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Abstract � IP  networks  transfer  huge  amounts  of  data  

and information all over the word. The operator maintains 
the network and monitors it continuously to detect and 
eliminate any disturbances as soon as possible. Features and 
parameters included in the IP packet headers enable the 
operator to identify lots of information about the IP traffic 

and network users. The goal of this study is to analyze the 
measurements about the IP packet header information to 
support the operators in network management and optimiza-
tion, trouble shooting, service creation and marketing. In 
this paper we propose multi-layer clustering that can reveal 
detailed description of traffic patterns and behaviour profiles 
of the network addresses. These descriptions can be en-
hanced by identifying abnormal traffic and analysing the 
reasons for such behaviour. Utilizing the measurement 

information included in the IP packet headers enables all 
these analysis tasks without violating privacy of the con-
sumers. 

Keywords: traffic pattern model, IP-traffic analysis, 
clustering anomaly detection, security monitoring 

1.  INTRODUCTION 

Network traffic monitoring is an essential task in 

operating large-scale IP networks. The operator must 

ensure that the network is able to transfer sufficient 

traffic properly in all conditions and that the service 

level meets the requirements set in service level 

agreements. Any violations of policies, direct attacks 

or large deviations from the normal situation have to 
be  detected  and  analysed  as  soon  as  possible.  For  

example, old, but still growing and evolving threat for 

network are massive distributed denial of service 

(DOS)  attacks  against  it,  from it  or  through it.  Large  

number of devices and the vast variety in their traffic 

behaviour introduce special challenges to detection of 

possible carefully disguised attacks or misuse of re-

sources. Implementations of the detection and moni-

toring mechanisms require a lot of hardware and hu-

man resources. 

Deep packet inspection (DPI) methods [1] provide 

information for policy enforcement, network protec-
tion and optimization purposes. DPI methods often 

require a lot of computation power and continuous 

effort to maintain the rules and patterns for identifying 

different higher level protocols and services used. 

Clustering and anomaly detection has also been sug-

gested  as  methods  to  profile  traffic  to  and  from  the  

servers and subscriber machines [2]. That approach 

was based on the use of information contained in the 

packet headers.  

In this paper we show how multi-layer clustering 
can be used to monitor not only the current traffic 

patterns in the network, but also to characterize serv-

ers and devices that are generating the traffic. We use 

summarized time series data of selected variables 

(parameters) that describe the traffic. All the variables 

are computed by studying the IP packet header infor-

mation. No DPI techniques need to be applied. The 

data are clustered in multiple phases. Clustering in the 

first phase divides the data into two groups of low and 

high  levels  of  traffic.  In  the  second  phase  these  two  

groups are scaled and clustered separately to form a 
number of behavioural traffic patterns describing 

typical hourly behaviour. Behavioural profiles of the 

IP addresses are formed by studying how the traffic 

generated by each address is distributed between the 

traffic patterns. The addresses are combined to groups 

of similar behaviour in the third clustering phase using 

their proportions spent in each traffic pattern. 

The information that is extracted can be used for 

multiple purposes ranging from intrusion and attack 

detection to traffic policy monitoring, service creation 

and marketing. For example, clustering can be used to 

analyse traffic and behavioural profiles of IP addresses 
accessing monitored services. This can be done so that 

the subscriber anonymity is maintained. We give also 

examples how clusters can support detection of 

anomalous traffic and changes in behaviour of ad-

dresses. 

First, in the following section we introduce the ap-

plication domain and provide descriptions of the 

measurements we use from the packet headers. In 

section 3 we present the clustering procedure of mul-

tiple phases. We provide descriptions to the properties 

of the resulting traffic patterns and behaviour profiles. 
We present the results of the anomaly detection in 

section 4. Concluding remarks are given in the last 

section. 
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2.  APPLICATION DOMAIN AND MEASURE-

MENTS 

The data were collected from a real network envi-

ronment which consists of 7682 IP addresses. The 

privacy of the users must not be compromised, there-

fore the payload was dropped out and the actual IP 
addresses were anonymised. Information from indi-

vidual packet headers of each address was summed 

within one hour time frames to form informative vari-

ables that describe the traffic. In this paper we use data 

from a period of 8 days, total of 1288770 observations 

of hourly traffic. The variables extracted from the 

packet headers are listed in Table 1. In the figures the 

variables are referred by their index. 

