
Quality Goal Oriented Architectural

Design and Traceability for

Evolvable Software Systems

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der

Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

von

Dipl.-Inf. Stephan Bode
geboren am 5. Februar 1983

in Mühlhausen/Thüringen, Deutschland

1. Gutachter: PD Dr.-Ing. habil. Matthias Riebisch, TU Ilmenau

2. Gutachter: Prof. Dr.-Ing. Detlef Streitferdt (JP), TU Ilmenau

3. Gutachter: Prof. Dr. Wilhelm Hasselbring, Universität zu Kiel

Datum der Einreichung: 2011/04/20

Datum der Verteidigung: 2011/09/22

urn:nbn:de:gbv:ilm1-2011000313

Zusammenfassung
Softwaresysteme werden heute z. B. aufgrund sich ändernder Geschäftsprozesse oder
Technologien mit häufigen Veränderungen konfrontiert. Die Software und speziell
ihre Architektur muss diese Änderungen zur dauerhaften Nutzbarkeit ermöglichen.

Während der Software-Evolution können Änderungen zu einer Verschlechterung
der Architektur führen, der Architekturerosion. Dies erschwert oder verhindert wei-
tere Änderungen wegen Inkonsistenz oder fehlendem Programmverstehen. Zur Ero-
sionsvermeidung müssen Qualitätsziele wie Weiterentwickelbarkeit, Performanz oder
Usability sowie die Nachvollziehbarkeit von Architekturentwurfsentscheidungen be-
rücksichtigt werden. Dies wird jedoch oft vernachlässigt.

Existierende Entwurfsmethoden unterstützen den Übergang von Qualitätzielen
zu geeigneten Architekturlösungen nur unzureichend aufgrund einer Lücke zwischen
Methoden des Requirements Engineering und des Architekturentwurfs. Insbesonde-
re gilt dies für Weiterentwickelbarkeit und die Nachvollziehbarkeit von Entwurfsent-
scheidungen durch explizite Modellabhängigkeiten.

Diese Arbeit präsentiert ein neues Konzept, genannt Goal Solution Scheme, das
Qualitätsziele über Architekturprinzipien auf Lösungsinstrumente durch explizite
Abhängigkeiten abbildet. Es hilft somit, Architekturlösungen entsprechend ihrem
Einfluss auf Qualitätsziele auszuwählen. Das Schema wird speziell hinsichtlich Wei-
terentwickelbarkeit diskutiert und ist in ein zielorientiertes Vorgehen eingebettet, das
etablierte Methoden und Konzepte des Requirements Engineering und Architektur-
entwurfs verbessert und integriert. Dies wird ergänzt durch ein Traceability-Konzept,
welches einen regelbasierten Ansatz mit Techniken des Information Retrieval ver-
bindet. Dies ermöglicht eine (halb-) automatische Erstellung von Traceability Links
mit spezifischen Linktypen und Attributen für eine reichhaltige Semantik sowie mit
hoher Genauigkeit und Trefferquote.

Die Realisierbarkeit des Ansatzes wird an einer Fallstudie einer Software für mo-
bile Serviceroboter gezeigt. Das Werkzeug EMFTrace wurde als eine erweiterbare
Plattform basierend auf Eclipse-Technologie implementiert, um die Anwendbarkeit
der Konzepte zu zeigen. Es integriert Entwurfsmodelle von externen CASE-Tools
mittels XML-Technologie in einem gemeinsamen Modell-Repository, wendet Regeln
zur Linkerstellung an und bietet Validierungsfunktionen für Regeln und Links.

Abstract
Today software systems are frequently faced with demands for changes, for example,
due to changing business processes or technologies. The software and especially its
architecture has to cope with those frequent changes to permanently remain usable.

During software evolution changes can lead to a deterioration of the structure of
software architectures called architectural erosion, which hampers or even inhibits
further changes because of inconsistencies or lacking program comprehension. To
support changes and avoid erosion, especially quality goals, such as evolvability, per-
formance, or usability, and the traceability of design decisions have to be considered
during architectural design. This however often is neglected.

Existing design methods do not sufficiently support the transition from the quality
goals to appropriate architectural solutions because there is still a gap between
requirements engineering and architectural design methods. Particularly support
is lacking for the goal evolvability and for the traceability of design decisions by
explicit model dependencies.

This thesis presents a new concept called Goal Solution Scheme, which provides
a mapping from goals via architectural principles to solution instruments by explicit
dependencies. Thus it helps to select appropriate architectural solutions according
to their influence on quality goals. The scheme is discussed especially regarding
evolvability, and it is embedded in a goal-oriented architectural design method,
which enhances and integrates established methods and concepts from requirements
engineering as well as architectural design. This is supplemented by a traceability
concept, which combines a rule-based approach with information retrieval techniques
for a (semi-) automated establishment of links with specific link types and attributes
for rich semantics and a high precision and recall.

The feasibility of the design approach has been evaluated in a case study of
a software platform for mobile robots. A prototype tool suite called EMFTrace
was implemented as an extensible platform based on Eclipse technology to show
the practicability of the thesis’ concept. It integrates design models from external
CASE tools in a joint model repository by means of XML technology, applies rules
for link establishment, and provides validation capabilities for rules and links.

Danksagung

An dieser Stelle möchte ich die Gelegenheit nutzen, um all denjenigen meinen Dank
auszudrücken, die mich während meines Promotionsvorhabens begleitet haben und
ohne die diese Dissertation nicht geschrieben worden wäre.

Der größte Dank gebührt meinem Doktorvater, Matthias Riebisch, der mich er-
mutigt und mir die Möglichkeit gegeben hat unter seiner Betreuung zu promovieren.
Er hatte immer einen ergiebigen Rat auf fachliche und persönliche Fragen und hat
mich die ganze Zeit aufschlussreich geleitet.

Weiterer Dank geht an Professor Armin Zimmermann und Professor Wilhelm
Hasselbring für ihre Kommentare und für die Begutachtung meiner Arbeit.

Ich möchte auch Professor Ilka Philippow danken für die Unterstützung durch
sie und ihr Fachgebiet an der Technischen Universität Ilmenau. In diesem Zusam-
menhang gehört auch all meinen Kollegen für ihre Unterstützung besonderer Dank,
insbesondere Heiner für seine Mühe bei all meinen technischen Wünschen und für
seine aufmunternden Bemerkungen.

Verschiedene Studenten haben an unterschiedlichen Aspekten in Bezug auf mein
Dissertationsthema und den Prototypen gearbeitet und dazu beigetragen. Vielen
Dank an Steffen Lehnert für sein außerordentliches Engagement für das EMFTrace
Projekt. Ich möchte auch Matthias Rumpf, Ralf Stollberg, Philipp Wagner und
Daniel Motschmann für ihre Arbeit danken.

Weiterhin, bedanke ich mich bei Professor Horst-Michael Groß und seinen Mit-
arbeitern für die Roboterfallstudie zur Evaluierung meiner Arbeit. Insbesondere be-
danke ich mich bei Andrea Scheidig, Erik Einhorn und Jens Kessler für ihre geopferte
Zeit für Diskussionen.

Darüber hinaus gebührt mein aufrichtiger Danke meiner Familie für die enorme
Unterstützung und Geduld während meines gesamten Studiums.

Acknowledgment

At this place I would like to take the opportunity to express my thanks to all
the people who accompanied me during my Ph.D. project and without whom this
dissertation would not have been written.

The biggest thanks goes to my advisor, Matthias Riebisch, for encouraging me
and giving me the opportunity to do my Ph.D. under his supervision. He always
had a fruitful advice for professional and personal questions and insightfully guided
me during the whole time.

Further thanks go to professor Armin Zimmermann and to professor Wilhelm
Hasselbring for their comments and for examining my work.

I also would like to thank professor Ilka Philippow for her support through her
department at the Ilmenau University of Technology. In this regard special thanks
also belong to my colleagues for all their support and especially to Heiner for his
effort with all my wishes regarding technology and for his encouraging remarks.

Several students worked on different aspects related to my work and contributed
to the approach and the prototype tool. Many thanks go to Steffen Lehnert for
his extraordinary dedication to the EMFTrace project. I also would like to thank
Matthias Rumpf, Ralf Stollberg, Philipp Wagner and Daniel Motschmann for their
work.

Furthermore, I thank professor Horst-Michael Groß and his staff for providing
the case study of the robot software platform for the evaluation of my approach. In
particular I thank Andrea Scheidig, Erik Einhorn and Jens Kessler for their time
for discussions.

Moreover, I sincerely thank my family for the tremendous support and patience
during my whole studies.

Contents

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals of the Thesis . 3

1.3 Scope . 5

1.4 Contribution . 6

1.5 Outline of the Thesis . 7

2 Evaluation of State-of-the-Art Methods and Concepts 11

2.1 Description of Functional and Quality Requirements 11

2.1.1 Goal-Oriented Approaches . 12

2.1.1.1 NFR Framework . 12

2.1.1.2 i* (i-star) . 14

2.1.1.3 GRL and URN . 15

2.1.1.4 Evaluation of the Goal-Oriented Approaches 16

2.1.2 Use Cases and Scenarios . 17

2.1.3 The EMPRESS Framework for Requirements 19

2.2 Evolvability Support by Architectural Design Methods 21

2.2.1 QASAR . 22

2.2.2 Attribute-Driven Design (ADD) 24

2.2.3 The Siemens Four Views Approach 25

2.2.4 EMPRESS Pattern-Based Architectural Analysis and Design . 27

2.2.5 Quasar . 29

2.2.6 Evaluation and Relation to Further Works 30

2.3 Design Traceability . 32

2.3.1 Origin, Definition, and Benefits of Traceability 33

2.3.2 Classification of Traceability 34

i

Contents

2.3.3 Traceability Schemes and Metamodels 36

2.3.4 (Semi-)Automated Traceability Approaches 37

2.3.4.1 Information Retrieval-based Approaches 37

2.3.4.2 Rule-based Traceability 39

2.3.5 Tool Support . 41

2.3.6 Evaluation and Challenges . 42

3 Evolvability and Related Terms 45

3.1 Maintenance . 45

3.2 Evolution . 46

3.3 Maintainability . 48

3.4 Evolvability . 49

4 Overview of the Approach 53

4.1 Refinement of the Goals of this Thesis 53

4.1.1 Summary of the Benefits and Limitations of Existing Approaches 54

4.1.2 Research Goals for the Proposed Approach 55

4.2 Proposed Approach . 56

5 The Goal Solution Scheme 61

5.1 General Concept . 61

5.1.1 Structure of the GSS . 62

5.1.2 Transitions of the GSS . 63

5.1.3 Contribution of the GSS . 64

5.2 Establishment of the GSS . 65

5.2.1 Quality Goal Refinement and Elaboration 66

5.2.2 Filling the GSS with Principles 69

5.2.3 Filling the GSS with Solution Instruments 72

5.3 Establishment of the GSS for Evolvability 74

5.3.1 Evolvability Model . 75

5.3.1.1 Refinement of Evolvability to Subcharacteristics . . . 75

5.3.1.2 Relating Design Principles to Evolvability Subchar-
acteristics . 77

5.3.2 Evaluation of Architectural Solution Instruments 81

5.3.2.1 The Set of Evaluated Patterns 82

ii

Contents

5.3.2.2 Determination of the Impact on the Principles 83

5.3.2.3 Calculation of the Impact on Evolvability Subchar-
acteristics . 87

5.3.2.4 Determining the Impact on Evolvability 88

5.3.3 Discussion of the Results . 88

6 Goal-Oriented Architectural Design 93

6.1 Introduction of the Case Study . 93

6.2 The Goal-Oriented Design Method (GOAD) 95

6.2.1 Requirements and Architectural Analysis 97

6.2.1.1 Quality Goal Elaboration and Refinement 97

6.2.1.2 Goal Prioritization 100

6.2.1.3 Scenario Description 103

6.2.1.4 Global Analysis . 103

6.2.2 Architectural Synthesis . 108

6.2.2.1 Structuring the Architecture 109

6.2.2.2 Top-down vs. Bottom-up Structuring 117

6.2.2.3 Detailing the Architecture 118

6.2.2.4 Conflict Resolution and Trade-offs 120

6.2.3 Architectural Evaluation . 121

7 The Traceability Concept 123

7.1 Models, Model Elements, Dependencies, and Traceability Links . . . 123

7.2 Overview and Classification of the Concept 125

7.3 Traceability Metamodel and Hypertext Concept 127

7.3.1 The Traceability Link Metamodel 127

7.3.2 The Hypertext Concept . 129

7.4 Traceability Link Types . 131

7.4.1 The Link Type Clusters . 132

7.4.2 Application and Utilization of the Link Types 136

7.5 Traceability Rules . 137

7.6 Ontology Definition . 140

8 Tool Support by EMFTrace 143

8.1 Requirements and Core Concept . 143

iii

Contents

8.2 Architecture . 146
8.2.1 EMFStore . 146
8.2.2 EMFTrace . 147
8.2.3 EMFfit . 151

8.3 Model Integration . 154
8.4 Usage Scenario . 156

9 Evaluation of the Approach 161

9.1 Way of Evaluation . 161
9.2 Evaluation of GSS and GOAD . 163
9.3 Evaluation of the Traceability Concept 167
9.4 Limitations of the Approach of this Thesis 171

10 Conclusions and Outlook 173

10.1 Contributions . 173
10.2 Future Work . 176

A Case Study Artifacts 179

A.1 Factor Tables . 179
A.2 IssueCards . 194
A.3 UML Diagrams . 200

B Traceability Artifacts 205

B.1 Traceability Rule Catalog . 205
B.2 Ontology for the Traceability Approach 223

iv

Chapter 1

Introduction

“Nothing endures but change.”
Heraclitus of Ephesus (c. 535 – c. 475 BC)

1.1 Motivation

Today software systems usually are major investments for companies, and they have
a high business value. Furthermore, adaptation to the market is an essential quality
in today’s business, and software systems have to remain usable for a long time
when they are built once. Moreover, the software systems are faced with frequent
requests for changes due to necessary adaptations to the market, the optimization of
processes, new technologies, or because of the integration of existing systems in the
development of new architectures. The displacement of existing software systems,
however, is generally not applicable because of the risks involved. For this reason,
the software and especially its architecture has to cope with frequent requests for
changes to permanently remain usable.

Software changes often have to be implemented with low effort and in short time
frames during software maintenance. Therefore, these changes can lead to a dete-
rioration in the structure of the software, which hampers or even inhibits further
changes. This effect is called architectural decay, drift, or erosion [RSN09]. Replac-
ing an affected system with a completely new developed one to prevent architectural
decay usually is not an option because of time or budget constraints and to avoid
risks.

The difficulties that arise during software maintenance or evolution, as for ex-

1

Chapter 1. Introduction

ample architectural decay, program comprehension, or lacking traceability due to
scarce documentation, lead to several challenges for today’s software development:

C1 The fact of frequent changes is a constant issue that has to be supported in
all development phases.

C2 Software architectures have to be evolvable in a controlled way without violat-
ing integrity. Further, they should be partitioned into independently evolving
subsystems. [BR00]

C3 Program understanding has to be supported, for example, by impact analysis,
and unnecessary complexity should be removed through restructuring. [BR00]

C4 A better understanding is necessary of the influence of architectural design
decisions and choices on the prioritization and evolution of current and future
requirements and their satisfaction, especially for quality requirements. [NE00]

C5 For tracing design decisions a mapping between requirements and design as
well as between design and code has to be established [MJS+00], which in-
evitably leads to the request for the implementation of suitable traceability
techniques.

C6 With the aging of the software [Par94] its quality properties as, for exam-
ple, traceability or maintainability have to be preserved or even improved.
[MWD+05]

In this regard a demand beyond software maintenance arises to keep the soft-
ware and its architecture in a state that allows quick and easy changes for the
long-term. The quality property evolvability denotes this state. Maintenance and
maintainability—in contrast to evolvability—are closely related to the term legacy
system [BDP06]. Legacy systems are old software systems, the structure of which
cannot be developed further and which resist quick and easy changes in consequence
of many changes and progressive architectural decay. High evolvability is the only
way to avoid turning a software system into a legacy system [MM98]. However, the
effort, a strategic procedure, and the complexity for software evolution are consid-
erably more demanding than for software maintenance.

These are all arguments to differentiate between software maintenance and soft-
ware evolution (see also Chapter 3). From a perspective of long-term development

2

1.2. Goals of the Thesis

evolvability rather aims at introducing new features than at correcting errors. In
this regard a differentiation between evolution and maintenance is possible according
to development activities. For example, cyclic implementations or the architectural
evaluation of new features typically have to be assigned to evolution and not to
maintenance. Maintenance activities are better characterized as patchwork to keep
a legacy-system operating. Furthermore, maintenance starts with the deliverance of
the software to the customer, whereas evolution usually refers to the whole life cycle
of a software system.

Software systems mostly are exceedingly complex by nature. This is one reason
why software architectures are necessary in large projects to coordinate develop-
ment and to assure that quality goals of the development are met. Unfortunately,
during architectural development quality aspects, as for example performance, secu-
rity, usability, or maintainability, far too often are considered insufficiently, although
they are critical for success. Quality requirements (often called non-functional re-
quirements (NFR)) as evolvability are at least as, if not even more, important as
functional requirements during architectural design. Their realization has to be
integrated in the software development process [FL93]. Quality requirements, espe-
cially evolvability, however, are often intangible, incomplete, and conflicting, hence,
often realized insufficiently because of lacking methodical support [Eur07, CdPL09].
Therefore, appropriate architectural design methods and tools are necessary. More-
over, trade-offs between various quality aspects have to be made explicit and usable
so that they can be considered in the development process itself and during evolu-
tionary changes.

1.2 Goals of the Thesis

This thesis is targeted on one particular phase of software development—the archi-
tectural design phase. This phase starts for a new software system to be developed
with the transition from specified requirements to the software architecture. For a
definition of software architecture and related terms see IEEE Std 1471-2000 [Ins00].

Based on the challenges for today’s software design the overall goal of this the-
sis is to provide appropriate means for an architectural design method that allows
to develop evolvable software by especially considering quality goals and supporting
software changes.

3

Chapter 1. Introduction

These means and procedure shall enable to systematically realize evolvability in
a software’s architecture akin as it is usual and desirable for other quality goals
as for instance security. To realize this, a transformation of the quality goals and
requirements into functional concepts and solutions is necessary.

Unfortunately, the systematical support for the above mentioned transformation
and the means to develop evolvable software are insufficient today. Consolidated
technical solutions for quality requirements, especially for evolvability are lacking.
Moreover, there is still a gap between requirements engineering and architectural
design methods [GEM06] that reduces the applicability of detailed design instruc-
tions.

This thesis shall overcome these limitations with a structured, systematical ar-
chitectural design method. Therefore, research goals are to:

G1 Evaluate existing analysis and design methods regarding their support of a
systematical design for quality goals and especially evolvability.

G2 Establish suitable means and procedures for a systematical realization of qual-
ity goals during architectural design.

Next to evolvability there are of course other important quality goals that have
to be considered as requirements during architectural design. Some of the quality
goals are in conflict with each other or influence one another. Therefore, this thesis
shall:

G3 Examine how the intangible quality goal evolvability is related to other qual-
ity goals and how it can be refined to ease understanding and realization in
architectural design.

G4 Find and possibly reuse appropriate means to model and utilize such a refine-
ment during architectural design.

G5 Examine how goal influences can be represented and how goal conflicts can be
resolved, for example, by so-called trade-offs.

The systematical application of well-known design principles and solution instru-
ments, such as architectural styles, patterns, or frameworks, can help with these
trade-off decisions. For this purpose further goals are to:

4

1.3. Scope

G6 Determine the influence of well-known design principles on evolvability and
related goals.

G7 Analyze solution instruments according to their support for evolvability.

G8 Find a possibility to express these influences and establish a catalog for the
selection of suitable solution instruments to conserve the knowledge for further
use in specific software projects.

During architectural design the knowledge about dependencies between different
models is important for the realization of changes. The same holds for the knowledge
about design decisions that are made, when solutions are assigned to goals and goal
conflicts are resolved. The concept of traceability, to explicitly model dependencies
as links between software artifacts or models during development, promises advan-
tages for impact analysis of changes especially if traceability links are established
with a certain degree of granularity and consistency. However, this leads to a high
effort, especially for quality requirements, which usually are related to a multitude
of design elements. Thus, another goal of this thesis is to:

G9 Develop an appropriate concept for the implementation of traceability that
limits itself to a justifiable effort for link establishment and maintenance and
integrate it with the other architectural means discussed above.

1.3 Scope

The scope of this thesis is on the architectural design of business critical software
systems that demand for a long lifetime. Such software systems can be, for exam-
ple, business information systems. Embedded systems are not especially considered
although the developed concepts might be applied or adopted for them.

The focus of this thesis is further on the structuring of the software architecture
of a system and on the transition from requirements to design. Although some
requirements engineering approaches are discussed and influenced the work, this
thesis is not about elicitation and specification of functional and non-functional
requirements. Instead, it is about a methodical way for their realization in software
architectures.

5

Chapter 1. Introduction

Furthermore, for the design-time quality goal evolvability no formal techniques
for specification are considered. This is due to its rather intangible nature, which
is reluctant to formalization. However, for the execution-time quality goal perfor-
mance, for example, this would be imaginable. For the same reason the architectural
design method in this thesis is not concerned with model-driven design techniques
that rely on automated transformations and the generation of a solution. But the
method is model-based as it relies on the explicit modeling of the design artifacts
and their dependencies.

Moreover, the thesis concentrates on the analysis and synthesis part of designing
the architecture from a forward engineering perspective. The reengineering perspec-
tive and a sophisticated architectural evaluation method especially for evolvability
based on appropriate metrics and assessment techniques are left out of scope. A
methodical approach with a reengineering perspective, which is based on metrics for
architectural evaluation, is the one of Brcina [Brc11].

1.4 Contribution

The contribution of this thesis regarding the overall goal is threefold. As the first and
most significant contribution of this thesis, a concept called Goal Solution Scheme is
introduced for a systematical guidance during architectural design to realize quality
goals and especially evolvability. The scheme combines ideas from goal-oriented
requirements engineering with architectural design principles to ease the transition
from the goals and requirements to architectural design artifacts. An innovation of
the scheme is the explicit modeling of the dependencies between goals, principles,
as well as solution instruments. Furthermore, it helps to quantitatively evaluate the
solution instruments, such as design patterns, regarding their influence on quality
goals to support the selection of the solution instruments. In this way a scheme for
evolvability is established, which provides a consolidated view on evolvability and a
catalog of solution instruments with an evaluated impact on this goal.

Secondly, a goal-oriented architectural design method is described. It is based
on established methods and concepts. As a contribution the method targets on
the development of evolvable software systems by especially considering the quality
goals. For this reason existing methods and concepts are enhanced, combined, and
integrated. The novelty of the design method is the integration of goal modeling

6

1.5. Outline of the Thesis

with architectural design methods such as Global Analysis and the Attribute-Driven
Design method (ADD). Moreover, it utilizes the Goal Solution Scheme for the res-
olution of goal conflicts and a systematic selection of architectural solutions.

Thirdly, as a major contribution a traceability concept for the whole design
method is described to explicitly represent model dependencies with traceability
links for further analyses. The traceability concept spans the different artifacts
from goal models over analysis artifacts to design models. It integrates all models
in a repository. As an important feature it uses standard modeling languages, such
as the Unified Modeling Language (UML), as far as possible. This enables the cou-
pling to established CASE tools. For a justifiable effort the traceability links are
established in a (semi-) automated way by applying rules. As a novelty, these rules
are combined with n-gram matching as an information retrieval technique. This ap-
proach results in higher precision and recall than purely retrieval based approaches.
Simultaneously, through the rules it allows to attach types to the links that provide
a richer semantics of the links. A further innovation is the usage of an ontology
to facilitate more explicit dependencies between the design models. The complete
traceability concept is implemented with a tool called EMFTrace together with a
tool called EMFfit supporting Global Analysis activities.

1.5 Outline of the Thesis

The reminder of the thesis is structured as follows.

Chapter 2: Evaluation of State-of-the-Art Methods and Concepts In this
chapter relevant methods and concepts from the state-of-the-art of requirements
engineering, architectural design, as well as traceability are evaluated regarding
their suitability for the goals of this thesis. This provides the foundation for the
refinement of the goals and for the proposed approach as discussed in Chapter 4.

Chapter 3: Evolvability and Related Terms This chapter discusses impor-
tant terms regarding evolvability based on existing definitions in the literature. It
explains the meaning of the rather complex quality goal evolvability in comparison
to maintainability, maintenance, and evolution. For other quality goals this is not
necessary because they are already standardized and sufficiently discussed in the

7

Chapter 1. Introduction

literature.

Chapter 4: Overview of the Approach This chapter provides an overview of
the approach of this thesis. First, the goals of the thesis are refined according to
the results from the evaluation of the state-of-the-art. Then, an introduction to the
proposed approach that shall overcome the existing limitations is given.

Chapter 5: The Goal Solution Scheme In this chapter the main idea of
the Goal Solution Scheme for a systematic transition from the quality goals to the
architectural solutions is explained. First, the concept of the Goal Solution Scheme
is presented in general for several quality goals. Afterwards, it is specifically applied
for evolvability.

Chapter 6: Goal-Oriented Architectural Design This chapter explains in de-
tail the goal-oriented architectural design method. It explains how the Goal Solution
Scheme is utilized together with existing approaches evaluated from the state-of-the-
art and how they are combined for an advanced treatment of quality goals during
architectural analysis and synthesis.

Chapter 7: The Traceability Concept This chapter describes a concept for
the establishment of traceability links during the application of the beforehand de-
veloped architectural design method to support evolvability. The concept supports
the (semi-) automated establishment of links between the different models spanning
the development phases of the method based on a defined ruleset.

Chapter 8: Tool Support by EMFTrace This chapter describes a prototype
software system called EMFTrace, which implements the approach introduced in
this thesis. Information is provided about the system’s architecture, its components
and features. EMFTrace is complemented with a tool called EMFfit, which supports
the activities of architectural analysis.

Chapter 9: Evaluation of the Approach For proof of feasibility of the ap-
proach, which is introduced in this thesis, a case study was applied in an evolution
scenario of a real world software system. The chapter reports on the applicability

8

1.5. Outline of the Thesis

of the approach for the case study, evaluates the approach, and discusses its limita-
tions. Moreover, in this chapter the quality of the traceability link establishment is
determined by means of precision and recall.

Chapter 10: Conclusions and Outlook The final chapter gives a summary
on the results of this thesis and clearly states the contribution. Furthermore, it
discusses possible directions for future work.

Appendix A: Case Study Artifacts This appendix lists additional design ar-
tifacts of the case study that cannot be presented completely in Chapter 6.

Appendix B: Traceability Artifacts This appendix lists artifacts from the
implementation of the traceability approach, such as the XML Schema Definition
for traceability rules and the rules themselves.

9

Chapter 2

Evaluation of State-of-the-Art

Methods and Concepts

This section describes state-of-the-art methods and concepts and their evaluation
regarding their support for the main goal of this thesis to provide a quality goal
oriented architectural design method for evolvable software. Because this is a broad
scope of research ranging from requirements engineering to architectural design and
evaluation, only those existing works are discussed that are closely related and
mainly influenced or were integrated into this thesis.

Approaches that deal with the description and specification of functional and
especially quality requirements are analyzed in Section 2.1 because they are needed
for the transition from the requirements to the design. Well-known architectural
design methods are discussed regarding their contribution to the thesis’ goal in Sec-
tion 2.2 because they shall be integrated in the goal-oriented design method. Finally,
the current state-of-the-art of traceability is evaluated regarding the traceability of
design artifacts in Section 2.3 because this is important for the evolvability of the
architectural design.

2.1 Description of Functional and Quality Require-

ments

In requirements engineering there are several approaches that deal with functional
requirements and quality requirements or non-functional requirements as they are of-
ten called. A comprehensive introduction to requirements engineering, for example,

11

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

can be found in [vL09]. Here only a limited number of approaches that are directly
related to the approach of this thesis are discussed. Although in requirements engi-
neering a classification of requirements into functional and non-functional ones does
exist, most available approaches mainly deal with functional requirements and lack
an appropriate treatment of quality requirements [CdPL09]—which by the way is
the same for the architectural design approaches. In this section the scope is mainly
on the specification of quality requirements. It will be analyzed, how goal-oriented
and scenario-based techniques and concepts can contribute to the specification of
quality goals and in particular evolvability and how the approaches can be integrated
into architectural design to reduce the gap between requirements engineering and
architectural design.

2.1.1 Goal-Oriented Approaches

The works on goal-oriented requirements engineering (GORE) have a key strength
in an appropriate treatment of non-functional requirements or quality goals. A
good overview and recent presentation of the state-of-the-art on this topic is given
in [CdPL09]. The GORE approaches are used to elicit and model requirements,
whereas they deal with functional and quality requirements in parallel. Important
representatives are the NFR framework of Chung et al. [CNYM00], the i* framework
of Yu [Yu95] and the Goal-oriented Requirements Language (GRL) [GRL08], which
was standardized as part of the User Requirements Notation (URN) [Amy03]. Such
GORE approaches are quite popular in trying to bridge the gap between require-
ments and architecture [GEM06]. In the following they are examined concerning
their suitability for the refinement and modeling of the quality goal evolvability and
concerning their integrability with architectural design.

2.1.1.1 NFR Framework

The non-functional requirements (NFR) framework of Chung et al. [CNYM00] rep-
resents one of the GORE approaches that deal with modeling quality requirements.
The framework uses a concept of so-called softgoals to represent quality require-
ments. Softgoals are goals without a clear definition and criteria for their fulfillment
as for example maintainability or evolvability. Design decisions on solutions often
only partially contribute to the satisfaction of such goals within acceptable lim-

12

2.1. Description of Functional and Quality Requirements

its or even have a negative influence. Therefore, softgoals are seen as fulfilled—or
“satisficed”—if an acceptable degree of the goal’s criterion is achieved. The inter-
dependencies between softgoals are categorized according to the influence on each
other. The influence can range from strongly positive (++) or weakly positive (+)
over unknown (?) to weakly negative (−) or strongly negative (−−). This is ex-
pressed by the corresponding contribution types make, help, unknown, hurt, and
break, respectively.

The NFR framework describes some interlaced and iterative activities to arrange
the softgoals and their interdependencies in a so-called Softgoal Interdependency
Graph (SIG). First, the softgoals are established. Then, they can be refined by
and or or decomposition into subgoals. They also can be connected by contribu-
tion links. As a next step architectural solutions are established and mapped to
the softgoals as so-called operationalizations. Additionally, the softgoals can be re-
fined by argumentations that correspond to domain-specific characteristics or expert
knowledge. Moreover, during the refinement there is the opportunity to consider the
priority of certain goals by annotating a criticality statement. Finally, solutions for
the softgoals are selected and their contribution to the goals is evaluated bottom-up
along the contribution links.

Evaluation By performing the activities of the NFR framework quality goals can
be refined to ease their comprehension and realization. Goal conflicts can be elab-
orated in a well-grounded way. Implicit dependencies between the softgoals can
be detected and documented together with rationale for design decisions. Alter-
native solutions can be evaluated regarding their contribution to the quality goals.
Finally, suitable solutions can be chosen. A resolution of conflicts is enabled by
prioritization. In this regard the NFR framework can help to design software archi-
tectures that explicitly consider quality goals. During refinement of quality goals
into subgoals existing quality models or the catalogs provided by the NFR frame-
work itself can help. However, Chung et al. concentrate only on certain quality
goals like performance, accuracy, and security. Unfortunately, less tangible, “softer”
goals as maintainability or evolvability, the specification and formalization of which
is even harder, are not considered. Furthermore, since it is a requirements engi-
neering approach, the authors do not consider architectural design principles during
the refinement into operationalizations. These principles, however, provide impor-

13

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

tant hints for appropriate solutions during architectural design. Besides, the NFR
approach does not consider architectural constraints that result from the selection
of certain technical solutions. The reference to the technical realization is lacking.
Moreover, the traceability of chosen solutions is not explicitly considered. Indeed
alternative solutions are mapped to goals via contribution links. However, there is
no possibility to ensure the traceability between chosen solutions of the goal graph
to corresponding solutions modeled in architectural design artifacts.

2.1.1.2 i* (i-star)

The i* framework of Yu [Yu95] is another GORE approach very similar to the NFR
framework. It is a comprehensive framework for modeling the organizational context
and the rationale that led to the various requirements for a software system. The
framework knows two types of models for different abstraction levels—the Strategic
Dependency (SD) model and the Strategic Rationale (SR) model. SD models de-
scribe the intention of a process and the relations between different actors, which
cooperate to fulfill certain goals. SR models describe the rationale behind it. They
contain goals, softgoals, tasks, as well as resources that are of importance for an
actor. An SR graph represents the interdependencies between these elements using
different types of links: contribution for positive or negative influence, decomposi-
tion for refinement, and means-end for characterizing the fulfillment of a goal. De-
composition and means-end correspond to and and or decomposition of the NFR
framework. Additionally, i* supports the selection of alternatives by an evaluation
process that uses the contribution links similar to the NFR framework [Hor06].

Evaluation Akin to the NFR framework the i* notation uses goals and softgoals
to represent functional and non-functionals requirements. It equally allows to model
the interdependencies between goals using contribution links. Additionally, i* pro-
vides the model elements actor, resource, and means-end links. Moreover, in the
SD model it allows to describe the context of the quality aspects by modeling the
dependencies between goals and different stakeholders. i* alike the NFR framework
allows to refine quality goals and to examine alternative solutions for the goals. Not
included in i* is the concept of criticality for prioritization, which has a negative
impact on the potential to resolve conflicts. However, all in all i* is richer in its
expressiveness because it does not only consider system requirements but also can

14

2.1. Description of Functional and Quality Requirements

represent the organizational context. Anyhow, as i* is also a concept from require-
ments engineering, it has the same disadvantages regarding architectural design as
the NFR framework. Architectural design principles and patterns are not directly
considered when exploring the solution space. Further, there is also no concept for
traceability between i* models and architectural artifacts.

2.1.1.3 GRL and URN

The Goal-oriented Requirements Language (GRL) [GRL08] is a language for goal-
and agent-oriented modeling and for the reasoning about requirements with a focus
on quality requirements. It provides means for the description of different concepts
of the requirements engineering process. The GRL is part of the User Requirements
Notation (URN) [ITU08, Amy03], which was approved as ITU-T Recommendation
Z.151 as an international standard in 2008. The GRL as part of the URN is the
newest of the presented goal-oriented modeling notations and is based on i* and the
NFR framework. The main concepts of the GRL are intentional elements, intentional
links, and actors. A GRL model consists of a global goal model or of several goal
models that are distributed to different actors. The elements are as already known
from the i* framework: goals, softgoals, tasks, resources, and additionally beliefs,
which represent design assumptions and relevant environmental conditions. The
links are of the types contribution, decomposition, or means-end with the same
semantics as with i*. Further types are correlation for side effects, and dependency
for relations between actors. GRL also supports a mechanism for the evaluation of
alternatives regarding their influence on the satisfaction of goals on a higher level in
the graph.

Evaluation The concepts of GRL for modeling quality requirements, which are
relevant for this thesis, largely correspond to those of i* and the NFR framework.
There are little differences in the graphical notation as well as in additional model
elements. A detailed comparing analysis of i*, GRL, as well as TROPOS, which
is another variant of i*, can be found in [ACC+05]. An important concept that
GRL adopts from the NFR framework, which is not included in i*, is the concept of
criticality. Criticality provides the opportunity to prioritize goals for the support of
conflict resolution. Regarding the application of a GORE approach for architectural
design GRL has the same properties as its predecessors. The treatment of quality

15

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

goals with refinement, prioritization, and contribution links is advantageous as well
as the evaluation mechanism for the selection of alternative solutions. Disadvantages
are the missing support for architectural styles, design principles, architectural con-
straints due to technical solutions, and the lacking support for traceability.

2.1.1.4 Evaluation of the Goal-Oriented Approaches

The presented GORE approaches are adequate means for the treatment of quality
goals and the modeling of functional and quality requirements during the develop-
ment of software systems. The explicit consideration of quality aspects right from
the beginning and the support for an evaluation of alternatives can be very use-
ful for architectural design. The goal-oriented techniques are valuable for dealing
with interdependencies between functional and quality requirements as well as with
the refinement of quality goals. Furthermore, to a certain extent they enable the
mapping of solutions to goals on a higher abstraction level.

However, the approaches clearly focus on the analysis and refinement of qual-
ity goals from a perspective of requirements engineering. Indeed, there are works
that try to apply the goal-oriented approaches for architectural design. Van Lam-
sweerde [vL03] argues that requirements engineering and architectural design have
to be intertwined. He derives an architectural draft from system goals. Afterwards
this draft is transformed according to architectural styles and patterns to meet the
constraints and quality goals. Although this approach is valuable for its systematic
manner, only the older KAOS framework is utilized, which not explicitly targets on
quality goals, and it is assumed that all conflicts have been resolved on the require-
ments level. Moreover, his formal approach to directly derive UML classes from
requirements without considering architectural principles seams to be unrealistic for
real world scenarios and for such an intangible quality goal as evolvability.

Further works deal with integrating goal models with UML use case and class
diagrams [CdPL04], expressing design patterns in goal graphs [GY01], or combining
the goal-oriented approaches with aspect-orientation [dSdSdC03, YNGB+09]. Grau
and Franch [GF07] or Liu and Yu [LY01] try to generate and evaluate architectural
alternatives using goal-oriented techniques. Subramanian and Chung [SC03] even
relate metrics to the quality goals.

Summing up, however, from an architectural point of view these approaches on
their own are not sufficient for bridging the gap to software architectural design.

16

2.1. Description of Functional and Quality Requirements

Although there is some overlapping of the proposed development steps, further ac-
tivities and means are necessary to support architectural design especially for evolv-
ability. A refinement of evolvability using the GORE approaches has not yet been
done in a sophisticated way considering relevant works on software evolution.

There are several weaknesses when applying the GORE approaches to bridge the
gap to architectural design as already mentioned during the evaluation of the in-
dividual approaches. For example, architectural constraints regarding the system’s
environment, or interdependencies with organizational factors or certain technical
solutions are not considered. Therefore, just applying GORE approaches to find
suitable architectural solutions cannot guarantee that a certain solution can be im-
plemented using a specific technology. Furthermore, the GORE approaches do not
consider architectural design principles when relating goals and solutions. However,
these principles are important means for an architect in choosing appropriate so-
lutions even if this is done only based on experience. Moreover, it is not sufficient
in a development process to just handover quality requirements descriptions in a
goal-oriented notation to the architect. For architectural design the comprehension
of the rationale and design decisions is very important. That is why the architect
has to be involved in the establishment of quality goals and the GORE approaches
have to be intertwined with architectural analysis.

2.1.2 Use Cases and Scenarios

Next to the GORE techniques, which provide the most extensive treatment of qual-
ity goals, there are of course other complementary approaches, some of which are
discussed in the following.

One possibility for a structured description of requirements is given, for example,
by the so-called “snow card” of the Volere template [RR99]. According to this a
requirement description is an informal, textual information comprising: an identifi-
cation number, a requirement type, a related use case, a description, a rationale, the
originator, a fit criterion, a degree for customer satisfaction and dissatisfaction, a
priority, conflicts with other requirements, supporting material, and a history. How-
ever, this concept is not a specific one for quality requirements but rather general.

Use cases are a form of specifying the behavior of a software system and its
elements from the user perspective. Cockburn [Coc00] defines: “A use case is a
description of the possible sequences of interactions between the system under dis-

17

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

cussion and its external actors, related to a particular goal”. He provides a template
for use case description consisting of: number, name, characteristic information such
as context of use, scope, actor, stakeholders, and conditions, further a main success
scenario, extensions, as well as input and output variations. The interdependencies
of use cases can be visualized with use case diagrams from the Unified Modeling
Language (UML), however, both are useful to specify steps of action but rather are
not very effective for specifying quality requirements. Nevertheless, use cases can
correspond to tasks modeled in the goal graphs of i* or GRL.

Use cases are strongly related to scenarios. Although the exact definition of
scenario can vary, in general, a scenario can describe a part of the system usage as
seen by its users, which corresponds to a possible flow of actions of a use case. In
[AE03] a discussion of different scenario notations can be found, among them, for
example, use cases, UML use case diagrams, UML sequence diagrams, UML activity
diagrams, state charts, petri nets, or use case maps.

Use Case Maps (UCMs) [Amy03, Amy99] are a scenario notation, which next to
GRL also belongs to the URN. UCMs focus on the description of causal relations
between responsibilities of abstract components related to use cases. They graphi-
cally illustrate behavioral and structural aspects of a system in one view. Use case
maps represent a complementary notation for the GRL of the User Requirements
Notation. However, they are restricted to functional requirements and behavioral
aspects. Quality aspects are left for the GRL. A disadvantage is also the lack of
a well-defined semantics and the large human input that is required for modeling
UCMs [GEM06].

In [dPLHDK00] do Prado Leite et al. present a structured scenario description
that consists of title, goal, context, resources, actors, episodes, exceptions. A con-
straint attribute is used to characterize non-functional requirements as restrictions
applicable to context, resources, and episodes.

Furthermore, Rozanski and Woods [RW05] define an architectural scenario as “a
crisp, concise description of a situation that the system is likely to face, along with
a definition of the response required of the system.” In the context of architectural
evaluation, scenarios are used for describing non-functional requirements [KC99].
For the scenario-based architecture evaluation method ATAM [KKC00] three types
of scenarios are distinguished: a) use case scenarios, involving typical uses of the
software, b) growth scenarios, covering anticipated changes to the software, and

18

2.1. Description of Functional and Quality Requirements

c) exploratory scenarios, covering extreme changes that might strain the system.
More generally, they can be divided into functional (e.g., use case) scenarios and
quality (e.g., modifiability, usability) scenarios. The textual scenario description
should be formulated in a way that the considered quality is well observable and
assessable. Therefore, a structure as in Table 2.1 is proposed.

Table 2.1: The structure of an architectural scenario based on [KKC00, BCK03]

Attribute Description

Name The name of the scenario.
Quality The related quality attribute.
Stimulus The event or condition arising from this scenario.
Stimulus source The entity (e.g., a human or software system) that generated

the stimulus.
Environment The context applying to this scenario.
Artifact The artifact affected by the stimulus.
Response The reaction of the system (the affected artifact) to the scenario

event.
Response measure The measurable effects showing if the scenario is fulfilled by the

architecture.

In this way, the scenarios represent another valuable means next to the GORE
approaches to specify intangible quality goals, such as evolvability, in more detail.
Scenarios are input to architectural design, can be used for evaluating the architec-
ture as performed by ATAM, or can be used to communicate with stakeholders to
find (non-functional) requirements as for example in [SM98].

2.1.3 The EMPRESS Framework for Requirements

In conjunction with the European research project EMPRESS1 a framework for
dealing with requirements was established. In this project a method for eliciting,
documenting, and analyzing quality requirements was developed [Heu04], which is
of special interest for this thesis.

1EMPRESS: Evolution Management and Process for Real-Time Embedded Software Systems,
http://www.empress-itea.org

19

http://www.empress-itea.org

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

The method describes a refinement process for quality goals and artifacts sup-
porting this process. The EMPRESS approach is experience-based, which means
it provides knowledge gained by experience in form of best practices and guide-
lines, such as checklists or questionnaires to capture non-functional requirements
[PvKD+03]. It provides a quality model based on ISO 9126 [Int01] with common
quality attributes as maintainability, portability, or usability, and in this way ex-
tends the catalog provided by the NFR framework by Chung et al. In the quality
model these quality attributes are related to so-called means, which are principles,
techniques, or mechanisms for the realization of the quality attributes (see Fig-
ure 2.1). Moreover, they related metrics for evaluation to the quality attributes. In
the EMPRESS project four types of quality attributes that constrain non-functional
requirements are distinguished, which should guide the requirements elicitation: or-
ganizational, and system specific attributes, as well as attributes that pertain to
user tasks or system tasks.

Framework for Requirements Public Version

 - 206 -

non-functional requirements, one used for creating the system requirements and specification
and one used for creating the software requirements and specification (and of course, for
creating the corresponding documents). Both instances are carried out in an analogous
manner concerning the elicitation and documentation, but with some different focus (problem
vs. solution refinement).

5.3.2.2 Terminology & Underlying meta-model

The metamodel (see Figure 5-25) describes the main concepts of the approach. Our
experience showed that certain decisions have to be made during the elicitation of NFRs (e.g.
does a quality aspect affect a user task, or rather architectural options?). The concepts
described in the metamodel support these decisions. In the following, we explain the most
important elements.

Requirement

Functional Requirement

Non-functional Requirement

Architectural Requirement

Organization

Task

System

Quality Attribute

Organization
Quality Attribute

System
Quality Attribute

User Task
Quality Attribute

Means

ValueMetric Rationale

User Task System Task

SystemTask
Quality Attribute

1

*

1

*

1

*

1

*

1

1..*

describes

1

2..*

refined into

1..*

1..*

justifies

*

*

constrains

1 *

constrains

1

*

measured by

1 1..*

determines

1

1..*

*
*

achieved by

*

*has influence on1

*

refined into

*

*

influences

1
*

refined into

Figure 5-25 The Metamodel

• A quality attribute (QA) is a non-functional characteristic of a system, user task, system
task, or organization. Quality attributes of the organization include development process
specific aspects.

• The distinction between different types of quality attributes is important for our
elicitation process. Each type of quality attribute is elicited differently (see section 5.3.3).
QAs can be refined into further QAs. In addition, they can have positive or negative
influences on each other. A more detailed description of the types of QAs and their
relationships can be found in Section 5.3.2.3.

• A system (e.g., “wireless control and monitor system”) can be refined into a set of
subsystems (e.g., “wireless network”, “mobile device”). Architectural requirements (e.g.,
“the system shall have a database”) constrain the system.

Figure 2.1: The EMPRESS metamodel for NFR by [Heu04]

During the elicitation of non-functional requirements in workshops with stake-
holders first the quality attributes are determined and prioritized utilizing question-
naires. Following, the attributes are refined using refinement graphs based on the

20

2.2. Evolvability Support by Architectural Design Methods

NFR framework by Chung et al. For this purpose the EMRESS quality model can
be tailored for project specific needs. Afterwards, measurable non-functional re-
quirements are specified using checklists and templates for documentation. Finally,
means for realization have to be identified.

Evaluation The EMPRESS approach provides an appropriate methodical way for
the elicitation and specification of non-functional requirements using its question-
naires, checklists, templates, and the refinement of quality goals in a quality model.
The described questionnaire for prioritization, however, does only consider main-
tainability, efficiency, usability, and reliability. Here an extension and completion is
necessary. Moreover, only one exemplary checklist for efficiency is provided.

The quality model contains attributes from ISO 9126 and their refinements, for
which the GORE approach of the NFR framework was utilized. The description of
the refinement is comprehensive, however, does not go beyond the quality attributes
of the ISO standard. Therefore, the quality goal that is most important for this
thesis—evolvability—is not considered and, hence, not sufficiently supported. A
further improvement could be achieved by a description of the refinement with the
newer URN standard using the GRL instead of the NFR framework.

The EMPRESS approach has a clear focus on requirements elicitation and docu-
mentation for the communication with the users. Means and metrics are related to
the quality attributes in the metamodel, which is destined for requirements analysis
and for the support of architectural design and its evaluation. Therefore, it repre-
sents a good starting point for architectural design, but of course must be followed by
an appropriate architectural design approach that further analyzes the constraints
for the transformation from the requirements to the architecture.

2.2 Evolvability Support by Architectural Design

Methods

As already motivated above, the satisfaction of quality goals and appropriate op-
tions for future changes are among the major goals of software architectures and
even more important than functional requirements [BM07]. According to the im-
portance of quality goals for architectural design, a high risk is related to them. As a
consequence, an effective guidance is needed during the development, especially for

21

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

the implementation of goals, such as evolvability, performance, and security. From
an architectural point of view there are only few methods that lead to a design
process explicitly considering quality requirements. This includes, for example, the
QASAR method [Bos00], the Siemens 4 Views approach comprising Global Analy-
sis [HNS00], the Attribute-Driven Design method (ADD) [BKB02], and the Quasar
method [Sie04], which are evaluated below regarding their suitability for architec-
tural design considering quality goals and especially regarding evolvability.

2.2.1 QASAR

The QASAR (Quality Attribute-oriented Software ARchitecture) method is a de-
sign method that is often at least implicitly applied for the design of a software
architecture. QASAR is a method that explicitly considers functional and quality
requirements. The latter are realized in a software architecture by architectural
transformations.

The method comprises three phases. In the first phase functional requirements are
realized by functional components according to the sub-method Functionality-based
Architectural Design (FAD). FAD uses so-called archetypes as core abstractions for
functional concepts, which are used to create architectural components by functional
decomposition.

In the second phase the designed architecture is evaluated regarding if it fulfills
the quality requirements or not. For this evaluation different techniques are used,
such as scenario-based assessment, simulation, mathematical modeling, or objective
reasoning, which can constitute the starting point for the other techniques.

When the quality properties of the architecture are evaluated, the architecture
is transformed to meet the remaining quality requirements in the third phase. The
architecture transformation leads to a new version of the architecture with the same
functionality but other functional structures and components that better realize the
quality requirements. Bosch proposes five categories of transformations:

Imposing an architectural style An architectural style in general cannot be
merged; changing the style results in a complete reorganization of the archi-
tecture.

Imposing an architectural pattern An architectural pattern is applied for a
certain aspect of the whole architecture, such as concurrency or persistence.

22

2.2. Evolvability Support by Architectural Design Methods

Applying a design pattern A design pattern has a limited impact on the archi-
tecture, hence, multiple patterns can be applied.

Converting quality requirements to functionality Primarily some function-
ality not related to the problem domain is added to realize some non-functional
requirements as for example exception handling to increase fault tolerance.

Distributing requirements The divide-and-conquer principle is applied, which
means that quality requirements on the system level are transformed to quality
requirements on subsystem or component level to be realized there, or the
quality requirements themselves are divided.

All transformations in the third phase result in the realization of all remaining
quality requirements that were not realized in the first phase. This is achieved by
changing already designed components. Therefore, especially this last transforma-
tion type leads to a scattering of the implementation of quality requirements over
the whole system that was designed by functional decomposition before.

Evaluation The author considers the QASAR method to be very valuable for an
architectural design regarding quality requirements. The core concept of fulfilling
quality requirements by functional solutions is of central importance. Every quality
goal as especially evolvability finally has to be broken down into functional concepts
to be realized by the architecture of the software system to-be. The architectural
evaluation in the meantime of design makes sense to early estimate the degree of
quality goal fulfillment. A disadvantage of QASAR is the scattered implementation
of the remaining quality attributes during the third phase, after all components
have already been designed by FAD in the first phase. This is due to the fact
that the method treats functional requirements as primary and quality requirements
as secondary. The scattering of the third phase is related to a high number of
dependency relations resulting in a high number of traceability links for tracking
the realization of the quality requirements. This hampers the maintainability and
evolvability of a software system because with a changing quality goal the changes
have to be traced to a lot of components in the architecture and implementation.

