
urn:nbn:de:gbv:ilm1-2011imeko-035:2 Joint International IMEKO TC1+ TC7+ TC13 Symposium 
August 31st− September 2nd, 2011, Jena, Germany 

urn:nbn:de:gbv:ilm1-2011imeko:2 
 

 
 

UNCERTAINTY ANALYSIS OF IMAGE FEATURES FOR VISION  
APPLICATIONS IN SPACE 

 
Marco Pertile, Stefano Debei , Alessio Aboudan 

 
CISAS G. Colombo University of Padova, Italy 

 
 

Abstract − A detailed uncertainty analysis for the posi-
tion of image features is described. Three main uncertainty 
sources are identified and evaluated: image noise, lighting 
direction and image resolution. Since the proposed method 
does not need to acquire multiple images of the same scene 
in the same shooting conditions, it is particularly suited for 
applications with a relative motion between the camera and 
the scene and/or between the lighting source and the scene. 
The described method is applied to the images acquired 
during the recent asteroid Lutetia fly-by using the Narrow 
Angle Camera of the OSIRIS instrument. OSIRIS is a pay-
load of the Rosetta ESA space mission. The obtained nu-
merical results, including histograms and standard uncer-
tainties, are depicted and discussed. 
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1.  INTRODUCTION 
 
The detection of characteristic points, named key-

points or features, of an image is widely used in sev-
eral vision applications, e.g. shape reconstruction, 
motion and ego-motion determination and also in 
many research and technical fields, such as micros-
copy, close range and aerial photogrammetry, and 
astronomy. Feature detection is generally one of the 
first and most critical steps of image analysis. Detec-
tor algorithms find out regions that are projections of 
landmarks and can be used as features, while descrip-
tors provide representations of the detected regions. 
The 2D feature position is determined by a detector, 
while feature matching between images is performed 
using a descriptor. A suitable description allows to 
search similar regions among several images of the 
same or similar scene and to perform their matching, 
which is required for many vision applications, e.g. to 
measure the 3D position of physical landmarks. All 
vision applications employing image features can be 
seen as an indirect measurement, which takes the 
position of image features as input quantities. Thus, 
uncertainty evaluation of image features is the first 
and important step in evaluating the uncertainty of 
indirect measurement results. 

There are several algorithms for feature extraction, 
e.g. [1],[2], and some feature uncertainty analysis are 
available in literature ([3] - [5]). However, to authors’ 
knowledge, a detailed uncertainty analysis for modern 
algorithms (see [6] - [8]) and performed according to 
the Guide [9] is not available; thus, in this work, the 

uncertainty of image features found out by the Scale 
Invariant Feature Transform (SIFT) algorithms is 
evaluated. In this analysis the main uncertainty contri-
butions are evaluated according to the metrological 
procedures described in [9] and [10]. Then, the ob-
tained standard uncertainties of all contributions are 
summed together as described in [9]. 

The uncertainty analysis is applied to the images 
acquired by the Narrow Angle Camera (NAC) of the 
OSIRIS experiment during the fly-by of the asteroid 
Lutetia that the ESA Rosetta space mission performed 
in July 2010. However, the described method can be 
applied in many other research and technical fields, 
particularly, when there is a relative motion between 
the camera and the scene and/or between a light 
source and the scene. During the fly-by, NAC camera 
acquired a set of very interesting images, that can be 
used for numerous astronomical analyses, e.g. 3D 
surface reconstruction. In many of these analyses, 
there is a step of feature extraction from the sequence 
of images. The position on the image plane of the 
features detected and matched in all considered im-
ages is one of the main uncertainty source after other 
sources are evaluated, e.g. the intrinsic and extrinsic 
parameters of the camera. 

In section 2, the selected algorithm for feature ex-
traction is described, in section 3 the main uncertainty 
contributions are analysed, and in section 4 the most 
important results are illustrated. 

