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Abstract

The concept of broadband coherent supercontinuum (SC) generation in all-normal dis-
persion (ANDI) fibers in the near-infrared, visible and ultraviolet (UV) spectral regions
is introduced and investigated in detail. In numerical studies, explicit design criteria are
established for ANDIi photonic crystal fiber (PCF) designs that allow the generation of
flat and smooth ultrabroad spectral profiles without significant fine structure and with
excellent stability and coherence properties. The key benefit of SC generation in ANDi
fibers is the conservation of a single ultrashort pulse in the time domain with smooth and
recompressible phase distribution. In the numerical investigation of the SC generation
dynamics self-phase modulation and optical wave breaking are identified as the dominant
nonlinear effects responsible for the nonlinear spectral broadening. It is further demon-
strated that coherence properties, spectral bandwidth and temporal compressibility are
independent of input pulse duration for constant peak power. The numerical predictions
are in excellent agreement with experimental results obtained in two realizations of ANDi
PCF optimized for the near-infrared and visible spectral region. In these experiments,
the broadest SC spectrum generated in the normal dispersion regime of an optical fiber
to date is achieved. The exceptional temporal properties of the generated SC pulses are
verified experimentally and their applicability for the time-resolved study of molecular
dynamics in ultrafast transient absorption spectroscopy is demonstrated. In an addi-
tional nonlinear pulse compression experiment, the SC pulses obtained in a short piece of
ANDi PCF could be temporally recompressed to sub-two cycle durations by linear chirp
compensation. Numerical simulations show that even shorter pulse durations with excel-
lent quality can be achieved by full phase compensation. The concept is further extended
into the UV spectral regime by considering tapered optical fibers with submicron waist
diameter. It is shown that coherent SC spectra with considerable spectral power densi-
ties in the usually hard to reach wavelength region below 300 nm can be generated using
these freestanding photonic nanowires. Although technological difficulties currently pre-
vent the fabrication of adequate nanofibers, the concept could be experimentally verified
by coherent visible octave-spanning SC generation in tapered suspended core fibers with
ANDiI profile. The work contained in this thesis therefore makes important contributions
to the availability and applicability of fiber-based broadband coherent SC sources with

numerous high-impact applications in fundamental science and modern technology.






Deutsche Zusammenfassung

Die extreme spektrale Verbreiterung von ultrakurzen Lichtpulsen wahrend der Propaga-
tion durch ein nichtlineares Medium ist bekannt als Superkontinuumserzeugung (SKE).
Die Erzeugung von Kontinua mit mehreren hundert Nanometern spektraler Bandbreite in
Kristallen oder Glasfasern ist zwar ein lange bekannter Effekt, doch wurde das Feld mit
der Erfindung der sogenannten photonischen Kristallfaser (PCF) revolutioniert. Diese
speziellen mikrostrukturierten optischen Glasfasern erlauben es, die Dispersions- und
nichtlinearen Eigenschaften durch eine geeignete Wahl der Mikrostruktur zu verdndern.

Das Ziel der vorliegenden Arbeit ist die Entwicklung optimierter Fasern fiir breitbandig
kohérente und spektral gleichférmige Superkontinuumserzeugung fiir Ultrakurzpulsan-
wendungen, wie zum Beispiel zeitaufgeloste Spektroskopie, Pulskompression, optische
Frequenzmesstechnik oder Telekommunikation. Der iibliche Ansatz, bei dem die Faser in
Wellenléngenbereichen mit anomaler Dispersion gepumpt wird, produziert zwar sehr bre-
ite Spektren, jedoch ist die Dynamik durch den Zerfall des Eingangspulses in mehrere Soli-
tonen gepragt und reagiert zudem sehr empfindlich auf Quantenrauschen des Pumplasers.
Dadurch weisen die Kontinua iiblicherweise sehr starke Puls-zu-Puls Fluktuationen in
Phase und Intensitét, niedrige zeitliche Kohérenz sowie komplexe spektrale und zeitliche
Profile auf. Durch diese Eigenschaften sind die Kontinua nur sehr bedingt fiir Ultra-
kurzpulsanwendungen geeignet. Die Herausforderung dieser Arbeit ist es deshalb, den
ungewollten Zerfall des Eingangspulses und die Rauschsensitivitit zu vermeiden und den-
noch ein ausreichend breites Spektrum zu erzeugen.

In der vorliegenden Dissertation wird durch ausgedehnte numerische Studien
gezeigt, dass diese Anforderungen erfiillt werden konnen, indem die speziellen Design-
moglichkeiten von PCF genutzt werden um Fasern mit normaler Dispersion bei allen
Wellenldngen zu erzeugen. Sie werden auch als "all-normal dispersion PCF" (ANDi PCF)
bezeichnet. Die Studien zeigen, dass Femtosekundenpulse in Fasern mit flachen ANDi
Profilen und minimaler Dispersion bei der Pumpwellenldnge sehr glatte und kohérente
Spektren ohne signifikante Feinstruktur erzeugen kénnen, die mehr als eine Oktave breit
sind und gleichzeitig einen rekomprimierbaren zeitlichen Puls mit stabiler Phase erhalten.
Die guten Kohérenzeigenschaften, spektrale Bandbreite und Rekomprimierbarkeit dieser
Kontinua sind fiir konstante Spitzenleistungen unabhingig von der Dauer des Pump-
pulses. Dies ist ein grosser Vorteil gegeniiber der konventionellen Superkontinuumserzeu-
gung, bei der strikte Kriterien beziiglich der Dauer des Eingangspulses gelten, um gute
zeitliche Kohérenz zu gewéhrleisten.

Die numerischen Voraussagen werden in experimentellen Umsetzungen von ANDi PCF

iiberpriift und durch kohérente Superkontinuumserzeugung im sichtbaren und infraroten



Spektralbereich bestétigt. Dabei wird mit einem iiber mehr als 900 nm oder 1.5 Oktaven
ausgedehnten Spektrum das breiteste Kontinuum demonstriert, das bisher im normalen
Dispersionsbereich einer Faser erzeugt werden konnte.

Die Erhaltung eines einzigen ultrakurzen Pulses in der Zeitdoméane wird demonstriert,
indem das erzeugte Kontinuum als Probepuls in zeitaufgeloster transienter Absorptions-
spektroskopie eingesetzt wird. Dieses Experiment demonstriert zugleich, dass die in ANDi
PCF erzeugten Superkontinua hervorragend fiir die Untersuchung zeitaufgeldster moleku-
larer Dynamik geeignet sind.

Die exzellente Phasenstabilitit der erzeugten Superkontinuumspulse wird weiterhin in
einem nichtlinearen Pulskompressionsexperiment benutzt, in dem das in einem kurzen
Stiick ANDi PCF erzeugte Kontinuum durch lineare Chirpkompensation zu ultrakurzen
Pulsen mit 5.0 fs Dauer und sehr guter Qualitéit komprimiert wird. Mit Hilfe von nu-
merischen Simulationen wird ausserdem gezeigt, dass mit voller Phasenkompensation
noch kiirzere Pulse erzeugt werden kénnen. Im Gegensatz zur Kompression von kon-
ventionellen Superkontinua ist die erreichbare Pulsdauer und Qualitét nicht beschrénkt
durch die Kohérenzeigenschaften des Kontinuums und das Konzept ist iibertragbar zu
langeren Eingangspulsen und Faserldngen.

Das Konzept der breitbandigen kohérenten Superkontinuumserzeugung wird ebenfalls
zu ultravioletten (UV) Wellenlidngen iibertragen, indem die zusétzliche Designflexibilitét
von getaperten Fasern ausgenutzt wird. Freistehende Nanofasern mit Durchmessern von
weniger als einem Mikrometer besitzen Dispersionsprofile, die den vorher untersuchten
PCF sehr dhnlich sind, jedoch fiir sehr kurze Pumpwellenlingen um 400 nm optimiert
sind. Durch numerische Berechnungen wird gezeigt, das diese Nanofasern Superkontinua
mit hoher spektraler Leistungsdichte im bisher nur sehr schwer erreichbaren Bereich von
unterhalb 300 nm Wellenldnge ermdoglichen. Obwohl technologische Schwierigkeiten in der
Herstellung geeigneter Nanofasern die experimentelle Verifikation dieser Ergebnisse bisher
verhindern, konnte das Prinzip durch kohérente, mehr als eine Oktave breite Superkon-
tinuumserzeugung im sichtbaren Spektralbereich in einer mikrostrukturierten Faser mit
"suspended core" Design experimentell bestétigt werden.

Obwohl kohérente Superkontinuumserzeugung im normalen Dispersionsbereich op-
tischer Fasern bereits frither demonstriert wurde, wird dieses Konzept durch die vor-
liegende Arbeit zu neuen Dimensionen gebracht und auf eine solide Grundlage gestellt.
Durch das Verstdndnis der Dynamik und die Erstellung konkreter Designkriterien wird
die spektrale Bandbreite dieser Kontinua in Grossenordnungen gebracht, die vorher nur
von der Erzeugung der Spektren im anomalen Dispersionsbereich bekannt waren. Gleich-
zeitig profitieren die Kontinua von geringer Rauschsensitivitdt, glatten spektralen und
zeitlichen Profilen, geringer Feinstruktur und rekomprimierbarer Phasenverteilung, die
typisch fiir den normalen Dispersionsbereich sind. Die Mdoglichkeit, Kontinua mit diesen
Eigenschaften mit relativ langen Eingangspulsdauern zu erzeugen, erhoht die Verfiig-
barkeit und die Verwendbarkeit von faserbasierten kohdrenten Superkontinuumsquellen.
Die vorliegende Dissertation bietet daher eine wichtige Grundlage fiir zukiinftige Ent-

wicklungen und Fortschritte in Grundlagenforschung und moderner Technologie.
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1. Introduction

Nonlinear fiber optics has experienced a boost in research interest with the invention of
the photonic crystal fiber (PCF) [1, 2, 3] and the subsequent demonstration of extreme
nonlinear spectral broadening or supercontinuum (SC) generation [4, 5]. Although SC
generation was demonstrated earlier in bulk materials and standard nonlinear fibers [6,
7, 8], the possibility of controlling the dispersion characteristics in PCF is revolutionary.
The bandwidth and properties of the generated SC spectrum are critically dependent on
the relationship between pump wavelength and dispersion profile of the fiber, and the
design flexibility of PCF enables the adaption of the fiber to available pump sources and
the tailoring of the SC properties to the requirements of specific applications [9, 10]. In
addition, PCF offer enhanced nonlinearity compared to conventional fibers [11] and can
exhibit single-mode behaviour over broad wavelength ranges [12]. These unique properties
of PCF allow SC generation over a much wider range of source parameters than has been
possible in conventional fibers or bulk media, and high brightness broadband spectra
have been generated using pump pulses from the femto- to the nanosecond regime as
well as using continuous wave (CW) sources [13, 14, 15, 16]. Consequently, PCF based
SC generation has been widely applied in diverse research fields such as spectroscopy
[17], optical coherence tomography [18] and telecommunications [19]. However, the most
prominent application is certainly in optical frequency metrology and carrier envelope
phase control, which culminated in the award of the 2005 Nobel Prize in Physics to Hall
and Hénsch [20, 21].

The generation of ultra-broadband and simultaneously highly coherent spectra puts
demanding requirements on the pump source. In the conventional setup using a fiber
with single zero dispersion wavelength (ZDW) and pumping in the anomalous dispersion
regime, highly stable pulses of typically less than 50 fs duration and nanojoule pulse en-
ergies are necessary to maintain high temporal coherence [22]. The broadening dynamics
are in this case dominated by soliton dynamics, in particular the break-up of the injected
pulse due to soliton fission [23]. For longer pulses, the SC generation dynamics become
very sensitive to fluctuations of the input pulse and pump laser shot noise due to the
increasing noise amplification through modulation instability (MI) gain [24, 25]. Conse-
quently, these ultra-broad SCs are characterized by a complex temporal profile and phase
distribution, considerable fine structures over their spectral bandwidth and in addition
exhibit pulse-to-pulse variations in intensity and phase if not pumped by extremely short
pulses [26, 27].

The noise sensitivity is often a precision or resolution limiting factor and a relaxation

of the pump source requirements would be beneficial for many applications [28, 29]. A
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highly coherent broadband spectrum, uniform and smooth spectral power densities, the
conservation of a single pulse in the time domain with stable and recompressible phase
distribution or combinations thereof are especially critical for applications in which the
temporal profile and phase stability of the SC pulse is of importance. This includes, for
example, time-resolved spectroscopic measurements, amplification of SC pulses in para-
metric processes, few- or single-cycle pulse compression as well metrology and telecommu-
nication applications. Therefore, considerable research effort has been directed towards
fiber designs limiting the detrimental effects of soliton dynamics on coherence properties
and spectral fine structure.

One approach to achieve coherent and recompressible SC spectra has been the sup-
pression of soliton fission in PCF with convex and flattened dispersion profile exhibiting
two closely spaced ZDWs centered near the pump [30]. The resulting stable and coher-
ent SC features two distinct spectral peaks on the normal dispersion side of each ZDW
[31], and has found successful application in coherent anti-Stokes Raman scattering mi-
croscopy [32], but the missing spectral content in between the two ZDWs is not ideal for
applications requiring continuous broadband spectra. This type of PCF has also been
numerically investigated in a taper configuration having all-normal dispersion after a
certain distance, which was shown to result in improved stability [33].

In a further development of this concept, improved spectral flatness has been achieved
by using dispersion-flattened dispersion-decreasing fibers (DF-DDFs) [34]. Starting with
a profile with two ZDWs, the convex dispersion longitudinally decreases from anomalous
to normal values in the vicinity of the pump. This leads to a decreasing separation
of ZDWs until the dispersion is normal at all wavelengths. The decreasing anomalous
dispersion induces adiabatic soliton compression that prevents fission, followed by the
generation of dispersive waves which create a coherent spectrum over the bandwidth
[35]. However, there is a restriction on the soliton number of the input pulse to maintain
the coherence and, consequently, applications of DF-DDFs have been mainly found in
telecommunications using low peak power picosecond pulses and the spectrum exhibits
a ~ 20 dB peak around the pump wavelength [36].

Soliton dynamics and the associated problems can also be avoided when pumping oc-
curs entirely in the normal dispersion regime, but this is usually associated with signifi-
cantly reduced spectral bandwidths due to the fast temporal broadening of the input pulse
[37]. Especially if only longer pump pulses with durations of a few hundred femtoseconds
are available, there seems to be a trade-off between maximizing spectral bandwidth by
anomalous dispersion pumping or achieving high coherence by normal dispersion pump-
ing [25]. However, the results described above give an indication that the optimization
of the fiber dispersion properties may overcome the limitations of this trade-off, and the
transition from fibers with two ZDWs to all-normal dispersion (ANDi) fibers seems espe-
cially interesting. Reports of stable ultraflat SC generation in fibers with AND] profiles
(which remain constant during propagation) at wavelengths of 1550 nm and above further
emphasize the importance of this fiber type [38, 39], but design and scaling possibilities

have never been investigated in detail.



The main objective of this thesis is therefore the development of optimized optical
fibers for pulse-preserving and spectrally uniform broadband coherent SC generation for
ultrashort time-resolved applications, focussing on silica fibers with convex dispersion
profiles. The influence of the fiber design and input pulse parameters on the generated
spectrum and resulting pulse profile is examined in detail with the aim of optimizing
the SC generation process in such a way that (i) a single pulse is maintained during the
propagation through the fiber; (ii) this pulse is recompressible, preferably by simple means
such as a grating or a prism pair; and (iii) a broadband, stable, and flat-top spectrum
with a high spectral power density over the entire bandwidth is achieved. Ideally, these
properties should also be obtainable for pump pulses of a few hundred femtoseconds
duration.

The thesis is structured in the following way: chapter 2 briefly reviews the properties,
involved nonlinear effects and dynamics of conventional SC generation in fibers with sin-
gle ZDW under anomalous dispersion femtosecond pumping and details the challenges
that need to be addressed in the thesis. The numerical model used for the simulation
of nonlinear pulse propagation in optical fibers and its implementation details are dis-
cussed in chapter 3, and the conservation quantity error method (CQEM) is introduced
as a novel and highly efficient longitudinal step size adaption algorithm. In chapter 4, a
comprehensive survey over possible PCF design and input pulse parameters is presented,
focussing on the pump wavelength of Ytterbium-doped fiber lasers around 1 ym. De-
sign criteria are established for the optimization of spectral bandwidth and flatness. It
is shown that more than octave-spanning highly coherent and uniform spectra can be
generated in optimized ANDI fibers, which are virtually independent of the input pulse
duration for constant peak power.

The main experimental results of the thesis are presented in chapter 5. The numerical
predictions of the previous chapter are confirmed and octave-spanning SC generation in
two realizations of ANDi PCF optimized for pumping in the visible and near-infrared
spectral regions is demonstrated. The conservation of a single pulse in the time domain
with smooth phase distribution and its applicability in ultrafast transient absorption
spectroscopy is experimentally verified. The stable and smooth spectral phase of the
SC is exploited by demonstrating temporal recompression of the generated SC pulse to
sub-two cycle duration simply by linear chirp compensation.

Chapter 6 transfers the design concepts developed in chapter 2 to tapered nanofibers
and tapered suspended core fibers exhibiting all-normal dispersion profiles with the aim of
extending the SC bandwidth towards shorter wavelengths. The possibility of generating
coherent SCs in the deep ultraviolet (UV) regime by 400 nm pumping of tapered fibers
with sub-micron diameter waist is analyzed numerically and the conditions for experi-
mental success are specified. The concept is proven with the experimental demonstration
of coherent visible SC generation in tapered suspended core fibers, and fiber designs are
specified that would allow further extension of the SC bandwidth towards the UV range.

Finally, and outlook is given and future scaling possibilities are briefly discussed in

chapter 7.






2. Conventional supercontinuum

generation in optical fibers

Nonlinear fiber optics is a very mature field of research and the processes responsible for
SC generation have been investigated for a wide range of fiber and pump pulse parameters.
Excellent books and review articles are available in literature [8, 25, 35, 40]. Therefore,
the purpose of this chapter is not a comprehensive overview of the field, but a very brief
review of the involved nonlinear effects and generation dynamics applicable to the scope
of the thesis.

SC generation in optical fibers can roughly be divided into two regimes by consider-
ing the duration of the employed pump pulses. If the SC is generated with femtosecond
pulses, soliton dynamics usually play the key role in the spectral broadening process, while
for picosecond, nanosecond or CW pumps modulation instability /four-wave mixing dom-
inates the initial broadening process. Consequently, the properties of the generated SCs
in the two regimes are generally quite different. While SCs generated with femtosecond
pump pulses can be highly coherent both temporally and spatially, in the long pump
pulse regime the generation dynamics are usually seeded by random noise, which leads
to substantial shot-to-shot fluctuations and therefore the loss of temporal coherence [25].
Since the objective of this thesis is the development of optical fibers for highly coherent
and pulse-preserving SCs relevant to ultrafast time-resolved applications, the discussion
will be limited to the case of femtosecond pumping.

The most commonly considered configuration in SC generation with femtosecond pulses
is the pumping in the anomalous dispersion regime close to the single ZDW of the fiber.
This will be referred to as conventional SC generation throughout this document. Here a
summary of the involved dynamics and the properties of this SC type is provided, which
will be used as reference for comparison in the later chapters of the thesis.

The general argumentation of this chapter follows the discussions in [25, 41, 42]. Al-
though numerical simulations are used to illustrate certain dynamics, the chapter focusses
on the physical description of the involved processes. The numerical details and imple-

mentation are discussed in chapter 3.

11
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2.1. Physical mechanisms

2.1.1. Dispersion

The relationship between pump wavelength and the dispersion profile of the fiber is one
of the most important factors determining the characteristics of the generated SC. It
has been found that the broadest more than octave-spanning spectra can be generated
when pumping occurs close to the ZDW of the fiber in the anomalous dispersion region
[43]. In conventional silica fibers the dispersion is dominated by the material dispersion,
and the ZDW is located in the vicinity of 1.3 pum wavelength, which is far from the
emission wavelength of the most commonly employed femtosecond pump sources based
on Ti:sapphire (800 nm) or Ytterbium (1 gm). PCF possess additional design degrees
of freedom that allow the engineering of the dispersion profile, its adaption to specific
pump sources and the tailoring of the generated SC properties to specific applications
[44]. In PCF, the light is guided in a silica core, which is surrounded by a photonic crystal
cladding of air holes, most commonly arranged in a hexagonal lattice structure (Fig. 2.1
a)). Note that the expressions "PCF" and "microstructured fiber" are used in this thesis
synonymously to refer to the type of fiber that guides light on the basis of total internal
reflection - bandgap guiding fibers are not considered. For small core diameters, the
photonic crystal cladding has a significant influence on the waveguide dispersion, which
is added to the material dispersion of silica to yield the total dispersion profile of the
fiber. By adjusting the two design parameters pitch A and relative hole diameter d/A,
the position of the ZDW can be controlled and shifted far into the visible. Additionally,
the slope of the dispersion profile is also adjustable within certain limits, which enables for
example the design of PCF with two ZDWs. Additional design flexibility arises through
the change of the fiber dimensions by tapering or by using rings of air holes with different
sizes or structures other than hexagonal, which will be considered in chapter 6 of this
thesis.

The dispersion characteristics of PCF can be obtained by numerically solving the
vectorial transverse wave equation. Both commercial packages (Comsol Multiphysics) and
free software based on the multipole method (CUDOS MOF, [45]) are used in this thesis.
In addition, an analytical method to obtain dispersion and effective mode field diameter
of the fundamental mode is useful for quick calculations and surveys over multiple fiber
geometries [46, 47], but the validity of the method over the desired parameter range should
first be confirmed by numerical packages. Fig. 2.1 b) shows the numerically calculated
group velocity dispersion (GVD) profile of the PCF with A = 1.8 um and d/A = 0.8 as

well as the contributions of material and waveguide dispersion. Here the GVD dispersion

paramater D = —(2mc/A\?), is used, where ) is the wavelength, ¢ the vacuum speed of
light and 82 = %vi is related to the angular frequency variation of the group velocity
g

vg. The wavelength range where D < 0 (82 > 0) is called the normal dispersion regime,
in which the group velocity decreases with wavelength. The opposite is the case in the
range with D > 0 (82 < 0), which is called the anomalous dispersion regime. The ZDW

is located where D = 0, in this case at around 780 nm. The figure clearly illustrates that
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Figure 2.1. — a) Schematic illustration of a photonic crystal fiber (PCF) with hexagonal
lattice of air holes in a silica background. The core is formed by a defect in
the lattice structure. The fiber design parameters pitch A and hole diameter
d are indicated. b) Wavelength dependence of material, waveguide and total
dispersion of a PCF with A = 1.8 ym and d/A = 0.8. The zero dispersion
wavelength is located around 780 nm. The regions of normal and anomalous
dispersion are indicated.

the waveguide dispersion adds a significant normal dispersion component to the material
dispersion of silica such that the dispersion profile is essentially shifted upwards, which
causes the shift of the ZDW towards the visible wavelengths.

GVD is a linear effect and in the absence of nonlinearity leads to a temporal broadening
of an initially transform-limited pulse in both normal and anomalous dispersion regimes.
In the presence of nonlinearity, however, the sign of the GVD becomes an important
factor and determines the effects participating in the spectral broadening dynamics [48].

