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1 Introduction 
 

 

1.1 General Introduction: Herbivorous insect – host plant interaction 
 

lants and insects make up approximately half of all known species of multi-cellular 

organisms. Nearly 50 % of all insect species feed on living plants (Strong et al. 

1984), meaning that about 400.000 herbivorous insect species (in the following 

mentioned as herbivores) live on approximately 300.000 vascular plant species 

(Schoonhoven et al. 2005). Thus, extensive relationships between phytophagous insects 

and their host plants do exist. Insects shape the plant world (Marquis 2004), herbivorous 

taxa have a higher diversification rate than non-herbivorous taxa (Thompson 1994) and 

plant-herbivore interactions are seen as an important driving-force of the tremendous 

species diversity on earth (Ehrlich and Raven, 1964). These co-evolutionary processes, 

enabling diversification, underlie multifaceted adaptations in both plant and herbivore. 

Most herbivores are specialists and restricted to a small set of host plant species 

(Bernays and Graham 1988, Jaenike 1990, Bernays and Chapman 1994, Jolivet and 

Hawkeswood 1995). For example 35 % of beetle species (122.000) are phytophagous 

(Schoonhoven et al. 2005) and 75 % of them are specialists (Bernays and Chapman 

1994). Host specialization of herbivores comes along with selective adaptations and has 

been shown to be influenced by geographical, genetic, biophysical and ecological 

enforcements (reviewed in Bernays and Chapman 1994, Schoonhoven et al. 2005). 

However, the most important factor shaping host specialization is the immense variety 

of secondary metabolites protecting the host plants (Ehrlich and Raven 1964, Feeny 

1976, Cates 1980). Herbivores have to overcome plant chemicals by appropriate 

detoxification or resistance mechanisms. As a rule of thumb the specialists´ ability to 

detoxify ingested compounds releases them from their negative effects. Admittedly, it 

has been discussed that host plant specialization could lead to “evolutionary dead end” 

situations for the herbivores (reviewed in Thompson 1994). They may have lost the 

ability to react to changing environments by host plant shifts, because their 

specializations constrain them to shift among host plants that are chemically similar. 

However, specialization enables herbivores to feed on plants which are avoided or not 

suitable to others. This dissertation here focuses on aspects of specialized herbivores´ 

adaptations to plant feeding with some insights into their host plant chemistry. 

P
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1.2 Different molecular levels of host plant adaptations in leaf beetles 
(Chrysomelidae) of the subfamily Chrysomelinae 

 

Chrysomelinae host plant adaptations, and how they are reflected by their chemical 

defense strategies, involved transport systems, and enzymatic actions are described in 

the following paragraphs. Within Chrysomelidae systematic relationships and 

nomenclature taken as a basis in this work as well as the systematic position of 

investigated species are depicted below. 

 

Family: Chrysomelidae 

 Subfamily 1 (of 19): Chrysomelinae 

  Tribe 1: Timarchini (tribe/subfamily status controversially discussed) 

Tribe 2: Chrysomelini 

 Subtribe 1 (of 8): Chrysomelina 

  Genus 1: Chrysomela 

    C. populi 

    C. lapponica 

Genus 2:  Gastrophysa 

    G. viridula 

    G. cyanea 

  Genus 3:  Phaedon

    P. cochleariae 

    Genus 4:  Phratora 

      P. laticollis 

      P. vitellinae 
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1.2.1 Defense in Chrysomelinae with special emphasis on subtribe Chrysomelina 
glandular chemical defense 

 

Leaf beetles contain about 37.000 species in 19 subfamilies (according to Jolivet 1978). 

Almost all of them feed on plants (Jolivet and Hawkeswood 1995). Their biology, 

morphology, behavior and host plant spectrum varies considerably. The vast majority of 

the subfamily Chrysomelinae is mono- or oligophagous. Differences in the level of host 

plant selection are very often on a genus or even on a species level, with both adults and 

larvae feeding on plant leaves (Jolivet and Hawkeswood 1995. pp. 2-3). Because 

exposed specialized herbivores not only need to cope with host plant chemicals but also 

with multiple predatory attacks, a variety of defense mechanisms has been developed in 

different leaf beetle taxa. Reflex-immobilization or jumping (Alticinae), reflex-bleeding 

(Galerucinae), aposematic coloration (already implied in the name Chrysomelidae 

derived from the Greek chrysos: gold, melolanthion: beetle, referring to their metallic 

colours), protection by cases (miners and borers), enteric discharges or gregarious 

behavior (Cassidinae, Galerucinae) have been observed (reviewed in Dettner 1987). In 

the subfamily Chrysomelinae an efficient glandular chemical defense has been 

established. Their larval as well as adult stages are protected by those defensive glands, 

albeit the ultrastructure differs between these developmental stages (Claus 1861, 

Hollande 1909, Garb 1915, Hinton 1951, Deroe and Pasteels 1982, Pasteels et al. 1989). 

The adults possess elytral and pronotal glandular cells which accumulate defensive 

secretions in vacuoles or intercellular spaces. Those glands are also present in the 

Chrysomelidae subfamilies Criocerinae and some Alticinae and Galerucinae and their 

common origin based on morphological data has been discussed (Deroe and Pasteels 

1982, Pasteels et al. 1989). 

This thesis focuses on aspects of larval glandular chemical defense, which is restricted 

to the Chrysomelinae (absent in the tribe Timarchini, discussions for homologous 

structures in Galerucinae in Bünnige and Hilker 1999, 2005). Species of the subtribe 

Chrysomelina possess typically 9 pairs of defensive glands that are located dorsally in 

the meso-, metathorax and the abdominal segments 1-7. A single defensive gland 

contains a dorsal opening, a cuticularized reservoir, enlarged glandular cells and 

retractor-muscles (Fig. 1). When a larva is disturbed the glands are everted by 

hemolymph pressure and small droplets of secretion appear at the tip of the reservoirs. 