23

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

2.2.2 Attribute-Driven Design (ADD)

The Attribute-Driven Design (ADD) method by Bass et al. [BKB02, WBB+06] is
a step-by-step instruction for the design of software architectures. ADD consid-
ers quality requirements, called quality attributes, to be at least as important as
functional ones. Quality attributes and functional requirements together with other
constraints represent the required input for the method. Quality attributes are not
considered as “soft”-goals as by the NFR framework, which can be treated simoulta-
neously. Instead, quality attributes beforehand have to be prioritized and specified
precisely with criteria for their satisfaction using scenarios that are similar to the
ones discussed in Section 2.1.2 for ATAM. During the application of the ADD
method the requirements are transformed into a so-called conceptual architecture.
This conceptual architecture represents the coarse-grained structure of the software
to-be without detailed, specific components and interfaces. The architecture is de-
signed by a recursive refinement in several steps, which are shown in Figure 2.2. The
architecturally relevant requirements become so-called architectural drivers that are
realized by applying design concepts, as architectural tactics, styles, or patterns.

Evaluation The ADD method is an interesting approach regarding the fulfillment
of quality goals in architectural design. ADD, just as QASAR, achieves the fulfill-
ment of quality goals by allocating functional components. Its strengths are the
precise specification of the quality attributes with scenarios and its focus on the
most significant architectural drivers. Regardless of which type the drivers are used
for choosing appropriate functional solutions by utilizing suitable architectural tac-
tics, styles, and patterns. However, ADD also has its drawbacks. First, the method
outputs only a conceptual architecture. ADD does not provide decisions for spe-
cific components or classes; hence, the design process has to be continued by other
means. Because of its recursive nature ADD is only top-down oriented; a bottom-up
approach for some parts of the architecture is not intended. Furthermore, if the focus
is put too much on quality attributes, the influence of the functional requirements
for the software is neglected. If evolvability is the most important quality goal, the
application of ADD can get difficult as examined in [Rum09]. ADD requires design
concepts, such as patterns and tactics, that have a positive influence on the quality
goal for a proper decomposition. Unfortunately, there is not yet a well-established
set of styles, patterns, and tactics for evolvability, which could be applied.

24

2.2. Evolvability Support by Architectural Design Methods

ADD

2. Choose an element of the system to
decompose

[further elements to decompose]

Functional requirements, quality
requirements, constraints

7. Verify and refine requirements and
make them constraints for

instantiated elements

5. Instantiate architectural elements
and allocate responsibilities

6. Define interfaces for instantiated
elements

Conceptual
Architecture

1. Confirm that requirements
information is sufficient

4. Choose a design concept that
satisfies the architectural drivers

[further elements to decompose]

3. Identify candidate architectural
drivers

4. Choose a design concept

4.5 Describe the selected patterns by
starting to capture different views

4.6 Evaluate and resolve inconsistencies in
the design concept

4.2 Create a list of alternative patterns for
each design concern

4.1 Identify the design concerns of the
candidate architectural drivers

4.3 Select patterns most appropriate for
satisfying the drivers

4.4 Consider how the selected patterns
relate to each other

1. Confirm that requirements
information is sufficient

2. Choose an element of the system to
decompose

7. Verify and refine requirements and
make them constraints for

instantiated elements

3. Identify candidate architectural
drivers

4. Choose a design concept that
satisfies the architectural drivers

5. Instantiate architectural elements
and allocate responsibilities

6. Define interfaces for instantiated
elements

Functional requirements, quality
requirements, constraints

Conceptual
Architecture

4.1 Identify the design concerns of the
candidate architectural drivers

4.2 Create a list of alternative patterns for
each design concern

4.3 Select patterns most appropriate for
satisfying the drivers

4.4 Consider how the selected patterns
relate to each other

4.5 Describe the selected patterns by
starting to capture different views

4.6 Evaluate and resolve inconsistencies in
the design concept

[further elements to decompose]

Figure 2.2: Steps of ADD adapted from [WBB+06]

2.2.3 The Siemens Four Views Approach

Siemens Four Views (S4V) is an architectural design approach by Hofmeister et al.
[HNS00, HNS05], which uses four views to document an architecture: a conceptual,
a module, a code, and an execution view. The methodical steps of the approach,
which are used to develop each of the views, are depicted in Figure 2.3. S4V tries
to bridge the gap between requirements and architecture with the Global Analysis
method.

The purpose of Global Analysis is to analyze the factors that influence the archi-
tecture and to develop strategies for its design considering these factors. Influene
factors are the key issues that drive architectural design. They are distinguished
according to three categories with increasing impact on the architectural design:

25

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

• organizational factors constraining design choices,

• technological factors limiting the design regarding hardware, software, or stan-
dards, and

• product factors covering functional features and quality attributes.

The Global Analysis method consists of two parts each with three sequential steps
as shown in Figure 2.3. Accordingly, it is concerned with two main artifacts: factor
tables and issue cards. Three factor tables, one for each factor category, are used
to record influence factors. The issue cards discuss important design topics that are
related to different factors in order to develop strategies for an accommodation of the
factors in the architecture. The activities central design tasks and final design task
complete the S4V approach by creating design artifacts, such as layers, components,
and interfaces, according to the different views.

Evaluation The strength of the S4V approach is the Global Analysis method,
which complements requirements analysis with the influence factors. It provides a
set of factor categories and subcategories, which help the designer to focus on key
design issues and which can be used as a kind of checklist. Furthermore, architectural
rationale can be recorded with strategies as a part of issue cards.

In this way Global Analysis provides systematic means for bridging from require-
ments to an architectural viewpoint. It supports quality requirements especially by
product factors. The product factors can directly be connected to non-functional
requirements or quality goals. Thus there is a need for traceability of factors to
requirements. The GORE approaches could be used to support the identification
of factors. Furthermore, Global Analysis explicitly considers flexibility and change-
ability of the analyzed factors, which can be helpful for evolvability. Flexibility
covers the negotiability of factors. Changeability can cover both the stability and
variability of factors.

However, Global Analysis also has its drawbacks. It does not answer the question
how to find the solutions and strategies described by the issue cards starting from
the influence factors. In this regard Global Analysis should be complemented with
activities for selecting appropriate means such as tactics and patterns as proposed
by ADD. Moreover, a prioritization of influence factors is only considered implicitly
through the importance of the categories but could be considered explicitly. Besides,

26

2.2. Evolvability Support by Architectural Design Methods

Global Analysis

Issue Cards

Factors

New
factors

Analyze factors

New factors
Factor tables

Issues and
Strategies

New issues
or strategies

Develop strategies
(see Figure 2.3)

New factors
Factor tables

Analyze factors

2. Characterize their flexibility and changeability.

1. Identify and describe the factors.

3. Analyze their impact.

Develop strategies

3. Identify related strategies.

1. Identify issues and influencing factors.

2. Develop solutions and specific strategies.
Central design tasks

Design
artifacts

Issues and
strategies

New issues
or strategies

Issue Cards

Factors

New
factors

Final design task

Design
artifacts

Analyze factors

New factors
Factor tables

Develop strategies
(see Figure 2.3)

New factors
Factor tables

1. Identify and describe the factors.

2. Characterize their flexibility and changeability.

3. Analyze their impact.

1. Identify issues and influencing factors.

2. Develop solutions and specific strategies.

3. Identify related strategies.

Issue Cards

Issue Cards

Factors

Issues and
Strategies

FactorsIssues and
strategies

Design
artifacts

Design
artifacts

Factor tables
New factors

New
factors

New issues
or strategies

Figure 2.3: The Siemens Four Views approach according to [HNS00]

for the practical applicability of the approach, which deals with a larger number of
factors, tool support is needed. Moreover, traceability of influence factors and the
issue card’s solution strategies should be supported not only inside the artifacts of
the Global Analysis but also from and to other artifacts of the design process.

2.2.4 EMPRESS Pattern-Based Architectural Analysis and

Design

In the context of the EMPRESS project next to the framework for requirements (cf.
Section 2.1.3) also a method for pattern-based analysis and design of software ar-
chitectures was developed [KB03]. The EMPRESS requirements framework already
relates quality attributes to non-functional requirements, metrics, and means. Be-

27

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

yond this, in the architectural design method, scenario descriptions and patterns are
related to the means and thus to the quality attributes. Abstract scenarios comprise
a number of stimulus/response pairs. Concrete scenarios belong to one alternative
of the abstract scenario and describe the expected behavior that is guaranteed by
a pattern. Patterns are related to a certain problem, which is solved by the pat-
tern, a rationale why the pattern solves the problem, and a description of the actual
solution. The corresponding metamodel is depicted in Figure 2.4.

Quality Model

Qual i ty Attr ibute

1

*

Metr ic
1

*

1
*

subcharacteristic

Means

1

*

Abstract Scenario

*

*
1

*

Stimulus

Response

*

1

1
*

Concrete Scenario1

*

Pattern

*

*

Problem Rationale Solution

1

*1
*

subcharacteristic

1

*

influence

1

*

*

*
1

*

1

*

1

*

1

*

satisfies

usesspecializes *

conflicts
*

Figure 2.4: The EMPRESS metamodel for design by [KB03]

The method description includes quality models for the quality attributes per-
formance, maintainability, and reliability with related metrics, means, as well as
a description of patterns for reliability and safety. Besides, the EMPRESS design
method describes an iterative process with seven steps:

1. Selection of scenarios and planning of the next iteration,

2. Definition of evaluation criteria,

3. Selection of means and patterns,

4. Instantiation of patterns,

5. Documentation of the architecture using views,

28

2.2. Evolvability Support by Architectural Design Methods

6. Evaluation of the architecture; and if the architecture is not already ok,

7. Analysis of the problem and return to step 1.

Evaluation Many design methods consider architectural design as a creative pro-
cess, which is for the most part based on experience. The EMPRESS method for
pattern-based design is a good approach to improve this process with defined activ-
ities. It is especially concerned with quality attributes. However, the several design
activities of the method are described rather sketchy in comparison to the estab-
lished metamodel. An open question, which remains when applying the method, is,
how conflicts between quality attributes are resolved. The method implicitly con-
tains the assumption that an appropriate pattern can be found by selecting means
and comparing the related scenarios with the requirements. Trade-offs for quality
attributes are not considered. With its steps the method has similarities to ADD
combined with ATAM but without the restriction of the recursive nature. Neverthe-
less, it does not contain guidance for the specification of concrete components and
interfaces either. Unfortunately, only three quality attributes are described with
subcharacteristics, metrics, and means in the quality model; evolvability is not in-
cluded. Furthermore, there are inconsistencies with the EMPRESS framework for
non-functional requirements, for example concerning maintainability. This demands
for a revision and extension regarding evolvability.

2.2.5 Quasar

Quasar—an acronym for QUAlity Software ARchitecture—is an architectural design
method that was developed in industrial practice [Sie04]. The method combines best
practices and principles for a good component-based software architectural design.
It uses so-called software categories for the identification and structuring of software
components. All components are based on the standard categories 0, A, T, and R.
For a specific application design, these categories are refined in a category model.

A-components are application specific but independent of technical issues. They
contain the application logic and entity classes for the realization of the domain
functionality. T-components cover technical knowledge about a system, and they
frequently provide an application programming interface (API), for example, for
database connectivity or for graphical user interface (GUI) elements. They are in-

29

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

dependent of specific application functions. Software of the category 0 is neutral con-
cerning the application’s functionality and independent of technical aspects, hence,
it creates no undesired dependencies. Modules, classes, and interfaces with a high
degree of reusability belong to 0-software, for example, class libraries. R-software
refers to representation; it establishes a connection between A- and T-components,
however, minimizing the dependencies between them. This is achieved by transfor-
mation, for example, to external data presentation formats like XML. Other ways
of directly connecting or even mixing A and T—the so-called AT-software—are pro-
hibited, because they would re-introduce stronger dependencies.

In contrast to other methods, as for example ADD, Quasar defines a fine-grained
sequence of steps for the detailed specification of components and their interfaces. It
was developed further in [Bod08] to establish three basic steps: component identifi-
cation, interface specification, and inner structuring. These steps help to move from
analysis to architectural design in a more precise way than other design methods.

Evaluation Quasar can be considered as a good architectural design method for
component-based design. The use of software categories helps to structure the re-
quirements, and thus to bridge the gap between analysis and architectural design.
The identification of components with the help of software categories results in the
reduction of dependencies by a separation according to the responsibilities and the
knowledge covered by the components. Moreover, the specification activities for
interfaces are strongly concerned with decoupling. In this way the design according
to Quasar, especially the distinction between application-specific and technology-
specific software, leads to good modularization, decoupling, and separation of con-
cerns. Therefore, it provides high architectural quality with some benefits for evolv-
ability. However, the method does not especially consider the implementation of
non-functional requirements. Nevertheless, the fine-granular design steps for com-
ponent and interface specification can complement other design methods as ADD
and facilitate a precise definition of rules for the establishment and maintenance of
traceability links [BR09].

2.2.6 Evaluation and Relation to Further Works

The methods’ activities can be classified to the phases architectural analysis, archi-
tectural synthesis, and architectural evaluation in a general model [HKN+07]. Archi-

30

2.2. Evolvability Support by Architectural Design Methods

tectural analysis identifies the architecturally significant requirements. Architectural
synthesis creates the candidate solutions addressing the requirements, and architec-
tural evaluation ensures that the right architectural decisions are made. This general
model can be extended according to [TAJ+10] for the management of architectural
design knowledge by further phases, which are: architectural implementation and
maintenance.

For the architectural analysis phase the Global Analysis of the S4V approach is
an appropriate method. The influence factors represent architecturally significant
requirements and can be identified in a goal-oriented way utilizing the goals from
the GORE approaches. Besides, the influence factors drive the architectural design
process, and have a direct correspondence to the architectural drivers of the ADD
method. Scenarios can be used to specify quality attributes in detail.

In the architectural synthesis phase the utilization of styles and patterns as in
QASAR or as proposed by Harrison and Avgeriou [HA07a], as well as the tactics
from ADD constitute an effective way for balancing between functional and quality
requirements and for structuring the conceptual architecture. This can be com-
plemented with Quasar to derive specific components and interfaces with a good
separation of concerns.

A distinction and classification of the terms design patterns, architectural pat-
terns, and architectural styles as general architectural constraints concepts can be
found in [GHR07]. The patterns necessary for synthesis can be taken from pattern
catalogs (e.g. [GHJV94, BMR+96]). A good introduction on patterns is given in
[AZ05]. Unfortunately, there is not yet a catalog of patterns especially for evolvabil-
ity, as it does exist for security [YB97], for example. Architectural tactics represent
further means guiding the design and are discussed in several works by the SEI (e.g.
[BBK03, BBN07]).

Architectural decisions between the several instruments, such as patterns, have
to be made according to their impact on the quality goals. This should result
in a goal-oriented way of selecting patterns and tactics. One related approach is
the MidArch design method [GRH08]. It supports a valuable systematic selection
of particularly middleware-oriented architectural styles from a repository to attain
a system’s quality requirements. An integration with the GORE approaches, an
explicit consideration of design principles, and a classification of styles regarding
quality goals as intended by the approach of this thesis however is not discussed.

31

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

A general repository of solution instruments can follow the concept of the so-
called architect’s toolbox. This toolbox contains the architect’s stock of solution
instruments and represents a knowledge base of design knowledge. According to
[PBG04] the toolbox can be structured into two parts:
a) a catalog of approved methods and solution templates (e.g., patterns), as well as
b) a catalog of fundamental technologies and tools (e.g., frameworks).

2.3 Design Traceability

An important issue in designing for evolvability is to support comprehension of the
design and the dependencies of the development artifacts. During the development
artifacts depend upon each other as the creation of new artifacts is influenced by
already existing artifacts. For example, a component depends on a requirement that
specifies the desired functionality, which the component realizes. The detection of
these dependencies and the documentation of design decisions form the basis for
analyses that are performed to enable changes during the evolution and reengineer-
ing of software systems. The utilization of design dependencies for change impact
analysis and coverage analysis can prevent incomplete or inconsistent changes.

Traceability is a concept for the detection and documentation of dependencies
during software development to enable utilization of the dependencies and thus to
support evolutionary changes. An appropriate comprehensive approach of traceabil-
ity should support the development approaches analyzed in the preceding sections
regarding the evolvability of a software system. Supporting traceability during soft-
ware development can increase other quality goals, such as understandability or
changeability. For this thesis the dependencies from quality goals to design artifacts
and between design artifacts are of special importance because this relates to the
scope of architectural design. In this regard the term design traceability is used.

In this section the traceability concept is explained with definitions, advan-
tages, and challenges. Furthermore, classification criteria for existing traceability
approaches are presented. A comprehensive recent survey of traceability can be
found in [WvP10], which builds upon former ones, as e.g., [vKP02, Pin04, SZ05,
ARNRSG06, GG07]. Meanwhile an enormous amount of traceability approaches
emerged from research. Therefore, only some approaches can be discussed in detail
that are relevant to architectural design and had a major influence on this the-

32

2.3. Design Traceability

sis for tracking the realization of quality goals and their applicability during the
architectural design process.

2.3.1 Origin, Definition, and Benefits of Traceability

The concept of traceability in software engineering refers back to requirements trace-
ability. Requirements traceability is defined by Gotel and Finkelstein [GF94] as “the
ability to describe and follow the life of a requirement, in both a forwards and back-
wards direction (i.e., from its origins, through its development and specification, to
its subsequent deployment and use, and through all periods of on-going refinement
and iteration in any of these phases.)”. It enables to track requirements to their
source during elicitation and to document all changes made to them.

Important works in the area of requirements engineering, where the largest part
of traceability research has been done so far, are, for example, those of Gotel and
Finkelstein [GF94], who introduced the distinction between pre-requirements speci-
fication and post-requirements specification traceability, Ramesh and Jarke [RJ01],
who introduced a reference model for requirements traceability, or Letelier [Let02],
who utilized UML for a metamodel for traceability between textual requirements
and models. Other important approaches for traceability link establishment be-
tween requirements and test cases, for example, are the scenario-driven approach of
Egyed [Egy01] and the approach of Olsson and Grundy [OG02].

Traceability can be applied not only to requirements engineering but on the whole
software development life-cycle. In this context the IEEE Standard Glossary of Soft-
ware Engineering Terminology [Ins90] defines traceability as: “The degree to which a
relationship can be established between two or more products of the development pro-
cess, especially products having a predecessor-successor or master-subordinate rela-
tionship to one another. [...]” Generally, traceability is a concept for linking together
software artifacts (e.g., documents, models, code) or entities (e.g., model elements,
paragraphs) from different development phases. Lago et al. [LMvV09] concisely de-
fine: “Traceability is the ability to describe and follow the life of a software artifact
and a means for modeling the relations between software artifacts in an explicit way.”
The concept of traceability links is used to express this explicit way of modeling re-
lations or traces [Ins90] between artifacts spanning different development phases. In
this way traceability enables or supports for example [Mäd09, SZ05, Poh96]:

33

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

• coverage analysis regarding the implementation of all requirements;

• impact analysis of changes;

• software maintenance and evolution;

• documentation and reasoning of design decisions;

• the increase of system comprehension;

• the reuse of software components;

• software testing, verification, and validation.

Summing up, traceability has advantages in understanding, testing, changing, and
evolving a software system. It improves the software quality by supporting different
development activities. The utilization of traceability provides several advantages
even if it requires additional effort. However, the benefit-effort ratio should be
reasonable for the practical applicability of traceability approaches [AR05, CH06].

2.3.2 Classification of Traceability

Important aspects of traceability, which are discussed by different approaches, can
be categorized by specific activities [SEW09, vKP02]:

Defining traceability information refers to determining entity types to be traced
and relationships in between (also referred to as “planning and preparing” in
[WvP10]).

Recording traces refers to physically representing traceability relations in data
structures.

Identifying refers to discovering dependencies and making them explicit as trace-
ability links.

Maintaining means to update, modify, or delete existing traceability links accord-
ing to changes in the traced entities.

Retrieving addresses querying or gathering traceability information, which has
already been identified and recorded.

34

2.3. Design Traceability

Utilizing or using the traceability information can be part of several development
activities, for which it provides benefits (compare Section 2.3.1) and is also
related to means of visualization.

Typically the traceability approaches only cover one or two and seldom more aspects
of traceability. A well-defined general and comprehensive approach spanning all
activities is not yet available and needs more work to be done [ARNRSG06, SEW09].

In addition to a classification of the existing approaches according to activities
several authors discuss further classifications and properties of traceability.

The ANSI/IEEE Standard 830-1984 [Ins84] introduced the terms backward trace-
ability for following a traceability link from a certain artifact to its source and for-
ward traceability for following it to other derived artifacts. This results in a generally
bidirectional characteristic of traceability links although they might be technically
represented in a model as unidirectional.

Gotel and Finkelstein [GF94] discuss the terms pre-requirements specification
(pre-RS) and post-requirements specification (post-RS) traceability referring to ac-
tivities that lead to a requirements specification document and activities concerned
with the later realization of the requirements, respectively.

Ramesh and Edwards [RE93] distinguish horizontal and vertical traceability.
These terms refer to traceability links established between artifacts belonging to
the same abstraction level or development phase and between artifacts of a differ-
ent abstraction level or development phase, respectively. Therefore, also the terms
intra-level and inter-level traceability apply [GG07]. In model-driven development
this correlates to intra-model and inter-model traceability [KPP06].

Regarding the storage of model-related links internal and external traceability
can be distinguished [KPP06]. Internal or embedded storage of traceability links
is realized with specific model elements inside the model they refer to. It is only
possible for intra-model links and results in model pollution. External traceability
relates to a separate traceability model, requires unique and persistent identifiers of
the model elements that are linked, and can cope with intra and inter-model links.

The recording of traceability links can be done on-line as a by-product of the ac-
tual development activity or off-line after the development activity [vKP02]. In the
latter case, the recording should be performed as soon as possible after the develop-
ment activity, because the later the recording is performed, the more imprecise the
links can get [CHCC03]. On-line recording usually is done during model transfor-

35

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

mations, nevertheless recording of additional traces that are not a direct by-product
of the transformations might be necessary.

Moreover, the identification activity for traceability links can be distinguished to
be manual, automatic, or semi-automatic [SEW09]. Purely manual identification
approaches strain the developer with a lot of additional effort and are error-prone,
which hampers traceability to be accepted in industry. A complete automation
seems illusive regarding completeness and correctness of the links. However, semi-
automated traceability approaches, which demand only for user interaction in ques-
tionable or conflicting situations or as a basis for automation, are a compromise to
reduce effort and cost while producing high-quality traceability information. Au-
tomation can be achieved using techniques as model transformation, information
retrieval, or rule-based traceability.

2.3.3 Traceability Schemes and Metamodels

The definition of the traceability-related terms helps to understand the concept.
However, in order to be able to utilize traceability reasonably and efficiently in the
development process, a traceability metamodel is necessary, which defines how trace-
ability links are structured and what is their syntax and semantics [WvP10]. One
of the first traceability models has been proposed by Ramesh and Jarke [RJ01] for
requirements traceability. However, this model is rather a conceptual one. In the
context of model-driven design and its model transformations more formal meta-
models were established, a lot of which were published in the ECMDA traceability
workshop series.

The core of such a metamodel, the specification of a traceability link that connects
a source and a target model element, frequently is the same with some potential
variation points regarding the cardinality of the links and the modeled metadata.
But often the model is defined in an ad-hoc manner. In contrast, Drivalos et al.
[DKPF08] propose a “traceability metamodeling language” (TML) which could be
used for the definition of traceability metamodels.

Moreover, Aizenbud-Reshef et al. [ARNRSG06] argue that a traceability meta-
model should predefine link types and allow customization as well as extensibility for
new link types. Espinoza et al. [EAG06] analyzed several traceability approaches
and proposes a so-called traceability meta-type that comprises: description, pur-
pose, objects to link, linkage rule, subtype classification, uses, and examples. One

36

2.3. Design Traceability

extensive classification of link types is presented by Spanoudakis and Zisman [SZ05].
They distinguish links of the types: dependency, refinement, evolution, satisfiabil-
ity, overlap, conflict, rationalization, and contribution. Unfortunately, there is no
standardized set of traceability link types. A universal semantically rich traceabil-
ity model has still to be found [LG05, RJ01, vKP02]. The advantage of links with
well-defined semantics is to provide more accurate impact analysis results [LS96].

2.3.4 (Semi-)Automated Traceability Approaches

Many existing traceability techniques and tools (e.g. DOORS2) expect manual effort
for the creation of traceability links [SZ05]. However, as already mentioned above,
automated or semi-automated approaches for traceability link establishment are
desirable because manual traceability is error-prone, difficult, time consuming, and
hence rather less effective. Therefore, a major goal for traceability research is to
find a reliable and effective way for automatic traceability link establishment.

Of course, some approaches that support automated or semi-automated traceabil-
ity have already been proposed. However, they are mostly considered with require-
ments [Poh96, CHCC03] or code and documentation [ACC+02, MM03]. Traceability
of architectural design artifacts is considered to a lesser extent.

2.3.4.1 Information Retrieval-based Approaches

One approach to achieve fully automated traceability is to use text mining and infor-
mation retrieval (IR) techniques. Typical traceability approaches use probabilistic
and vector-based IR techniques [ACC+02, HDO03] as well as Latent Semantic In-
dexing [MM03]. A commonality of these approaches is their use of similarity scores
or distance measures based on the frequency and dispersion of terms to determine
the similarity of documents or models. As a result, candidate links between pairs of
models are identified, the similarity score of which is above a certain threshold.

A first processing step in these approaches is to analyze the documents or mod-
els and extract relevant terms, which then are inserted into intermediary auxiliary
means as word matrices or vector spaces. For text-based analysis, differences in
syntax and semantics are resolved for example through [IK06]:

2IBM R© Rational R© DOORS R©, former Telelogic DOORS, http://www-01.ibm.com/software/
awdtools/doors/

37

http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/doors/

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

• thesaurus replacement for treating synonyms,

• word stemming,

• expansion of abbreviations, or

• stop-word elimination for words with no semantic meaning, such as articles.

Afterwards, a comparison step follows to identify interrelated pairs of words for
example with:

• direct, complete word matching,

• partial matching, such as containment,

• approximate n-gram matching, or

• vector-based distance measures.

Goal-Centric Traceability An interesting IR-based traceability approach re-
garding quality goals is the one of Cleland-Huang et al. [CHSB+05]. Their goal-
centric traceability (GCT) approach establishes traces between functional or qual-
ity goals and UML class diagrams based on a probabilistic network model. Goals
are modeled using the Softgoal Interdependency Graphs from the NFR framework
(see Section 2.1.1.1). The trace relations are dynamically retrieved with a query
algorithm but not explicitly recorded. The results are assessed in a user evaluation
step.

Evaluation The processing step of GCT that integrates user evaluation of trace-
ability links is valuable for treating incorrect links. Unfortunately, the manual eval-
uation is additional effort. Moreover, they only support a limited range of the whole
software development process because they cover only requirements and UML class
diagrams. Therefore, they can identify only those traceability links between quality
goals and design artifacts that are based on incidental matching of terms in the pro-
cessed artifacts. However, goal graphs as requirements descriptions and source code
generally are not created considering traceability. Consequently, the completeness
and correctness of the traceability information is limited and partly relies on naming
conventions for the artifacts. Nevertheless, this approach inspired the work of this

38

2.3. Design Traceability

thesis by considering information retrieval techniques and especially goal graphs for
traceability link establishment regarding quality goals.

One of the main advantages of IR-based approaches is their high recall factor,
which can be up to 90%. This is due to the fact that all artifacts are equally
considered for traceability analysis without especially considering their semantical
meaning. However, these approaches typically suffer from a low precision from 10%
to 50% because they detect pretended dependencies based on incidental similarities
of terms. An important disadvantage of these approaches is that they are lacking
a defined semantics of the links. Due to the IR techniques it is hard to automati-
cally create links with categorized link types, which is important for change impact
analysis as explained above.

2.3.4.2 Rule-based Traceability

Another possibility for automated traceability next to IR-based approaches is to
specify the relevant development artifacts and to utilize rules for link establishment.
Rule-based approaches can be distinguished further by structural and linguistic rule-
based approaches [SEW09], though they can be combined. Structural rules are
based on the existing relations between the considered artifacts, e.g., a generalization
relationship between classes. They further can determine transitive relationships
between artifacts. Linguistic rules are applied on the syntax of natural language
texts. An easy application of linguistic rules is to establish traceability links based on
the occurrences of keywords. Natural language processing techniques can accomplish
this technique.

The approach proposed by Spanoudakis et al. [SdGZ03, SZPMK04] uses rules for
an automatic creation of both intra-requirements traceability links and links between
requirements statements, use cases, and analysis object models. With these rules
syntactically related terms are identified in the different artifacts. The rules comprise
three parts:

Head defines the relevant elements for the rules and an informal description,

Query defines a search description or conditions to which the rule applies,

Action formulates the result processing, e.g., the link creation.

The query part uses constructs akin to query languages for databases, such as SQL,
which can be used to navigate in the artifacts. A rule-engine processes the rules

39

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

defined in a rule catalog. In this way different types of links can be established.
From a technical point of view, the eXtensible Markup Language (XML) is used
to specify the traceability rules. Furthermore, the approach requires to export all
artifacts into XML files on which the rules are applied to create hyperlinks between
the artifacts based on the XML Linking Language (XLink).

Jirapanthong and Zisman [JZ09] extend this approach by a specific traceability
metamodel and a rule set for the establishment of links between different kinds
of artifacts, such as feature models and UML diagrams. They utilize the XQuery
language for querying related model elements. However, the disadvantage of this is
that all models have to be materialized as XML files and the rules cannot operate
directly on a model repository.

Another extension of the approach, which also provided valuable input for this
thesis, is the one of Filho et al. [FZS03]. The authors relate i* models to UML models
and establish traceability links of different types between the model elements. In this
thesis this approach is adapted to URN models as a means for relating functional
and quality requirements models to design artifacts.

Evaluation The rule-based approach around the group of Spanoudakis and Zis-
man is very promising for achieving high quality traceability information. With the
consideration of goal graphs and UML models they make an important contribu-
tion regarding the traceability of quality goals and design artifacts. An important
advantage of rule-based approaches is their high precision. If traces are inferred
according to a (correct) predefined rule set, the created traceability links can hardly
be wrong [ARNRSG06]. Moreover, due to the exact specification of source and tar-
get elements in the element part of a rule, it is possible to specify the type of the
traceability relationship explicitly. Hence, for the utilization of the links not only
a dependency between two model elements is known, but also the more interesting
“how” and “why” they are related. Therefore, rule-based approaches are evaluated
better than pure IR-based approaches [SZ05]. Recall and precision range between
50% and 95%. However, they require human effort in establishing an appropriate
rule set as a basis. Furthermore, there is no consensus on what are acceptable lev-
els of recall and precision that create trustworthiness with the users of traceability.
Nevertheless, compared to manual traceability the (semi-) automated approaches
reduced the effort.

40

2.3. Design Traceability

2.3.5 Tool Support

For a proper usage of traceability the links have to be established on a certain level of
detail. The resulting high number and complexity of the traceability relations leads
to a high effort to manage them. Therefore, tool support is essential. Today tool
support for traceability often is provided by requirements management tools, such as
IBM’s Requisite Pro R© or DOORS R©. The traceability capabilities of UML modeling
tools are very limited [Mäd09] as well as for other design artifacts. Spanoudakis and
Zisman [SZ05] discuss five dominant types of tool support:

The single centralized database approach The database typically co-operates
with the tool used to maintain the traceability relations (e.g., DOORS). With
this approach the linking of artifacts managed by different tools is difficult, as
well as a differentiation of link types.

The software repository approach A repository provides flexibility for a trace-
ability metamodel definition. This approach also typically provides an API
that can be used for querying and integrating with other tools, but it needs
tool integration effort in advance.

The hypermedia approach The utilization of hypermedia technology can be
helpful for the integration of artifacts from heterogenous tools. In this way
the effort for integration is decreased compared to a repository approach.

The mark-up approach For enabling traceability in distributed and heteroge-
nous environments mark-up languages can be used to store the relations sep-
arately from the artifacts as discussed by Spanoudakis et al. with XML (see
Section 2.3.4.2). The approach also uses translators for the transformation of
the original models to XML in order to support any kind of models.

The event-based approach With all approaches except the centralized database
the maintenance of traceability relations is difficult but can be addressed with
event-based approaches. They establish a notification mechanism for change
events to enable event subscribers to be informed about changes and to update
the traceability links accordingly.

Evaluation For industrial settings the applicability of traceability relies on the
ability to provide tool support for all types of artifacts from the development pro-

41

Chapter 2. Evaluation of State-of-the-Art Methods and Concepts

cess. The mark-up and repository approaches together with event-based traceability
seem promising for the integration of heterogenous tools. A repository might be su-
perior regarding performance and might enable versioning of traceability relations.
The event-based approach facilitates maintenance. Mäder [Mäd09] addresses the
maintenance issue for traceability links with his tool traceMaintainer that uses a
semi-automatic event-based, and rule-based approach but is limited to static UML
models. Most of the existing tools lack a customizable set of traceability link types
and have limited support for standardized input or output representations. Because
of variety in artifact types, the technical coupling of different models and especially
support for design artifacts is an important issue. Additionally to the interoperabil-
ity problem also effective, robust, automated establishment of traceability links has
to be supported.

2.3.6 Evaluation and Challenges

For an evolvable architectural design an adequate traceability approach should be
utilized. Then benefits such as improved comprehension and support for the impact
analysis of evolutionary changes are achieved. The establishment of traceability
links should be integrated with the usual activities for creating and changing devel-
opment artifacts. This would lead to increased quality of traceability information,
for example, regarding the semantically important types of traceability links. How-
ever, there is some research to do to overcome the challenges still existing regarding
traceability:

• Traceability currently is not applied continuously over the whole development
process. Therefore, comprehensive approaches spanning several development
phases are needed.

• Especially design artifacts and activities are still not considered to the same
extent as requirements. Therefore, different approaches from requirements
engineering and model-driven design should be integrated.

• The linking of heterogenous artifacts from different development phases re-
quires appropriate tool-support, which integrates different CASE tools in reg-
ular development environments.

42

2.3. Design Traceability

• Information retrieval-based, rule-based, and event-based approaches should be
combined to further enhance automated traceability for effort reduction.

• Traceability approaches should provide semantically rich traceability with a
standardized set of link types, which is necessary for analyses performed on
traceability information.

• Standardization of traceability vocabulary as well as ontologies might provide
another way to improve the semantic meaning of traceability relations [SZ05].
Ontologies can formalize common aspects of the specification of software sys-
tems.

• The maintenance of traceability links needs further consideration, for example,
by versioned traces [WvP10].

• Trace utilization is not an easy task as well. Therefore, an appropriate, easy,
and usable access to traceability information including visualization should be
provided [WvP10].

For this thesis a combination of existing approaches explained in this section is
of interest and will be explained in detail later (see Chapter 7). Especially the rule-
based approach has potential to be combined with other techniques for automated
traceability supporting different types of links regarding quality goals and design
artifacts. Together with some information retrieval techniques the comparison of
model elements and properties can be improved to identify as much as possible of
the implicitly existing artifact dependencies. A combination with XML technology
should enable the integration of heterogenous models from different CASE tools and
the versioning in a repository. Finally, an event-based mechanism could be applied
for maintaining the traceability links.

43

Chapter 3

Evolvability and Related Terms

The discussion about evolvability and the distinction from maintainability was al-
ready introduced in Chapter 1. The term evolvability is closely related to the terms
evolution, maintenance, as well as maintainability. The following sections describe
these terms in more detail. Subsequently, evolvability is explained in its differences
to the related terms, a definition of evolvability is provided, and concepts for its
support are examined. Parts of this chapter were already published in [RB09] and
[Bod09].

3.1 Maintenance

Software maintenance according to the IEEE Standard 1219-1998 [Ins98] is the “mod-
ification of a software product after delivery to correct faults, to improve performance
or other attributes, or to adapt the product to a modified environment”. Accordingly,
the term maintenance is generally used for changes to a software system in the phase
after its delivery to the customer. Furthermore, the standard provides a distinction
between different types of changes, that is:

• corrective maintenance for fault correction often called bug-fixing,

• adaptive maintenance for modifications to a changing environment,

• perfective maintenance to improve quality attributes.

The IEEE Standard Glossary of Software Engineering Terminology [Ins90] further
adds:

45

Chapter 3. Evolvability and Related Terms

• preventive maintenance for measures performed against future problems.

Maintenance activities mostly involve small changes, because time and cost re-
strictions play an important role. Conversely, time and cost pressure lead to incom-
plete changes and subsequent faults. Moreover, maintenance activities not neces-
sarily contribute to an improved maintainability of a software system. Exemplary
activities are extensions for dealing with additional logical conditions, which lead
to worse maintainability if a complicated distinction of cases or the multiple usage
of parameters decrease the understandability. Maintainability also decreases if ex-
tensions lead to code duplicates, very long methods or building blocks, or to many
local variables. This results in subsequent faults, which finally lead to architectural
decay.

The newer definition of software maintenance from ISO 14764:2006 [Int06] in-
closes the “totality of activities required to provide cost-effective support to a software
system. Activities are performed during the pre-delivery stage as well as the post-
delivery stage”. Pre-delivery activities for example refer to planning post-delivery
operations. Post-delivery activities are modifications or operating a help desk for
the customers. This definition is more extensive than the former one and is closer
to the conditions of reality.

Moreover, maintenance often is related to the term legacy system, which de-
notes an old system that can hardly be developed further in consequence of various
modifications and an advanced architectural decay. In this case maintenance activ-
ities just keep the system operating. Far-reaching innovations normally require the
application of reverse and re-engineering activities [Arn93].

3.2 Evolution

The term software evolution was introduced by Lehman with his “laws of software
evolution” [Leh80]. However, so far there is no standard definition for software
evolution. Lehman and Ramil [LR06] describe evolution as “a process of progressive,
for example beneficial, change in the attributes of the evolving entity or that of one or
more of its constituent elements. What is accepted as progressive must be determined
in each context. It is also appropriate to apply the term evolution when long-term
change trends are beneficial even though isolated or short sequences of changes may
appear degenerative. Thus it may be regarded as the antithesis of decay. For example,

46

3.2. Evolution

an entity or collection of entities may be said to be evolving if their value or fitness is
increasing over time; Individually or collectively they are becoming more meaningful,
more complete or more adapted to a changing environment.”

Evolution can refer to the whole life cycle of a software system from its de-
velopment to its closedown. Therefore, it includes the maintenance activities. In
contrast to revolution it emphasizes the character of stepwise, continuous changes.
Evolution includes subsequent versions of a software system, which thus also spans
several maintenance phases. In their staged model of the software lifecycle (see
Figure 3.1) Rajlich and Bennett [RB00] distinguish evolution as a stage, which fol-
lows initial development and allows evolutionary changes, from the stage servicing,
which is characterized by the loss of evolvability. In this regard evolvability means
to preserve the possibility for evolutionary changes of the software system for the
long-term.

Initial
development

Evolution

Servicing

Phaseout

Closedown

First running version

Evolution changes

Loss of evolvability

Servicing patches

Servicing discontinued

Switchoff

Figure 3.1: The Staged Model of the software lifecycle according to [RB00]

Next to maintenance activities, evolutionary changes typically comprise struc-
tural modifications as well. Evolution activities are, for example, the integration
of new technologies, such as wrapping an existing system as a service in a service-
oriented architecture, the realization of new requirements like an increase in scalabil-
ity and multilingualism for global operation, or changing an architectural style, such

47

Chapter 3. Evolvability and Related Terms

as the introduction of a new abstraction layer for persistence. The emphasis is not
on keeping the system operating but on evolving its architecture, for example, be-
cause of a changing environment with changing or new requirements and standards.
This often is connected to re-design, re-structuring, and re-factoring. Evolution is
not limited to legacy systems. But it is also related to systems that still have a
high business value and therefore are subject of enhancements for an adaptation to
a changing domain. The demand for software evolution and a long life-time of com-
plex software systems goes beyond software maintenance because effort, strategic
activities, and complexity are considerably more challenging.

Sometimes, software maintenance and evolution are used synonymously, espe-
cially if the maintenance definition is a broader one not only restricted to post-
delivery activities as in the ISO 14764. However the author of this thesis argues
for a deliberate usage with keeping some possible differences in the meaning of the
terms in mind. Further discussions about the terms evolution and maintenance can
be found in [MD08] and [MFRP06].

3.3 Maintainability

The term maintainability is related to the effort for changes and is standardized
in the ISO 9126 as “the capability of the software product to be modified. Modi-
fications may include corrections, improvements or adaptation of the software to
changes in environment, and in requirements and functional specifications”. In the
quality model of the ISO 9126 maintainability is refined into the subcharacteristics
analyzability, changeability, stability, testability, and maintainability compliance.

Maintainability is a desired property of software, which denotes how much effort is
related to maintenance activities. If software shall be maintainable, then it must be
easy to analyze and allow changes. For the validation of modifications, for example,
the stability of interfaces is important, as well as the testability of the system as a
whole or of its parts.

With the refinement of the quality model, the quality attribute maintainabil-
ity gets a bit more tangible. The subcharacteristics of the ISO standard however
should not be considered as the only ones. An essential issue with maintenance of
software is program comprehension, which can account for more than 50 percent
of the maintenance effort [BR00]. That is why understandability is also considered

48

3.4. Evolvability

as a subcharacteristic of maintainability [BBL76]. Understandability in turn de-
pends on quality attributes of the code and documentation, such as structuredness,
consistency, or conciseness. Furthermore, traceability plays an important role for
maintenance because traceability links support tracing design decisions and hence
understandability.

Broy et al. [BDP06] provide another two-dimensional quality model for main-
tainability where they relate factors of the maintenance context, such as infrastruc-
ture, system properties, or organisation, to maintenance activities in order to derive
controlling measures. This so-called activity-based quality model shall encounter
difficulties that arise in practice when the software quality is evaluated via metrics
that are related to the quality goals [DWP+07].

High maintainability increases the lifetime of software by a reduction of develop-
ment risks. Nevertheless, this property akin to maintenance emphasizes the recent
short-term effort for changes and does neglect the evolutionary changes for the long-
term upkeep of software. Therefore, evolvability should be considered as a separate
quality goal [Bod09], which is discussed below.

3.4 Evolvability

In contrast to maintainability there is no standardized definition for evolvability.
Many of the definitions for evolvability hardly differ from that for maintainability.
However, a distinction between maintainability and evolvability can be made for the
same reasons as with maintenance and evolution.

Maintainability and evolvability have a different focus on related activities that
should be supported. Activities related to maintainability are bug-fixing and small
modifications, furthermore maybe sometimes but not regularly the implementation
of new requirements or extended modifications. However, evolvability has a broader
focus. It additionally and deliberately covers activities as the integration of new
technologies, large structural changes of the architecture, or regular refactorings
because of cyclically new requirements. Moreover, a software system is not neces-
sarily easy to evolve if it is easy to maintain. Maintainability, for example, can be
improved via code quality without considerable impact on the software’s ability to
evolve.

Several authors already dealt with the definition of evolvability, for example, Rowe

49

Chapter 3. Evolvability and Related Terms

et al. [RLL98], Cook et al. [CJH01], as well as Ciraci and van den Broek [CvdB06].
A definition that especially considers typical evolutionary aspects, such as structural
changes and architectural integrity, is the one of Breivold et al. [BCE07]. In this
thesis the following definition based on Breivold et al. [BCE07] and Rowe et al.
[RLL98] is used.

Definition Evolvability is the ability of a software system throughout its lifespan
to accommodate to changes and enhancements in requirements and technologies, that
influence the system’s architectural structure, with the least possible cost while main-
taining the architectural integrity.

High evolvability increases the lifetime and decreases development risks, which
enables the progressive realization of business goals. Thus high evolvability can
avoid turning a software system into a so-called legacy system [MM98]. Activities
for the increase of evolvability also improve maintainability, the inverse does not
hold. Examples are the development of a plug-in interface that enables the exchange
of components but not the evolution as a result of changes, or the introduction of
an abstraction layer for distribution or platform change.

For evolvability, similar to maintainability, subcharacteristics can be defined.
Breivold et al. [BCE08] in this regard discuss analyzability, integrity of the architec-
ture, changeability, portability, extensibility, testability, as well as domain-specific
attributes. For evolvability, in contrast to maintainability, for example, extensibil-
ity plays a very important role, not only changeability. Reusability should not be
neglected for evolvability as well. Furthermore, architectural integrity should be
ensured for the prevention of architectural decay by considering flexibility and vari-
ability. Moreover, akin to maintainability, traceability is important. Documented
and traceable design decisions are inevitable for the comprehension of the previous
development and, for example, facilitate the decision on how to integrate a new
feature.

The subcharacteristics named so far are mainly focused on artifacts as source
code, models, and descriptions, but quality attributes regarding the development
process have to be considered for evolvability as well. Such attributes are, for exam-
ple, the maturity of the development process regarding planning, analyzability, or
self-optimization, the productivity of the process, and further properties concerning

50

3.4. Evolvability

the degree of feedback control, knowledge management, or error prevention.
A refinement of evolvability into subcharacteristics similarly to the quality model

of ISO 9126 significantly contributes to the comprehension of the term. However, the
refinement of Breivold et al. is considered to be not sufficient by the author of this
thesis. Besides, in the current revision of the standard ISO 25010:2011 [Int11] as the
successor of ISO 9126 there is no improvement regarding evolvability. Therefore, one
of the contributions of this thesis is the consolidation of a set of subcharacteristics
for evolvability (see Chapter 5).

51

Chapter 4

Overview of the Approach

Based on the challenges listed in Chapter 1, the evaluation of the state-of-the-art
approaches from Chapter 2, and the discussion of the terms related to evolvability in
Chapter 3 it can be argued that the systematical support for the design of evolvable
software is still insufficient. Therefore, the remainder of this thesis describes a com-
prehensive architectural design approach for evolvability-oriented software to over-
come the limitations of the existing methods and concepts. This chapter presents
an overview of the approach developed in this thesis and deals as an anchor for the
following chapters that explain its concepts in more detail.

Section 4.1 refines the goals of this thesis from Chapter 1 based on the limitations
of the existing approaches, which are summarized first. In Section 4.2 an overview
of the concepts in this thesis is given as an introduction to the details that follow in
the next chapters.

4.1 Refinement of the Goals of this Thesis

In Chapter 1 several challenges of today’s software development were listed that
motivated the general goal of this thesis to provide appropriate means for an archi-
tectural design method that allows to develop evolvable software by especially consid-
ering quality goals and supporting software changes. To achieve this, further goals
(G1 to G9, see pp. 4–5) were established. This section first summarizes the limita-
tions identified during the evaluation of the state-of-the-art. Afterwards, the goals
for the proposed approach of this thesis are refined based on this knowledge.

53

Chapter 4. Overview of the Approach

4.1.1 Summary of the Benefits and Limitations of Existing

Approaches

During the state-of-the-art analysis several valuable approaches regarding the anal-
ysis and realization of quality goals were identified. However, also limitations of the
approaches were determined.

The goal-oriented modeling approaches from requirements engineering (GORE)
are very important means for dealing with quality goals. But they do not go much
beyond requirements engineering. From an architectural point of view they do not
consider relevant design principles and technical constraints to find appropriate so-
lutions. To specify a software architecture further means and activities for archi-
tectural analysis are necessary. The GORE approaches and architectural analysis
should be intertwined because some requirements can constitute constraints and
hence restrict the design space at an early time. Vice versa technological aspects
can influence requirements. Just to handover the goal models to an architect for the
design is not enough.

The EMPRESS approach is valuable for treating quality goals due to its ques-
tionnaires and checklists. Moreover, it provides some guidance for finding solutions
by relating quality attributes to scenarios and further to architectural means, such
as patterns. However, it does not explain how to resolve conflicts. The proposed
design activities are rather sketchy, and guidance for the specification of concrete
components and interfaces is not provided.

Unfortunately, especially evolvability is not considered in an advanced way in the
analyzed approaches. EMPRESS discusses maintainability but has inconsistencies
in this regard. At least there are works that discuss a refinement of evolvability akin
to quality models (see Chapter 3). However, this is not related to design approaches
and appropriate design principles or solutions to support decision-making.

The examined architectural design approaches QASAR, ADD, S4V, and Quasar
of course somehow deal with quality goals and design quality, though either not
especially with evolvability. QASAR expresses the concept of fulfilling quality goals
by functional solutions, but treats quality goals as secondary after functional re-
quirements. ADD concentrates on quality goals but does only provide guidance
for a conceptual architecture and therefore has to be continued by other means.
Moreover, if applied rigorously, it requires design patterns and tactics especially for

54

4.1. Refinement of the Goals of this Thesis

evolvability, which are not available as a well-established set, yet. Furthermore,
its recursive nature forces strict top-down design and hampers bottom-up experi-
mentation. The Global Analysis of the S4V approach is an important contribution
for bridging from requirements to architectural design. But there is further poten-
tial for improvement. For example, a coupling with the GORE approaches could
improve the identification of influence factors. Moreover, Global Analysis leaves
open, how to find the solutions and strategies described by the issue cards. The
Quasar method does not concentrate on quality goals but particularly supports cer-
tain design principles, such as separation of concerns, and can complement other
architectural design approaches for detailed component and interface design. All in
all the design approaches can be improved in their goal-orientation and guidance for
choosing solutions and resolving conflicts.

Regarding traceability a comprehensive approach spanning several development
phases and heterogenous artifacts, for example, considering goal modeling and par-
ticularly design artifacts, is an unresolved problem. Besides traceability has to be
efficient with as less additional effort as necessary. This is the reason why automa-
tion has to be enforced. For automated traceability link establishment rule-based
approaches and information retrieval techniques should be combined as well as with
an event-based approach for maintaining links. Appropriate semantics for traceabil-
ity links with specific link types is another issue to be considered to a greater extent.
Moreover, adequate tool support that integrates with regular CASE tools and de-
velopment environments is needed for practicability and useability. Only if all this
is realized, change impact analysis can be enabled in an easy and well-established
way.

4.1.2 Research Goals for the Proposed Approach

Knowing the limitations of the existing approaches the goals for the approach of
this thesis can be refined. Regarding the goals G1 and G2 it can be said that a
completely new methodical approach is not necessary. The refined goal is:

RG1 Combine the existing architectural analysis and design approaches and inte-
grate them with the GORE approaches to follow a goal-oriented way for a
comprehensive and systematic design regarding evolvability. Provide means
and activities for its support.

55

Chapter 4. Overview of the Approach

Regarding goal G3 a discussion about the term evolvability was already started
in Chapter 3. However, it is necessary to:

RG2 Provide a consolidated view on the quality goal evolvability with its char-
acteristics and relations to other quality goals as well as a strategy for the
realization of evolvability during architectural design.

The goals G4 and G5 are partly addressed by the GORE approaches regarding
modeling goals and their influences on each other. However, in terms of design they
are not sufficient, which requires to:

RG3 Establish a concept to integrate and adopt the GORE approaches for architec-
tural design to provide systematic guidance for the treatment of quality goals
and their interdependencies, for conflict resolution, and for design trade-offs.

This concept can benefit from the utilization of design principles and solution
instruments that shall be analyzed according to the goals G6 and G7 and collected
in a catalog (G8). In order to provide effective guidance for decision-making it is
necessary to:

RG4 Determine a quantitative rating of the impact of the design principles and
solution instruments on the quality goal evolvability as a decision criterion,
and collect this information in a catalog that can be utilized in the concept
from RG3.

Regarding the traceability concept of goal G9 the challenges identified in Chap-
ter 2 should be addressed. Therefore, the refined goal is to:

RG5 Develop a concept for design traceability, which enables comprehensive (semi-)
automatic identification, recording, and maintenance of intra and inter model
dependencies, includes goal models as well as design artifacts, provides a
defined semantics based on specific link types, and hence facilitates change
impact analysis and evolutionary development.