2.1.2. Self-phase modulation

Self-phase modulation (SPM) arises from the intensity dependence of the refractive index
and leads to spectral broadening of optical pulses [49]. Neglecting the influence of disper-
sion and loss in the fiber, the time dependent temporal intensity I(t) of an optical pulse
causes a modulation of the refractive index n = ng+noI(¢), with ng and ny the linear and
nonlinear refractive index, respectively. In order to be consistent with the parameters
used in the later chapters of this thesis, the intensity is written as I(t) = Py/AesU(t)
with the peak power Py, effective mode field area A.g and normalized intensity profile
U(t). The intensity dependent refractive index introduces a time dependent phase ®(t)
and consequently a time dependent instantaneous frequency

P aU(t)

w(z,t) = g =« Py 5t

Z, (2.1)

where the nonlinear parameter vy = (nawg)/(cAes) is introduced [48]. SPM therefore
creates new spectral components, whose separation from wyg increase with nonlinearity,

peak power, slope of the pulse and propagation distance z. At the leading edge of the
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Figure 2.2. — a) SPM induced spectral broadening for a Gaussian pulse shape and different

max

values of the maximum nonlinear phase shift d; . Spectrogram of the pulse
with &1 = 5.57.

pulse, where the slope of the rising intensity profile is positive, the spectrum is broadened
towards red shifted lower frequencies, while a broadening towards blue shifted higher
frequencies is introduced at the trailing pulse edge, where the slope of the intensity
profile is negative.

As an example, Fig. 2.2 a) shows the SPM induced spectral broadening for a Gaussian
pulse shape and different values of the maximum nonlinear phase shift 5" = yFyz. The
most remarkable feature is the development of an oscillatory structure in the spectrum. In
general, the spectrum consists of many peaks, and the outmost peaks are the most intense.
The number of peaks and the spectral broadening depend on the magnitude of ®j* and
increase linearly with it. Fig. 2.2 b) makes use of the spectrogram representation to
illustrate the time - frequency correlation of the pulse with ®{* = 5.57 and summarizes
the most important features of SPM-induced spectral broadening. While the temporal
pulse shape remains unaffected, the spectrogram clearly shows the red shift on the leading
and the blue shift on the trailing pulse edge. The central section exhibits an almost linear
chirp, i.e. the instantaneous frequency varies linearly in time, which leads to the typical
S-shape of the spectrogram. Spectral interference of identical spectral components being
present at different temporal positions within the pulse can be identified as the origin of
the oscillatory spectral structure.

SPM occurs if the modulation of n is caused by the pulse itself. However, this mod-
ulation can also be caused by a co-propagating pulse, in which case a coupling due to
cross-phase modulation (XPM) occurs [48].

If dispersion is included into the discussion, fundamentally different behaviour can be
observed in the two dispersion regimes. SPM and normal dispersion lead to a simulta-
neous temporal and spectral broadening. The interaction of SPM and normal dispersion
is crucially important for the interpretation of the results in this thesis and will be dis-
cussed in detail in section 4.4. In the anomalous dispersion regime, SPM and dispersion

can balance each other and lead to the formation of solitons.
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Figure 2.3. — Spectral and temporal evolution of a N = 4 soliton with propagation dis-
tance z over one soliton period zg.

2.1.3. Soliton dynamics

A soliton is formed when the nonlinear chirp induced by SPM is balanced by the linear
chirp from GVD in the anomalous dispersion regime, i.e. when 82 < 0 and higher order
dispersion terms can be neglected [50]. Solitons are solutions to the nonlinear Schrédinger
equation (3.7) and their temporal electric field envelope (3.5) can be described as A(t) =
Nsech(t/ty), where ty is a measure of the pulse width and N is called the soliton number.
It is determined by both pulse and fiber parameters through N? = Lp /Lyy, where Lp =
t3/182| and Lni, = 1/(vFy) are the dispersive and nonlinear length scales, respectively.
For the fundamental soliton with N = 1, both temporal and spectral profiles remain
unchanged during propagation. Higher order solitons with N > 1 undergo a periodic
spectral and temporal evolution, which is illustrated in Fig. 2.3 for the example of a
N = 4 soliton. Here the fiber parameters 33 = —14.8 ps? /km and v = 0.08 W~ lm~! of
the PCF from Fig. 2.1 were used for an initial pulse with 850 nm central wavelength,
to = 28.4 fs (corresponding to 50 fs full width at half maximum) and Py = 3.68 kW. The
propagation distance over one soliton period z., = (7/2)Lp is considered. The initial
nonlinear spectral broadening and associated temporal compression is characteristic for
all higher order solitons, while the subsequent evolution varies for different N [48]. A high
peak-power femtosecond pulse injected into the anomalous dispersion regime of a fiber
generally evolves into a soliton with N >> 1 [51], and the initial stage of the spectral

broadening process is qualitatively similar to this example.

Soliton fission

The perfect periodic evolution of higher order solitons is only stable in the absence of any
perturbation. In reality, the presence of higher order dispersion and Raman scattering
perturbs the soliton evolution and the injected higher order soliton breaks up into a train
of fundamental solitons, whose number is identical to the initial soliton number N [52].

The fundamental solitons are ejected one by one, the ones ejected first having the highest
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Figure 2.4. — Spectral and temporal evolution of the SC generation process in the PCF
of Fig. 2.1, pumped in the anomalous dispersion regime at 850 nm with a
50 fs, 10 kW input pulse.

amplitude and shortest duration [53]. This break-up is called soliton fission and occurs
typically after a distance of Lgss & Lp/N when the initial soliton reaches its maximum
bandwidth [25].

Soliton self-frequency shift and dispersive wave generation

After the soliton fission, each individual fundamental soliton experiences a shift to longer
wavelengths due to the soliton self-frequency shift caused by intra-pulse Raman scattering
[54]. Quantum-mechanically this process can be interpreted by the scattering of a photon
by a silica molecule, resulting in a lower frequency photon and a higher vibrational
state of the molecule. The dynamics of the frequency shift vr can be described as
dvg/dz o< |Ba]/t3 |55], which leads to a stronger shift for the the first ejected solitons
from the fission process and therefore to an increasing separation between the individual
solitons with propagation distance. In addition, the presence of higher order dispersion
can lead to energy transfer from the solitons to a resonance band in the normal GVD
regime, which is referred to as the dispersive wave. Its position can be determined from

a phase-matching argument [56].

2.2. Deconstruction of supercontinuum generation
dynamics

While the above discussion focussed on the most important isolated nonlinear effects,
Fig. 2.4 shows the full simulation of the SC generation process in the PCF of Fig. 2.1,
pumped with the 50 fs input pulse at 850 nm already considered in the discussion of soliton
dynamics, but with a higher peak power of 10 kW. The corresponding soliton number
is N = 6.6. The initial dynamics of spectral broadening and temporal compression are

similar to the evolution of a higher order soliton shown in Fig. 2.3. After about 1.5 cm
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Figure 2.5. — Spectrogram of the generated SC after 15 cm propagation distance.

soliton fission takes place, caused by higher order dispersive and nonlinear perturbations.
The input pulse, which forms a higher order soliton inside the fiber, breaks up into
its fundamental constituents, as can be clearly seen in the temporal evolution, where
the first ejected fundamental soliton with the highest peak power is indicated. Each
ejected soliton subsequently shifts to longer wavelengths due to the soliton self-frequency
shift and transfers energy to a dispersive wave (DW) in the normal GVD regime. At
longer wavelengths, the solitons experience a larger amount of GVD and are slowed down
with respect to the retarded time reference frame which travels at the envelope group
velocity of the input pulse. As discussed above, the first ejected soliton experiences the
highest amount of frequency shift and is therefore clearly temporally separated from
the subsequent solitons. Its red-shifting spectral signature (S) is clearly identifiable in
the spectral evolution. After ca. 2 cm, the broadening of the spectrum is essentially
concluded, only the self-frequency shift of this highest peak power soliton extends the
spectrum further into the infrared.

Even more insight into the origin of the complex temporal and spectral features of
the generated SC can be obtained from the time-wavelength correlations visible in the
spectrogram in Fig. 2.5, in which the dispersive properties of the fiber are evident by the
parabolic variation of the group delay with wavelength. The fundamental solitons are
lined up according to their amplitude, and the prominent spectral feature on the long
wavelength side can immediately be identified as the spectral signature of the highest
amplitude soliton. The oscillatory structure in the central section of the SC spectrum
is explained by spectral interference of the overlapping bandwidths of the subsequent
solitons. In addition, the temporal signature of the dispersive wave becomes identifiable
as a low level pedestal at the trailing edge of the pulse. Finally, temporal beating between
distinct wavelengths components are the origin of low level complex temporal structures

and fast oscillations.
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Figure 2.6. — Temporal coherence and stability calculations from an ensemble of 20 indi-
vidual simulations including noise for pump pulse durations of 50 fs, 100 fs
and 150 fs at a fixed peak power of 10 kW and 10 em propagation distance.
Top: coherence function |g'}(\)|. Center: individual spectra (grey) and
mean spectrum (red). Bottom: Four randomly selected temporal profiles at
the fiber end, displayed with 10 kW offsets.

2.3. Coherence and stability

Up to now, all shown simulations were obtained from single shot calculations. However, it
has been shown that depending on the considered parameter regime the SC generation can
be very sensitive to input pulse shot noise and fluctuations introduced by spontaneous
Raman scattering, resulting in considerable shot-to-shot variations of the output SC
[22, 24]. The noise sensitivity can be numerically investigated by including stochastical
parameters into the simulations, as described in section 3.1.2, and comparing the results
of 20 individual simulations obtained with different noise seeds. The fluctuations are
characterized by the spectrally resolved modulus of first order coherence at zero path
gg) (A, t1 —t2 = 0)| (3.11), which yields a positive number in the interval [0;1]

with the value of 1 representing perfect coherence. Fig. 2.6 shows the calculated coherence

difference

function as well as spectral and temporal fluctuations for identical fiber parameters as
above, but for varying input pulse durations and shorter propagation distance of 10
cm. For the 50 fs input pulse | g](é)()\l ~ 1 over almost the entire bandwidth indicates
high stability of the output SC, which is confirmed by the absence of both spectral and

temporal fluctuations. For higher pump pulse durations, however, temporal and spectral
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shot-to-shot fluctuations become significant and the coherence is degraded significantly.

The spectral bandwidth increases for longer pulse durations, because the pulse energy
is increased to keep a constant peak power. The figure also illustrates that the mean
spectrum, which would be measured by a slow spectrometer averaging over many shots,
appears smoother for longer pump pulse durations, although in reality increasing shot-
to-shot fluctuations are present.

It is interesting to note that setting the Raman gain to zero and repeating the sim-
ulations yields similar coherence properties, indicating that the input pulse shot noise
is the main reason for decoherence. In literature, the mechanism of decoherence for the
longer pump pulse durations is attributed to noise seeded modulation instability (MI),
which induces soliton fission before other perturbations such as higher order dispersion
or Raman scattering become significant [25]. The position where soliton fission occurs is
therefore random and its products completely incoherent. In contrast, the initial spectral
broadening for shorter pulses is very fast and spectral overlap with the maximum MI gain
is obtained before noise seeded amplification becomes significant. This results in coherent
seeding of the MI gain bandwidth and therefore a more deterministic occurrence of soliton
fission. The ratio of soliton fission characteristic length Lgss and the characteristic length
of MI Ly = L /2 [48] determines the degree of coherence. The ratio is proportional
to N, and therefore a critical value N¢.; =~ 10 of the soliton number exists above which
soliton fission will be initiated by MI thus changing the nature of the continuum from
coherent to incoherent. For longer pulses, the peak power needs to be drastically reduced
to maintain coherence. Hence, continua with practically usable spectral power densities
generated with pump pulses longer than 100 fs are typically incoherent.

It is important to understand that both input pulse shot noise and spontaneous Raman
scattering are quantum noise sources and therefore intrinsic to the SC generation process.
In contrast, additional technical noise sources such as pump laser power fluctuations
and beam pointing stability are not considered here, because they can be eliminated by

optimizing the experimental conditions [24].

2.4. Advantages and challenges

It is clear from the discussion above that conventional SC generation in microstruc-
tured optical fibers offers a number of advantages compared to SC generation in bulk
media or standard optical fibers. However, especially in the context of applications
in which the temporal profile and coherence of the SC is of importance, such as
time-resolved spectroscopy, telecommunications, optical parametric amplification and
pulse compression, some of the discussed properties become problematic and represent
challenges that require careful control of the nonlinear processes involved in the spectral
broadening dynamics. Without claiming completeness, both advantages and challenges

are summarized in the following list.
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Advantages:

e spectral bandwidth: the enhanced nonlinearity and modified dispersion properties
of PCF allow the generation of more than octave-spanning potentially highly co-
herent spectra with pulse energies below 1 nJ, which enables the use of relatively
simple unamplified pump sources. In contrast, the generation of similar bandwidths
in bulk media requires significantly more complex sources and pulse energies in the

uJ regime.

e spatial profile: the broadband single mode guiding properties of PCF result in a
uniform spatial profile, which ensures excellent spatial coherence properties. Fila-

mentation effects in bulk media often lead to more complex spatial profiles.

e design possibilities: the high index contrast between silica core and air holes leads to
a significant contribution of the waveguide dispersion, which is extremely sensitive
to the cladding geometry and allows the adaption of the dispersion properties to

the requirements of specific pump sources and applications.

e conversion efficiency: the wavelengths conversion from the pump to spectral wings
is generally highly efficient, in the final spectrum the pump wavelength is usually
not more prominent than the rest of the spectrum. In contrast, the conversion in
bulk is generally less efficient, which results in a dominant spectral peak around the
pump wavelength with a low level SC background. Filtering of the pump is usually

required for the subsequent application.
Challenges:

e pulse conservation: in conventional SC generation, the spectral broadening is inher-
ently connected to the breakup of the injected pulse due to soliton fission, resulting
in highly complex temporal profiles and phase distributions. In time-resolved spec-
troscopy, for example, this causes a severe degradation of temporal resolution. In
pulse compression, the complex phase distribution significantly limits the practi-
cally achievable pulse duration and quality. It would therefore be desirable if soliton

fission is suppressed and a single ultrashort pulse is maintained in the time domain.

e spectral uniformity: the highly structured nature of the spectra shown above is
problematic for applications which require, for example, spectrally uniform sensi-
tivity and signal-to-noise ratios or fast readout of the spectra and hence cannot use
sensitive but slow spectrum analyzers. The variation of spectral intensity with wave-
length is also undesirable in the development of fiber-based tunable sources based on
parametric processes or pulse compression to the single-cycle regime. Consequently,

the spectral broadening dynamics have to be optimized to increase spectral flatness.

e coherence: a major drawback of conventional SC generation is its sensitivity to
input pulse shot noise, which puts demanding requirements on the pump sources if

highly coherent spectra are desired. It is highly desirable to relax these requirements
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and make highly coherent broadband SC generation possible for longer input pulse
durations as well. Therefore, the noise-seeding of MI gain bandwidths needs to be

suppressed.

In the following chapters of the thesis, these challenges will be addressed and resolved,
mainly by exploiting the advantage of substantial design possibilities in PCF and tapered
optical fibers. Extensive numerical simulations are used to establish optimized fiber
designs in order to achieve more than octave-spanning SCs while suppressing soliton
fission and maintaining a single pulse in the time domain. The conditions for optimizing
the spectral flatness are investigated in detail, and the development of special fibers
exhibiting normal dispersion at all wavelengths prevents MI entirely. This allows the
use of pump pulses with several hundred femtoseconds duration without degradation
of the coherence properties. The numerical results are confirmed by experiments and
applications in transient absorption spectroscopy and few-cycle pulse compression show

the enormous potential of this novel SC type.






3. Numerical modelling of ultrashort

pulse propagation in optical fibers

The numerical modelling of ultrashort nonlinear pulse propagation in optical fibers plays
an important role in a variety of applications and research areas. The approach of de-
scribing the evolution of the pulse envelope leads to a nonlinear Schrédinger equation
(NLSE), which has been extensively used to simulate optical fiber communication sys-
tems. It describes the effects of second order dispersion and SPM and has proven very
successful to simulate the propagation of low power pulses with durations of a few pi-
coseconds through optical fiber networks. In the case of supercontinuum generation by
femtosecond pulses with high peak powers and high nonlinearities, however, higher order
dispersive and nonlinear processes have to be included, resulting in a generalized NLSE
(GNLSE) [48]. Both NLSE and GNLSE are reviewed in the first part of this chapter.
Numerical modelling based on the GNLSE is used extensively in this thesis for analyz-
ing the underlying physics of the complex supercontinuum generation process, facilitating
the design of fibers for coherent supercontinuum generation and tailoring of the contin-
uum properties to specific applications such as time-resolved spectroscopy and ultrashort
pulse compression. Since the numerical computation of solutions for the GNLSE can be
time consuming, fast algorithms are required. The two key ingredients for an efficient

implementation are

e an accurate numerical integration scheme and

e an intelligent control of the longitudinal spatial step size.

While highly efficient numerical integration schemes adapted to the requirements of
the GNLSE are available, which are discussed in section 3.2, adaptive step size methods
were simply transferred to GNLSE calculations from standard partial differential equation
solvers, which leave room for improvement. Therefore, the conservation quantity error
method (CQEM) was developed in this project as a highly efficient adaptive step size
method, which is specifically designed for the GNLSE and its associated integration
schemes. The CQEM is explained in detail in section 3.3.2 for the example of the GNLSE
and the findings are transferred to the NLSE and extended to include linear loss. Finally,
in section 3.3.3 the performance of the CQEM is evaluated in combination with two
different integration schemes and compared to the established local error method (LEM).

Parts of this chapter were published in [57].

23



3.1. Nonlinear Pulse Propagation Equations 24

3.1. Nonlinear Pulse Propagation Equations

The electric field of an electromagnetic pulse, linearly polarized along the z-axis, can be
defined as [41]

-

1
En(7,t) = 57 {En (@, 5,) exp(—isit) + ..} (3.1)

Here Z is the unit vector in z-direction. E;V is scaled to the actual electric field E in

units of V/m by
. 1 .
Ey = Scocn E, (3.2)

where € is the vacuum permittivity, ¢ the speed of light and n the refractive index. In

the frequency domain, the Fourier transform of En(z,y, z,t) is

En(z,y,z,w) = F(x,y, w)fl(z;w — wp) exp(ifoz), (3.3)

where A(z, w) is the complex spectral envelope, wy is the center frequency of the pulse
and By the wavenumber at that frequency. F(z,y,w) is the unit-less transverse modal

distribution with effective mode field area

(0172 1P )Pdndy)”

Aot (w) = (3.4)
JI7o | F (2, y, w)[*dady
The time-domain envelope is obtained from
Az, t) = F ! {A(z w— wo) / A(z,w — wp) exp[—i(w — wo)t]dw, (3.5)
where due to the scaling in (3.2) the amplitude is normalized such that |A(z,t)|? yields

the instantaneous power in Watts and F~! denotes the inverse Fourier transform. The
change of the pulse envelope A as the pulse propagates along the fiber axis z can then

generally be expressed as

0A(z,T)

=t = (b + N) A(z,T), (3.6)

where T' =t — 31z is the retarded time for a frame of reference travelling at the envelope
group velocity vy = 81 L D is the dispersion operator and N is the nonlinear operator
[48].

3.1.1. Nonlinear Schrédinger equation

The NLSE describes the propagation of optical pulses with durations in the picosecond

regime in the presence of second order dispersion and SPM, so that the operators in (3.6)
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are given by

s B 9P«
D= —i5gm 3
N = AP, (3.7)

where (5 is the second order dispersion parameter, « is the absorption coefficient and
v = nawp/cAer (wo) is the nonlinear coefficient, with ng ~ 3.0x1072° m? /W the nonlinear
refractive index of silica and Aeg(wp) the effective mode field area of the fiber, evaluated

at the center angular frequency of the pulse [48].

3.1.2. Generalized nonlinear Schrodinger equation

In order to obtain the GNLSE, higher order dispersive and nonlinear effects are explicitly
included. A version that is widely used for the numerical simulation of supercontinuum

generation defines the operators in (3.6) as [58]:

. a Z'n—l on
D = -2-Sp— 2
2 ZB nl OT™
n>2

NA(Z7 T) = Z’Y <1 + Z'7—shock g)

o0

X |:A(Z,T) </OO R(t’)|A(z,Tt’)|2dt’+z'F(z,T))] . (38)

D models linear loss and higher order dispersion effects with the dispersion coefficients 3,
associated with the Taylor series expansion of the propagation constant 3(w) around the
center frequency wp. The time derivative in the nonlinear operator includes the effects of
self-steepening and optical shock formation, characterized on a time scale Tghock = 1/wp.
The response function R(t) = (1 — fr)d(t) + frhr(t) contains both instantaneous and
delayed Raman contributions, where §(¢) is the Dirac delta function and fr = 0.18
representing the fractional contribution of the delayed Raman response. For the Raman
response function of silica fiber hg(t), the analytical expression
7'12 + 722

hgr(t) = P exp(—t/72) sin(t/71)0(t) (3.9)

introduced in [59] is used, with 7 = 12.2 fs, 7o = 32 fs and the Heaviside step function
o(t).
Inclusion of noise

Noise is included into the simulations in order to investigate the temporal coherence

properties. I' models the effect of spontaneous Raman scattering with the frequency
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domain correlations given by

(D(z, ) (2, ) = 2110

[T [ r(Q)]| [ren (192]) + O(=Q)]0(z — 2')d(Q2 — &), (3.10)
with Q = w — wg and 1y, (Q) = [exp(hQ/kpT) — 1]~ the thermal Bose distribution [60].
Input pulse shot noise is modelled semi-classically by the addition of one photon per
mode with random phase on each spectral discretization bin (see appendix A.5). The
noise sensitivity of the generated spectra is then characterized by calculating the modulus

of the complex degree of first-order coherence at each wavelength [22]

(B (N t1)Ea(\ t2))
VIEI(L )P B (N 82)]%) |

95 (At — t2)‘ = (3.11)

Angular brackets indicate an ensemble average over independently generated pairs of SC
spectra and ¢ is the time measured at the scale of the temporal resolution of the spec-
trometer used to resolve these spectra. In order to focus on the wavelength dependence of
the coherence, |gg) |(\) at t; —to = 0 is used. In this thesis, 20 independent spectra with
random noise seeds are simulated resulting in 190 unique pairs, which are sufficient for
the calculation of the ensemble average. At each wavelength bin, (3.11) gives a positive
number in the interval [0;1] with the value 1 representing perfect coherence. Spontaneous
Raman noise and input pulse shot noise are only considered where coherence properties

are calculated, while in all other simulations I' = 0.

Frequency domain formulation

Although versions of the GNLSE have been derived in both time and frequency domain,
the time domain formulation presented above is most often found in literature. However,
from the perspective of numerical efficiency and accuracy, a frequency domain formulation

offers several advantages:

e The time domain formulation (3.8) contains several time derivatives, which can only
be calculated approximately in the discrete numerical case with a finite number of
sample points and therefore lead to numerical errors. These derivatives vanish
when the equation is transformed into the frequency domain due to the Fourier
transform replacement property 9/0t <+ —i(w — wg). Therefore, both dispersive
and nonlinear operators can be applied in an approximation-free manner. The
frequency domain formulation is therefore fundamentally more accurate than the

time domain formulation.

e It is possible to directly include the frequency dependence of effects such as linear

loss and effective mode field area, which are usually neglected in the time domain.

e The convolution in N in (3.8) is transformed into a simple multiplication in the
frequency domain using the Fourier convolution theorem F( [*_A(r)B(t—7)dr) =

A(w)B(w), which takes significantly less computational time to compute.
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When transformed into the frequency domain, the GNLSE can be written as [61]

% = <b w) + N(z,w)) A(z,w),
D) =~ 1 i(Bw) — Bulew —wo) — Bluwo)),
]\A/(z,w)fl(z,w) = iy (1 + h w0w0>

xf{A(z,T) []-‘*1 (R(w)}' (\A(z,T)|2)) + ir(z,T)] } (3.12)

Here R(w) is the Fourier transform of the Raman response function R(t). Due to the
stated advantages, this version of the GNLSE is implemented for the calculations in this

thesis.