After a while the reservoirs are retracted by muscles. 
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It has been shown that compounds of low molecular weight act as defensive principles 

against predators and microbial infestations in Chrysomelina (Wallace and Blum 1969, 

Blum et al. 1972, Pasteels et al. 1983, Smiley et al. 1985, Denno et al. 1992, Palokangas 

and Neuvonen 1992, Hilker and Schulz 1994, Gross et al. 2002). Defensive compounds 

of Chrysomelina larvae can be allocated to 6 chemical classes (Pasteels et al. 1984, 

Rowell-Rahier and Pasteels 1986, reviewed in Dettner 1987), namely cyclopentanoid 

monoterpenoids (iridoids), salicylaldehyde, phenylethyl esters, benzaldehyde, juglone 

and conjugated acetates. Most widespread are iridoids, salicylaldehyde and phenylethyl 

esters (Pasteels et al. 1990). Their biosynthesis inside the larvae is summarized in Fig. 2 

and explained in more detail in the following three paragraphs. However, specialized 

parasitoids can be attracted to these defensive compounds, enabling them a more precise 

detection of their insect hosts. In addition, the Chrysomelina larval secretion plays a role 

in intra- and interspecific interactions (Hilker 1989). 

500μm

do
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C

Fig. 1: Defensive glands of Chrysomela populi (A) and 
Gastrophysa viridula (C) 3rd instar larvae. In (A) a 
defensive gland directly after dissection is shown. An 
enlarged view of a defensive gland after KOH-digest of 
the dorsal side of the larval body (B) and further 
dissection is depicted in (C). After digestion with KOH 
only chitinous structures remain, verifying the 
cuticularization of the defensive glandular reservoirs and 
their epithelial origin during embryogenesis. 
Abbreviations: do: dorsal opening, gc: glandular cell, gr: 
glandular reservoir, gs: glandular secretion, rm: retractor 
muscle. 
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1.2.2 Host plant influence and origin of Chrysomelina defensive compounds 
 

Beside their ecological effects a lot of work has been done on the origin of 

chrysomeline glandular secretion. Especially the larvae exhibit different degrees of 

dependence of their defense on the host plant´s secondary chemistry (Pasteels et al. 

1983, Pasteels et al. 1989, Veith et al. 1994, Schulz et al. 1997, Pasteels et al. 2000). 

Phylogenetic analyses of Termonia et al. (2001) revealed the mostly autogenous 

biosynthesis of iridoids as the ancestral state of chrysomeline larval chemical defense 

strategy (Fig. 3). Starting from that, two lineages (Chrysomela and Phratora vitellinae) 

most likely independently developed a highly efficient chemical defense by 

synthesizing salicylaldehyde. This made them tightly dependent on their hosts´ 

chemistry, because the salicylaldehyde precursor salicin is host plant derived and 

sequestered (Pasteels et al. 1983). Whereas the host plant range of iridoid producing 
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Fig. 2: Final steps of defensive compound biosynthesis in the defensive glands of Chrysomelina larvae.
Iridoid biosynthesis is exemplary shown for plagiodial. In case of the esters 2-phenylethanol-“butyrate“
formation is depicted, in which “butyrate“ stands for isobutyric or 2-methylbutyric acid. The scheme
above the chemical pathways indicates the route of glucoside precursors through the larval body. In
nature iridoids are predominantly produced de novo (autogenous) from mevalonic acid, which is
indicated by the double arrow previous to the glucoside structure. Abbreviations: a: deglucosylation, b:
oxidation, c: cylization and isomerization, d: acyl transfer reaction, Glc: glucose. 



10 
 

 

 

 

 

 
species is relatively broad (7 plant families (Pasteels et al. 1990)), salicin-based 

chemical defense restrict the larvae of Chrysomela and Phratora vitellinae to feed on 

the salicin containing plants. On the one hand they developed an economic way to 

detoxify the general feeding deterrent salicin (Ruuhola et al. 2001a) and therefore likely 

restrict the number of competing herbivores on their preferred host plants. On the other 

hand the direct effect of specialization of the salicylaldehyde protected species is 

obvious as they are limited in their host plant spectrum to the presence of salicin. 

Interestingly, a monophyletic clade within the genus Chrysomela (interrupta group) 

evolved the biosynthesis of butyrate-esters as defensive compounds of mixed beetle and 

plant origin (Blum et al. 1972, Hilker and Schulz 1994, Schulz et al. 1997). In addition, 

some interrupta species most likely independently shifted or expanded their host plant 

range to birch trees (Brown 1956) and therefore overcame the highly specialized, 

Fig. 3: Maximum parsimony reconstruction of Chrysomelina defensive compounds and host plant
affiliations based on a MP strict consensus species phylogeny (modified from Termonia et al. 2001).
Colour-codes of branches are explained below the tree. The originally autogenous production of
iridoids, the presence of salicylaldehyde in the defensive secretion of both the genus Chrysomela and
Phratora and the derived synthesis of butyrate-esters in the monophyletic interrupta-group (blue frame)
is obvious. Abbreviations: C.: Chrysomela, G.: Gastrophysa, L.: Linaeidea, Ph.: Phaedon, P.: Phratora,
Pl.: Plagiodera. 
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evolutionary niche with respect to their salicaceous host affiliation (Fig. 3). The 

expansion of host range to birch is remarkable for two reasons. First, host family shifts 

are generally seen to be rather uncommon and occurred in less than 17 % of insect 

speciation events (Farrell et al. 1992). Second, the shift to birch tremendously affected 

the composition of the interrupta group species´ glandular defensive secretion. While 

salicaceous plant-feeders utilized a dual mode of defense accumulating butyrate esters 

and retaining salicylaldehyde biosynthesis, those species that shifted to birch trees lack 

salicylaldehyde. A dual defense strategy is discussed as a transition state between two 

single-defense strategies in leaf beetles in general, offering the possibility of a broader 

range of host plant affiliations (Termonia et al. 2002). More specifically, in the genus 

Chrysomela the evolution of the dual defense has been potentially a prerequisite to 

escape specialized predators and parasitoids (attracted by salicylaldehyde) by allowing 

host shifts to salicin-free birches without losing essential/defensive properties of the 

glandular secretion (Termonia et al. 2001, Gross et al. 2004). Thus, once again the 

intimate relationships of Chrysomelina host affiliation, their defense strategy and 

ecological relevance are obvious. 

In a nutshell, comparative investigations of Chrysomelina larval glandular chemical 

defenses are excellent systems to get insights into prerequisites, mechanisms and 

ecological consequences of herbivorous specialists´ host plant adaptations and host 

plant shifts. 

 

 

1.2.3 Transport mechanisms of defensive compound precursors into the 
Chrysomelina larval glandular reservoir 

 

The impact of host plants on Chrysomelina larval glandular chemical defense depends 

on their defensive strategy. But irrespective of the degree of host plant-larval chemical 

defense dependence, most likely all Chrysomelina possess the ability to both deal with 

toxic or repellent plant metabolites and to sequester plant derived glucoside precursors 

for their own chemical defense. In Phratora vitellinae and the genus Chrysomela 

sequestration of plant-derived phenolic glucosides is compulsory for salicylaldehyde 

(both genera) and butyryl-ester biosynthesis (interrupta group only). Even iridoid 

producing species are able to sequester 8-hydroxygeraniol-glucoside (Kunert et al. 