4.2 Proposed Approach

The approach of this thesis is explained as follows. This section describes how the
approach addresses the refined goals from Section 4.1.2. First, an overview of the

56

4.2. Proposed Approach

Architectural Design

Validated
architecture

Architecturally
significant

requirementsRequirements
Analysis

Architectural
Analysis

Architectural
Synthesis

Architectural
Evaluation Realization

Architecturally
significant

requirements

Architectural
solutions

Key

Development
phase

Data flow

Problem space Solution space

Architectural
concerns and

Context

Figure 4.1: Overview of development phases and data flow

phases, artifacts, and the methods that are integrated in this approach is given.
Then, the concepts that are described in the following chapters are introduced.

Figure 4.1 gives an overview of the development phases related to architectural
design and the data flow between the phases. The architectural design is refined into
architectural analysis, synthesis, and evaluation, which represents a general model
determined from several design methods as already mentioned in Chapter 2.

Architectural analysis takes as input architectural concerns, such as functional
and non-functional requirements, as well as context information, e.g., business goals
of the enterprise, and defines the architecturally significant requirements. Architec-
tural synthesis performs the transformation from the problem space to the solution
space from the perspective of an architect. The activities during synthesis create
architectural solution elements (e.g., architectural building blocks) from the archi-
tecturally significant requirements utilizing design principles and patterns. These
architectural solutions are then subject of the architectural evaluation phase. The
output, a validated architecture, can be realized afterwards. Table 4.1 shows some
details of the development phases relevant for this thesis, such as typical activities,
artifacts, entities, and standardized modeling notations.

The data flow in Figure 4.1 might indicate a sequential flow of the development
phases and activities. However, it rather shows only the forward engineering direc-
tion. Instead, the activities of the design phases are typically performed in small
leaps and bounds as architects move between them. This apparently random process
is driven by an implicit or explicit backlog comprising small issues and problems that
need to be solved to get from the problem space to the solution space (cf. [HKN+07]).
The backlog concept is mainly known from agile methods as Scrum [SB01].

57

C
hapter

4.
O
verview

of
the

A
pproach

Table 4.1: Development phases with activities, artifacts, and standard modeling notations

Architectural Design

Development Phase Requirements Analysis Architectural Analysis Architectural Synthesis Architectural Evaluation Realization

Input Artifacts from previous

phase

Artifacts from previous

phases

Artifacts from previous

phases

Specified architecture

Stakeholder input, business

goals, quality models

Factors, analysis patterns Principles, patterns, tactics,

guidelines, heuristics

Activities Requirements elicitation and

specification, goal modeling

Identification of architectural

drivers or influencing factors,

Identification of issues

Creation of candidate archi-

tectural solutions, identifica-

tion of subelements, instanti-

ation of patterns, documenta-

tion of views

Ad-hoc evaluation, scenario-

based assessment, discovery

review, simulation

Implementation, con-

figuration, deployment

Artifacts or means Use case description and di-

agrams, scenarios, goal mod-

els, checklists, questionnaires

Factor tables, issue cards, list

of strategies

Architectural views, proto-

types

Utility tree, metrics Programming model,

coding style guide

Entities Functional and non-

functional requirements,

constraints, goals, softgoals

Architectural drivers or key

requirements, influence fac-

tors, strategies, scenarios

Architectural building blocks

(subsystems, interfaces, com-

ponents, packages, classes),

libraries, frameworks, strate-

gies, software categories

Analysis questions, scenarios Source code, configura-

tion items

Integrated

approaches

GORE, EMPRESS GORE, Global Analysis, Sce-

narios, Use cases

QASAR, ADD, EMPRESS,

Quasar

ATAM

Standard modeling

notations

URN UML

Problem space Solution space

58

4.2. Proposed Approach

The goal-oriented architectural design method of this thesis focuses on a forward
engineering perspective to initially create a software architecture. However, it can
be extended by a reengineering perspective. More specifically, the method targets
on the transition from requirements analysis to architectural analysis. It emphasizes
the analysis and synthesis phases to perform the transition from the problem space
to the solution space from an architect’s perspective. The range of the problem and
the solution space is illustrated in Figure 4.1 and Table 4.1.

To achieve the refined goal RG1, the method adapts and integrates the concepts
from existing approaches as follows. The quality goals are analyzed using the GORE
approaches and specified with the standardized URN. The guiding theme for the
transition from the problem space to the solution space is the transformation of
quality goals into functional solutions as proposed by Bosch’s QASAR method.
For the architectural analysis phase mainly the Global Analysis of the Siemens
Four Views approach with its factor tables and issue cards is used to identify the
architecturally significant issues. The goals from the goal models can be used as
input for the influence factors as well as for the identification of candidate solutions
during synthesis. Scenarios are used to specify quality goals in more detail. Besides,
the influence factors of architectural analysis can impact the goal-modeling. The
architectural synthesis phase combines the EMPRESS approach and its architectural
means, the ADD method and its architectural tactics, as well as further ideas to
create a conceptual architecture. This is complemented with concepts of the Quasar
method, such as the software categories, for the design of detailed components and
interfaces. The details of the goal-oriented design method by means of activities
and artifacts is described in Chapter 6.

As a major contribution this thesis introduces a guiding scheme for goal-oriented
architectural design—the Goal Solution Scheme. The scheme spans several phases:
requirements analysis (partly), architectural analysis, and architectural synthesis.
It serves as a systematical concept guiding the transition from the problem space to
the solution space. The scheme is inspired by and integrates the GORE approaches
with architectural design. It provides guidance for conflict detection and resolution
as well as for decision-making on solution instruments as required by the refined goal
RG3. Furthermore, the scheme is used to provide a consolidated view on evolvabil-
ity and its subgoals as demanded by RG2. Moreover, the scheme is the base for
rating solution principles and instruments regarding their influence on evolvability

59

Chapter 4. Overview of the Approach

to establish a catalog of solution instruments according to the refined goal RG4.
The Goal Solution Scheme is explained in detail in Chapter 5. The utilization of
the scheme during the goal-oriented architectural design is explained together with
the design method in Chapter 6.

The remaining refined goalRG5 is addressed in Chapter 7. This chapter discusses
the concept for tracing the dependencies between the various artifacts from the
goal-oriented architectural design method. Inspired from state-of-the-art approaches
of Cleland-Huang et al. and Spanoudakis et al. a (semi-) automated, rule-based
approach is used together with the information retrieval technique n-gram matching
to establish traceability links. Linked artifacts are a) the goal models noted with
the GRL of the URN standard, b) the factor tables and issue cards from Global
Analysis, c) UML models for design specification, as well as d) ontologies modeled
with the Web Ontology Language (OWL) as a semantic net of important terms from
different phases. The dependencies between the entities of those artifacts (URN
models, factor tables, issue cards, UML models, OWL ontologies) are represented as
links of specific types to increase the semantic meaning of the links. For this purpose
a traceability metamodel is created and link types are clustered and collected in a
catalog.

Additionally, in Chapter 8 the tool support for this combined design and traceabil-
ity approach is presented. A tool called EMFTrace is used to integrate the models
from the different development phases in a repository and to establish the traceabil-
ity links that are identified from the dependencies between the models. EMFTrace
is extended by EMFfit to support the architectural analysis with factor tables and
issue cards as well as the linking between the goals of the problem space and the
design artifacts of the solution space.

60

Chapter 5

The Goal Solution Scheme

This chapter introduces the Goal Solution Scheme (GSS) as a concept that drives
the goal-oriented architectural design and guides the developer from the problem
space to the solution space. Section 5.1 describes the general concept of the GSS
and its contribution. In Section 5.2 the establishment of the Goal Solution Scheme
with its transitions leading from goals to solutions is explained in more detail and on
an exemplary case study regarding several quality goals. Furthermore, Section 5.3
describes the GSS for the quality goal evolvability as a central example and how the
GSS leads to a catalog of reusable solution instrument’s for the architect’s toolbox.
Parts of this chapter were already published in several papers [BBR09, BFKR09,
BR10, BR11].

5.1 General Concept

The Goal Solution Scheme (GSS) was developed to guide the software architect in
appropriately dealing with quality goals during architectural design. The scheme
indicates and guides how the architectural design steps should be performed for
the transition form the problem space to the solution space. The GSS represents a
mapping between elements of both problem space and solution space by explicit de-
pendencies. If traceability links are established according to these dependencies and
if they are managed in a repository, the organization of that repository reflects the
Goal Solution Scheme. The GSS has some similarities with and was partly inspired
by goal graphs from the GORE approaches (see Chapter 2). However, it extends
them by an explicit consideration of design principles and a quantitative evaluation

61

Chapter 5. The Goal Solution Scheme

of the influence of functional and technical solutions on effort-related quality goals.
The Goal Solution Scheme gives information about how to deal with quality goals
or how to resolve conflicts between competing goals using design principles, and it
facilitates decision making for solution instruments. The means mentioned by the
EMPRESS method as well as the architectural tactics of ADD are both covered
by the design principles. Beyond, the scheme is related to the software architect’s
toolbox, where previous solutions are collected and stored according to principles
and goals.

5.1.1 Structure of the GSS

The structure of the GSS is shown in Figure 5.1. The layers and transitions of
the scheme correspond to the artifacts in the development process and the phases
requirements analysis, architectural analysis, and architectural synthesis as intro-
duced in Chapter 4. The scheme maps quality goals covered by layer I to their
subcharacteristics represented by layer II. Together with project constraints they
represent the problem space. Instead, the layers III and IV represent the solution
space. The GSS maps the subcharacteristics from layer II to supporting solution
or design principles covered by layer III. Furthermore, the principles are mapped
to solution instruments covered by layer IV. Layer IV represents the design space
or the architect’s toolbox including solution instruments on different levels of ab-
straction. These can be functional and technical solutions as architectural building
blocks, patterns, or existing frameworks implementing the design principles.

The Goal Solution Scheme has a graph structure similar to a tree, however, in
reality due to scattering and tangling there are not always one-to-one relations be-
tween the elements of the different layers. The crossing arrows in the figure indicate
the existence of many interdependencies and trade-offs. The relations between the
layers on the one hand represent the positive or negative influence on the quality
goals that is utilized during decision-making. Consequently, the scheme shows the
propagation of quality goals, e.g., security, evolvability, or usability, to a software
architecture along the design process. On the other hand the relations of the scheme
are dependencies between development artifacts, such as refinements. These depen-
dencies can be represented as traceability links established during design. These
traceability links then carry the design decisions. The establishment of the trace-
ability links is discussed later in Chapter 7.

62

5.1. General Concept

Quality Goals

Subcharacteristics

Design Principles

Solution Instruments

Dependencies, Traceability Links

Transition 1

Transition 2

Transition 3

Problem
Space

Solution
Space

IV

III

II

I

Figure 5.1: Structure of the Goal Solution Scheme

5.1.2 Transitions of the GSS

Transition from Quality Goals to Subcharacteristics The upper transition
in the GSS represents a refinement of the soft and intangible quality goals into
subgoals or also called subcharacteristics. With this refinement conflict detection
and resolution are enabled, because further interdependencies and, hence, conflicts
are discovered and can be resolved on the next levels. This transition step in practice
is usually performed by requirements engineers but rarely by software architects if
it is performed at all (compare the evaluated state-of-the-art design methods). The
understanding of this transition, however, is important for the software architect
because he has to contribute to the prioritization of the quality goals. Later he
is responsible for the selection of proper design principles and solutions for the
realization of the quality goals. Therefore, this transition step is included in the
goal-oriented design approach of this thesis and utilizes the concepts of softgoals
and contribution links from the GORE approaches.

Transition from Subcharacteristics to Design Principles The second tran-
sition of the scheme guides the developer from the quality goals and their subchar-
acteristics to the architectural design principles representing the transition from the
problem to the solution space. This constitutes a novelty step regarding the design
progress towards a solution in comparison to the GORE approaches. For this tran-
sition the influence of the design principles on the quality goals’ subcharacteristics is

63

Chapter 5. The Goal Solution Scheme

determined. This transition corresponds to the architectural analysis phase, which
facilitates the selection of appropriate solutions in the next transition step.

Transition from Design Principles to Solutions Instruments In the lower
transition of the GSS solution instruments from the architect’s toolbox, such as
architectural patterns or existing frameworks as well as technical components, are
related to the design principles. This transition represents the actual architectural
synthesis phase. The solution instruments of layer IV are evaluated quantitatively
regarding their influence on the design principles. For each instrument the impact
values are stored in a catalog together with information about preconditions for
their applicability. During decision-making the preconditions of the instruments are
compared with architectural constraints for pre-selection. Then, together with the
influence of the principles on the subcharacteristics from the preceding transition the
influence of the instruments on the quality goals can be determined, which facilitates
an appropriate choice of solution instruments. When choosing solution instruments,
decisions are made about how design principles and quality goals are realized.

5.1.3 Contribution of the GSS

The Goal Solution Scheme has several advantages that constitute its contribution.

1. It facilitates the prioritization of quality goals for decision-making during the
architectural design process.

2. The scheme eases the comprehension of quality goals by their refinement into
subcharacteristics utilizing the concepts of the GORE approaches.

3. Furthermore, the GSS supports the resolution of conflicting quality goals by
an identification of potential trade-offs or synergies and by prioritizing the
alternatives.

4. It proposes a fine-grained sequence of design steps and, therefore, guides the
software architect during the design process and enables tool-supported deci-
sions and automation.

5. Moreover, the scheme facilitates the establishment and maintenance of trace-
ability links related to the design activities. The traceability links then carry
the information about the design decisions.

64

5.2. Establishment of the GSS

6. A reduction of the traceability link complexity is achieved because one or a
few principles and solution instruments implement one subcharacteristic. In an
ad-hoc design quality goals would be implemented in a more scattered manner
leading to a much higher number of links.

7. Besides, the established mapping between goals, principles, and solution in-
struments simplifies checks for accuracy, completeness, and consistency of the
traceability links by a comparison between chosen solution instruments and
relations within the Goal Solution Scheme.

8. As a further result, the GSS provides an alignment of principles and functional
solutions; it classifies solution instruments and components according to their
contribution to quality goals, and it provides a stock of reusable solution in-
struments to the architect and the designer. The solutions serve as a source
of proposals for design alternatives during decision-making.

5.2 Establishment of the GSS

This section describes the establishment of the Goal Solution Scheme. It explains
in more detail the transitions that were introduced in the preceding section. For
simplicity in this section the relations between the elements of the different layers
are only weighted qualitatively. An approach for the quantitative evaluation of the
relations is discussed in the next section. The description in this section is based
on a case study from a reengineering project for a Manufacturing Execution System
(MES) that is restructured according to the principles of Service-Oriented Architec-
ture (SOA) [Erl07]. In general, the information that helps with the establishment
of the scheme can be gathered from literature review and from the experience of
experts.

Service-oriented MES Case Study A Manufacturing Execution System man-
ages the manufacturing in modern flexible plants [Ver07]. It is connected to En-
terprise Resource Planning (ERP) systems, which handle manufacturing plans and
actions, and represent a business perspective, while the MES is able to manage
the manufacturing actions on a more fine-grained level. A MES has access to the
abilities and the limitations of the real manufacturing processes and, therefore, it is

65

Chapter 5. The Goal Solution Scheme

able to optimize them, and simultaneously it provides an increased flexibility. The
MES covers tasks like detailed scheduling and process control, the management of
machines, material, and personnel, etc. In the case study the focus lies on the inte-
gration between ERP and MES. The requirements to the interface between both are
defined by the ANSI standard ISA-95 [ANS]. As the platform for the MES interface
the Enterprise Service Bus (ESB) [Cha04] has been chosen, in a style similar to a
middleware. Figure 5.2 shows the integration interface and its environment.

ERP
Customer 1

ERP
Customer 2

ESB
Integration
Interface MES

Producer

Figure 5.2: Overview of the integration interface

Some of the major quality goals a MES has to fulfill are high flexibility and
scalability, time behavior, as well as security. As an example, security is especially
important for the information flow control. In this case, it is important to protect
the business-critical private information of the customer C1 from an unauthorized
access by its competitor customer C2. Even if both give manufacturing tasks to
the producer P , no details about the order must be disclosed to the competitor
through the ESB or the MES, for example, details concerning number of units,
delivery terms, and technological process. Flexibility is necessary regarding different
planning algorithms, control principles, and regarding the integration with a variety
of machines and ERP systems. The requirements for scalability arise from the need
for mastering complex manufacturing tasks with a high number of variants and
elements, and for the interoperation with multiple different ERP systems because
of outsourcing.

5.2.1 Quality Goal Refinement and Elaboration

Quality goals are often vague and intangible. At first sight for an architect it is
to hard to know how they interact with each other or how to realize these goals.
The several quality goals of a software system often are competing and conflicting
in their interdependencies. Such conflicts have to be resolved by prioritization or a

66

5.2. Establishment of the GSS

trade-off. If this is not possible on the top-level, a resolution is attempted after a
refinement of the goals. By refining the quality goals, they get more tangible, vague
interdependencies can be concretized, and previously hidden dependencies can be
made explicit. The mutual impact of the relations as well as conflicts and synergies
can be detected.

The refinement of the quality goals is covered by the first transition in the Goal
Solution Scheme. This eases the comprehension of the goals and makes them more
specific. The refinement and specification of quality goals can be performed with the
GORE approaches evaluated in Chapter 2, such as the NFR framework, i*, or the
URN. For the refinement standards as the ISO 9126 [Int01] can help. Furthermore,
the Goal Question Metrics (GQM) method can be applied to identify subcharac-
teristics. This structured querying technique helps to analyze influences on a goal
[BCR94].

According to the NFR framework, quality goals have a type and a topic. As
an example, the requirement security of integration interface has the type security,
which indicates the specific quality goal, and the topic integration interface, which
targets at the subject. Quality goals (or non-functional requirements) can be refined
regarding type or topic. The refinement of maintainability mentioned above is a
refinement regarding the type of the quality goal. For the case study all refinements
are regarding type as well. The integration interface is the target.

Discussion for the Case Study In our case study the top-level quality goals are
flexibility, scalability, and security. A consideration of their relationships on this level
leads to the assumption that flexibility and scalability are in a rather synergetic
relation to each other because they both deal with change. On the other hand secu-
rity might be conflicting to flexibility and scalability because it implies restrictions
of the information flow and the data access. This guess has to be checked in the
next steps. For a precise analysis and a solution for the MES project, a refinement,
more specifically an and-decomposition, has been performed. Figure 5.3 shows the
refinement. It is presented using the URN for softgoals and links.

For flexibility, there is a definition in the IEEE standard glossary of software
engineering terminology [Ins90], although a detailed discussion of the subcharacter-
istics is missing. Regarding flexibility some discussion can be found in the literature
[ZZ02, NNG97, EM06, Mor06], which led to the elaboration of the subcharacteris-

67

Chapter 5. The Goal Solution Scheme

Quality Goals

Subcharac-
teristics

Flexibility

Replaceability ModifiabilityExtendability

Scalability Security

Performance Integrity Confidentiality Availability

And And And

Hurt

Figure 5.3: First transition of the Goal Solution Scheme for the case study

tics extendability [Ins90], replaceability [Int01], and modifiability [BLBvV04] for the
example. The latter two got a higher priority and, hence, are in the focus of the
further description.

Scalability is lacking a definition by a standard; however, some works discuss this
quality attribute [Bon00, Hil90, DRW06, DRW07]. Scalability is always concerned
with performance, or efficiency in terms of the ISO 9126 [Int01], and how well a
solution to a problem will work when the size of the problem increases. However, if
a system performs well it is not necessarily scalable, too. Therefore, replaceability and
modifiability are considered as subcharacteristics of scalability as well. If an MES has
to face changes, for example, due to an increasing complexity of the manufacturing
tasks, modifications are necessary. Moreover, it should be easy to replace parts of
the whole system with more efficient ones if this is necessary to scale up and retain
a high performance.

For security there are several definitions from the International Organization for
Standardization (ISO), e.g., [Int05]. Chung et al. [CNYM00] comprehensively dis-
cuss its refinement in their NFR framework. In the case study, business critical
data is not only processed by a shared cooperation platform but also transferred via
a public, insecure communication medium. Thus, it is essential first to guarantee
confidentiality and integrity of data within the borders of the shared cooperation
platform and secondly to realize confidentiality and integrity of transferred data.
In general, the most important subcharacteristics of security are confidentiality, in-
tegrity, and availability [And01].

Before the refinement, there already has been the assumption for a synergetic
relation between flexibility and scalability, as well as a possible conflict between
scalability and security. The conflict could neither be verified nor resolved on the
top level, because both scalability and security are essential. However, after the

68

5.2. Establishment of the GSS

refinement of the quality goals illustrated in Figure 5.3, a resolution of the conflict
and verification of the synergetic interdependency between flexibility and scalability
can be tried. The latter can be verified by the common refined goals replaceability
and modifiability. Beyond, a negative interdependency between performance and
security is detected, because security mechanisms, as for example encryption, require
extra operations, often are time consuming, and can hamper performance. This
confirms the conflict; however, for a resolution a further refinement to principles is
necessary. For the further design process of the case study the attention is drawn
to the higher prioritized subcharacteristics replaceability, modifiability, as well as
integrity, and confidentiality.

In the figure the above mentioned refinements are expressed using decomposition
links of the type and according to the URN. In the Goal Solution Scheme they are
represented by traceability links of the link type refine (cf. the discussion of link
types in Section 7.4). The hurt-contribution can be traced with links of the type
contribution if necessary.

5.2.2 Filling the GSS with Principles

After the top-level goals have been refined into subcharacteristics in the first tran-
sition of the Goal Solution Scheme, they are more specific. But, they are still of
a qualitative nature and still cannot be implemented directly. In the next step,
the transition from the subcharacteristics to the design principles is performed, as
introduced with the general concept of the GSS.

As a step from the problem space to the solution space, in the second transition,
properties and principles and guidelines for good architectural design are assigned
to the subcharacteristics. These principles and guidelines give hints or advice for
the functional solutions. Of course, lots of principles exist and even more relations
between quality goals and these principles are imaginable. Therefore, the designer
has to analyze the subcharacteristics and to decide on suitable principles. It is
always the case that there are different quality goals having symbiotic relations or,
in contrary, competing with each other. In order to resolve conflicts, knowledge
about the interdependencies between the different subcharacteristics is important.
A goal model contains these dependencies and the trade-offs.

For illustration an example for a decision is discussed here. The principle of high
encapsulation supports changeability. On the other hand, a strong encapsulation has

69

Chapter 5. The Goal Solution Scheme

a negative influence on testability, because inaccessible attributes are hard to control.
Because of the refinement from the first step, both changeability and testability are
known to be subcharacteristics of maintainability and contribute to it. Now, by
assigning encapsulation to these subcharacteristics the conflict becomes visible and
can be considered. Frequently, multiple different principles contribute to the same
subcharacteristic. In these cases a decision can be made, which principle is applicable
or how to prioritize them.

Conflicting interdependencies between different quality subcharacteristics and ar-
chitectural principles often are still not tangible enough. Then, they have to be elab-
orated further on the solution instrument level of the Goal Solution Scheme. This
is necessary to be able to decide with clear rationale, which principle to choose to
achieve the highest degree of goal fulfillment. Therefore, the principles are mapped
further to solution instruments and the decision-making on how to resolve the con-
flict is postponed to the next step, when the criteria for adequate solution instru-
ments are more precise than those for the principles. Based on the contributions
of the solution instruments to the principles and the quality goals, the different al-
ternatives can be weighed and the decisions, which alternatives to choose, can be
made. For the GORE approaches also some evaluation techniques exist, which could
be applied. Anyway, it is always reasonable to decide as soon as possible to reduce
further effort.

Discussion for the Case Study For the cut-out from the case study, the second
transition of the Goal Solution Scheme is shown in Figure 5.4. The subcharac-
teristics result from the refinement in the previous transition step. Starting from
the higher prioritized subcharacteristics, appropriate principles are chosen. For the
subcharacteristics replaceability and modifiability, we decide in favor of the archi-
tectural design principles encapsulation, modularization, and loose coupling. These
principles are well known to support changes. Already Parnas [Par72] discussed
the importance of modularization for changeability and flexibility, which is one of
the most important quality goals here. Moreover, service orientation was identified
to support encapsulation, modularization, and loose coupling. A service-oriented
architecture obviously can help in this scenario, because loose coupling is one of its
core principles. It further helps encapsulation and modularization. In Figure 5.4 the
mentioned principles are related to the subcharacteristics replaceability and modi-

70

5.2. Establishment of the GSS

fiability by contribution links, denoting a positive influence. For those principles
explicitly chosen by the architect, traceability links of the type realize can be es-
tablished as well. This type of links is established, because the principles represent a
step towards the solution of the quality goals, and to document the design decisions
for choosing service orientation.

Subcharacteristics

Design
Principles

ModularizationEncapsulation Loose Coupling Tamper-
proofness Total Mediation Verifiability

Replaceability ModifiabilityExtendability Performance Integrity Confidentiality Availability

Help

Help Help
Help

Help Help HelpHelp Help Help Help

Help Hurt

Hurt

Hurt

Isolation Minimal
TCB

Make Make MakeHelpHelp
Help

Service
Orientation

Figure 5.4: Second transition of the Goal Solution Scheme for the case study

The security subcharacteristics integrity and confidentiality are discussed as an-
other example. To achieve the system’s security goals, security policies have to be
applied, as a comprehensive set of rules that are designed [GM82]. Security policies
are applied to determine a so-called trusted computing base (TCB) [LABW92]. The
TCB comprises the functional parts of a system that enforce and protect the secu-
rity policy. For the implementation of a security policy and a trusted computing
base, there are fundamental principles that refer to the so-called reference monitor
concept [And72]. A reference monitor must be tamperproof, always invoked and
small enough to be analyzable and verifiable, which is represented by the principles
tamperproofness, total mediation, and verifiability. These reference monitor princi-
ples are further supported by isolation and a minimal TCB as principles for the
architectural design. Isolation of the security relevant functions in the security ar-
chitecture of a system is a necessary consequence to be able to realize a tamperproof
reference monitor that cannot be bypassed [Gas88]. Correctness and completeness
are additional necessary properties not further discussed here [Dep85]. These de-
cisions and the causes again can be documented by traceability links of the type
realize.

However, in this design step, conflicting relations between the security principles

71

Chapter 5. The Goal Solution Scheme

and the subcharacteristic modifiability were identified as well. They are shown as
hurt-contribution links. Modifications in the software architecture can negatively
influence the minimality of the trusted computing base and vice versa. The other
security principles are affected by changes as well. Tamperproofness can easily be
breached if a modification is performed in a wrong way. Therefore, changes should
only be made on those architectural parts that have not to be isolated due to security
reasons.

These conflicting relations confirm the earlier assumption that security is in con-
flict with flexibility and scalability. However, at the principles level their interde-
pendencies have been clarified and a much better understanding of the conflict is
achieved than on the goal or the subcharacteristic level. Anyway, the conflict be-
tween the fundamental security principles and the subcharacteristic modifiability
cannot be resolved in this transition of the Goal Solution Scheme. The conflict reso-
lution has to be postponed to the next design step, when related solution instruments
can be analyzed more precisely than the principles.

5.2.3 Filling the GSS with Solution Instruments

In the third transition step of the GSS the actual transformation of the quality goals
to a functional solution is performed. This step is closely related to activities of the
architectural design methods ADD and QASAR. A similar mapping of solutions to
goals can also be found in the NFR framework and the i* framework, where opera-
tionalizations, or tasks respectively, are assigned to decomposed softgoals. However,
in the GORE approaches, the architectural design principles are not considered as
an intermediary means.

In the goal-oriented design method of this thesis solution instruments or solutions
can be functional concepts or even existing technical components, which either sup-
port the realization of quality goals or completely fulfill some of them. In this third
transition step of the Goal Solution Scheme a large number of solutions is possi-
ble. In order to find the most adequate ones, the designer weights the different
alternatives, akin to the last transition step.

The explicit mapping from goals to principles and solution instruments classifies
the latter ones according to their contributions to the quality goals. The GSS
facilitates to build up a knowledge-base or catalog, which enables the incremental
collection and the reuse of the solution instruments in a goal-oriented way.

72

5.2. Establishment of the GSS

Design
Principles

Solution
Instruments

ModularizationEncapsulation Loose Coupling

Enterprise
Service Bus Reference Monitor

Service
LayersLegacy

Wrapper

Service
Facade

Help

Help
Help

Help

Help
Help

Help

Help

Service
Orientation

Web
Services

Help

Tamper-
proofness Total Mediation Verifiability

Isolation Minimal
TCB

Make Make Make

Make Help

Figure 5.5: Third transition of the Goal Solution Scheme for the case study

Discussion for the Case Study Figure 5.5 illustrates a part of the Goal Solution
Scheme for the transition from principles to solution instruments for the case study.
To realize service orientation, and thus the principles encapsulation, modulariza-
tion, and loose coupling, the solution of architectural components as Web Services
and an Enterprise Service Bus (ESB) for the integration of the MES and ERP are
chosen. The reason for these decisions is that well-defined web services according to
the Service-Oriented Architecture (SOA) paradigm inherently reinforce those prin-
ciples [Erl07]. A component-based Common Object Request Broker Architecture
(CORBA), for example, could have been an alternative for a service-oriented archi-
tecture. However, for the case study a CORBA infrastructure was not available.

As an example from the case study, one realized service shall be mentioned.
The service MachineAvailability can be used for the interaction of the detailed
planning of an MES and the general planning of an ERP. Using this service the
ERP can request status information about machines, like their availability. When
the web services are implemented, architectural and design patterns, such as Service
Layers [Fow02, Erl08], Service Facade, or Legacy Wrapper [Erl08], contribute to the
realization of the principles, and hence, to the quality goals.

The application of a reference monitor solves the integration of the security as-
pects. The security principles are integrated with the help of the ESB to gain
control of the communication between the MES and ERP system and to isolate the
security-relevant architectural parts. Aside, it must be considered to keep the TCB
as small as possible. A discussion on the integration of security with web services
can be found in [FK08]. With this kind of solution the conflict between the security
principles and the subcharacteristic modifiability, which has been detected in the

73

Chapter 5. The Goal Solution Scheme

last transition step, cannot be completely resolved. However, as a trade-off, it can
be implemented in a controlled way by controlling access to the security-relevant
functionality. Hence, the realization of a reference monitor not only positively con-
tributes to the reference monitor principles. But it also has a helping correlation to
encapsulation, and therefore, even modifiability despite the conflicts.

As an alternative to the reference monitor, in an ad-hoc approach or according to
the discussion by Chung et al. [CNYM00], one could have considered only multiple
single solution instruments for security purposes, such as encryption mechanisms
or roles and rights. Of course, these solution instruments can contribute to confi-
dentiality and maybe integrity. However, as a drawback, without considering the
reference monitor principles the system would be much more vulnerable.

In this transition step of the GSS again all decisions about solution instruments
for the design principles can be made explicit by traceability links. As shown in
Figure 5.5 all solution instruments are related to the corresponding architectural
principles. The chosen solution instruments, such as the patterns Service Lay-
ers, Service Facade, and Legacy Wrapper, can be traced with links of the type
realize. Additionally, elaborated alternatives not discussed here can also be linked
as contribution and may be reused later. Figure 5.5 depicts only the mentioned
and chosen solution instruments. Actually, much more solution instruments are
available from the toolbox, and the architect can easily extend them by additional
ones.

5.3 Establishment of the GSS for Evolvability

So far the Goal Solution Scheme was discussed for several quality goals. This sec-
tion presents how the GSS is applied in more depth for the goal evolvability. In
Section 5.3.1 an evolvability model is described representing the first and second
transition of the GSS. To establish this model, first, subcharacteristics for evolvabil-
ity are elaborated based on existing approaches and the discussion from Section 3.4.
Second, architectural design principles are evaluated regarding their impact on the
subcharacteristics of evolvability. Then, in Section 5.3.2 the impact of architectural
solution instruments on evolvability is determined via the evolvability model. This
step represents the third transition of the GSS and results in a catalog of reusable
solution instruments for architectural design.

74

5.3. Establishment of the GSS for Evolvability

5.3.1 Evolvability Model

The evolvability of a software system is a property referring to the effort concerning
different aspects of its evolution (see also Section 3.4). This effort can be determined
by the help of several subcharacteristics as refinements of evolvability, which can be
defined by a quality model. This model was partly introduced in [BBR09] and
already published in [BR10].

5.3.1.1 Refinement of Evolvability to Subcharacteristics

The refinement of the quality goal evolvability into subcharacteristics according
to the first transition of the GSS is an extension of existing works. Contrary to
maintainability only a few works deal with quality subcharacteristics for evolvabil-
ity. Ciraci and van den Broek [CvdB06] discuss modifiability, maintainability, and
evolvability, whereby modifiability is seen with a broader scope depending on its
definition. Cook et al. [CJH01] suggest few subcharacteristics taken from the ISO
9126 standard [Int01], which were included in the thesis’ model. Breivold et al.
[BCE07] discuss evolvability subcharacteristics regarding their importance for soft-
ware developing organizations, and regarding a cost-effective evolution of software.
In [BCLL08] the subcharacteristics are related to attributes of the software system to
facilitate measurability. However, for quantification purposes of the relations some
inconsistencies in categorization and granularity had to be refined for this thesis.
Moreover, traceability must be considered as a subcharacteristic because it is an
important quality factor for evolutionary development [DG02]. The presented sub-
characteristics also strongly correlate to what Matinlassi et al. [MN03] call evolution
qualities and additional characteristics (e.g., traceabiliy, variability) for specifying
the quality goal maintainability.

The subcharacteristics of the evolvability model are described in Table 5.1. Ex-
tensibility, variability, and portability are seen as subordinated to changeability,
which is expressed in the table by indentation. Changeability and modifiability are
used synonymously. The presented evolvability model might not be completely con-
gruent with other classification schemes in the literature, which is not possible in
any case because there are many viewpoints on this topic. At least it is based on
clear definitions, tries to consolidate existing works, and can be tailored according
to individual needs in specific projects akin as done with quality models.

75

Chapter 5. The Goal Solution Scheme

Table 5.1: Evolvability subcharacteristics

Subcharacteristic Description

Analyzability, Ease
of comprehension,
(Understandability)*

The capability of the software product to be diagnosed for deficien-
cies or causes of failures in the software and to enable the identifi-
cation of influenced parts due to change stimuli (based on [Int01]
and [BCE07]).

Changeability/
Modifiability*

The capability of the software product to enable a specified mod-
ification to be implemented quickly and cost-effectively (based on
[Int01] and [MN03]).

Extensibility* “The capability of a software system to enable the implementation
of extensions to expand or enhance the system with new capabilities
and features with minimal impact to existing system.” [BCE07]

Variability* The capability of a software system or artifact to be efficiently
extended, changed, customized, or configured for use in a par-
ticular context by using preconfigured variation points (based on
[SvGB05]).

Portability* “The capability of the software product to be transferred from one
environment or platform to another.” [Int01]

Reusability* “The system’s structure or some of its components can be reused
again in future applications.” [MN03]

Testability* “The capability of the software system to enable modified software
to be validated.” [Int01]

Traceability* The capability to track and recover in both a forwards and back-
wards direction the development steps of a software system and the
design decisions made during on-going refinement and iteration in
all development phases by relating the resulting artifacts of each
development step to each other (based on [GF94]).

Compliance to
standards*

The extent to which the software product adheres to standards or
conventions relating to evolvability (based on [Int01]).

Process qualities Additional process quality characteristics are, for example, Project
Maturity and Community Quality, which are recognized as character-
istics that influence the evolvability of open source software projects
[DMCS07].

The * denotes the subcharacteristics used for the later evaluation as explained at the end
of Section 5.3.1.2.

76

5.3. Establishment of the GSS for Evolvability

5.3.1.2 Relating Design Principles to Evolvability Subcharacteristics

For a goal-oriented way of decision-making during architectural synthesis, the impact
of a decision on the quality goal has to be determined or predicted. As explained
with the general concept of the Goal Solution Scheme (Section 5.1) architectural
design principles were introduced as a means for selecting appropriate architectural
solution instruments and determining their impact on evolution effort. In the evolv-
ability model the design principles are related to the evolvability subcharacteristics
according to the second transition of the GSS. The design principles used for impact
evaluation are listed in Table 5.2. Subordination of principles is expressed by inden-
tation in the principle column. In this regard, for example, low complexity should
be an overall design principle that helps a lot of quality goals. Other principles such
as abstraction or modularity help to achieve low complexity. Modularity in turn can
be achieved by proper coupling and cohesion.

The relations between subcharacteristics and design principles have been devel-
oped in an iterative way, starting with hypotheses [BBR09] and steps of revision
during application in case studies [RB09, Sto10]. Meanwhile, the relations and the
way of calculating impact values can be considered as rather mature. They might
also be tailored for individual or project-specific needs. For brevity’s sake, not all
relations are discussed here, but some explanation is given below.

The subcharacteristics of evolvability usually can be influenced positively by re-
ducing the complexity of the design. A simple and consistent design, which also
follows, for example, the principles modularity, encapsulation, and separation of
concerns, leads to clear responsibilities of components and interfaces in between.
This can ease changeability of the system by reducing the effort for the developer if
changes have to be implemented. A proper level of abstraction and granularity helps
if, for example, a certain feature can be realized by just extending or exchanging
a single component. Conceptional integrity and a coherent mapping to concepts in
the design with adequate usage of terms help to identify the architectural elements
relevant for the changes and inhibit ripple effects. This also is the case if these
principles are followed to comply to standards.

For traceability particularly the consistency and completeness as well as a low
complexity of the design are important to support analysis of the artifacts that are
impacted by a change. A good separation of concerns and a coherent mapping to
concepts help to reduce the number of traceability links by reducing cross-cutting

77

Chapter 5. The Goal Solution Scheme

Table 5.2: Architectural design principles

Principle Description

Low complexity* The extent to which the amount of elements and their interdependen-
cies are reduced.

Abstraction* The extent to which unnecessary details of information are hidden to
build an ideal model and the extend to which a solution is generalized
(based on [Boo93]).

Modularity* The property of a software system to be decomposed into a set of co-
herent and loosely coupled elements with subsumption of abstractions
(based on [Boo93]).

Cohesion* The strength of the coupling between the internals of an element (based
on [Boo93]).

Loose
coupling*

The extent to which the interdependencies between elements are min-
imized (based on [Boo93]).

Encapsulation* The extent of hiding the internals of an element, for example, by sep-
aration of interface and implementation (based on [Boo93]).

Separation of
Concerns*

The extent to which different responsibilities are mapped onto different
elements with as little as possible overlap, at which ideally one respon-
sibility is assigned to exactly one specific element. The violation of
this property is called tangling and scattering.

Hierarchy* The arrangement or classification of related abstractions ranked one
above the other according to inclusiveness and level of detail (based on
[Boo93] and [McK05]).

Simplicity* “The quality or condition of being easy to understand or do” [McK05].

Correctness The property of an element to be complete and consistent resulting in
a fulfillment of its responsibilities.

Consistency The absence of contradictions and violations between related elements.

Completeness The coverage of all relevant responsibilities by an element without lack-
ing any necessary detail.

Conceptual
integrity

The continuous application of ideas throughout a whole solution, pre-
venting special effects and exceptions (based on [Bro95]).

Proper granular-
ity*

The size and complexity of an element is appropriate to its responsi-
bilities and to the particular situation.

Coherent mapping
to concepts*

The way to map elements to ideas and mental pictures so that they
are easy to understand, for example, by proper names.

78

5.3. Establishment of the GSS for Evolvability

concerns as, for example, with the implementation of quality goals.
Another important subcharacteristic of evolvability is the testability of new fea-

tures as a prerequisite for regression tests. The testability of a system benefits from
a good hierarchical structure, a consistent, complete, and modular design with good
separation of concerns. However, a strong encapsulation can hinder testability if the
operations to test are hidden behind a restrictive interface, for example, because of
a facade, which is an example for a negative influence relation.

All results regarding the correlation are shown in Table 5.3 and Figure 5.6. In
the figure some direct dependencies are left out and only the aggregated ones are
shown for a better visualization. For the same reason the interdependencies are not
shown using the URN notation of contribution links although this would have been
appropriate. The positively influencing relations correspond to help-contribution
links of the URN and are represented by the value 1 in Table 5.3; the same holds
for a negative influence, a hurt-contribution link, and -1, respectively. If no certain
positive or negative influence could be determined, there is a 0 entry in the table.
This corresponds to an unknown-contribution in URN. For aggregating subchar-
acteristics as changeability and principles as modularity the influence will later be
calculated using the influence of the subordinated concepts. The indentations in
Table 5.3 correspond to the refinement links in Figure 5.6.

Many evolvability subcharacteristics can be influenced by the architectural struc-
ture and behavior. However, there are important influence factors on evolvability, as
for example qualification and motivation of the team members, process maturity, or
quality management activities. The development process with roles, phases, commu-
nication paths, and traceability has a large influence as well. Architectural structures
cannot control these factors; they will be considered partly in the calculation scheme
for the influence of solution instruments on evolvability in Section 5.3.2.3. For the
subcharacteristics (Table 5.1) and the design principles (Table 5.2) the ones that
can have a direct influence from architectural patterns are marked by an * in the
first columns. They are applied as evaluation criteria for the architectural patterns
in the sequel.

79

C
hapter

5.
T
he

G
oalSolution

Schem
e

GSS Transition 2GSS Transition 1

Evolvability

Traceability

Testability

Analyzability

Process Qualities

Reusability

Consistency

Completeness

Low complexity

Loose coupling

Abstraction

Separation of
concerns

Project Maturity
Community Quality

Quality Goal Subcharacteristics Design Principles

Refinement Positive Influence Negative Influence

Compliance to
Standards

Cohesion

Conceptual
integrity

Proper
granularity

Coherent mapping
to concepts

Correctness

Modularity

Simplicity

Extensibility

Portability

Variability

Encapsulation

Hierarchy

Changeability

Figure 5.6: Graphical representation of the evolvability model

80

5.3. Establishment of the GSS for Evolvability

Table 5.3: Mapping of subcharacteristics to principles

Principle � Subcharacteristic A
na

ly
za
bi
lit
y

C
ha

ng
ea
bi
lit
y

E
xt
en

si
bi
lit
y

V
ar
ia
bi
lit
y

P
or
ta
bi
lit
y

T
es
ta
bi
lit
y

R
eu
sa
bi
lit
y

T
ra
ce
ab

ili
ty

C
om

pl
ia
nc

e

Low complexity* 1
Abstraction* 1 1 1 1 0 1 0 1
Modularity*

Cohesion* 1 1 1 1 1 1 0 0
Loose coupling* 1 1 1 1 1 1 0 0

Encapsulation* 1 1 1 1 -1 1 0 0
Separation of concerns* 1 1 1 1 1 1 1 0
Hierarchie* 1 1 1 1 1 0 0 1
Simplicity* 1 1 1 1 1 1 0 0
Correctness

Consistency 1 1 1 1 1 1 1 0
Completeness 0 0 1 0 1 1 1 0

Conceptional integrity 1 1 1 1 0 0 0 1
Proper granularity* 0 1 1 1 0 1 0 0
Coherent mapping to concepts* 1 1 1 1 1 1 1 1

1 – Positive influence; 0 – unknown/no influence; -1 – Negative influence

5.3.2 Evaluation of Architectural Solution Instruments

In this section an approach for the evaluation of the impact of architectural solution
instruments on quality goals is described. The concept of the approach is explained
with the evolvability model and the evaluation criteria presented in the last section.
The evaluation itself is presented with a case study of a software system for collective
orderers of mail order companies that was performed and published in [Sto10] and
[BR10].

Case Study: Collective Ordering System Mail order companies prefer to
work together with collective orderers, who accumulate orders of several customers
and submit them as a collective order to the mail order company. The mail order
company delivers the goods in one shipment to the collective orderer, who in turn

81

Chapter 5. The Goal Solution Scheme

distributes them to the customers. There are several advantages: The collective
orderer knows the formalities and processes for rare procedures such as reshipment,
complaint, deferred payment, etc. better than the average customer. The personal
and familiar contact to customers has positive effects on the business volume. The
mail order company can delegate communication activities with customers to the
collective orderer. These procedures belong to the core business in the domain and
are affected by frequent changes. Therefore, they were chosen for this case study.

The software system of the company shall enable collective orderers to submit or-
ders, manage their customers, and deal with complaints. The evaluation approach
explained in this section is applied for the task of enhancing this system. First,
in Section 5.3.2.1 architectural patterns are presented as an initial set of solution
instruments for an architect’s toolbox. Second, the impact of the patterns on the
architectural design principles (Table 5.2) is determined in Section 5.3.2.2. For eval-
uation purposes, a suitable part of the collective ordering software was designed for
each of the considered architectural patterns. This architectural design was used
for the impact determination. Based on the results, the impact on the subcharac-
teristics of evolvability (Table 5.1) was determined as discussed in Section 5.3.2.3.
Finally, the values to determine the impact on the quality goal evolvability are aggre-
gated in Section 5.3.2.4. The resulting values are stored together with the patterns
in the architect’s catalog. They can be used for future design decisions regarding
evolvability according to the third transition of the Goal Solution Scheme.

5.3.2.1 The Set of Evaluated Patterns

Software architectures are designed according to certain structural and behavioral
principles, which can be supported by patterns. A pattern describes a particular
design problem that arises in a specific context and provides a concept for a solution
that proved well. Thus, it can be part of the catalog of approved methods and solu-
tion templates of the architectural toolbox. Buschmann et al. [BMR+96] distinguish
several categories of patterns according to the level of abstraction or range of scale:

• Architectural patterns with fundamental influence on the structure of the soft-
ware system,

• Design patterns with less range of scale on subsystems or components (see
Gamma et al. [GHJV94]), and

82

5.3. Establishment of the GSS for Evolvability

• Idioms with low-level impact specific to a programming language.

Bosch [Bos00] additionally distinguishes between architectural styles that have a
global impact on the architecture and architectural patterns that are considered
with cross-cutting aspects of the architecture. A discussion about the different
viewpoints on architectural styles or patterns can be found in [AZ05], a distinction
and classification of the concepts in [GHR07]. For the evaluation approach of this
thesis just such patterns are interesting that impact the architecture and not only
detailed design or code. That’s why for the rest of the thesis the term architectural
pattern or pattern is used.

There are thousands of pattern descriptions available. For the impact determina-
tion regarding the quality goal evolvability, those patterns with an influence on the
software architecture constitute interesting candidates. The patterns have to fulfill
the constraints of the software system of the case study. Therefore, those patterns
of the entirety were chosen that have an influence on the architecture, that are well
documented, and that are expected to have an impact on evolvability. In the set
of patterns, for example, Facade and Adapter, which can be called design patterns,
are included as well. But they have an architectural influence if they are used.

The set of patterns used for impact evaluation is listed in Table 5.4. At this place
it is refrained from explaining every pattern. Instead, literature references are given
for the interested reader.

5.3.2.2 Determination of the Impact on the Principles

This section explains the determination of the impact values for the selected patterns
in the case study. First, the patterns were applied in an exemplary architectural
design for the case study. The resulting pattern-based design was rated regarding
the impact on the architectural design principles. The ratings were gained through
an assessment of the impact for every principle by expert opinion. The value of the
impact is expressed by values between -2 and 2 according to the rating scheme in
Table 5.5.

Case study example for impact discussion A collective orderer has to enter
orders into the software system, and then the orders have to be transmitted to the
mail order company. Usually this is done via phone but should be supported by the
new software system. As a possible solution in the case study, the Client-Server

83

Chapter 5. The Goal Solution Scheme

Table 5.4: The set of architectural patterns for the impact evaluation

Name Sources

Client-Server see Avgeriou&Zdun [AZ05]
Layers/Tiers
Repository
Blackboard
Pipes and Filters
Model View Controller (MVC)
Presentation Abstraction Control (PAC)
Event-Based, Implicit Invocation
Broker
Micro Kernel
Reflection

Facade Gamma et al. [GHJV94]
Adapter
Proxy

Plug-in Manolescu et al. [MVN06]

Table 5.5: Rating scheme

Rating value Impact

2 strong positive
1 weak positive

0 neutral

-1 weak negative
-2 strong negative

pattern was utilized (see Figure 5.7(a)). The server at the mail order company is
connected to the collective orderer’s client via internet. It provides an interface for
the transmission of orders. The client is structured in three layers as shown in
Figure 5.7(b). The presentation layer is responsible for the graphical user interface
(GUI). It uses the application layer, which provides functions as calculations for
deferred payment, a search for ordered but not delivered goods, or a reminder for
the deadline for returning the goods. The data layer is responsible for the data
persistence in a databank.

84

5.3. Establishment of the GSS for Evolvability

Catalog
Company Server

Collective
Orderer Client

(a) Client-Server

Collective Orderer Client
Presentation Layer

Application Layer

Data Layer

(b) Layers

Figure 5.7: Pattern application in the case study example

Now the evaluation of the patterns Client-Server and Layers regarding their im-
pact on the architectural design principles is discussed. Both patterns have a strong
positive impact on several principles. For example, they provide a good abstraction
of internal details (rating 2). The resulting architecture is simple to understand (2).
They provide good modularity because of high cohesion inside the layers, client, and
server (2), as well as a loose coupling between the elements (2), for example, for the
deferred payment. Unnecessary details are hidden behind interfaces between the
layers. Therefore, the encapsulation is improved (2). Regarding separation of con-
cerns Client-Server and Layers have a positive impact, but they cannot completely
prevent mixing different concerns (rating 1). Regarding the hierarchy criteria the
two patterns differ in their impact. The Layers pattern supports the ranking and
grouping of abstractions on different levels very well due to the different layers (2).
For the Client-Server pattern this cannot hold to this extend, which results in a
lower rating (1). The same applies for the coherent mapping to concepts criterion.
The Layers pattern has a weak positive impact on a proper granularity of an archi-
tectural design by structuring into layers instead of one big structural element (1).
Overall, the Client-Server pattern and the Layers pattern reduce the complexity of
an architecture through structuring.

Inside the client’s presentation layer the Model View Controller (MVC) pattern
can be used to separate the data to be presented (e.g., a customer or an order) from
the different views and control mechanisms. For example, there are views for editing
the customers’ contact information or for collecting and managing the orders.

The support for abstraction and cohesion as well as separation of concerns of
MVC is very good (rating 2) as a result of the strict separation of model, view,

85

Chapter 5. The Goal Solution Scheme

and controller. This improves the simplicity of the design as well (1), although
it is not so easy to use MVC with modern GUI libraries. The encapsulation is
also good because the internals of each element are hidden behind interfaces (1).
Building a hierarchy with MVC is not so well supported (0)—here Presentation
Abstraction Control (PAC) would be better. Regarding coupling MVC is evaluated
slightly negative (-1). Of course, the views can be decoupled from the model via
a change-propagation mechanism, however, view and controller are coupled very
tightly. Summed up, the complexity resulting from MVC is good but not excellent.
The granularity that results from MVC can be quite good (1) if the models and
views are properly designed. However, MVC ’s real strength is to provide a coherent
mapping of concepts for the user interaction through the GUI (2).

Table 5.6: Values for the patterns’ impact on the properties

Property � Pattern C
lie

nt
-S
er
ve
r

La
ye
rs
/T

ie
rs

R
ep

os
it
or
y

B
la
ck
bo

ar
d

P
ip
es

&
F
ilt
er
s

M
V
C

PA
C

Im
pl
.
In
vo

c.