Dispersion of the nonlinearity

The dispersion or frequency dependence of the nonlinearity is responsible for effects such
as self-steepening and optical shock formation, characterized on a time scale of Tgpocx and
modelled in the time domain formulation of the GNLSE (3.8) by the derivative term in
N or by the fraction (w —wy)/wp in the frequency domain formulation (3.12). Additional
dispersion of the nonlinearity results from the frequency dependence of the effective mode

field area Aqg(w)(3.4), which is included in the nonlinear parameter

NawWo

y(w) = Ay (@)’ (3.13)
It has been shown that this frequency dependence can be included in the time domain
version of the GNLSE in an approximative manner by a first-order correction to Tghock
[58]. In the frequency domain (3.12), v(w) can be included explicitly. However, it was
demonstrated in [62] that this is also only an approximative treatment as the GNLSE was
derived under the assumption of constant . Instead, a new version of the GNLSE can be
derived which treats the frequency dependence of Aqg rigorously. This new version makes

the replacement A(z,w) — C(z,w) in (3.12) and defines a new nonlinear parameter (w)

0 zZ,W = AL(W) s A zZ,W
C( ’ ) - [Aeﬁ(wo):| A( ) )7
w) = naMNeft (Wo)wo (3.14)

N (W) /At (@) Actt (wo)

where neg is the effective refractive index of the guided mode [41, 62].

3.1.3. Limits to validity

The pulse propagation equations presented in this chapter have their origin in the inter-
action of an electromagnetic pulse with a nonlinear medium and therefore are derived

from Maxwell’s equations including a nonlinear polarization term. From these a second-
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order wave equations can be derived which is then approximated to the first-order NLSE
or GNLSE equations. Since they can affect the applicability and validity of the derived
equations, it is important to list the key assumptions made in the derivation of the
GNLSE (3.12):

1. The propagation is assumed to be unidirectional. Any backward propagating waves

and any coupling between backward and forward propagating waves are neglected.

2. The pulse is assumed to propagate in a single transverse mode (usually the funda-
mental mode) of the fiber (see (3.3)). A multimode version of the GNLSE, which
also accounts for coupling between the modes, has been derived in [63], but the

calculations tend to be very complex.

3. The derivation is purely scalar, i.e. the vectorial character of the electric field is
ignored. Typically a polarization maintaining fiber pumped along a single polar-
ization axis is assumed. Effects such as polarization mode dispersion and cou-
pling between light propagating along two different polarization axes are neglected.
However, coupled propagation equations describing polarization effects as well as a
vectorially-based nonlinear Schrodinger equation, which also takes refractive index
inhomogenities and the longitudinal field component of the propagating mode in

strongly guiding waveguides into account, are available in literature [64, 65].

It is often assumed that the decomposition of the electromagnetic pulse into an envelope
and a carrier wave necessarily leads to the fact that the envelope needs to be slowly
varying. This would imply that the equation for the evolution of the pulse envelope
becomes invalid when the pulse duration approaches a single field oscillation period.
However, it has been shown that envelope-based equations can remain valid down to the
single optical cycle limit [66, 67]. Also in this thesis it will be demonstrated that the
GNLSE delivers results in excellent agreement with experiments down to the sub-two

optical cycle regime.

3.2. Numerical Implementation

In literature, the numerical solution of NLSE and GNLSE has widely been carried out
using the symmetric split-step Fourier method (SSFM) in connection with a fourth order
Runge-Kutta solver for the nonlinear step [68]. The SSFM finds an approximate solution
to the general pulse propagation equation in time (3.6) or frequency (3.12) formulation
by assuming that dispersive and nonlinear operator act independently and consecutively,
while in reality they act simultaneously. When the algorithm propagates the pulse en-
velope longitudinally along the fiber axis from a position z to a new position z + h, a
numerical error is introduced, because the SSFM ignores the non-commuting nature of
the operators D and N. In an analysis using the Baker-Hausdorff formula for two non-
commuting operators, it can be shown that the dominant error term per step is of order

O(h3) |48]. Note that the total number of steps is inversely proportional to h, so that the
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global error at the end of the simulation is O(h?). The algorithm advancing the spectral
envelope is detailed in appendix A.1.

Recently, the Runge-Kutta in the interaction picture method (RK4IPM) was applied to
the simulation of nonlinear pulse propagation and supercontinuum generation in optical
fibers [69]. This method was originally developed for the solution of the Gross-Pitaevskii
equation which describes the dynamics of Bose-Einstein condensates. It transforms the
pulse propagation equation into an interaction picture in order to separate the dispersive
terms in D from the non-dispersive terms in N. The RK4IPM is closely related to the
SSEFM and exhibits a fifth order local accuracy, while it is as easy to implement as the
less accurate SSFM [70]. While both SSFM and RK4IPM are used in this chapter to
investigate how the accuracy of the integration algorithm effects the performance of the
adaptive step size control, only the RK4IPM will be applied in the subsequent chapters
due to its higher accuracy. The exact algorithm is detailed in appendix A.2.

The computationally most expensive operation in both methods is the Fourier trans-
form, and both integration methods require a total of 16 Fourier transforms per step. The
main advantage of the RK4IP is the high accuracy of the integration with a dominant
local error term of order O(h®), making it possible to set h much larger to reach the same

accuracy and therefore making the calculation significantly faster than the SSFM.

3.3. Adaptive step size algorithms

The accuracy of a given integration method depends on the resolution of the time (or
frequency) window and on the longitudinal step size. The time domain resolution is
usually chosen according to the maximum bandwidth of the signal during propagation
and the available discretization bins, which are limited by the memory of the computer
and the acceptable computational time. The time and frequency domain resolutions
therefore depend on the properties of signal and computer and are not varied during the
simulation. The longitudinal step size h, however, does not have to be constant and can
be adjusted. If nonlinearities are low, h can be increased, because the error in splitting
dispersive and nonlinear processes is negligible. If both dispersion and nonlinearity are
significant, a smaller step size is required. Since the balance between dispersion and
nonlinearity can change during propagation, e.g. due to decreasing peak power and
broadening of the pulse, an algorithm is required to estimate the current local error and
to adapt h accordingly.

Various adaptive step size methods have been introduced in literature, including the
nonlinear phase rotation, logarithmic step size and walk-off methods [71]. Sinkin. et. al.
tested the performance of these methods in a systems context and introduced the local
error method (LEM), which was also found to be the most efficient [72]. Unlike the other
methods, which were introduced for the NLSE, the LEM can also be employed when
simulating broadband supercontinuum generation with the GNLSE in connection with
both SSF and RKA4IP integration schemes [25, 15]. The LEM applies the techniques of

step size doubling and local extrapolation, which are widely used in partial differential
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equation solvers. Step size doubling implies that each step is taken twice, once as a full
step to compute a coarse solution and then independently as two half steps resulting in
a fine solution. The difference between the two results yields an estimation of the local
error. In addition, a higher order solution is obtained with this method. However, the
LEM requires 50% more Fourier transforms than the standard integration scheme. While
computational speed is gained by the adaption of the step size, it is lost by the necessity
of computing coarse and fine solutions.

In this section, an enhancement of the local error method is introduced which was
specifically designed for the use with higher order integration algorithms such as the
RKA4IPM. The estimation of the local error is obtained from a conservation quantity error
(CQE) without the necessity of step size doubling. In case of the GNLSE, the conservation
quantity is proportional to the classical photon number, while the NLSE conserves the
pulse energy. It is demonstrated that the CQE method increases the computational
efficiency by up to ~ 50% relative to the original LEM when the RK4IP scheme is used

for integration.

3.3.1. Review of the Local Error Method

Generally, using an integration method with local error of order 7, and given the field A
at a distance z, which is discretized into N temporal gridpoints, there exists a constant

k for each gridpoint so that the calculated field at z + h can be expressed as
Acate(z + 0, T) = Agrue(z + b, T) + k(T)R" + O(R™1), (3.15)

where Ay is the exact solution. Here n = 3 for the SSFM and n = 5 for the RK4IPM.

The relative local amplitude error is now defined as

_ || Acalc - Atrue ||

o4t = e

(3.16)
Here the norm || A ||= (/ | A(T) |> dT)*/? is used. The error of each calculated step is
thus explicitly dependent on a power of the step size h". This dependence can be used to
limit the error to a predefined goal error dg by adjusting h. However, the true local error
can generally not be computed, because Aygpye is unknown. Therefore, the algorithm tries
to estimate the local error by taking a full step to compute a coarse solution and then
independently taking two half steps resulting in a fine solution . The true local error ¢ 4

from (3.16) can then be approximated by

5= || Aﬁne - Acoarse H
|| Afine ||

(3.17)

The step size h is adaptively adjusted with the aim to keep ¢ in the range (dg, 20a),
where 0 is the predefined acceptable error (goal error). If § > 204, the solution is
discarded and the step is repeated with half the step size. If ¢ is in the range (dg, 20¢g),
h is divided by 2(1/" for the next step. If § < 1/26¢, and h is multiplied by 21/7) for
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the next step.
An additional advantage of the local error method is the possibility to construct a
higher order solution A,;; from an appropriate linear combination of coarse and fine

solution

A77+1 = ﬁAﬁne - ﬁAcoarsea
= Atrue + O(thrl)' (318)

Local extrapolation consists of accepting the higher order solution A, 1, even though the
error estimate ¢ applies strictly only to Acoarse- Note that A, 1 converges asymptotically
towards Agpe for increasing 7, so that the advantage of local extrapolation decreases for

highly accurate integration schemes.

3.3.2. Introduction of the Conservation Quantity Error Method

The LEM assumes that no information is available about the true solution and thus
requires the computation of both coarse and fine solutions to estimate the local amplitude
error, creating an overhead of 50% more Fourier transforms in comparison to the standard
integration without step size adaption. Since no assumption is made about the system,
the LEM may be applied to a variety of problems. However, in the specific case of the
GNLSE there is additional information available about the true solution which can be
used to improve the efficiency of the adaptive step size algorithm.

If loss in the fiber is neglected, Blow and Wood showed that the GNLSE conserves the

optical photon number P during propagation,

oo

/S(w) de]

w

JapP
0z

0
0z
0
0z
0, (3.19)
where 7(z,w) is the spectral photon density, A(z,w) is the Fourier transform of A(z,T')
and S(w) = neg(w)Aegr(w) [58]. Note that different versions of the GNLSE may have a
slightly different definition of the conserved quantity [62]. If the frequency dependence
of both neg and Aeg is neglected, the term S(w) can be taken out of the integral. P is
then equivalent to the classical photon number in the optical wave.

Since the GNLSE conserves the photon number, the photon number P(z) of the initial
spectrum fl(z,w) is also the true value Pjue(z + h) of the photon number after one

computational step,
Pirue(z + h) = P(2). (3.20)
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It is therefore possible to calculate the absolute photon number error

App = |Peate(2 + h) = Pirue(z + h)| (3.21a)
= ’/(I Acate(z 4 h,w) [P = | Aprue(z + h, w) |2) @dw : (3.21b)
= ’/(| Acate(z + hyw) > — | A(z,w) |2) Sfdw)dw‘, (3.21¢)

where Peac(z + h) is the photon number calculated with the spectrum flcalc(z + h,w).
In (3.21b), the definition of the photon number in (3.19) was inserted. (3.21c) makes
additional use of the identity (3.20). In practice, Apy, is simply calculated by taking the
absolute difference between the photon numbers of two consecutive computational steps.

In order to relate Apy, to the local error of the computational step, (3.15) is rewritten

in the frequency domain and using intensities instead of amplitudes:
| Acalc |2:| A’Zitruc |2 +A[(h,b.)), (322)

where A (h,w) = k' (w)h"+O(h"*1) is the absolute local intensity error of each frequency
bin. Substituting (3.22) into (3.21b), one obtains

App(h) = ‘/Al(h,w)s((j))dw . (3.23)

The photon number error Apy, is thus a measure of Ay (h, w), integrated over the frequency
window and weighed by S(w)/w, which is merely a scaling factor. Thus an estimation of
the true local error of A has been found, which can simply be computed by comparing the
photon numbers of two consecutive steps. Further, the calculation of the photon number
for each step is a simple integration over the frequency window and therefore does not
create any overhead. Like the local error, the photon number error is proportional to
h", so that it can be controlled by adjusting h. In an adaptive step size algorithm, it is
useful to control a relative quantity, so Apy, is normalized by Pi.ue to define the relative

photon error
Apy,

)
Ptrue

Spn = (3.24)

where (3.20) can be used for the actual calculation. The step size is then adjusted similar
to the LEM. If dpy > 2dq, the solution is discarded and the step is repeated with half
the step size. If py, is in the range (Jg, 20¢), h is divided by 2(1/") for the next step. If
dph < 0.18¢, the h is multiplied by 201/ for the next step.

It should be noted that Aj(h,w) in (3.23) can assume positive and negative values in
each frequency bin which can cancel each other when integrated. The resulting dpy, may
be small, even if there are substantial local errors present in the calculation. Especially
for small scale errors, dpy will underestimate the true local error, resulting in a tendency
of the algorithm to set the value of h too high for the next step. Further, the method

keeps the value of dpy, close to the predefined goal error dg. It was found in practice,
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however, that in rare cases during the propagation the value for dpy can drop close to zero
and then recovers again to its original value close to d¢. This effect can be attributed to a
continuous sign change of the term in the modulus in (3.23), which could not be linked to
any physical effect and appears to be a numerical issue. The result is a spiking of the step
size which deteriorates the accuracy of the method. Both of the aforementioned problems
are resolved by setting the threshold for the increase of the step size to the relatively low
value of 0.10. This value was chosen in such a way that the spiking of the step size is
suppressed to a large extent, while the method is still sufficiently sensitive to genuinely
required increments of the step size. Further, it is expected that the performance of the
algorithm improves in connection with highly accurate integration schemes, because the
error introduced by the overestimated longitudinal step size decreases with higher order
integration methods. Indeed, it is shown in the next section that the RK4IPM with
n = 5 is required in order for the algorithm to work efficiently even for highly accurate
solutions, the SSFM with n = 3 is generally not sufficient.

As mentioned above, the photon number conservation (3.19) is only valid in the absence
of linear loss (o« = 0). However, linear loss can easily be included into the presented
concept. Following the discussion in [58] leading to the deduction of (3.19), the photon

number change in the presence of linear loss can be expressed as

oP
5 = —/a(w)ﬁ(z,w) dw, (3.25)
which can be calculated exactly. The true photon number at distance z 4+ h in (3.20) -

(3.24) is modified to
oP

Pirue(z + h) = P(2) + Eh' (3.26)

To complete the discussion, the concept of employing a conserved quantity in an adap-
tive step size algorithm can be extended to other equations as well. In the case of the
NLSE, for example, the energy E = [ | A(w) |* dw is conserved if loss in the fiber
is neglected. The above discussion for the photon number conservation can entirely be
applied to the energy conservation in case of the NLSE. Defining an energy error Ag in

a similar fashion to (3.21b) and inserting (3.22), one obtains

Ag(h) = ’/ As(h, w)dw‘ . (3.27)

The relation of the energy error to the local error Aj is thus even simpler than in the
case of the GNLSE and the photon number error (3.23).

3.3.3. Performance

In this section, the performance of the adaptive step size algorithms described in section
3.3 are compared. For this purpose, a typical example of supercontinuum generation
in photonic crystal fiber and a soliton collison are simulated using CQEM and LEM as

well as a constant step size for comparison. Both RK4IPM and SSFM are employed
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to determine if the accuracy of the integration scheme changes the performance of the
adaptive step size methods. In the following, the combinations of RK4IPM with the
CQEM, LEM and constant step size methods will be denoted as RK4IP-CQE, RK4IP-
local and RK4IP-constant, respectively. Equivalent denotation is used when the SSFM
is used for integration.

To compare the different methods, first a reference spectrum Ao is computed at
machine precision with the RK4IP-constant method using a step size smaller than the
smallest step size chosen by the adaptive methods. Then the numerical solutions flcalc
for the different methods are compared to the reference solution by calculating the global

average relative intensity error

f ’| AC&IC ‘2 - | Aref |2’dW/N
B f | /ircf ‘2 dw

€ , (3.28)

where NNV is the number of frequency gridpoints. € is then plotted versus the total compu-
tational time, normalized by the time required to evaluate one FFT. The required error

sensible for studying physical processes is typically ¢ < 1075,

Supercontinuum Generation

Solutions of the GNLSE are computed for a typical broadband SC generation process
in a highly nonlinear PCF structure, pumping in the anomalous dispersion regime. The
parameters of the fiber and the input pulse are taken from [25] and are similar to those
used in section 2.2. Loss in the fiber and frequency dependence of A.g are neglected.
The time and frequency windows were discretized into N = 23 bins and the reference
spectrum was computed with a constant step size of ca. 30 nm.

Fig. 3.1 (a) and (b) illustrate the temporal and spectral evolution of the SC generation
process over 10 cm length of PCF, while (¢) and (d) show the error estimations of the
LEM, (3.17), and the CQEM, (3.24), when the simulation is run with a relatively large
constant step size of 40 um and the error estimations between two consecutive compu-
tational steps are recorded over the propagation distance. It is evident that the largest
errors occur in the range of the most extreme spectral broadening due to soliton fission
between 0.7 - 1.5 cm. After ca. 2 cm, the broadening of the spectrum is essentially
concluded, only the Raman-induced self-frequency shift of the highest peak power soliton
extends the spectrum further into the infrared. Hence, the numerical errors are much
smaller in this section and assume a minimum at around 5 cm, before a slight increase
of errors is recorded for the remaining propagation distance due to continuing broaden-
ing and increasing complexity of the temporal pulse profile. The error estimation of the
CQEM is generally about three to four orders of magnitude smaller than the one of the
LEM. However, only the relative variation of the error estimation is important, because
the absolute values can be set by adjusting the local goal error dg. The similarity of
the graphs in Figs. 3.1 (c) and (d), on both large and small scales, confirms that the
CQEM indeed gives an error estimation comparable to the one of the LEM. It should
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Figure 3.1. — Results from numerical simulation of supercontinuum generation in PCF,
showing (a) temporal and (b) spectral evolution of the pulse over the prop-
agation distance of 10 cm. In (c) and (d) the error estimations between
two consecutive computational steps are plotted for the LEM and CQEM
method, when the simulation is run with a constant step size of 40 yum. The
inlays show the complete graphs, while the main figures focus on an enlarged
section to compare the small scale errors. Error estimations and temporal
and spectral evolutions are depicted with the same x-axis to facilitate the
comparison of the graphs.

however be noted that the ratio of the small scale errors to the maximum recorded errors
is smaller for the CQE method than for the local error method, indicating that the CQE
method slightly underestimates the small scale errors, as is expected from the discussion
in section 3.3.2.

In order to compare the computational performance, the local goal error is varied and
€ is recorded as a function of computational time for each method. Typical values for i
are in the range [107!,10719] for the LEM and [10~%,10714] for the CQEM. The starting
values of the step size were chosen by the algorithms, i.e. the initial step size was set to a
high level so that it would be rejected and accordingly adjusted by the algorithms. The
results are given in Fig. 3.2, where the performance of constant step sizes is also plotted
for comparison. Machine precision is reached at e ~ 10712,

When the SSFM is employed for integration, the different step size methods gener-
ally achieve similar results. For low accuracies € > 1077, the CQEM is the most effi-



3.3. Adaptive step size algorithms 36

—n— RK4IP-CQE
RK4IP-Local

—A— RK4IP-Constant

—x— SSF-CQE

—&— SSF-Local

Average Global Error

10000 100000 1000000
Computational Time

Figure 3.2. — Global average error € plotted against computational time, normalized by
the time required to evaluate one FF'T, for the supercontinuum generation
process in PCF.

cient and partially even outperforms the higher order RK4IPM using constant step size.
However, due to the discussed underestimation of small scale errors the CQEM is not
efficient for computing highly accurate solutions and converges towards the results of
the SSF-constant method. The local extrapolation of the SSF-local method in (3.18) is
advantageous only for highly accurate solutions with e < 10~7, where it clearly separates
from the other SSF schemes, while it achieves similar performance to the SSF-constant
method for lower accuracies. Examining the slopes of the curves, the SSF-local method
generally reaches third order global accuracy which is even improved to fourth order for
e < 1078, while the CQEM and constant step size methods achieve only the expected
second order precision.

Due to the higher order accuracy, the step size methods using the RK4IP scheme follow
an overall more efficient trend than the methods using the SSF integration scheme, which
is especially evident from the performance for € < 1076, In this case, the advantage of
the local extrapolation applied by the LEM is only marginal and all RK4IP methods
exhibit approximately fourth-order global accuracy.

As expected, the underestimation of small scale errors by the CQE method is compen-
sated by the high precision of the RK4IPM, making the RK4IP-CQE combination the
most efficient of all tested methods over the complete accuracy range tested. It requires
only about 30% of the computational time needed by the constant step size algorithm to
reach equal global accuracies. The achieved performance increase relative to the RK4IP-
local method ranges between 25 - 40 %. Calculations for a range of different fiber designs
and input pulse parameters were conducted and the CQE method was always the more
efficient algorithm, with increasing efficiency improvement for more complex problems

(e.g. increasing soliton number of the input pulse).
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Figure 3.3. — (a) Global average error € plotted against computational time for the col-
lision of two fundamental solitons. (b) Step size chosen by the CQEM
and LEM in combination with the RK4IPM. The achieved global accu-
racy and the required computational time are identical for both methods
(e ~ 3 x 107", ca. 8500 FFTs).

Soliton Collision

In this section, the applicability of the CQEM to the NLSE is investigated. In this case,
the appropriate conservation quantity is the pulse energy, as discussed towards the end of
section 3.3.2. It has been shown that a large constant longitudinal step size in the SSFM
can lead to the generation of spurious spectral peaks which are numerical artefacts and
can be seen as fictitious four-wave mixing (FWM) [71]. A soliton collision is therefore
used as the test scenario, because the cancellation of this spurious four-wave mixing after
the collision is very sensitive to numerical errors. Two solitons, separated by 100 ps
and a central frequency difference of 800 GHz, are launched into a fiber with anomalous
dispersion 8 = —0.1ps?/km. The pulse parameters are Py = 8.8 mW and T, = 2.27
ps, corresponding to fundamental solitons with intensity FWHM of 4 ps. N = 3072
discretization bins are used and the propagation is observed over a distance of 400 km.
The parameters are identical to those used by Sinkin et. al. [72].

Fig. 3.3 (a) shows the computational performance of the tested numerical methods.
When the SSFM is used, the SSF-local method is most efficient and the calculation of
a higher order solution in (3.18) proves to be effective for this simpler problem, which
is evident from the steeper slope of the curve compared to the other SSF-methods. It
achieves fourth order global accuracy and even higher efficiency than the RK4IP-constant
method, thus outperforming an higher order integration scheme. The SSF-CQE method
offers almost no improvement compared to the SSF-constant method, both show second
order global accuracy.