 
2. IMAGE FEATURES 

 
Several algorithms for feature extraction and de-

tection are known in literature. Particularly, [1] and 
[2] describe a feature detector invariant to rotation and 
based on the assumption that an interesting feature 
(e.g. a corner) exhibits nontrivial gradients along two 
independent directions. In this approach a suitable 
scalar function of the spatial gradient is built and cal-
culated in a small window moved in the image; if this 
function exceeds a predetermined threshold, the win-
dow position is considered a suitable feature, gener-
ally named Harris point. [3] presents an analytical 
method to evaluate the uncertainty of a feature posi-
tion calculated by the Harris detector. The proposed 
analytical model is compared with  results obtained by 
Monte Carlo simulation. A similar work is [4], which 



urn:nbn:de:gbv:ilm1-2011imeko-035:2 Joint International IMEKO TC1+ TC7+ TC13 Symposium 
August 31st− September 2nd, 2011, Jena, Germany 

urn:nbn:de:gbv:ilm1-2011imeko:2 
 

)

uses Taylor expansion approximation to evaluate a 
feature covariance matrix suitable for real time data 
fusion. Both in [3] and [4], only the Harris detector is 
analyzed and only the image noise (of additive type) is 
taken into account as uncertainty source. 

An interesting work is [5], which evaluates uncer-
tainty of image features detected by the Foerstner 
operator propagating the uncertainty of the intensity 
level of each pixel. This method considers the inten-
sity levels as the input quantities and propagates their 
covariance matrix with the well known propagation 
formula to evaluate the covariance matrix of feature 
positions. In [5] a non-uniform additive noise is 
deemed the main uncertainty source for the intensity 
levels of pixels, and the noise of each pixel is also 
considered correlated with the noise of the neighbor-
ing pixels. However, no other uncertainty sources are 
examined.  

[6] compares several improved detectors, and ad-
vices that one of the best performing algorithm is the 
detector employed in the method known as Scale 
Invariant Feature Transform (SIFT). This approach 
tries to find out features also in presence of scale and 
orientation variations. For this reason the SIFT ap-
proach is usually reported as invariant to variations of 
scale and orientation. The detector is based on the 
difference-of-Gaussian function convolved with the 
image: 

                 (1) 
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where the I(x,y) is the grey level of the image at 
the point (x,y); G(x,y,σ) is the 2D Gaussian function 
with variance σ2; the scale varies with σ ; ∗ denotes 
the 2D convolution; k is a constant multiplicative 
factor suitably selected. The image features are lo-
cated at the minima or maxima of D function, varying 
the position x, y and the scale σ. An orientation, calcu-
lated using the local gradient, is also associated with 
each identified feature. For more details, see [7]. 

After features are detected, their local regions have 
to be represented by a descriptor. Many different 
methods are known for describing local image re-
gions, see [8] for details. The performance of these 
methods can be evaluated by the number of correct or 
false matches between two images. [8] uses this crite-
rion to compare different descriptors and concludes 
that the Scale Invariant Feature Transform SIFT and 
the Gradient Location and Orientation Histogram 
GLOH descriptors are the best ones. For the reasons 
described above, in the present work, the SIFT detec-
tor and descriptor was chosen. The SIFT descriptor is 
of type based on a distribution, which describes the 
region around each detected feature by a 3D histogram 
of positions and orientations. The Euclidean distance 
is used to compare the descriptors of two different 
images and find out the corresponding features be-
tween images. Particularly, each feature detected in a 
first image is associated with the feature detected in a 

second image having the minimum Euclidean dis-
tance, provided that the distance is lower than a prede-
termined value. 

 
3. UNCERTAINTY SOURCES 

 
In this work three main contributions to the uncer-

tainty of feature positions are evaluated: the image 
noise, the variation of lighting conditions among im-
ages, the finite resolution of NAC camera. 

 
3.1. Image noise contribution 
The uncertainty of image features is particularly 

tricky since it depends on the scene. When the same 
scene is acquired in the same conditions, different 
images are obtained due to the uncertainty (commonly 
referred to as image noise in computer vision) associ-
ated with the image sensor and its electronics. This 
reading uncertainty is the first analyzed contribution 
to the uncertainty of image features; it depends mainly 
on the camera sensor and on the acquired scene. In 
general, images acquired by digital imaging systems 
are corrupted by a number of noise sources such as 
photon shot noise, dark current noise, readout noise, 
and quantization noise. In OSIRIS images some noise 
sources are reduced or suppressed by hardware means 
and/or software algorithms. However, a reduced level 
of noise remains in images, and should be analysed to 
evaluate the 2D position uncertainty of detected fea-
tures. Thus, the remaining noise contribution is evalu-
ated using the images acquired during the Lutetia fly-
by after preliminary elaboration. 