TABLE I.  Variables extracted from the packet headers 

Index Description of variables 

1 Number of sending sequences  

2 Number of sending sequences to different IP’s 

3 Number of receiving sequences  

4 Num of receiving sequences from distinct IP’s 

5 Number of used port numbers <= 1024 

6 Number of distinct port numbers <= 1024 

7 Number of used port numbers > 1024 

8 Number of distinct ports, number > 1024 

9 Number of sent packets 

10 Number of received packets 

11 Number of sent data 

12 Number of received data 

13 Number of TCP connections 

14 Number of UDP connections 

15 Number of ICMP packets 

3.  TRAFFIC MONITORING 

Traffic monitoring consists of several parts. First 

the data are divided into groups by clustering the 

hourly observations in two phases. The addresses are 

then divided to groups according to how their observa-

tions are distributed to the traffic clusters. The proce-

dure is depicted in Fig. 1. 

3.1.  Clustering the traffic patterns 
Clustering is a term for unsupervised methods that 

discover groups of similar observations in multivariate 

data [3]. A similarity metric is required to divide the 

observations to clusters. The most common distance 

metrics to use in clustering is Euclidean distance. It is 

sensitive to the scales of the variables and standardiza-

tion or weighting is essential to even the effect of each 

variable [4, 5, 6]. The final results of clustering are 

strongly affected by the scaling: “When done effi-
ciently, weighting and selection can dramatically 
facilitate cluster recovery. When not, unfortunately, 
even obvious cluster structure can be easily missed”
[7].

The most common standardization procedure con-

sists of subtracting the mean and dividing by the stan-

dard deviation [4]. We use a robust logarithm stan-

dardization (referred as “RLog Scaling” in Fig. 1), 

which has been found out to work well in mobile 

network monitoring data [8]. We first take a natural 

logarithm of the variable and then divide by a robust 

standard deviation: xlogs = ln(x+1) / s, where s = 

std{ln(x+1) | x > 0, x < q99} , and q99 refers to 0.99 

quantile of the variable x. Finally, the remaining mean 
is subtracted. 

Raw Data

RLog Scaling

Clustering

Traffic Patterns

Low & High

Traffic Pattern Memberships 

of IP Addresses

Clustering

Behaviour Profiles

High TrafficLow Traffic

Clustering Clustering

RLog Scaling RLog Scaling

Fig. 1.  Clustering procedure 

Traffic patterns are created by clustering the data 

in  two  phases.  The  scaled  data  are  first  divided  into  
two groups of low and high activity by k-means [9] 

algorithm. These groups are then scaled separately and 

clustered again. The optimal number of clusters is 

selected by Davies-Bouldin index [10]. Clustering in 

two phases produced traffic patterns that are more 

understandable and easier to interpret compared to 

directly clustering the data into larger number of clus-

ters. Wide range of the volume in traffic obviously 

obscures the finer details that can be extracted when 

the high and low traffic are scaled and clustered sepa-

rately. The resulting clusters are called traffic patterns 
as they represent the typical behaviour in the network. 

The centroids of the second clustering phase pre-

senting the mean values of the traffic and we call them 

traffic patterns. The patterns of both low and high 

traffic groups in the scaled space are depicted in the 
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following figures, 2 and 3. Both groups have 6 clus-

ters, named L1 to L6 in the low, and H1 to H6 in the 

high traffic group. The profiles of the low and high 

traffic have distinct shapes. The high traffic patterns 

are nearly flat; all variables are on different level, 

except variables 5 and 6 that apply to port numbers 

below 1024. The patterns of the low traffic have a 
larger variety in their shapes. 

Fig. 2.  Traffic patterns of the low traffic. 

Fig.2. presents the six traffic patterns formed from 

the hourly traffic observations that were clustered to 

the low traffic group in the first phase. As can be seen, 

there is quite a lot of variation between patterns. Two 

most distinctive patterns seem to be L4 and L6. L4 is 

the  only  pattern  in  the  small  traffic  group  that  sends  

relatively much, uses larger port numbers and also 

receives quite a lot of data. L6, on the other hand, 

receives lots of packets from several sources, doesn’t 

send much and uses relatively much UDP protocol.  
An expert can deduce what kind of service usage 

each traffic pattern represents. For example in pattern 

L4 it might be a question of P2P traffic where the 

client receives more data than it sends. In L6, the 

client equivalently sends and receives data from P2P 

network. Increased use of UDP protocol refers also to 

active use of voice over IP solutions like Skype. 

Patterns L2 and L3 seem to be quite similar to 

each other. They differ only with regard to three vari-

ables; 5, 13 and 15. Variable 5 is ‘Number of used 

port numbers <= 1024’, where L3 has larger values. 

Variable 13 is ‘Number of TCP connections’, where 
L3 gets a lower value; and index 15, ‘Number of 

ICMP packets’ where L3 has relatively the highest 

value. Pattern L2 might refer to DNS traffic that is 

used to translate human readable domain names into 

IP addresses. Respectively, L3 refers to traffic using 

ICMP protocol, which is used to clarify network prob-

lems. 