Fa
ca
de

A
da

pt
er

B
ro
ke
r

P
ro
xy

M
ic
ro

K
er
ne

l

R
efl

ec
ti
on

P
lu
g-
in

Low complexity 1.7 1.8 0.8 0.3 1.7 1.1 1.4 0.8 1.3 1.4 1.5 1.5 2 0.3 1.6
Abstraction 2 2 0 0 2 2 2 1 2 2 2 2 2 2 2
Modularity 2 2 0 0.5 0 0.5 0.5 1 1.5 1.5 2 2 2 1 1.5

Cohesion 2 2 1 1 2 2 2 0 1 1 2 2 2 0 2
Loose coupling 2 2 -1 0 -2 -1 -1 2 2 2 2 2 2 2 1

Encapsulation 2 2 1 2 2 1 1 1 2 2 2 2 2 0 2
Separation of concerns 1 1 2 0 2 2 2 0 0 1 1 1 2 0 2
Hierarchy 1 2 0 0 2 0 2 0 0 0 0 0 2 0 0
Simplicity 2 2 2 2 2 1 1 2 2 2 2 2 2 -1 2

Proper granularity 0 1 0 0 2 1 1 0 2 1 0 0 1 0 2
Coherent mapping to concepts 1 2 1 0 2 2 2 0 1 1 2 0 2 0 2

For the rest of the patterns the evaluation concerning the properties was done in
the same way based on the findings of a bachelor thesis [Sto10]. Table 5.6 shows the
determined impacts of all selected patterns on the properties for good architectural
design. The ratings of the aggregated properties modularity and low complexity are
calculated by arithmetic mean of the subordinates.

86

5.3. Establishment of the GSS for Evolvability

5.3.2.3 Calculation of the Impact on Evolvability Subcharacteristics

The patterns’ impact on the quality subcharacteristics is primarily determined from
the impact on the principles, as discussed above. They are considered in the first
step of the calculation. Additional influences on the subcharacteristics—for exam-
ple from efforts not related to the design principles—are considered by introducing
adjustments in a second step.

The results were calculated in the following way. Let R be the matrix of the
impact ratings for the properties (Table 5.6) and rp be a column vector of this
matrix for one element p of the set of patterns P . Let M be the mapping matrix
of Table 5.3 and M ∗ be M reduced by the rows for which the properties were not
evaluated (and are not marked with *). Further, let ms be a column vector of M ∗

for one element s of the set of subcharacteristics S. Moreover, let V be the matrix
with the impact values of the patterns on the subcharacteristics. Then, each element
vsp of V is calculated by

vsp = rp ·ms/ ‖ms‖1 .

Finally, the matrix V ′ in the top of Table 5.7 is obtained from V by calculating
the impact values for changeability in row two by the arithmetic mean of the values
for extensibility, variability, and portability. In this way the patterns’ impact values
on the subcharacteristics is determined from the direct ratings for the principles
(Table 5.6) by evaluating and normalizing the influences of the interdependencies
described by the mapping in Table 5.3.

However, through the calculation there is no discrimination regarding the sub-
characteristics of changeability. The Reflection pattern, for example, contributes to
extensibility and variability but reduces portability if the base technology does not
support reflection. Furthermore, testability is decreased due to possible dynamic
changes at runtime.

These effects are not represented by the aggregated impact values in V ′ of the first
step. Therefore, offset values osp were considered that are shown in the middle of
Table 5.7 for the determination of the patterns’ impact on the subcharacteristics. In
the literature (e.g., Buschmann et al. [BMR+96]) also knowledge about consequences
of the pattern application regarding quality goals is mentioned. This knowledge was
incorporated for the determination of the offset values. The final impact values are
calculated as follows. Let F be the matrix for the adjusted impact values. Then

87

Chapter 5. The Goal Solution Scheme

each element fsp of F is calculated by

fsp =

{
vsp if osp is undefined
(vsp + osp)/2 otherwise.

The final impact values F ′ for the subcharacteristics including changeability shown
in the bottom of Table 5.7 again are obtained as for V ′ before.

5.3.2.4 Determining the Impact on Evolvability

As the last step the overall impact of the patterns on the quality goal evolvability was
determined by aggregating all subcharacteristics with equal weights. The resulting
values of the patterns’ impact on evolvability are shown in Figure 5.8 and in the
lowermost row of Table 5.7. The changes in the rating resulting from the offset values
can be seen by comparing the unadjusted and the final values shown in Figure 5.8.
As a consequence of the evaluation, in the case study a plug-in-based architecture
was selected as the best solution.

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

C
lie

nt
-S

er
ve

r

La
ye

rs
 /T

ie
rs

R
ep

os
ito

ry

B
la

ck
bo

ar
d

Pi
pe

s&
Fi

lte
rs

M
V

C

PA
C

Im
pl

. I
nv

oc
.

Fa
ca

de

A
da

pt
er

B
ro

ke
r

Pr
ox

y

M
ic

ro
 K

er
ne

l

R
ef

le
ct

io
n

Pl
ug

-in

Unadjusted
Rating
Final Rating

Figure 5.8: Resulting impact of patterns on evolvability

5.3.3 Discussion of the Results

The final results of the impact evaluation are illustrated by Figure 5.8. The chart
shows that the patterns in general have a positive impact on the quality goal evolv-
ability. This corresponds to the fact that patterns in general positively influence the

88

5.3. Establishment of the GSS for Evolvability

Table 5.7: Impact values for subcharacteristics and evolvability

Subcharacteristic � P
at
te
rn

C
lie

nt
-S
er
ve
r

La
ye
rs
/T

ie
rs

R
ep

os
it
or
y

B
la
ck
bo

ar
d

P
ip
es

&
F
ilt
er
s

M
V
C

PA
C

Im
pl
.
In
vo

c.

Fa
ca
de

A
da

pt
er

B
ro
ke
r

P
ro
xy

M
ic
ro

K
er
ne

l

R
efl

ec
ti
on

P
lu
g-
in

Calculated Rating

Analyzability 1.6 1.9 0.8 0.1 1.5 1.1 1.4 0.8 1.3 1.4 1.6 1.4 2.0 0.4 1.6
Changeability 1.4 1.8 0.7 0.2 1.6 1.1 1.3 0.7 1.3 1.3 1.4 1.2 1.9 0.3 1.7

Extensibility 1.4 1.8 0.7 0.2 1.6 1.1 1.3 0.7 1.3 1.3 1.4 1.2 1.9 0.3 1.7
Variability 1.4 1.8 0.7 0.2 1.6 1.1 1.3 0.7 1.3 1.3 1.4 1.2 1.9 0.3 1.7
Portability 1.4 1.8 0.7 0.2 1.6 1.1 1.3 0.7 1.3 1.3 1.4 1.2 1.9 0.3 1.7

Testability 1.0 1.3 0.6 -0.1 0.9 0.7 1.0 0.4 0.6 0.7 1.0 0.7 1.4 0.1 1.0
Reusability 1.5 1.8 0.8 0.3 1.5 1.3 1.3 0.8 1.5 1.5 1.6 1.4 1.9 0.4 1.9
Traceability 1.2 1.6 1.3 0.8 1.9 1.7 1.8 0.3 0.8 1.1 1.5 0.8 2.0 0.1 1.9
Compliance to standards 1.3 2.0 0.3 0.0 2.0 1.3 2.0 0.3 1.0 1.0 1.3 0.7 2.0 0.7 1.3

Offset

Analyzability 0 -1 -1 2 0 1 0
Changeability

Extensibility 1 1 2 -1 2 2 2 2 2 2 2 2
Variability 1 1 2 2 2 2 2 2
Portability 2 2 2 2 2 2 2 -1

Testability -2 -2 -1 2 0 -1 2
Reusability 2 2 2 1
Traceability 2
Compliance to standards 2 0 2

Final Values

Analyzability 1.6 1.9 0.4 -0.4 1.5 1.1 1.4 -0.1 1.6 0.7 1.3 1.4 1.0 0.4 1.6
Changeability 1.4 1.6 0.9 0.0 1.6 1.6 1.7 1.1 1.4 1.7 1.6 1.4 1.9 0.7 1.8

Extensibility 1.2 1.4 1.3 -0.4 1.6 1.6 1.7 1.3 1.7 1.7 1.7 1.2 1.9 1.2 1.8
Variability 1.2 1.4 0.7 0.2 1.6 1.6 1.7 1.3 1.3 1.7 1.4 1.2 1.9 1.2 1.8
Portability 1.7 1.9 0.7 0.2 1.6 1.6 1.7 0.7 1.3 1.7 1.7 1.6 1.9 -0.3 1.7

Testability 1.0 1.3 0.6 -1.1 0.9 0.7 1.0 -0.8 -0.2 0.7 1.0 1.4 0.7 -0.4 1.5
Reusability 1.5 1.8 0.8 0.3 1.5 1.3 1.3 1.4 1.8 1.8 1.6 1.4 1.9 0.7 1.9
Traceability 1.2 1.6 1.3 0.8 1.9 1.7 1.8 1.1 0.8 1.1 1.5 0.8 2.0 0.1 1.9
Compliance to standards 1.3 2.0 0.3 0.0 2.0 1.3 2.0 0.3 1.0 1.0 1.7 0.7 1.0 0.7 1.7

Evolvability 1.3 1.7 0.7 -0.1 1.6 1.3 1.5 0.5 1.1 1.2 1.5 1.2 1.4 0.3 1.7

89

Chapter 5. The Goal Solution Scheme

quality properties of a software system if they are used wisely. Some patterns turned
out to be excellent, for example, Layers, Plug-in, or Pipes and Filters; others are
less supportive. However, the impact of the patterns on evolvability and on software
quality in general is limited if process aspects are not taken into account. Process
qualities were considered only partly by the adjustments. Traceability constitutes
another aspect important for evolvability which depends on the development process
rather than on patterns.

The impact values for the patterns have been derived from a concrete case study.
The quantitative values should be seen as an additional hint helping the architect
with the uncertainty of a decision, which otherwise would be based purely on expe-
rience. It must be admitted that the values are subjective by nature because they
were determined from expert opinion. Such results also depend on the application
conditions as the experience of the development teams. However, an improvement
regarding objectivity is possible by including several experts. The values shall be
applicable and applied in further projects. The degree of universality of the impact
values can be improved by revising them in a series of projects. Further improve-
ments could be made by incorporating the uncertainty of the subjective ratings
into the calculation. Maybe an interval of values for the influence might be more
appropriate than absolute values.

The presented results of the evolvability model and the impact evaluation have
been developed as hypotheses, later were revised, and evaluated with a case study.
They can be considered as rather mature but might be biased by the case study.
Even if forthcoming revisions might result in smaller modifications of the impact
values, the revisions of the relations for refinement and mapping (Figure 5.6) can be
expected to be minor ones. At least these calculated values are an improvement in
comparison to the direct evaluation of the impact of patterns on quality goals from
other approaches (cf. [HA07b, GEM10]), which do not consider principles.

Buschmann et al. [BMR+96] argue that a classification of patterns into groups is
necessary to help the architect to use a system of patterns. The author agrees to
this argument for general categories like architectural patterns or design patterns,
structural or behavioral patterns, or regarding problems like concurrency or distri-
bution. However, for effort-related quality goals a quantitative evaluation is more
effective than a categorization because the impact on effort varies within an interval.
The presented evolvability model and the evaluated patterns represent a catalog of

90

5.3. Establishment of the GSS for Evolvability

possible solution instruments for architectural design. A filtering step according to
project-specific constraints applied to solution instruments from the catalog results
in a very similar effect as Buschmann’s categories. A ranking of a second step sup-
ports the architect in selecting the most appropriate solution instrument for the
quality goals (cf. the decision procedure presented in Section 6.2.2.1 in page 111).
Besides, the catalog can be easily extended by new patterns and with evaluations
for further quality goals.

91

Chapter 6

Goal-Oriented Architectural Design

As already mentioned in the overview of Chapter 4 this chapter describes the goal-
oriented architectural design method (GOAD) by means of activities and artifacts.
It explains how the existing approaches from the state-of-the-art are combined in the
different development phases. Moreover, it describes how the concept of the Goal
Solution Scheme from Chapter 5 is utilized for the refinement and realization of
the quality goals and for the decision-making on architectural solution instruments.
The whole approach is illustrated with a case study example from a real-world
development project for several quality goals.

Section 6.1 introduces the case study example. Then Section 6.2 explains the
development activities of the goal-oriented architectural design method with the
analysis and synthesis phases. Because the method is not especially concerned with
requirements analysis but with design and because the activities are iteratively in-
terweaved, all related analysis activities are described in Section 6.2.1. The architec-
tural synthesis is discussed in Section 6.2.2. Finally, Section 6.2.3 gives some hints
for architectural evaluation.

6.1 Introduction of the Case Study

The case study to illustrate the goal-oriented design method is an academic software
engineering project from a real world scenario. The project is run by the department
of Neuroinformatics and Cognitive Robotics of the Ilmenau University of Technology
to provide a controlling software system for mobile interaction-robots. This com-
plex software system and its architecture is developed in an evolutionary scenario

93

Chapter 6. Goal-Oriented Architectural Design

over several years to provide a uniform platform for different robots. The mobile
interaction-robots can be used in several environments, for example, as shopping as-
sistance robots, for an office information and guiding system for employees, or even
in the care for elderly people. For this purpose these robots have to provide sev-
eral features, as for example human-robot interaction including person tracking or
face and speech recognition, as well as navigation including path planning, collision
avoidance, or self localization.

Figure 6.1 gives an overview on the software system for the robots and illustrates
the HOme RObot System Horos. It shows the basic framework of the software
system. It is responsible for the communication of the different components control-
ling the robot’s hardware as well as the so-called skill components that provide the
features named above. Moreover, the framework is the base for the graphical user
interface and domain-specific applications. This software system is subject of sev-
eral design goals and constraints that are discussed in the curse of the development
activities in the following sections. The focus of the case study for the illustration of
the design activities is put especially on the framework part of the software system.

Communication Framework

N
av

ig
at

io
n

P
er

so
n

Tr
ac

ki
ng

S
pe

ec
h

R
ec

og
ni

tio
n

...

R
ob

ot
 C

on
tro

l

Robot-specific Hardware
Components

Domain-
specific

Applications

Graphical
User

Interface

(a) Software architecture overview

color camera
(fish eye)

robot face

speeker

microphones

touch screen
PC (Windows)

PC (Linux)

sonar sensors

180° laser-
range-finder

wheels

bumper

frontal cameras
(webcams)

Fig. 4. The HOme RObot System. Sensory and motory
modalities of the mobile interaction robot HOROS.

This includes a tablet PC (PentiumM, 1.1 GHz, 256MB)
for touch-based interaction, speech recognition and speech
generation. It was further extended by a robot face which in-
cludes an omnidirectional fisheye camera, two microphones
and two frontal webcams for the visual analysis of dialog-
relevant user features (e.g. age, gender, emotions).

4.2. The Control Architecture in the Context of a Sur-
vey Task

The office application of HOROS includes a survey task,
which will be discussed in the context of the control archi-
tecture. Thereby, HOROS is standing in a hallway in our de-
partment. His task is to attract attention of people that came
by. As soon as the system recognized a person near him, the
robot addresses the visitor to come nearer. He then offers to
participate in a survey about the desired future functionality
of HOROS. Further, a people tracking module is used to de-
tect break offs, thus if the user is leaving before finishing to
survey, the robot tries to make them came back and finalize
the survey. After the successful completion of the interac-
tion or a defined time interval with no person coming back,
the cycle begins again with HOROS waiting for the next in-
teraction partner. The experiment was made in the absence
of any visible staff members, so the people could interact
more unbiased. The respective state graph as an element of
the Application Layer L3 is shown in figure 5.

Each state of the state graph has also some defined input
conditions. So if the specific input conditions of a state are
fulfilled the application will get into this state. In each state,
all outgoing conditions must be consistent. Exemplary, the
incoming and outgoing conditions for the state ”Create At-
tention” are depicted in figure 6. This state can be reached

Create
Attention

Wait

Interaction

User
Disappeared

Fig. 5. State graph for the survey task. The state graph
consists of only four states which already define the princi-
ple application.

only from the state ”Wait” (see figure 5) by the following in-
coming conditions: the application was longer than 30 sec-
onds in the state ”Wait” (the last interaction partner of the
robot left the surroundings of the robot) and at least one new
user is perceived. In figure 6, two outgoing conditions are
also depicted. These are as well the incoming conditions
for the state ”Wait” (the perceived user left the surround-
ings without an interaction or the perceived user came not
closer to the robot within 15 seconds) and for the state ”In-
teraction” (at least one perceived user came closer than 0.75
meters to the robot).

FaceUser

Create Attention

person_number < 1 ||
Timeout > 15s

person_number > 0 &&
Timeout > 30s

person_number>=1 &&
distance[?] <= 0,75m

Fig. 6. State ”Create Attention”. There is one incoming
condition and two outgoing conditions in the state ”Create
Attention”. Further, when this state will be reached the gen-
eral behavior ”Face User” will also be activated.

The state ”Create Attention” is also defined by a general
behavior ”Face User”, that will be executed if the applica-
tion reaches this state via fulfilled input conditions. This
behavior will be routed to the dialog manager next. If there
are no other defined behaviors for this state in the dialog
manager, ”Face User” will be sent back to the Abstraction
Layer L2, then to the Skill Layer L1 and subsequently will
be executed by the Hardware L0.

Simultaneously to these processes, the robot permanently
perceives its environment in the Hardware Layer L0. Us-
ing the respective sensor readings in the Skill Layer L1 the
used methods and Blackboard variables are updated. Con-
sequently these Blackboard variables can also result in an
updated Skill Status in the Skill Layer L2 and subsequently
in a newly activated state of the state graph. State transitions
in the state graph can also be caused by user inputs, e.g. via
the GUI in the dialog manager.

Another application of HOROS based on our control ar-

(b) Mobile interaction robot Horos [MSW+05]

Figure 6.1: Overview of a mobile interaction robot and its architecture

94

6.2. The Goal-Oriented Design Method (GOAD)

6.2 The Goal-Oriented Design Method (GOAD)

In Section 4.2 the phases of the development process were already introduced. This
section gives more details on the activities and artifacts of the different phases
and regarding the utilization of the Goal Solution Scheme. The focus lies on a
forward perspective, and one path through the different activities is shown on the
example case study. Nevertheless, as already mentioned the activities are not purely
sequential. The procedure is rather incremental and iterative following a backlog
concept as depicted in Figure 6.2. This is necessary to parallelize and intertwine the
activities in a development team.

Back-
log

Requirements
Analysis

Architectural
Analysis

Architectural
Synthesis

Architectural
Evaluation

Goals,
Prob-
lems

Issues,
Factors

Design
ideas

Eval-
uation
results

Figure 6.2: Backlog concept and iterations between the development phases

The backlog is kind of an issue list with small issues or problems to tackle and
ideas to follow, which drive the architectural design process [HKN+07]. The back-
log’s items stem from the various development activities of the different phases. It is
fed, for example, by architectural concerns or architecturally significant requirements
from the architectural analysis, or by feedback from an architectural evaluation, as

95

Chapter 6. Goal-Oriented Architectural Design

well as by ideas for the design.
The architect can iterate between all phases to deal with the items and achieve

his design task. For the iteration between design activities different dimensions can
be identified:

Transformation from problem space to solutions space One reason to iter-
ate between design activities is that the architect wants to go from the problem
to the solution space. This corresponds to the transitions of the Goal Solution
Scheme from goals and subgoals to principles and finally to solution instru-
ments. In this regard the architect has to follow the different development
phases for each problem to find a solution.

Refinement A second reason for iterating between activities is refinement. Refine-
ment means decomposition or specialization, or in other words adding details.
In this regard the architect, for example, refines goals to subgoals, analyzes the
related influence factors, and again refines another goal. Moreover, he can, for
example, add influence factors or add components to the design of the system.

Confidence for evaluation A third way to iterate can be triggered by the re-
quest for an improvement of a certain design artifact considering feedback
from a “later” phase to increase the confidence for further evaluations or tests.
For example an architect identifies a new requirement during analysis of the
influence factors, or he revises a design decision based on the feedback from
an evaluation activity.

During all the design activities the backlog constantly is subject to changes, but
moreover also external demands for changes occur during the evolution of the soft-
ware system. To be able to follow these changes during all activities, traceability
links should be established between the different models or artifacts of the develop-
ment process. A traceability concept for the goal-oriented design method is discussed
in Chapter 7. In the following sections the activities and artifacts of the different
phases are discussed in more detail based on the case study example. According to
the Goal Solution Scheme it is discussed, how quality goals are modeled and related
to architectural design principles, and how they are transformed into functional and
technical solutions. The transformation is performed by using architectural means,
such as styles and patterns, and following the ideas of the different design methods.
Special emphasize is put on the selection of appropriate solution instruments.

96

6.2. The Goal-Oriented Design Method (GOAD)

6.2.1 Requirements and Architectural Analysis

During requirements and architectural analysis several activities have to be per-
formed. These activities should be tightly intertwined to specify typical artifacts as
use cases, scenarios, goal models, factor tables, and issue cards. For the elicitation
and documentation of requirements the EMPRESS approach proposes means as
checklists and questionnaires that can be used. However, since this is not the focus
of the goal-oriented design method the related activities are not discussed here, nei-
ther is the use case specification. Instead, the activities Goal Modeling and Global
Analysis as depicted in Figure 6.3 are discussed in more detail.

Goal Modeling

Identify (Quality) Goals
(Section 6.2.1.1)

Prioritize Goals
(Section 6.2.1.2)

Refine Goals
(Section 6.2.1.1)

Stakeholder input,
Requirements, Factors

Goal Model

Identify (Quality) Goals
(Section 6.2.1.1)

Prioritize Goals
(Section 6.2.1.2)

Refine Goals
(Section 6.2.1.1)

Global Analysis

Analyze Factors
(see Figure 2.3)

Factor tables
New factors

Develop Strategies
(see Figure 2.3)

Factor tables
New factors

Issue Cards

Factors

Prioritize
Factors

Issues and
Strategies

Analyze Factors
(see Figure 2.3)

Factor tables
New factors

Develop Strategies
(see Figure 2.3)

Factor tables
New factors

Issue Cards

Factors

Issues and
Strategies

Stakeholder input,
Requirements, Factors

Goal Model

Prioritize
Factors

Use Case Specification

Use Cases

Requirements

Use Cases

Requirements

Scenario Description

Scenarios

Requirements,
Goals

Scenarios

Requirements,
Goals

Factor tables
New factors

GSS
Layer I

GSS
Layer II

Transi-
tion 2/3

GSS
Layer III/IV

Transi-
tion 1

Figure 6.3: Activities of the analysis phase

6.2.1.1 Quality Goal Elaboration and Refinement

For the case study of the robot software system the following quality goals were
determined to be of interest by the development team:

• Modifiability (Changeability),

• Testability,

• Reusability,

• Efficiency,

• Reliability,

• Distributability,

• Usability,

• Security.

97

Chapter 6. Goal-Oriented Architectural Design

These quality goals form the basis, the layer I of the Goal Solution Scheme. In
the following, the goal-oriented modeling technique known from i* and the NFR
framework is utilized for the first transition of the GSS. See Section 5.2.1 for details
regarding this transition. As additional means for the specification and refinement
of the quality goals of the case study, the quality model of the ISO 9126 and the
evolvability model from Section 5.3.1 were used. Table 6.1 shows the specified quality
goals of the case study with their description after a refinement. It should be noted
that with evolvability also a generalized quality goal was included. The result of
the goal specification is a goal model specified with the Goal-oriented Requirements
Language (GRL) of the User Requirements Notation (URN), which is depicted in
Figure 6.4.

Table 6.1: Quality goals of the case study

Quality Goal Description

Evolvability The ability of a software system throughout its lifespan to accom-
modate to changes and enhancements in requirements and tech-
nologies, that influence the system’s architectural structure, with
the least possible cost while maintaining the architectural integrity.

Testability “The capability of the software product to enable modified software
to be validated.” [Int01]

Modifiability
(Changeability)

The capability of the software product to enable a specified mod-
ification to be implemented quickly and cost-effectively (based on
[Int01] and [MN03]).

Extensibility “The capability of a software system to enable the implementa-
tion of extensions to expand or enhance the system with new ca-
pabilities and features with minimal impact to existing system.”
[BCE07]

Portability “The capability of the software product to be transferred from one
environment or platform to another.” [Int01]

Variability The capability of a software system or artifact to be efficiently
extended, changed, customized, or configured for use in a par-
ticular context by using preconfigured variation points (based on
[SvGB05]).

Reusability “The system’s structure or some of its components can be reused
again in future applications.” [MN03]

98

6.2. The Goal-Oriented Design Method (GOAD)

Table 6.1: Quality goals of the case study (continued)

Quality Goal Description

Efficiency “The capability of the software product to provide appropriate per-
formance, relative to the amount of resources used, under stated
conditions.” [Int01]

Time behavior “The capability of the software product to provide appropriate re-
sponse and processing times and throughput rates when perform-
ing its function, under stated conditions.” [Int01]

Resource
utilization

“The capability of the software product to use appropriate amounts
and types of resources when the software performs its function
under stated conditions.” [Int01]

Reliability “The capability of the software product to maintain a specified level
of performance when used under specified conditions.” [Int01]

Maturity “The capability of the software product to avoid failure as a result
of faults in the software.” [Int01]

Fault tolerance “The capability of the software product to maintain a specified
level of performance in cases of software faults or of infringement
of its specified interface.” [Int01]

Recoverability “The capability of the software product to re-establish a specified
level of performance and recover the data directly affected in the
case of a failure.” [Int01]

Distributability The capability of a software system to express concurrency so
that it can be mapped onto effectively concurrent heterogenous
resources.

Security “The capability of the software product to protect information and
data so that unauthorized persons or systems cannot read or mod-
ify them and authorized persons or systems are not denied access
to them.” [Int01]

Integrity The property of information to be protected from unauthorized
manipulation.

Confidentiality The property of information to be restricted to certain users.

Availability The property of information to be accessible to authorized users
in an appropriate time limit.

99

Chapter 6. Goal-Oriented Architectural Design

Table 6.1: Quality goals of the case study (continued)

Quality Goal Description

Usability “The capability of the software product to be understood, learned,
used and attractive to the user, when used under specified condi-
tions.” [Int01]

Understandability “The capability of the software product to enable the user to un-
derstand whether the software is suitable, and how it can be used
for particular tasks and conditions of use.” [Int01]

Learnability “The capability of the software product to enable the user to learn
its application.” [Int01]

Operability “The capability of the software product to enable the user to op-
erate and control it.” [Int01]

Attractiveness
(User satisfaction)

“The capability of the software product to be attractive to the
user.” [Int01]

6.2.1.2 Goal Prioritization

Accompanying the goal specification also a goal prioritization should be performed.
A typical prioritization can be performed, for example, following a rating scheme
of high, middle, and low priority. This, for example, is known from the architec-
tural evaluation method ATAM for the prioritization of the utility tree. However, in
practice it often can be difficult for stakeholders to prioritize their goals and abso-
lutely rate them because all goals are seen to be important. For this reason in this
thesis for the goal-oriented design method a relative goal prioritization strategy is
proposed—the $100 approach. Often effort and time are the limiting factors for the
development of the software. This can be expressed in monetary value. In the $100
approach money is used as a metaphor for limited development capacities and this
facilitates the prioritization.

The $100 Approach To rate the goals regarding their importance, each relevant
stakeholder is virtually given $100 as a limited budget for addressing a set of goals in
one round of rating. With this money the stakeholders can decide how much money
to spend on each of the goals. The goals that are subject to one round of rating
should be of the same granularity. Optionally, in a further round the prioritization

100

6.2. The Goal-Oriented Design Method (GOAD)

Quality And

Evolvability

Testability
(15)

Modifiability
(88)

Reusability
(40)

Efficiency
(100)

Reliability
(50)

Distributability
(25)

Security
(0)

Usability
(58)

And

Extensibility

Portability

Variability

Time behavior

Resource
utilization

Fault
tolerance

Maturity

Recoverability

Availability

Integrity

Confidentiality

Understand-
ability

Learnability

Operability

Attractiveness

And

And

And

And

And

Figure 6.4: URN model for the quality goals of the case study with prioritization

101

Chapter 6. Goal-Oriented Architectural Design

can be proceeded as before by again splitting up the money on the refined goals
as illustrated in Figure 6.5. Otherwise, the refined goals can be treated as equally
weighted. In this way all quality goals are weighted relatively with each other ac-
cording to their importance. As a result an absolute prioritization of all goals can
be determined by summing up the ratings from all stakeholders.

Quality

Goal 1 Goal 2 Goal 3 Goal 4

Subgoal 2.1 Subgoal 2.2 Subgoal 2.3

6010 30

70 15 15

Key
Quality Goal

Rating round 1
Rating round 2

Figure 6.5: Illustration of the rating procedure of the $100 approach

Table 6.2 shows the result of the $100 approach for the quality goals of the case
study. In the case study the prioritization was performed only on the higher-level
goals. In a final step the summed up ratings were normalized to an interval between
0 and 100. In this way they could be managed by the Tool jUCMNav1 which was
used to model the goal graph using URN as depicted in Figure 6.4.

In the result the highest ranked quality goals are efficiency and modifiability fol-
lowed by usability and reliability. Moreover, the quality goals testability, modifiability,
and reusability, which are subcharacteristics of evolvability, together make up more
than 37%. Hence, evolvability is an important quality goal for the case study project.
The quality goals distributability and security—yet hardly considered—might get
more important in an intended future growth scenario when the system should run
on more than one computer.

1http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

102

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome

6.2. The Goal-Oriented Design Method (GOAD)

Table 6.2: Results of the goal prioritization with the $100 approach

Quality Goal � S
ta
ke
h
ol
d
er

J.
K
.

C
.S

.

R
.S

.

C
.V

.

M
.V

.

S.
M
.

T
.L

.

E
.E

.

A
.S

.

T
ot
al

T
ot
al

in
%

N
or
m
al
iz
ed

[0
,1
00

]

P
ri
or
it
y

Testability 5 20 10 35 3.89 15
Modifiability 40 30 10 20 20 40 20 20 10 210 23.33 88 H
Reusability 20 10 30 5 30 95 10.56 40
Efficiency 20 50 30 30 30 20 20 40 240 26.67 100 H
Reliability 20 20 10 10 20 20 20 120 13.33 50 H
Distributability 10 10 10 20 10 60 6.67 25
Security 0 0.00 0
Usability 5 20 20 30 20 5 40 140 15.56 58 H

100 100 100 100 100 100 100 100 100 900 100.00

6.2.1.3 Scenario Description

As a further step after refinement and prioritization of the goals detailed scenario
descriptions can be created for the highest-ranked quality goals. This shall enable to
further analyze the implications of the quality goals and to evaluate the quality of the
architecture to be developed against the goals in a later scenario-based assessment.

In the case study scenario descriptions were created for the highly-prioritized
quality goals. Table 6.3 shows an example scenario for the quality goal modifiability.
The scenario description follows the template presented by Table 2.1 in Section 2.1.2.

6.2.1.4 Global Analysis

Next to the goal specification, the Global Analysis with its activities known from
Hofmeister et al. (cf. Section 2.2.3 and Figure 6.3) is performed for architectural
analysis.

Factor Tables The activity of identifying the influence factors according to the
categories organizational, technological, and product factors can be combined with
the goal modeling. Global business goals can be input for the organizational factors

103

Chapter 6. Goal-Oriented Architectural Design

Table 6.3: An example scenario for modifiability from the case study project

Attribute Description

Name Integration of a new hardware driver module.
Quality Modifiability.
Stimulus A new driver module is integrated to assure operation of the

hardware.
Stimulus source The laser scanner component is exchanged.
Environment The system has been configured with a certain laser scanner and

a corresponding driver model to enable communication with the
laser scanner. The system is not in operation.

Artifact The communication framework needs to interoperate with the
new driver component.

Response The integration of the new driver component works with the ex-
isting interfaces, and communication with the new component
is possible even if new datatypes are introduced.

Response measure The integration of the new component is possible with less than
50 lines of code.

and functional goals as well as quality (soft-)goals can be input for the product
factors. The other way around also technological factors that are identified by an
architect during Global Analysis can be input for the goal modeling activity. In
this way the activities should be intertwined, and hence both contribute to the first
transition of the Goal Solution Scheme.

The influence factors were specified for the communication framework of the case
study. Table 6.4 shows a cutout of the product factor table from the case study
example. The complete factor tables can be found in Appendix A.1.

Issue Cards Issue cards are specified as a step after the specification of the fac-
tor tables in Global Analysis. They discuss architecturally important topics to find
appropriate solution strategies knowing typical principles and solution instruments.
In this way they already correlate to the architectural synthesis phase as they con-
tribute to the transition from the problem space to the solution space.

An exemplary issue card from the case study for the Serialization issue is shown

104

6.2. The Goal-Oriented Design Method (GOAD)

in Table 6.5. After describing the issue itself the relevant influencing factors from
the factor tables are collected, as for example factor P1.2 Serialization, which is
also shown in Table 6.4. Even new factors could be identified during the description
of the issue card, which then are inserted in the factor table. They even might be
added to the goal model. In the solution section of this issue card one proposed
strategy is the usage of known libraries as solution instruments from the architect’s
toolbox. The strategies for the issue card’s solution section can occupy layer III and
IV of the Goal Solution Scheme. The strategies for the solution should be selected
considering both the influence factors and the impact dependencies of the solution
instruments on the quality goals according to the GSS. The selection procedure will
be detailed in Section 6.2.2.

As a result of the case study, the demand for an extension of the original fac-
tor table concept arose, which though is not yet completely represented in the case
study example. One extension is that factor categories can have sub-categories and
not only subordinated factors. In this way especially the hierarchical structure of
quality and functional goals can be better represented in the product factor table.
To improve the clearness of the analysis of the influence factors, the flexibility and
changeability of a factor should not be combined in one field in the tables. Instead,
they should be separated out (which is not yet represented in the example). Fur-
thermore, an additional column in the tables for a prioritization of the factors should
be introduced. This would help to focus first on dealing with the most important
factors when starting to create issue cards and synthesizing the architecture. More-
over, a priority and ranking of the issue cards could also be calculated based on their
referenced influencing factors.

105

Chapter 6. Goal-Oriented Architectural Design

Table 6.4: Product factors of the case study

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P1 Functional features
...
P1.2 Serialization

Data (objects) have to
be (de-)serialized with
a unified strategy, in
different data format
types (XML, binary,
plain text) and to
different targets (file,
console, TCP, STL
streams).

New data formats can
be introduced every few
months, but all are cov-
ered by the specified
types.

This feature affects all
components that deal
with saving and loading
data as well as transfer
data via network con-
nections. Serialization
is influenced by porta-
bility.

...

P2 Quality features
P2.1 Evolvability
...

P2.1.2 Modifiability
Hardware components
(e.g., laser, camera)
should be replaceable
by new ones without
changing anything but
the driver components.

There are many plat-
forms with different
combinations of hard-
ware. New data types
may emerge.

There is a major influ-
ence on the communi-
cation and serialization
interfaces and compo-
nents.

P2.1.2.1 Extensibility
Integrating a new com-
ponent (e.g., a hardware
driver) should only need
few overhead effort in
the configuration with
less than 50LoC.

New components reg-
ularly appear due to
new hardware or due
to experimental soft-
ware components that
are target of research.

There is a major influ-
ence on the configura-
tion and communication
components.

...

106

6.2. The Goal-Oriented Design Method (GOAD)

Table 6.5: Issue card example of the case study

Serialization

In the old system there are several different inconsistent ways to save and load
data: plain text files for parameters or for configuration or XML files. Serialization
to files and data streams or to the console is necessary.

Influencing Factors:

T3.4 With C++ it is difficult to save types because there is no built-in reflection
mechanism.

T5.3 XML is used as a data format for configuration files.
T5.4 Communication via TCP needs serialization.
P1.1.2 Data communication needs serialization for configuration files.
P1.2 The serialization feature includes textural, binary, or XML files as well as

output to the network via TCP, to the console or into STL data streams.
P1.3 “Log files” for data should be stored using the serialization component.
P2.2.1 Performance is important for binary data that are transmitted via inter

process communication.
P2.1.2.2 Portability: Serialization has to deal with components that are work-

ing together on different operation systems.

Solution:

There has to be a common and unified serialization component that is accessible
and used in every part of the system where loading, saving, or transferring data
in a serialized form is necessary.

Strategy: Use existing serialization library.
There are free and open source serialization libraries such as “libs11n” and “boost
serialization” that could be used. They support object serialization and can se-
rialize to XML files. It has to be considered if they are flexible enough for all
demands.

107

Chapter 6. Goal-Oriented Architectural Design

Table 6.5: Issue card example of the case study (cont.)

Strategy: Build an own serialization component.
If the available libraries are not flexible enough, an own serialization component
could be built that can serialize to files, streams, the console in textual, binary or
XML format. For XML serialization the “libXML2” could be used. The reflection
pattern could be used for a non-intrusive approach for object serialization.

Related Issues:

O1.1 Build vs. buy: There is a preference to use mature free and open source
software or to build.

6.2.2 Architectural Synthesis

The input of the architectural synthesis phase comprises the results of the previous
phases: the refined and prioritized quality goals and scenarios corresponding to layer
I and II of the GSS as well as the influence factors and issue cards. Further important
input is architectural knowledge about design principles, architectural tactics, or
patterns, as well as existing solution instruments as frameworks, libraries, or tools,
which can be used.

During architectural synthesis the transition from the problem space to the solu-
tion space is performed. The quality requirements are transformed into functional
solutions as described by QASAR (cf. Section 2.2.1). Together with the functional
requirements an initial structure of the architecture has to be found, which is the
most creative and difficult part of the architectural synthesis. This is supported by
the principles layer (III) and the solution instruments layer (IV) of the Goal Solution
Scheme. Afterwards the design can be iteratively refined and improved or revised.
Regarding evolvability this is important to be considered because during the whole
lifetime of the software demands for changes will arise.

Figure 6.6 shows an overview of the synthesis activities Architectural Structur-
ing and Detailing the Architecture. The architectural structuring can be coarsely
described with the abstract activities planning, constructing, and evaluating, thus
being tightly interweaved with the analysis and evaluation phases. It is discussed in
more detail in Section 6.2.2.1 with an adapted ADD method. Special emphasis is
put on constructing to show the integration of the layers III and IV of the Goal Solu-

108

6.2. The Goal-Oriented Design Method (GOAD)

Architectural Structuring

Conceptual Architecture

Requirements, Goals,
Scenarios, Constraints

Evaluating

Constructing

Planning

Detail ing the Architecture

Detailed
Architecture

Requirements, Goals,
Conceptual Architecture

Requirements, Goals,
Scenarios, Constraints

Conceptual Architecture

Planning

Constructing

Evaluating

Requirements, Goals,
Conceptual Architecture

Detailed
Architecture

GSS
Layer
III+IV

Figure 6.6: Overview of the activities of the synthesis phase

tion Scheme. The resulting conceptual architecture can be concretized and detailed
with activities of the Quasar method which is subject of Section 6.2.2.3.

6.2.2.1 Structuring the Architecture

The Attribute-Driven Design (ADD) method was evaluated to be valuable for archi-
tectural design concerning the consideration of quality goals (cf. Section 2.2.2). For
architectural structuring the steps of the ADD method (cf. Figure 2.2) are reused
and adapted. The predominant part of ADD is utilized as explained in detail in the
original literature [WBB+06, Woo07], which provides enough information. However,
some parts are adapted in this thesis to integrate Global Analysis as well as the Goal
Solution Scheme concept and need further explanation. Moreover, the applicability
regarding the quality goal evolvability is discussed. Figure 6.7 illustrates, how the
activity Architectural Structuring is refined into steps (called “actions” in terms of
UML speech for activity diagrams).

Referring back to Figure 6.6, the steps 1 to 3 of Architectural Structuring in
Figure 6.7 are planning actions and partly related to analysis, especially step 3.

109

Chapter 6. Goal-Oriented Architectural Design

4. Determine a solution concept

4.2 Determine ranked list of alternative solution
elements from toolbox

4.3 Select solution elements and record the
rationale for the selection

4.1 Identify solution principles and tactics from
the toolbox

4.4 Determine interplay of selected solution
elements

4.5 Document selected solution element with
different views

4.6 Evaluate and resolve inconsistencies in the
solution concept

Toolbox
Knowledge

4.2 Determine ranked list of alternative solution
elements from toolbox

4.3 Select solution elements and record the
rationale for the selection

4.1 Identify solution principles and tactics from
the toolbox

4.4 Determine interplay of selected solution
elements

4.5 Document selected solution element with
different views

4.6 Evaluate and resolve inconsistencies in the
solution concept

Toolbox
KnowledgeArchitectural Structuring

2. Choose an element of the system to structure
(cf. ADD Step 2)

[further elements to structure]

3. Determine influencing factors, goals,
scenarios, and constraints (cf. ADD Step 3)

4. Determine a solution concept

5. Integrate the solution concept

6. Verify the designed solution and proceed with
next element (cf. ADD Step 7)

Requirements, Goals,
Scenarios, Constraints

Conceptual Architecture

1. Confirm that requirements information is
sufficient (cf. ADD Step 1)

[further elements to structure]

5. Integrate the solution concept

2. Choose an element of the system to structure
(cf. ADD Step 2)

3. Determine influencing factors, goals,
scenarios, and constraints (cf. ADD Step 3)

4. Determine a solution concept

6. Verify the designed solution and proceed with
next element (cf. ADD Step 7)

Requirements, Goals,
Scenarios, Constraints

Conceptual Architecture

1. Confirm that requirements information is
sufficient (cf. ADD Step 1)

[further elements to structure]

GSS Layer IV

GSS Layer III

Transi-
tion 3

GSS Layer II

GSS Layer III+IV
Transi-
tion 2

4.2 Determine ranked l ist of alternative solution elements

4.2.1 Determine a set of applicable solution
elements considering the constraints

4.2.2 Rank solution elements according to impact
values on quality goals via the principles

4.2.1 Determine a set of applicable solution
elements considering the constraints

4.2.2 Rank solution elements according to impact
values on quality goals via the principles

5. Integrate the solution concept

5.1 Instantiate architectural elements and allocate
responsibilities (cf. ADD Step 5)

5.2 Define interfaces for instantiated elements (cf.
ADD Step 6)

5.1 Instantiate architectural elements and allocate
responsibilities (cf. ADD Step 5)

5.2 Define interfaces for instantiated elements (cf.
ADD Step 6)

Figure 6.7: Activities of the architectural structuring

Whereas steps 4.1 to 4.5 and 5 refer to constructing or the actual synthesis of the
design. Step 4.6 together with step 6 refer to evaluating, although they should rather
be seen as smaller checks than as larger evaluations. All steps not necessarily have
to be performed strictly in a sequence as the figure might indicate. Instead the steps
can be performed in small leaps and bounds or iterations as discussed above with the
backlog concept. For example, if an architect chooses a certain element to structure
and recognizes that additional information about goals or influence factors is needed,

110

6.2. The Goal-Oriented Design Method (GOAD)

a jump back to activities of goal modeling or Global Analysis can be performed.

Determine a Solution Concept Step 4 of architectural structuring is to deter-
mine a solution concept. It resembles step 4 of ADD but is adapted to represent the
terminology and to use the concept of the GSS. Especially regarding evolvability the
selection of patterns as proposed by ADD cannot directly be applied because there
is not yet a set of applicable tactics, styles, and patterns for evolvability. Instead,
an alternative way with finding subcharacteristics of evolvability and supporting
principles as proposed in this thesis is necessary (see also [Rum09]).

The constructing step 4 (a “design step” in ADD) performs the second transition
of the Goal Solution Scheme from the problem space to the solution space and is
the most important and difficult part of the architectural structuring. The solution
concept (“design concept” in ADD) balances between the functional and quality
goals of the architecture using design principles and solution instruments. A solution
concept can comprise several solution instruments that address a certain issue. It
refers to the strategies of the issue card’s solution section (cf. Table 6.5). The design
principles and solution instruments are the architectural means as proposed by the
EMPRESS approach. Handling means is concerned with issues of identifying proper
ones, evaluating them compared to the quality goals, as well as making trade-offs
between them. These issues are discussed with the following substeps.

Step 4.1 The determination of a solution concept starts with the identification
of solution principles performing the second transition of the Goal Solution Scheme.
For details of this transition see Section 5.1.2 and 5.2.2. This step is similar to ADD’s
identification of so-called design concerns using architectural tactics. Regarding
evolvability, ADD does not directly provide architectural tactics. However, with
the refinement of evolvability into subgoals, such as modifiability and testability, as
discussed in Section 5.3.1 the architectural tactics for modifiability [BBN07, BCK03]
and testability [BCK03] can be utilized anyhow.

Step 4.2 Based on the identified principles appropriate solutions instruments
have to be determined. This requires a considerable amount of creativity. However,
experience, as well as a systematic approach can help. Both is provided if the third
transition of the Goal Solution Scheme is performed by mapping the principles to
solution instruments of the architect’s toolbox, as for example patterns or technical

111

Chapter 6. Goal-Oriented Architectural Design

components. Details of this mapping are described in Section 5.1.2 and 5.2.3. This
step constitutes an important contribution of this thesis for a systematic guidance
from the problem to the solution space.

For the determination of appropriate solution instruments from the architect’s
toolbox a decision procedure with two refined sub-steps is proposed:

Step 4.2.1 Architectural constraints are used to determine a set of applicable so-
lution instruments by eliminating all unsuitable ones.

This first step is necessary, since of course the decisions on architectural solution in-
struments are not only influenced by the quality goals but also by other technical or
organizational influence factors that may represent constraints for the architecture.
As an example consider the cutout of the Goal Solution Scheme in Figure 6.8. The
technical component JGoodies [JGo10] explicitly supports principles such as follow
platform as well as balance and symmetry by following the functional solution ele-
ments platform support and alignment of visual elements (see also [Bod08, BR09]).
These principles facilitate usability via some of its subcharacteristics, which are
highly-prioritized quality goals of the case study (cf. Table 6.2). However, JGoodies
cannot be chosen if the project demands for the C++ programming language, as ana-
lyzed with the influence factors (cf. Table A.2 in the Appendix), because it is based
on Java and Swing. In this way, step one restricts the set of applicable solution
instruments by preselection. This reduces the number of instruments to be ranked
in the next step, and thus reduces the complexity of the decision support task.

Step 4.2.2 All solution instruments in the remaining set of the previous step are
evaluated and ranked regarding their influence on the relevant design
principles and quality goals.

For the ranking of the architectural solution instruments remaining from step one a
quantitative rating of these solution instruments is needed regarding their positive
or negative influence on quality goals. A rating of patterns, for example, can be
taken from the literature if suitable [Woh08, HA07b, TKM03]. But usually pattern
catalogs provide only qualitative information about the influence on quality goals.
In this case quantitative impact values can be determined as explained in Section 5.3
for evolvability.

To enable not only a ranking for one main quality goal but also to consider
prioritization of several quality goals, multi-criteria decision methods, such as the

112

6.2. The Goal-Oriented Design Method (GOAD)

Quality Goals

Subcharac-
teristics

Usability

... Operability Attractiveness

And

Design
Principles

Reuse old data
representations

Aesthetically
pleasing

Help

Follow
platform

Balance and
symmetry

Help Help

HelpHelp

Solution
Instruments

Platform
support

Help Help

Help

JGoodies

Alignment of
visual elements

Help Help

Figure 6.8: Cutout of GSS concerning usability and JGoodies (adapted from
[BR09])

Analytic Hierarchy Process (AHP) can be applied. An advanced method based on
AHP is the Systematic selection of Software Architecture Styles (SYSAS) [GEM10].
Applying AHP has also proven well in the ArchDesigner approach [ANGB+05].

Step 4.3 to 4.6 The structuring steps 4.3 to 4.6 complete the determination of
a solution concept. According to the ranking the architect selects the most suitable
solution instruments and records the rationale of the decisions. The important
decisions should be documented in a structured way. A template for architectural
decisions, for example, is suggested in [TA05]. It comprises the attributes issue,
decision, status, assumptions, alternatives, rationale, implications, related decisions,
related requirements, related artifacts, related principles, and notes. Regarding the
issue cards from Global Analysis at least the chosen strategy for the solution should
be noted. Furthermore, a decision should be represented with a traceability link.

After selecting the solution instruments also their interplay should be determined.
Moreover, the solution instruments, such as patterns, should be documented in
different architectural views to represent aspects as their structure as well as their

113

Chapter 6. Goal-Oriented Architectural Design

internal and external behavior. Architectural views are defined, for example, by the
Siemens’ 4 Views approach or the 4+1 View Model of Kruchten [Kru95], which was
extended by a decision view in [KCD09].

Regarding the case study example, for serialization the two strategies presented
in the issue card of Table 6.5 were determined. From the architect’s toolbox the
solution instruments libs11n and boost serialization were identified. They are alter-
native candidate solution instruments next to an own serialization component that
uses a reflection mechanism and utilizes the libXML2 library for handling XML
files. Finally, the second alternative with creating an own serialization component
was selected. This solution was preferred, because it was flexible enough to meet all
requirements. For example, the solution had to be lightweight with low overhead for
its utilization and the serialized data should be human-readable to provide good us-
ability. It needed to be portable in a way that serialized data can be deserialized on
different types of systems. These special requirements inhibited the usage of existing
libraries. For the own solution, although difficult to implement, the known pattern
reflection was implemented. This provides a non-intrusive approach for serialization
without the need to adapt existing classes, which in turn supports evolvability.

As an example for an architectural view, Figure 6.9 shows a structural view for
the communication framework and its relation to the Serialization component.
Additional diagrams for the behavioral view can be found in Appendix A.3. To meet
the quality goals and functional requirements for the communication framework an
architectural style with implicit invocation based on the publisher-subscriber pat-
tern was chosen. So-called Channels store and manage the data of the system. So-
called Units are the processing components, which subscribe themselves to certain
Channels. Then, they are informed about data changes in the Channels. Further-
more, the Units can act as publishers on the Channels. This style was chosen to
overcome the limitations of the legacy blackboard architecture, which was not man-
ageable any longer. Further solution instruments chosen from the architect’s toolbox
are the patterns facade (for the Authority component in Figure 6.9), client-server
(for remote communication), reflection (for realizing the serialization features), as
well as certain adapters, for example, for encapsulating the hardware drivers.

114

6.2.
T
he

G
oal-O

riented
D
esign

M
ethod

(G
O
A
D
)

<<component>>
Framework

<<component>>
ChannelManager

<<component>>
NameRegistry

<<component>>
Authori tyManager

<<component>>
UnitLoader

<<component>>
LinkLoader

AddAliasIf

<<component>>
Transformer

TransformIf

<<component>>
Author i ty

ChannelRestrictedAccessIf

<<component>>
ChannelProxy

Authori tyRegisterIf

ResolveNameIf

<<component>>
AliasLoader

<<component>>
ConfigLoader

RegisterLoaderIf

Capabil i tyIf

AddLinkI f

ChannelFullAccessIf

Author i ty I f

ChannelRestrictedAccessIf

RegisterLoaderIf

<<component>>
RemoteFramework

RemoteClientTCPIf

<<component>>
Serialization

XMLSerializerIf

BinarySerializerIf TxtSerializerIf

<<component>>
ChannelManager

<<component>>
NameRegistry

<<component>>
Authori tyManager

<<component>>
UnitLoader

<<component>>
LinkLoader

AddAliasIf

<<component>>
Transformer

TransformIf

<<component>>
Author i ty

ChannelRestrictedAccessIf

<<component>>
ChannelProxy

Authori tyRegisterIf

ResolveNameIf

<<component>>
AliasLoader

<<component>>
ConfigLoader

RegisterLoaderIf

Capabil i tyIf

AddLinkI f

ChannelFullAccessIf

ChannelRestrictedAccessIf

<<component>>
ChannelProxy

Figure 6.9: Structural view of the communication framework from the robot case study example

115

Chapter 6. Goal-Oriented Architectural Design

Integration of the Solution Concept Step 5 of the architectural structuring
comprises the steps 5 and 6 of ADD. They are combined in one activity to empha-
size that the integration of a solution concept not necessarily has to be performed
directly after the determination and not only for one solution concept. This was a
limitation raised from practical application of ADD in [Woo07]. ADD weakly im-
plies a sequential development of the architecture element by element. However, in
a larger setting several architects can be assigned to different elements of the archi-
tecture to work in parallel. This requires the architects to cooperate and integrate
or merge their solution concepts together.

