogel, “ADOL-

C: Automatic differentiation using operator over-

loading in C++,” Proc. in Applied Mathematics
and Mechanics, vol. 2, no. 1, pp. 41–44, 2003.

[14] Ch. Bischof, A. Carle, G. Corliss, A. Griewank,

and P. Hovland, “ADIFOR — Generating deriva-

tive codes from Fortran programs,” Scientific Pro-
gramming, vol. 1, no. 1, pp. 11–29, 1992.

[15] C. H. Bischof, H. M. Bücker, B. Lang, A. Rasch,

and A. Vehreschild, “Combining source trans-

formation and operator overloading techniques to

compute derivatives for MATLAB programs,” in

Proc. Second IEEE International Workshop on
Source Code Analysis and Manipulation. 2002,

pp. 65–72, IEEE Computer Society.

[16] A. De Luca, S. Iannitti, R. Mattone, and G. Ori-

olo, “Underactuated manuipulators: Control

properties and techniques,” Machine Intelligence
and Robotic Control, vol. 4, pp. 113–125, 2002.

[17] C. Knoll and K. Röbenack, “Sliding mode control

of an underactuated two-link manipulator,” Proc.
in Applied Mathematics and Mechanics, vol. 10,

no. 1, pp. 615–616, 2010.

[18] C. Knoll and K. Röbenack, “Control of an un-

deractuated manipulator using similarities to the

double integrator,” in Proc. 18th IFAC World
Congress, 2011.

[19] G. Oriolo and Y. Nakamura, “Control of mechan-

ical systems with second-order nonholonomic

constraints: Underactuated manipulators,” in

Proc. of the 30th Conf. on Decision and Control,
Brighton, England, Dec. 1991, pp. 2398–2403.

[20] A. M. Block et al., Nonholonomic Mechanics and
Control, Springer, 2003.

[21] E. Griepentrog and R. März, Differential-
Algebraic Equations and Their Numerical Treat-
ment, vol. 88 of Teubner-Texte zur Mathematik,

Teubner Verlagsgesellschaft, Leipzig, 1986.

[22] K. E. Brenan, S. L. Campbell, and L. R. Pet-

zold, Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, SIAM,

Philadelphia, 2nd edition, 1996.

[23] S. Palis and F. Palis, “Mechanical system simu-

lation via automatic differentiation,” in Proc. of
Advanced Problems of Mechanics, 2010.