Images are supposed to be corrupted by additive 
noise. Our goal is to estimate the noise variance using 
only the degraded image. A very limiting requirement 
of this analysis is that only one image is available for 
a particular acquired scene and lighting conditions, 
since the relative position and orientation between 
Lutetia and OSIRIS system is continuously changing. 
Thus, two images with the same scene and the same 
acquiring conditions are not available. To address this 
problem, a large number of algorithms was published 
in the open literature. Usually these algorithms contain 
as a first step a procedure to remove the original im-
age (not affected by noise) and the noise variance 
estimation is based on some local variances computed 
from the residual. 

In [11], an algorithm for noise variance estimation, 
comprising three steps, is proposed. In a first step the 
image is preprocessed by a difference operator to 
minimize the influence of the original image. A sec-
ond step computes a histogram of local standard de-
viations and in a third step the histogram is evaluated 
in order to calculate the estimated variance. In the 
preprocessing phase, the noisy image is filtered by a 
cascade of two l-D difference operators: the first one 
along the vertical direction and the second one along 
the horizontal one. In this method, the noise signal is 
assumed to be statistically independent of the original 
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image and the noise statistics to be constant over the 
whole image. 

[12] describes an image noise estimation algorithm 
which seems very effective. The algorithm comprises 
as the first step the application of the Laplacian opera-
tor to remove the image structure. Then the image is 
divided on adjacent non-overlapping small windows 
and an edge detection algorithm is applied. Only for 
local windows that do not contain edges, the local 
variances are calculated and are grouped in a histo-
gram. In the last step, the noise variance is evaluated 
using an averaging procedure. 

In [13], a method for image noise estimation is 
presented. It comprises an edge detection to exclude 
pixels belonging to edges and a Laplacian operator to 
suppress the image structure. The Sobel operator is 
used for edge detection, and the obtained values are 
grouped in an histogram. The threshold value that 
allows to identify the edge pixels is selected from the 
accumulated histogram. In this way, the threshold 
value is adapted to different images. The noise vari-
ance is evaluated by an averaging operator applied to 
the Laplacian output, excluding the identified edge 
pixels. This method is similar to the algorithm de-
scribed in [12], but seems simpler. 

There are several known methods for combined 
noise estimation and filtering. As an example, in [14], 
the proposed technique is based on a nonlinear algo-
rithm for detail-preserving smoothing, whose filter 
depends on one parameter only. The filter parameter is 
automatically tuned using a step-by-step procedure 
that takes into consideration the mean square error 
(MSE) between subsequent pairs of processed images. 
In this kind of approaches, a drawback is that the 
noise variance of images is usually not explicitly esti-
mated. 

There are several methods, e.g. [15] - [20], for im-
age noise estimation and filtering based on wavelet 
decomposition. In these approaches, noise variance is 
usually estimated through the scaled Median Absolute 
Deviation (MAD) method. This algorithm assumes 
that the coefficients of the finest decomposition level 
(the diagonal direction of decomposition level one) are 
associated only to noise and uses the median of abso-
lute value of these coefficients for variance estimation. 
A possible improvement is described in [20], which 
presents a noise variance estimator called Residual 
Autocorrelation Power (RAP). 

The non-wavelet most interesting approaches seem 
to be the ones described in [12], [13]. In this paper, the 
method described in [13] is selected for noise evalua-
tion, since it seems as effective as the other one, and 
simpler than it, particularly when the salt and pepper 
noise is low, as in the OSIRIS images. 

In the selected method, the Sobel operator is used 
for edge detection: 

   ( )
1 2 1
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To decide if an image pixel belongs to an edge or 
not, the histogram of E is calculated, and a threshold 
value Eth is selected as the value of E when the accu-
mulated histogram reaches a predetermined percent-
age p% of the whole image. A pixel is deemed an 
edge if its E value is greater than Eth. Fixing a percent-
age p% value, instead of a fixed threshold, makes Eth 
adaptive (even if p is constant for all analyzed images, 
the threshold values Eth will depend on the image). 
After edges are detected, the selected method follows 
the approach described in [21], but excludes the pixels 
corresponding to the identified edges. Since a noise 
estimator should be insensitive to the image  Lapla-
cian, the difference between two kernels L1 and L2, 
each approximating the Laplacian of the image, is 
used as noise estimation kernel: 

1
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Thus, assuming that the noise at each pixel of 
I(x,y) has standard deviation σnoise, noise variance can 
be evaluated averaging the convolution of image I(x,y) 
and noise estimation kernel N: 

( )( ) ( )( 22 1 ,
36 2 2noise )I x y N

W H
σ = ∗

− − ∑ .    (4) 