2008), although this iridoid precursor is usually produced de novo via the mevalonic 
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acid pathway (Oldham 1996, Soe et al. 2004, Burse et al. 2007). 

Independent of the larval defensive strategy (de novo biosynthesis, sequestration or a 

mixture of both), glucosides need to be transported and further modified to bioactive 

principles inside the larva. The selectivity of glucoside transport from the gut into the 

defensive glandular reservoir has been elucidated nicely by applying thioglucosides 

resembling natural O-glucosides (Feld et al. 2001, Kuhn et al. 2004, Kuhn et al. 2007). 

Those experiments demonstrated that the larvae possess transport systems, which are 

evolutionary adapted to the glycosides of their host plants. The uptake of plant-derived 

glycosides from the gut into the hemolymph is not specific. However, compounds 

essential for the larval chemical defense are imported selectively from the glycoside 

pool circulating in the hemolymph into the defensive glandular reservoir (postulated in 

Schulz et al. 1997, Discher et al. 2009). Whereas species producing only iridoid or 

salicylaldehyde possess a high selectivity in precursor uptake into the glandular 

reservoirs, the butyryl-ester synthesizing Chrysomela species of the interrupta group 

sequester a broad range of structurally different glucosides, leading to a complex 

mixture of esters (Schulz et al. 1997, Diss. Tolzin Banasch 2009). In summary, the host 

plant adaptation is not only reflected by the type of chemical defense in general but in 

more detail also by the selectivity of the defensive compound precursor transport 

system. Because only glucosides (and their agluca released by glucosidases in the larval 

gut) are known to be used for larval glandular chemical defense, host plant influence 

may be restricted to those compounds (Pasteels et al. 1990). 

 

 

1.2.4 Biosynthesis of defensive compounds by final enzymatic steps in the 
glandular reservoir 

 

Irrespective of the quality of bioactive principles, the final steps of defensive compound 

biosynthesis always take place inside the glandular reservoirs of Chrysomelina larvae. 

The enzymes involved in defensive compound biosynthesis are beside the chemical 

defense strategy and the involved precursor transport system the third level to 

characterize the degree of Chrysomelina host plant adaptations. The modification of 

glucoside precursors inside the glandular reservoir is based on a consecutive action of 

soluble enzymes that are present in the glandular secretion (Fig. 2). 

The first step, a deglucosylation, is common to all Chrysomelina larvae irrespective of 
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whether iridoid, salicylaldehyde or butyrate-ester precursors are imported into the 

glandular reservoir. The �-glucosidase activity has been shown to be present in iridoid 

and salicylaldehyde producers´ glandular secretion (Pasteels et al. 1983, Pasteels et al. 

1990, Soetens et al. 1993). All glandular secretions tested possess glucosidase cross-

reactivity and the ability to deglucosylate a huge variety of glucosides indicating the 

presence of nonspecific �-glucosidase activity. 

The aglyca 8-hydroxygeraniol and salicyl alcohol are oxidized in the second step. In 

contrast to the �-glucosidases, the oxidases are highly substrate-specific and clearly 

reflect the adaptation to the larval chemical defense strategy and the precursor transport 

specificity. Whereas iridoid producers only have the ability to oxidize 8-

hydroxygeraniol to the dialdehyde 8-oxogeranial, salicylaldehyde producers´ glandular 

oxidase selectively oxidize the salicyl alcohol to the respective aldehyde (Pasteels et al. 

1990, Soetens 1993, Brückmann et al. 2002; exception: Veith et al. 1997). The substrate 

specificity of the glandular oxidase has been discussed as a key parameter affecting the 

mode of chemical defense (Pasteels et al. 1990). 

The consecutive action of a nonspecific �-glucosidase and a highly specific oxidase is 

sufficient to produce salicylaldehyde but iridoid biosynthesis requires at least one more 

step. Species-specific cyclization of the dialdehyde 8-oxogeranial and further 

isomerization, leading to different iridoids (e.g. chrysomelidial, plagiodial, 

plagiolactone), have been postulated and finally verified (Lorenz et al. 1993, Veith et al. 

1994, Kunert in preparation). 

After initial deglucosylations of host-derived glucosides completely different enzymatic 

activities are necessary for butyrate-ester biosynthesis in the interrupta group of the 

genus Chrysomela. The broad spectrum of aglyca is esterified with isobutyric and 2-

methylbutyric acid derivatives. Acyltransferases have been postulated to catalyze this 

biosynthetic step. The mode of isobutyric and 2-methylbutyric acid de novo production 

from endogenic amino acids (Schulz et al. 1997) and the acid activation prior to 

esterification via glucosyltransfer have been shown (Diss. Tolzin Banasch 2009). 

Utilizing in vitro assays with glandular secretions, substrate specificity and importance 

for larval chemical defense has been shown for a range of enzymatic activities involved 

in defensive compound biosynthesis of Chrysomelina. However, little is done on a 

molecular and/or genetic level and neither the evolutionary origin nor the fate after host 

shift of the glandular enzymes is known for any Chrysomelina species. 

The salicyl alcohol oxidases (SAOs) of the obligate salicin sequestering species 
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Chrysomela populi and Chrysomela tremulae are the only enzymes that have been 

characterized on protein level after heterologous expression (Michalski et al. 2008, in 

parallel in our lab). The SAOs belong to the glucose-methanol-choline (GMC) 

oxidoreductase superfamily. We elucidated not only glandular tissue-specific expression 

and gene architecture but also stereo-selectivity, substrate specificity and complex 

patterns of N-glycosylations for Chrysomela populi SAO after heterologous expression 

in a Sf9 insect cell lines (unpublished). 

 

 

1.3 An introduction to the investigated species 

1.3.1 Biology of Chrysomela lapponica
 

Chrysomela lapponica is a univoltine, cold climate-adapted, euro-siberian leaf beetle 

species (Fig. 4). Its patchy arctic-alpine distribution in Europe (Fig. 5) is most probably 

a relict after the last glaciations (Machkour-M´Rabet et al. 2008) and potentially also 

due to its general poor dispersal capability (Knoll et al. 1996). Recent investigations 

addressing the differences among isolated C. lapponica populations indicate slight 

reproductive constrains and local host specialization (Gross and Hilker 1995, Fatouros 

et al. 2006, Zvereva et al. 2010). 