In combination with the RK4IP integration scheme, the CQEM proves to be most
efficient, reaching equal accuracies up to 45% faster than the local error method in the
range € ~ 107 — 10~7. The two methods converge just before machine precision is
reached at € = 10712, The RK4IP-local method achieves the expected fifth-order global
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accuracy due to effective local extrapolation, while the other RK4IP methods show a
fourth-order trend. The RK4IP-CQE is again the most efficient of all tested methods,
which shows that the concept of applying a conserved quantity for adaptive step size
control can also be successfully transferred to the numerical calculation of the NLSE.

The above mentioned numerical artefact of spurious FWM could be observed for so-
lutions with € > 1077, with increasing spectral side peaks for larger €. It can clearly be
seen that all the adaptive step size schemes, with exception of the SSF-CQE, cross this
boundary significantly earlier than the methods employing constant step size. In fact,
the RK4IP-CQE reaches the necessary accuracy for eliminating spurious FWM almost
one order of magnitude faster than the RK4IP-constant method.

Finally, a typical example of the functionality of the adaptive step size methods is
shown in Fig. 3.3 (b). The step size is plotted versus the propagation distance for the
RKA4IP-CQE and RK4IP-local combinations, with both equal accuracy (e ~ 3 x 10712)
and required computational time (~ 8500 FFTs). The general shapes of the graphs are
similar: after the algorithm finds a constant step size during the first few steps and retains
it while the two pulses approach each other, the step size is significantly decreased around
200 km where the collision occurs; after the two pulses have crossed each other, the step
size is restored to its original value. The graphs also illustrate the main difference between
the two methods: the CQE method is less sensitive to the small scale errors outside the
collision area and sets the step size accordingly higher than the local error method. In
the collision area, however, the CQE is more sensitive, reacts earlier to the occurring
errors and consequently models this region more accurately than the local error method.
Both effects combined explain why the CQE method performs better for more complex

problems, as was mentioned in section 3.3.3.

3.4. Summary

This chapter provided the details of the numerical model employed in this work to simu-
late ultrashort pulse propagation in optical fibers. It was shown that the GNLSE in the
frequency domain formulation offers various advantages over the time domain formalism.
The options to include the frequency dependence of A.g and the validity limits of an
envelope based scalar propagation were discussed.

An adaptive step size method based on a conservation quantity error was introduced
for the numerical solution of NLSE and GNLSE. It is specifically designed for the use
with an higher order integration algorithm like the RK4IPM and yields an estimation
of the local error without the necessity of step size doubling. The performance of the
CQEM was compared to the established LEM in combination with both SSFM and
RKA4IPM integration for the process of broadband supercontinuum generation and soliton
collision. In both cases, the CQEM minimizes the computational effort if the RK4IPM
is used for integration, while the original LEM performs best in connection with the
SSFM integration, especially if highly accurate solutions are desired. The RK4IP-CQE

combination is found to be the most efficient of all tested methods, with increasing
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performance improvement for more complex problems. It is therefore especially suited
for the fast and accurate modeling of supercontinuum generation in PCF.

A MATLAB®) implementation of the RK4IP-CQE method was developed for the Free
Optics Project in collaboration with A. Rieznik (Instituto Tecnolégico de Buenos Aires)
and is freely available for download [73]. After publication, the CQEM has been used
by several authors for computationally intensive work, e.g. for studying the life cycle of

optical rogue waves [74].






4. Design of photonic crystal fibers
for coherent supercontinuum

generation

This chapter presents an extensive survey of possible PCF designs for pulse-preserving
and spectrally uniform broadband coherent SC generation. As explained in chapter 1, the
transition region from fibers exhibiting a convex dispersion profile with two ZDWs to all-
normal dispersion (ANDi) fibers appears to be especially suited to fulfill the optimization
criteria.

Tremendous progress has been made recently in the development of ultrashort pulse
fiber lasers, and femtosecond pulse energies well above 10 nJ and peak powers in excess
of 200 kW are now readily available from Ytterbium doped fiber oscillators emitting in
the vicinity of 1080 nm [75, 76, 77, 78]. With the longterm goal of developing a compact
fiber-integrated coherent SC source, these fiber lasers present themselves as attractive
pump sources.

This chapter focuses therefore on the numerical investigation of SC generation in PCF
with two ZDWs and ANDi PCF with dispersion-flattened profiles near 1080 nm and
considering femtosecond pulses with peak powers up to 270 kW. The influence of fiber
design and input pulse parameters on the generated spectrum and resulting pulse profile
is examined in detail, and design criteria are established to maximize temporal coherence,
spectral bandwidth and uniformity as well as temporal recompressibility of the generated
SC pulse.

Parts of this chapter were published in [79)].

4.1. Numerical Method

In this study, PCF with solid core and hexagonal lattice of air holes are considered, with
the geometrical design parameters pitch A and relative hole size d/A in the ranges A=1.45
- 1.70 pm and d/A = 0.3 - 0.43, leading to flattened dispersion profiles in the vicinity
of 1080 nm. All fibers fulfill the condition for endlessly single-mode propagation [46].
For the optimization of the fiber design parameters, the SC generation process is first
simulated for the different fiber designs with fixed input pulse parameters. The influence
of the fiber design on the generated SC spectrum and the output pulse profile is then
analyzed. Once an optimized fiber design has been found that fulfills the above stated

criteria, the influence of varying input pulse parameters is investigated.

41
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Figure 4.1. — Calculated dispersion parameter (a) and effective MFD (b) of PCF with A
= 1.55 pm and values of d/A ranging between 0.3 and 0.42 in steps of 0.02.

The dispersion profile and effective mode field area of the investigated PCFs were gen-
erated with the analytical method devised in [47], after its validity over the investigated
geometrical parameter range was confirmed by a numerical multipole mode solver [45].
Pulse propagation in the PCFs is simulated using the frequency formulation of the GNLSE
(3.12), the RK4IPM (A.5) for integration as well as the CQEM (section 3.3.2) for the
adaption of the longitudinal step size. Sufficient accuracy of the calculations was assured
by setting the relative photon error dpy, = 1078 (3.24). Loss in the fiber is neglected. The
frequency dependence of the effective mode field area Aqg is regarded in an approximate
manner by including the frequency dependent nonlinear parameter y(w) (3.13) directly
into the GNLSE. This treatment is sufficient here, because it has been carefully checked
that the differences to the more rigorous method in (3.14) are marginal in the considered
cases and do not affect the key findings in this chapter. For the investigation of temporal
fine structure and pulse recompression, a time resolution of less than 1 fs is chosen in
the calculation and the simulation window is divided into 2! bins. Where average power

values are given, a repetition rate of 80 MHz is assumed.

4.2. Influence of fiber parameters

In order to focus on the influence of fiber design on the SC generation process, the
input pulse parameters are fixed in this section, while the fiber parameters are varied. A
Gaussian input pulse shape with intensity full width at half maximum (FWHM) of 50
fs duration and pulse energy of 5 nJ is considered in this section. This corresponds to a
peak power of 90 kW.

4.2.1. Relative air hole diameter d/A

First, a set of PCFs with common pitch A = 1.55 um but different relative hole sizes be-
tween d/A=0.3 - 0.43 is considered. Fig. 4.1 shows a selection of corresponding calculated

dispersion profiles and effective mode field diameters (MFD). The dispersion is normal
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Figure 4.2. — (a) Dependence of the generated SC spectrum on the relative air hole diam-
eter d/A in PCF with pitch A = 1.55 um in a logarithmic density plot. An
input pulse of 50 fs duration with 5 nJ energy propagating through a 10 cm
piece of fiber is considered. The blue dotted line indicates the ZDWs: the
dispersion is anomalous in the enclosed region and normal elsewhere. (b)
Corresponding pulse profiles at the end of the fiber for selected d/A values
in linear scale.

at all wavelengths for d/A < 0.395, while above this value the dispersion is anomalous
at the pump wavelength and two ZDWs with increasing separation for larger d/A exist.
The effective mode field diameter generally decreases with shorter wavelengths and with
increasing d/A values at a particular wavelength. Although a smaller mode field diameter
leads to larger nonlinearity, the variations here are modest. The critical property distin-
guishing the different considered PCFs is therefore the dispersion profile, as it determines
the physical effects participating in the SC generation process.

Fig. 4.2 a) shows the generated SC spectra in dependence of the d/A value of the fiber
after 10 cm propagation of the pump pulse. The fiber length was chosen such that the
spectra reach a steady state, i.e. there are no significant changes for further propagation
beyond 10 cm. For this figure, 52 individual spectra were calculated and summarized in a
logarithmic density plot which is truncated at -40 dB relative to the maximum intensity
value. The dotted blue line indicates the position of the ZDWs, with the dispersion being
anomalous inside this curve and normal elsewhere. Fig. 4.2 b) shows the corresponding
pulse shapes at the end of the fiber. In the following, ANDi PCF with d/A < 0.395 and
PCF with two ZDWs will be analyzed separately.

For the fibers with two ZDWs, two distinct spectral parts are generated on the nor-
mal dispersion side of each ZDW, while the enclosed wavelength region of anomalous
dispersion is almost completely depleted. The separation of the spectral peaks increases
linearly with the separation of the ZDWs for larger d/A values. In the time domain, the
peak power of the pulse at the end of the fiber is higher compared to the ANDi PCF
due to partial compression in the anomalous dispersion. However, the pulse acquires a
considerable modulation and an increasing tail with larger d/A values. The physics of
SC generation in PCF with two closely spaced ZDWs has been studied in detail, and the
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Figure 4.3. — (a) Calculated dispersion parameter of PCF with d/A=0.37 and selected
pitch values in the range A=1.45 - 1.75 um in 0.05 pum steps. (b) Dependence
of the generated SC spectrum on fiber pitch in a logarithmic density plot.
Input pulse parameters are identical to Fig. 4.2. The blue dotted line
indicates the position of the ZDWs.

creation of the two distinct spectral parts has been attributed mainly to SPM [31]. Al-
though this indicates good coherence properties of the generated spectrum and a smooth
spectral phase [30], the missing spectral bandwidth in between the two spectral peaks
and the modulation on the output pulse are not ideal for pulse compression. In addition,
only the parts with high spectral power density are in practice useful for spectroscopy
applications.

In the case of the ANDi PCF, the spectral bandwidth of the generated SC increases
for larger d/A values as shown in Fig. 4.2. Comparison with Fig. 4.1 a) shows that
increasing d/A corresponds to the dispersion profile essentially being shifted upwards,
i.e. the normal group velocity dispersion (GVD) at the pump wavelength decreases. The
spectra are continuous and smooth with steep edges and exhibit only minor intensity
variations < 3 dB over their bandwidth for d/A < 0.37. A single pulse with clean and
smooth profile is maintained in the time domain, which acquires an increasing asymmetry
due to a longer trailing edge with increasing d/A. An analysis using spectrograms shows
that this pulse tail contains predominantly blue wavelength components, so that the tail
is a result of the increased spectral bandwidth towards the blue side. The pulse broadens
considerably during its propagation, the intensity FWHM at the end of the fiber ranges
between 1.07 ps for d/A=0.3 and 530 fs for d/A=0.39. It is interesting to note that the
spectrum starts to split up and develop two distinct parts separated by a dip greater than
10 dB already for d/A > 0.37, i.e. still in the all-normal dispersion regime as the peak
dispersion of the fiber approaches zero. This spectral splitting is usually associated with
PCF possessing two ZDWs, as was discussed above. The fiber with d/A = 0.37 offers
the best compromise between spectral flatness and bandwidth. Since the dispersion is

normal at all wavelengths, all the spectra are highly coherent over the entire bandwidth.
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4.2.2. Pitch A

A set of PCF with pitch values between A = 1.45 ym and A = 1.75 pm and the common
relative air hole diameter of d/A = 0.37 is considered. A selection of corresponding
dispersion profiles is shown in Fig. 4.3 a). An ANDI profile exists for A < 1.68 pm.
Similar to Fig. 4.2 a), Fig. 4.3 b) shows the dependence of the SC spectrum on the
selected pitch value in a logarithmic density plot, summarizing 31 individual spectra.
Again it is evident that the splitting of the spectrum into two distinct parts commences
already in fibers with all-normal dispersion profiles. Smooth and continuous flat-top
spectra exist for A < 1.6 pm, and in this region the pitch of the fiber has only negligible

influence on the spectral shape and bandwidth.

4.2.3. Optimized fiber design

From the above discussion on the influence of the fiber design parameters on the generated
SC pulse properties it can be concluded that the optimized fiber design has to to meet

the following criteria:

e the fiber should exhibit normal dispersion at all wavelengths. This ensures smooth
spectral and temporal profiles and suppresses soliton dynamics and MI gain entirely.

The spectra can therefore be expected to be highly coherent;

e the maximum of the dispersion curve should be close to the pump wavelength to

ensure minimum temporal spreading of the input pulse and maximum bandwidth;

e for maximizing spectral flatness: the maximum dispersion should be slightly nor-

mal, for the investigated input pulse parameters D < -10 ps/(nm km);

e for maximizing spectral bandwidth: the maximum dispersion should be close to
zero. However, this results in the formation of a depletion region around the max-

imum dispersion wavelength with a dip in spectral intensity larger than 10 dB.

In the investigated fiber design parameter range, there are several combinations that
fulfill these criteria. Exemplary, in the following discussion the case A =1.55 um, d/A
= 0.37 is considered. Fig. 4.4 shows the simulated properties of the SC pulse for these
parameters. On a logarithmic scale, the spectrum is almost rectangular with a smooth
flat-top profile and steep edges. While the spectrum spans over one octave from 700 -
1400 nm, a constantly high average power density is achieved which never falls below 0.5
mW /nm and varies only about + 1 dB from its mean value over the entire bandwidth.
The top section of Fig 4.4 a) shows the modulus of the complex first-order degree of
coherence at zero path difference ‘ gg) (A, t1 — t2 = 0)| defined in (3.11), calculated from
an ensemble average of 20 independent simulations with random noise seeds. It is evident
that the spectrum is perfectly coherent over the entire generated bandwidth.

As shown already in Fig. 4.2 b), a single pulse with smooth profile is maintained in
the time domain, which broadens to about 800 fs after 10 cm of propagation. The pulse

predominantly acquires a linear chirp which can be compressed using a simple grating
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Figure 4.4. — (a) Spectrum and corresponding degree of coherence after 10 cm propagation
of a 5 nJ, 50 fs pulse in the PCF with A =1.55 ym and d/A=0.37. (b) Pulse
profiles after full phase compensation (gray shading) and after compensation
of only linear chirp.

or prism pair. The resulting pulse profile is shown in Fig. 4.4 b). The FWHM of the
main peak is below 10 fs and the pulse exhibits a relatively good quality considered that
only simple linear chirp compensation is applied here. Due to the shape of the dispersion
profile, the blue wavelength components experience a higher amount of nonlinear chirp
and are contained in a low level pedestal which spreads over about 1 ps. The quality
and duration of the compressed pulse can be considerably improved by optimizing the
fiber length, as will be shown in section 5.5. Using more sophisticated compression
methods, the pulse may be compressed to its bandwidth limited pulse duration of 4.4 fs,
corresponding to only 1.25 optical cycles. Since all spectral components are contained
in the compressed pulse, a peak power spectral density may be defined as the ratio of
energy contained in a spectral slice and the pulse duration. This yields continuous peak
power spectral densities of up to 2 kW /nm which are sufficient to induce nonlinear effects
in materials over the entire bandwidth of the spectrum with immediate applications in

nonlinear spectroscopy.

Fabrication tolerances

The analysis in this section also gives insight into the required fabrication tolerances of
the optimized PCF design. The primary goal should be to manufacture a fiber with
ANDiI profile. Although the spectral bandwidth and uniformity of the generated SC
varies with fiber design parameters, all-normal dispersion ensures maximum coherence
and smoothness of both temporal and spectral profile. If the fiber with A =1.55 pym and
d/A=0.37 is taken as the desired optimum, the required pitch accuracy is determined by
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Figure 4.5. — (a) Generated SC spectra for different input pulse energies on linear scale.
The pulse duration of 50 fs and propagation distance of 10 cm remain un-
changed. (b) Spectrogram of the SC generated with the 15 nJ input pulse.
The initial 50 fs pulse was used as the gate function.

the transition to two ZDWs at A =1.68 um, i.e. the acceptable pitch tolerance is ~ 8%.
In contrast, a smaller than optimum pitch is uncritical. For the relative hole diameter,
d/A < 0.395 is required to maintain an ANDI profile, i.e. the acceptable tolerance is ~
7%. A smaller relative hole diameter leads to drastically reduced bandwidths, therefore

care should be taken to achieve high precision for this design parameter.

4.3. Influence of pump pulse parameters

In this section, the influence of a variation of input pulse parameters on the properties
of the generated SC is investigated. The ANDi PCF with A =1.55 ym, d/A = 0.37
will be used for the simulations. Input pulses with Gaussian shape are considered in
this section. It should be mentioned here that using input pulses with hyperbolic secant
shape generally leads to similar results. Although Gaussian input pulse shape results in
a slightly smoother spectrum, properties such as spectral bandwidth, general shape and
coherence of the generated SC spectra are only marginally affected by the shape of the

input pulse.

4.3.1. Pulse energy

Both spectral bandwidth and power density increase if input pulses with higher peak
power are used. Fig. 4.5 a) shows the generated SC spectra on a linear scale for an input
pulse duration of 50 fs and varying pulse energies between 1 nJ and 15 nJ, corresponding
to peak powers between 18 kW and 270 kW. For high peak powers, the spectrum the
peaks on each side of the pump wavelength are stronger developed than the mid section
of the spectrum. A better spectral flatness at high peak powers can be achieved by
increasing the normal GVD at the pump wavelength, e.g. by using a PCF with lower
d/A value, but this also results in decreased spectral width. In the time domain, a single

pulse is maintained for all investigated input energies. The pulse width at the end of the
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Figure 4.6. — (a) SC spectra generated with different input pulse durations. The pulse
energies are adjusted in order to keep the peak power constant at about
90 kW. The fiber length is chosen such that the spectrum does not change
anymore with further propagation. On top, the degree of coherence is shown
for the 300 fs input pulse. (b) Temporal profile and phase of the 200 fs, 20
nJ pulse after 20 cm propagation through the fiber.

10 cm fiber section increases for higher energies due to the larger spectral bandwidth and
associated GVD induced spread. As an example, Fig. Fig. 4.5 b) shows the spectrogram
of the SC generated with 15 nJ input pulse energy. The pulse has broadened to a FWHM
of ca. 2 ps, compared to 800 fs in the 5 nJ case which was discussed in section 4.2.3. The
acquired chirp is predominantly linear in the central region of the pulse, with increasing
nonlinear contributions for wavelength components further away from the pump. The
nonlinear chirp contributions increase for higher input peak powers and the pulses become
more difficult to compress. However, full phase compensation would in this case approach

the single optical cycle limit.

4.3.2. Pulse duration

Fig. 4.6 a) shows the generated SC spectra for input pulse durations up to 300 fs at
constant peak power of 90 kW. The fiber length is chosen such that the spectrum does
not change anymore with further propagation. Evidently, the spectral bandwidths as well
as the spectral features are identical for all input pulse durations. In order to keep the
peak power constant for longer pulse durations, the pulse energy has to be increased so
that the spectral power density increases accordingly. The width of the pulses in the time
domain at the exit of the fiber increases for longer input pulse durations, but the ratio of
linear and nonlinear chirp contributions remains nearly constant. For example, Fig. 4.6

b) shows temporal profile and phase of the 200 fs, 20 nJ pulse after propagation through
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20 cm of fiber. The phase remains predominantly quadratic and the compressibility of
the pulse is nearly identical to the case shown in Fig. 4.4 b) for the 50 fs, 5 nJ input pulse.
Additionally, the top of Fig. 4.6 a) shows the calculated first-order coherence function
for the case of the 300 fs input pulse. No degradation of the coherence properties can be
observed in comparison to the 50 fs case which was investigated in Fig. 4.4 a). With ANDi
PCF it is therefore possible to generate octave spanning, highly coherent SC which are
recompressible to the sub-10 fs regime even with pump pulses of 300 fs duration or longer.
This is in sharp contrast to the conventional broadband SC generation in fibers with one
ZDW and anomalous GVD pumping, where an increase in input pulse duration usually
leads to more complex temporal and spectral features and a considerable degradation of

the coherence properties.

4.4. Supercontinuum generation dynamics in all-normal

dispersion PCF

Since ANDi PCFs exhibit normal dispersion at all wavelengths, the well-known soliton
dynamics responsible for the extreme spectral broadening in conventional PCFs with one
or more ZDWs are suppressed. Pumping in the normal dispersion regime of a fiber is
usually associated with drastically reduced spectral bandwidths [25, 43], and it is initially
surprising that more than octave-spanning spectra can be generated in ANDi PCF. In
this section the SC generation dynamics in ANDi PCF are therefore investigated in
detail and the physical effects dominating the broadening process are identified. The
above observations about the dependence of the generated SC spectrum on fiber design
and input pulse parameters is explained. As representative example, the fiber with A
=1.55 pum, d/A = 0.37 is considered. A 200 fs, 20 nJ input pulse is chosen, because
the dynamics are slowed down for longer pulse durations and the physical effects are
easier to be identified. Note, however, that the generated spectrum and therefore also
the dynamics are identical for all input pulses with the same peak power, as was shown
in Fig. 4.6.

Fig. 4.7 shows the spectral evolution of the SC generation process over a propagation
distance of 20 cm. The initial evolution of the spectrum shows the broadening char-
acteristics of SPM, but with a clear asymmetry towards the blue side of the spectrum.
After ca. 2.5 cm of propagation, energy is suddenly transferred to a wavelength band
around 750 nm, which rapidly gains in intensity and merges with the SPM induced peak
around 900 nm. At 7 c¢m, a similar but not as pronounced process happens on the long
wavelength side, generating a wavelength band around 1300 nm. The result is a uniform
spectral structure spanning from 700 nm to 1350 nm. After 10 cm, the broadening of the
spectrum is essentially concluded, only further smoothening takes place up to the 20 cm

propagation distance which was considered in the analysis of Fig. 4.6.
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Figure 4.7. — Spectral evolution of a 200 fs, 20 nJ pulse with propagation distance in the
ANDi PCF with A =1.55 pum, d/A = 0.37 in a logarithmic density plot.

Spectrogram analysis

A deeper understanding of the SC generation dynamics can be obtained by following
the evolution of the pulse in a spectrogram representation, shown in Fig. 4.8. During
the initial propagation in the fiber, the spectral broadening is dominated by SPM, as
mentioned above. The spectrogram in Fig. 4.8 a) exhibits the SPM-characteristic S-
shaped feature with a red-shift on the leading and a blue-shift on the trailing pulse
edge, as explained in section 2.1.2. The spectrum also displays the typical oscillatory
structure associated with SPM, which is created by spectral interference of identical
spectral components being present at different temporal positions within the pulse.