Once the reading uncertainty (image noise) is es-
timated, it is used to evaluate the 2D position uncer-
tainty of the image features detected and matched by 
the detector and descriptor employing a Monte Carlo 
simulation. This method of uncertainty propagation is 
selected since the feature extraction algorithms are 
very complex and non-linear. The Monte Carlo simu-
lation employs a numerical function that applies detec-
tor and descriptor algorithms to two images and finds 
out the positions of corresponding features. One of the 
two employed images is kept constant, while the other 
one is calculated from the first one adding pixel by 
pixel the noise contribution every Monte Carlo itera-
tion. Finally, the feature displacements between the 
two images, calculated for all matched features and for 
all Monte Carlo iterations, are grouped in a histogram, 
that is used to evaluate the standard uncertainty uF,N 
due to image noise and associated with feature posi-
tions. 

3.2. Lighting contribution 
The lighting variation is the second analyzed con-

tribution to feature uncertainty; it is evaluated taking 
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into account a simplified geometrical model of Lu-
tetia, the OSIRIS movements and the Lutetia rotation. 
The images used for Lutetia analysis are taken in 
different time instants; thus, solar elevation θs between 
images varies mainly due to asteroid rotation with its 
sidereal period; the movement of Lutetia on its orbit is 
neglected in this analysis, since the time delay be-
tween the first and last analysed images is about 40 s, 
while the orbit period is about 3.8 Julian years. θs 
depends on the surface shape and on the considered 
position on the surface. Using a simple spherical 
model of the asteroid, if an uniform distribution of 
craters is assumed, the variations of θs between images 
can be computed by: 

( ) ( ) ( ) ( ) ( ) ( )sin cos cos cos sin sins hθ δ ϕ δ= + ϕ     (5) 

Where h is the hour angle; δ is the sun declination; 
ϕ is the local latitude on the asteroid surface. θs values 
calculated by (5) with a sun declination equal to 52° 
(the expected value during Lutetia fly-by) are depicted 
in Fig. 1. 
 

Fig. 1.  Solar elevation as a function of hour angle and local 
latitude. 

 
Craters on the asteroid surface are assumed to be 

the main cause of shadows movements.Then, if a 
simplified crater geometrical shape is assumed (circu-
lar with a substantially flat bottom surface), the dis-
placements of shadows on the surface can be evalu-
ated. These movements of shadows are then projected 
on the image plane taking into account the relative 
position between Lutetia and OSIRIS; the displace-
ments of image features due to the variation of light-
ing conditions between images are assumed to be 
equal to the movements of shadows projected on the 
image plane. All the calculated movements can be 
grouped in a histogram, which allows to calculate the 
standard uncertainty uF,L of feature positions due to 
lighting. 

The performed analysis takes into account that Lu-
tetia has an obliquity of 95° and that during Rosetta 
fly-by the northern hemisphere of the asteroid will be 
in constant sunlight (sub-solar point SSPβ equal to 
+52°), while regions below –35◦ latitude will be in a 
constant shadow, as said in [22]. The asteroid shape, 
dimensions and sidereal period are taken form [23] 

and [24]. The hypotheses about diameter and depth of 
craters are assumed according to [25] and [26]. 

 
3.3. Resolution contribution 
The third considered contribution to feature uncer-

tainty is due to the finite resolution of each image. 
Particularly, the resolution contribution is computed 
assuming an uniform probability density function 
(PDF) of width equal to the resolution value. Then, 
the computation of the standard uncertainty associated 
with an uniform PDF is performed applying the well 
known formula: 

 , 2 3F R
Au = .                                (6) 

Where A is the resolution value.  
 
Finally, the standard uncertainty uF associated with 

the position of features and due to all three considered 
contributions is evaluated according to [9], by: 

( ) ( ) ( )2 2
, , ,F F N F L F Ru u u u= + +

2
.                     (7) 

 
4.  RESULTS 

 
For the image noise contribution, in this analysis, 

the percentage p% used to calculate the threshold 
value Eth from the accumulated histogram is chosen 
equal to 50%. Assuming this value, (4) is applied to 
all images to be analyzed (6 images during the fly-by 
in this paper), and the standard deviation σnoise is 
evaluated averaging the values obtained from all im-
ages: the mean σnoise obtained is equal to 0,46, ex-
pressed in gray levels. This evaluated noise contribu-
tion is added pixel by pixel every Monte Carlo itera-
tion to the selected image; the deviation along x axis 
of all corresponding features obtained from all itera-
tions are gathered in the histogram depicted in Fig. 2, 
while displacements along y axis are shown in Fig. 3. 
 