L1 and L5 use only few of the small port numbers, 

which refers to traditional client-server network traffic 

type of usage, where server offers quite a static set of 

services to the clients. This set may include services 

like, email, Web and FTP. L1 receives more data, uses 
more frequently large port numbers and uses more 

UDP protocol. 

Fig. 3.  Traffic patterns of the high traffic. 

Patterns derived from the observations in the high 

traffic group are presented in Fig 3. Pattern H6 is the 

most distinctive one. It contains traffic samples with 

very high activity: lots of data sent and received both 

to  and from several  addresses  and ports  using  all  the  

monitored protocols. 

All the other traffic patterns are more or less flat 

differentiating only with regard to general activity 

level. Three remarks can be made though. 
Pattern H3 has the lowest activity but it uses rela-

tively large number of small (<1024) ports and also 

UDP and ICMP protocols. Patterns H1 and H5 use 

relatively small amount of small ports and ICMP pro-

tocol, although otherwise they differ from each other 

only on general activity. Also patterns H2 and H4 

differ from each other basically on the general activ-

ity, but use more small ports than patterns H1 and H5. 

When comparing the low traffic patterns to the 

high traffic patterns, the latter are more difficult to 

analyze, especially by using the scaled information. In 

the low traffic there are clear differences between 
patterns but in the high traffic, scaled patterns are 

somewhat flat and only the differences in activity 

levels separate them. This can actually be considered 

as  a  sign  of  successful  scaling:  used  variables  are  in  

balance and as the used scaling is logarithmic, the 

traffic pattern centroids are quite far from each other 
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in the original multivariate space. Note that the low 

and high groups were separately scaled and thus the 

values on y axis are not comparable between those 

groups. 

The  high  traffic  patterns  H4 and H6 may refer  to  

P2P traffic. They also most probably contain some 

server type traffic. Together they are responsible of 
82% of the data transferred in the whole network. 

Patterns H1 and H5 contain traffic according to tradi-

tional client-server model because they use only a 

limited set of small port numbers (variables 5 and 6). 

Fig. 4.  Histograms of events along the time of the day in 
two traffic patterns. 

An interesting aspect of the traffic is its distribu-

tion over the day. The activity of traffic patterns varies 

over the day as depicted in Fig. 4. The daily distribu-

tions of traffic patterns L6 and H6 are quite opposite. 

This kind of information, especially about the volumi-

nous traffic that is represented by pattern H6, can be 

used in many ways in network and service planning 

and optimization. For example, all the regular data 

transfers over the network can be timed to the hours, 
where there is more available capacity in the network. 

The operator can also offer some discounts, e.g., for 

the customer that is using the network only outside the 

busy hours.  

3.2.  Behavioural profiles of the devices 
Behavioural profiles describe how the observations 

of each IP address are distributed to the traffic pat-

terns. Number of observations in the 12 traffic pat-

terns are counted for each IP address and divided by 

the total number of observations to obtain proportions 

of activity in each traffic pattern.  

Fig. 5.  Distribution of 3 IP addresses in the traffic patterns. 

Fig.5 presents three IP addresses with different 

types of behaviour. Address IP1 has complied with 

four traffic patterns during the measured period. All 

the traffic of IP1 has been in the patterns of the small 

traffic group. On the contrary, a set of traffic patterns 
of address IP2 is very large and heterogeneous. The 

address has spent some time with all the traffic pat-

terns identified from the data. The most homogene-

ously behaving address IP3 has complied only 3  traf-

fic  patterns  –  L6,  H3  and  H6  –  during  the  measure-

ment period. A small portion of its time (0.5%) that it 

has spent in L6 could be considered as an anomaly 

and the reason for it could be examined if considered 

necessary by the operator. 

The third clustering phase divides these propor-

tions into groups of similar behaviour. Centroids of 

the clusters illustrated in Fig. 6 represent the typical 
behaviour profiles for the addresses. Number of ad-

dresses in each behaviour profile group is given in the 

legend. X-axis contains the traffic clusters, 6 low 

traffic (L) and 6 high traffic (H).  
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Fig. 6  Behavioural profiles of the devices 

These behaviour profiles that describe the distribu-
tion of the traffic to and from of an IP address, seem 

to  be  more  separated  from each other  than  the  traffic  

patterns. Two profiles resemble each others, namely 

P2  and  P6.  The  only  difference  is  that  some  of  the  

activity of P6 has been mapped to the high traffic 

patterns  while  P2  stays  purely  in  the  patterns  of  the  

low traffic group. Both of them seem to connect traffic 

patterns L1, L2, L3 and L5 together, which suggest 

that these addresses are dynamically changing their 

behaviour between these patterns.  

Profiles P2 and P6 are also very important and in-
teresting as together they contain majority of the IP 

addresses in the monitored address space. 