The second part of the involved dynamics is governed by the dispersion profile of the
fiber: since the fiber exhibits normal dispersions at all wavelengths, the blue-shifted
wavelength components created by SPM in the intermediate trailing section of the pulse
experience a higher amount of GVD than the center frequency of the pulse and hence
travel slower than the pulse tail. The faster tail eventually overtakes the slower interme-
diate section, which leads to the steepening of the trailing pulse edge and the onset of
optical wave breaking (OWB) [80]. The temporal overlap of two pulse components with
different instantaneous frequencies leads to (i) interference beats in the temporal pulse

profile and (ii) the nonlinear generation of new frequency components at

WFWM = 2wpump — Wseed (41)

via a degenerate four-wave mixing (FWM) process [48, 81]. The steepening of the pulse
edge, temporal beats and nonlinear frequency generation are evident in Fig. 4.8 b). The
SPM generated components around 900 nm act as pump and the pulse tail at 1080 nm
acts as seed and create the new wavelength band around 750 nm. The sudden emergence
of the wavelength band at 750 nm in Fig. 4.7 can therefore be attributed to OWB.
After further propagation, OWB also occurs on the leading pulse edge (Fig. 4.8 ¢)) and
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Figure 4.8. — Simulated spectrogram representation of the pulse evolution of a 200 fs,
20 nJ pulse at different propagation lengths inside the ANDi PCF with
A =155 pym, d/A = 0.37. The projections show temporal and spectral
intensity profiles.

generates new wavelengths up to a maximum of 1350 nm. The OWB process is more
pronounced on the short wavelength side, because the initial SPM-induced broadening
occurred slightly asymmetric towards the short wavelengths. During further propagation,
energy is redistributed from the central frequency to the spectral wings until smooth,
continuous and flat temporal and spectral profiles are generated with a well-defined phase
distribution, Fig. 4.8 d). No interference structures are present in neither temporal
nor spectral profile as the OWB process assigns each wavelength to a unique temporal
position within the pulse. OWB is therefore responsible for the generation of the extreme
wavelengths on both sides of the spectrum as well as for the resulting smooth temporal
and spectral profiles.

Note that the OWB induced FWM processes are not phase-matched. The FWM energy
transfer occurs only in the instant of temporal overlap of pump and seed, which propa-
gate with different phase velocities. Therefore there is no restriction on the achievable
bandwidth of the spectrum - it solely depends on the amount of SPM-induced broaden-
ing before OWB occurs. The wider the separation between SPM generated components
and the original center wavelength of the pulse at the point of OWB, the broader the
spectrum will be, according to (4.1). Flat dispersion slopes, higher pump power or higher
nonlinearity therefore enhance spectral broadening.

Since the pumping occurs in the region of very low normal dispersion, (2.1) can be

applied as a qualitative expression for the SPM-induced spectral broadening, which de-
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pends on nonlinearity, peak power, pulse slope and propagation distance. If the peak
power is kept constant and the pulse duration is increased, as is done in section 4.3.2,
the pulse slope and spectral broadening are reduced. However, the spectral bandwidth
can be restored by increasing the propagation distance. Since the achievable bandwidth
of the generated SC depends on the amount of SPM-induced broadening before OWB
occurs, this explains why the generated spectra are virtually independent of the input

pulse duration for identical peak power, if the fiber length is increased accordingly.

Influence of various physical effects

The interplay between SPM and OWB can explain the observed SC generation dynamics
in ANDi PCF. However, it is not obvious which physical processes cause the initial
asymmetry in the SPM-induced broadening, which is responsible for the more pronounced
OWB on the short wavelength side and is connected to a strong steepening of the trailing
pulse edge. In fact, there are at least three different physical effects which can cause the
steepening of pulse slopes: (a) optical wave breaking alone due to the interplay between
SPM and normal GVD [81], (b) self-steepening due to the intensity dependence of the
group velocity, which is included in the GNLSE (3.12) by the shock term (w—wyp)/wo, and
(c) the frequency dependence of the effective mode field area Aeg, which is represented
by the frequency dependent nonlinear parameter y(w) (3.13). In addition, the Raman
effect plays an important role in SC generation in conventional PCF, but it is not clear if
it has the same importance in ANDi PCF. In order to assess which role these effects play
in the observed dynamics, the simulation of the spectral evolution in Fig. 4.7 is repeated
with the following restrictions and displayed in Fig. 4.9: (a) only SPM and the dispersion
profile are regarded, i.e. both shock term and delayed Raman contributions are taken
out of the GNLSE and v = 7(wp) is kept constant for all frequencies. Therefore, any
observed steepening of the pulse slopes is due to wave breaking; (b) as (a), but the shock
term is included into the GNLSE so that self-steepening and wave breaking act together;
(c) as (a), but with the full frequency dependence of (w) taken into account, so that the
frequency dependent A.g and wave breaking act together; in (d), all effects are combined
and reproduce the result in Fig. 4.7, but without the contribution of the delayed Raman
effect (R(t) = 6(¢) in (3.9)). In (e), a comparison of the linear spectrum obtained with
and without delayed Raman response is shown.

It is evident from Fig. 4.9 a) that wave breaking alone cannot be responsible for the
asymmetry of the spectrum towards the short wavelength side. In contrary, if SPM and
dispersion act alone, the final spectrum shows a slight asymmetry on the long wavelength
side. The initial SPM induced broadening appears quite symmetric, and OWB occurs
first on the leading pulse edge at 3.5 cm of propagation and generates a new wavelength
band around 1400 nm. On the trailing edge, OWB occurs only after 5 cm with a new
wavelength band generated at around 800 nm. Fig. 4.9 b) and c¢) show that the effect
of self-steepening and the frequency dependence of A are quite similar. In both cases,
the trailing pulse edge experiences a much more substantial steepening, OWB occurs

now earlier on the blue side and the generated new wavelengths are shifted to shorter
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Figure 4.9. — Recalculation of the spectral evolution with input pulse and fiber parameters
identical to those used in Fig. 4.7, but only certain effects are included into
the calculations: (a) SPM and GVD; (b) SPM, GVD, and self-steepening;;
(¢) SPM, GVD, and frequency dependence of Aer; and (d) all of the above.
(e) shows a comparison of the linear spectrum after 20 cm propagation
distance obtained with and without delayed Raman response, but including
all other effects.
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wavelengths compared to (a). Both effects amplify each other when acting together,
as shown in Fig. 4.9 d). It is evident from e) that the Raman effect does not play a
significant role in the observed dynamics.

In conclusion, both self-steepening and the frequency dependence of A.g contribute
equally to the steepening of the trailing pulse edge, which results in enhanced initial
SPM broadening of the blue side of the spectrum. These newly created short wavelength
components act then as pump in the subsequent FWM process induced by OWB. Fol-
lowing (4.1), the higher the pump frequency, the higher is the frequency of the generated
FWM products. Consequently, increased steepening of the trailing pulse edge in the ini-
tial broadening stage also leads to the FWM products being generated further towards
shorter wavelengths. Applied to the set of investigated ANDi PCF this has the following
implications: since the nonlinear steepening of the trailing pulse slope is counteracted
by an increased value of GVD that broadens the tail, the steepening is less pronounced
in fibers with lower d/A value or smaller pitch A that exhibit higher GVD at the pump
wavelength. The FWM products are generated closer to the center of the spectrum,
which results in a narrower but continuously flat spectrum. In fibers with higher d/A
or larger pitch A with peak dispersion close to zero, the steepening is more prominent
and the FWM products are generated further away from the main spectrum, resulting
in a distinct peak on the short wavelength side, a depletion of the central region of the
spectrum and a complementary OWB peak on the long wavelength side. This explains
the observed spectral properties in Figs. 4.1 and 4.3. The same dynamics also govern
the SC generation in PCF with two ZDWs, if the separation between the ZDWs is small
enough to prevent soliton formation. Then SPM transports energy very quickly into the
normal dispersion sections of the PCF, where the involved processes are the same as
in the discussed case of ANDi PCF. Nonlinear steepening increasingly dominates over
dispersive broadening for higher input pulse peak power, which results in the observed

development of the spectral double peak structure in Fig. 4.5.

4.5. Summary and outlook

PCF design criteria were established to obtain broadband coherent SCs. It was shown
that coherent and flat-top spectra spanning over more than one octave can be generated
with optimized PCF designs that exhibit a convex dispersion profile with low normal dis-
persion at the pump wavelength. Spectral flatness of £1 dB and average power densities
of several milliwatts/nanometer can be achieved over the entire bandwidth. SPM and
OWB were identified as dominating effects in the SC generation process, which conserves
a single pulse in the time domain that may be externally recompressed to the sub-10
fs regime even with simple means such as a grating or a prism pair. The single optical
cycle limit is approached with full phase compensation. One of the major advantages
of SC generation in ANDi PCFs is the independence of coherence properties, spectral
bandwidth and temporal compressibility on the input pulse duration. In fact, longer

high energy pulses with moderate peak power as well as moderate GVD at the pump
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Figure 4.10. — Variety of possible ANDi PCF designs, optimized for various pump wave-
lengths in the visible and near-infrared spectral regions [82].

wavelength deliver the best results if flat spectra with continuously high spectral power
densities are required. The broadest possible spectral bandwidth may be reached by
maximizing the input peak power and minimizing the GVD at the pump wavelength,
but at the cost of decreased spectral flatness. In practice, both spectral power density
and bandwidth are only limited by the available pump laser and the damage threshold
of the PCF.

Using the criteria established in this chapter, optimized ANDi PCF designs can be
found for pump wavelengths other than 1080 nm as well. Fig. 4.10 demonstrates the
full versatility of the concept, which is discussed in detail in [83]. The maximum of
the dispersion profile, which should be close to the pump wavelength, can be shifted
from short wavelengths around 500 nm up to about 1300 nm. A small pitch and large
relative hole diameters are required for the maximum to be located at short wavelengths,
while large pitches and small relative hole diameters are necessary to shift the maximum
further into the near-infrared. Note that the absolute diameter d of the air holes stays
almost constant at about 500 nm for every design. Relative air hole diameters near unity
are approached for pumping at short wavelengths, which corresponds to a freestanding
silica strand in air with submicron diameter. This concept will be further investigated in
chapter 6. On the long wavelength side, where small air filling fractions are required, a
limit is imposed by the material dispersion of silica. Therefore, it is not possible to shift
the maximum further than around 1300 nm into the near-infrared. In this range, ultra-
flattened designs with low dispersion of around 10 ps/(nm km) over several hundred of
nanometers are possible, which should result in ultra-broadband SC generation. However,
the large confinement loss for the small air filling fraction requires the fabrication of a
large number of rings.

If the traditional PCF design is modified and a hybrid core with threefold symmetry
is introduced, the mentioned limit of 1300 nm can be overcome and the maximum of the
dispersion profile can be shifted further towards the infrared. This was demonstrated in

|84], where a dispersion flattened design with a maximum at 1.55 pm, -2 ps/(nm km)
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and dispersion variations smaller than 1 ps/(nm km) in the range 1465-1655 nm were

presented.



5. Demonstration and application of
coherent supercontinua generated

in all-normal dispersion PCF

In this chapter, the numerical predictions of the previous chapter are experimentally
verified and the first detailed demonstrations of octave-spanning SC generation in two
realizations of ANDi PCF optimized for pumping in the visible and near-infrared spec-
tral regions are presented. A nanostructured ANDi PCF with extremely small air hole
diameters in the order of 400 nm is used to generate flat and temporally recompressible
visible SC spectra down to 420 nm wavelength. For the first time the conservation of a
single temporal pulse with smooth and stable phase distribution during the SC genera-
tion process is confirmed experimentally. The applicability of these SC pulses in ultrafast
transient absorption spectroscopy is demonstrated, where they enable probing in the di-
rect vicinity of the pump wavelength, which is not possible with bulk generated SC pulses
usually employed in this technique. In the last section of this chapter, the temporal re-
compression of the generated SC pulses to sub-two cycle durations using only linear chirp
compensation is experimentally demonstrated, and further scaling possibilities to even
shorter durations are discussed.
Parts of this chapter were published in [85, 86, 87].

5.1. Fiber properties

In the following experiments two PCFs (A and B) are used with hexagonal lattice geom-
etry and convex all-normal dispersion profiles, shown in Fig. 5.1. Fiber A was manufac-
tured by NKT Photonics (Denmark) with a core diameter of 2.3 pm, pitch A = 1.46 um
and relative air hole diameter d/A = 0.39, resulting in a peak dispersion parameter of
D = -11 ps/(nm km) at a wavelength of 1020 nm [88]. These parameters are within the
optimized range for broadband near-infrared SC generation considered in the numerical
study in the previous chapter. Fig. 5.1 a) shows the measured dispersion profile of PCF
A, supplied by the manufacturer, as well as the calculated mode field diameter (MFD)
obtained from a fully vectorial finite element mode solver (Comsol Multiphysics). Fiber
B was drawn in-house at the IPHT and has a core diameter of 1.05 ym and design param-
eter A = 0.67 ym and d/A = 0.6. Due to input coupling difficulties into the small core, a
measurement of the fiber’s dispersion properties was not possible and Fig. 5.1 b) shows

the calculated profile, obtained from an idealized reproduction of the fiber structure. The

o7
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Figure 5.1. — Measured dispersion parameter and calculated MFD for PCF A with design
parameters A = 1.44 pm, d/A = 0.39 and 2.3 pum core diameter. b) For
PCF B, both dispersion and MFD are calculated. The fiber has design
parameters A = 0.67 pm, d/A = 0.6 and 1.05 pum core diameter. The insets
show scanning electron microscope (SEM) pictures of the respective PCF
cross sections, courtesy of A. Dellith (IPHT Jena).

dispersion curve assumes its maximum at 650 nm with D = -127 ps/(nm km). Due to its
smaller core diameter, fiber B exhibits a smaller MFD and therefore a larger nonlinearity
than fiber A. The dispersion calculations were supplied by A. Hartung (IPHT Jena).

5.2. Numerical Model

In order to interpret the experimental results and compare them with the numerical re-
sults, the model with identical implementation as described in the previous chapter is
employed, with the exception that all simulations presented in this chapter were calcu-
lated neglecting the wavelength dependence of the nonlinear parameter, i.e. y(w) = v(wp)
(3.13), where wy is the angular frequency of the pump. This point is discussed in in sec-
tion 5.3.1. The simulation was divided into 2! bins for PCF A and 2!* bins for PCF B.
Sufficient accuracy was guaranteed by setting the acceptable photon error of the CQEM
to 8pn = 1078 (3.24).

For the initial condition for the simulations, a complex temporal chirped Gaussian
input pulse envelope A(t) = /Py exp[(1 — ot)(t/tg)?] was assumed, where ¢ is the time, o
the chirp factor and o is connected with the FWHM pulse duration tpwaym = V2 1n 2¢.
The peak power is calculated as Py = 0.94, /tpwrm , where F, is the pulse energy.
tpwaMm 18 determined from the time-bandwidth product of the chirped Gaussian pulse
trwaMAf = 0.44y/1 + o , where Af = ¢/A2A\ with Af and AX the FWHM spectral
widths measured in frequency and wavelength, respectively. Ag is the central wavelength
of the pulse and ¢ the vacuum speed of light. o introduces a linear frequency chirp
across the pulse and accounts for the propagation through beam guiding optics and
variable attenuation prior to the injection into the fiber. Typical values are in the range
o = 0.5 — 1. This definition of the pump pulse is a realistic model of the experimentally
obtained pulses from an optical parametric amplifier (OPA) system and makes it possible

to use AX, E, and Ay as the primary input parameters for the simulation, which are
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directly accessible from spectrum and power measurements.

When comparing simulations to experiments for anomalous dispersion pumping, en-
semble averages have to be calculated in order to achieve good agreement due to the
noise-sensitive pulse-to-pulse fluctuations, which can be significant as shown in section
2.3. Since the generated spectra in ANDi PCF are highly coherent, the ensemble average
and a single shot simulation are virtually identical and cannot be separated on the given

scales. Therefore, single shot simulations are depicted in all subsequent figures.

5.3. Spectral measurements

It was established in the previous chapter that the broadest spectra can be expected
when pumping occurs close to the maximum of the fiber dispersion curve. Therefore,
fiber A is employed for near-infrared SC generation pumped at 1050 nm, while fiber B is
more suitable for visible SC generation pumped at 650 nm. In addition, the performance
of both fibers is investigated at 790 nm, a typical operating wavelength of Ti:Sapphire

femtosecond laser systems.

5.3.1. Near-infrared supercontinuum generation with PCF A

A Coherent OPerA OPA system was used to generate ultrashort pulses of ca. 50 fs
duration at central wavelengths of 1050 nm and 790 nm with 1 kHz repetition rate.
After variable attenuation, the pulses were coupled into a ca. 0.5 m long piece of PCF A
and the spectrum after the fiber was recorded with an optical spectrum analyzer. Using
an 8 mm focal length aspherical lens, input-coupling efficiencies as high as 40% could be
achieved.

Fig. 5.2 shows the experimentally recorded spectra for various pump pulse energies on
a logarithmic scale. For the 1050 nm pump, the broadening occurs almost symmetrically
around the pump wavelength. With the highest applied pump pulse energy of 7.8 nJ,
a spectral bandwidth of 905 nm (-20 dB) is achieved, which corresponds to almost 1.5
octaves. This is the broadest spectrum generated in the normal dispersion regime of an
optical fiber to date. While for lower and medium pump energies the spectra exhibit a
flat-top structure with only marginal intensity variations over the entire bandwidth (<
+1.5 dB), at higher energies a "dip" is forming around the pump wavelength whose depth
increases with pump energy and reaches ca. -10 dB for 7.8 nJ. This effect was predicted
and analyzed in detail in sections 4.3.2 & 4.4.

When pumping the fiber at 790 nm, i.e. far away from the maximum of the dispersion
curve, the broadening occurs asymmetrically. A broad shoulder is formed towards the
maximum of the dispersion curve on the long wavelength side. At comparable pump
energies the spectrum is narrower than in the case of pumping close to the dispersion
maximum, at 8 nJ a -20 dB spectral bandwidth of 670 nm is achieved. When the pump
energy is increased to 12.5 nJ, the bandwidth expands to 880 nm and the spectrum spans
from 540 nm to 1420 nm.
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Figure 5.2. — Experimentally recorded supercontinuum spectra after 0.5 m of PCF A in
dependence of the pulse energy for a central pump wavelength of 1050 nm
(a) and 790 nm (b). The pump pulse duration is in the order of 50 fs in all
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Figure 5.3. — Comparison of simulated and experimental spectra for both 790 nm and
1050 nm pumping. b) Simulated spectral evolution for the 8 nJ pump pulse
at 790 nm in a logarithmic density plot.

In order to interpret the experimental results, numerical simulations were performed
with the experimentally determined FWHM spectral width of the pump source A\ =
42 nm for 1050 nm pumping and AX = 15 nm for 790 nm pumping. The remaining
parameters matched the stated experimental conditions and loss in the fiber was ne-
glected. In Fig. 5.3 a) the comparison between experimental and numerical results is
presented, which shows remarkable agreement both in bandwidth and shape of the spec-
trum. The modulation around the 1050 nm pump is most likely caused by higher order
phase modulations and imperfections of the input pulse generated by the OPA and can-
not be reproduced by the simulation. Fig. 5.3 b) shows the simulated spectral evolution
for the example of the 8 nJ pump pulse at 790 nm over a propagation distance of 25 cm.
The full spectral bandwidth is generated within the first 3 cm of propagation and after

ca. 10 cm a steady state is reached, i.e. the spectrum does not change significantly with
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Figure 5.4. — Experimental results for 790 nm, 8 nJ, 50 fs pumping of PCF A compared
with corresponding simulations assuming a constant nonlinear parameter
~v(wo) and frequency dependent 7 (w), taking into account the full variation
of the MFD shown in Fig. 5.1.

further propagation. An analysis of the spectrogram evolution reveals that the interplay
of SPM and OWB dominates the spectral broadening process [85], as was discussed in
detail in section 4.4.

Numerical observation: influence of the variable effective mode field area

In section 5.2 it was mentioned that all numerical simulations in this chapter are per-
formed assuming a constant nonlinear parameter y(wg) for all wavelengths. Since the
frequency dependence of v mainly originates from the variation of the effective mode-
field area Aqg, this assumption neglects the varying MFD shown in Fig. 5.1. If this
variation is included into the simulation using the modified GNLSE 3.14 with a rigorous
treatment of the frequency dependent MFD, the comparison with the experimental re-
sults reveals a significant underestimation of the spectral bandwidth for long wavelengths
in the order of 80 - 100 nm, as exemplary shown in Fig. 5.4 for 790 nm pumping of PCF
A. In contrast, the calculation assuming constant 7 agrees perfectly with the measure-
ment. In this case the short wavelength edge is also well reproduced with variable v due
to the small variation of the MFD in the range 600 - 800 nm. In the case of the symmetric
broadening with 1050 nm pumping, a variable = also produces an overestimation of the
bandwidth on the short wavelength side, which is in the order of 30 - 40 nm, i.e. generally
smaller than the differences on the long wavelength edge.

The observation that the experimental results are much better represented by a con-
stant nonlinear parameter is in a first approach a numerical issue, which could have
several imaginable reasons not connected to any physical effect. However, this fact was
observed in all the measurements with ANDi PCF, with both fibers A and B, as well as
in the experiments with tapered suspended core fibers with ANDi profile, which will be
discussed in the next chapter. As an initial hypothesis for explaining this observation,
the following mechanism is proposed. SPM and OWB generate new wavelength compo-
nents where the pump intensity is highest, i.e. in the center of the mode field area of the

pump. A variable v would imply that these new wavelength components assume their
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Figure 5.5. — a) Measured and simulated spectra generated in a 18 cm piece of PCF B
pumped with 50 fs pulses at 650 nm and 790 nm. The pulse energy at the
fiber end was measured to 1.1 nJ (650 nm) and 0.9 nJ (790 nm), respectively.
Experimentally determined losses are quantified on the right ordinate. b)
If the fiber length is increased to 50 cm, the generated SC spectrum does
not contain any components at the pump wavelength of 790 nm. Here the
pulse energy at the fiber end is 0.6 nJ.

equilibrium MFD instantaneously. Instead, the hypothesis is that the new components
initially propagate in the mode-field area of the pump that creates them and only as-
sume their equilibrium MFD after some propagation distance. Since the SC generation
dynamics are very fast in the investigated cases, this would explain why the generated
spectrum is better explained by a constant MFD. The variable effective mode field area
has been shown to be of importance in dynamics involving soliton self-frequency shift
[89], but these are much slower dynamics than observed in the present case. However,
these numerical observations are in no way a proof of this initial hypothesis and it will
be tested in future research.

5.3.2. Visible supercontinuum generation with PCF B

PCF B was used for visible and near-infrared supercontinuum generation in an identical
setup as described in the previous section. The OPA was set to generate 50 fs pulses
at the fiber dispersion maximum of 650 nm as well as at 790 nm. Due to its small core
diameter, the input coupling efficiency was only 15 - 20%.

Fig. 5.5 a) shows the experimentally recorded and simulated spectra in a 18 cm long
piece of PCF B. Interestingly, the generated spectra seem to be almost independent of the
pump wavelength. Both spectra, generated with either 6560 nm or 790 nm central pump
wavelength, span from ca. 425 nm to 900 nm (-20 dB) over more than one octave. The
intriguing similarity is caused by the exponentially increasing fiber loss above 700 nm,
which dampens wavelength components generated in this region. In addition, the large
dispersion slope prevents significant broadening for shorter wavelengths. The unusual
loss profile can be explained by the fact that the confinement loss in PCF structures in-
creases with wavelength and becomes significant already at 700 nm in this case due to the
extremely small structures of the fiber. The agreement between simulation and experi-

ment is again excellent. In this case, the full loss profile is included into the simulations
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Figure 5.6. — a) Simulated evolution of the SC spectrum over propagation distance
through PCF B when pumped at 790 nm. The properties of the input
pump pulse are identical to Fig. 5.5 a). b) Simulated spectrogram of the
SC pulse after 1.1 cm of propagation

and slight deviations between experiment and simulation are caused by uncertainties in
the fiber loss measurement for the high loss region.