 

 

Fig. 4: Chrysomela lapponica adult (A), egg patch
(B) and larva (C). Droplets of defensive secretion
are visible on the dorsal surface of the larva after
artificial disturbance. 
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Fig. 5: Map, showing
the patchy, Eurasian
distribution of Chryso-
mela lapponica. Sites of
populations are depic-
ted exemplarily and
their defensive com-
pounds are indicated by
halfway green and blue
(salicylaldehyde and
butyrate-esters) or fully
blue (butyrate-esters)
circles. (modified from
Mardulyn et al., sub-
mitted). 

 
 

However, based on genetic differentiation data, clear evidence for speciation in progress 

could not be found (Machkour-M´Rabet et al. 2008, Mardulyn et al. submitted). 

C. lapponica belongs to the monophyletic supra-species interrupta-group (Brown 1956, 

Termonia et al. 2001) characterized by the ability to synthesize butyrate-esters as larval 

defensive compounds (Blum et al. 1972, Hilker and Schulz 1994, Termonia and Pasteels 

1999). Although originally Chrysomela species are restricted to feed on willow or 

poplar (Salicaceae), the interrupta-species also colonize (in a species-specific way) 

willow, birch or alder (Betulaceae) (Brown 1956, reviewed in Termonia and Pasteels 

1999 and Termonia et al. 2001). C. lapponica is unique in this group as isolated 

populations of this species are reported to feed either on birch or on willow (Fig. 5, 6) 

(rarely also on poplar or bird cherry: see Zvereva et al. 2010). Similar to other species 

of the interrupta-group, C. lapponica host plant affiliation has a tremendous impact on 

its chemical defense composition (Hilker and Schulz 1994, Gross et al. 2004a). Whereas 

willow-feeders produce salicylaldehyde and butyrate-esters, birch-feeders completely 

lack salicylaldehyde biosynthesis. 

The shift/expansion to birch has been discussed in the context of enemy free space 

colonization, as the lack of salicylaldehyde prevents the attack of salicylaldehyde-

specialized predators and parasitoids (Fig. 7) (Zvereva and Rank 2003/2004, Gross et 

al. 2004b).  
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1.3.2 Biology of Phratora vitellinae
 

The brassy willow beetle Phratora vitellinae (Fig. 8) is one of the most abundant leaf 

beetles in Europe and known as a pest insect in osier and “energy plantations” of willow 

Fig. 6: Locations and host plants of the two investigated Chrysomela lapponica populations. In the
French Alps near St-Veran (A) C. lapponica was collected feeding on Salix breviserrata (B) and two
other willow species that were not specified. In the Kazakh Altai C. lapponica was found near the
Burkhat Pass (C) feeding on Betula rotundifolia (D). Both locations are about 2000 m above the sea
level and the host plants are highly abundant. 

Fig. 7: Parasyrphus sp. larvae, a syrphid predator of Chrysomela lapponica eggs and neonate larvae.
Different larval stages (A) and their feeding on a C. lapponica egg cluster (B) are shown. The syrphids´
eggs and larvae were found numerously infesting about 70% of C. lapponica egg clusters in the French-
Alps, where the beetle is a willow-feeder. But they were not present in the birch-feeder location in
Kazakhstan. 



17 
 

and poplar (Urban 2006). P. vitellinae is within the Chrysomelina the only species of 

the genus Phratora and, moreover, the only species beside the genus Chrysomela pro-

ducing salicylaldehyde as defensive compound (Wain 1943, Pasteels et al. 1984). As 

known for Chrysomela species, P. vitellinae sequesters the host-derived salicin serving 

as the precursor of salicylaldehyde (Pasteels et al. 1983) which displays activity against 

generalist predators and microbial invasions (Wallace and Blum 1969, Denno et al. 

1990, Palokangas and Neuvonen 1992, Hilker and Schulz 1994, Gross et al. 2002). The 

brassy willow beetle prefers to feed on salicin-rich willow and poplar (Rowell-Rahier 

1984a/b, Denno et al. 1990, Rank et al. 1998), and this salicin-rich diet was positively 

correlated with better larval defense and performance (Pasteels et al. 1988b, Denno 

1990, Rank et al. 1998). However, P. vitellinae larvae need to cope with 

salicylaldehyde-specialized predators (Pasteels and Gregoire 1984, Köpf et al. 1997). 

 

 

 

 

 

1.4 Aims and scope of the thesis 
 

The links between host plant adaptation of Chrysomelina larvae and their chemical 

defense on different levels have been displayed in the previous paragraphs. These 

intimate relationships obviously show the suitability of investigating Chrysomelina 

chemical defenses to gain knowledge about mechanisms that uncover/reflect 

prerequisites and consequences of herbivorous specialists´ host affiliations. 

Chrysomelina host plant associations and their larval glandular chemical defense 

compounds are well known for a variety of species. Those data served as a background 

to investigate the origin of defensive compound precursors and involved transport 

Fig. 8: A neonate larva and pre-hatching embryos (A) as well as an adult (B) of the brassy willow beetle
Phratora vitellinae are shown. ((B): S. Krejcik, http://www.meloidae.com/en/pictures/6999/?s=1). 



18 
 

processes. Remarkable insights into the biosynthetic pathways leading to iridoids, 

salicylaldehyde and butyrate-esters were achieved by the use of in vitro assays with 

glandular secretions as well as via larval feeding and injection studies. 

Consequently, those findings raised a couple of questions during the last decade. 

- Is the switch from “ancestral” iridoid to “derived” salicylaldehyde larval 

chemical defense based on a recycling (sub-functionalization) of proteins 

(transporter, enzymes) or an innovation (neo-functionalization)? 

- Has the salicin-based defense (salicylaldehyde biosynthesis), and therefore the 

strong constraint to feed on salicaceous plants, evolved independently in 

Phratora vitellinae and Chrysomela spp.? 

- What are the consequences of host shifts from willow to birch in the Chrysomela 

interrupta-group and how did those shifts affect the salicylaldehyde 

biosynthesis? 

- How close/strict are the adaptations of the larval defensive compound precursor 

transport systems to the host plant, when keeping the enormous pool of host 

derived/offered glycosides and the specific use in Chrysomelina larvae in mind? 

One way to address those questions is to elucidate identity, origin and characters of 

enzymes involved in defensive compound biosynthesis on a molecular-genetic level. 