For integrating the solution instruments of the selected solution concept the trans-
formations of QASAR can be applied. The transformations can be chosen according
to the abstraction level of the considered architectural element to be structured (sys-
tem, subsystem, component, etc.) and the type of the solution instruments. QASAR
proposes five transformations (cf. 2.2.1): a) impose an architectural style, b) impose
an architectural pattern, c) apply a design pattern, d) convert a quality requirement
into functionality, or e) distribute requirements.

For integrating and merging the solution concepts, a sequence of change opera-
tions of different types has to be applied. As change operations often add, delete,
and modify are mentioned. However, modify is ambiguous and can, for example,
mean to replace or split an architectural element. A set of six more elementary
change operations are the “modular operators” of Baldwin and Clark [BC00]:

1. Augmentation - Add an element.

2. Exclusion - Remove an element.

3. Splitting - Break an element into two sub-elements.

4. Substitution - Replace an element, e.g., with an improved or refined version.

5. Porting - Move an element up in the design hierarchy by providing specific
adapters to other environments.

6. Inversion - Move an element up in the design hierarchy by loosening it from its
initial context, e.g., a subroutine for printing, which exists in several variants
in different components, is generalized and exposed as a separate printing
component.

116

6.2. The Goal-Oriented Design Method (GOAD)

As the result of the merge, the solution concept and its instruments have been
integrated into the whole architecture as functional elements. All responsibilities
that are due to functional and quality requirements are assigned to these elements,
which might be components.

6.2.2.2 Top-down vs. Bottom-up Structuring

The last section specified steps for dealing with elements or building blocks of a
software architecture during structuring. However, there is still an open question
on how to proceed regarding the abstraction level. In principle there are two ways
to proceed during architectural structuring—top-down and bottom-up. A top-down
procedure decreases the level of abstraction from system-level requirements at the
top to fine-granular technical building blocks at the bottom. A bottom-up procedure
increases the level of abstraction, for example, by starting from existing technical
components. They can be combined to higher level services and components, which
meet the requirements.

The conventional development processes suggest a top-down decomposition of a
software system. For example QASAR uses the Functionality-based Architectural
Design (FAD) method for a functional decomposition of the software. Unfortu-
nately, FAD neglects the quality requirements in the first place. ADD treats quality
requirements, functional requirements, and other constraints as equally important.
But it is restricted to a purely top-down-oriented decomposition applying its steps
in a recursive manner.

Concerning quality attributes sometimes an adapted way to proceed seems to be
necessary. There might be a pre-dominant type of decomposition in certain circum-
stances. For example, regarding security it is necessary to separate the security-
relevant parts of a system from the non-relevant parts as discussed in detail in an
earlier publication [BFKR09].

Regarding evolvability Pizka and Bauer [PB04] argue that the process employed
during initial development has a major influence on the subsequent evolvability
of the resulting software system. They discuss that a bottom-up approach seems
to support increased independence from changing requirements because evolution
is more independent from technical aspects than from requirements. While purely
top-down developed systems are likely to match the (functional) requirements, there
is no running system until finishing development, and there is a high impact of

117

Chapter 6. Goal-Oriented Architectural Design

changing requirements. On the other hand bottom-up development quickly produces
a rudimentary running system that might not fully fit the requirements at the end.
But it is built on a more stable technical platform, which is hardly influenced by
requirements and provides increased stability of the derived concepts.

As a consequence, the architectural structuring, which is usually performed top-
down according to traditional software processes, should not completely disregard
the bottom-up approach to support evolvability. An approach balancing top-down
with bottom-up structuring might be useful. Also Graham et al. [GKW07] argue for
the consideration of agile concepts to concurrently work both top-down for designing
architectural structures that meet the quality goals as well as bottom-up with ex-
perimentation and refactoring for questions that are difficult to answer analytically.

6.2.2.3 Detailing the Architecture

Structuring the architecture by following an ADD-oriented approach as described
above results in a conceptual architecture that needs to be detailed before imple-
mentation. As evaluated in Section 2.2.5 the Quasar method is an appropriate
means for detailed design because it results in well separated application-specific
and technology-specific components. The general activities of Quasar are depicted
in Figure 6.10.

Detail ing the Architecture

Create category model

Create component and interface model

Create data model

Detailed
Architecture

Requirements, Goals,
Conceptual Architecture

Create component and interface model

Validation and configuration

Specify inner structure of component

Specify component interfaces

Identify components according to categories

Create data model

Create category model

Create component and interface model

Requirements, Goals,
Conceptual Architecture

Identify components according to categories

Specify component interfaces

Validation and configuration

Specify inner structure of component

Detailed
Architecture

Figure 6.10: The activities and steps of Quasar for detailing the architecture

Following Quasar, first a data model is created with entities of the domain, their
attributes, and relationships. A data model can be created using UML or with

118

6.2. The Goal-Oriented Design Method (GOAD)

classic Entity-Relationship diagrams. Second, the software categories of the soft-
ware architecture are modeled in a graph to determine the communication paths of
the software system between application-specific and technology-specific parts using
explicit interfaces.

In the case study the modeling of categories actually was not applied directly
because it would have been additional effort to train the developers in applying the
Quasar method. Nevertheless, a separation of application-specific and technology-
specific components was considered, for example, by the encapsulation of hardware
drivers in specific adapters. Figure 6.11 shows a category graph as it can look like
for parts of the robot case study using a UML class diagram notation (cf. [Bod08]).
The communication between application-specific and technology-specific categories
should only use interfaces stereotyped as «0-Software» according to the paths in
the graph. As an exception the software category RobotGUIQt for the GUI-specific
architectural components is stereotyped with «R-Software» because it needs to com-
municate with both the application-specific categories and the technical category
for the Qt framework2. However, it should transform the data to be visualized with
widgets provided by the Qt framework in a controlled way.

<<0-Sof tware>>
0

<<T-Software>>
Persistence

<<T-Software>>
Serialization

<<T-Software>>
Communication Framework

<<T-Software>>
Naming Service

<<T-Software>>
Registration Service

<<A-Software>>
Person Tracking

<<A-Software>>
Navigation

<<T-Software>>
Qt (Framework)

<<R-Software>>
RobotGUIQt

Figure 6.11: An exemplary category graph for the robot case study

In a third step of Quasar, the components and interfaces are mapped on the
categories and specified in detail following a four step procedure as depicted in the
right of Figure 6.10. As a result of the Quasar activities, a detailed architecture

2http://qt.nokia.com/

119

http://qt.nokia.com/

Chapter 6. Goal-Oriented Architectural Design

is specified, which can be evaluated and afterwards implemented in the realization
phase of the development process.

6.2.2.4 Conflict Resolution and Trade-offs

During the whole architectural design phase conflict resolution and making trade-
offs can be necessary at different levels of abstraction of the design and spread over
the various activities. Regarding requirements engineering Robinson et al. [RPV03]
identified six clusters of general means for conflict resolution, which in this thesis
are adapted to the goal-oriented architectural design method:

Relaxation, Generalization Goals and requirements are relaxed for a lesser re-
striction of the solution space, which allows more alternative solutions to be
chosen from. Generalized solution concepts can replace a conflicting concept
to satisfy a broader range of goal values in the problem space.

Refinement, Specialization Goals or architectural elements are refined into spe-
cialized sub-goals or sub-elements. This enables the identification of conflicts
and an easier resolution for the specialized elements. The contribution depen-
dencies of the goal models can help to identify conflicts during refinement.

Compromise To resolve a conflict over a certain value with a compromise relies
on the identification of finding another substitute value. During design such
values can be quality properties of certain architectural solution instruments.
Selecting specific patterns usually makes a compromise or trade-off. Prioriti-
zation of the conflicting goals or influence factors can ease the selection.

Restructuring Restructuring refers to an attempt to change the context of a
conflict. Restructuring means, such as architectural refactorings, can improve
the quality properties of a solution with a better trade-off by enhancing the
structure of the architecture to better follow design principles. This in turn
has a positive influence on the satisfaction of the goals or requirements that
might be conflicting.

Re-enforcement, Re-planning Re-enforcement is an attempt to avoid a conflict
by restructuring its precondition. For example, sending multiple notifications
to a component can avoid a non-response conflict, which might be due to a too

120

6.2. The Goal-Oriented Design Method (GOAD)

high workload of the component at run-time. Re-planning refers to choosing
an alternative requirement or solution concept.

Postponement, Abandonment An identified conflict can be postponed for a
resolution to a later phase or lower level of abstraction according to the layers
of the Goal Solution Scheme. In this way a trade-off might be easier with more
detailed information about the conflict. Alternatively, conflicting goals can be
abandoned.

6.2.3 Architectural Evaluation

The several design decisions made during architectural synthesis should be evaluated
before the realization of the architecture. Evaluations can be performed with differ-
ent measures at different points in the development process. Evaluation measures
are, for example, spontaneous ad-hoc evaluations of the architect because of uncer-
tainty for a decision, lightweight discovery reviews in a small team, specific checks
for single defined risks, as well as full-fledged architectural assessments in a larger
team with all important stakeholders. Relevant techniques are checklists, question-
naires, scenario-based assessment, as well as the utilization of metrics, prototypes
or mathematical models for simulation [PBG04].

Regarding evolvability there is no specific evaluation method. As an alternative
a general technique such as the Architecture Trade-off Analysis Method (ATAM)
or maybe the Architecture-Level Modifiability Analysis (ALMA) [BLBvV04] can be
applied, since modifiability is a subcharacteristic of evolvability. Specific metrics for
the identification of reengineering measures regarding evolvability are in the focus
of the work of Brcina [BBR09].

In the robot case study the scenario-based assessment based on ATAM was per-
formed to evaluate the architecture regarding the satisfaction of the quality goals.
For this purpose the goal model from the goal modeling activity (cf. 6.2.1.1) was
reused for the utility tree required by ATAM. Then, the scenarios for detailing the
highest ranked quality goals efficiency, modifiability, reliability, and usability from
the scenario description activity (cf. 6.2.1.3) were reused and discussed to deter-
mine if the designed architecture can fulfill the quality goals. This resulted in an
additional documentation of the realizing solution concepts and the identified risks.

121

Chapter 7

The Traceability Concept

This chapter introduces the traceability concept of this thesis. It describes how the
different artifacts of the goal-oriented architectural design method from Chapter 6
are connected with traceability links and how the concept can be categorized based
on the state-of-the-art evaluation regarding traceability. Section 7.1 explains some
general facts for comprehension about models, dependencies, and traceability links.
Section 7.2 states the general idea of the concept and classifies it concerning the
state-of-the-art approaches (cf. Section 2.3.2). Section 7.3 introduces the metamodel
for traceability links, which is necessary for an exact definition of links and link types
as well as for tool support. Sections 7.4 and 7.5 discuss the traceability-link types
and the rules for link establishment, respectively. Parts of the ideas of this chapter
were already discussed in [BR11, BLR11, RBFL11] and [RPB11].

7.1 Models, Model Elements, Dependencies, and

Traceability Links

The general goal of the traceability approach of this thesis is to provide a comprehen-
sive coverage of traceability spanning all models and activities of the goal-oriented
architectural design method. This should facilitate evolvability by explicit depen-
dency relationships with traceability links as the basis for further analyses. The
links can be used for checks of coverage and completeness regarding requirements,
for the evaluation of the design regarding solution principles and quality properties,
or for change impact analysis. A design process that is fully traceable across model
boundaries enables change propagation from requirements to realization artifacts.

123

Chapter 7. The Traceability Concept

The scope of the models used during design overlaps in a way that real world
entities are represented by elements in more than one model. For example, an
actor can be model in a URN goal model as well as in a UML use case diagram.
For the utilization of these relations the various related model elements have to
be interconnected across model boundaries. This can be achieved with traceability
links. Two types of interconnections can be determined:

• links between corresponding elements, which represent the same entity of the
real world, and

• links between related elements, which represent related entities of the real
world.

The model elements to be linked are of a broad variety. All models from the
goal-oriented architectural design method contribute to the set of model elements,
ranging from goals over influence factors to issue cards and architectural solution
elements, such as components and interfaces.

The relations to be considered for the traceability concept originate from different
sources:

1. All types of relations that are represented by the models their selves,

2. Dependency relationships that have to be represented explicitly because they
are not—or not completely—expressed by some models,

3. Dependency relationships that have been tracked by the developer during de-
sign activities and that have to be explored to understand the problem-solution
mapping, and

4. Implicit relations that are caused by overlapping representations of real world
entities in different models, as e.g., actors in UML and URN models.

In this regard traceability links actually are a subset of all existing dependency
relationships. They represent the way a developer went (no. 3). However, these links
technically are a good means to express also further dependencies of interest, which
do not represent the way the developer went, because they can provide auxiliary
information for further analyses. In the following all relationships, which are made
explicit, are called traceability links or just links.

124

7.2. Overview and Classification of the Concept

7.2 Overview and Classification of the Concept

The general idea of the traceability concept is to integrate and link all artifacts of the
goal-oriented architectural design in a model repository as depicted in Figure 7.1.
The scope of the concept is on post-requirements specification traceability (or design
traceability) as it starts with dependencies from requirements or goals to design
artifacts. A special contribution of this concept is the comprehensive treatment
of artifacts and the special consideration of architectural analysis artifacts (factor
tables and issue cards), which could not be found in existing approaches. This is
an important means for tracing the transition between model elements from the
problem space to model elements of the solution space.

KeyModel and
Link

Repository

URN
Goal

Model

Factor
Tables,
Issue
Cards

UML
Design
Model

Tool-
box

Ontology

Term 2

Term 1

Term 3

Dependency
Model Integration
Dependencies

Figure 7.1: Overview of the repository-based traceability concept

The various artifacts of the design method are expressed as heterogeneous models.
All these models are integrated into a common repository to enable external link
establishment. The models should be expressed as far as possible with standard
modeling languages, such as URN, UML, and OWL. In this way standard CASE
tools can be used for managing the heterogenous models, and the models are not
polluted with traceability link information. Moreover, the models and links can be
versioned with the repository. All dependencies between elements of these models
can be represented as traceability links inside the repository. Dependencies can be:

125

Chapter 7. The Traceability Concept

• inter model dependencies, e.g., between URN goal models and factor tables,
or between issue cards and UML diagrams; as well as

• intra model dependencies, e.g., between quality goals, or between UML com-
ponents and interfaces.

Additionally, an ontology is used to represent the meaning of terms and the
relations to natural language expressions, for example, in the factor tables. The
ontology structures relations between terms as a kind of glossary and thesaurus. It is
used in this limited fashion for aspects that cannot be expressed by existing models.
The ontology is not used to represent the complete analysis and design knowledge
with all entities and relations because this would have the drawback of limited rigor
in comparison to more specific models.

For managing the traceability links and their associated information inside the
model repository a separate traceability metamodel is required. For representing
links between textual descriptions a hypertext concept is used. Details on the def-
inition of the traceability metamodel and the hypertext concept are described in
Section 7.3.

Dependency identification and traceability link recording is realized with a rule-
based approach based on existing works of Spanoudakis and Zisman et al. [SdGZ03,
SZPMK04, JZ09]. This has the benefit of links with higher quality because of
better precision and recall in comparison to information retrieval based approaches.
Moreover, the rule-based approach is complemented with an information retrieval
technique to support the detection of dependencies based on string comparison of
names and attributes of model elements.

Besides, a rule-based approach can be used to enhance the traceability links with
semantic information in form of specific link types and attributes that improve the
utilization of the traceability links in later analyses. Types of traceability links are
discussed in Section 7.4.

Furthermore, the rule-based approach is chosen to provide (semi-) automated
link establishment. The approach is (semi-) automated because rules have to be
defined manually but the links are established automatically by applying the rules.
Further, the linkage of textual descriptions and specific design decisions demands for
a manual establishment. By applying rules as near as possible after the development
activities the quality of the resulting links is better than with retrieval afterwards.

126

7.3. Traceability Metamodel and Hypertext Concept

Details of the rule concept are subject of Section 7.5.

7.3 Traceability Metamodel and Hypertext Concept

Following the general ideas of the traceability concept the definition of an explicit
traceability metamodel is required for the exact definition of traceability links and
their auxiliary information, such as a link type, as well as for storing and versioning
the links in a repository. This metamodel is discussed in Section 7.3.1. Moreover,
to enable the linkage of terms in natural language descriptions they need to be
represented as model elements. This issue is addressed with the hypertext concept
in Section 7.3.2.

7.3.1 The Traceability Link Metamodel

Since there is not yet a standardized metamodel for traceability links, for this the-
sis a metamodel was defined based on existing approaches [LG05, EAG06, MPR07,
DKPF08], as for example the traceabiliy meta-type (cf. Section 2.3.3). The meta-
model is shown in Figure 7.2.

The metamodel comprises a Trace class, which represents the way a developer
went as a chain of traceability links. Correspondingly, it can consist of an ordered
set of TraceLinks, the source and target elements of which fit together. This allows
to express transitive relations between model elements, which cannot be expressed
by single traceability links. Traces can be created and extended by aggregating
several existing TraceLinks that build a chain, which usually would be done during
forward engineering. For reengineering purposes on the other hand, one could also
start with a general Trace, for example, from a requirement to an implementation
class, and refine it with TraceLinks step by step as more information is gained
during software comprehension. Traces support the utilization of traceability links.
TraceLink and Trace share an abstract base class TraceElement with common
attributes. A TraceLink comprises the attributes:

• Name mainly for visual display,

• Description, for example, for explaining the reason for a manual link,

• Status concerning, for example, the validity or correctness of a link,

127

Chapter 7. The Traceability Concept

Trace

-Description
-Status
-Confidence
-Priority

TraceElement

-Name
-CreatedBy
-LastModified
-LastVisited

TraceLink

-isSource
-isTarget

LinkEnd

2..*

-Identif ier
ModelElement

*
1

-Issue
-Choice
-Status
-Assumptions
-Rationale
-Implications
-RelatedDecisions
-Notes

DesignDecision

0..1

-Description
DesignAlternative

-Name
LinkType*

0..*

-Name
-Description

LinkTypeCatalog

0..*

Type
1

0..*

0..*

2..*

0..*

*
1

0..1

Alternatives

0..*

Type

*

1

Refinement

0..*0..*

TraceElement

Figure 7.2: The defined traceability metamodel

• Confidence expressing the certainty of correctness, e.g., the accuracy of rule-
matching,

• Priority for the utilization of the link, for example, expressing its relevance
for software comprehension,

• CreatedBy a rule or developer responsible for the creation,

• LastModified and LastVisited as dates of creating and editing for further
analyses. This can be used, for example, to implement a function of oblivion
for determining the importance of a link.

Furthermore, a TraceLink has at least two LinkEnds that connect the source
and target ModelElements. This potentially enables n-ary links and the flexibility
to add further attributes to the connected elements. The ModelElement class has to

128

7.3. Traceability Metamodel and Hypertext Concept

be a common base class of all artifacts to be traceable and has to provide a unique
identifier, which is a prerequisite to enable the tracing.

Moreover, a TraceLink has a certain LinkType that characterizes the dependency
relationship represented by the traceability link. This is important for the trace-
ability links to hold a certain semantics. LinkTypes have a refinement association
for hierarchical clustering and can be grouped into LinkTypeCatalogs for better
manageability in the repository. Details on the specific link types are explained in
Section 7.4.

Besides, a TraceLink optionally can be connected with a DesignDecision that
explains the choice of a certain DesignAlternative. The DesignDecision class
reflects the attributes of the architectural decision template of [TA05] mentioned in
Section 6.2.2.1 on page 113.

7.3.2 The Hypertext Concept

Some architectural design artifacts, as for example the factor tables and issue cards
of Global Analysis, make heavy usage of natural language descriptions. To enable
not only tracing of the factor tables, influence factors, or issue cards on the whole
but on a more fine-granular level, the textual descriptions have to be split into model
elements with a unique identifier. For this purpose, a hypertext concept is used to
represent single relevant terms of the textual descriptions as a model element that
can be source or target of traceability links (a TraceLink instance). The metamodel
of the hypertext concept for textual descriptions is depicted in Figure 7.3.

The idea of the hypertext concept is the following. Instead of using a string
for each larger textual description that might contain several traceability-relevant
terms, it is represented as a Hypertext instance, which in turn is a ModelElement

with a unique identifier. This Hypertext consists of TextElements that represent
its content—the actual textual description. A TextElement can either be a Term

or a Link. A Term is just a replacement of a string and the default content of a
Hypertext element. The content of a Hypertext, in the simplest case a single Term,
can be split and partly replaced, or even fully replaced with a Link. A Link has
another ModelElement as its target.

In this way each textual description represented by a Hypertext can contain links
to other elements of any model, as for example terms of an Ontology modeled with
OWL. However, these Link elements are rather intended for the visual representation

129

Chapter 7. The Traceability Concept

Hypertext

-visibleContent : string
TextElement

TermLink

-Identif ier
ModelElement

0..*

*

1

content
0..*

target*

1

Figure 7.3: The metamodel for the hypertext linking concept

of a traceability link in a text field of a graphical user interface. Therefore, these
traceability links should also be represented as a TraceLink of the traceability link
metamodel in Figure 7.2. In this case one LinkEnd—the source—of a TraceLink

refers to the Link element of a Hypertext. The other LinkEnd—the target—refers
to the ModelElement referenced by the target attribute of the Link element.

As an example take the description of the product factor P1.2 Serialization from
Table 6.4, which is: “Data (objects) have to be (de-)serialized with a unified strategy,
in different data format types (XML, binary, plain text) and to different targets (file,
console, TCP, STL streams)”. For this description Figure 7.4 shows the linkage of
one term “XML” (represented as a Link) to an OWLClass instance, which represents
the term “XML” in an ontology model. This can be useful because the ontology
might also contain further information about XML, such as the explanation of this
abbreviation. Furthermore, Figure 7.4 illustrates the split of a Hypertext content
from one Term into one Link and two Terms with an object diagram, which shows
the state before and after the linkage. The figure also depicts a possible graphical
representation of the Hypertext content.

130

7.4. Traceability Link Types

BeforeLinkage :
Hypertext

visibleContent = "... data format types (XML, binary, plain text) ..."

P1.2SerializationDescription : Term

AfterLinkage :
Hypertext

visibleContent = "... data format types ("

P1.2SerializationDescriptionPart1 : Term

visibleContent = ", binary, plain text) ..."

P1.2SerializationDescriptionPart3 : Term

visibleContent = "XML"

P1.2SerializationDescriptionPart2 : Link

InfluenceFactorToOWLClass :
TraceLink

isSource = true

Source : LinkEnd

isTarget = true

Target : LinkEnd
-IRI : string

OWLClass

-Identif ier
ModelElement

IRI = "#XML"

ClassXML : OWLClass

content

content

content

content

<<instanceOf>>

GUI representation of Hypertext

Hypertext Metamodel
Traceability Metamodel

Before Linkage
After Linkage

Data (objects) have to be (de-)
serialized with a unified strategy, in
different data format types (XML,
binary, plain text) and to different
targets (file, console, TCP, STL
streams)

Data (objects) have to be (de-)
serialized with a unified strategy, in
different data format types (XML,
binary, plain text) and to different
targets (file, console, TCP, STL
streams)

Figure 7.4: A linkage example using the hypertext concept

7.4 Traceability Link Types

As already mentioned, semantic information attached to traceability links, such as
design decisions or link types (cf. Section 7.3.1), can enhance the analyses performed
on the traceability data. For example, a realization dependency between model
elements (e.g., component and interface) might result in a higher impact of a change
on one of the model elements than this might be the case for a simple overlap
dependency. This could be due to the fact that the overlap dependency is only based
on the similarity of the model elements’ identifiers, which carries some uncertainty.

At first, all kinds of types of relations represented by the variety of models have to
be considered for the set of link types. However, only dependency relationships are of
special interest because they are important, for example, for change impact analysis.

131

Chapter 7. The Traceability Concept

Therefore, such dependency relations should be expressed explicitly. Since not all
of the dependencies are covered by the models themselves through their modeling
languages, especially not for cross-model dependencies, these dependencies should be
represented with traceability links. To further characterize the kind of dependencies
certain link types are used.

Unfortunately, there is not a standardized set of link types, which could be used.
However, there are several works that propose and specify certain types of traceabil-
ity links, for example [Poh96, RJ01, Let02, FZS03, SZPMK04, SZ05, MPR07, JZ09].
Especially Spanoudakis and Zisman [SZ05] propose a consolidated view on link types
that are grouped into clusters. Clusters help to ease managing the various, partly
synonymous types of links by abstraction.

7.4.1 The Link Type Clusters

Based on the existing works, several link types and clusters were identified for the
traceability approach of this thesis to trace dependencies between the various model
elements of the goal-oriented architectural design method. They are depicted in
Table 7.1. In the following some examples for the link type clusters are given.
Each cluster comprises some subtypes or synonymous terms for the same kind of
relationship as well as terms for the opposite direction.

The refinement cluster comprises two major kinds of dependencies between ele-
ments of different levels of detail, either a decomposition (part-of) or a specialization
(is-a). For example, a quality goal in a goal graph can be refined by a subgoal, com-
ponents can be aggregated to a system, or a (super)class can be specialized by a
subclass.

The realization cluster describes dependencies that represent a step forward from
the problem to the solution. For example, a use case can be implemented by a
component, an object is an instance of a class, or a product factor is realized by a
certain component.

The satisfiability cluster comprises dependencies between elements that specify
certain conditions or properties and elements that meet these properties or condi-
tions to a certain extent. For example, a quality goal can positively or negatively
contribute to or influence other goals in a goal graph or even be in conflict with
them. Thus some goals might be satisfied by others or not. Moreover, interfaces or
glossary terms can be defined by a specification. Each time a term is used it can

132

7.4. Traceability Link Types

possess a link of the type defined by to the glossary.
The verification dependencies are used to relate elements that proof the correct-

ness or accuracy of a solution element. For example, a class is verified by a unit
test, which makes use of assert statements, or a use case is tested by a test case.

The use link types express the utilization of other model elements. For example,
a component requires or provides an interface, a class is called by a UML lifeline in
a sequence diagram, or a package imports another one.

The causation cluster subsumes dependencies that represent causal relations that
are related to a sequence in time. For example, in a UML sequence diagram one
lifeline can activate or deactivate another lifeline. This activation or deactivation
causes the creation or deletion of the targeted lifeline.

The overlap cluster refers to relationships that express common features, simi-
larity, or equivalence often between elements of different types of models. Overlap
relations can be identified, for example, between actors in a URN goal model and
actors in a UML use case diagram because they both represent the same entity of
the real world. Another example are elements that are somehow related because of
similar terms, such as a UML comment and an influence factor. Furthermore, the
OWL SubClassOf dependency is equivalent to a UML generalization. In this way
even dependencies on dependencies can be expressed with traceability links.

The evolution relationships can express a temporal sequence of the development
of elements. In this regard a model element evolves to another model element during
the development, maintenance, or evolution of a system. These types of relations,
for example, can express that a requirement has changed and was replaced by a new
one without having clear causality between them.

133

C
hapter

7.
T
he

Traceability
C
oncept

Table 7.1: The traceability link type clusters

Link Type Cluster Description Subtypes and
synonyms

Opposite Appearance in
literature

Refinement, refine The relationship between elements of different
levels of detail, regarding either its constituents
or its properties and behavior.

Part-Of Consist-Of [JZ09], [SZ05],
[MPR07], [RJ01],
[Let02], [Poh96],
[vKP02], [PG96]

Decomposition Composition
Aggregation
Containment

Sub Super
Is-A
Specialization Generalization
Extension
Inheritance

Realization, realize The relationship that represents a step towards
the solution.

Implementation [MPR07], [JZ09]
Instance-Of Type-Of

Satisfiability, satisfy The relationship between a specification of
properties, conditions, expectations, needs, or
desires and the element relying on it or
contributing to its satisfaction.

Influence [SZ05], [JZ09], [RJ01],
[Poh96], [MPR07]Contribution

Conflict
Inconsistency
Condition
Constraint
Compliance
Compatibility
Contract
Assert
Definition

134

7.4.
Traceability

Link
Types

Table 7.1: The traceability link type clusters (cont.)

Link Type Cluster Description Subtypes and
synonyms

Opposite Appearance in
literature

Verification, verify The relationship between a solution and
something that demonstrates the truth,
accuracy, or validity of its behavior or
properties.

Test [MPR07], [Let02]
Validation
Simulation
Interpretation

Use The relationship that expresses the utilization
of something.

Invoke [SZPMK04], [SZ05],
[RJ01], [Let02]Require Provide

Call
Import

Causation, caused by The relationship between cause and effect
regarding a partial ordering in time.

Activate Deactivate [MMMN03]
Trigger

Overlap The relationship that expresses the
commonality between related elements.

Similarity [FZS03], [JZ09],
[SZPMK04], [SZ05]Equivalence Difference

Evolution, evolve to The relationship that signifies the temporal
development of elements.

Replacement [JZ09], [SZ05], [RJ01],
[Poh96], [PG96]Based-On

135

Chapter 7. The Traceability Concept

7.4.2 Application and Utilization of the Link Types

The different link types explained above are related to the several design activi-
ties. According to certain design tasks different link types are relevant. During goal
modeling between goals decomposition relationships, contribution relationships, or
conflicts are expressed. The first transition of the Goal Solution Scheme is a re-
finement but also can be seen as a step towards the solution (realization). In the
other transitions of the GSS contribution links model the impact of different solution
principles or instruments and express alternatives.

However, it must be noted that the types of relationships of the clusters are not
orthogonal. Thus two elements can be related by more than one type of relationship.
Therefore, if a certain solution is chosen during architectural design, the respective
model elements can not only be related with a contribution but also with a realization
link. Typically this is the case for crossing model boundaries. For example, goals
from the goal model can be linked with the type realization to product factors in
a factor table and further to issue cards and UML elements. Satisfiability links
can be used to evaluate certain solution concepts, which again can be verified by
simulations. In this way links with types of the satisfiability or realization cluster
enable to trace the way a developer went from the problem to the solution space.

As already explained, traceability links are established for intra and inter model
dependencies. Intra model dependencies often have the type use and its derivates.
They can be important for the analysis of changes. However, in a chain of links these
types might have to be combined with other types to cross model boundaries. For
inter model dependencies often the overlap type can be considered. For example,
this is applicable between goal models and UML models or to an OWL ontology,
which contains terms that are used in other models as indicated in Figure 7.1.

The evolution type is strongly related to versioning of model elements. The
information about replaced model elements during development with links of this
cluster are important, for example, for retrieving a change history. Summing up, it
can be said that the knowledge about the specific semantics of a type attached to
a link is important for different kinds of analyses. Therefore, the link types have
to be added to the links during their establishment. With rules for traceability link
establishment this is more easy than with information retrieval techniques. How the
link types are combined with the rules is explained in the next section.

136

7.5. Traceability Rules

7.5 Traceability Rules

In the traceability concept of this thesis rules are primarily used to identify and
record traceability links between the various model elements of the goal-oriented
architectural design method. Nevertheless, the rules can be enhanced and increased
to also maintain traceability links. The concept of rule-based link establishment is
used because it provides higher values of precision and recall than pure information
retrieval approaches as evaluated in Chapter 2.

Generally, the relationships between model elements are a product of the per-
formed development activities. Accordingly, rules can be defined that express under
which conditions and in which manner model elements should be linked as a result
of the development activities. As described in Section 7.1 there are different sources
of dependencies between model elements that have to be expressed by the rules.
Therefore, the rules must cover the identification of links between corresponding
model elements representing the same entities of the real world (e.g., URN actor
and UML actor) and between other related model elements that represent related
entities (e.g., two components with a common interface). Moreover, the rules must
support intra model dependencies and inter model dependencies.

The identification of these dependencies to a large extent relies on the compar-
ison of the model elements’ attributes. Technically this results in a string-based
matching of identifiers. A string comparison for equivalence often is two restrictive
to find related elements. In this regard information retrieval techniques as n-gram
matching can help as a less restrictive similarity measure. Therefore, the rule-based
approach of this thesis is combined with n-gram matching. This increases the re-
call of finding links without loosing two much precision as with pure information
retrieval approaches. Since the rules exactly specify the model elements, it is further
possible to specify the type of the relationship that is recorded as a link.

Based on the evaluation of the state-of-the-art, the rule-based approach of this
thesis follows the general concept for the design of rules proposed by Spanoudakis
and Zisman et al. [SZPMK04, SZ05, ZEF00]. Accordingly, the rules consist of three
parts as introduced in Chapter 2. The head or element definition part of the rule
defines the relevant model elements that are effected by the rule together with an
informal description. The query part specifies the logical conditions that express how
the model elements, which are specified in the head, are related with each other. This

137

Chapter 7. The Traceability Concept

can include a simple string comparison, for example, of the name attributes of two
model elements, or even structural information of the queried model together with
a comparison of certain attributes for similarity based on an n-gram algorithm. The
third part is the result definition or action part. It formulates the result processing.
In the simplest case this is the establishment of a traceability link according to
the traceability metamodel from Section 7.3. However, also further actions are
imaginable as, for example, a triggering of validation rules or other analyses steps.

The structure of the traceability rules is defined with an XML Schema Definition
(XSD), which can be found in Appendix B.1. Here for easier comprehensibility
the parts of the rule definition are explained with example rules. Listing 7.1 shows
an exemplary traceability rule for the linkage between UML components and OWL
classes. The head specifies the RuleID and the Description as well as the Elements’
definitions with Type and Alias. The query part defines certain Conditions such
as BaseConditions using different comparison operators in their Type attribute as
well as LogicConditions with the logic operators And, Or, Not, and Xor, which
can be combined and nested. Finally, the Actions part specifies the ActionType

CreateLink and the LinkType overlap for the two model elements to be connected.
Potentially all link types of Section 7.4 can be used here. The scope operator “::”
is used to access the attributes of the model elements.

Listing 7.1: A rule example for the establishment of traceability links between
UML components and OWL classes

1 <Rule RuleID="TraceRule61" Description="Find␣similarities␣between␣
UML-Components␣and␣OWL-Classes">

2 <Elements Type="Class" Alias="e1"/>
3 <Elements Type="Component" Alias="e2"/>
4 <Conditions Type="And">
5 <BaseConditions Type="NotNull" Source="e2::umlID"/>
6 <LogicConditions Type="Or">
7 <BaseConditions Type="Contains" Source="e1::IRI"

Target="e2::name"/>
8 <BaseConditions Type="Contains"

Source="e1::abbreviatedIRI" Target="e2::name"/>
9 </LogicConditions>

10 </Conditions>
11 <Actions ActionType="CreateLink" LinkType="Overlap"

LinkSource="e1" LinkTarget="e2"/>
12 </Rule>

138

7.5. Traceability Rules

Listing 7.2 shows another example rule. This rule is used to create traceabil-
ity links based on the links according to the hypertext concept as illustrated in
Figure 7.4. Therefore, the rule searches for elements of the type Link from the
metamodel of the hypertext concept and for any other model element represented
by an asterisk (*). If the identifier of the Link’s target model element matches with
any other model element’s identifier, a corresponding TraceLink element will be
created by the “CreateLink” Action.

Listing 7.2: A rule example for the establishment of a traceability link based on a
hypertext link

1 <Rule RuleID="TraceRule69" Description="Connect␣an␣EMFfit␣’Link’␣
element␣with␣its␣target␣ModelElement">

2 <Elements Type="Link" Alias="e1"/>
3 <Elements Type="*" Alias="e2"/>
4 <Conditions Type="And">
5 <BaseConditions Type="Equals" Source="e1::target::identifier"

Target="e2::identifier"/>
6 </Conditions>
7 <Actions ActionType="CreateLink" LinkType="Overlap"

LinkSource="e1" LinkTarget="e2"/>
8 </Rule>

As already mentioned, the query part of a rule with the BaseConditions can
contain different comparison operators for evaluating the model elements’ attributes.
These operators are (cf. [Leh10]):

Equals checks if the value of a model element’s attribute matches a required value

Contains checks if an attribute’s value contains a certain string value

IsParent checks if an element has a parent relationship (refinement) with another
element in the same model

SimilarTo checks if an attribute’s value resembles a certain value

LesserThan checks if an attribute’s value is lesser than a required value

GreaterThan checks if an attribute’s value is greater than a required value

NotNull checks if an attribute exists in a model

139

Chapter 7. The Traceability Concept

These operators can be combined with logic operators to formulate complex con-
ditional expressions. A special characteristic of the SimilarTo operator is that it
uses the n-gram matching algorithm to compare attribute values. In this way the
rule-based approach is combined with the information retrieval technique. In the
future the operators could be supplemented with additional ones. Moreover, further
information retrieval techniques can be integrated, such as word stemming, abbrevi-
ation expansion, stop-word elimination, or the more complex vector-based distance
measures.

Currently, there are 76 rules specified for the identification and recording of trace-
ability links with different types. A complete list of the rules can be found in Ap-
pendix B.1. A rule engine is responsible for the interpretation of the rules and to
trigger the link creation. Details on this are explained in Chapter 8. The rules
can operate on all model elements. Consequently, if change operations, as e.g., the
modular operators (cf. Section 6.2.2.1, page 116), are expressed as instances of an
explicit metamodel, they can be input for the traceability rules as well. In this way
it is be possible to realize also the maintainability of traceability links as proposed
by Mäder [Mäd09]. Furthermore, consistency checks would be possible with rules
for the validation of models or traceability links.

7.6 Ontology Definition

As already explained in Section 7.2 the traceability concept includes the linkage of
ontology terms. Ontologies are semantic networks of related terms and can be uti-
lized to connect terms of different artifacts of the development process. In this way
an ontology can be utilized to provide the ability for modeling additional dependen-
cies between different models of the goal-oriented design method. The ontology is
only used to facilitate the explicit expression of dependencies and not for the com-
plete representation of other design models. For example, an ontology can comprise
terms, such as known quality goals, architectural principles, or solution instruments,
and their dependencies. In the traceability concept of this thesis an ontology espe-
cially is used to interrelate terms of the textual descriptions, for example, of factor
tables and issue cards, with each other and with further model elements. This of
course demands for the existence of an appropriate ontology. For this reason next
to the activities of the goal-oriented design method an additional activity to model

140

7.6. Ontology Definition

an ontology was performed for the case study from Chapter 6.
For the establishment of an ontology several methods can be found in the litera-

ture [UK95, GF95, BLC96, SPKR97, LGPSS99, SSSS01, NM01]. However, because
ontology engineering is out of scope of this thesis a pragmatic approach to estab-
lish an ontology was followed for the case study. The ontology was established in
parallel to the other design activities. As a first step, the specifications of the dif-
ferent artifacts (factor tables, issue cards, as well as the goal model) were manually
scanned for terms that seemed to be of special importance for the case study sys-
tem. Then, as a second step, these terms were modeled in an ontology with the
Web Ontology Language (OWL) using the tool Protégé1. The knowledge integrated
in the ontology was structured akin to the architect’s toolbox. The ontology of the
case study is depicted in Figure 7.5. It contains important architectural concerns,
solution templates, such as patterns, as well as tools, quality goals, and terms of ba-
sic hardware and software technology. The structuring according to the architect’s
toolbox enables the reuse and extension of the ontology for other software projects.

The benefits of the ontology integration in the traceability concept are: a) the
facilitation of additional traceability links especially in combination with the hyper-
text concept for textual descriptions and b) the possible treatment of synonyms or
homonyms. For example, synonyms can be expressed as equivalent classes in the
class hierarchy of terms in the ontology. The ontology also contains general design
knowledge in form of relationships. For example, the influence of the patterns on
certain quality goals can be expressed by object properties of the OWL classes. In
this way relationship types as partOf or influencedBy can be modeled inside the
ontology. The ontology of the case study can be found in OWL/XML syntax in
Appendix B.2.

1http://protege.stanford.edu/

141

http://protege.stanford.edu/

Chapter 7. The Traceability Concept

Figure 7.5: Cutout of the ontology used in the case study.

142

Chapter 8

Tool Support by EMFTrace

This chapter describes a prototype tool called EMFTrace1, which is based on Eclipse
Modeling Framework (EMF) technology. EMFTrace implements and supports the
traceability concept introduced in Chapter 7. It provides capabilities to integrate
the models of the goal-oriented architectural design method from Chapter 6 into a
centralized repository for identifying dependencies between these models and record-
ing them as traceability links. EMFTrace is accompanied by a tool called EMFfit,
which allows to model factor tables and issue cards of the Global Analysis approach.

Section 8.1 describes the requirements for EMFTrace and its core concept. Sec-
tion 8.2 provides information about the architecture and its components and how
EMFTrace together with EMFfit realizes the traceability concept. Section 8.3 goes
more into detail regarding the technological aspects of the model integration. Sec-
tion 8.4 describes a typical usage scenario for EMFTrace. Parts of the ideas of this
chapter were already published in [BLR11].

8.1 Requirements and Core Concept

The goal of the tool support by EMFTrace is to implement this thesis’ concept for
rule-based traceability in combination with information retrieval techniques and a
centralized repository. EMFTrace shall provide comprehensive traceability for the
artifacts of the goal-oriented design method with high values for precision and recall.
It is conceived as an extensible platform enabling dependency analysis and trace-
ability link establishment across model boundaries as well as goal-oriented decision

1See also the project’s website http://proinf.de/EMFTrace.

143

http://proinf.de/EMFTrace

Chapter 8. Tool Support by EMFTrace

support as a basis for further analyses, such as change impact analysis, or validation
and consistency checks. According to this some important functional requirements
for EMFTrace were:

1. Integrate metamodels complying to URN, UML, OWL as well as for Global
Analysis into the repository.

2. Enable the import of corresponding models from CASE tools into the reposi-
tory via adapters to enable dependency analysis.

3. Provide export capabilities of the models out of the repository to enable their
editing with the original CASE tools.

4. Enable to edit, store, and maintain traceability rules organized in catalogs in
the repository with a separate metamodel.

5. Store and maintain traceability links in the repository with a separate meta-
model.

6. Support the validation of traceability rules and their import into the repository.

7. Store and maintain traceability link types organized in a catalog in the repos-
itory.

8. Support (semi-) automatic traceability link establishment through processing
traceability rules enhanced with information retrieval techniques.

9. Support the analyses of traceability links regarding transitivity to combine
chains of links as traces.

Some quality requirements were to provide a flexible and extensible platform to
support further research activities. Therefore, Eclipse was chosen as the basic tech-
nology because its plug-in concept enables the easy exchange of certain components.

The core concept of EMFTrace is illustrated in Figure 8.1. As the basic repos-
itory for EMFTrace, EMFStore [KH10] was chosen because it was evaluated the
most suitable, available model repository regarding criteria as maturity, supported
features, usability, and documentation [BLR11, Leh10]. EMFStore is based on the
Eclipse Modeling Framework (EMF) and provides capabilities for managing and
versioning EMF-based models in a client-server fashion. By using this technology

144

8.1. Requirements and Core Concept

EMFTrace

EMFStore Repository

jUCMNav

URN

EMFfit

FTIC

UML2Tools/
Visual Paradigm

UML

Protégé

OWL

Requirements Global Analysis Design Ontology

Integration
of arbitrary

models and
CASE tools

XML

Trace
LinksModels Trace

Rules

Rule
Engine

Link
Manager

Integrated, existing parts Newly developed parts

Figure 8.1: Overview of the core concept of EMFTrace

every kind of model can be treated in a unified manner if an EMF-based Ecore
metamodel is available for it. Therefore, the metamodels for the traceability links
and rules as well as the models for the various development artifacts were created
using EMF.

The idea for the comprehensive traceability support was to rely on standardized
modeling languages, such as URN, UML, and OWL, as far as possible, instead of
creating a customized metamodel for all artifacts of the goal-oriented design method.
Standardized modeling languages have the advantage to be relatively stable and
seldom subject of changes. Moreover, in this way ordinary and established CASE
tools can be used for modeling. Consequently, the CASE tools jUCMNav2 for URN
models, UML2Tools3 and Visual Paradigm4 for UML models, as well as Protégé5 for
OWL ontologies were integrated. Additionally, a customized tool called EMFfit was
developed for Global Analysis artifacts, because no standardized model or any tool

2http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
3http://www.eclipse.org/modeling/mdt/?project=uml2tools
4http://www.visual-paradigm.com/
5http://protege.stanford.edu/

145

http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/WebHome
http://www.eclipse.org/modeling/mdt/?project=uml2tools
http://www.visual-paradigm.com/
http://protege.stanford.edu/

Chapter 8. Tool Support by EMFTrace

does exist. These tools can provide their models in an XML representation. Besides,
the EMFStore repository is based on XML. Hence, XML is the basic integration
technology. This core concept is easily extendable for further modeling languages,
such as BPMN, and other tools, as long as they provide access to their models via
XML. More details on the model integration are discussed in Section 8.3. But first
the architecture of EMFTrace and its components such as the rule engine and the
link manager are described.

8.2 Architecture

As already mentioned above, EMFTrace is based on Eclipse technology. For this
reason the various components are realized as Eclipse plug-ins, which provide the
core functionality, a user interface, and the metamodels for the development arti-
facts, traceability rules, and links. By using the plug-in mechanism, new concepts
and features can easily be added. EMFStore provides a server, the actual repository,
and a client to operate on the repository. The features of EMFTrace are integrated
in the client to provide a unified view and usability. Figure 8.2 shows the compo-
nents of EMFTrace together with those for EMFfit, which were all implemented and
tested with Java [Leh10, Wag10].

8.2.1 EMFStore

The EMFStore component represents the EMFStore server. The EMFStore server
provides the basic functionality for managing projects as well as for storing and
versioning models in projects. To work together with the specific CASE tools, it
requires metamodels of the various design artifacts. Furthermore, the traceability
link metamodel and a traceability rule metamodel are required. As a result, the
following Eclipse plug-ins were developed for URN, UML, OWL, traceability links,
and traceability rules:

• EMFTrace_URN,

• EMFTrace_URN.edit,

• EMFTrace_UML,

• EMFTrace_UML.edit,

• EMFTrace_OWL,

• EMFTrace_OWL.edit,

• EMFTrace_Link,

• EMFTrace_Link.edit,

146

8.2. Architecture

<<component>>
EMFTrace

<<component>>
LinkManager

<<component>>
RuleEngine

<<component>>
ElementProcessor

<<component>>
RuleProcessor

<<component>>
RuleValidator

<<component>>
ResultProcessor

IElementProcessor

IRuleValidator

IResultProcessor

IRuleProcessor

ILinkManager

IAccessLayer

<<component>>
UserInterface

IRuleEngine

<<component>>
AccessLayer

<<component>>
EMFStore

<<component>>
OWL-Metamodel

<<component>>
FTIC-Metamodel

<<component>>
Traceabi l i tyLink-Metamodel

<<component>>
UML-Metamodel

<<component>>
URN-Metamodel

<<component>>
TraceRule-Metamodel

Project

<<component>>
EMFfit

<<component>>
EMFfitGUI

<<component>>
AccessLayer

<<component>>
LinkManager

IAccessLayer

ILinkManager

<<component>>
RuleEngine

<<component>>
ElementProcessor

<<component>>
RuleProcessor

<<component>>
RuleValidator

<<component>>
ResultProcessor

IElementProcessor

IRuleValidator

IResultProcessor

IRuleProcessor

IRuleEngine

<<component>>
UserInterface

<<component>>
UML-Metamodel

<<component>>
URN-Metamodel

<<component>>
OWL-Metamodel

<<component>>
Traceabi l i tyLink-Metamodel

<<component>>
TraceRule-Metamodel

<<component>>
FTIC-Metamodel

<<component>>
EMFfitGUI

<<component>>
RuleProcessor

<<component>>
RuleValidator

<<component>>
ResultProcessor

IElementProcessor

<<component>>
ElementProcessor

IRuleProcessor

IResultProcessor

IRuleValidator

IAccessLayer

Figure 8.2: Architectural components of EMFTrace and EMFfit

• EMFTrace_Rules, and • EMFTrace_Rules.edit.

The FTIC-Metamodel for factor tables and issue cards (FTIC) handled by EMFfit is
discussed separately in Section 8.2.3. The integration of the metamodels with EMF
and XML is discussed in detail in Section 8.3.

8.2.2 EMFTrace

The EMFTrace component represents an EMFStore client. It provides all func-
tionality for importing and exporting models into the repository, which can be trig-
gered from the UserInterface. Furthermore, EMFTrace is responsible for managing
rules and link types, for dependency identification and traceability link manage-
ment. The RuleEngine comprises components for the validation (RuleValidator),
and for the processing of the tripartite rules (ElementProcessor, RuleProcessor,
ResultProcessor). The LinkManager component is responsible for traceability
link management and used by the rule engine to process the action of link creation.
Moreover, the AccessLayer component enhances the access to the models managed
by the EMFStore repository. The corresponding Eclipse plug-ins are EMFTrace_GUI

147

Chapter 8. Tool Support by EMFTrace

and EMFTrace_Core.

Access Layer The AccessLayer component eases the access to the models and
their elements stored in the EMFStore repository. It provides additional access op-
erations, such as getAttribute, getAttributeValue, and getAllChildren, which
go beyond the default operations of EMFStore. Moreover, the AccessLayer is used
to control when model changes are transferred to the repository server using the
“commit” action. Typically the transfer of model changes to the repository is an
expensive operation because it needs client-server communication via TCP/IP. For
this reason, the AccessLayer manages a project cache to enable bundled transfer
from the EMFTrace client to the EMFStore repository server and to accelerate the
retrieval of model elements during rule processing.

Link Manager The LinkManager component is responsible for recording and
maintaining traceability links. It uses the AccessLayer component to communi-
cate with the repository. The LinkManager provides operations to create and delete
links, which were identified via rule interpretation. Furthermore, it can analyze
traceability links regarding transitive relations and create traces representing chains
of links (cf. Section 7.3.1). Since model elements are subject to changes, the trace-
ability links can become inconsistent or invalid. Therefore, the LinkManager also
provides functionality to validate links and traces, and it can delete them if they are
inconsistent. Traces can also be split if the chain of links is broken. Figure 8.3 illus-
trates a situation when model elements M1 to M7 are connected with traceability
links Link1 to Link6, which represent a chain of links. Therefore, these transitive
relation is represented by trace Trace1. If for example Link3 is deleted, the trace is
split into Trace1 and Trace2.

Trace2Trace1

Trace1
M1

Link1
M2 M3 M4 M5 M6 M7

Link2 Link3 Link4 Link5 Link6

M1
Link1

M2 M3 M4 M5 M6 M7
Link2 Link4 Link5 Link6

Trace1
M1

Link1
M2 M3 M4 M5 M6 M7

Link2 Link3 Link4 Link5 Link6

Figure 8.3: Split of a trace because of a broken chain of links

148

8.2. Architecture

Rule Engine The RuleEngine component is the interpreter for the traceability
rules described in Section 7.5. It loads the rules from a catalog and processes them
with its four subcomponents.