The high fiber losses above 700 nm wavelength can lead to the unusual phenomenon
that the SC spectrum at the end of the fiber does not contain any components of the
pump wavelength, which is depicted in Fig. 5.5 b). Here the fiber was also pumped at
790 nm, but a longer 0.5 m fiber piece was used in the experiment. Note that the coupled
pump pulse energy was less than in Fig. 5.5 a) which explains the slightly narrower
spectrum on the short wavelength side.

The fact that a broad SC spectrum is generated even when pumping occurs in the
high loss region indicates that the SC generation dynamics must be extremely fast. The
numerical simulation of the spectral evolution, shown in Fig. 5.6 a), confirms this: the
spectrum is generated within the first few millimeters of propagation. It remains constant
on the short wavelength side but its extent decreases on the long wavelength side due
to the high losses. If the fiber length is kept to a few centimeters, a spectrum spanning
from ca. 400 - 1100 nm can be obtained. The SC generation dynamics are identical to
those discussed in section 4.4, but they are accelerated due to the large nonlinearity of
PCF B. The spectrogram of the generated SC pulse is shown in Fig. 5.6 b). Due to the

uncomplicated phase distribution, temporal recompression should be realizable.

5.4. Ultrafast transient absorption spectroscopy

Up to this point the temporal characteristics of the generated SC pulse were inferred
from numerical simulations. Since the agreement between experiment and simulation
is excellent in the spectral domain, it is fair to assume that the same is valid in the
temporal domain. However, the experimental validation of the numerical predictions is
critical for many applications, especially the conservation of a single temporal pulse and
the generation of a smooth and stable phase distribution need to be confirmed.

The SC pulses are temporally characterized and at the same their application is demon-
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Figure 5.7. — Experimental setup of the transient absorption spectroscopy experiment
used to determine the temporal characteristics of the generated SC pulse.

strated using a pump-probe ultrafast transient absorption spectroscopy (UTAS) measure-
ment [90]. A photo-induced process is investigated by exciting sample molecules with a
short laser pulse. The dynamics of the excited sample molecule are then probed by a
second light pulse that monitors the photo-induced transmission changes in dependence
of the time delay between pump and probe pulse. If a SC pulse is used as probe and
the full spectrum is recorded at each delay step [91, 92], the chirp of the pulse is directly
accessible from the measurement [93].

The key benefit of using SCs generated in ANDi PCF for UTAS is the possibility
of probing in the direct vicinity of the wavelength used for pumping the SC generation
process. This is not possible with bulk-generated SC pulses usually employed in this tech-
nique, because the low conversion efficiency in bulk requires filtering of the fundamental,

which creates a spectral gap not accessible for probing molecular dynamics [93].

Experimental setup

Fig. 5.7 a) illustrates the experimental setup. As the central light source we use a
Ti:Sapphire regenerative amplifier system (Clark MXR 2101) emitting 150 fs pulses at
775 nm with a repetition rate of 1 kHz. A fraction of the available output power drives a
noncollinearly phase-matched optical parametric amplifier (NOPA) capable of generating
pulses of ca. 25 fs duration at 600 nm wavelength, which will excite the sample molecules
in the subsequent UTAS measurement and define its temporal resolution. About 5 nJ
of the CPA output at 775 nm is coupled into a 20 cm piece of PCF A to generate the
SC used as probe pulse. The fiber length was determined by experimental constraints,
in principle it would be possible to use much shorter fibers. The generated SC spectrum
is narrower than discussed in section 5.3.1 and spans from 620 - 1100 nm due to the
longer input pulse duration. After passing through the sample, the probe is analyzed in
a spectrometer with a fast line-scan CCD camera capable of single shot measurements.
The time delay At between NOPA pump and SC probe pulse can be controlled with a
retro reflector mounted on a linear stage.

In order to generate a large signal-to-noise ratio, a sample mixture of two laser dyes

(1:1 ratio of Rhodamine 700 and Styryl 9 dissolved in methanol) with strong absorption
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Figure 5.8. — Normalized steady-state absorption and fluorescence spectra of Rhodamine
700 and Styryl 9.

and fluorescence characteristics was used. The normalized steady-state absorption and
fluorescence spectra of both dyes are shown in Fig. 5.8. The absorption spectra were
measured with a spectrophotometer and the emission spectra were obtained from litera-
ture [94, 95]. Since both dyes can be excited at 600 nm, the NOPA was set to generate
pump pulses at this wavelength. Rhodamine 700 has a broad fluorescence band around
700 nm, while the fluorescence peak of Styryl 9 is centered around 800 nm. Since the
upper range limit of the used spectrometer was 900 nm, the mixture was sufficient to
generate a transient signal over the accessible bandwidth of the generated SC spectrum.
Note, however, that the absolute absorbance and emittance values for Rhodamine 700 are
much higher than for Styryl 9, so that stronger signals are expected from the wavelength
range covered by Rhodamine 700.

A chopper wheel in the pump beam blocks every second excitation pulse so that the
normalized transmission T of the sample can be calculated as

I*(At, )

Tn(At,A) = o) (5.1)

where I* and [ are the intensities of the transmitted probe light through the excited and
unpumped sample, respectively. At is changed in such a way that the NOPA pump pulse
is slowly shifted through the SC probe pulse from trailing to leading edge. Note that this
procedure leads to the fact that wavelengths generating a signal at earlier time delays
propagate at the trailing edge of the SC pulse, which is contrary to the usual convention

in numerical simulations.

Temporal characterization of the supercontinuum pulses

Fig. 5.9 a) shows the experimentally recorded normalized transmission in dependence
of wavelength and time delay At between NOPA pump and SC probe pulse. Such a
plot is usually used to extract molecular dynamics, but this is beyond the scope of the
thesis. This analysis focusses on the onset of an increased 7 between -4 ps and +1

ps delay. T can only increase if the NOPA pump pulse arrives first at the sample,
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Normalized Transmission

Figure 5.9. — a) Experimentally recorded normalized transmission T of a Rhodamine
700 / Stryryl 9 mixture dissolved in methanol in dependence of wavelength
and time delay between pump and probe pulse. b) Comparison of chirp
determined from a) and extracted from a spectrogram simulation matching
the experimental conditions. The time delay is arbitrarily set to zero for the
input wavelength into the ANDI fiber of 775 nm. Note that wavelengths at
earlier time delays propagate at the trailing edge of the SC pulse, which is
contrary to the usual convention.

excites the fluorescent molecules and causes either ground state bleach or stimulated
emission is generated by a specific wavelength component of the SC probe pulse. Due
to its chirp, the different wavelength components of the SC pulse arrive at different
times at the sample. Therefore also the delay for the onset of increased T signal is
wavelength dependent. This specific delay is also called Otime zeroQ, as it corresponds
to the exact temporal overlap between the short pump pulse and the specific probe pulse
component, if the excitation of the sample molecules is assumed to be instantaneous. In
the present case this is a valid assumption, because the NOPA pump pulses are extremely
short compared to the SC probe pulse and the excitation time of Rhodamine 700 is in the
order of a few femtoseconds [96]. By extracting the wavelength dependent time zero from
Fig. 5.9 a), the temporal position of each wavelength component within the probe pulse,
i.e. the chirp of the SC pulse, can be determined. This is a well-understood procedure
for the temporal characterization of bulk-generated SC pulses in UTAS measurements
[93]. In Fig. 5.9 b), the experimentally determined chirp is compared to the chirp
extracted from a numerically simulated spectrogram after adaption to the experimental
conditions. The comparison shows again the excellent agreement between simulation
and experiment, both in spectral and temporal domain. This measurement therefore
confirms the numerical prediction of the conservation of a single ultrashort pulse in the
time domain with deterministic phase distribution. The SC pulse is stretched to nearly 6
ps after propagation through the 20 ecm of PCF A. Note that the choice of fiber length was
purely due to experimental constraints. As discussed in section 5.3.1, the SC generation
dynamics are quite fast and a much shorter piece of fiber could be used to generate the
same bandwidth, reducing chirp and pulse duration accordingly.

Finally, some molecular dynamics can be extracted from Fig. 5.9 a). The measurement

exhibits two major wavelength bands with elevated Th: one in the range 700 - 750 nm,
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Figure 5.10. — a) Simulated first order coherence function |gg)(>\, t1 —t2 = 0)| for the SC
generated with 150 fs, 5 nJ pulses at 775 nm used for the UTAS measure-
ment. b) Pulse-to pulse spectral intensity fluctuations extracted from Fig.
5.9 a).

whose intensity is decreasing with time delay, and another wavelength band around 820
nm, whose intensity increases with time delay. Comparison with the steady-state spectra
in Fig. 5.8 allows the attribution of the 700 - 750 nm structure to the fluorescence emission
band of Rhodamine 700, while the signature around 820 nm can be identified as the Styryl
emission. Consequently, Ty > 1 can be attributed to stimulated emission from excited
molecules. The steady-state spectra also reveal that the broad absorption band of Styryl 9
overlaps with the peak emission wavelength of Rhodamine 700. The observed dynamics
in the measurement can therefore be explained by a fast energy transfer between the
dyes through re-absorption of the Rhodamine 700 fluorescence by Styryl 9. This happens

within a few picoseconds from the initial excitation.

Coherence and stability

The SC generation dynamics in ANDi PCF are dominated by SPM and OWB, which
create new frequency components with a deterministic phase relation to the injected
pulse. Consequently, the resulting spectrum is expected to be highly coherent. This
argumentation is verified by including input pulse shot noise and spontaneous Raman
noise into the numerical simulation and computing the complex degree of first order
coherence |gg)()\,t1 —ty =0)| (3.11). Fig. 5.10 a) shows the simulation for the SC used
for the UTAS measurement pumped with 150 fs, 5 nJ pulses at 775 nm. As expected,
|gg)(/\)\ = 1 over the entire bandwidth, which corresponds to perfect coherence.
Important information about the coherence properties can be extracted from the UTAS
measurement in Fig. 5.9 a). Firstly, the SC pulses need to be extremely stable in pulse
duration and phase in order to produce the sharp chirp line visible in the experiment.
Since the measurement takes about 10 minutes to complete, this already implies high sta-
bility and temporal coherence of the generated SC pulses. Secondly, the pulse-to-pulse
intensity fluctuations can be extracted from early time delays for which the probe pulse

arrives before the pump pulse at the sample. Then two subsequent SC pulses passing
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through the unpumped sample are referenced to each other according to (5.1). Fig. 5.10
b) shows the wavelength dependent fluctuations for 50 individual traces over the band-
width of the measurable spectrum as well as the average and standard deviation of the
ensemble. While fluctuation spikes are present up to 4= 2%, the standard deviation is well
below 1%. This is consistent with amplitude stability measurements of the CPA pump
system used in the experiment. Therefore it can concluded that the observed fluctua-
tions of the SC spectrum are induced by the noise of the pump system and no obvious
additional noise has been added during the SC generation process. Significantly better
fluctuation stability can be expected if the fiber is pumped directly from a modelocked
oscillator instead of a CPA system, because the amplitude fluctuations of the input pulse
arising from the amplification stage and subsequent attenuation can be avoided. It is
interesting to note that the measured fluctuations decrease towards the edges of the
spectrum. While this can be attributed to the reduced sensitivity of the spectrometer
close to its range limit at 900 nm, the increased stability below 680 nm was clearly visible
and is also evident in the measurement of Fig. 5.9 b). Simulations including pump pulse
amplitude fluctuations could not reproduce this effect, and it will be investigated further

in the future.

5.5. Sub-two cycle pulse compression

Up to this point it has been successfully demonstrated that the SC generation process in
ANDi PCF is highly coherent, preserves a single pulse in the time domain and provides
ultra-broad spectra with smooth intensity and phase. These are ideal properties for the
temporal recompression to few optical cycle pulses by spectral phase compensation.

Few-cycle pulse generation has been subject to intense recent research efforts due to
a wide range of applications, for instance in time-resolved studies of fundamental pro-
cesses in physics, chemistry and biology [97]. High energy few-cycle pulses, typically
generated by gas-filled hollow fiber compression (HFC) [98] or optical parametric chirped
pulse amplification [99, 100], allow for applications such as high harmonic generation and
attosecond pulse generation [101].

Although commercial few-cycle Ti:sapphire based oscillators are available, the genera-
tion of high quality sub-two cycle pulses is still challenging. The shortest pulses (2.6 fs,
1.3 cycles) have been generated using spectral broadening via SC generation in gas-filled
hollow core fibers and compression with an active phase shaping device [98], but this
generally requires amplified pulses with >100 puJ pulse energy. In contrast, solid core
fibers allow for sufficient spectral broadening and potential pulse compression already at
nanojoule pulse energies. If a short piece of standard single-mode fiber is employed, pulse
energies in the order of 10 nJ can generate spectral broadening sufficient to compress to
less than 5 fs duration [102]. However, higher order phase compensation is required and
the achievable pulse width is restricted by the material dispersion of silica, which leads
to strong dispersive temporal broadening for pulses with 800 nm central wavelength and

therefore limits the obtainable spectral width for low energy pulses. In both hollow core
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fiber and single-mode fiber compression, pumping occurs deep in the normal dispersion
regime generating coherent spectra with deterministic phase distribution, which allows
reliable recompression.

The ultrabroad spectra generated in conventional PCF with very low energy pulses are
in principle of great interest for few-cycle pulse compression, but have so far found only
limited application. By using a 5 mm piece of PCF, which exhibits a single ZDW in the
vicinity of the pump, compression to 5.5 fs has recently been demonstrated employing
active phase shaping and 2.7 nJ, 15 fs pump pulses [103]. The problem is, however,
that the sensitivity of the SC generation dynamics to pump pulse fluctuations leads to
variations in spectral structure and phase, which ultimately limit the pulse duration
and quality achievable by compression [22, 103, 104]. The resulting fundamental limits
to few-cycle pulse generation from compression of SC spectra generated in PCF with
single ZDW were theoretically studied in [28]. Impressive results down to sub-two cycle
durations have also been achieved using soliton self-compression in PCF, which takes
advantage of the initial stage of spectral broadening and temporal compression of higher
order soliton propagation, thus obviating the need of post-compression devices [105]. The
scaling of this concept to the single cycle regime has also been theoretically investigated
[106]. Input pulse parameters and fiber length are chosen to prevent pulse break-up and
maintain coherence, but this usually limits the application of the scheme to subnanojoule
pulses. In addition, the resulting pulses typically suffer from considerable side peaks and
pedestals.

In this section it is demonstrated that the special temporal properties of the SC gener-
ated in ANDi PCF allow compression to high quality sub-two optical cycle pulses simply
by linear chirp compensation with a compact chirped mirror compressor. In addition it
is shown that the previously reported limits to few-cycle pulse generation from compres-
sion of SC spectra generated in conventional PCFs do not apply for ANDi PCF due to
the excellent coherence properties, which are independent of fiber length and input pulse
parameters. Finally, the scalability of the concept to single cycle pulses is numerically

investigated.

Experimental setup

The experimental setup is shown in Fig. 5.11. The seed laser is a cavity-dumped Kerr
lens mode-locked Ti:sapphire oscillator delivering up to 10 nJ pulse energy at 800 nm
central wavelength and 2 MHz repetition rate. An output pulse width of 15 fs is measured
using a commercial broadband SPIDER device (VENTEON Laser Technologies GmbH,
Germany) with a measurement range from 600 - 1200 nm. The pulses are coupled into
a 1.7 mm long piece of PCF A via a 6.5 mm focal length aspheric lens with up to
40% efficiency on a piezo-controlled translation stage. The dispersion of the lens is pre-
compensated with chirped mirrors so that pulses of 15 fs duration are expected at the
input of the fiber.

The SC spectrum generated in the fiber is collimated with a gold-coated 25 mm focal

length off-axis parabolic mirror and the resulting large beam diameter is reduced by a
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Figure 5.11. — Schematic experimental pulse compression setup. CM chirped mirrors; L
aspheric lens; PM parabolic mirror; T telescope; BCM broadband chirped
mirror; P periscope.
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Figure 5.12. — a) Measured spectrum at 1.7 nJ pulse energy, comparison with numeri-
cal simulation and measured spectral phase after compression. b) Recon-
structed temporal pulse envelope and corresponding simulation result.

telescope consisting of two silver-coated spherical mirrors. The use of mirrors instead
of lenses, the short fiber length and the stable SC spectrum allow pulse compression to
sub-two cycle durations simply by linear chirp compensation with a compact broadband
chirped mirror compressor (UltraFast Innovations GmbH, Germany), designed to provide
constant negative GVD of -30 fs? per bounce in the range 650 - 1250 nm. Oscillations
of the GVD curves are effectively minimized by using two different incident angles of «
= 20° and # = 5°, as indicated in Fig. 5.11. After adaption of the polarization by a
periscope, the compressed pulses are characterized using the SPIDER device described
above.

Compression results

The generated spectrum for 1.7 nJ input pulse energy is depicted in Fig. 5.12 a). It
spans over more than one octave from 530 nm to 1100 nm and agrees well with numerical
simulations. Slight deviations are caused by uncertainties in the phase of the input pulse,
which is not known exactly after passing through the focusing lens. The measured spectral
phase after compression is flat over the bandwidth of the spectrum, only in the fraction

below 650 nm the chirped mirrors are not able to compensate the phase appropriately
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Figure 5.13. - a) Simulated spectral evolution over 10 mm propagation distance for 1.7
nJ, 15 fs input pulse. Achievable pulse width using linear compression
only (black cross) and full phase compensation (red dot). The insets show
examples of compressed pulse profiles for linear compression.

due to their range limit.

The simulation assumes a complex chirped sech-shaped temporal input pulse field
envelope A(t) = vPysech' =" (1/ty) with tpwan = 2In(1+ v2)t = 15 fs duration.
This definition of the chirp parameter ¢ introduces a linear chirp over the central part of
the pulse with increasing higher order contributions in the wings, which is more realistic
for broadband Ti:Sapphire oscillators than a pure linear chirp assumption [107]. The rest
of the implementation is identical to the description in section 5.2.

The reconstructed pulse shape is shown in Fig. 5.12 b) with a FWHM pulse duration of
(5.0+0.3) fs, corresponding to 1.85+0.11 optical cycles. The measurement was stable and
repeatable with only minor fluctuations in the reconstructed pulse shape and duration.
A SPIDER signal was obtained for the entire bandwidth of the spectrum with good
fringe visibility. Considering that only linear chirp compensation is applied, the pulses
exhibit an exceptional quality. The main peak contains more than 80% of the total pulse
energy in a +5 fs wide temporal window. The measured pulse profile is also in excellent
agreement with the simulation, which was obtained from the simulated spectrum in Fig.
5.12 a) by compensation of quadratic phase only. Note that the Fourier-limited pulse
duration of the measured spectrum is 3.9 fs, which could be obtained by using higher

order chirp compensation.

Fiber length optimization

In order to minimize the pulse duration achievable by linear compression, the fiber length
was optimized by numerical simulation. The generated spectrum was calculated for 1.7 nJ
input pulse energy in dependence of the fiber length (Fig. 5.13 a)), and the pulse width
was determined for linear chirp compensation as well as for full phase compensation
(Fig. 5.13 b)). While the spectrum broadens and consequently the Fourier limited pulse
duration decreases with propagation distance, the minimum achievable pulse width of

4.6 fs for linear compression is reached at a fiber length of about 2 mm. For shorter fiber
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Figure 5.14. — a) Mean spectrum and degree of coherence for 4 nJ, 15 fs input pulses
and 10 mm fiber length, calculated over the simulation ensemble. b) Mean
compressed pulse obtained using an ideal compressor based on the median
spectral phase.

lengths, the spectral bandwidth is not sufficient to support shorter pulses. For longer
fibers, the pulse acquires considerable higher order chirp components, which cannot be
compensated simply by linear compression. The insets in Fig. 5.13 b) show that the
compressed pulse develops significant side lobes or even broad low level pedestals if the
fiber length is chosen too long. The same calculation for higher input pulse energies
or shorter input pulse widths leads to shorter compressed pulse durations, but also the
optimum fiber length decreases to impractical dimensions. In addition, the range limit
of the chirped mirrors needs to be taken into account, so that the combination of 1.7 nJ
pulse energy with 1.7 mm fiber length chosen in the experiment are optimum parameters
for the presented setup. Hence the measured pulse duration of 5.0 fs is close to the

theoretical limit.

Scalability to single cycle pulse compression

Shorter pulse durations approaching the single optical cycle limit can be obtained by
using full phase compensation with active phase shaping. In order to demonstrate the
scaling potential of the ANDi PCF based compression scheme, numerical simulations
with 4 nJ input pulses are performed, which is the highest pulse energy available in the
presented experiment. A fiber length of 10 mm is chosen, for which the SC bandwidth is
fully developed. Since fluctuations of the spectral phase due to the noise sensitivity of the
SC generation process can limit the achievable pulse duration, we follow the procedure
outlined in [28] for simulating a realistic compression experiment including noise-seeded
fluctuations.

Input pulse shot noise and spontaneous Raman noise are included into the simulation,
as explained in section 3.1.2, and multiple simulations are carried out to obtain an en-
semble of 20 independent spectra generated from different noise seeds. The SC spectral
phase stability is then characterized by calculating the complex degree of first order co-

herence | gg (A, t1 — t2 = 0)] (3.11), which is critically connected to the compressibility
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of the SC pulses. Since it is impossible for a realistic compression device to follow and
compensate pulse-to-pulse phase fluctuations, a realistic multi-shot compression experi-
ment is simulated by calculating the median spectral phase over the ensemble and using
the corresponding phase conjugate as transfer function of an ideal compressor. The term
"ideal compressor" refers to the fact that resolution and bandwidth limits of a real device
are not considered here. The procedure yields shot-to-shot distributions of the temporal
characteristics of the compressed pulses, from which the average compressed pulse can
be calculated that would be expected in a realistic experiment.

Fig. 5.14 a) shows the calculated degree of coherence \gg)()\ﬂ as well as the mean
generated spectrum. As expected for ANDi PCF, | gg) (A)] = 1 over the entire bandwidth,
which corresponds to perfect coherence and maximum phase stability. Compensating the
median spectral phase results in 2.9 fs pulses of excellent quality, as shown in Fig. 5.14
b). Due to the high phase stability of the generated SC, the displayed ensemble averages
are virtually undistinguishable from single shot simulations.

These temporal coherence properties of the generated SC in ANDi PCF are distinctly
different from SC generated in PCF with single ZDW. Therefore, the fundamental limits
to pulse compression outlined in [22; 28, 103, 104] do not apply in this case. The achiev-
able pulse duration is not limited by the coherence properties of the generated SC, but
only by the capabilities of the employed compression device and pump laser stability.
In addition, there are no limits on input pulse parameters or fiber length to maintain
coherence, which means that this concept can also be applied to input pulses with higher
energy and longer pulse durations, as was recently demonstrated in [108]. Using a 4 cm
long piece of a similar ANDi PCF and 400 fs, 20 nJ input pulses, compression to less

than 30 fs was achieved after a simple prism compressor.