But so far very little is known about those enzymes. The following chapters show that 

comparative investigations of those enzymes provide insights into prerequisites and 

consequences of host shifts and, moreover, are helpful to characterize host plant 

adaptations/specializations more precisely. In addition, in-depth analyses of the whole 

pool of host plant glycosides clarifies the chemical world the Chrysomelina larvae have 

to cope with, which at the same time they can utilize to facilitate/sustain their glandular 

chemical defense. The combination of knowledge of both the enzymes involved in 

larval glandular chemical defense and the host plants´ chemistry allows for drawing a 

picture of what shapes the environment whereof the biosynthetic machinery of larval 

defense needs to be adapted to. 

The general aim of this thesis was to identify Chrysomelina defensive glandular 

enzymes involved in the biosynthesis of defensive compounds and to investigate which 

glycosides are provided from the host plants. Along these lines, the thesis had the 

following specific aims: 

1.) Identification of SAOs in Chrysomela spp. 

The first manuscript describes the identification of the SAO of C. populi and C. 
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lapponica. These data were employed in further parts of the thesis to elucidate their 

substrate-specificity, stereoselectivity, spatial expression, origin, genetic architecture 

and evolutionary dynamics. Therefore, molecular-biological techniques like qPCR, 

heterologous expression in insect cell lines, genomic library constructions and 

screenings and phylogenetic analyses were utilized. 

2.) Elucidation of the origin of salicin-based defense in Chrysomelina 

The second manuscript describes the identification and characterization of SAO in P. 

vitellinae. Herein verification of the presence of SAO in P. vitellinae glandular 

secretions, followed by SAO heterologous expression and subsequent activity assays 

were applied. The comparison with the SAOs of Chrysomela spp. provided in the first 

manuscript led to hypothesize a single origin of salicin-based chemical defense in 

Chrysomelina larvae, although Phratora and Chrysomela are not closest relatives. 

3.) Evolutionary dynamics of SAO and impact of host shift on its fate 

A comparison of a willow- and a birch-adapted population of C. lapponica (Fig. 6) with 

special emphasis on SAO were conducted. Based on qPCR, activity assays after 

heterologous expression, protein and gene sequence analyses the impact of host shift 

from willow to birch was shown in the first manuscript. Most likely the lack of salicin 

relaxed the selection pressure on SAO leading to reduced transcript abundance, 

alternative splicing events leading to partially truncated proteins and ultimately to loss 

of SAO activity in the birch-feeder. 

Additionally, the investigation of the genomic background by genomic library screening 

showed that GMC gene duplications early in Chrysomelina evolution, followed by 

lineage-specific and more recent gene duplication events enabled the evolution of SAO 

activity. This evolutionary scenario is also supported by findings described in the 

second manuscript. 

4.) The link between chemical defense relying on iridoid and salicylaldehyde 

Although applying a range of molecular-biological techniques, I was not able to 

elucidate the oxidase of iridoid producers catalyzing the oxidation of 8-hydroxygeraniol 

to the dialdehyde 8-oxogeranial. However, data of the second manuscript provide 

evidence for an independent evolution of oxidases involved in iridoid and 

salicylaldehyde biosynthesis. Herein, comparative MS/MS analyses of proteins present 

in defensive secretions of Chrysomelina larvae were helpful. 

5.) Selectivity of host-derived defensive compound precursor uptake in C. lapponica 

The third manuscript provides a comparison of the complex pattern of glucosides 
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present in the host of a birch-feeding C. lapponica population and the aglycones present 

as butyrate-esters in their defensive secretion. The selectivity and efficiency of transport 

processes were compared to previous findings in other C. lapponica populations. 
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2 Overview of manuscripts 
 

 

Manuscript 1

 

Roy Kirsch, Heiko Vogel, Alexander Muck, Kathrin Reichwald, Jacques M. Pasteels 

and Wilhelm Boland (2011) 

 

Host plant shifts affect a major defense enzyme in Chrysomela lapponica

Proceedings of the National Academy of Sciences of the United States of America 

108:4897-4901.  

 

The identification and characterization of SAO in Chrysomela lapponica is described. 

Comparing two isolated populations, one feeding on willow and the other one on birch, 

elucidated the loss of SAO activity in the latter population due to SAO mutations 

causing alternative splicing and N-terminal truncation of the protein. In addition, 

phylogenetic analyses of SAOs and related sequences revealed their single origin in the 

GMCi subfamily. 

 

R.K. designed and performed research, analyzed the data and wrote the manuscript to a 

bigger part. 

H.V. and W.B. designed research as well, revised the manuscript and supervised the 

work. 

A.M. supervised the MS/MS sample preparation of his technician and analyzed MS/MS 

data. 

K.R. supervised the cDNA library sequencing and processed the raw-data. 

J.M.P. made corrections and comments on a previous version of the manuscript. 
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Manuscript 2 

 

Roy Kirsch, Heiko Vogel, Alexander Muck, Andreas Vilcinskas, Jacques M. Pasteels 

and Wilhelm Boland (2011) 

 

To be or not to be convergent in salicin-based defence in chrysomeline larvae: 

evidence from Phratora vitellinae salicyl alcohol oxidase 

 

Proceedings of the Royal Society of London B: Biological Sciences (online available). 

 

SAO of Phratora vitellinae has been elucidated, characterized and compared to 

Chrysomela spp. SAOs. Phylogenetic analyses verified their SAO genes´ single origin 

although the genera are not closely related within the Chrysomelina. Moreover, whereas 

we found SAO related sequences their proteins were not detectable in the secretion of 

iridoid producing species indicating an independent evolution of oxidases in 

salicylaldehyde and iridoid producing species. 

 

R.K. designed and performed research, analyzed the data and wrote the manuscript to a 

bigger part. 

H.V. and W.B. designed research as well, revised the manuscript and supervised the 

work. 

A.M. supervised the MS/MS sample preparation of his technician, analyzed MS/MS 

data and wrote parts of material and methods in the manuscript. 

A.V. enabled the transcriptome sequencing of Phaedon cochleariae and made some 

comments on the manuscript. 

J.M.P. made corrections and comments on a previous version of the manuscript and 

provided the insects for rearing. 
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Manuscript 3 

 

Karla Tolzin-Banasch, Enkhmaa Dagvadorj, Ulrike Sammer, Maritta Kunert, Roy 

Kirsch, Kerstin Ploß, Jacques M. Pasteels and Wilhelm Boland (2011) 

 

Journal of Chemical Ecology 37:195-204. 