Rule Validator The RuleValidator component checks the rules for their syn-
tactical correctness according to the defined structure. The validation of the rules
runs in four steps. First, all element definitions are checked. Second, the validator
checks the BaseConditions with the comparison operators (equals, contains, isPar-
ent, similarTo, lesserThan, greaterThan, notNull), and third the LogicConditions
(AND, OR, NOT, XOR) are checked. Finally, the fourth step is to validate the
action part. If any problems are found, the RuleValidator produces warnings and
hints in the log for their correction.

Element Processor The ElementProcessor component queries the defined
model elements from the repository using the AccessLayer component. Then, it
maps the elements to their alias names. As a result, for each element defined in the
rule a list of queried elements is created. These queried elements are candidates to
be linked if the conditions are met after processing the rule.

Rule Processor The RuleProcessor component evaluates the conditions de-
fined in the query part of a rule. It gets a list of query elements from the component
ElementProcessor and removes all elements that do not match the conditions. To
evaluate the conditions, the logical operators and the query operators have to be
executed. The resulting list of elements that match the conditions is given to the
ResultProcessor component.

For the query operator similarTo an analysis of the similarity of two attribute
values has to be performed. For this purpose the n-gram algorithm [CT94] as an
information retrieval technique is applied. This is done in two steps:

1. For each string representation of the two attribute values create the n-grams.

2. Compare the strings using the n-grams.

An n-gram here is a slice of a longer string spanning n contiguous characters.
Furthermore, stopping symbols (§) are added to the beginning and the end of a
string. Accordingly, for example, the set of bi-grams for the word “term” would

149

Chapter 8. Tool Support by EMFTrace

be {§t, te, er, rm,m§}. The comparison step is performed with the Dice coefficient.
Equation 8.1 shows the Dice coefficient for two terms a and b with T (x) as the set
of n-grams of the term x.

d(a, b) =
2 |T (a) ∩ T (b)|
|T (a)|+ |T (b)|

(8.1)

The resulting value is between 0 and 1. It can be set as a threshold for the similarTo
operator. Thus, together with the n there are two parameters for rule processing that
can influence the precision and recall of the established traceability links. Next to
the n-gram algorithm further information retrieval techniques could be included to
increase precision and recall, for example, stop-word elimination and word-stemming
for pre-processing the terms, or other similarity measures.

Result Processor The ResultProcessor component is responsible for the
completion of the rule processing. Therefore, the defined action of the third part of
the rule is executed. Currently, the only supported action is to create a traceability
link for elements that match the conditions as evaluated by the RuleProcessor.
The links are created by calling the LinkManager component with the source and
target elements, the link type defined in the rule, and additional information, such
as the identifier of the rule.

EMFTrace GUI The UserInterface component of EMFTrace provides easy
access to the import and export functionality for model integration as well as to the
traceability analysis. For a seamless integration of EMFTrace and EMFStore, new
menus and dialogs were embedded in the available EMFStore client using its plug-in
extension points. Figure 8.4 shows a screenshot of the user interface with a context
menu that acts as entry point for the EMFTrace functionality.

150

8.2. Architecture

Figure 8.4: A screenshot of EMFTrace showing the context menu that allows to
trigger its supported operations

8.2.3 EMFfit

EMFfit is a customized tool, which was developed for this thesis to support the
Global Analysis activities [Wag10]. It is an important piece of the traceability
puzzle because it enables improved traceability between requirements and design
artifacts. EMFfit is realized as an EMFStore client, which communicates with the
EMFStore server just like EMFTrace. Consequently, EMFfit needs EMFStore as a
basic platform for project management and cannot run as a stand-alone tool. EMFfit
provides a metamodel for influence factors and issue cards, which incorporates the
hypertext metamodel from Section 7.3.2. EMFfit comprises the plug-ins EMFfit

and EMFfit.edit for the metamodel, further EMFfit_GUI for the user interface.
The GUI contains specific editors for factor tables and issue cards, as well as for the
linkage to other artifacts according to the hypertext concept.

Figure 8.5 depicts the metamodel of EMFfit. The highlighted model elements
stem from the metamodel of the hypertext concept (cf. Figure 7.3). The classes

151

Chapter 8. Tool Support by EMFTrace

FactorTable, FTEntry, FactorCategory, and Factor together with the enumer-
ation CategoryType on the right-hand side of the figure realize the factor tables.
The classes IssueCard, InfluencingFactor, Strategy, and RelatedIssue on the
left-hand side, as well as Item realize the issue cards. The classes FTICBase and
ModelElement are related to the integration into the EMFStore repository.

A speciality of this metamodel is the replacement of string attributes that con-
tain informal textual descriptions with hypertext elements to enable the linking of
terms. Examples are the attributes description, flexibility, changeability,
and influence of a Factor. Novelties in comparison to the original Global Anal-
ysis are the enhancements mentioned in Section 6.2.1.4. For this reason, there are
separate attributes for the flexibility and changeability of a factor as well as the ad-
ditional priority attribute. Moreover, Factors and FactorCategories are allowed
to have Factors or FactorCategories as child elements for a more flexible structur-
ing of the tables. This is realized with the children relationship of FTEntry. The
issue card is particularly interesting for traceability link establishment because it is
related to other elements, which can be influence factors, factor categories, other
issue cards, or strategies.

Another special feature of EMFfit next to the hypertext linkage is that it can
adopt goals of URN models as factor categories of the product factor table. To
realize this feature, all goals and softgoals that are modeled in a URN model in the
same project as the factor tables are retrieved from EMFStore. Then, according
to these goals, factor categories are created in the table for functional or quality
product factors. Consequently, a special traceability rule, creates traceability links
between the URN goals and the factor categories. A complementary feature, which
is provided for filling a factor table, is to load default categories from a file.

152

8.2.
A
rchitectureFigure 8.5: The metamodel of EMFfit for factor tables and issue cards as an Ecore model

153

Chapter 8. Tool Support by EMFTrace

8.3 Model Integration

As already mentioned above, the EMFStore repository can store and version EMF-
based models. EMF provides the advantage of Java code generation. In this way
code for model manipulation can directly be generated from metamodels. In combi-
nation with EMFStore this code is used for managing the models in the repository
and for simple editing capabilities. Consequently, all types of artifacts from the
goal-oriented design method had to be represented as an Ecore metamodel for an
integration into EMFStore. Besides, the traceability link metamodel (cf. Figure 7.2)
as well as a rule metamodel were created with EMF.

Integration of custom metamodels Custom metamodels to be integrated into
the repository for the approach of this thesis are those for traceability links, EMFfit,
and for traceability rules. An extra metamodel for traceability rules was necessary
because in contrast to other approaches (e.g., [JZ09]) the rule-based traceability
approach of this thesis operates directly on the conceptual level of models inside
the repository and not on models materialized as XML files. Hence, the own XML
representation of rules as introduced in Section 7.5 had to be represented as an Ecore
model for the inclusion of the rules in the repository.

Figure 8.6 shows the metamodel designed as an Ecore model for the traceability
rules. For rules, just as for the link types, a catalog class was modeled to enable
grouping of rules. To enable integration into EMFStore all classes got a base class
RuleBase. RuleBase in turn is a subclass of the root class ModelElement from
EMFStore’s metamodel. So every model element is easily enabled to work with
EMFStore. This was modeled in the same way for EMFfit (cf. Figure 8.5) and for
the traceability link metamodel.

The rule metamodel was used to generate an EMF-based editor for the trace-
ability rules, which can be run inside EMFTrace as shown on the right-hand side
of Figure 8.4. However, the rules can also be created with an external XML ed-
itor and imported afterwards. The external XML representation of the rules and
the internal XML format of EMFStore slightly differ. This is due to the root class
ModelElement, which has additional attributes. Therefore, an XSL transformation
is applied for the import of the rules in the same way as described for the standard
modeling languages in the next paragraph.

154

8.3. Model Integration

Figure 8.6: The traceability rule metamodel as an Ecore model

Integration of metamodels from standard modeling languages For the
standard modeling languages URN, UML, and OWL, Ecore models had to be cre-
ated. EMF allows to generate Ecore models from an XML Schema Definition (XSD).
Hence, for example, for URN an Ecore model could be generated because a stan-
dardized XSD file is available. For UML an Ecore model implementation could be
used from the UML2Tools project.

Once the Ecore models were available, they had to be adapted to the metamodel
of EMFStore. Thus, the metamodels of URN, UML, and OWL were enhanced by
the root class ModelElement as explained in the last paragraph. Furthermore, the

155

Chapter 8. Tool Support by EMFTrace

identifiers of the model elements of the used modeling languages had to be considered
separately from the internal identifiers of EMFStore because their format is different.
For example, in OWL an Internationalized Resource Identifier (IRI) is used, however,
in EMFStore a string with a Universally Unique Identifier (UUID) is generated with
EMF. After this adaptation, the Java model code and edit code could be generated
with EMF and the metamodel could be used in EMFStore.

Since the adaptation to EMFStore’s metamodel introduces new attributes to
the metamodels, such as the internal identifier, a creator, and a timestamp, an
adaptation of the metamodel instances is required as well. To add these attributes
during the import of the models from the CASE tools, this adaptation was performed
using Extensible Stylesheet Language Transformations (XSLT). Consequently, the
import of models from the other CASE tools is done in the following steps:

1. The models are stored or exported as an XML file with the CASE tool.

2. XSLT templates are applied on the models.

3. The adapted models (XML files) are loaded with EMFStore.

For the export these steps are performed in reverse order with opposite operations
and templates. The second and third step of the import and export procedure are
encapsulated in components of EMFTrace.

Appropriate XSLT template were developed for URN, UML, and OWL for the
CASE tools jUCMNav, UML2Tools, Visual Paradigm, and Protégé. Since espe-
cially UML tools use different formats for their XML representation, adapted XSLT
templates are required for each tool. Moreover, all three steps of the import and
export procedure can be automated with appropriate adapters to the CASE tools,
as for example possible with the plug-in mechanism of Visual Paradigm.

8.4 Usage Scenario

A typical usage scenario for EMFTrace would be the following.

1. The developer starts according to the goal-oriented design method to model a
goal graph with the CASE tool jUCMNav and saves the model as a URN file.

2. To import this model into EMFStore, the developer starts the EMFStore server
and the EMFTrace client. Then he creates a project and uses the “Import from

156

8.4. Usage Scenario

CASE-Tool” feature as shown in the context menu in Figure 8.4. Afterwards
the model is stored in the repository.

3. To proceed with the Global Analysis activities, the developer starts the EMFfit
client and creates the factor tables and issue cards in the same project. By us-
ing EMFfit’s mapping feature for URN goals and product factor categories, the
establishment of the product factor table is facilitated. By executing the fea-
ture “Get Product Factors from URN” as illustrated in Figure 8.7 the imported
URN model is searched for goals that can be adopted as factor categories.

4. In parallel the developer can create an ontology with Protégé or reuse an exist-
ing one, save it as an OWL/XML file, and import it with EMFTrace the same
way as he did for the URN model (cf. Figure 7.5 for a visual representation
of an OWL ontology in Protégé). Afterwards, the ontology is stored in the
repository as well.

5. In EMFfit the developer can use the hypertext linkage feature to link model
elements with terms of the ontology or other model elements, which are present
in the EMFStore repository (cf. the example in Figure 7.4).

6. For architectural design, the developer proceeds to model UML diagrams, for
example, with Visual Paradigm (cf. Figure 6.9 for a UML structure diagram
of the case study). He uses the XML export feature to save a UML file, which
he again imports into the repository with EMFTrace.

7. To run a dependency analysis and to create traceability links the developer
performs several steps.

(a) He loads the link type catalog, which is available in EMFStore’s internal
XML format into the project.

(b) Then he imports an appropriate traceability rule catalog with EMF-
Trace’s “Import Trace-Rule” feature.

(c) The developer applies certain traceability rules with the help of a wizard
that is available via the “Apply Rules” feature from the projects context
menu. Figure 8.8 shows the wizard. This wizard allows to select rule
catalogs from the project, traceability rules to be applied, and models that
should be analyzed. Moreover, the parameters for the n-gram algorithm

157

Chapter 8. Tool Support by EMFTrace

can be specified. As a result of the analysis the traceability links are
established.

(d) The developer can also perform a transitivity analysis on the traceability
links with the feature “Perform Transitivity-Analysis”. Afterwards, traces
for chains of traceability links are created.

(e) If elements of the design models or traceability links are changed or
deleted, the developer can also run the features “Validate Traceability-
Links” and “Validate Trace-Elements” to maintain the links and traces.

(f) Since all models are versioned in the repository, they can also be ex-
ported with EMFTrace’s export feature for CASE tools as indicated in
Figure 8.9.

This scenario shows the capabilities of EMFTrace and how they are intended to be
used. Of course the mentioned steps do not necessarily have to be performed in
this sequence. Furthermore, step 7c, for example, could be performed automatically
after each import of a model from an external CASE tool. Also important to know
is that the hypertext links created in EMFfit can be recorded as “real” traceability
links (TraceLinks) with specific rules (cf. Section 7.3.2).

Figure 8.7: EMFfit with the feature for mapping URN goals to factor categories

158

8.4. Usage Scenario

Figure 8.8: EMFTrace’s rule wizard

Figure 8.9: The export feature of EMFTrace

159

Chapter 9

Evaluation of the Approach

This chapter presents an evaluation of the approach of this thesis. It compares
the results from Chapter 5, 6 and 7 against the refined goals of this thesis from
Chapter 4.

Section 9.1 explains how the evaluation is performed. Then, Section 9.2 presents
the evaluation of the Goal Solution Scheme and the goal-oriented architectural design
method. In Section 9.3 the traceability concept is evaluated. For this reason the
precision and recall of the link establishment is determined. Finally, in Section 9.4
the limitations of the approach are discussed.

9.1 Way of Evaluation

In Chapter 4 five refined goals RG1 to RG5 for the proposed approach were de-
termined. For the evaluation of the approach regarding the goals, a case study was
performed. This case study constitutes the basis for the discussion regarding the
goal fulfillment.

The goals RG1 to RG3 are evaluated with an argumentative discussion based on
the case study because another kind of evaluation for the GOAD method is hardly
possible. For example, it is very unlikely to design a software system twice using
different methods and to compare the results.

Concerning goal RG4 the quantitative rating of solution instruments regarding
their influence on evolvability has to be evaluated. For this purpose, a ranking of
evaluated patterns is determined by using the values from Chapter 5. Then this
ranking is compared to the patterns that were actually selected in the case study.

161

Chapter 9. Evaluation of the Approach

For the traceability concept, which fulfills goal RG5, a quantitative evaluation of
the precision and recall of the link establishment is performed based on the models
from the case study. This is done by comparing manually established links with
those recorded by EMFTrace.

Characteristics of the Case Study The case study that is used for the eval-
uation of the approach of this thesis is the same as already used for illustration
purposes in Chapter 6. The software system of the case study is a software platform
for mobile interaction-robots. This software system was developed over several years
in a joint venture of the department of Neuroinformatics and Cognitive Robotics of
the Ilmenau University of Technology and a local company. The system was chosen
for the case study, since it suits the scope of the approach of this thesis due to several
reasons:

• Because the system has been growing over several years by many different
developers including professional software developers, research staff, and stu-
dents, it suffers from typical problems of architectural erosion. Such problems
are lacking program comprehension, inconsistency, or hugh maintenance ef-
fort, which are risks for the research strategy of the department and for the
business success of the company.

• The software system is complex by nature because it has to communicate with
several different hardware components and has to run different domain-specific
applications, such as navigation, person tracking, or speech recognition. This
results in different quality goals to be addressed by the software architecture.

• Since the robot system is a research platform it is continuously evolving. De-
mands for changes frequently arise, for example, because of new research re-
sults, or changing technology. This makes evolvability and its subcharacteris-
tics prominent goals of the software system.

• The system has an adequate size and is not a toy example. For the case
study even the scope had to be limited. Out of the complete system, which is
subject of a reengineering, the communication framework was selected. This
part perfectly suits the needs of this thesis because it was decided to re-develop
the communication framework in a rather forward engineering perspective.

162

9.2. Evaluation of GSS and GOAD

9.2 Evaluation of the Goal Solution Scheme and the

Goal-Oriented Architectural Design Method

This section discusses the Goal Solution Scheme and the goal-oriented architectural
design method as results of this thesis regarding the goals RG1 to RG4.

RG1 Combine existing approaches for a goal-oriented design regarding

evolvability The Goal Solution Scheme from Chapter 5 and the goal-oriented
architectural design method from Chapter 6 represent a comprehensive design ap-
proach for the treatment of quality goals and in particular evolvability. In the
approach the modeling of the quality goals is combined with the activities of Global
Analysis to provide an advanced architectural analysis phase. Further, the ADD
method for synthesis is enhanced to deal with the additional input from the pre-
vious activities and to reflect the Goal Solution Scheme. This is proceeded with
activities of the Quasar method for a more detailed design of components and in-
terfaces. The design method can be completed with evaluation methods such as
ATAM. Since the approach uses already established methods and concepts as far as
possible, these parts need not to be evaluated on their own but rather their interplay.

The integration of the goal modeling with architectural analysis proved well for
the case study to bridge from quality requirements to architectural design. The
modeling of the quality goals as well as their refinement and prioritization according
to the first and second layer of the GSS as described in Section 6.2.1 helped to raise
the developers’ awareness of the important quality aspects of the software system.
The goal model was valuable input for the Global Analysis activities and helped to
easily identify the important product factors.

Furthermore, the influence factors and issue cards together with the explicit con-
sideration of solution principles and instruments as well as the discussion of scenarios
helped with the architectural synthesis and evaluation. The developers were thank-
ful for the additional input for the architectural design gained through applying the
approach of this thesis. This underlines the feasibility of the approach. Moreover,
the explicit documentation with the different models will help the developers with
the future evolution of the software system.

Another experience to note is the initial reluctance of the developers against
the additional effort for the explicit modeling, which was demanded according to

163

Chapter 9. Evaluation of the Approach

the approach of this thesis. However, over time the explicit documentation was
appreciated, because now the developers, for example, can access their previous
design decisions. Unfortunately, the integration of the Quasar method for detailed
design could not be evaluated in the case study, since the developers had a preference
to rely on their intuitive and experiential approach for design and implementation.
However, the benefits of using Quasar were already discussed with a case study in
earlier works [BR09, Bod08].

RG2 Provide a consolidated view on evolvability and a strategy for its

realization Based on the evaluation of state-of-the-art works on evolvability, in
this thesis an evolvability model as an instance of a Goal Solution Scheme was
developed (cf. Section 5.3.1). The refinement of evolvability into subgoals and the
mapping to solution principles and concepts was started with hypotheses and revised
in a separate case study. As a result the evolvability model represents a consolidated
view on this quality goal, which can be tailored for project-specific needs.

Furthermore, the goal-oriented architectural design method supports the real-
ization of evolvability by several aspects: It utilizes the Goal Solution Scheme for
selecting solution instruments during architectural synthesis. It supports explicit
models and dependencies, e.g., between the influence factors and the quality goals
of the case study. Moreover, the design method supports traceability and provides an
iterative concept that not only supports top-down development but also bottom-up
experimentation.

For the robot software system the evolvability model represented a valuable input.
By knowing the subgoals of evolvability a suitable goal model, which also considers
further top-level quality goals, could be developed for the case study, and the goals
could be prioritized with the developers. The explicit consideration of evolvability
as a quality goal during design should lead to a better evolvability of the newly
developed software system in comparison to the old one. At least the developers
now have better consciousness and confidence regarding the crucial quality aspects
for the future evolution of the system.

RG3 Establish a concept for a systematic treatment of quality goals dur-

ing design The Goal Solution Scheme concept was developed in this thesis for a
systematic treatment of quality goals, which bridges from requirements analysis to

164

9.2. Evaluation of GSS and GOAD

architectural design. Akin to the goal-oriented requirements engineering approaches
it supports the modeling of goals and subgoals as well as the mapping to solution
instruments as operationalizations.

However, the GSS goes beyond this. It also includes architectural solution prin-
ciples, which are important for architectural design. It even considers technical
constraints through the integration of the scheme in a design method that includes
the activities of Global Analysis. Moreover, it supports conflict resolution by explic-
itly expressing the interdependencies. Further means that are targeting at conflict
resolution, such as refinement, are the ones discussed in Section 6.2.2.4.

The beneficial treatment of quality goals in the case study was already mentioned
with the discussion for RG1. The feasibility regarding the selection of solution
instruments is discussed with RG4.

RG4 Provide a catalog of solution instruments with a quantitative rating

regarding the impact on evolvability In connection with the development of
the evolvability model also established solution instruments in form of architectural
styles and patterns were evaluated. The result is a quantitative rating of the patterns
regarding their influence on evolvability, which represents an extensible catalog of
solution instruments for evolvability.

To evaluate these impact values, they are taken as input for a ranking of solution
instruments using the prioritized quality goals from the case study. Table 9.1 shows
the starting point for the ranking procedure. The solution instruments are already
restricted to a set of five typical domain and technology-independent styles, which
were also discussed regarding a selection in [GEM10]. The table shows the priority
values for the quality goals from the case study (cf. Table 6.2) together with impact
values that express the influence of the styles on the goals. The impact values for
testability, changeability, and reusability stem from the rating determined in this thesis
(cf. Table 5.7). The additional values for efficiency and reliability were taken from
[GEM10] and represent an assessment based on several references. Three quality
goals of the case study are not considered in the ranking: (i) security because it
did not get a priority at all, (ii) usability because it is not that important for the
communication framework of the case study and the styles would not considerably
influence it anyway, as well as (iii) distributability because no impact values of the
styles were available for it.

165

Chapter 9. Evaluation of the Approach

Table 9.1: Impact values and priorities for the ranking of the architectural styles

Quality Goal � A
rc
h
it
ec
t.

S
ty
le

C
lie

nt
-S
er
ve
r

La
ye
rs
/T

ie
rs

B
la
ck
bo

ar
d

P
ip
es

an
d
F
ilt
er
s

Im
pl
.
In
vo

ca
ti
on

G
oa

lP
ri
or
it
iz
at
io
n

Testability 1.00 1.29 −1.07 0.86 −0.79 0.0389

Changeability 1.39 1.56 0.02 1.56 1.11 0.2333

Reusability 1.50 1.75 0.25 1.50 1.38 0.1056

Efficiency 0 0 0 −1 1 0.2667

Reliability 0 0 1 0 0 0.1333

Distributability 0.0667

Security 0.0000

Usability 0.1556

For the ranking of the styles, the impact values in each row of the table are multi-
plied with the priority values of the goal in the rightmost column. Then, the ranking
values for the different quality goals are summed up. Table 9.2 shows the results.
In the bottom the ranking is shown first for the highly-prioritized goals changeabil-
ity, efficiency, and reliability as well as second for all quality goals. The resulting
ranked list of styles in the first case is: 1.) implicit invocation, 2.) layers/tiers, and
3.) client-server, followed by 4.) blackboard, and 5.) pipes and filters. In the second
case it is: 1.) implicit invocation, 2.) layers/tiers, and 3.) client-server, followed by
4.) pipes and filters, and 5.) blackboard.

For comparison, in the case study the style implicit invocation was chosen based
on expert opinion. A layered style would not have been appropriate because there
is no hierarchical structure of communication in the robot software system. The
client-server pattern was used for remote communication. The blackboard style of
the old system was dismissed. In [GEM10] the recommended style for a mobile
robot system by expert opinion was also implicit invocation (or interacting process
as they called it), and the dismissed style was layers/tiers. In this regard the above
calculated ranking matched the case study’s conditions quite well. Only layers/tiers
seems to be ranked too high.

Consequently, the impact values of the catalog that are provided in this thesis

166

9.3. Evaluation of the Traceability Concept

proved quite well. However, they could be evaluated only partly. On the one hand
not all subgoals of evolvability could be considered. On the other hand the impact
values had to be supplemented by values for efficiency and reliability from other
sources. Beyond, the impact values are subjective by nature and should not be
taken as the ultimate truth. Nevertheless, the procedure of calculating a ranking
of solution instruments can be a helpful hint for the software architect in complex
situations regardless of the specific values provided in this thesis.

Table 9.2: The ranking values of the architectural styles for the case study example

Quality Goal � Architect. Style C
lie

nt
-S
er
ve
r

La
ye
rs
/T

ie
rs

B
la
ck
bo

ar
d

P
ip
es

an
d
F
ilt
er
s

Im
pl
.
In
vo

ca
ti
on

Testability 0.04 0.05 −0.04 0.03 −0.03
Changeability 0.32 0.36 0.00 0.36 0.26

Reusability 0.16 0.18 0.03 0.16 0.15

Efficiency 0.00 0.00 0.00 −0.27 0.27

Reliability 0.00 0.00 0.13 0.00 0.00

Changeability+Efficiency+Reliability 0.32 0.36 0.14 0.10 0.53

All 0.52 0.60 0.12 0.29 0.64

9.3 Evaluation of the Traceability Concept

Concerning the goal RG5 of this thesis there were several aspects that had to be
covered by the traceability concept:

I. (semi-) automatic traceability link

a) identification,

b) recording, and

c) maintenance

of

d) intra and

e) inter model dependencies, and

II. a defined semantics for links based on specific link types.

167

Chapter 9. Evaluation of the Approach

The traceability concept from Chapter 7 defines a metamodel for traceability
links. Following this metamodel, traceability links are enriched with link types and
other attributes for a defined semantics according to II. For a consolidated view
on possible traceability link types, different clusters were defined based on other
works. Furthermore, the traceability concept considers all models and dependencies
according to d) and e) by integrating all artifacts of the architectural design method
with their model elements in a joint model repository.

For the link establishment, traceability rules were defined. These rules have to
be defined manually and then are interpreted automatically by the developed proto-
type tool EMFTrace (cf. Chapter 8). In this way model dependencies are identified
and recorded as traceability links according to a) and b). Maintenance of traceabil-
ity links and traces according to c) is achieved by some validation capabilities of
EMFTrace. If links get inconsistent or chains of links are broken because of model
changes, the links and traces will be updated. However, for a comprehensive main-
tenance of links according to change activities that are performed on the models,
additional rules have to be defined and the rule engine of EMFTrace has to be
enhanced.

Research Question and Measures For the evaluation of the traceability con-
cept an important research question was:

• How is the quality of the link establishment in terms of completeness and cor-
rectness?

The quality can be evaluated by determining the values for the common metrics
precision and recall. For the calculation of the metrics three kinds of traceability
links have to be distinguished:

c the number of links established correctly by the approach,

i the number of incorrectly established links, and

m the number of correct but missing links.

Precision refers to the correctness of the established links. It is the ratio of the
correct established links to all links established with the approach. Precision is
calculated with:

P =
c

c+ i

168

9.3. Evaluation of the Traceability Concept

Recall refers to the completeness of the established links. It is the ratio of the correct
established links to all correct links. Accordingly, the recall is calculated with:

R =
c

c+m

Precision and recall can be combined to the so-called F-score. This measure is a
weighted average of precision and recall. It can be used for an easier comparison of
the precision and recall values of different approaches. The F1-score, which weights
precision and recall the same is calculated with:

F1 = 2
P ·R
P +R

Subject of Measurement To determine the evaluation factors precision and
recall, data from two development projects were considered. One project was the
development of EMFTrace itself. The other one was the robot software system
from the case study. The input data for the evaluation from the EMFTrace project
were UML models, which were created with the UML2Tools and imported into
EMFTrace. The data from the case study system comprise a URN goal model
created with jUCMNav, factor tables and issue cards created with EMFfit, a UML
design model created with VisualParadigm, as well as an OWL ontology created
with Protégé. Table 9.3 shows the number of model elements for each project.

Table 9.3: Amount of model elements from the evaluation projects

Model EMFTrace Robot Case Study

URN – 178
FTIC – 569
UML 869 217
OWL – 752

Total 869 1716

Way of Measurement The determination of the evaluation factors was accom-
plished in three steps. First, a manual link establishment was performed to deter-
mine the number of correct links, which is needed for the calculation. The manual
link establishment for the EMFTrace project was performed by a developer of the
tool (not the author) (see [Leh10]). For the case study it was accomplished by the

169

Chapter 9. Evaluation of the Approach

author and partly by a developer of EMFTrace. The resulting traceability links of
the manual step were considered to be the correct set of links. As the second step,
the models were automatically analyzed for traceability links by EMFTrace. This
was performed two times with different parameters for the n-gram matching algo-
rithm. Once the parameters were n=3 and the similarity factor 75%. The second
time the similarity factor was changed to 90%. Finally, the values for precision and
recall were calculated based on the results from both the manual and the automated
step.

Measurement Results and Discussion For the EMFTrace project the auto-
mated link establishment of EMFTrace even found some correct links that were not
found manually by the developer. Consequently, these links were added to the set of
correct links of the developer. Table 9.4 shows all results of the measurement. The
resulting precision achieved with the traceability approach of this thesis is 86.4% on
average. The recall factor is 84.6% on average.

Table 9.4: Results of the quality measurement

Number of Links

Dev.
(c+m)

Tool (c+ i) D.∩T. (c) Precision (P) [%] Recall (R) [%]

Project 75% 90% 75% 90% 75% 90% avg. 75% 90% avg.

EMFTrace 46 64 40 43 34 67.2 85.0
86.4

93.5 73.9
84.6

Robot Case Study 336 321 273 309 265 96.3 97.1 92.0 78.9

Table 9.5: Comparison of precision and recall of different traceability approaches

Approach Technique Precision Recall F1-score

[ACC+02] Information Retrieval 50% 48% 0.49
[MM03] Information Retrieval 27.4% 84.2% 0.41
[LFOT07] Information Retrieval 46% 70% 0.56
[JZ09] Rule-based 85.3% 83.3% 0.84
EMFTrace Rule-based & Information Retrieval 86.4% 84.6% 0.85

Table 9.5 shows average values for precision and recall as well as the resulting
F1-score of some prominent traceability approaches. In comparison to pure infor-
mation retrieval based approaches the rule-based concept provides at least a better

170

9.4. Limitations of the Approach of this Thesis

precision and also a good recall. Compared to other traceability approaches the
achieved results with the approach of this thesis are quite competitive. It achieves
an F1-score of 0.85. The quality of the links for the models of this evaluation even is
slightly better than that of the approach of Jirapanthong and Zisman [JZ09]. How-
ever, it must be admitted, that due to the limited number of studied systems the
values for EMFTrace might be biased. Moreover, it is hard to compare the values
of the different approaches since they deal with different kinds of artifacts.

Nevertheless, the precision and recall depends on the defined rules and not only
on the rule-based concept itself. The correctness and completeness of the link es-
tablishment can be improved further by a revision of the existing rules and by a
definition of new ones.

As a further advantage, the rule-based approach provides semantic information
with the links in form of link types and further attributes. During the application
of the approach it turned out that the available set of link types was appropriate
for the definition of the necessary rules. But the link types might be revised in the
future as well.

The establishment of rules of course is manual effort in the first place. But once
they are established, the rules can be used for automated link establishment. Al-
though not measured precisely, the effort in terms of time for the link establishment
can be reduced significantly. The manuel link establishment took approximately at
least an hour, whereas the tool needs approximately ten minutes without perfor-
mance optimization.

9.4 Limitations of the Approach of this Thesis

Of course the approach proposed in this thesis has some limitations, which shall
not be concealed. First, the goal-oriented design method relies on a model-based
development. If the artifacts are not expressed explicitly in well-defined models, it
is hard to make dependencies in between explicit. Moreover, an extension of the
approach for domains such as embedded systems design is still work to do. But
the basic concept of the Goal Solution Scheme is general enough to cover further
domains.

Moreover, there is hardly any pure forward engineering project. Most recent
industrial projects need reengineering activities. For this reason, on the one hand

171

Chapter 9. Evaluation of the Approach

the goal-oriented design method has to be enriched with architectural reengineering
means to choose from. On the other hand the activities have to be integrated in
a reengineering process. However, there will always be a realization of new fea-
tures, for which the proposed architectural analysis and structuring activities can
be performed.

Further effort also has to be invested in the architectural evaluation regarding
evolvability because quantitative values for the architectural properties are necessary
to control the quality of the architecture. Therefore, specific measurable metrics
should be established especially for evolvability, which then can also recommend
certain reengineering means.

The rule-based traceability approach is independent of a forward or reengineer-
ing perspective. It can be applied as long as appropriate rules for the considered
artifacts are available. However, it relies on an appropriate integration of models
from external CASE tools in a repository. In the prototype tool this currently is
implemented using EMF technology, which might be inappropriate with very large
models due to performance reasons. However, to implement the rule-based concept,
also another technology can be chosen.

The use of the ontology as an artifact with different terms spanning the whole
development process turned out to be a good means for connecting different modeling
languages. While the linkage between goal models of requirements engineering and
the analysis artifacts of Global Analysis was easy, it was more diffcult between the
analysis models and the synthesis models. In this regard the ontology and the
hypertext approach are helpful, although the hypertext links need manual effort.
Further research effort might be useful to be invested in this issue.

Although promising results for precision and recall were measured, their gen-
eral validity is not assured. More case studies or controlled experiments might be
necessary for a statistical relevance and an improved validity of the measures. For
example not all rules did match in the case study example, since certain model ele-
ments involved in rules did not exist in the case study artifacts. Moreover, the rule
definition still needs a lot of manual effort.

Another limitation of the traceability concept is that automated model trans-
formations are not yet considered for link establishment. Besides, already existing
external traceability information should be considered and integrated in the reposi-
tory.

172

Chapter 10

Conclusions and Outlook

This chapter presents conclusions from this thesis. In Section 10.1 a summary of the
contributions from the preceding chapters is provided. Section 10.2 gives an outlook
on further research issues based on the results of this thesis.

10.1 Contributions

This thesis presents a comprehensive approach for goal-oriented architectural de-
sign and for traceability to enable evolvability of software systems during design.
The approach is targeted especially on a more advanced treatment of quality goals,
such as security, usability, or modifiability, during architectural design and on an
enhanced support for the evolution of software systems. Wherever possible the ap-
proach takes the best of established methods and concepts and extends them. It
particularly addresses the qualitative aspects of the software, because they are often
neglected by existing approaches in comparison to functional aspects. Furthermore,
by its iterative nature and by considering especially evolvability it enables to cope
with frequent demands for changes, which is a major challenge in the current soft-
ware engineering practice. Moreover, the approach bridges between requirements
engineering and architectural design by providing an integrated approach with con-
cepts from both research communities, which are still separated from each other. In
this regard a major contribution of this thesis is the combination and integration of
different approaches, concepts, and ideas for the treatment of quality goals, for archi-
tectural design with analysis and synthesis activities, as well as for the traceability
of the whole approach.

173

Chapter 10. Conclusions and Outlook

The Goal Solution Scheme presented in Chapter 5 is the most significant nov-
elty and contribution of this thesis. It is based on the principles of model-based de-
sign and combines concepts and ideas from goal-oriented requirements engineering
with architectural design principles and activities. The scheme has several benefits:
It supports the transition from the problem space of a design task to the solution
space by an explicit modeling of dependencies and by a mapping from goals to
solution principles and further to solution instruments. In this way the Goal So-
lution Scheme facilitates the identification of goal conflicts and their resolution by
prioritization, refinement, as well as the mapping to the solution principles and in-
struments. It enables a quantitative evaluation of the solution instruments regarding
their influence on quality goals and guides the architect with making decisions and
selecting appropriate solutions during design. Moreover, the scheme facilitates the
establishment of traceability links between goals and design artifacts. The scheme
was developed and applied in different case studies with different quality goals and
described in detail for evolvability. Other quality goals can be treated in the same
way.

The evolvability model is an instance of the Goal Solution Scheme for evolv-
ability (cf. Section 5.3) and follows the discussion of the term evolvability and its
definition derived from state-of-the-art works (Chapter 3). It is a contribution in-
sofar as it presents a consolidated view of evolvability and its subcharacteristics,
and further maps evolvability to design principles and solution instruments. Thus
evolvability becomes more tangible, and it is easier to achieve this goal during de-
sign. With this model or scheme the influence of fundamental design principles and
properties of good design on evolvability and its subcharacteristics is determined.
Moreover, a set of patterns as solution instruments is evaluated regarding their in-
fluence on evolvability. In this way it guides the selection of appropriate solutions
and facilitates the architects decision-making.

The goal-oriented architectural design (GOAD) method presented in Chap-
ter 6 overcomes the limitations of state-of-the-art methods and concepts, which have
been evaluated in Chapter 2. As a contribution it is a combination of the best parts
of existing works and integrates the Goal Solution Scheme for a systematic treat-
ment of quality goals during architectural design. GOAD starts with goal modeling

174

10.1. Contributions

adopted from requirements engineering and uses goal prioritization for focussing the
design. For the architectural analysis phase, Global Analysis as the most suitable
method is integrated and enhanced. For architectural structuring during the syn-
thesis phase, activities adapted from the ADD method are described to show the
utilization of the Goal Solution Scheme.

GOAD and the GSS provide an easier transition from the problem to the solution
space (transition from layer II to III and IV of the GSS). They provide guidance for
a selection procedure regarding design solutions. This procedure explicitly considers
principles and constraints, and it supports decision-making from a stock of solution
instruments, which are evaluated regarding evolvability. For the integration of se-
lected solution instruments into the whole architecture the transformations of the
QASAR method are applied. Moreover, for detailing the conceptual architecture,
Quasar with its software-categories is applied for an improved separation of concerns
and explicit dependencies. Furthermore, bottom-up vs. top-down structuring of the
architecture is discussed in regard to evolvability support of the resulting software.
Beyond, general means for conflict resolution are adopted from requirements engi-
neering to architectural design. The feasibility of the goal-oriented design approach
is shown with a case study project.

The traceability concept from Chapter 7 contributes to the cluttered field of
traceability with its various different approaches from requirements engineering and
model-based development. It provides a comprehensive approach spanning all design
artifacts of the GOAD method and especially considers quality goals. The goal of
the concept is to trace the design steps that lead to the design artifacts to enable
impact analysis of future evolutionary changes. Therefore, all models are integrated
into a repository and as a novelty an ontology is included to enable more explicit
dependencies between the models.

Moreover, the traceability concept combines different ideas from existing trace-
ability approaches. A traceability metamodel is defined as a basis for tool support.
It is accompanied by a metamodel for the hypertext concept, which was developed
to be used especially for the linkage of informal textual descriptions, as for exam-
ple prevailing in artifacts of the Global Analysis. Furthermore, a consolidated set
of traceability link types is presented, which is organized in clusters. These link
types are used for providing a significant semantic meaning of traceability links.

175

Chapter 10. Conclusions and Outlook

Moreover, as a novelty a rule-based approach for the (semi-) automated identifi-
cation and recording of traceability links is combined with information retrieval
techniques. This on the one hand is limited to a justifiable effort for rule definition
and on the other hand results in a high precision and recall. The rules are defined
using XML Schema Definition (XSD), and a metamodel is created for their integra-
tion into the repository. During rule processing n-gram based string matching as
an information retrieval technique is utilized for the calculation of similarities of the
model elements’ identifiers.

Tool support with EMFTrace is implemented as a contribution to show and
support the applicability of the thesis’ concepts. EMFTrace is developed as an
extensible platform based on Eclipse technology (cf. Chapter 8). It realizes the
traceability concept and connects existing CASE tools, such as jUCMNav, Visual-
Paradigm, and Protégé, for the modeling of the design artifacts from the GOAD
method. For the integration of all artifacts, EMFTrace uses the EMFStore model
repository and provides EMF-based metamodels for each artifact. As a benefit in
comparison to other approaches it relies on standard modeling languages, such as
URN and UML, as far as possible, since they are quite stable and seldom subject
of changes. Moreover, EMFTrace manages traceability links and rules also using
EMF-based metamodels. It comprises a rule engine for rule processing, a link man-
ager for traceability link establishment, and it provides capabilities to manage traces
as chains of traceability links as well as validation checks regarding consistency to
maintain the links. EMFTrace is accompanied by a custom tool called EMFfit.
This tool has been implemented to support the Global Analysis activities because
tool support was not existing before. EMFfit also realizes the hypertext concept for
informal textual descriptions.

10.2 Future Work

Regarding the Goal Solution Scheme different aspects of improvement can be dis-
cussed for future work. The GSS already was discussed and applied for different
quality goals, such as evolvability, security, or usability. Additionally, prediction
approaches for quality properties of an architecture could be integrated, such as
Palladio [BKR07] for performance prediction. Furthermore, other domains can be

176

10.2. Future Work

analyzed if an adaptation of the scheme is necessary, for example, the design of
embedded systems, distributed systems, highly reliable systems, or a design specifi-
cally aimed at the goal efficiency via multi-core usage. This work has already started
[RPB11, Neu11]. Moreover, the stock of solution instruments on the lower layer of
the GSS, the so-called architect’s toolbox, should continuously be extended and
enhanced.

For software evolution the mainly forward-looking engineering perspective of this
thesis’ design method should be examined regarding a combination with a reengi-
neering approach. One work with a reengineering perspective that utilizes a metrics-
based approach for evaluating and improving the evolvability of existing systems is
the one of Brcina [Brc11]. The support of established methods for architectural
evaluation especially regarding evolvability is questionable. Existing works on eval-
uation should be analyzed and improved if necessary. Besides, the applicability of
the GSS with aspect-oriented approaches that target on cross-cutting concerns and
with transformation-based, model-driven design approaches would be interesting.

The traceability concept, which was implemented in this thesis with the tool
EMFTrace, could be integrated further with requirements traceability approaches.
This would result in the integration of further artifacts into the repository. Moreover,
rules for maintaining traceability links as proposed by the event-based approach of
Mäder [Mäd09] should be integrated with the approach of this thesis, which re-
quires an extension of the rule engine. Finally, further effort should be invested
in the utilization of traceability links, for example, regarding change impact anal-
ysis, consistency checks, or checks for the coverage of requirements by design and
implementation artifacts.

177

Appendix A

Case Study Artifacts

A.1 Factor Tables

This section lists the factor tables of the robot case study.

Table A.1: Organizational factors of the case study

Organizational
Factor

Flexibility &
Changeability

Impact on
Architecture

O1 Management
O1.1 Build vs. buy

There is a preference
to use mature free and
open source software or
to build.

If justified, buying would
be an option.

There is small impact on
meeting the schedule.

O1.2 Schedule vs. functionality
There is a preference for
schedule over new fea-
tures. Basic functionality
should be revised first.

Old components could be
reused with new compo-
nents.

Support for adapters be-
tween new and old com-
ponents has to be en-
sured.

O1.3 Environment
Next to the university,
the company ML is in-
volved.

Decisions are made in co-
operation, but each part-
ner has its own prefer-
ences.

Both partners have to de-
cide on the architecture
in common.

179

Appendix A. Case Study Artifacts

Table A.1: Organizational factors of the case study (cont.)

Organizational
Factor

Flexibility &
Changeability

Impact on
Architecture

O1.4 Business goals
The flexibility and evolv-
ability of the whole sys-
tem shall be recovered for
future demands. Robots
and their software shall
be used in real world sce-
narios as for example as
a service robot in a do-it-
yourself store.

The old system has to
continue operating; there
cannot be a down time.

A migration strategy
with adapters between
old and new components
has to be established.

O2 Staff skills, interests, strengths, weaknesses
O2.1 Application domain

Knowledge about neces-
sary libraries and frame-
works is available in the
team.

Team members can be
trained.

There is a small impact
on usability of the design.

O2.2 Software design & architectural design
Basic design knowledge is
present in the team.

Advanced architectural
design knowledge can
be trained by consult-
ing experts from the
university.

There is a moderate im-
pact on design quality.

O2.3 Specialized implementation techniques
All team members have
the necessary implemen-
tation skills.

New skills can be trained
if necessary.

There is small impact on
usability of the code and
on the code reviews.

O2.4 Specialized analysis techniques such as architectural assessments
Basic analysis knowledge
is present in the team.

Advanced knowledge can
be trained by consulting
experts available at the
university.

There is a moderate im-
pact on design quality.

180

A.1. Factor Tables

Table A.1: Organizational factors of the case study (cont.)

Organizational
Factor

Flexibility &
Changeability

Impact on
Architecture

O3 Process and development environment
O3.1 Development platform

The main programming
language is C++, some
parts are developed in
AngelScript.

There is no flexibility
in the programming lan-
guage. For scripting
maybe Python will be
used.

The system has to be
implementable in C++,
compatible libraries can
be used. Maybe for the
GUI some parts can be
developed with C#.

O3.2 Development process and tools
Used IDEs are for exam-
ple Eclipse and Kate or
partly Visual Studio Ex-
press for C#.

The choice for tools of
the development environ-
ment is flexible within
the constraints of sup-
ported languages and op-
erating systems.

O3.3 Configuration management and production process and tools
Configuration manage-
ment has to deal with
different OS versions
and library versions
on several computers.
There are two productive
environments at ML and
at the university. CMake
is used as the build tool.
Automatic nightly builds
are planned.

There might be a strat-
egy to align the versions
of the used libraries, but
there will never be the
same environment on all
computers.

The architecture has to
consider especially which
versions of libraries have
to be adapted for new
features. A concept
for structuring releases
and current development
forks, which maps to
trunk, branches, and tags
in the versioning system
has to be established.

O3.4 Testing process and tools
Used tools are CTest and
CDash. Automized unit
tests are introduced, re-
views follow.

Additional tests and re-
views can be introduced
if necessary.

There is an impact on
test coverage.

181

Appendix A. Case Study Artifacts

Table A.1: Organizational factors of the case study (cont.)

Organizational
Factor

Flexibility &
Changeability

Impact on
Architecture

O3.5 Release process and tools
Releases have to be well
documented, reviewed
and tested. Robots have
to run through a test
track.

A release can be shifted
if not sufficiently doc-
umented, reviewed, or
tested.

There is a moderate im-
pact on the schedule.

O4 Development schedule
O4.1 Time-to-market

The rework of 80% of
the features should be
complete at the end
of 2010 for use with
completely new software
components.

Some of the features
should be revised imme-
diately, others are flexi-
ble.

There is an impact on
the prioritization of the
features for design. Old
system parts should be
reusable with adapters.

O4.2 Delivery of features
The features to revise are
prioritized.

The features are nego-
tiable.

There is a small impact
on meeting the schedule.

O4.3 Release schedule
There are regular re-
leases at ML approx-
imately three to four
times a year.

The feature release cycle
is flexible.

The reengineering should
not disturb maintenance
releases at ML.

O5 Development budget
O5.1 Head count

There are about 10 devel-
opers at the university, 3
at ML.

The number of devel-
opers active in reengi-
neering in parallel varies
around 3-5. Some stu-
dents might be available.

There is a moderate im-
pact on the schedule.

O5.2 Cost of development tools
Development tools, as
IDEs and analysis tools,
are available for free.

There might be a small
budget for an academic
license fee.

Analyzability of the old
system for dependencies
depends slightly on an
appropriate tool.

182

A.1. Factor Tables

Table A.2: Technological factors of the case study

Technological
Factor

Flexibility &
Changeability

Impact on
Architecture

T1 General-purpose hardware
T1.1 Processor

The processor is cur-
rently an Intel DualCore
with 2GHz. It has to be
a low voltage variant.

Increases in processor
speed are frequent but
a processor changes
approximately every 1 to
2 years usually with a
completely new robot.

A change of the processor
should be transparent for
the system but should in-
crease speed. The design
has to ensure little over-
head.

T1.2 Network
Network hardware sup-
porting the Wi-Fi stan-
dards 802.11b/g/n are
used.

The hardware changes
usually only with a com-
pletely new robot ap-
proximately every 1 to 2
years.

Only robots using
802.11n allow higher
data rates for exam-
ple to distribute image
processing.

T1.3 Memory
Between 1 and 2 GByte
RAM are used.

The hardware changes
usually only with a com-
pletely new robot ap-
proximately every 1 to 2
years.

The memory won’t be a
limiting factor.

T2 Domain-specific hardware
T2.1 Laser

For example a SICK S
300 is used.

The hardware changes
usually only with a com-
pletely new robot ap-
proximately every 1 to 2
years.

Impacts the robot config-
uration because of spe-
cific driver, might be OS
specific. The laser has a
safeguard that has to be
dealt with during naviga-
tion.

183

Appendix A. Case Study Artifacts

Table A.2: Technological factors of the case study (cont.)

Technological
Factor

Flexibility &
Changeability

Impact on
Architecture

T2.2 Camera
There are different
cameras that are for
example connected
via Firewire, USB or
GigaBit-Ethernet.

The hardware changes
usually only with a com-
pletely new robot ap-
proximately every 1 to 2
years.

A change of the camera
should be transparent to
the system if an appro-
priate driver is available.
A new camera might in-
crease the system load
due to increased image
data.

T3 Software technology
T3.1 Operating system

The OS on the robot is
usually linux but might
be windows as well, and
x64 support is necessary
for the developer envi-
ronment. There might
be additional computers
with linux or windows co-
operating with the robot.

Changes to the OS oc-
cur frequently due to new
release of linux distribu-
tions.

Used libraries have to
be compatible with the
OS version. Differences
between linux and win-
dows in handling threads
have to be considered in
the design maybe using a
wrapper.

T3.2 User interface
The user interface is built
with the Qt library to
be platform independent.
Small parts are devel-
oped with C#.

The usual library version
updates have to be ex-
pected.

There might be interde-
pendencies between Qt,
C# and other libraries to
be considered in the de-
sign.

T3.3 Software components
Different libraries, which
are available for free, are
used, such as Boost, STL,
Qt, or Eigen.

Changes to the libraries
are frequent. The li-
braries may be updated if
essential new features are
included.

Version updates of li-
braries should be trans-
parent for the system.

184

A.1. Factor Tables

Table A.2: Technological factors of the case study (cont.)

Technological
Factor

Flexibility &
Changeability

Impact on
Architecture

T3.4 Implementation language
The implementation lan-
guage is C++. Some UI
parts may be developed
with C#.

There is no flexibility.
Maybe C++0x will be
used.

The compilation of li-
braries has to be assured
to work.

T4 Architecture technology
T4.1 Architecture styles

The old architectural
style is a blackboard
architecture.

The blackboard concept
is likely to be changed,
because of known prob-
lems with the architec-
ture.

The new design should
retain the flexibility and
overcome the known de-
ficiencies not necessar-
ily sticking to the black-
board concept.

T4.2 Domain-specific or reference architectures
ROS is a known open
source framework for a
robot operating system.

ROS is open-source and
changes frequently but
won’t be used directly.

Some concepts of ROS
can inspire the design
of the new architecture
of the system. Maybe
adapters to parts of ROS
will be developed.

T4.3 Architecture description languages
No specific ADL will
be used but UML could
serve as a modeling lan-
guage.

For the mature UML
standard no major re-
visions are expected.
Knowledge can be
trained.

The design can be ex-
pressed using UML dia-
grams.

T4.4 Product-line technologies
There is a need for
different configurations
for various robots but
product-line develop-
ment has no priority.

Knowledge about feature
modeling for product-line
variability can be trained
by experts at the univer-
sity.

The design could include
variability. The robot-
specific configuration is
handled with configura-
tion files.

185

Appendix A. Case Study Artifacts

Table A.2: Technological factors of the case study (cont.)

Technological
Factor

Flexibility &
Changeability

Impact on
Architecture

T5 Standards
T5.1 Operating system interface

The operating system in-
terface is Linux/UNIX by
default. Windows might
be used to.