5.6. Summary

In the first parts of this chapter, ultra-broadband SC generation in the visible and near-
infrared spectral regimes in two different ANDi PCF realizations was presented. The
experimental results are in excellent agreement with previous numerical predictions and
highlight the exceptional temporal properties of the generated SC pulses. The highly
coherent and phase-stable spectrum is only limited by the input pulse stability. The
generated SC pulses were temporally characterized with an UTAS measurement and the
applicability of the generated SC pulses for the study of molecular dynamics was de-
mostrated. Due to the resulting smooth temporal phase distribution and good coherence
properties, ANDi PCFs are suitable even for applications in which fiber-based white light
sources are currently hardly used, e.g. in optical parametric amplification, high quality
single cycle pulse generation or time-resolved spectroscopy applications.

In the last section of the chapter, ANDi PCF was employed in a nonlinear pulse
compression setup and high quality sub-two optical cycle pulses were obtained by applying
linear chirp compensation. The results are close to the theoretical limit obtainable using

linear compression only. It was numerically demonstrated that the SC temporal coherence
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properties allow the scaling of this pulse compression concept down to the single-cycle
regime using an active phase shaping device. These results have high immediacy to the
research in the field, because the achievable pulse durations and quality in an already
existing nonlinear pulse compression setup can be immediately improved by simply using
an ANDi PCF for spectral broadening, while the rest of the setup can essentially be left

unchanged.



6. Coherent supercontinuum
generation in tapered all-normal

dispersion fibers

6.1. Photonic nanowires

It was shown in chapter 4 that an all-normal dispersion profile with a maximum at very
short wavelengths can be obtained in PCF with extremely small pitch values A =~ 500
nm and relative air-filling ratio approaching unity. In the extreme case of d/A = 1, this
corresponds to a pure silica strand with submicron diameter suspended in air. These
nanofibers, also called photonic nanowires, are usually obtained by tapering of standard
optical fibers. Hence the nanofiber is situated in an optical fiber taper configuration, in
which the waist of constant submicron diameter is located between two taper transitions
(Fig. 6.1). The strong concentration of the light in the nanowire waist causes high
intensities and consequently nonlinear effects that can be order of magnitudes larger than
in conventionally sized silica fibers. Therefore, nanowires are a promising candidates to
extend the concept of coherent supercontinuum generation in ANDIi fibers towards the

short wavelength regime, possibly even into the ultraviolet (UV) region.

waist transition

nanofiber

Figure 6.1. — Schematic representation of a photonic nanowire located in the waist of an
optical fiber taper configuration [109].

transition

Especially applications in spectroscopy and fluorescence microscopy require light
sources in the UV, as many photo-induced processes are excited in this wavelength region
[110]. Therefore, recent studies have tried to extend the bandwidth of the generated SC
bandwidth on the short wavelength edge [111, 112, 113, 114, 115]. However, none of
these approaches succeeded in generating significant spectral power densities below 350
nm wavelength, mainly due to the fact that they rely on dispersive wave generation from
soliton effects. This requires phase matching with the original soliton, which is difficult
to achieve for short wavelengths. In addition, relatively long fibers are required so that
the material losses become significant, which rise sharply for wavelengths below 350 nm.

In contrast, the generation of short wavelengths in ANDI fibers is extremely fast and

75
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Figure 6.2. — a) Diameter dependent dispersion profiles of photonic nanowires and mea-
sured losses of a 105/125 pm, which is taken as the material loss of silica.
b) Normalized nonlinearity as a function of diameter for a silica rod in air.

independent of any phase matching condition, and could therefore overcome the present
spectral limitations on the short wavelength edge of fiber-generated SCs. The work on
optical fiber tapers was done in close collaboration with A. Hartung of IPHT Jena, and

the collective results are briefly discussed in this chapter, which was partly published in
[109].

Dispersive and nonlinear properties

The dispersion profiles of photonic nanowires (excluding taper transitions) in dependence
of their diameter are shown in Fig. 6.2 a), calculated using a fully vectorial FEM mode
salver (Comsol Multiphysics). All dispersion and fiber parameter calculations shown in
this chapter were performed by A. Hartung. An ANDI profile is obtained for diameters
d < 490 nm, while the dispersion profile exhibits two ZDWs with increasing separation
for larger diameters. The maximum of the dispersion profile shifts towards shorter wave-
lengths and increasing normal dispersion for decreasing nanofiber diameters. It is located
at about 480 nm, -70 ps/(nm km) for 450 nm and at 440 nm, -290 ps/(nm km) for 400
nm fiber diameter. Although not located exactly in the maximum of the dispersion pro-
file, a pump wavelength of 400 nm is convenient for nanowires, because it can easily be
generated by frequency-doubling of standard Ti:Sapphire oscillators.

The wavelength dependent loss of a 105/125 pm fiber was measured and is also dis-
played in Fig. 6.2 a). In the following simulations, this measurement data is used as the
material loss of silica. For A < 400 nm, it quickly rises to 2 dB/m and even higher to
above 6 dB/m for A < 300 nm. If a significant SC spectral power density is desired in
these wavelength regions, the fiber length needs to be minimized in order to reduce the
influence of material losses. The quick broadening dynamics of SC generation in ANDi
fibers could therefore prove advantageous for extending the bandwidth of fiber generated
SCs into the deep UV region.

In photonic nanowires, a significant part of the modal power is situated in an evanes-
cent field which directly interacts with the silica-air surface of the waist. Any surface

roughness, imperfections or contaminations lead to scattering losses in addition to the
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material loss. The fraction of modal power in the evanescent field increases for longer
wavelengths, and therefore higher losses are expected. For example, loss measurements
for a 400 nm diameter taper waist show sharply increasing losses for A > 700 nm [116].
In this study, however, the focus lies on the extension of the SC bandwidth into the UV
region with high material absorption, where the scattering losses can be ignored due to
their relatively small contributions in this region.

The normalized nonlinearity of the nanowire as a function of its diameter is displayed
in Fig. 6.2 b). As the diameter of the nanowire decreases, the mode field diameter follows
suit and therefore the nonlinearity increases. As the fiber dimensions are further reduced,
the evanescent field begins to dominate, the modal power is not tightly confined inside the
silica core anymore and the nonlinearity drops sharply [117]. The maximum nonlinearity
is reached for a diameter-wavelength ratio of about 0.67. For a pump wavelength of 400
nm, this would correspond to a nanowire diameter of about 270 nm. However, for such
small dimensions the dispersion profile is located too deep in the normal regime to expect
significant spectral broadening. More realistic are the dimensions already displayed in
Fig. 6.2 a). If both fiber diameter and pump wavelength are fixed at 400 nm, v assumes
a value of about 4 (Wm) ™!, which is more than two orders of magnitude larger than in

the case of the PCFs investigated in the previous chapters.

Numerical details

Pulse propagation in the nanofiber is simulated using (3.14) with rigorous treatment
of the wavelength dependent nonlinear parameter, implemented using the RK4IPM for
integration and the CQEM with §p;, = 1078 for adaptive stepping. The full measured
loss profile is included into the calculation. The simulation window is divided into 2'°
bins. A non-chirped hyperbolic secant input pulse intensity profile is assumed, the pump
wavelength is fixed at 400 nm.

Although it has been argued that the scalar GNLSE is inadequate for describing ultra-
short pulse propagation in waveguides with structures on wavelength-scale and high index
contrast [64], in section 6.2 it will be shown that a good agreement between simulated
and experimental spectral bandwidth and shape was obtained in tapered suspended core
fibers with core diameters similar to the ones discussed here for nanofibers. Therefore,
the model is considered sufficient for the fiber parameters discussed in the context of this
thesis.

In the case of ANDi PCF, and also in the case of tapered suspended core fibers discussed
in section 6.2, it was found that the model with constant nonlinear parameter v(w) =
~v(wp) delivered better agreement with experimental results than the model with varying
nonlinear parameter. However, it has not been proven that this observation is generally
valid for all situations of SC generation in fibers with ANDI profile, and therefore the
frequency dependent variation of v is included into the model used for the simulation of
pulse propagation in nanofibers in this section. Similar to the comparison between the
models shown in Fig. 5.4 for ANDi PCF, in the case of nanofibers the differences are

mainly located on the long wavelength edge of the spectra, where the model with varying
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v predicts slightly narrower bandwidths. The spectral extent into the UV regime is not

affected significantly by the choice of constant or varying nonlinear parameter.

6.1.1. Influence of fiber parameters

In this section, the nanofiber diameter is varied while the input pulse with 100 fs FWHM
duration and 1.5 nJ energy at a central wavelength of 400 nm remains unchanged. This
corresponds to a peak power of about 13.5 kW. Taper transitions are disregarded here,

but their influence is investigated in section 6.1.3.
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Figure 6.3. — Single-shot simulations of the SC spectra generated in nanofibers with di-
ameters between 400 nm and 550 nm. In all cases, the propagation of a 100
fs, 1.5 nJ pulse through 2 cm of fiber is considered.

Fig. 6.3 shows single-shot simulations of the SC spectra generated in nanofibers with
diameters between 400 nm and 550 nm, when the input pulse is propagated over a 2
cm distance inside the fiber. For the fibers with 400 nm and 450 nm diameter, which
exhibit an all-normal dispersion profile, the spectrum is smooth and almost rectangular
with a flat top and steep edges. In the 400 nm fiber, the spectrum spans over one octave
from 280 nm to 580 nm (-20 dB bandwidth). The spectrum generated in the 450 nm
fiber is similar, but slightly narrower on the blue side and broader on the red side. In
general it can be observed that the spectral extension into the UV wavelengths slightly
decreases with increasing fiber diameter. Fundamentally different spectra can be observed
in the nanofibers with diameters of 500 nm and above, which have two relatively closely
spaced ZDWs. The spectral complexity and fine structure increases significantly, while
the bandwidth is extended further towards the visible and near-infrared. In the 500 nm
diameter fiber the spectrum spans from ca. 300 nm up to 750 nm wavelength.

The significant differences between the SC spectra generated in nanofibers with ANDi
profile and nanofibers with two ZDWs can be explained by fundamentally different dy-
namics, which are very similar to the dynamics discussed in chapter 4 for PCFs. Fig.
6.4 shows the single-shot spectral evolution over the propagation distance for both 400
nm and 500 nm diameter fibers. The white horizontal lines indicate the ZDWs. The
initial evolution is quasi identical for both fibers, because the pump wavelength lies in
the normal dispersion regime even for the fibers with two ZDWs. The first few millime-

ters of propagation are characterized by SPM induced spectral broadening. After ca. 2
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Figure 6.4. — Spectral evolution over a propagation distance of 20 mm of a 100 fs, 1.5nJ
pulse in optical nanofibers with (a) 400 nm and (b) 500 nm diameter. The
white horizontal lines indicate the position of the zero dispersion wave-
lengths.

mim, energy is transferred to a wavelength band around 300 nm due to OWB occurring
at the trailing edge of the pulse and the associated FWM processes. In the case of the
400 nm diameter fiber, OWB also occurs on the leading pulse edge after ca. 5 mm of
propagation, which is evident from the emergence of a 550 nm wavelength band on the
red side of the spectrum. The OWB process on both leading and trailing edge is also
responsible for the overall smooth appearance of the spectrum in the fibers with ANDi
profile. The spectrum reaches a steady state after ca. 10 mm of propagation, where-
after only further smoothening takes place. In the 500 nm diameter fiber, however, SPM
induced broadening transfers a significant part of the spectral energy to the anomalous
dispersion regime in between the two ZDWs, where OWB is suppressed and instead pulse
compression, soliton dynamics and phase matched FWM processes dominate. This leads
to a much more irregular spectrum on the long wavelength side and additional variations
for further propagation.

These differences in the SC generation dynamics also influence the temporal coherence
properties. The transfer of significant energy to the anomalous dispersion region and the
associated dynamics in the 500 nm diameter fiber increase the noise sensitivity and con-
sequently the pulse-to-pulse fluctuations of both spectral and temporal profile, as shown
in Fig. 6.5. The spectrum remains stable and coherent on the normal dispersion side
of the short-wavelength ZDW, but exhibits strong noisy fluctuations and low coherence
over the remaining bandwidth. The temporal pulse shape is characterized by a strongly
spiking and fluctuating leading edge and a stable tail. The spectrogram computed from
a single-shot simulation shown in Fig. 6.6 reveals that the pulse tail is correlated with
the coherent short wavelength section of the spectrum. The anomalous dispersion region
gives rise to temporal recompression, so that many wavelengths overlap in time and cause
the spiking structure on the leading pulse edge. In contrast, the spectrum generated in
the 400 nm fiber with ANDI profile is perfectly coherent over the entire bandwidth, does

not exhibit pulse-to-pulse fluctuations in neither spectral nor temporal domain and main-
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Figure 6.5. — Temporal coherence and stability calculations from an ensemble of 20 in-
dividual simulations including noise for the nanofibers with 400 nm and
500 nm diameter. The other fiber and pump pulse parameters are iden-
tical to Fig. 6.4. Top: coherence function [gi5[(A). Center: individual
spectra (grey) and mean spectrum (red). Bottom: individual (grey) and
mean temporal pulse profiles (red). For the 400 nm fiber with ANDIi profile,
the fluctuations are not distinguishable from the mean profiles on the given
scales.

tains a well-defined phase distribution. It is therefore possible to temporally recompress
the SC generated in the 400 nm fiber down to less than 10 fs even with simple linear
chirp compensation if a low level pedestal spanning over ca. 1 ps and containing the short
wavelength components is acceptable. Full phase compensation leads to compression ap-
proaching the single optical cycle regime. Compression attempts with the SC generated

in the 500 nm fiber will result in highly structured, longer and fluctuating pulses.

6.1.2. Influence of pump pulse parameters

In this section, the influence of a variation of input pulse parameters on the properties of
the generated SC is investigated. The focus is on fibers with ANDI profile and therefore
the nanofiber with 400 nm diameter is used here as representative example.

The bandwidth of the generated SC spectrum broadens asymmetrically towards longer
wavelengths if pump pulses with higher peak power are used. Fig. 6.7 a) shows spectra

generated with an input pulse duration of 100 fs and varying pulse energies between 0.5
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Figure 6.6. — Spectrogram of the resulting supercontinuum pulse after 20 mm of prop-
agation through the nanofibers with diameters of 400 nm (a) and 500 nm
(b). A gate pulse with 50 fs duration is used to generate the spectrograms.
The colour bar is identical to Fig. 6.4.

a) b)

Figure 6.7. — Dependence of the generated spectrum on the input pulse parameters. a)
Pulse energy: an input pulse duration of 100 fs and 10 mm propagation
distance through a nanofiber with 400 nm diameter are considered. b) Pulse
duration: The peak power of 13.5 kW and 20 mm propagation distance
through a 400 nm diameter fiber are kept constant in all cases. All spectra
are normalized and displayed with an offset to enhance clarity.

- 5 nlJ, corresponding to peak powers between 4.5 - 45 kW. For higher pulse energies,
the spectrum begins to broaden further into the UV wavelengths below 300 nm. For
moderate energies between 1.5 - 2.5 nJ, the blue edge of the spectrum can be expected
between 250 - 300 nm, while the spectrum extends even below 250 nm for the highest
considered energy of 5 nJ or 45 kW peak power. At this energy, the spectrum spans over
more than 400 nm up to 650 nm.

Fig. 6.7 b) shows the generated SC spectra after 20 mm of propagation for input pulse
durations of up to 600 fs at a constant peak power of 13.5 kW. The blue wavelength
edge is not affected by the change in pump pulse duration and reaches ca. 280 nm in
all cases. However, the red wavelength side of the spectrum changes considerably for
pulse duration above 400 fs, the spectrum becomes narrower and the spectral structure
increases. The origin of the spectral changes is explained by the fact that the spectral

broadening dynamics are delayed for the longer pulse durations, as already discussed in
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chapter 4 for the case of ANDi PCF. Both SPM and OWB are not only influenced by
the peak power of the pulse, but also by the slope of the pump pulse intensity which
decreases for longer pulse durations (2.1). OWB on the trailing pulse edge, which leads
to the emergence of the wavelength band around 300 nm, only takes place after 10 mm
of propagation for the 600 fs, 9 nJ pulse, compared to ca. 2 mm in the case of the
100 fs pulse. OWB on the leading pulse edge is just about to occur after the 20 mm
propagation distance considered here, i.e. the displayed spectra generated by longer
pump pulses have not reached their steady state yet. However, the spectra will be
identical if the propagation distance inside the nanofiber is increased proportional to the
pump pulse duration. Therefore, broadband coherent UV supercontinua can in principle
be generated even with relatively long pulses around 500 fs if nanofibers with adequate
length can be manufactured and sufficient pump pulse energy can be coupled into the
fiber.

6.1.3. Influence of taper transitions

Up to now, only pulse propagation in the optical nanofibers was considered. In an
experimental setup, however, these nanofibers are typically situated in an optical fiber
taper configuration where the waist of constant diameter is located between two taper
transitions with varying diameter. It is therefore crucial to investigate the influence of
this taper transition on the SC generation dynamics. Clearly, the ideal taper transition
should have minimum influence on the temporal and spectral characteristics of the input
pulse before it reaches the waist.

A commercially available single mode fiber with initial cladding diameter of 125 mi-
cron and 2.9 micron mode field diameter at 400 nm wavelength (Nufern S405-HP) is
considered, tapered down to a waist diameter of 400 nm. In principle, two fundamen-
tally different transition shapes can be assessed: (i) an easily manufacturable exponential
transition, and (ii) a more complex adiabatic transition.

An adiabatic transition is able to maintain all the power in the fundamental mode
HE;1, and its shape can be calculated from the local adiabaticity criteria dr/dz = r(8; —
B2)/2m, where r is the cladding radius at distance along the fiber z, and 8; and S
are the propagation constants of the HE;; and the first higher order mode with the
same azimuthal symmetry HE o, respectively [118]. Due to the cylindrical shape of the
fiber, higher order modes with different azimuthal symmetry are not expected [119]. The
corresponding calculation for the S405-HP was conducted by A. Hartung and is shown
in Fig. 6.8 together with the calculated mode field radius. Clearly, the reduction of the
mode field radius is a two step process. Initially, the light propagates in the fiber core
with decreasing radius over propagation distance, but as the core size is further reduced,
a transition from core to cladding guiding is observed and the mode field radius increases.
Finally the mode field follows the decreasing cladding radius to the final nanofiber size.

Fig. 6.8 also displays the corresponding exponential transition together with the be-

havior of the mode field radius. While the transition from core to cladding guiding in the
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Figure 6.8. — Cladding diameter and mode field radius for light with 400 nm wavelength
in adiabatic and corresponding exponential taper transitions. Considered is
the tapering of the single mode fiber Nufern S405-HP from its initial radius
of 62.5 pm to a taper waist of 200 nm radius.

adiabatic transition is continuous and smooth, the core cut-off in the exponential transi-
tion occurs quite suddenly around 1 mm distance. The subsequent continuous reduction
of the cladding diameter leads to a prolonged section with very small mode field area
before the actual taper waist is reached. The resulting large nonlinearities can signifi-
cantly alter the spectral and temporal properties of the input pulse before it reaches the
waist. In contrast, the adiabatic transition minimizes the sections with small mode field
diameters and consequently is expected to give a much better performance in delivering
the input pulse to the waist as undistorted as possible.

The 100 fs input pulse with 5 nJ energy considered above is chosen to evaluate the
performance of the taper transitions. The behaviour of the mode field radius illustrated
in Fig. 6.8 is used for the calculation of Ae.g, which is then included into the simulation.
For cladding diameters dcj,q > 1.5um, the fiber dispersion is assumed to be identical to
the material dispersion of silica and the frequency variation of the nonlinear parameter
is neglected, i.e. J(w) = F(wp) in (3.14). This is a good approximation, because the
dependence of the GVD on the cladding diameter around the pump wavelength of 400
nm is negligible for larger diameters and the spectral bandwidth of the propagating pulse
is still narrow. For d¢.q < 1.5um, the dispersion profile and frequency dependent Aqg
are calculated in diameter steps of 50 nm and fully included into the simulation.

In Fig. 6.9, the simulated pulse properties at the end of adiabatic and exponential
transitions with 4.3 mm length are shown, which is the shortest theoretically possible
adiabatic transition length for the S405-HP. Clearly, the propagation through the expo-
nential transition drastically changes the characteristics of the input pulse. The spectrum
has broadened to more than 100 nm bandwidth due to SPM in the small diameter sections
of the transition and the temporal pulse shape shows clear signatures of nonlinear distor-
tion, such as the steepening of the trailing pulse edge. The peak power drops from the
initial 45 kW to less than 30 kW. In contrast, the characteristics of the pulse propagating

through the adiabatic transition are conserved to a large extent. Spectral broadening
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Figure 6.9. — Influence of adiabatic and exponential transition on temporal pulse shape
(a) and spectrum (b) of the input pulse.

is only noticeable on a logarithmic scale and the temporal pulse shape exhibits only a
small amount of dispersive broadening, reducing the peak power to about 38 kW. Con-
sequently, the adiabatic transition does not change the properties of the generated SC in
the complete taper significantly in comparison with the pure nanofiber, while the serious
reduction of peak power and pulse distortion in the exponential transition reduces the
achievable spectral width of the SC generated in the taper waist.

Note that here an exceptionally short transition was considered, which is extremely
challenging to manufacture, and the performance difference between the two transition
shapes is already remarkable. In reality, the transition shape will be chosen longer in order
to relax manufacturing difficulties, which will increase the distortions of the input pulse
even further for the exponential transition. Clearly, the exponential shape is unsuitable
for the delivery of ultrashort pulses to submicron diameter taper waists, because the
characteristics of the generated SC are increasingly determined by the properties of the
transition instead of the carefully designed dispersion profile of the taper waist. Therefore,
every effort should be made in the taper drawing process to achieve an adiabatic transition
with steep angles at the critical sections, i.e. initial core cut-off and final reduction
to nanofiber waist size where the mode field area is small before it reaches the waist.
Numerical simulations have confirmed that the transition allows coherent SC generation
below 300 nm wavelength even if it is several centimeters long, as long as the basic

adiabatic shape is maintained, and input pulse and waist parameters are carefully chosen.
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Figure 6.10. — Scanning electron microscope picture of the suspended core fiber used in
the subsequent experiments. a) before tapering: the core has an incircle
core diameter of 2 um. b) after tapering: the core has an incircle diameter
of 540 nm. Pictures courtesy of A. Dellith (IPHT).

6.2. Suspended core fibers

It was shown in the previous section that optical nanofibers are promising candidates
for coherent SC generation in the ultraviolet spectral regime. However, the experimental
realization may prove difficult mainly due to the short required taper transitions with
complex shape, which are hard to manufacture. A more favorable experimental approach
can be expected in suspended core fibers. In these fibers, a core with a diameter of a
few micron is suspended in air in the central section of a fiber, connected to the walls
typically via three or more silica bridges. A SEM picture of the cross section of a fiber
with 2 pm incircle core diameter, which is the diameter of the biggest circle that fits
entirely into the core, is shown in Fig. 6.10 a). The fiber was drawn in-house at the
IPHT and is used in the following experiments.

Since the core is mostly surrounded by air, similar properties to freestanding nanofibers
are expected. In addition, the suspended core design offers the following advantages when

tapering is considered:

e the high refractive index difference between the core and the surrounding air
cladding prevents the transition from core to cladding guiding, which allows shorter

taper transitions in comparison to all-solid designs;

e a tapering ratio of only roughly 1:3 is required to reach core diameters in the order

of 500 nm, which can be realized in transitions of only a few millimeters length;

e the tapered core is protected by the surrounding silica cladding, which offers im-
proved stability compared to the freestanding nanofiber and protection against

surface contamination.