 

Glucose and glucose esters in the larval secretion of Chrysomela lapponica;

selectivity of the glucoside import system from host plant leaves 

 

Sequestration of phytogenic precursors by C. lapponica feeding on birch has been 

studied. The selectivity of larval transport mechanism has been elucidated by comparing 

the complex glucoside pattern of their host plant with the agluca present in the 

defensive secretion of the larvae. The lack of salicin but presence of salicin precursors 

have been described for the host, indicating together with the in principle ability of 

salicin sequestration by the larvae that birch affects more proteins than SAO activity. 

 

R.K. performed research to a small proportion and contributed to writing the 

manuscript. 

K.T.-B., E.D. and U.S. performed most of the research, analyzed the data with some 

contributions from the other authors. 

W.B., K.T.-B. and J.M.P. designed research and wrote the manuscript with some 

contributions from the other authors. 
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3 Manuscripts
 

 

Manuscript 1 
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Chrysomelid leaf beetles use chemical defenses to overcome
predatory attack and microbial infestation. Larvae of Chrysomela
lapponica that feed on willow sequester plant-derived salicin and
other leaf alcohol glucosides, which are modified in their defensive
glands to bioactive compounds. Salicin is converted into salicylal-
dehyde by a consecutive action of a β-glucosidase and salicyl alco-
hol oxidase (SAO). The other leaf alcohol glucosides are not
oxidized, but are deglucosylated and esterified with isobutyric-
and 2-methylbutyric acid. Like some other closely related Chryso-
mela species, certain populations of C. lapponica shift host plants
from willow to salicin-free birch. The only striking difference be-
tween willow feeders and birch feeders in terms of chemical de-
fense is the lack of salicylaldehyde formation. To clarify the impact
of host plant shifts on SAO activity, we identified and compared
this enzyme by cloning, expression, and functional testing in a
willow-feeding and birch-feeding population of C. lapponica. Al-
though the birch feeders still demonstrated defensive gland-
specific expression, their SAO mRNA levels were 1,000-fold lower,
and the SAO enzyme was nonfunctional. Obviously, the loss of
catalytic function of the SAO of birch-adapted larvae is fixed at
the transcriptional, translational, and enzyme levels, thus avoiding
costly expression of a highly abundant protein that is not required
in the birch feeders.

host plant adaptation | glucose-methanol-choline oxidoreductase

Most phytophagous insects are specialized to a restricted set of
host plant species (1–4). Host affiliation/specialization has

been shown to be influenced by geographical, genetic, biophysical,
and ecological enforcements (3, 5). But the most important bar-
riers are toxic metabolites of the host plant (6–8), which all phy-
tophagous insects must overcome by developing appropriate
detoxification mechanisms. Adapting to plant-specific chemicals
provides insects with a niche that allows them to survive, but
narrows the range within which host plant shifts can occur, in-
cluding only plants with similar metabolite patterns.
Chrysomelina leaf beetles are an excellent taxon for in-

vestigating host plant adaptation and relevant factors associated
with host plant shifts. Most leaf beetle species are highly spe-
cialized on a single plant genus, where they spend their whole life
cycle. Their well-defended larvae exhibit different degrees of
dependence on the host plant’s secondary metabolites (9–13).

Larvae of the genus Chrysomela originally feed on Salicaceae
(e.g., willow, poplar) and sequester salicin (9). This phenolic glu-
coside is transported intact into the reservoirs of larvae’s exocrine
defensive glands (14, 15). In the reservoir, the glucoside is cleaved
by a β-glucosidase to salicyl alcohol and glucose. Salicyl alcohol is
further transformed to salicylaldehyde by a flavine-dependent
salicyl alcohol oxidase (SAO) (16–18). Salicylaldehyde acts as
a feeding deterrent against generalist predators (19–21) and has
antimicrobial activity (22). The use of host-derived chemical
defenses via sequestration exemplified by Chrysomelid beetles is
a highly economical solution for detoxifying plant chemicals (23).
The fact that de novo biosynthesis of defensive compounds is
not required provides an energetic benefit while making the
specialist herbivore dependent on host plant chemistry.

A monophyletic clade within the genus Chrysomela (interrupta
group) evolved the biosynthesis of butyrate esters as defensive
compounds (19, 21) about 1.1–2.3 Mya (24, 25). Some species of
the interrupta group shifted host plants from willow to birch (26),
which affected the composition of the insects’ glandular de-
fensive secretions. Whereas willow-feeding species retained the
ability to synthesize salicylaldehyde in addition to esters as a dual
defense strategy, birch-feeding specialists lack salicylaldehyde
and synthesize only esters. It has been proposed that the evo-
lution of ester biosynthesis enabled species within the interrupta
group to shift from willow to birch. This shift altered the com-
position of the defensive secretions and allowed the insects to
escape specialized parasitoids and predators that were attracted
by the larval salicylaldehyde (25, 27).
In the present study we focus on Chrysomela lapponica, the

only species within the interrupta group comprising both willow-
feeding specialists with a dual strategy and birch-feeding spe-
cialists, which produce butyrate esters (25, 28). Their highly
fragmented Eurasian distribution, caused by an adaptation to a
cold climate and the general poor capability for dispersal of many
leaf beetles (29), might have favored the isolation of populations
leading to population-specific adaptations to different host plants
(28, 30). Despite recent data on how shifts in host plants have
influenced the composition of defensive secretions in Chrys-
omelinae (21, 23, 24), the impact of the biosynthetic enzymes on
the defensive system is unknown. Here we focus on salicylalde-
hyde biosynthesis, which is the only striking difference between
willow-feeders and birch-feeders. We address the evolutionary
origin of SAO, how the enzyme involved in the biosynthesis of
salicylaldehyde continues to evolve, and what happens to SAO
after a host shift occurs. For this comparative approach, we cloned
and expressed SAO from C. lapponica adapted to the French
willow (designated SAO-W) and from birch-feeding C. lapponica
from Kazakhstan (designated SAO-B). SAO is a member of the
glucose-methanol-choline oxidoreductase (GMC) multigene
family, known for its wide variety of substrates and catalytic ac-
tivities (31, 32), and has been characterized at the molecular and
functional levels in the obligate salicylaldehyde-producing species
Chrysomela populi (16–18, 33). We demonstrate that a non-
functional SAO, along with a number of paralogs, are present in
the Kazakh population. We discuss the significance of the paral-
ogs and the lack of function of SAO-B in an evolutionary context.
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Results
Identification and Characterization of SAO in Willow-Feeding C.
lapponica. The 1D-SDS/PAGE gels of glandular secretions of
the French population of C. lapponica feeding on Salix brevi-
serrata displayed a highly abundant 70-kDa protein (Fig. S1) that
was identified as SAO-W by comparing their de novo peptide
sequences with the two known Chrysomela SAOs. SAO-W is
a member of the GMC oxidoreductase family. Its peptide se-
quence was assigned to a GMC encoding EST from a cDNA
library of the larval defensive glands. Full-length sequencing of
the SAO cDNA showed an identity of 83% to the leaf beetle
SAOs of C. populi and C. tremulae at the amino acid level. This
also included the N-terminal signal peptide for the secretory
pathway (Fig. 1 and Fig. S2). Enzyme assays of the putative SAO
protein, heterologously expressed in Sf9 cells, revealed SAO
activity (Fig. 2). The oxidation proceeded in a Re-specific fashion
and removed the deuterium atom exclusively and yielded [1-1H]-
salicylaldehyde from the 1R-[1-2H1]-salicyl alcohol precursor.
This stereochemical course is in agreement with previous studies
using the glandular secretion of Phratora vitellinae (17, 34), con-
firming that the oxidation is not an autoxidative artifact (Fig. 2).
After in vitro deglycosylation of the heterologously expressed
SAO with PNGase F, the molecular weight was reduced by ∼5–7
kDa (Fig. S3). The difference in molecular weight between the
expressed protein (∼77 kDa) and the PNGase F–treated sample
(∼70 kDa or 67 kDa, according to the amino acid sequence)
suggests substantial protein glycosylation. Most importantly, the
insect cell line–expressed protein is of the same size as the native
SAO of the glandular secretions.