The standard is sta-
ble, but there might
be changes in accompa-
nied tools in different
Linux distributions and
versions.

There is an impact com-
ponents for hardware
drivers.

T5.2 Database
A SQL database might
be used in the future for
storing large data struc-
tures and for cooperative
changes of this data.

Database integration cur-
rently has no priority.

Running a database im-
pacts the hardware re-
quirements. An integra-
tion in the system should
be easy with adapters to
the serialization compo-
nent.

T5.3 Data formats
Data should be serialized
with XML. Binary for-
mats are necessary for
video, audio or images.
The video format should
be compatible to MPEG
or AVI.

The XML standard is
stable.

There is a large impact
on the component for se-
rialization. Especially
the binary formats need
to be portable.

T5.4 Communication
For the communication
between distributed com-
ponents TCP/IP or UDP
are used.

The standards are stable. There is moderate im-
pact on the components
for serialization and inter
process communication.

186

A.1. Factor Tables

Table A.2: Technological factors of the case study (cont.)

Technological
Factor

Flexibility &
Changeability

Impact on
Architecture

T5.5 Algorithms and techniques
There are domain spe-
cific algorithms and tech-
niques for robotics and
image processing.

Some parts of the field
are quite mature, but
new research results fre-
quently arise.

The is a moderate in-
fluence on components
involved in image pro-
cessing, navigation,
pose recognition, person
tracking.

T5.6 Coding conventions
A generally accepted cod-
ing standard does not ex-
ist.

Project specific coding
conventions are defined,
which should remain sta-
ble.

Adherence to the coding
conventions has a major
impact on understand-
ability and code quality
in all components.

187

Appendix A. Case Study Artifacts

Table A.3: Product factors of the case study

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P1 Functional features
P1.1 Data communication
P1.1.1 Non-blocking communication

The communication in-
frastructure should en-
sure that components
do not block each other
because of using the
same data connections.

This feature is more im-
portant for inter process
communication than for
intra process communi-
cation. The data flow
may vary from few and
frequent to large and
slow data exchange.

The design has to
ensure an appropriate
non-blocking data flow
between the compo-
nents regardless of the
exchanged data and
little delay.

P1.1.2 Configuration of communication
The initialization of
interacting components
has to be enabled by
configuration files.

For some parts of the
system a dynamic
lookup strategy for
suitable components in
a processing chain may
be used.

Configuration files have
to be covered by the se-
rialization components.

P1.2 Serialization
Data (objects) have to
be (de-)serialized with
a unified strategy, in
different data format
types (XML, binary,
plain text) and to
different targets (file,
console, TCP, STL
streams).

New data formats can
be introduced every few
months, but all are cov-
ered by the specified
types.

This feature affects all
components that deal
with saving and loading
data as well as trans-
fering data via network
connections. Serializa-
tion is influenced by
portability.

188

A.1. Factor Tables

Table A.3: Product factors of the case study (continued)

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P1.3 Logging
There should be a
unified logging strategy
with different log-levels,
filter capabilities and
targets as ‘cout’ or
files. Logs should be
transferable with a data
channel.

The factor is stable,
changes to the serializa-
tion should not influ-
ence logging.

There is a moderate
impact on the compo-
nents for serialization
and communication and
a minor influence on
all components that use
the logging because of
its cross-cutting nature.

P1.4 Object (person) tracking
Modular design of
detection and track-
ing components is an
important demand.

Due to changing scenar-
ios there is a demand
on recombining detec-
tors for tracking.

There is a minor influ-
ence on the serialization
component due to spe-
cial data types used in
this domain.

P2 Quality features
P2.1 Evolvability
P2.1.1 Testability

New system compo-
nents, on which other
components rely on,
have to be well tested
before productive usage.

This constraint is flex-
ible for experimental
components.

This feature affects the
test plan, the release cy-
cle, and the quality as-
surance for the develop-
ers.

P2.1.2 Modifiability
Hardware components
(e.g., laser, camera)
should be replaceable
by new ones without
changing anything but
the driver components.

There are many plat-
forms with different
combinations of hard-
ware. New data types
may emerge.

There is a major influ-
ence on the communi-
cation and serialization
interfaces and compo-
nents.

189

Appendix A. Case Study Artifacts

Table A.3: Product factors of the case study (continued)

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P2.1.2.1 Extensibility
Integrating a new com-
ponent (e.g., a hardware
driver) should only need
few overhead effort in
the configuration with
less than 50LoC.

New components reg-
ularly appear due to
new hardware or due
to experimental soft-
ware components that
are target of research.

There is a major influ-
ence on the configura-
tion and communication
components.

P2.1.2.2 Portability
The system has to man-
age hardware drivers
running on different op-
erating systems.

A driver for a hardware
component changing ev-
ery few months might
at first only be available
for Windows.

The design of the com-
munication system has
to support interoper-
ability between different
OS. There is also an in-
fluence on the serializa-
tion component.

P2.1.2.3 Variability
A variable recombina-
tion of existing compo-
nents (e.g., detectors) to
new ones (e.g., for a new
person tracker) is desir-
able.

This demand does mat-
ter in different domain-
specific applications of
the robot scenario.

This factor has a mod-
erate influence on ba-
sic and domain-specific
components and inter-
faces.

P2.1.3 Reusability
There should be a way
to continue working
with old component
(blackboard clients) in
the new system.

With a migration strat-
egy the old and new sys-
tem have to work to-
gether until the old sys-
tem is phased out.

There is a moderate in-
fluence on the communi-
cation infrastructure.

190

A.1. Factor Tables

Table A.3: Product factors of the case study (continued)

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P2.2 Efficiency
P2.2.1 Time behavior

For a high-performance
data exchange different
types and amounts
of data have to be
considered: numerous
but lesser sensor data
(<KB), middle size but
infrequent map data
(MB), continuous large
image or audio data
(MB).

The amount of data at
least increases with a
new camera or due to
more demanding nav-
igation scenarios with
larger map data.

There is a major in-
fluence on the proces-
sor load, on compo-
nents that are respon-
sible for data commu-
nication, and on dis-
tributability for a small
delay in transferring the
data.

P2.2.2 Resource utilization
After removing (delet-
ing) a component from a
communication chain of
the running system ide-
ally all resources should
be freed.

If resource consumption
becomes a limiting fac-
tor, this requirement
will become a must, oth-
erwise freeing resources
with a restart might be
sufficient.

The design should
ensure monitoring of
loaded components in
the running system and
monitoring of threads.

P2.3 Reliability
For fault handling
human-readable ex-
ception messages and
monitoring of the sys-
tem should be provided.

A strategy for error
messages has to be de-
signed, but the feature
is stable.

This feature affects the
interfaces and usability
of all modules (clients).

P2.3.1 Maturity
Only mature and well
tested components
should be included in
official releases.

The maturity may vary
for experimental and
productive components.

This feature affects all
components that should
make it into an official
release.

191

Appendix A. Case Study Artifacts

Table A.3: Product factors of the case study (continued)

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P2.3.2 Fault tolerance
P2.3.2.1 Error handling

Every module should
handle errors in its re-
sponsibility to avoid rip-
ple effects because of
errors. An exception
should not crash the
whole system.

The fulfillment of this
feature may vary for ex-
perimental and produc-
tive components.

This feature affects all
components that should
make it into an official
release. All occurring
exceptions have to be
caught somewhere.

P2.3.2.2 Crash avoidance
Critical components can
reside in an own process
if appropriate, to sep-
arate them from other
components and reduce
the negative effects of a
possible crash.

The criticality of the
modules has to be de-
cided and can change
over time.

The design has to
enable intra and inter
process communica-
tion. Modules with
extensive data commu-
nication should share
one process if possible.

P2.3.3 Recoverability
A component should
send a heartbeat signal
to enable to trigger ap-
propriate means for re-
covery, e.g., restart of a
component or the whole
system.

Recovery strategies can
be established by com-
ponents for themselves
as well.

All components have to
implement an admin-
istrative interface for
a heartbeat signal and
and have to deal with
error handling.

P2.4 Distributability
Components should
work together also in a
distributed environment
with different robots
and operating systems.

Distribution of compo-
nents is target to future
work.

There is a major influ-
ence on the communi-
cation components since
they have to support
data exchange between
remote systems. For the
GUI a C# interface on
a remote machine might
be used.

192

A.1. Factor Tables

Table A.3: Product factors of the case study (continued)

Product
Factor

Flexibility &
Changeability

Impact on
Architecture

P2.5 Security
In a distributed set-
ting the communica-
tion between compo-
nents should be secure.

Security features are
target of future work.

There is the risk that
many components of
the system are affected
by introducing security
concepts.

P2.6 Usability
The configuration for
different components to
be combined has to be
so easy that it takes an
expert only half an our
to get them to work.

The feature is flexible
in the time constraints,
but nevertheless config-
uration should be man-
ageable also for the in-
experienced user.

This factor affects the
structure and manage-
ment of configuration
files and the design of
data communication in-
terfaces.

P3 Service
P3.1 Maintenance of software

Service patches regu-
larly have to be applied
in a productive setting.

Either ML or other ex-
perts from university
apply the patches, not
the customers.

A life update feature on
the running system is
imaginable if effort is re-
duced.

P4 Product cost
P4.1 Hardware budget

The budget for hard-
ware is limited, which
restricts the memory
capacity and processor
power of the robots.

There might be a bud-
get for new hardware in
the future to improve
computing power.

The design of the
system has to meet
current hardware con-
straints, no hardware
can be build to assure a
working design.

P4.2 Software budget
There is a limited bud-
get for licensing off-the-
shelf software. Usually
only free open source
software is used.

If inevitable, necessary
software will be bought.

This factor affects the
design of the system
and maybe the schedule
since free open source
software is not always
available.

193

Appendix A. Case Study Artifacts

A.2 IssueCards

This section illustrates some exemplary issue cards of the robot case study.

Table A.4: Issue card Skills of the case study

Skills

The developers are good programmers but there might be some deficiencies with
certain technologies and knowledge for architectural design.

Influencing Factors:

O2.2 There are only few developers with experience in software design and ar-
chitectural design.

O2.4 There are only few developers with experience in specialized analysis tech-
niques such as architectural assessments.

Solution:

There are two strategies to perform proper architectural design.

Strategy: Team members could be trained.
Training for specific design aspects could be introduced for example for architec-
tural patterns.

Strategy: Consultancy.
Work together with specialists from the software systems department at the uni-
versity. Invite them as consultants for input and feedback for the redesign of the
system.

Related Issues:

194

A.2. IssueCards

Table A.5: Issue card Serialization of the case study

Serialization

In the old system there are several different inconsistent ways to save and load
data: plain text files for parameters or for configuration or XML files. Serialization
to files and data streams or to the console is necessary.

Influencing Factors:

T3.4 With C++ it is difficult to save types because there is no built-in reflection
mechanism.

T5.3 XML is used as a data format for configuration files.
T5.4 Communication via TCP needs serialization.
P1.1.2 Data communication needs serialization for configuration files.
P1.2 The serialization feature includes textural, binary, or XML files as well as

output to the network via TCP, to the console or into STL data streams.
P1.3 “Log files” for data should be stored using the serialization component.
P2.2.1 Performance is important for binary data that are transmitted via inter

process communication.
P2.1.2.2 Portability: Serialization has to deal with components that are work-

ing together on different operation systems.

Solution:

There has to be a common and unified serialization component that is accessible
and used in every part of the system where loading, saving, or transferring data
in a serialized form is necessary.

Strategy: Use existing serialization library.
There are free and open source serialization libraries such as “libs11n” and “boost
serialization” that could be used. They support object serialization and can se-
rialize to XML files. It has to be considered if they are flexible enough for all
demands.

195

Appendix A. Case Study Artifacts

Table A.5: Issue card Serialization of the case study (cont.)

Strategy: Build an own serialization component.
If the available libraries are not flexible enough, an own serialization component
could be built that can serialize to files, streams, the console in textual, binary or
XML format. For XML serialization the “libXML2” could be used. The reflection
pattern could be used for a non-intrusive approach for object serialization.

Related Issues:

O1.1 Build vs. buy: There is a preference to use mature free and open source
software or to build.

196

A.2. IssueCards

Table A.6: Issue card Hardware Changes of the case study

Changes in general-purpose and domain-specific hardware

Changes in both general-purpose and domain-specific changes are expected to
occur regularly when purchasing a new robot. The effort and time for adapting
to the new hardware should be reduced to a minimum.

Influencing Factors:

T1.1 Processors, T1.2 Network, T1.3 Memory Changes frequently occur
as technology improves. Advantage should be taken from increased proces-
sor speed, memory or disk capacity if new hardware is available.

T2.1 Laser, T2.2 Camera Changes to the domain-specific hardware can be
important for certain research approaches. A camera is replaced typically
with every new robot. With more image data the data rate and memory
requirements are affected.

Solution:

The software that directly operates with the domain-specific hardware should be
separated. Regarding improved general-purpose hardware algorithms should scale
and the design has to consider multi core technology.

Strategy: Encapsulate domain-specific hardware.
The drivers for the domain-specific hardware such as cameras should be encap-
sulated in a software component. Other software components should not depend
directly on the drivers and have to communicate with the driver modules in a
way that allows an easy exchange. The drivers might be available only for certain
operating systems as well, so portability in the communication between software
components on different operating systems has to be ensured.

Strategy: Use multi threading and parallel data processing.
The algorithms and software components should be designed to take advantage
from multi core processors by using threads and a design that allows parallel data
processing by different components.

197

Appendix A. Case Study Artifacts

Table A.6: Issue card Hardware Changes of the case study (cont.)

Related Issues:

P2.1.2 Modifiability/Portability: New drivers for domain-specific hardware may
only be available for certain operating systems. Their exchange should not
produce ripple effects in changing software components.

P4.1 The hardware budget is limited.

198

A.2. IssueCards

Table A.7: Issue card Software Changes of the case study

Changes in software technology

Changes in the used Linux distributions and software libraries such as Boost or
Qt frequently occur. Often different versions are in use in parallel. The effort for
updating to the latest versions should be minimal.

Influencing Factors:

T3.1 Operating system, T3.2 User interface, T3.3 Software

components, T3.4 Implementation language The different libraries that
are used, are updated frequently. If new features are introduced in newer
versions, advantage should be easily taken of it with low effort.

Solution:

There has to be an easy way to configure the necessary libraries to be able to
update their versions.

Strategy: Encapsulate software libraries.
Software libraries could be encapsulated in special components to reduce ripple
effects because of changes in the external interfaces.

Strategy: Use standards.
Maybe the early introduction of the C++0x standard can provide helpful features
for development and reduce the effort in contrast to a workaround an a later
migration.

Strategy: Dynamic loading of libraries.
Integrate a mechanism that enables dynamic loading of libraries without directly
specifying a library version in a configuration file.

Related Issues:

T5.1 Compatibility with different Linux distributions is an issue that often leads
to the necessity to build libraries oneself from source code.

199

Appendix A. Case Study Artifacts

A.3 UML Diagrams

This section depicts some UML diagrams of the architectural view documentation
of the robot case study.

<<component>>
ChannelManager

<<component>>
Channel

ChannelBuffer

ChannelRead ChannelWrite

ConcreteChannel

<<component>>
Channel

ChannelBuffer

ChannelFullAccessIf

<<component>>
Serialization

BinarySerializerIf
ChannelBuffer

ChannelRead ChannelWrite

ConcreteChannel

Figure A.1: Structural view of the ChannelManager

200

A
.3.

U
M
L
D
iagram

s

<<component>>
Framework

<<component>>
ChannelManager

<<component>>
NameRegistry

<<component>>
Authori tyManager

<<component>>
UnitLoader

<<component>>
LinkLoader

AddAliasIf

<<component>>
Transformer

TransformIf

<<component>>
Author i ty

ChannelRestrictedAccessIf

<<component>>
ChannelProxy

Authori tyRegisterIf

ResolveNameIf

<<component>>
AliasLoader

<<component>>
ConfigLoader

RegisterLoaderIf

Capabil i tyIf

AddLinkI f

ChannelFullAccessIf

Author i ty I f

ChannelRestrictedAccessIf

RegisterLoaderIf

<<component>>
RemoteFramework

RemoteClientTCPIf

<<component>>
Serialization

XMLSerializerIf

BinarySerializerIf TxtSerializerIf

<<component>>
ChannelManager

<<component>>
NameRegistry

<<component>>
Authori tyManager

<<component>>
UnitLoader

<<component>>
LinkLoader

AddAliasIf

<<component>>
Transformer

TransformIf

<<component>>
Author i ty

ChannelRestrictedAccessIf

<<component>>
ChannelProxy

Authori tyRegisterIf

ResolveNameIf

<<component>>
AliasLoader

<<component>>
ConfigLoader

RegisterLoaderIf

Capabil i tyIf

AddLinkI f

ChannelFullAccessIf

ChannelRestrictedAccessIf

<<component>>
ChannelProxy

Figure A.2: Structural view of the communication framework

201

A
ppendix

A
.

C
ase

Study
A
rtifacts

framework : Framework

channelManager : ChannelManager

unit : Unit

authority : Authority

channelProxy :
ChannelProxy

channelWrite :
ChannelWrite

concreteChannel :
ConcreteChannel

1: construct
2: construct

3: getChannel()

3.1.2:

3.1: getConcreteChannel()

3.3:
3.2: construct

4: write()

4.2:
4.1: construct

5: destroy / finish()

3.1.1: construct

5.1: finishWrite()

Figure A.3: Behavioral view of the procedure to write into a Channel

202

A
.3.

U
M
L
D
iagram

s

concreteChannel1 :
ConcreteChannel

channelWrite1 :
ChannelWrite

remoteFramework1 : RemoteFramework

channelRead :
ChannelRead

serialization1 : Serialization remoteFramework2 : RemoteFramework concreteChannel2 :
ConcreteChannel

channelWrite2 :
ChannelWrite

serialization2 : Serialization

3:

2: finishWrite()
2.1: ChannelSubscriber::invoke()

1: subscribe()

2.2:
2.3: construct

2.4: readSerialized()

2.5:

2.4.1: BinarySerializer::serialize()

2.4.2:

2.6: TCPClient::write()

2.6.1: write()

2.6.1.2:

2.6.1.1:

2.6.2: writeSerialized()

2.6.3:

2.6.2.1: BinarySerialized::deserialize()

2.6.2.2:

Figure A.4: Behavioral view of the communication between remote frameworks

203

Appendix B

Traceability Artifacts

B.1 Traceability Rule Catalog

This section contains the XML schema definition for the traceability rules and the
list of traceability rules that were specified with XML. Listing B.1 presents the XSD
for the traceability rules. Table B.1 lists the rules in a simplified representation
style, and Listing B.2 shows a cutout of the rule catalog as XML representation.

Listing B.1: The XML Schema Definition for the traceability rules

1 <?xml version="1.0" encoding="UTF-8"?>
2 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
3 <xs:element name="RuleCatalogue">
4 <xs:complexType>
5 <xs:sequence>
6 <xs:element maxOccurs="unbounded" ref="Rule"/>
7 </xs:sequence>
8 <xs:attribute name="Description" use="required"

type="xs:string"/>
9 <xs:attribute name="Name" use="required" type="xs:NCName"/>

10 </xs:complexType>
11 </xs:element>
12 <xs:element name="Rule">
13 <xs:complexType>
14 <xs:sequence>
15 <xs:element maxOccurs="unbounded" ref="Elements"/>
16 <xs:element ref="Conditions"/>
17 <xs:element maxOccurs="unbounded" ref="Actions"/>
18 </xs:sequence>

205

Appendix B. Traceability Artifacts

19 <xs:attribute name="Description" use="required"
type="xs:string"/>

20 <xs:attribute name="RuleID" use="required" type="xs:NCName"/>
21 </xs:complexType>
22 </xs:element>
23 <xs:element name="Elements">
24 <xs:complexType>
25 <xs:attribute name="Alias" use="required" type="xs:NCName"/>
26 <xs:attribute name="Type" use="required" type="ElementType"/>
27 </xs:complexType>
28 </xs:element>
29 <xs:element name="Conditions">
30 <xs:complexType>
31 <xs:choice maxOccurs="unbounded">
32 <xs:element ref="BaseConditions"/>
33 <xs:element ref="LogicConditions"/>
34 </xs:choice>
35 <xs:attribute name="Type" use="required"

type="LogicConditionType"/>
36 </xs:complexType>
37 </xs:element>
38 <xs:element name="Actions">
39 <xs:complexType>
40 <xs:attribute name="ActionType" use="required"

type="ActionType"/>
41 <xs:attribute name="LinkSource" use="required" type="xs:NCName"/>
42 <xs:attribute name="LinkTarget" use="required" type="xs:NCName"/>
43 <xs:attribute name="LinkType" use="required" type="xs:NCName"/>
44 </xs:complexType>
45 </xs:element>
46 <xs:element name="LogicConditions">
47 <xs:complexType>
48 <xs:choice minOccurs="0" maxOccurs="unbounded">
49 <xs:element ref="BaseConditions"/>
50 <xs:element ref="LogicConditions"/>
51 </xs:choice>
52 <xs:attribute name="Type" use="required"

type="LogicConditionType"/>
53 </xs:complexType>
54 </xs:element>
55 <xs:element name="BaseConditions">

206

B.1. Traceability Rule Catalog

56 <xs:complexType>
57 <xs:attribute name="Source" use="required" type="ScopedElement"/>
58 <xs:attribute name="Target" type="ScopedElement"/>
59 <xs:attribute name="Type" use="required"

type="BaseConditionType"/>
60 <xs:attribute name="Value"/>
61 </xs:complexType>
62 </xs:element>
63 <xs:simpleType name="LogicConditionType">
64 <xs:restr ict ion base="xs:string">
65 <xs:enumeration value="And"/>
66 <xs:enumeration value="Or"/>
67 <xs:enumeration value="Not"/>
68 <xs:enumeration value="Xor"/>
69 </xs:restr ict ion>
70 </xs:simpleType>
71 <xs:simpleType name="BaseConditionType">
72 <xs:restr ict ion base="xs:string">
73 <xs:enumeration value="Equals"/>
74 <xs:enumeration value="Contains"/>
75 <xs:enumeration value="SimilarTo"/>
76 <xs:enumeration value="GreaterThan"/>
77 <xs:enumeration value="LesserThan"/>
78 <xs:enumeration value="IsParent"/>
79 <xs:enumeration value="NotNull"/>
80 </xs:restr ict ion>
81 </xs:simpleType>
82 <xs:simpleType name="ActionType">
83 <xs:restr ict ion base="xs:string">
84 <xs:enumeration value="CreateLink"/>
85 </xs:restr ict ion>
86 </xs:simpleType>
87 <xs:simpleType name="ElementType">
88 <xs:restr ict ion base="xs:string">
89 <!−− NCName(|NCName)∗ or ’*’ −−>
90 <xs:pattern

value="([\i-[:]][\c-[:]]*(\|([\i-[:]][\c-[:]]*))*)|*"/>
91 </xs:restr ict ion>
92 </xs:simpleType>
93 <xs:simpleType name="ScopedElement">
94 <xs:restr ict ion base="xs:string">

207

Appendix B. Traceability Artifacts

95 <!−− E l emen t : :A t t r i b u t −> NCName(::NCName)∗ −−>
96 <xs:pattern value="[\i-[:]][\c-[:]]*(::([\i-[:]][\c-[:]]*))*"/>
97 </xs:restr ict ion>
98 </xs:simpleType>
99 </xs:schema>

Table B.1: Rules for traceability link establishment

ID Description (adopted from Source)

Rule01 Find UML/URN-Actors that share a similar name ([FZS03])
Elements Actor e1, Actor e2
Conditions And(NotNull("e1::id"), NotNull("e2::umlID"),

SimilarTo("e1::name", "e2::name"))
LinkType Overlap(e1 -> e2)

Rule02 Find URN-Actors and UML-Classes that share a similar name
([FZS03])

Elements Actor e1, Class e2
Conditions And(NotNull("e1::id"), NotNull("e2::umlID"),

SimilarTo("e1::name", "e2::name"))
LinkType Overlap(e1 -> e2)

Rule03 Find URN-Resources and UML-Classes that share a similar name
([FZS03])

Elements IntentionalElement e1, Class e2
Conditions And(NotNull("e2::umlID"), Equals("e1::type", "Resource"),

SimilarTo("e1::name", "e2::name"))
LinkType Overlap(e1 -> e2)

Rule04 Find URN-Goals/Softgoals/Tasks and UML-Operations that
share a similar name ([FZS03])

Elements IntentionalElement e1, Operation e2
Conditions And(Or(Equals("e1::type", "Task"), Equals("e1::type",

"Softgoal"), Equals("e1::type", "Goal")),
SimilarTo("e1::name", "e2::name"))

LinkType Overlap(e1 -> e2)

208

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule05 Find URN-Goals/Softgoals/Tasks and UML-UseCases that share
a similar name ([FZS03])

Elements IntentionalElement e1, UseCase e2
Conditions And(Or(Equals("e1::type", "Task"), Equals("e1::type",

"Softgoal"), Equals("e1::type", "Goal")),
SimilarTo("e1::name", "e2::name"))

LinkType Overlap(e1 -> e2)

Rule06 Find UML-StateMachines and UML-UseCases that share a simi-
lar name ([JZ09])

Elements StateMachine e1, UseCase e2
Conditions And(SimilarTo("e1::name", "e2::name"))
LinkType Overlap(e1 -> e2)

Rule07 Find an UML-StateMachine that seems to be an evolution of an-
other UML-StateMachine ([JZ09])

Elements StateMachine e1, StateMachine e2
Conditions And(Contains("e1::name", "e2::name"))
LinkType Evolution(e1 -> e2)

Rule08 Find UML-Interactions that implement UML-UseCases ([JZ09])
Elements Interaction e1, UseCase e2
Conditions And(Equals("e1::name", "e2::name"))
LinkType Implementation(e1 -> e2)

Rule09 Find UML-Interactions that refine UML-UseCases ([JZ09])
Elements Interaction e1, UseCase e2
Conditions And(Contains("e1::name", "e2::name"))
LinkType Refinement(e1 -> e2)

Rule10 Find UML-Interactions that satisfy UML-UseCases ([JZ09])
Elements Interaction e1, UseCase e2
Conditions And(SimilarTo("e1::name", "e2::name"))
LinkType Satisfiability(e1 -> e2)

Rule11 Find UML-Classes that implement UML-UseCases ([JZ09])
Elements Class e1, UseCase e2
Conditions And(NotNull("e1::umlID"), Equals("e1::name", "e2::name"))
LinkType Implementation(e1 -> e2)

209

Appendix B. Traceability Artifacts

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule12 Find UML-Interactions that refine UML-Classes ([JZ09])
Elements Interaction e1, Class e2
Conditions And(NotNull("e2::umlID"), Contains("e1::name", "e2::name"))
LinkType Refinement(e1 -> e2)

Rule13 Find UML-Interactions that use UML-Classes ([JZ09])
Elements Interaction e1, Message e2, Class e3, Operation e4
Conditions And(NotNull("e3::umlID"), IsParent("e1", "e2"),

Or(Equals("e2::name", "e3::name"), Contains("e2::name",
"e3::name"), And(IsParent("e3", "e4"), Or(Equals("e2::name",
"e4::name"), Contains("e2::name", "e4::name")))))

LinkType Use(e1 -> e3)

Rule14 Find UML-StateMachines that refine UML-Interactions ([JZ09])
Elements StateMachine e1, Interaction e2
Conditions And(Contains("e1::name", "e2::name"))
LinkType Refinement(e1 -> e2)

Rule15 Find UML-StateMachines that contain UML-Classes ([JZ09])
Elements StateMachine e1, State e2, Class e3, Operation e4
Conditions And(NotNull("e3::umlID"), IsParent("e1", "e2"), IsParent("e3",

"e4"), Contains("e2::name", "e4::name"))
LinkType Containment(e1 -> e3)

Rule16 Find UML-StateMachines and UML-Classes that share a similar
name ([JZ09])

Elements StateMachine e1, State e2, Class e3, Operation e4
Conditions And(NotNull("e3::umlID"), IsParent("e1", "e2"), IsParent("e3",

"e4"), SimilarTo("e2::name", "e4::name"))
LinkType Overlap(e3 -> e1)

Rule17 Find UML-StateMachines that satisfy UML-UseCases ([JZ09])
Elements StateMachine e1, Transition e2, UseCase e3
Conditions And(IsParent("e1", "e2"), SimilarTo("e2::name", "e3::name"))
LinkType Satisfiability(e1 -> e3)

Rule18 Find UML-Classes that satisfy UML-UseCases ([JZ09])
Elements Class e1, Operation e2, UseCase e3
Conditions And(NotNull("e1::umlID"), IsParent("e1", "e2"),

SimilarTo("e2::name", "e3::name"))
LinkType Satisfiability(e1 -> e3)

210

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule19 Find UML-UseCases that represent evolutionary steps of other
UML-UseCases ([JZ09])

Elements UseCase e1, UseCase e2, Component e3, Component e4
Conditions And(NotNull("e3::umlID"), NotNull("e4::umlID"), IsParent("e3",

"e1"), IsParent("e4", "e2"), Equals("e3::name", "e4::name"),
Contains("e1::name", "e2::name"))

LinkType Evolution(e1 -> e2)

Rule20 Find UML-Classes that represent evolutionary steps of other
UML-Classes ([JZ09])

Elements Class e1, Class e2
Conditions And(NotNull("e1::umlID"), NotNull("e2::umlID"),

SimilarTo("e1::name", "e2::name"))
LinkType Evolution(e1 -> e2)

Rule21 Find UML classes that refine UML-UseCases ([JZ09])
Elements Class e1, Operation e2, UseCase e3
Conditions And(NotNull("e1::umlID"), IsParent("e1", "e2"),

Contains("e3::name", "e1::name"), Contains("e3::name",
"e2::name"))

LinkType Refinement(e1 -> e3)

Rule22 Find UML-StateMachines that implement UML-UseCases ([JZ09])
Elements StateMachine e1, UseCase e2, Transition e3
Conditions And(IsParent("e1", "e3"), Equals("e2::name", "e3::name"))
LinkType Implementation(e1 -> e2)

Rule23 Find UML-Interactions that realize UML-UseCases ([JZ09])
Elements Interaction e1, UseCase e2, Class e3, Message e4, Operation e5
Conditions And(NotNull("e3::umlID"), IsParent("e1", "e4"), IsParent("e3",

"e5"), Equals("e5::name", "e4::name"), SimilarTo("e2::name",
"e3::name"))

LinkType Realization(e1 -> e2)

Rule24 Find UML-Activities that realize UML-UseCases ([JRH+03])
Elements Activity e1, UseCase e2
Conditions And(Equals("e1::name", "e2::name"))
LinkType Realization(e1 -> e2)

211

Appendix B. Traceability Artifacts

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule25 Find UML-Activities that implement UML-Operations ([JRH+03])
Elements Activity e1, Operation e2
Conditions And(Equals("e1::name", "e2::name"))
LinkType Implementation(e1 -> e2)

Rule26 Find Classes that refine Classes in Packages
Elements Package e1, Class e2, Class e3
Conditions And(NotNull("e2::umlID"), NotNull("e3::umlID"),

IsParent("e1", "e2"), Not(Equals("e2::umlID", "e3::umlID")),
Equals("e2::name", "e3::name"))

LinkType Refinement(e3 -> e1)

Rule27 Find UML-Collaborations that realize UML-UseCases ([JRH+03])
Elements Collaboration e1, UseCase e2
Conditions And(Equals("e1::name", "e2::name"))
LinkType Realization(e1 -> e2)

Rule28 Find similarities between UML-Classes and OWL-Classes
Elements Class e1, Class e2
Conditions And(Not(NotNull("e1::umlID")), NotNull("e2::umlID"),

Or(Contains("e1::IRI", "e2::name"), Contains("e1::abbreviatedIRI",
"e2::name")))

LinkType Overlap(e1 -> e2)

Rule29 Find UML-Activities that refine UML-UseCases
Elements Activity e1, UseCase e2
Conditions And(Not(Equals("e1::name", "e2::name")), Contains("e1::name",

"e2::name"))
LinkType Refinement(e1 -> e2)

Rule30 Find UML-Classes that are part of an UML-Collaboration
Elements Class e1, Collaboration e2, CollaborationUse e3
Conditions And(NotNull("e1::umlID"), IsParent("e2", "e3"),

Equals("e1::name", "e3::name"))
LinkType Part-Of(e1 -> e2)

212

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule31 Find UML-Classes that implement UML-Interfaces
Elements Class e1, Interface e2
Conditions And(NotNull("e1::umlID"), Or(Contains("e1::name", "e2::name"),

Contains("e2::name", "e1::name"), SimilarTo("e1::name",
"e2::name")))

LinkType Implementation(e1 -> e2)

Rule32 Find UML-Classes that implement UML-Actors ([JRH+03])
Elements Class e1, Actor e2
Conditions And(NotNull("e1::umlID"), NotNull("e2::umlID"),

Equals("e1::name", "e2::name"))
LinkType Implementation(e1 -> e2)

Rule33 Find UML-Operations that refine UML-Interactions ([JRH+03])
Elements Operation e1, Interaction e2
Conditions And(Equals("e1::name", "e2::name"))
LinkType Refinement(e1 -> e2)

Rule34 Find UML-Interactions that refine UML-Classes ([JRH+03])
Elements Message e1, Property e2, Class e3, Interaction e4
Conditions And(NotNull("e3::umlID"), IsParent("e3", "e2"), IsParent("e4",

"e1"), Equals("e1::name", "e2::name"))
LinkType Refinement(e4 -> e3)

Rule35 Find similar comments in UML and URN
Elements Comment e1, Comment e2
Conditions And(NotNull("e1::umlID"), Not(NotNull("e2::umlID")),

SimilarTo("e1::body", "e2::description"))
LinkType Overlap(e1 -> e2)

Rule36 Find similar comments in UML and OWL
Elements Comment e1, Literal e2
Conditions And(NotNull("e1::umlID"), SimilarTo("e1::body", "e2::Value"))
LinkType Overlap(e1 -> e2)

Rule37 Find similar comments in URN and OWL
Elements Comment e1, Literal e2
Conditions And(Not(NotNull("e1::umlID")), SimilarTo("e1::description",

"e2::Value"))
LinkType Overlap(e1 -> e2)

213

Appendix B. Traceability Artifacts

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule38 Find equivalent relations between URN and UML
Elements Association e1, ElementLink e2, Class e3, Class e4,

IntentionalElement e5, IntentionalElement e6
Conditions And(NotNull("e3::umlID"), NotNull("e4::umlID"),

Contains("e1::memberEnd", "e3::umlID"),
Contains("e1::memberEnd", "e4::umlID"), Equals("e2::src",
"e5::id"), Equals("e2::dest", "e6::id"), Equals("e3::name",
"e5::name"), Equals("e4::name", "e6::name"))

LinkType Equivalence(e1 -> e2)

Rule39 Find equivalent relations between URN and UML
Elements Association e1, ElementLink e2, Interface e3, Interface e4,

IntentionalElement e5, IntentionalElement e6
Conditions And(Contains("e1::memberEnd", "e3::umlID"),

Contains("e1::memberEnd", "e4::umlID"), Equals("e2::src",
"e5::id"), Equals("e2::dest", "e6::id"), Equals("e3::name",
"e5::name"), Equals("e4::name", "e6::name"))

LinkType Equivalence(e1 -> e2)

Rule40 Find equivalent relations between URN and UML
Elements Association e1, ElementLink e2, Interface e3, Class e4,

IntentionalElement e5, IntentionalElement e6
Conditions And(Contains("e1::memberEnd", "e3::umlID"),

Contains("e1::memberEnd", "e4::umlID"), Equals("e2::src",
"e5::id"), Equals("e2::dest", "e6::id"),
Or(And(Equals("e3::name", "e5::name"), Equals("e4::name",
"e6::name")), And(Equals("e3::name", "e6::name"),
Equals("e4::name", "e5::name"))))

LinkType Equivalence(e1 -> e2)

Rule41 Find equivalent subclass/superclass-relations in UML and OWL
Elements SubClassOf e1, Generalization e2, Class e3, Class e4
Conditions And(NotNull("e3::umlID"), NotNull("e4::umlID"),

SimilarTo("e1::subClass", "e3::name"),
SimilarTo("e1::superClass", "e4::name"), IsParent("e4", "e3"),
Equals("e2::general", "e4::umlID"))

LinkType Equivalence(e1 -> e2)

214

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule42 Find equivalent subclass/superclass-relations in UML and OWL
Elements SubClassOf e1, Generalization e2, Interface e3, Interface e4
Conditions And(SimilarTo("e1::subClass", "e3::name"),

SimilarTo("e1::superClass", "e4::name"), IsParent("e4", "e3"),
Equals("e2::general", "e4::umlID"))

LinkType Equivalence(e1 -> e2)

Rule43 Find equivalent subclass/superclass-relations in UML and OWL
Elements SubClassOf e1, Generalization e2, Class e3, Interface e4
Conditions And(NotNull("e3::umlID"), Or(And(SimilarTo("e1::subClass",

"e4::name"), SimilarTo("e1::superClass", "e3::name"),
IsParent("e3", "e4"), Equals("e2::general",
"e3::umlID")), And(SimilarTo("e1::subClass", "e3::name"),
SimilarTo("e1::superClass", "e4::name"), IsParent("e4", "e3"),
Equals("e2::general", "e4::umlID"))))

LinkType Equivalence(e1 -> e2)

Rule44 Find equivalent properties in UML and OWL
Elements ObjectProperty e1, Property e2
Conditions Or(Contains("e1::IRI", "e2::name"), Contains("e1::AbbreviatedIRI",

"e2::name"), Contains("e1::FullIRI", "e2::name"))
LinkType Equivalence(e1 -> e2)

Rule45 Find equivalent properties in UML and OWL
Elements DataProperty e1, Property e2
Conditions Or(Contains("e1::IRI", "e2::name"), Contains("e1::AbbreviactedIRI",

"e2::name"), Contains("e1::FullIRI", "e2::name"))
LinkType Equivalence(e1 -> e2)

Rule46 Find equivalent datatypes in UML and OWL
Elements Datatype e1, DataType e2
Conditions And(NotNull("e2::umlID"), Or(Contains("e1::IRI",

"e2::name"), Contains("e1::AbbreviatedIRI", "e2::name"),
Contains("e1::FullIRI", "e2::name")))

LinkType Equivalence(e1 -> e2)

215

Appendix B. Traceability Artifacts

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule47 Find equivalent datatypes in UML and OWL
Elements Datatype e1, Class e2
Conditions And(NotNull("e2::umlID"), Or(Contains("e1::IRI",

"e2::name"), Contains("e1::AbbreviatedIRI", "e2::name"),
Contains("e1::FullIRI", "e2::name")))

LinkType Equivalence(e1 -> e2)

Rule48 Find contribution-relationships between URN goals/softgoals
Elements IntentionalElement e1, IntentionalElement e2, Contribution e3
Conditions And(Or(Equals("e1::type", "Goal"), Equals("e1::type",

"Softgoal")), Or(Equals("e2::type", "Goal"),
Equals("e2::type", "Softgoal")), Equals("e3::dest", "e1::id"),
Equals("e3::src", "e2::id"))

LinkType Contribution(e1 -> e2)

Rule49 Find decomposition-relationships between URN goals/softgoals
Elements IntentionalElement e1, IntentionalElement e2, Decomposition e3
Conditions And(Or(Equals("e1::type", "Goal"), Equals("e1::type",

"Softgoal")), Or(Equals("e2::type", "Goal"),
Equals("e2::type", "Softgoal")), Equals("e3::dest", "e1::id"),
Equals("e3::src", "e2::id"))

LinkType Decomposition(e2 -> e1)

Rule50 Find similarities between UML-Aggregation and OWL-
ObjectIntersection

Elements ObjectIntersectionOf e1, Property e2, Class e3, Class e4
Conditions And(NotNull("e3::umlID"), NotNull("e4::umlID"),

Contains("e1::class", "e4::name"), Equals("e2::aggregation",
"composite"), IsParent("e3", "e2"), Equals("e2::type",
"e4::umlID"))

LinkType Overlap(e1 -> e3)

Rule51 Find similarities between UML-Aggregation and OWL-
ObjectUnion

Elements ObjectUnionOf e1, Property e2, Class e3, Class e4
Conditions And(NotNull("e3::umlID"), NotNull("e4::umlID"),

Contains("e1::unionClasses", "e4::name"),
Equals("e2::aggregation", "composite"), IsParent("e3", "e2"),
Equals("e2::type", "e4::umlID"))

LinkType Overlap(e1 -> e3)

216

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule52 Find Classes that are a Part-Of a Component
Elements Component e1, Class e2
Conditions And(NotNull("e1::umlID"), NotNull("e2::umlID"), IsParent("e1",

"e2"))
LinkType Part-of(e2 -> e1)

Rule53 Fina a StateMachine that is a refinement of a UseCase ([JZ09])
Elements StateMachine e1, State e2, UseCase e3
Conditions And(IsParent("e1", "e2"), Equals("e2::name", "e3::name"))
LinkType Refinement(e1 -> e3)

Rule54 Find Classes that are part of an Interaction
Elements Interaction e1, Property e2, Lifeline e3, Class e4
Conditions And(NotNull("e4::umlID"), IsParent("e1", "e3"),

Or(Equals("e3::name", "e4::name"), SimilarTo("e3::name",
"e4::name"), And(IsParent("e1", "e2"), Equals("e2::type",
"e4::umlID"), Equals("e2::umlID", "e3::represents"))))

LinkType Instance-Of(e3 -> e4)

Rule55 Find Interfaces that are part of an Interaction
Elements Interaction e1, Property e2, Lifeline e3, Interface e4
Conditions And(IsParent("e1", "e3"), Or(Equals("e3::name", "e4::name"),

SimilarTo("e3::name", "e4::name"), And(NotNull("e4::umlID"),
IsParent("e1", "e2"), Equals("e2::type", "e4::umlID"),
Equals("e2::umlID", "e3::represents"))))

LinkType Instance-Of(e3 -> e4)

Rule56 Find Components that are part of an Interaction
Elements Interaction e1, Lifeline e2, Component e3
Conditions And(IsParent("e1", "e2"), NotNull("e3::umlID"),

Or(Equals("e2::name", "e3::name"), SimilarTo("e2::name",
"e3::name")))

LinkType Instance-Of(e2 -> e3)

217

Appendix B. Traceability Artifacts

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule57 Find Interfaces that are part of an Interaction via used Operations
Elements Interaction e1, Message e2, Interface e3, Operation e4
Conditions And(IsParent("e1", "e2"), Or(Equals("e2::name", "e3::name"),

SimilarTo("e2::name", "e3::name"), And(IsParent("e3", "e4"),
Or(Equals("e2::name", "e4::name"), SimilarTo("e2::name",
"e4::name")))))

LinkType Use(e2 -> e3)

Rule58 Establish Part-Of-relations between components and their parts
Elements Component e1, Component|Class e2
Conditions And(NotNull("e1::umlID"), NotNull("e2::umlID"), IsParent("e1",

"e2"))
LinkType Part-Of(e2 -> e1)

Rule59 Find UML-Interfaces provided by UML-Components
Elements Component e1, Interface e2, InterfaceRealization e3
Conditions And(NotNull("e1::umlID"), IsParent("e1", "e3"),

Equals("e2::umlID", "e3::supplier"))
LinkType Provide(e1 -> e2)

Rule60 Find equivalents for URN-Goals/Softgoals in Ontologies
Elements IntentionalElement e1, Class e2
Conditions And(Or(Equals("e1::type", "Goal"), Equals("e1::type",

"Softgoal")), Or(SimilarTo("e2::IRI", "e1::name"),
SimilarTo("e2::abbreviatedIRI", "e1::name")))

LinkType Equivalence(e1 -> e2)

Rule61 Find similarities between UML-Components and OWL-Classes
Elements Class e1, Component e2
Conditions And(NotNull("e2::umlID"), Or(Contains("e1::IRI", "e2::name"),

Contains("e1::abbreviatedIRI", "e2::name")))
LinkType Overlap(e1 -> e2)

Rule62 Find UML-Interfaces that satisfy UML-UseCases
Elements Interface e1, Operation e2, UseCase e3
Conditions And(IsParent("e1", "e2"), SimilarTo("e2::name", "e3::name"))
LinkType Satisfiability(e1 -> e3)

218

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule63 Find all OWL subclass relations
Elements SubClassOf e1, Class e2, Class e3
Conditions And(Or(Equals("e2::IRI", "e1::subClass"),

Equals("e2::abbreviatedIRI", "e1::subClass")),
Or(Equals("e3::IRI", "e1::superClass"),
Equals("e3::abbreviatedIRI", "e1::superClass")))

LinkType Is-A(e2 -> e3)

Rule64 Find UML-Interfaces required by UML-Components
Elements Interface e1, Component e2, Usage e3
Conditions And(Equals("e3::supplier", "e1::umlID"), Equals("e3::client",

"e2::umlID"))
LinkType Require(e2 -> e1)

Rule65 Find UML-Lifelines that construct/init other UML-Lifelines
Elements Lifeline e1, Lifeline e2, Message e3
Conditions And(Equals("e3::messageSort", "createMessage"),

Contains("e1::coveredBy", "e3::sendEvent"),
Contains("e2::coveredBy", "e3::receiveEvent"))

LinkType Activate(e1 -> e2)

Rule66 Find UML-Lifelines that destroy/close/de-init other UML-
Lifelines

Elements Lifeline e1, Lifeline e2, Message e3
Conditions And(Equals("e3::messageSort", "deleteMessage"),

Contains("e1::coveredBy", "e3::sendEvent"),
Contains("e2::coveredBy", "e3::receiveEvent"))

LinkType Deactivate(e1 -> e2)

Rule67 Find UML-Lifelines that call other UML-Lifelines
Elements Lifeline e1, Lifeline e2, Message e3
Conditions And(Not(Equals("e3::messageSort", "createMessage")),

Not(Equals("e3::messageSort", "deleteMessage")),
Contains("e1::coveredBy", "e3::sendEvent"),
Contains("e2::coveredBy", "e3::receiveEvent"))

LinkType Use(e1 -> e2)

219

Appendix B. Traceability Artifacts

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule68 Find similarities between UML-Interfaces and OWL-Classes
Elements Interface e1, Class e2
Conditions Or(Contains("e2::IRI", "#Interface"), Contains("e2::abbreviatedIRI",

"#Interface"))
LinkType Similarity(e1 -> e2)

Rule69 Connect an EMFfit ’Link’ element with its target ModelElement
Elements Link e1, * e2
Conditions And(Equals("e1::target::identifier", "e2::identifier"))
LinkType Overlap(e1 -> e2)

Rule70 Find factors and factor categories that are realizations of URN
goals or softgoals

Elements Factor|FactorCategory e1, IntentionalElement e2
Conditions And(Or(Equals("e2::type", "Goal"), Equals("e2::type",

"Softgoal")), Equals("e1::name", "e2::name"))
LinkType Realization(e2 -> e1)

Rule71 Find issue cards that are realizations of influencing factors
Elements IssueCard e1, Factor e2, InfluencingFactor e3
Conditions And(IsParent("e1", "e3"), Equals("e3::factor::identifier",

"e2::identifier"))
LinkType Realization(e2 -> e1)

Rule72 Find issue cards that overlap with (are related to) other factors
or factor categories

Elements IssueCard e1, Factor|FactorCategory e2, RelatedIssue e3
Conditions And(IsParent("e1", "e3"), Equals("e3::issue::identifier",

"e2::identifier"))
LinkType Overlap(e1 -> e2)

Rule73 Find issue cards that overlap with (are related to) other issue
cards

Elements IssueCard e1, IssueCard e2, RelatedIssue e3, Strategy e4
Conditions Or(And(IsParent("e1", "e3"), Equals("e3::issue::identifier",

"e2::identifier")), And(IsParent("e1", "e3"),
Equals("e3::issue::identifier", "e4::identifier"),
IsParent("e2", "e4")))

LinkType Overlap(e1 -> e2)

220

B.1. Traceability Rule Catalog

Table B.1: Rules for traceability link establishment (continued)

ID Description (adopted from Source)

Rule74 Find issue cards that overlap with (are related to) strategies of
other issue cards

Elements IssueCard e1, Strategy e2, RelatedIssue e3
Conditions And(IsParent("e1", "e3"), Equals("e3::issue::identifier",

"e2::identifier"))
LinkType Overlap(e1 -> e2)

Rule75 Find factors and factor categories that overlap with OWL classes
Elements Factor|FactorCategory e1, Class e2
Conditions Or(SimilarTo("e1::name", "e2::IRI"), SimilarTo("e1::name",

"e2::abbreviatedIRI"))
LinkType Overlap(e1 -> e2)

Rule76 Find issue cards that overlap with OWL classes
Elements IssueCard e1, Class e2
Conditions Or(SimilarTo("e1::name", "e2::IRI"), SimilarTo("e1::name",

"e2::abbreviatedIRI"))
LinkType Overlap(e1 -> e2)

Listing B.2: Cutout of the traceability rule catalog in XML representation

1 <?xml version="1.0" encoding="UTF-8"?>
2 <RuleCatalogue Name="EMFTrace_TraceRules" Description="This␣catalogue␣

contains␣rules␣aimed␣upon␣finding␣traceability -links␣between␣

models">
3

4 <Rule RuleID="TraceRule01" Description="Find␣UML/URN-Actors␣that␣
share␣a␣similar␣name">

5 <Elements Type="Actor" Alias="e1"/>
6 <Elements Type="Actor" Alias="e2"/>
7 <Conditions Type="And">
8 <BaseConditions Type="NotNull" Source="e1::id"/>
9 <BaseConditions Type="NotNull" Source="e2::umlID"/>

10 <BaseConditions Type="SimilarTo" Source="e1::name"
Target="e2::name"/>

11 </Conditions>
12 <Actions ActionType="CreateLink" LinkType="Overlap"

LinkSource="e1" LinkTarget="e2"/>
13 </Rule>

221

Appendix B. Traceability Artifacts

14

15 <Rule RuleID="TraceRule02" Description="Find␣URN-Actors␣and␣
UML-Classes␣that␣share␣a␣similar␣name">

16 <Elements Type="Actor" Alias="e1"/>
17 <Elements Type="Class" Alias="e2"/>
18 <Conditions Type="And">
19 <BaseConditions Type="NotNull" Source="e1::id"/>
20 <BaseConditions Type="NotNull" Source="e2::umlID"/>
21 <BaseConditions Type="SimilarTo" Source="e1::name"

Target="e2::name"/>
22 </Conditions>
23 <Actions ActionType="CreateLink" LinkType="Overlap"

LinkSource="e1" LinkTarget="e2"/>
24 </Rule>
25

26 <Rule RuleID="TraceRule03" Description="Find␣URN-Resources␣and␣
UML-Classes␣that␣share␣a␣similar␣name">

27 <Elements Type="IntentionalElement" Alias="e1"/>
28 <Elements Type="Class" Alias="e2"/>
29 <Conditions Type="And">
30 <BaseConditions Type="NotNull" Source="e2::umlID"/>
31 <BaseConditions Type="Equals" Source="e1::type"

Value="Resource"/>
32 <BaseConditions Type="SimilarTo" Source="e1::name"

Target="e2::name"/>
33 </Conditions>
34 <Actions ActionType="CreateLink" LinkType="Overlap"

LinkSource="e1" LinkTarget="e2"/>
35 </Rule>

222

B.2. Ontology for the Traceability Approach

B.2 Ontology for the Traceability Approach

This section shows the OWL/XML representation of the case study ontology. In
the listing only a cutout of the ontology is presented.