6.2.1. Dispersion properties

In order to investigate how the dispersive properties are influenced by tapering, the
experimentally available fiber design of Fig. 6.10 a) is modeled by A. Hartung with a
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Figure 6.11. — Dependence of fundamental mode dispersion profiles on (incircle) core di-
ameter for suspended core fibers and pure silica nanofibers.

fully vectorial FEM mode solver (Comsol Multiphysics) and scaled down to a smaller
geometry to imitate the results of the tapering process. The results are displayed in Fig.
6.11. The dispersion profile for the fundamental mode of the untapered fiber has a single
ZDW at about 750 nm wavelength. It is important to note that the untapered fiber is
not single-mode, a total of 13 modes are supported by the geometry.

The calculation results for the fundamental modes of the tapered geometries reveal
remarkable differences between freestanding nanofibers and suspended core fibers for the
position of minimum GVD, which is shifted for suspended core fibers into the region of
600 - 650 nm. It was shown in chapter 5 that pumping close to the minimum GVD results
in the broadest bandwidth of the generated SC. Therefore, both types of optical fibers
give access to quite different wavelength ranges for coherent SC generation. The required
fiber diameters for obtaining an ANDi profile also show significant differences. While
the diameter of the freestanding nanofiber has to be below 480 nm, an incircle diameter
of 570 nm is sufficient to obtain all-normal dispersion suspended core fibers. Therefore,
the suspended core fiber has to be tapered only by a factor of roughly 1:3.5 in order to
reduce the incircle diameter from the initial 2000 nm to the required value, which can be
realized with a taper transition of just a few millimeters.

The original fiber was scaled down by a factor of 1:3.7 to achieve all-normal dispersion
at an incircle diameter of 540 nm. The taper was drawn by A. Hartung at the facilities
of the IPHT in Jena with a CO5 laser heating method described in detail in [119]. The
final suspended core fiber taper geometry consists of a 70 mm long waist with 3 mm
taper transitions at both ends and 2 mm untapered fiber at the input and output side. A
SEM image of the suspended core fiber after the tapering process is shown in Fig. 6.10
b) and comparison with the untapered fiber confirms that the geometry of the fiber was
well conserved.

According to the FEM calculations, the tapered waist section can support two modes.
However, the second order mode is quite lossy and has a very different dispersion profile
compared to the fundamental mode. The dispersion is also normal at all wavelength, but

acquires its maximum at 460 nm with a high value of -430 ps/(nm km) compared to the
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dispersion of the fundamental mode of > -100 ps/(nm km) at the pump wavelength. If
parts of the input pulse are coupled into this mode, the fast temporal broadening prevents

a significant contribution to the SC generation dynamics.

6.2.2. Experiments and discussion

The experimental setup is identical to the one described section 5.3, i.e. the tunable
Coherent OPerA optical parametric amplifier is used to generate input pump pulses of
ca. 50 fs duration. The OPA was set to a wavelength of 625 nm, which is close to
the maximum of the dispersion profile for the tapered suspended core fiber taper. The

experimental data was recorded by A. Hartung.
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Figure 6.12. — Measured supercontinuum spectrum at output pulse energy of 1.3 nJ and
comparison with numerical simulations. The spectrum in a) is mainly
generated in waist, while b) is mainly generated in untapered initial piece
of fiber

The maximum transmitted pulse energy measured at the taper end before end face de-
struction was 1.3 nJ. At this energy two distinctly different SC spectra could be generated
as seen in Fig. 6.12 just by slightly moving the input coupling optics. In order to clarify
the differences in the generated spectra, pulse propagation through the taper geometry
was numerically modeled. The model is identical to the previous sections, the nonlinear
parameter was assumed to be constant v = y(wg), because better agreement with the
experiments could be achieved. This point was already discussed in section 5.3.1. The
taper geometry was idealized by starting the pulse propagation in 2 mm of untapered
fiber, instantaneously followed by the taper waist and the final untapered fiber section.
Due to its short length, the transition between the untapered fiber and the waist section
was thus neglected.

The spectrum in Fig. 6.12 a) has a smooth spectral intensity profile and three peaks can
be identified around 450 nm and 750 nm, as well as around the pump wavelength of 625
nm. Ranging from 370 nm to 895 nm, a more than octave-spanning spectral bandwidth of
525 nm at the -20 dB level was achieved. The spectrum could be reproduced reasonably
well by simulation assuming that the transmitted energy of 1.3 nJ was launched initially

into the fundamental mode of the untapered fiber and transmitted into the waist section.
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Figure 6.13. — Spectral evolution during propagation a) for the narrow but flat top spec-
trum mainly generated in the waist and b) the wide spectrum mainly
generated in the 2 mm untapered input piece of fiber

Since in separate experiments with the untapered fiber it was possible to launch about 10
nJ pulse energy, it is plausible that higher order modes of the untapered fiber were initially
excited and lost in the taper transition. The peak around the pump wavelength could
not be reproduced by simulations and is assumed to originate from a small contribution
of the second order mode of the taper waist. The short untapered initial part of the fiber
contributes only a small amount to the spectral broadening, as seen by the simulated
spectrum entering the waist (Fig. 6.12 a) and the simulated spectral evolution (Fig. 6.13
a). Nonlinear processes become significant only when the optical pulse reaches the taper
waist. The broadening dynamics are therefore dominated by the all-normal dispersion
properties of the waist, where SPM and OWB lead to a flat and smooth octave-spanning
spectrum. The spectrogram after 10 mm propagation is shown in Fig. 6.14 a) and is very
similar to the ANDi PCF spectrograms of chapter 4. The calculated coherence gg)()\)
= 1 for the entire bandwidth.

The spectrum in Fig. 6.12 b) ranges from 350 nm to 1150 nm at the -20 dB level. Thus
especially on the long wavelength side it is broader than the spectrum in Fig. 6.12 a),
but in contrast it does not exhibit a smooth and flat profile but shows significant spectral
variations. The main features of the spectrum can be reproduced by the simulation
assuming that the entire 10 nJ of energy were initially coupled into the fundamental
mode of the untapered fiber and losses occurred at the taper transition resulting in the
final 1.3 nJ within the waist. The high energy of 10 nJ leads to an extraordinary SPM-
dominated broadening already in the short untapered piece of fiber, indicated by the
simulated spectrum entering the waist (Fig. 6.12 b) and the simulated spectral evolution
(Fig. 6.13 b). When this broadband pulse reaches the waist and losses are taken into
account, only additional spectral smoothing takes place. Therefore, the SC generation
dynamics are dominated by the properties of the untapered suspended core fiber with
its ZDW around 750 nm. Although energy is transported into the anomalous dispersion
regime, no significant soliton dynamics can occur due to the quick transition to the all-

normal dispersion of the taper waist. Therefore, the spectrum exiting the fiber is also
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Figure 6.14. — Simulated spectrogram of the SC pulse after 10 mm of propagation through
the suspended core taper for the two characteristic spectra a) and b) dis-
cussed in Figs. 6.12 and 6.13.

highly coherent over the entire bandwidth. The spectrogram in Fig. 6.14 reveals that
also in this case a single pulse is maintained in the time domain, but a long tail containing
the long wavelength components is formed, which spans over more than 5 ps.

By performing numerical simulations with the higher order modes of both untapered
and tapered fiber it could be established that the fundamental mode dispersion profile
is essential for obtaining the experimentally measured spectral bandwidth. The analysis
given above can explain the origin of the different spectra, but the assumption of dif-
ferent losses of the fundamental mode in dependence of the guided energy remains an
inconsistency, which has to be investigated in future experiments. It is clear from these
experiments, however, that the input coupling section needs to be minimized in order to

take full advantage of the ANDI profile of the waist, especially for higher pulse energies.

6.2.3. Outlook

Coherent visible SC generation in ANDI tapered suspended core fibers was successfully
demonstrated in this section and the advantages compared to freestanding nanofibers
were discussed. However, it would be interesting to develop ANDI fibers with dispersion
profiles close to the ones of nanofibers to be used for UV SC generation while keeping
the advantages of the suspended core geometry. Therefore, the influence of different
suspended core fiber designs on the dispersion profile was investigated with FEM calcu-
lations [82]. The results are summarized in Fig. 6.15. Displayed is the position of the
maximum of the dispersion profile in dependence of the fiber design and the diameter
of the fiber. All the calculated profiles are convex, so that an ANDI profile is implied
if the maximum is located at D < 0 and a profile with two ZDWs if D > 0. Similar
to the dispersion profiles in Fig. 6.11, the maximum shifts towards lower values of D
and shorter wavelengths for smaller fiber diameters for all the investigated designs. It is
interesting to note that the dispersion profile depends critically on the geometry of the
fiber core. The closer the core geometry resembles a circular shape, the more the disper-

sion profile is shifted to shorter wavelengths and converges towards the dispersion of the
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Figure 6.15. — Position of the maximum of the dispersion profile in dependence of the fiber
design and the diameter of the fiber. All calculated profiles are convex, so
that an ANDI profile is implied if the maximum is located at D < 0 and a
profile with two ZDWs if D > 0.

freestanding nanofibers. If the number of cladding air holes is increased from three to six,
the maximum of the dispersion profile shifts about 100 nm to the region around 550 nm
wavelength. A further increase in the number of cladding air holes leads to further shifts
towards shorter wavelengths, but with smaller increments and increasing manufacturing
difficulty. A tapered suspended core fiber design with six cladding air holes is therefore
a promising candidate to extend the spectral extent of the generated SC further towards

the UV range while keeping a reasonably well manufacturable design.



7. Conclusion and Outlook

The main objective of this thesis was the development of optimized fiber designs for
pulse-preserving and spectrally uniform broadband coherent SC generation for ultrafast
time-resolved applications. The conventional approach of anomalous dispersion pumping
produces ultra-broadband spectra by exploiting pulse break-up by soliton fission, but
the existence of noise-seeded MI in the anomalous dispersion regime puts strict criteria
in place regarding the soliton number of the input pulse or the fiber length in order
to conserve coherence. The main challenge of this work was therefore to find a way
to suppress the unwanted pulse break-up and noise sensitivity, while still maintaining
ultra-broad bandwidths.

In an extensive numerical study it was shown that an approach using the special
design possibilities of PCF to create fibers with optimized all-normal dispersion profiles
can achieve the objective. Femtosecond pumping of fibers exhibiting convex and flattened
ANDiI profiles with minimum GVD at the pump wavelength was shown to produce more
than octave-spanning spectra, which are perfectly coherent over the entire bandwidth.
Fiber and input pulse parameters can be adjusted to maximize spectral bandwidth or
uniformity, and continuously high spectral power densities with flatness of better than
4+ 1dB can be achieved. SPM and OWB were identified as the dominant nonlinear
effects in the SC generation dynamics, which produce smooth spectral and temporal
profiles without significant fine structure and conserve a single recompressible pulse in the
time domain with stable phase distribution. Working entirely in the normal dispersion
regime suppresses MI and minimizes noise sensitivity. In contrast to SC generation
involving soliton dynamics, no limitations on input pulse parameters or fiber length exist
to maintain coherence in the SC generation process in ANDI fibers. A wide range of input
pulse parameters is suitable for ultra-broadband coherent SC generation in these fibers,
and in fact the coherence properties, spectral bandwidth and temporal compressibility
are independent of input pulse duration for constant peak power. The results of this
thesis therefore overcome the common perception that there is a trade-off between high
coherence and broad bandwidth of the generated SC for pump pulses with a few hundred
femtoseconds duration.

These numerical results were confirmed in experiments with two realizations of ANDi
PCF. In the fiber with minimum normal GVD at 1050 nm, the broadest SC spectra
generated in the normal dispersion regime of an optical fiber to date could be demon-
strated, spanning over 900 nm or almost 1.5 octaves. The required pulse parameters
are achievable with modern Ytterbium doped fiber lasers, making highly coherent ultra-

broadband SC generation possible in all-fiber designs. It was also shown that pumping on
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the steep flanks of the dispersion profile leads to asymmetric broadening towards the side
with decreasing GVD, which can be used to effectively steer the broadening dynamics
towards a desired wavelength range for a given pump wavelength. In a second realization
of an ANDi PCF with minimum GVD around 650 nm, coherent SC generation spanning
the entire visible and partly the near-infrared spectrum was experimentally achieved,
demonstrating the versatility of the concept.

In further experiments, the conservation of a single pulse in the time domain was
demonstrated using the generated SC as the probe pulse in ultrafast transient absorption
spectroscopy. This achievement proves that SCs generated in ANDi PCFs are applicable
to the study of time-resolved molecular dynamics and in fact offer multiple advantages
over bulk generated SCs, such as order of magnitude lower required pump power, high
conversion efficiency and the possibility of probing in the direct vicinity of the pump
wavelength. The excellent phase stability of the SC pulses was further exploited in a
nonlinear compression experiment, in which the SC spectrum obtained in a short piece
of ANDi fiber with pump pulses from a Ti:Sapphire oscillator could be compressed to
pulses of 5.0 fs duration with excellent quality by linear chirp compensation only. It
was numerically shown that even shorter pulse durations approaching the single cycle
limit can be generated using full phase compensation. In contrast to earlier compression
demonstrations with single ZDW PCF, the achievable pulse duration and quality is not
limited by the SC coherence properties and the concept is scalable to longer input pulse
durations and fiber lengths.

The concept of broadband coherent SC generation was further extended into the UV
regime by using the design flexibility of tapered optical fibers. It was shown numerically
that octave-spanning coherent SC generation with significant spectral power densities at
UV wavelengths is possible in freestanding optical nanofibers with submicron diameter
and all-normal dispersion profile. In contrast to previous studies using solitonic dispersive
wave dynamics, the generation of short wavelengths in ANDI fibers is independent of any
phase matching condition, and could therefore overcome the present spectral limitations
on the short wavelength edge of fiber-generated SCs. Additionally, the fast dynamics
enable the use of short fiber lengths, making it feasible to generate coherent SCs with
significant spectral power densities below 300 nm wavelength. Although the taper transi-
tions necessary for efficient input coupling into the nanofibers can distort the pump pulses,
an adiabatic transition shape was shown to minimize both nonlinear and dispersive ef-
fects on the pump pulse before it reaches the taper waist. Extremely short transitions
and increased environmental stability are offered by tapered suspended core fibers. The
concept of SC generation in tapered fibers with ANDIi profile could be experimentally
demonstrated using a fiber with suspended core design, resulting in a smooth spectral
profile spanning from 400 nm - 850 nm. Further developments in suspended core fiber
design and fabrication can shift the achievable bandwidth further to short wavelengths
and should result in an environmentally stable coherent UV light source.

While coherent SC generation in normal dispersion fibers has been demonstrated pre-

viously, the work contained in this thesis pushes this concept to new dimensions. The
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theoretical understanding of the involved dynamics and the development of clear de-
sign criteria has made it possible to increase the bandwidth of normal dispersion SCs
to magnitudes previously only known from anomalous dispersion pumping. At the same
time, these spectra benefit from low noise-sensitivity, smooth and uniform spectral and
temporal profiles, absence of spectral fine-structure as well as recompressible phase distri-
bution, which are characteristic to normal dispersion pumping. The possibility to achieve
these characteristics with relatively long pump pulses and the relaxation of previously
demanding pump source requirements to maintain coherence increases availability and
applicability of broadband coherent SC sources.

The ANDi fiber design concept is an important complement to the fibers with single
ZDW conventionally used for SC generation, and both have their unique advantages and
drawbacks. Ultimately, the choice of fiber design depends on the application demands.
The ANDI design is preferable if coherence, phase stability and spectral flatness are re-
quired, but for a given input peak power the achievable spectral bandwidth is narrower
in comparison to anomalous dispersion pumping. For applications in which the coher-
ence properties and the presence of fine structure are unimportant, the classic approach
of anomalous dispersion pumping close to the single ZDW still provides the broadest
achievable spectral bandwidth and allows pump sources from the femtosecond to the
CW regime. ANDi fibers do not offer the same flexibility in the choice of pump source,
the high peak powers required for substantial spectral broadening put a practical limit on
the pump pulse duration and imply a femtosecond pulse source. However, it was detailed
in chapter 4 that broader spectra can be achieved by flatter dispersion slopes. It will
therefore be a future challenge to design ANDi fibers with ultraflat dispersion profiles,
which will allow substantial spectral broadening also for lower peak power pulses in the
picosecond regime.

In this thesis, ANDI fibers for coherent SC generation in the near-infrared, visible and
UV wavelengths were presented. It was mentioned, however, that the extension of the
achievable bandwidth towards the mid-infrared (mid-IR) is limited with the traditional
silica PCF designs. However, there is an emerging requirement for coherent sources of
mid-IR radiation, i.e. wavelengths longer than 2 microns, for a range of applications in
the life sciences, chemical sciences and physics. Current techniques to generate mid-IR
radiation, such as thermal or laser sources, cover only a relatively narrow spectral range
or offer only very low output power. The transfer of the concept of SC generation in
ANDiI fibers to the mid-IR region could therefore create an additional source of robust
and coherent broad bandwidth light in this wavelength region.

Ultimately, a new degree of freedom needs to be introduced in order to realize ANDi
fiber designs beyond 2 pum: the fiber material. Soft glass materials offer low losses in
the mid-IR and ZDWs between 1.6 um for fluoride and 4.8 um for chalcogenide glasses.
The variety of available soft glass materials provides a whole new dimension for the de-
sign of ANDi fibers in mid-IR wavelengths, because dispersion design flexibility is not
only given by the inclusion of air hole microstructures, but also by combining layers of

glass materials with different characteristics in all-solid designs. In addition, soft glasses
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typically offer orders of magnitude larger nonlinearity than silica, enabling the use of
much lower peak power pump pulses to obtain similar dynamics and bandwidths. As a
result, a wide range of potential applications can be identified for broadband coherent SC
sources based on soft glass fibers with ANDi profile, including bio-chemical absorption
spectroscopy, the generation of seed pulses for mid-IR optical parametric chirped pulse
amplification systems to be used in high harmonic generation experiments and the de-
velopment of coherent transmission sources for the next generation telecommunications
networks. Broadband coherent SC generation is also the key enabling technology for
extending metrology applications towards the mid-IR spectral regime.

By resolving several challenges regarding coherence properties, stability, uniformity,
temporal profile and spectral bandwidth of fiber-based SC sources, the work contained in
this thesis therefore lays the foundation for future advancements in fundamental science

and modern technology.
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A. Appendix: Numerical

Implementation Details

A.1l. Symmetric split-step Fourier method

The SSFM finds an approximate solution to the general pulse propagation equation in
time (3.6) or frequency (3.12) formulation by assuming that dispersive and nonlinear
operator act independently, while in reality they act together [48]. The dispersive step
has an exact solution

a;? = D(w)Ap - Ap(z + h,w) = exp[hD(w)]AL(z,w), (A1)

while the nonlinear step must in general be solved by numerical integration due to its
own z-dependence
aAN B z+h R

5 = N(z,w)An - An(z+ h,w) = N(Z ,w)An(',w)dz".  (A.2)
< z

The SSFM combines the two operations by first taking half a dispersive step, followed
by the nonlinear step and the final dispersive half-step

A(z+ h,w) ~ exp (;‘f)) exp ( / o N(z’)dz’) exp (;‘fy) Az, w). (A.3)

For the nonlinear integration, a fourth-order Runge-Kutta solver is applied, so that the

propagation step is explicitly calculated by

A = exp(Zﬁ)A(z,w),

ki = NAp,
R h
ky = N(Ar+ 5/@‘1),
N h
ks = N(Ar+ 5/{12),
ky = N(A[ +h/€3)7
- h A h h h
Az +hw) ~ exp (QD) [AI Sk Sk + kg (A.4)
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One longitudinal step therefore requires four evaluations of the N, which requires a total
of 16 Fourier transforms. The numerical error is introduced because the SSFM ignores
the non-commuting nature of the operators D and N resulting in an error term per step
of order O(h3). Note that the total number of steps is inversely proportional to h, so
that the global error at the end of the simulation is O(h?).

A.2. Runge-Kutta in the interaction picture method

The RK4IPM transforms the pulse propagation equation into an interaction picture in
order to separate the dispersive terms in D from the non-dispersive terms in N. It is
closely related to the SSFM described above and is described in detail in [69]. The

algorithm advancing the spectral envelope from z to z + h is given by

A = exp(;lf))fl(z,w),

ki = exp (hﬁ) [hN[l(z,w)} ,
2
A k1
ke = hN(A+ ),
. k
ks = hN(Ar+3),
ky = hN [exp (;ﬁ%) (Ar +k3)] ,
- N h ~ k1 ko ks k4
A(z+ h,w) = exp(zD) [AI+ 5 + 3 + 3] + 6 (A.5)

The RKAIPM also requires four evaluations of N with a total of 16 Fourier transforms.
The main advantage of (A.5) is the high accuracy of the integration with a dominant
local error term of order O(h%), making it possible to set A much larger than in (A.4) to

reach the same accuracy and therefore making the calculation significantly faster than
the SSFM.

A.3. General Properties of the Fourier methods

Both SSFM and RK4IPM make use of discrete Fourier transforms to switch between
time and frequency domains. The time window width Ti,.x of the simulation is defined

by the time resolution At and the number of computational points N,

Tinax = (N — 1)At. (A.6)
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The properties of the discrete Fourier transform then define the corresponding frequency

window with width Fi,.x and resolution Av,

1 1
Al/ = m ~ Tmax y (A.?)
Fome = (N— 1Ay~ = (A.8)

At’

whereby the frequency window is centered around the central frequency vg. This also

defines the minimum and maximum wavelengths in the simulation,

Ao

Amin = ————, (A.9)
1+ 557
A
Amax = ———, (A.10)
L= 5a

with the central wavelength \g.

A.4. Scaling and Normalization

Both temporal and spectral envelope should be normalized such that

Timax Wmax
E:/ |A(t)|2dt:/ |A(w)2dw, (A.11)
0

Wmin

where E is the total energy of the pulse. |A(t)|? is therefore the instantaneous power,

and |A(w)[? is connected to the power spectral density S(w) via the repetition rate frep
S(w) = freplA(w) P (A12)

to obtain the scaling for the average power

Wmax

Py = frepE :/ S(w)dw. (A.13)

Wmin

In plots, the spectral power density is often displayed on a wavelength scale. In this case

care must be taken to ensure proper rescaling to observe the identity

Wmax Amin Amax
Py = / S(w)dw = / SOV = — / S(AdA. (A.14)
w A A

min max min

Through comparison one obtains the relation
S(A)dA = =S(w)dw. (A.15)

Using (A.12) and
(A.16)
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the transformation equation for the spectral power density on wavelength scale can be
deducted as 5
mC ~
S(/\) = Vfrep‘A(W)lg (Al?)

A.5. One photon per mode

In section 3.1.2 input pulse shot noise is included into the simulation by adding one
photon per mode with random spectral phase into each frequency bin, which models the
effects of spontaneous emission noise [120]. The power of the one photon per mode field
is
Wmax
Poppm = hwdw. (A.18)

Wmin

Comparison with (A.13) yields Soppm(w) = Aw, and using the relation in (A.12)

~ 1
Agpom(W)]? =
Aoppn () = 2

ho. (A.19)

Therefore, the spectral envelope of the one photon per mode field for each frequency bin

Wy, can be written as

Aoppm (Wm) =

o exp[—i®(wm)], (A.20)

rep

where ®(w,,) is a random phase sampled uniformly over the interval [0; 27]. Agppm (W)

is then inverse Fourier transformed to yield Aoppm (tm) which is added to the input field.
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