Loss of Function of the SAO from Birch-Feeding C. lapponica. Based
on the sequence information for SAO-W, we were able to am-
plify an ORF encoding SAO-B from a cDNA pool; this SAO-B
was constructed from the RNA of the defensive glands of C.
lapponica from Kazakhstan feeding on Betula rotundifolia. After
expressing this enzyme in Sf9 cells, we found no evidence for an
active SAO by in vitro assays. The same result was obtained with
the native secretions. The protein (SAO-B) exhibited an identity
of 97% compared with the SAO-W and a predicted signal peptide
for the secretory pathway (Fig. 1 and Fig. S2). The absence of
catalytic activity can be attributed to a deletion of 27 amino acids
next to the N-terminal signal peptide in SAO-B. Amplifying and
comparing SAO-encoding genes in willow-feeding and birch-
feeding populations of C. lapponica identified a deletion affecting
the end of the second exon (Fig. S4). This is coincident with the
missing amino acids and causes the translation of a truncated,
nonfunctional transcript of the SAO-B by alternative splicing.
Additional analysis of the splicing pattern of the SAO from
C. populi and related genes inC. lapponica showed that the site for
alternative splicing in the birch-feeding C. lapponica concerns

a position that is conserved in C. populi and C. lapponica wil-
low feeders.

SAO-Related Sequences Imply Rapid Gene Duplication Events in
Chrysomela spp. In the willow-feeding C. lapponica, we identified
a GMC-type protein closely related to SAO-W, termed SAO-W
paralog1. Expression of this protein in Sf9 cells demonstrated that
this paralog also lacked SAO activity. Like the willow feeders, the
birch-feeding species expressed a SAO-B paralog1 in glandular
tissue. Due to its high sequence identity of 98.8% at the nucleotide
level and 99.4% at the amino acid level, willow- and birch-feeding
SAO paralog1 are most likely true orthologs. cDNA library and
qPCR data indicate the presence of even more SAO-W paralogs
in the genome of C. lapponica. To identify additional SAO-W–

related genes, we screened a genomic Fosmid library of the willow-
feeding C. lapponica with probes designed from their SAO-W and
SAO-W paralog1. We identified a total of four SAO-W paralogs
from willow-feeding populations with an amino acid identity of the
predicted and known coding regions ranging from 54% to 97%.
The most similar SAO-like genes were connected pairwise in the
genome (ClapSAO-Wp1 + p3 and p2 + p4). From birch-feeding
larvae of C. lapponica, we also were able to amplify an SAO-B
paralogous gene (ClapSAO-Bp2). Two additional paralogs were
obtained from cDNApools of the defensive gland (ClapSAO-Bp1)
and the Malpighian tubules (ClapSAO-Bpmt). Similar paralogs
were present in the genomic DNA of C. populi showing high se-
quence similarity to one another (CpopSAOp and CpopSAOp1).

Expression Patterns of SAO-W, SAO-B, and Their Paralogs. The gene
expression levels were compared in different tissues of both
larval C. lapponica populations. The most obvious finding is the
high level of SAO-W expression in the glandular tissue, which
exceeds that in the gut, fat body, and Malpighian tubules by
40,000-fold (Fig. 3A). This pattern is conserved in the birch-
feeding population for the SAO-B but with a 1,000-fold lower
transcript abundance (Fig. 3B). A glandular tissue–specific ex-
pression pattern was also observed for the paralog1 in both
populations. However, unlike the high expression level of SAO-W,
the transcript abundance for the two paralogs1 was much lower
and comparable in both populations (Fig. 3).
A second SAO-B paralog (ClapSAO-Bpmt; see the previous

paragraph) was found in the Malpighian tubules by qPCR se-
quence analysis, but it proved to be different from the SAO-B.
Interestingly, no comparable transcript was found in the Mal-
pighian tubules of the willow feeders, demonstrating different
expression patterns of the SAO paralogs in the two populations.

Evolution of SAO Activity by Expansion and Diversification of the
GMCi Subfamily. Phylogenetic analyses, including members of the
GMCi, GMCz, and glucose dehydrogenase (GLD) subfamilies and
the SAO of C. populi, C. tremulae, C. lapponica, and their related
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Fig. 1. Detail of an amino acid alignment of known SAOs of C. populi (CpopSAO) and C. tremulae (CtreSAO) with Tribolium castaneum GMCi5 (TcasGMCi5),
and the SAO of the willow (ClapSAO-W) and birch (ClapSAO-B) population as well as the SAO-W paralog1 (ClapSAO-Wp1) of C. lapponica. The truncation of
ClapSAO-B is highlighted in gray, and overall identical amino acids are depicted in black.

4898 | www.pnas.org/cgi/doi/10.1073/pnas.1013846108 Kirsch et al.