Fig. 2 Histogram of feature displacements along x axis due 
to image noise. 

 
The obtained histograms can be employed to 

evaluate the PDFs associated to image features and 
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standard uncertainties uF,N,Y along x axis and uF,N,Y 
along y axis. 

 

Fig. 3 Histogram of feature displacements along y axis due 
to image noise. 

 
In the considered images, noise yields slightly dif-

ferent uncertainties along x and y axes: the histogram 
along x axis is a little wider than along y axis; a possi-
ble explanation of this particular result can be the 
shape and orientation of detected features, which are 
not only points but can be also slightly elongated 
blob-like features; thus, these features can exhibit 
unequal noise sensitivity along different directions. In 
the remaining of the paper, the two standard uncertain-
ties uF,N,X along x axis and uF,N,Y along y axis are used, 
instead of the standard uncertainty uF,N of total dis-
placement (see Tab.1). In this application, the image 
noise and the corresponding uncertainty contribution 
are relatively small, due to the pre-processing of 
OSIRIS images. 

 
TABLE I.  Evaluated standard uncertainties 

Uncertainty Value [pixels] 
uF,N,X 0.12 
uF,N,Y 0.08 
uF,L 0.12 
uF,R 0.29 
uF,X 0.34 
uF,Y 0.32 

 
 

Fig. 4 Histogram of solar elevation variations evaluated on 
the Lutetia surface due to the rotation about its spin axis. 

 

For the lighting contribution, the analyzed images 
are acquired with a maximum time distance equal to 
40s; this time interval is used to calculate the varia-
tions of solar elevation on Lutetia surface. The ob-
tained histogram of these variations is depicted in Fig. 
4. 

This graph exhibits one central and two lateral 
peaks: the central one is associated with surface posi-
tions having an initial solar elevation near their local 
maximum and local minimum (when present) values, 
i.e. the slope of the solar elevation curves illustrated in 
Fig. 1 is about zero; these surface positions experience 
near zero variations of solar elevation in presence of 
small variations of the hour angle; the two lateral 
peaks are associated with surface positions having the 
maximum slope of the curves depicted in Fig. 1. In 
this analysis, according to [25] and [26], a mean di-
ameter equal to 5000m and a mean depth equal to 
500m are assumed. With these hypothesis the histo-
gram of shadows variations depicted in Fig. 5 is ob-
tained. 

 

Fig. 5 Histogram of shadow movements on Lutetia surface 
due to the rotation about its spin axis.. 

 
Finally, using the mean distance between Lutetia 

and the spacecraft and the intrinsic parameters of 
NAC, the standard uncertainty uF,L of feature positions 
due to lighting shown in Tab.1 is evaluated. The sim-
plified geometrical model used to evaluate shadow 
movements does not allow to distinguish between 
movements along x axis and along y axis; thus, the 
evaluated uncertainty contribution is assumed equal 
along both axes. 

The calculated resolution contribution uF,R is 
shown in Tab.1, this contribution does not depend on 
the direction axis x or y. 

The obtained numerical values of the standard un-
certainties uF,X along x axis and uF,Y along y axis for 
all considered contributions are shown in the two 
bottom lines of Tab.1 These small numerical results 
can be explained by the low presence of noise in pre-
processed images and by the small difference of ac-
quisition time between the considered images. 

 
5.  CONCLUSION 

 
A detailed uncertainty analysis for the position of 

image features is described. The proposed method is 
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particularly suited for applications with a relative 
motion between the camera and the scene and/or be-
tween the lighting source and the scene, since it does 
not need to acquire multiple images of the same scene 
in the same shooting conditions. Three main uncer-
tainty sources are identified and evaluated: image 
noise, lighting direction and image resolution. The 
described method is applied to the images acquired by 
the Narrow Angle Camera of the OSIRIS instrument, 
which is flying with the ESA Rosetta space mission. 
The obtained numerical results, including histograms 
and standard uncertainties, are depicted and discussed. 
The evaluated standard uncertainty of all contributions 
is below 1 pixel, which is a very good result. This 
achievement is due to the low noise present in the 
OSIRIS images and to the reduced delay between the 
first and the last analyzed images. 
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