Profile P3, on the other hand, connects traffic pat-

terns  L2  and  L3  together,  as  its  traffic  pattern  is  al-

ways in either one of them. Behaviour profile P3 has 

also a unique distribution over the time of the day. Its 

appearance seems to be limited to the working hours. 

Even the lunch break is visible in Fig.7. 

Fig. 7.  Histogram of events along the time of the day in 
behaviour profile P3. 

Profiles P5 and P7 represent similar type of activ-

ity but on distinct activity levels. P5 spends most of its 

time  in  traffic  pattern  L6  while  P7  does  the  same  in  

H6.  Other  parts  of  their  behaviour  they  spend  in  the  
same set of traffic patterns. 

Profiles P1 and P4 share their time across several 

traffic patterns. Addresses in profile P1 spend majority 

of their time in traffic patterns H2 and H4, which 

basically represent two different activity levels. Profile 

P4 contains addresses dividing their time between 

traffic  clusters  L4,  H1,  H2 and H3,  L4 and H3 being 

the most frequent ones. 

Altogether, there are 127 addresses that have activ-

ity in high traffic patterns only and almost half, 3465 

addresses that have only low traffic behaviour. 
The example addresses IP1, IP2 and IP3 in Fig.5 

were assigned to the behaviour profiles P2, P4 and P7 

respectively.  

4.  ANOMALY DETECTION 

Anomaly detection (AD) is one of the core tasks in 

data mining. Anomalies in the internet traffic data can 

reveal malfunctioning equipments, new attractive 

network service, intrusion attempts, attacks or misuse 

of  the  resources  or  just  some  rare  ways  of  using  the  

net.  
We use  an  AD method that  is  based  on Kohonen 

self organizing maps (SOM) and is able to detect 

anomalies in local neighbourhoods [8]. The whole 

data set is scaled using the robust logarithm scaling 

before applying the AD algorithm. 

It has been claimed that up to five thousand intru-

sion alerts per day can be handled manually by a big 

operator [11]. However, most operators prefer the 

information to be summarised to a reasonable level. 

The number of detected anomalies is relatively large 

and therefore it is necessary to summarise the infor-
mation contained in the anomalies. Clustering the 

detected anomalies has been appreciated by the end 

users [12].  
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Anomaly clustering supports identification of pos-

sible cause of the anomalies either automatically by 

the system or manually by an expert. This simplifies 

and speeds up analysis and selection of counter meas-

ures to reveal and fix the sources of the threatening or 

disturbing deviation.  

In this paper we selected 1000 most severe anoma-
lies, i.e. those that deviate most from their local com-

mon behaviour. These observations in the scaled space 

were clustered to reveal the common patterns in 

anomalous behaviour. Davies-Bouldin index sug-

gested four clusters. The Fig. 8 depicts logarithms of 

the means calculated from observations in the four 

anomaly clusters. 

Fig. 8.  Means of the anomalies in 4 clusters. 

The largest one of the clusters could represent the 

classical client-server usage of the network but on the 

very low activity level. Such behaviour can be either a 

sign of small scale web browsing or a beginning or an 
end  of  a  more  active  session  just  separated  from  the  

high activity session by the one hour summarization 

interval in these measurements. However, if this kind 

of low activity behaviour appears to the address that 

has been inactive for some time, it might be worth to 

monitor it for, e.g. botnet activity. 

As shown in Fig. 8, clustering is a useful tool for 

grouping the anomalies and effectively decrease the 

work load of technicians monitoring the network. 

From these four groups, they can, for example, select 

anomalies in the clusters C1, C2 and C3 and find out 

what kind of addresses are responsible for them and 
what kind of traffic behaviour they present. Such a 

report would be simple to construct automatically also 

by the monitoring software. 

5.  CONCLUSION 

In this paper we present a method for monitoring 

internet traffic utilizing the information in the package 

headers without detailed prior knowledge of the de-

vices in the network. The method is based on multiple 

levels of clustering. First the data are divided into low 
and high traffic groups. They are scaled separately and 

clustered to identify generic traffic patterns and further 

behavioural profiles for individual IP addresses. The 

introduced knowledge about traffic and behaviour 

clusters can be used in several operator tasks including 

network management and optimization, trouble shoot-

ing, service creation and marketing. 

We also apply anomaly detection for detection of 

abnormal behaviour in the network. The information 

of the detected anomalies is summarized for monitor-

ing purposes by clustering. This enhances the network 

monitoring and enables the operator to detect and 
solve problems in the network more efficiently. 

Further development is targeted towards increased 

utilization of anomaly detection in intrusion detection 

as suggested by Lippmann at al. [13]. The robustness 

of the identification of the traffic profiles will also be 

studied.
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