Listing B.3: Cutout of the case study ontology in OWL/XML syntax

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Ontology ontologyIRI="https://pix.theoinf.tu-ilmenau.de/EMFTrace/

ontologies/RSIOntology.owl">
3 <Prefix name="rdf" IRI="http://www.w3.org/1999/02/22-rdf-syntax-ns#

"/>
4 <Prefix name="rdfs" IRI="http://www.w3.org/2000/01/rdf-schema#"/>
5 <Prefix name="xsd" IRI="http://www.w3.org/2001/XMLSchema#"/>
6 <Prefix name="owl" IRI="http://www.w3.org/2002/07/owl#"/>
7 <Annotation>
8 <AnnotationProperty IRI="rdfs:comment"/>
9 <Literal xml:lang="">The onto logy that d e s c r i b e s important

terms f o r the des ign o f RSI .</Literal>
10 </Annotation>
11 <Declaration>
12 <Class IRI="#Adapter"/>
13 </Declaration>
14 <Declaration>
15 <Class IRI="#AdministrativeInterface"/>
16 </Declaration>
17 <Declaration>
18 <Class IRI="#Analyzability"/>
19 </Declaration>
20 <Declaration>
21 <Class IRI="#ArchitecturalConcern"/>
22 </Declaration>
23 <Declaration>
24 <Class IRI="#ArchitecturalMeans"/>
25 </Declaration>
26 <Declaration>
27 <Class IRI="#Attractiveness"/>
28 </Declaration>
29 <Declaration>
30 <Class IRI="#Audio"/>
31 </Declaration>
32 <Declaration>

223

Appendix B. Traceability Artifacts

33 <Class IRI="#Authenticity"/>
34 </Declaration>
35 <Declaration>
36 <Class IRI="#BasicTechnology"/>
37 </Declaration>
38 <Declaration>
39 <Class IRI="#Binary"/>
40 </Declaration>
41 <Declaration>
42 <Class IRI="#Blackboard"/>
43 </Declaration>
44 <Declaration>
45 <Class IRI="#Boost"/>
46 </Declaration>
47 <Declaration>
48 <Class IRI="#C++"/>
49 </Declaration>
50 <Declaration>
51 <Class IRI="#CSharp"/>
52 </Declaration>
53 <Declaration>
54 <Class IRI="#Camera"/>
55 </Declaration>
56 <Declaration>
57 <Class IRI="#Changeability"/>
58 </Declaration>
59 <Declaration>
60 <Class IRI="#Component"/>
61 </Declaration>
62 <Declaration>
63 <Class IRI="#Confidentiality"/>
64 </Declaration>
65 <Declaration>
66 <Class IRI="#Configuration"/>
67 </Declaration>
68 <Declaration>
69 <Class IRI="#DataFormat"/>
70 </Declaration>

224

List of Figures

List of Figures

2.1 The EMPRESS metamodel for NFR 20

2.2 Steps of ADD . 25

2.3 The Siemens Four Views approach 27

2.4 The EMPRESS metamodel for design 28

3.1 The Staged Model of the software lifecycle 47

4.1 Overview of development phases and data flow 57

5.1 Structure of the Goal Solution Scheme 63

5.2 Overview of the integration interface 66

5.3 First transition of the Goal Solution Scheme for the case study 68

5.4 Second transition of the Goal Solution Scheme for the case study . . . 71

5.5 Third transition of the Goal Solution Scheme for the case study . . . 73

5.6 Graphical representation of the evolvability model 80

5.7 Pattern application in the case study example 85

5.8 Resulting impact of patterns on evolvability 88

6.1 Overview of a mobile interaction robot and its architecture 94

6.2 Backlog concept and iterations between the development phases . . . 95

6.3 Activities of the analysis phase . 97

6.4 URN model for the quality goals of the case study with prioritization 101

6.5 Illustration of the rating procedure of the $100 approach 102

6.6 Overview of the activities of the synthesis phase 109

6.7 Activities of the architectural structuring 110

6.8 Cutout of GSS concerning usability and JGoodies 113

6.9 Structural view of the communication framework 115

6.10 The activities and steps of Quasar for detailing the architecture . . . 118

225

List of Figures

6.11 An exemplary category graph for the robot case study 119

7.1 Overview of the repository-based traceability concept 125
7.2 The defined traceability metamodel 128
7.3 The metamodel for the hypertext linking concept 130
7.4 A linkage example using the hypertext concept 131
7.5 Cutout of the ontology used in the case study. 142

8.1 Overview of the core concept of EMFTrace 145
8.2 Architectural components of EMFTrace and EMFfit 147
8.3 Split of a trace because of a broken chain of links 148
8.4 A screenshot of EMFTrace . 151
8.5 The metamodel of EMFfit . 153
8.6 The traceability rule metamodel as an Ecore model 155
8.7 EMFfit with the feature for mapping URN goals to factor categories . 158
8.8 EMFTrace’s rule wizard . 159
8.9 The export feature of EMFTrace . 159

A.1 Structural view of the ChannelManager 200
A.2 Structural view of the communication framework 201
A.3 Behavioral view of the procedure to write into a Channel 202
A.4 Behavioral view of the communication between remote frameworks . . 203

226

List of Tables

List of Tables

2.1 The structure of an architectural scenario 19

4.1 Development phases with activities, artifacts, and modeling notations 58

5.1 Evolvability subcharacteristics . 76
5.2 Architectural design principles . 78
5.3 Mapping of subcharacteristics to principles 81
5.4 The set of architectural patterns for the impact evaluation 84
5.5 Rating scheme . 84
5.6 Values for the patterns’ impact on the properties 86
5.7 Impact values for subcharacteristics and evolvability 89

6.1 Quality goals of the case study . 98
6.2 Results of the goal prioritization with the $100 approach 103
6.3 An example scenario for modifiability from the case study project . . 104
6.4 Product factors of the case study . 106
6.5 Issue card example of the case study 107

7.1 The traceability link type clusters . 134

9.1 Impact values and priorities for the ranking of the architectural styles 166
9.2 The ranking values of the architectural styles for the case study example167
9.3 Amount of model elements from the evaluation projects 169
9.4 Results of the quality measurement 170
9.5 Comparison of precision and recall of different traceability approaches 170

A.1 Organizational factors of the case study 179
A.2 Technological factors of the case study 183
A.3 Product factors of the case study . 188

227

List of Tables

A.4 Issue card Skills of the case study . 194
A.5 Issue card Serialization of the case study 195
A.6 Issue card Hardware Changes of the case study 197
A.7 Issue card Software Changes of the case study 199

B.1 Rules for traceability link establishment 208

228

Listings

Listings

7.1 A rule example for the establishment of traceability links between
UML components and OWL classes 138

7.2 A rule example for the establishment of a traceability link based on
a hypertext link . 139

B.1 The XML Schema Definition for the traceability rules 205
B.2 Cutout of the traceability rule catalog in XML representation 221
B.3 Cutout of the case study ontology in OWL/XML syntax 223

229

Bibliography

Bibliography

[ACC+02] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. Recovering

traceability links between code and documentation. IEEE Trans. Softw.

Eng., 28(10):970–983, Oct 2002.

[ACC+05] C. P. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya, G. Salazar,

X. Franch, E. Mayol, and C. Quer. A comparative analysis of i*-based agent-

oriented modeling languages. In Proceedings of the International Workshop

on Agent-Oriented Software Development Methodology (AOSDM’05) at the

7th International Conference on Software Engineering and Knowledge En-

gineering (SEKE’05), pages 43–50. KSI Press, 2005.

[AE03] D. Amyot and A. Eberlein. An evaluation of scenario notations and con-

struction approaches for telecommunication systems development. Telecom-

munication Systems, 24(1):61–94, 2003.

[Amy99] D. Amyot. Use case maps quick tutorial. Technical report, SITE, University

of Ottawa, September 1999. Version 1.0.

[Amy03] D. Amyot. Introduction to the user requirements notation: Learning by

example. Computer Networks, 42(3):285–301, June 2003.

[And72] J. P. Anderson. Computer security technology planning study. Technical

Report ESD-TR-73-51, U.S. Air Force, Electronic Systems Division, Deputy

for Command and Management Systems, HQ Electronic Systems Division

(AFSC), L. G. Hanscom Field, Bedford, MA 01730 USA, Oct. 1972.

[And01] R. J. Anderson. Security Engineering: A Guide to Building Dependable

Distributed Systems. John Wiley & Sons, 2001.

[ANGB+05] T. Al-Naeem, I. Gorton, M. Babar, F. Rabhi, and B. Benatallah. A quality-

driven systematic approach for architecting distributed software applica-

231

Bibliography

tions. In Proceedings 27th International Conference on Software Engineer-

ing, (ICSE 2005), pages 244–253. IEEE, May 2005.

[ANS] ANSI/ISA-95.00.05-2007 Enterprise-Control System Integration, Part 5:

Business-to-Manufacturing Transactions.

[AR05] P. Arkley and S. Riddle. Overcoming the traceability benefit problem. In

Proceedings 13th IEEE International Conference on Requirements Engineer-

ing, 2005, pages 385–389, 2005.

[Arn93] R. S. Arnold. Software Reengineering. IEEE Computer Society Press, Los

Alamitos, CA, USA, 1993.

[ARNRSG06] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model

traceability. IBM Systems Jounal, 45(3):515–526, July 2006.

[AZ05] P. Avgeriou and U. Zdun. Architectural patterns revisited – a pattern lan-

guage. In Proceedings 10th European Conference on Pattern Languages of

Programs (EuroPlop 2005), Irsee, pages 1–39, 2005.

[BBK03] F. Bachmann, L. Bass, and M. Klein. Deriving architectural tactics: A step

toward methodical architectural design. Technical Report CMU/SEI-2003-

TR-004, CMU/SEI, Mar 2003.

[BBL76] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of

software quality. In Proceedings of the 2nd International Conference on

Software Engineering, (ICSE ’76), pages 592–605. IEEE, 1976.

[BBN07] F. Bachmann, L. Bass, and R. Nord. Modifiability tactics. Technical Report

CMU/SEI-2007-TR-002, CMU/SEI, September 2007.

[BBR09] R. Brcina, S. Bode, and M. Riebisch. Optimization process for maintaining

evolvability during software evolution. In Proceedings 16th International

Conference and Workshop on the Engineering of Computer Based Systems

(ECBS 2009), pages 196–205. IEEE, April 2009.

[BC00] C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modularity.

MIT Press, Cambridge, MA, USA, 2000.

[BCE07] H. P. Breivold, I. Crnkovic, and P. Eriksson. Evaluating software evolv-

ability. In T. Arts, editor, Proceedings of the 7th Conference on Software

232

Bibliography

Engineering Research and Practice in Sweden (SERPS’07), number 2007:02

in Software Engineering and Management, pages 96–103, Göteborg, Sweden,

Oct 2007. IT University of Göteborg.

[BCE08] H. P. Breivold, I. Crnkovic, and P. Eriksson. Analyzing software evolvabil-

ity. In IEEE International Computer Software and Applications Conference

(COMPSAC 2008), pages 327–330, Turku, Finland, July 2008. IEEE.

[BCK03] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.

Addison-Wesley Longman, 2 edition, 2003.

[BCLL08] H. P. Breivold, I. Crnkovic, R. Land, and S. Larsson. Using dependency

model to support software architecture evolution. In 23rd IEEE/ACM In-

ternational Conference on Automated Software Engineering - Workshops,

2008 (ASE Workshops 2008), pages 82–91. IEEE, Sept. 2008.

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach. The goal question metric

approach. In J. Marciniak, editor, Encyclopedia of Software Engineering,

pages 528–532. John Wiley & Sons, 1994.

[BDP06] M. Broy, F. Deissenboeck, and M. Pizka. Demystifying maintainability. In

Proceedings of the 2006 International Workshop on Software Quality, WoSQ

’06, pages 21–26. ACM, 2006.

[BFKR09] S. Bode, A. Fischer, W. E. Kühnhauser, and M. Riebisch. Software architec-

tural design meets security engineering. In Proceedings 16th International

Conference and Workshop on the Engineering of Computer Based Systems

(ECBS 2009), pages 109–118. IEEE, April 2009.

[BKB02] L. J. Bass, M. Klein, and F. Bachmann. Quality attribute design primitives

and the attribute driven design method. In Revised Papers from the 4th

International Workshop on Software Product-Family Engineering, volume

2290 of LNCS, pages 169–186. Springer, 2002.

[BKR07] S. Becker, H. Koziolek, and R. Reussner. Model-based performance predic-

tion with the Palladio component models. In Proceedings of the 6th Inter-

national Workshop on Software and Performance (WOSP’07), pages 54–65.

ACM, 2007.

[BLBvV04] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. Architecture-level

modifiability analysis (ALMA). J. Syst. Softw., 69(1-2):129–147, 2004.

233

Bibliography

[BLC96] A. Bernaras, I. Laresgoiti, and J. Corera. Building and reusing ontologies

for electrical network applications. In Proceedings European Conference on

Artificial Intelligence (ECAI’96), pages 298–302, Budapest, Hungary, 1996.

[BLR11] S. Bode, S. Lehnert, and M. Riebisch. Comprehensive model integration for

dependency identification with EMFTrace. In Joint Proceedings of the First

International Workshop on Model-Driven Software Migration (MDSM 2011)

and the Fifth International Workshop on Software Quality and Maintainabil-

ity (SQM 2011), Workshops at the 15th European Conference on Software

Maintenance and Reengineering (CSMR), Oldenburg, Germany, March 1,

2011, pages 17–20. CEUR-WS.org, Mar 2011. online CEUR-WS.org/Vol-

708/mdsm2011-bode-et-al-11-emftrace.pdf.

[BM07] A. W. Brown and J. A. McDermid. The art and science of software archi-

tecture. In F. Oquendo, editor, Proceedings First European Conference on

Software Architecture (ECSA 2007), volume 4758 of LNCS, pages 237–256.

Springer, September 2007.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture: A System of Patterns. John Wiley

& Sons, 1 edition, July 1996.

[Bod08] S. Bode. Traceability und Entwurfsentscheidungen für Softwarearchitek-

turen mit der Quasar-Methode. Diploma thesis, Ilmenau University of Tech-

nology, Ilmenau, Germany, 2008.

[Bod09] S. Bode. On the role of evolvability for architectural design. In Workshop

Modellierung und Beherrschung der Komplexität, Informatik 2009, LNI,

pages 3256–3263. Koellen, 2009.

[Bon00] A. B. Bondi. Characteristics of scalability and their impact on performance.

In Proceedings of the 2nd International Workshop on Software and Perfor-

mance (WOSP ’00), pages 195–203. ACM, 2000.

[Boo93] G. Booch. Object Oriented Analysis and Design. With Applications.

Addison-Wesley Longman, Amsterdam, October 1993.

[Bos00] J. Bosch. Design and use of software architectures: Adopting and evolving

a product-line approach. ACM Press/Addison-Wesley, 2000.

234

Bibliography

[BR00] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution:

a roadmap. In Proceedings of the Conference on The Future of Software

Engineering, ICSE ’00, pages 73–87. ACM, 2000.

[BR09] S. Bode and M. Riebisch. Tracing quality-related design decisions in

a category-driven software architecture. In P. Liggesmeyer, G. Engels,

J. Münch, J. Dörr, and N. Riegel, editors, Software Engineering 2009, vol-

ume P-143 of LNI, pages 87–98. Köllen, 2009.

[BR10] S. Bode and M. Riebisch. Impact evaluation for quality-oriented architec-

tural decisions regarding evolvability. In M. Babar and I. Gorton, editors,

Proceedings 4th European Conference on Software Architecture, ECSA 2010,

volume 6285 of LNCS, pages 182–197. Springer, 2010.

[BR11] S. Bode and M. Riebisch. Tracing the implementation of non-functional

requirements. In N. Milanovic, editor, Non-Functional Properties in Service-

Oriented Architecture: Requirements, Models and Methods, chapter 1, pages

1–23. IGI Global, 2011.

[Brc11] R. Brcina. Zielorientierte Erkennung und Behebung von Qualitätsdefiziten

in Software-Systemen am Beispiel der Weiterentwicklungsfähigkeit. PhD

thesis, Ilmenau University of Technology, 2011. (to appear).

[Bro95] F. P. Brooks. The Mythical Man-Month : Essays on Software Engineering.

Addison-Wesley, 1995.

[CdPL04] L. Cysneiros and J. do Prado Leite. Nonfunctional requirements: From elic-

itation to conceptual models. IEEE Transactions on Software Engineering,

30(5):328–350, May 2004.

[CdPL09] L. Chung and J. do Prado Leite. On Non-Functional Requirements in Soft-

ware Engineering. In A. Borgida, V. Chaudhri, P. Giorgini, and E. Yu,

editors, Conceptual Modeling: Foundations and Applications, volume 5600

of Lecture Notes in Computer Science, pages 363–379. Springer, 2009.

[CH06] J. Cleland-Huang. Just enough requirements traceability. In 30th Annual In-

ternational Computer Software and Applications Conference, 2006 (COMP-

SAC ’06), volume 1, pages 41–42, Sept 2006.

[Cha04] D. A. Chappell. Enterprise Service Bus. O’Reilly Media, USA, 1 edition,

2004.

235

Bibliography

[CHCC03] J. Cleland-Huang, C. Chang, and M. Christensen. Event-based traceability

for managing evolutionary change. IEEE Transactions on Software Engi-

neering, 29(9):796–810, Sept. 2003.

[CHSB+05] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and

S. Christina. Goal-centric traceability for managing non-functional require-

ments. In Proceedings. 27th International Conference on Software Engineer-

ing, 2005 (ICSE ’05), pages 362–371. IEEE, May 2005.

[CJH01] S. Cook, H. Ji, and R. Harrison. Dynamic and static views of software

evolution. In 17th IEEE International Conference on Software Maintenance

(ICSM’01), pages 592–601, Los Alamitos, CA, USA, Nov. 2001. IEEE.

[CNYM00] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-functional Require-

ments in Software Engineering, volume 5 of International Series in Software

Engineering. Kluwer, 2000.

[Coc00] A. Cockburn. Writing Effective Use Cases. Addison-Wesley, Boston, MA,

USA, 2000.

[CT94] W. B. Cavnar and J. M. Trenkle. N-gram-based text comparison. In Proceed-

ings of the 3rd Annual Symposium on Document Analysis and Information

Retrieval (SDAIR-94), pages 161–175, 1994.

[CvdB06] S. Ciraci and P. van den Broek. Evolvability as a quality attribute of software

architectures. In M. D. Laurence Duchien and K. Mens, editors, Proceedings

of the International ERCIM Workshop on Software Evolution 2006, pages

29–31, LIFL et l’INRIA, Université des Sciences et Technologies de Lille,

France, April 2006.

[Dep85] Department of Defense. Trusted Computer System Evaluation Criteria (TC-

SEC). Department of Defense Standard, DoD 5200.28-STD, Dec. 1985.

[DG02] L. Davis and R. F. Gamble. Identifying evolvability for integration. In

Proceedings of the First International Conference on COTS-Based Software

Systems (ICCBSS ’02), LNCS, pages 65–75. Springer, Jan. 2002.

[DKPF08] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes. Engineering a

DSL for software traceability. In First International Conference on Software

Language Engineering (SLE 2008), volume 5452 of LNCS, pages 151–167.

Springer, 2008.

236

Bibliography

[DMCS07] J.-C. Deprez, F. Monfils, M. Ciolkowski, and M. Soto. Defining software

evolvability from a free/open-source software perspective. In Proceedings

of the Third International IEEE Workshop on Software Evolvability, pages

29–35. IEEE, Oct. 2007.

[dPLHDK00] J. C. S. do Prado Leite, G. D. S. Hadad, J. H. Doorn, and G. N. Kaplan.

A scenario construction process. Requirements Engineering, 5:38–61, 2000.

[DRW06] L. Duboc, D. S. Rosenblum, and T. Wicks. A framework for modelling

and analysis of software systems scalability. In Proceedings of the 28th In-

ternational Conference on Software engineering (ICSE ’06), pages 949–952.

ACM, 2006.

[DRW07] L. Duboc, D. Rosenblum, and T. Wicks. A framework for characterization

and analysis of software system scalability. In Proceedings of the 6th Joint

Meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on The Foundations of Software Engineering (ESEC-

FSE ’07), pages 375–384. ACM, 2007.

[dSdSdC03] G. M. C. de Sousa, I. G. L. da Silva, and J. B. de Castro. Adapting the NFR

framework to aspect-oriented requirements engineering. In XVII Brazilian

Symposium on Software Engineering, Manaus, Brazil, October 2003.

[DWP+07] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F. Girard. An

activity-based quality model for maintainability. In Proceedings of the 23rd

International Conference on Software Maintenance (ICSM 2007), pages

184–193. IEEE, 2007.

[EAG06] A. Espinoza, P. P. Alarcón, and J. Garbajosa. Analyzing and systematizing

current traceability schemas. In Proceedings of the 30th Annual IEEE/-

NASA Software Engineering Workshop SEW-30 (SEW’06), pages 21–32.

IEEE, April 2006.

[Egy01] A. Egyed. A scenario-driven approach to traceability. In Proceedings 23rd

International Conference on Software Engineering, (ICSE’01), pages 123–

132. IEEE, May 2001.

[EM06] A. Eden and T. Mens. Measuring software flexibility. IEE Proceedings -

Software, 153(3):113–125, June 2006.

237

Bibliography

[Erl07] T. Erl. SOA: Principles of Service Design. Prentice Hall Press, Upper

Saddle River, NJ, USA, July 2007.

[Erl08] T. Erl. SOA Design Patterns. Prentice Hall International, 2008.

[Eur07] European Community for Software & Software Services (ECSS). 3S Green

Paper on Software and Service Architecture, Infrastructures and Engineer-

ing – a working document for a future EU Action Paper on the area, Okt.

2007. Version 1.2.

[FK08] A. Fischer and W. E. Kühnhauser. Integration von Sicherheitsmodellen in

Web Services. In Proceedings D-A-CH Security, 2008.

[FL93] C. J. Fidge and A. M. Lister. The challenges of non-functional comput-

ing requirements. In Seventh Australian Software Engineering Conference

(ASWEC’93), pages 77–84, Sydney, September 1993.

[Fow02] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Longman, 2002.

[FZS03] G. A. A. C. Filho, A. Zisman, and G. Spanoudakis. Traceability approach

for i* and UML models. In Proceedings of 2nd International Workshop on

Software Engineering for Large-Scale Multi-Agent Systems (SELMAS’03),

2003.

[Gas88] M. Gasser. Building a secure computer system. Van Nostrand Reinhold Co.,

New York, NY, USA, 1988.

[GEM06] M. Galster, A. Eberlein, and M. Moussavi. Transition from requirements to

architecture: A review and future perspective. In Seventh ACIS Interna-

tional Conference on Software Engineering, Artificial Intelligence, Network-

ing, and Parallel/Distributed Computing, 2006 (SNPD 2006), pages 9–16.

IEEE, June 2006.

[GEM10] M. Galster, A. Eberlein, and M. Moussavi. Systematic selection of software

architecture styles. IET Software, 4(5):349–360, Oct. 2010.

[GF94] O. C. Z. Gotel and A. C. W. Finkelstein. An analysis of the requirements

traceability problem. In Proceedings of the First International Conference

on Requirements Engineering, Colorado Springs, CO, USA, pages 94–101.

IEEE, April 1994.

238

Bibliography

[GF95] M. Grüninger and M. Fox. Methodology for the design and evaluation of on-

tologies. In Proceedings Workshop on Basic Ontological Issues in Knowledge

Sharing, Montreal, 1995.

[GF07] G. Grau and X. Franch. A goal-oriented approach for the generation and

evaluation of alternative architectures. In Proceedings of the First European

Conference on Software Architecture (ECSA’07), volume 4758 of LNCS,

pages 139–155. Springer, 2007.

[GG07] I. Galvão and A. Goknil. Survey of traceability approaches in model-driven

engineering. In 11th IEEE International Enterprise Distributed Object Com-

puting Conference, 2007 (EDOC 2007), pages 313–313, Oct. 2007.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Softwaresystemen. Addison-Wesley

Professional, 1994.

[GHR07] S. Giesecke, W. Hasselbring, and M. Riebisch. Classifying architectural

constraints as a basis for software quality assessment. Advanced Engineering

Informatics, 21(2):169–179, 2007.

[GKW07] T. Graham, R. Kazman, and C. Walmsley. Agility and experimentation:

Practical techniques for resolving architectural tradeoffs. In 29th Interna-

tional Conference on Software Engineering (ICSE 2007), pages 519–528.

IEEE, May 2007.

[GM82] J. Goguen and J. Meseguer. Security policies and security models. In Pro-

ceedings IEEE Symposium on Security and Privacy, pages 11–20, Apr. 1982.

[GRH08] S. Giesecke, M. Rohr, and W. Hasselbring. Architectural styles for early

goal-driven middleware selection. In Postproceedings of the 13th European

Conference on Pattern Languages of Programs (EuroPLoP 08), Irsee, Ger-

many, July 2008.

[GRL08] Goal-oriented Requirements Language (GRL).

http://www.cs.toronto.edu/km/GRL/, 2008.

[GY01] D. Gross and E. S. K. Yu. From non-functional requirements to design

through patterns. Requirements Engineering, 6(1):18–36, February 2001.

239

Bibliography

[HA07a] N. Harrison and P. Avgeriou. Pattern-driven architectural partitioning: Bal-

ancing functional and non-functional requirements. In Second International

Conference on Digital Telecommunications, 2007 (ICDT ’07), pages 21–26.

IEEE, July 2007.

[HA07b] N. B. Harrison and P. Avgeriou. Leveraging architecture patterns to satisfy

quality attributes. In Proceedings First European Conference on Software

Architecture, ECSA 2007, volume 4758/2007, pages 263–270. Springer, 2007.

[HDO03] J. H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing

via information retrieval. In Proceedings of the 11th IEEE International

Conference on Requirements Engineering (RE ’03), pages 138–147. IEEE,

2003.

[Heu04] Heumesser, N. (Ed.). Framework for requirements. Technical report, EM-

PRESS Project at ITEA, April 2004.

[Hil90] M. D. Hill. What is scalability? SIGARCH Computer Architecture News,

18(4):18–21, 1990.

[HKN+07] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America.

A general model of software architecture design derived from five industrial

approaches. Journal of Systems and Software, 80(1):106–126, January 2007.

[HNS00] C. Hofmeister, R. Nord, and D. Soni. Applied Software Architecture.

Addison-Wesley Longman, Boston, MA, USA, 2000.

[HNS05] C. Hofmeister, R. Nord, and D. Soni. Global analysis: moving from software

requirements specification to structural views of the software architecture.

IEE Proceedings - Software, 152(4):187–197, August 2005.

[Hor06] J. Horkoff. Using i* models for evaluation. Master’s thesis, University of

Toronto, 2006.

[IK06] I. Ivkovic and K. Kontogiannis. Towards automated establishment of model

dependencies using formal concept analysis. International Journal of Soft-

ware Engineering and Knowledge Engineering, 16(4):499–522, Aug 2006.

[Ins84] Institute of Electrical and Electronics Engineers. IEEE Guide to Software

Requirements Specification, 1984.

240

Bibliography

[Ins90] Institute of Electrical and Electronics Engineers. IEEE Standard Glossary

of Software Engineering Terminology, 1990.

[Ins98] Institute of Electrical and Electronics Engineers. IEEE Standard for Soft-

ware Maintenance. IEEE Std 1219-1998, Oct 1998.

[Ins00] Institute of Electrical and Electronics Engineers. IEEE Recommended Prac-

tice for Architectural Description of Software-Intensive Systems. IEEE Std

1471-2000 (also ISO/IEC 42010:2007), Sept 2000.

[Int01] International Standardization Organisation. ISO/IEC 9126-1 International

Standard. Software Engineering – Product quality – Part 1: Quality models,

June 2001.

[Int05] International Standardization Organisation. ISO/IEC 27001:2005 Informa-

tion technology – Security techniques – Information security management

systems – Requirements, June 2005.

[Int06] International Standardization Organisation. Software Engineering—

Software Life Cycle Processes—Maintenance. ISO/IEC 14764:2006, IEEE

Std 14764-2006, 2006.

[Int11] International Standardization Organisation. ISO/IEC 25010:2011 Systems

and software engineering – Systems and software Quality Requirements and

Evaluation (SQuaRE) – System and software quality models, 2011.

[ITU08] ITU-T. Recommendation ITU-T Z.151 User requirements notation (URN)

– Language definition, Nov 2008.

[JGo10] JGoodies. http://www.jgoodies.com/, 2010.

[JRH+03] M. Jeckle, C. Rupp, J. Hahn, B. Zengler, and S. Queins. UML 2 glasklar.

Hanser Fachbuchverlag, 2003.

[JZ09] W. Jirapanthong and A. Zisman. Xtraque: traceability for product line

systems. Software and Systems Modeling, 8(1):117–144, 2009.

[KB03] R. Kolb and J. Bayer. Pattern-based architecture analysis and design of

embedded software product lines. Technical report, Fraunhofer IESE, De-

cember 2003.

241

Bibliography

[KC99] R. Kazman and S. J. Carrière. Playing detective: Reconstructing soft-

ware architecture from available evidence. Automated Software Engineering,

6(2):107–138, 1999.

[KCD09] P. Kruchten, R. Capilla, and J. Dueas. The decision view’s role in software

architecture practice. IEEE Software, 26(2):36–42, 2009.

[KH10] M. Koegel and J. Helming. EMFStore: a model repository for EMF mod-

els. In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering – Volume 2 (ICSE ’10), pages 307–308. ACM, 2010.

[KKC00] R. Kazman, M. Klein, and P. Clements. ATAM: Method for Architecture

Evaluation. Technical Report CMU/SEI-2000-TR-004, CMU/SEI, August

2000.

[KPP06] D. S. Kolovos, R. F. Paige, and F. A. C. Polack. On-demand merging of

traceability links with models. In Proceedings ECMDA Traceability Work-

shop (ECMDA-TW) 2006, pages 6–14. Sintef, Trondheim, 2006.

[Kru95] P. B. Kruchten. The 4+1 View Model of Architecture. IEEE Software,

12(6):42–50, 1995.

[LABW92] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in

distributed systems: theory and practice. ACM Transactions on Computer

Systems (TOCS), 10(4):265–310, 1992.

[Leh80] M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-

ings of the IEEE, 68(9):1060–1076, Sept. 1980.

[Leh10] S. Lehnert. Softwarearchitektur-Entwurf und Realisierung eines Reposito-

ries für Modell-übergreifende Traceability. Diploma thesis, Ilmenau Univer-

sity of Technology, Ilmenau, Germany, November 2010.

[Let02] P. Letelier. A framework for requirements traceability in UML-based

projects. In Proceedings 1st Int. Workshop on Traceability in Emerging

Forms of SE (TEFSE’02), pages 32–41, Edinburgh, UK, 2002.

[LFOT07] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability

links in software artifact management systems using information retrieval

methods. ACM Trans. Softw. Eng. Methodol., 16(4, Article 13), September

2007.

242

Bibliography

[LG05] A. E. Limón and J. Garbajosa. The need for a unifying traceability scheme.

In Proceedings ECMDA Traceability Workshop (ECMDA-WS) 2005, pages

47–56, Sintef, Trondheim, 2005.

[LGPSS99] M. López, A. Gómez-Pérez, J. Sierra, and A. Sierra. Building a chemical

ontology using methontology and the ontology design environment. IEEE

Intelligent Systems and their Applications, 14(1):37–46, Jan/Feb 1999.

[LMvV09] P. Lago, H. Muccini, and H. van Vliet. A scoped approach to traceability

management. Journal of Systems and Software, 82(1):168–182, 2009. Special

Issue: Software Performance – Modeling and Analysis.

[LR06] M. Lehman and J. C. F. Ramil. Software evolution. In Madhavji et al.

[MFRP06], chapter 1, pages 7–40.

[LS96] M. Lindvall and K. Sandahl. Practical implications of traceability. Softw.

Pract. Exper., 26:1161–1180, October 1996.

[LY01] L. Liu and E. Yu. From requirements to architectural design – using goals

and scenarios. In From Software Requirements to Architectures Workshop

(STRAW 2001), Toronto, Canada, May 2001.

[Mäd09] P. Mäder. Rule-Based Maintenance of Post-Requirements Traceability. PhD

thesis, TU Ilmenau, Ilmenau, Germany, 2009.

[McK05] E. McKean. The New Oxford American Dictionary. Oxford University

Press, 2 edition, May 2005.

[MD08] T. Mens and S. Demeyer, editors. Software Evolution. Springer, 2008.

[MFRP06] N. H. Madhavji, J. Fernandez-Ramil, and D. E. Perry, editors. Software

Evolution and Feedback: Theory and Practice. John Wiley & Sons, 2006.

[MJS+00] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. D. Storey, S. R. Tilley, and

K. Wong. Reverse engineering: a roadmap. In Proceedings of the Conference

on The Future of Software Engineering, ICSE ’00, pages 47–60, June 2000.

[MM98] T. Mens and K. Mens. Assessing the evolvability of software architectures. In

Workshop on Object-Oriented Technology (ECOOP ’98), volume 1543/1998

of LNCS, pages 54–55. Springer, 1998.

243

Bibliography

[MM03] A. Marcus and J. I. Maletic. Recovering documentation-to-source-code

traceability links using latent semantic indexing. In International Confer-

ence on Software Engineering (ICSE’03), pages 125–135. IEEE, 2003.

[MMMN03] J. I. Maletic, E. V. Munson, A. Marcus, and T. N. Nguyen. Using a hyper-

text model for traceability link conformance analysis. In Proceedings of the

2nd International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE2003), pages 47–54, 2003.

[MN03] M. Matinlassi and E. Niemelä. The impact of maintainability on component-

based software systems. In Proceedings 29th Euromicro Conference, 2003,

pages 25–32. IEEE, September 2003.

[Mor06] G. Morgan. Design for flexibility. online, Oct 2006. Last retrieved: 29 Oct

2010.

[MPR07] P. Mäder, I. Philippow, and M. Riebisch. Customizing traceability links

for the unified process. In Proceedings Third International Conference on

the Quality of Software-Architectures (QOSA2007), volume 4880 of LNCS,

Medford MA, USA, July 2007. Springer.

[MSW+05] C. Martin, A. Scheidig, T. Wilhelm, C. Schroeter, H.-J. Boehme, and H.-M.

Gross. A new control architecture for mobile interaction robots. In Pro-

ceedings of the 2nd European Conference on Mobile Robots, (ECMR 2005),

pages 224–229. Stampalibri, 2005.

[MVN06] D. Manolescu, M. Voelter, and J. Noble. Pattern Languages of Program

Design 5. Addison-Wesley Professional, May 2006.

[MWD+05] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer, R. Hirschfeld, and

M. Jazayeri. Challenges in software evolution. In Eighth International Work-

shop on Principles of Software Evolution, pages 13–22, September 2005.

[NE00] B. Nuseibeh and S. Easterbrook. Requirements engineering: a roadmap. In

Proceedings of the Conference on The Future of Software Engineering, ICSE

’00, pages 35–46. ACM, 2000.

[Neu11] S. Neugebauer. Softwarearchitektur-Entwurf für Anwendungen auf

Mehrkern-Prozessorarchitekturen. diploma thesis, Ilmenau University of

Technology, 2011. (to appear).

244

Bibliography

[NM01] N. F. Noy and D. L. McGuinness. Ontology development 101: A guide to

creating your first ontology. Technical Report KSL-01-05, Stanford Knowl-

edge Systems Laboratory, Stanford University, Stanford, CA, 94305, 2001.

[NNG97] K. Nelson, H. Nelson, and M. Ghods. Technology flexibility: conceptualiza-

tion, validation, and measurement. In Proceedings of the Thirteeth Hawaii

International Conference on System Sciences, volume 3, pages 76–87. IEEE,

January 1997.

[OG02] T. Olsson and J. Grundy. Supporting traceability and inconsistency man-

agement between software artifacts. In Proceedings of the IASTED Inter-

national Conference on Software Engineering and Applications, 2002.

[Par72] D. Parnas. On the criteria to be used in decomposing systems into modules.

Commun. ACM, 15(12):1053–1058, 1972.

[Par94] D. Parnas. Software aging. In Proceedings 16th International Conference

on Software Engineering, (ICSE ’94), pages 279–287. IEEE, May 1994.

[PB04] M. Pizka and A. Bauer. A brief top-down and bottom-up philosophy on

software evolution. In Proceedings 7th International Workshop on Principles

of Software Evolution, (IWPSE’04), pages 131–136. IEEE, 2004.

[PBG04] T. Posch, K. Birken, and M. Gerdom. Basiswissen Softwarearchitektur:

Verstehen, entwerfen, wiederverwenden. dpunkt.verlag, 1 edition, 2004.

[PG96] F. A. C. Pinheiro and J. Goguen. An object-oriented tool for tracing re-

quirements. IEEE Software, 13(2):52–66, March 1996.

[Pin04] F. A. C. Pinheiro. Requirements traceability. In J. Leite and J. Doorn,

editors, Perspectives on Software Requirements, chapter 5, pages 91–113.

Kluwer, Norwell, MA, USA, 2004.

[Poh96] K. Pohl. PRO-ART: Enabling requirements Pre-traceability. In Proceedings

of the Second International Conference on Requirements Engineering, ICRE,

pages 76–84. IEEE, April 1996.

[PvKD+03] B. Paech, A. von Knethen, J. Doerr, J. Bayer, D. Kerkow, R. Kolb, A. Tren-

dowicz, and T. Punter. An experience-based approach for integrating archi-

tecture and requirements engineering. In Second International SofTware Re-

quirements to Architecture Workshop, (STRAW ’03), pages 142–149, 2003.

245

Bibliography

[RB00] V. Rajlich and K. Bennett. A staged model for the software life cycle. IEEE

Computer, 33(7):66–71, July 2000.

[RB09] M. Riebisch and S. Bode. Software-evolvability. Informatik-Spektrum,

32(4):339–343, August 2009.

[RBFL11] M. Riebisch, S. Bode, Q.-U.-A. Farooq, and S. Lehnert. Towards comprehen-

sive modelling by inter-model links using an integrating repository. In Pro-

ceedings 8th IEEE Workshop on Model-Based Development for Computer-

Based Systems – Covering Domain and Design Knowledge in Models, 2011.

(accepted for publication).

[RE93] B. Ramesh and M. Edwards. Issues in the development of a requirements

traceability model. In Proceedings of IEEE International Symposium on

Requirements Engineering, 1993, pages 256–259, January 1993.

[RJ01] B. Ramesh and M. Jarke. Toward reference models for requirements trace-

ability. IEEE Trans. Softw. Eng., 27(1):58–93, 2001.

[RLL98] D. Rowe, J. Leaney, and D. Lowe. Defining systems architecture evolvability

- a taxonomy of change. In Proceedings of the 11th International Conference

on the Engineering of Computer Based Systems (ECBS’98), pages 45–52,

Jerusalem, Israel, 1998. IEEE.

[RPB11] M. Riebisch, A. Pacholik, and S. Bode. Towards optimization of design deci-

sions for embedded systems by exploiting dependency relationships. In Pro-

ceedings Dagstuhl-Workshop Modellbasierte Entwicklung eingebetteter Sys-

teme IV (MBEES), pages 11–20. fortiss GmbH, February 2011.

[RPV03] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Requirements interaction

management. ACM Computing Surveys, 35(2):132–190, June 2003.

[RR99] S. Robertson and J. Robertson. Mastering the Requirements Process.

Addison-Wesley, 1999.

[RSN09] M. Riaz, M. Sulayman, and H. Naqvi. Architectural decay during con-

tinuous software evolution and impact of ‘design for change’ on software

architectures. In D. Slezak, T.-h. Kim, A. Kiumi, T. Jiang, J. Verner, and

S. Abrahao, editors, Advances in Software Engineering, volume 59 of Com-

munications in Computer and Information Science, pages 119–126. Springer,

2009.

246

Bibliography

[Rum09] M. Rumpf. Evolutionäre Softwarearchitekturentwicklung mit der Methode

Attribute Driven Design (ADD). Diploma thesis, Ilmenau University of

Technology, Oct 2009.

[RW05] N. Rozanski and E. Woods. Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Profes-

sional, 2005.

[SB01] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Pren-

tice Hall, Upper Saddle River, NJ, USA, 1st edition, 2001.

[SC03] N. Subramanian and L. Chung. Process-oriented metrics for software archi-

tecture evolvability. In Proceedings Sixth International Workshop on Prin-

ciples of Software Evolution, pages 65–70, September 2003.

[SdGZ03] G. Spanoudakis, A. d’Avila Garces, and A. Zisman. Revising rules to capture

requirements traceability relations: A machine learning approach. In Pro-

ceedings of the 15th International Conference in Software Engineering and

Knowledge Engineering (SEKE 2003), pages 570–577. Knowledge Systems

Institute, Skokie, 2003.

[SEW09] H. Schwarz, J. Ebert, and A. Winter. Graph-based traceability: a compre-

hensive approach. Software and Systems Modeling, 9(4):473–492, 2009.

[Sie04] J. Siedersleben. Moderne Software-Architektur: Umsichtig planen, robust

bauen mit Quasar. dpunkt.verlag, Heidelberg, Germany, 2004.

[SM98] A. G. Sutcliffe and S. Minocha. Scenario-based analysis of non-functional

requirements. In REFSQ’98, pages 219–234. Presses universitaeires de Na-

mur, 1998.

[SPKR97] B. Swartout, R. Patil, K. Knight, and T. Russ. Toward distributed use

of large-scale ontologies. In AAAI Symposium on Ontological Engineering,

Stanford, 1997.

[SSSS01] S. Staab, R. Studer, H.-P. Schnurr, and Y. Sure. Knowledge processes and

ontologies. IEEE Intelligent Systems, 16(1):26–34, Jan/Feb 2001.

[Sto10] R. Stollberg. Klassifikation von Architekturstilen und -mustern hinsichtlich

qualitativer Ziele für den Softwarearchitekturentwurf. Bachelor thesis, Il-

menau University of Technology, Ilmenau, Germany, 2010.

247

Bibliography

[SvGB05] M. Svahnberg, J. van Gurp, and J. Bosch. A taxonomy of variability real-

ization techniques. Software: Practice and Experience, 35(8):705–754, 2005.

[SZ05] G. Spanoudakis and A. Zisman. Software traceability: A roadmap. In C. S.

K., editor, Handbook of Software Engineering and Knowledge Engineering,

volume III, pages 395–428. World Scientific Publishing Co., River Edge, NJ,

2005.

[SZPMK04] G. Spanoudakis, A. Zisman, E. Perez-Minana, and P. Krause. Rule-based

generation of requirements traceability relations. Journal of Systems and

Software, 72(2):105–127, 2004.

[TA05] J. Tyree and A. Akerman. Architecture Decisions: Demystifying Architec-

ture. IEEE Software, 22(2):19–27, 2005.

[TAJ+10] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar. A compara-

tive study of architecture knowledge management tools. Journal of Systems

and Software, 83(3):352–370, 2010.

[TKM03] L. Tahvildari, K. Kontogiannis, and J. Mylopoulos. Quality-driven software

re-engineering. Journal of Systems and Software, 66(3):225–239, June 2003.

[UK95] M. Uschold and M. King. Towards a methodology for building ontologies.

In Proceedings Workshop on Basic Ontological Issues in Knowledge Sharing

(IJCAI95), Montreal, 1995.

[Ver07] Verein Deutscher Ingenieure. Fertigungsmanagementsysteme - Manufactur-

ing Execution Systems (MES). VDI 5600, December 2007.

[vKP02] A. von Knethen and B. Paech. A survey on tracing approaches in practice

and research. IESE-Report 095.01/E, Fraunhofer Institut Experimentelle

Software Engineering, Kaiserslautern, Germany, 2002.

[vL03] A. van Lamsweerde. From system goals to software architectures. In

B. M. and I. P., editors, Formal Methods for Software Architectures, vol-

ume 2804/2003 of LNCS, pages 25–43. Springer, 2003.

[vL09] A. van Lamsweerde. Requirements Engineering: From System Goals to UML

Models to Software Specifications. Wiley, March 2009.

248

Bibliography

[Wag10] P. Wagner. Werkzeugunterstützung für die Analyse beim Softwarearchitek-

turentwurf. Bachelor thesis, Ilmenau University of Technology, Ilmenau,

Germany, December 2010.

[WBB+06] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and

B. Wood. Attribute-Driven Design (ADD), Version 2.0. Technical Report

CMU/SEI-2006-TR-023, CMU/SEI, November 2006.

[Woh08] S. Wohlfarth. A Process of Rational Decision-Making for Architectural De-

cisions (in German: Entwicklung eines rationalen Entscheidungsprozesses

für Architekturentscheidungen). PhD thesis, TU Ilmenau, 2008.

[Woo07] W. G. Wood. A Practical Example of Applying Attribute-Driven Design

(ADD), Version 2.0. Technical Report CMU/SEI-2007-TR-005, CMU/SEI,

February 2007.

[WvP10] S. Winkler and J. von Pilgrim. A survey of traceability in requirements

engineering and model-driven development. Software and Systems Modeling,

9(4):529–565, 2010.

[YB97] J. W. Yoder and J. Barcalow. Architectural patterns for enabling application

security. In Proceedings 4th Conf. on Patterns Languages of Programs (PLoP

’97), 1997.

[YNGB+09] Y. Yu, N. Niu, B. González-Baixauli, J. Mylopoulos, S. Easterbrook, and

J. C. S. do Prado Leite. Requirements engineering and aspects. In W. Aalst,

J. Mylopoulos, N. M. Sadeh, M. J. Shaw, C. Szyperski, K. Lyytinen,

P. Loucopoulos, J. Mylopoulos, and B. Robinson, editors, Design Require-

ments Engineering: A Ten-Year Perspective, volume 14 of Lecture Notes in

Business Information Processing, pages 432–452. Springer, 2009.

[Yu95] E. S.-K. Yu. Modelling Strategic Relationships for Process Reengineering.

PhD thesis, University of Toronto, Toronto, Ontario, Canada, 1995.

[ZEF00] A. Zisman, W. Emmerich, and A. Finkelstein. Using XML to build con-

sistency rules for distributed specifications. In Proceedings of the 10th In-

ternational Workshop on Software Specification and Design, (IWSSD ’00),

pages 141–150. IEEE, 2000.

249

Bibliography

[ZZ02] D. Zeng and J. Zhao. Achieving software flexibility via intelligent work-

flow techniques. In Proceedings of the 35th Annual Hawaii International

Conference on System Sciences, (HICSS), pages 606–615. IEEE, Jan 2002.

250

Theses

Theses
• There is a gap between requirements engineering and architectural design ap-

proaches, which hampers the development of high quality software systems.

• The Goal Solution Scheme helps to overcome this gap by an explicit mapping
of quality goals to architectural solution instruments.

• The goal-oriented design method of this thesis guides the developer in fulfilling
the quality goals for a software system in an advanced and systematical way.

• The selection of known architectural solution instruments, such as patterns,
should be supported with a quantitative evaluation regarding the influence on
quality goals, which can be provided by applying the Goal Solution Scheme.

• An explicit expression of dependencies between all artifacts of the development
process is essential for the support of software evolution and maintenance by
enabling impact analysis of frequent software changes.

• Evolvability is a complex quality goal, which for its realization has to be refined
into subgoals that all have to be treated appropriately—traceability is one of
these subgoals.

• There is still no comprehensive approach that deals with all aspects of trace-
ability for explicit dependency representation and spans the whole software
development life-cycle.

• A rule-based traceability concept is a promising approach for the model-
spanning establishment of traceability links with high quality and defined
semantics.

• The rule-based traceability concept can and should be enhanced by informa-
tion retrieval techniques to determine the similarity of model elements.

• An ontology can be a helpful means to establish traceability links for inter
model dependencies.

251

Erklärung

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus
anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter
Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden
Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen)
in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwer-
te Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalte der
vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher
Form einer Prüfungsbehörde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Er-
klärung als Täuschungsversuch angesehen wird und den erfolglosen Abbruch des
Promotionsverfahrens zu Folge hat.

Ilmenau,

253

	Introduction
	Motivation
	Goals of the Thesis
	Scope
	Contribution
	Outline of the Thesis

	Evaluation of State-of-the-Art Methods and Concepts
	Description of Functional and Quality Requirements
	Goal-Oriented Approaches
	NFR Framework
	i* (i-star)
	GRL and URN
	Evaluation of the Goal-Oriented Approaches

	Use Cases and Scenarios
	The EMPRESS Framework for Requirements

	Evolvability Support by Architectural Design Methods
	QASAR
	Attribute-Driven Design (ADD)
	The Siemens Four Views Approach
	EMPRESS Pattern-Based Architectural Analysis and Design
	Quasar
	Evaluation and Relation to Further Works

	Design Traceability
	Origin, Definition, and Benefits of Traceability
	Classification of Traceability
	Traceability Schemes and Metamodels
	(Semi-)Automated Traceability Approaches
	Information Retrieval-based Approaches
	Rule-based Traceability

	Tool Support
	Evaluation and Challenges

	Evolvability and Related Terms
	Maintenance
	Evolution
	Maintainability
	Evolvability

	Overview of the Approach
	Refinement of the Goals of this Thesis
	Summary of the Benefits and Limitations of Existing Approaches
	Research Goals for the Proposed Approach

	Proposed Approach

	The Goal Solution Scheme
	General Concept
	Structure of the GSS
	Transitions of the GSS
	Contribution of the GSS

	Establishment of the GSS
	Quality Goal Refinement and Elaboration
	Filling the GSS with Principles
	Filling the GSS with Solution Instruments

	Establishment of the GSS for Evolvability
	Evolvability Model
	Refinement of Evolvability to Subcharacteristics
	Relating Design Principles to Evolvability Subcharacteristics

	Evaluation of Architectural Solution Instruments
	The Set of Evaluated Patterns
	Determination of the Impact on the Principles
	Calculation of the Impact on Evolvability Subcharacteristics
	Determining the Impact on Evolvability

	Discussion of the Results

	Goal-Oriented Architectural Design
	Introduction of the Case Study
	The Goal-Oriented Design Method (GOAD)
	Requirements and Architectural Analysis
	Quality Goal Elaboration and Refinement
	Goal Prioritization
	Scenario Description
	Global Analysis

	Architectural Synthesis
	Structuring the Architecture
	Top-down vs. Bottom-up Structuring
	Detailing the Architecture
	Conflict Resolution and Trade-offs

	Architectural Evaluation

	The Traceability Concept
	Models, Model Elements, Dependencies, and Traceability Links
	Overview and Classification of the Concept
	Traceability Metamodel and Hypertext Concept
	The Traceability Link Metamodel
	The Hypertext Concept

	Traceability Link Types
	The Link Type Clusters
	Application and Utilization of the Link Types

	Traceability Rules
	Ontology Definition

	Tool Support by EMFTrace
	Requirements and Core Concept
	Architecture
	EMFStore
	EMFTrace
	EMFfit

	Model Integration
	Usage Scenario

	Evaluation of the Approach
	Way of Evaluation
	Evaluation of GSS and GOAD
	Evaluation of the Traceability Concept
	Limitations of the Approach of this Thesis

	Conclusions and Outlook
	Contributions
	Future Work

	Case Study Artifacts
	Factor Tables
	IssueCards
	UML Diagrams

	Traceability Artifacts
	Traceability Rule Catalog
	Ontology for the Traceability Approach