27

genes, showed the origin of all SAOs within the GMC oxidor-
eductases and a most recent common ancestral gene in the GMCi
subfamily. This is indicated by their affiliation to TcasGMCi5
supported by a high bootstrap and posterior probability value (90/
1). Moreover, Fig. 4 demonstrates the SAOs in Chrysomela spp.
have a single origin within the GMCi subfamily. Two true orthol-
ogous groups of SAO paralogs, supported by high probability
values, are shown by identical numbers (SAOp1 and SAOp2). The
presence of at least four SAO paralogs in the willow-feeding
C. lapponica, three in the birch-feeding C. lapponica, and two in
C. populi demonstrates the expansion of the GMCi subfamily in
the genus Chrysomela by gene duplication events leading to the
evolution of SAO activity.
The GMCi, GMCz, and GLD sequences cluster in distinct

clades and within each clade according to species phylogeny. The
SAO of C. populi and C. tremulae cluster tightly together and are
supported by high bootstrap and probability values, but they are
clearly separated from the SAO and related genes of C. lapponica.

This indicates that the latter likely can be ascribed to species-
specific gene duplications.

Discussion
Within the genus Chrysomela, the monophyletic interrupta group
evolved the ability to biosynthesize esters from insect- and plant-
derived precursors (19, 21, 24, 25, 35, 36). Whereas willow-feeding
species of the interrupta group retained the ability to biosynthesize
salicylaldehyde in addition to esters, birch-feeding species produce
esters only as defensive compounds. The impact of the phytogenic
precursors on the compositions of the defensive secretions has
been studied intensively (16, 21, 13), but virtually nothing is known
about the impact and nature of the glandular enzymes generating
the defensive mixtures from the sequestered precursors.
We focused on the SAO from birch-feeding and willow-feeding

larvae of C. lapponica because the host plant shift had a dramatic
effect on the composition of the defensive secretions that could
not be attributed simply to the different metabolite profiles of
the food plants. For example, the presence of small amounts
of alcohols [e.g., benzylalcohol (18)] in the secretions of the
birch-feeding population suggests a complete lack of oxidative
capacity. Therefore, we first identified and functionally expressed
SAO-W from willow-feeding larvae of C. lapponica. This protein,
a member of the GMC oxidoreductase family, consists of 625
amino acids including an N-terminal signal peptide addressing
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Fig. 3. Relative transcript abundance of SAO (black columns) and SAO
paralog1 (gray columns) in different larval tissues. For normalization of
transcript quantities, EF1α and eIF4A were used. (A) Willow-feeding pop-
ulation. (B) Birch-feeding population. Average transcript levels for SAO/SAO
paralogs1 are shown below the graphs. Error bars indicate the SEM. dg,
defensive gland; fb, fat body; g, gut; mt, Malpighian tubule.
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Fig. 4. Phylogeny of Chrysomela spp. SAO and related GMC oxidor-
eductases, including other insects. The phylogeny was generated using the
neighbor-joining method with 1,000 bootstrap replicates. Bootstrap values
are shown next to each node. The second numbers are posterior probability
values based on a Bayesian phylogeny using the same set of data. (For details
on the parameters and protein sequences used in this study, see Materials
and Methods and SI Materials and Methods). GMC subfamilies (i, z, GLD) are
well supported, as described previously (45). Chrysomela spp. SAO and re-
lated GMC oxidoreductases are members of the GMCi subfamily. Four pu-
tative gene duplication events (marked with arrows) led to an expansion of
the GMCi subfamily in C. lapponica. The red highlighted proteins are those
with proven SAO activity, whereas the green highlighted proteins lack SAO
activity. Clap, C. lapponica; Cpop, C. populi; Ctre, C. tremulae; Tcas, T. cas-
taneum; Anig, Aspergillus niger; GOX, glucose oxidase; p, SAO paralogs;
pmt, SAO paralog Malpighian tubule–specific.
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Fig. 2. GC-MS analysis of SAO-W activity assay with crude extract from Sf9
culture medium. The chromatogram shows the formation of salicylaldehyde
by heterologously expressed SAO-W. The mass spectrum of the salicylalde-
hyde peak after an assay with deuterated salicyl alcohol in the Re position
shows the Re-selective proton removal.

Kirsch et al. PNAS | March 22, 2011 | vol. 108 | no. 12 | 4899

EC
O
LO

G
Y



28

the secretory pathway (exported from the glandular tissue to the
reservoir) and is highly abundant in the defensive secretions. The
enormous amount of transcript in the glandular tissue indicates
an advanced state of tissue-specific expression and is consistent
with the extent of oxidative capacity required to generate sali-
cylaldehyde. In the birch-feeding population, neither SAO ac-
tivity nor the SAO protein was detectable. This agrees with
previous studies on birch-feeding C. lapponica larvae that found
the presence of salicyl alcohol, but not salicylaldehyde, after
larvae were transferred from birch to willow (21, 35). Glucoside
transport and glucoside cleavage were not affected by the host
plant shift, because this system is generally required to sequester
plant-derived glucosides (37) and provides the precursors for the
butyrate esters.
Although we found no SAO activity in the birch-feeding pop-

ulation, we were able to amplify an ORF encoding SAO-B. The
transcription level of this gene is ∼1,000-fold lower in the birch-
feeding population compared with the willow-feeding population.
This lower (but still detectable) transcription in conjunction
with the absence of SAO-B could indicate an additional post-
transcriptional down-regulation of this nonfunctional enzyme.
SAO-W and SAO-B demonstrated 98% amino acid sequence
identity. However, in the SAO-B a truncation close to the N
terminus, caused by a deletion at the second exon/intron border,
leads to an alternative splicing of the SAO-B gene. By extensively
sequencing SAO transcripts, we were able to identify additional
splice variants of SAO-B (at lower frequency), pointing to the
likelihood that mutations will accumulate in this population (Fig.
S5). The structure of the SAO gene is highly conserved between
the C. lapponica SAO-W, its paralogs, and the respective ortho-
logs from C. populi, providing additional support for a specific
(derived state) deletion event in the C. lapponica SAO-B gene.
Obviously, the loss of catalytic function of SAO-B is fixed at the
transcriptional, translational, and enzyme levels, thereby avoiding
costly expression of a protein that is highly abundant in willow-
feeding larvae but not required in the birch-feeders.
The glandular tissue–specific transcription is retained in the

birch-feeding population despite the encoding of a nonfunctional
SAO. This could be explained by a recent and ongoing process
of SAO reversal, acquisition of a new function of the truncated
SAO-B (unlikely given the variable splice pattern) and/or the
cotranscription of the SAOwith other genes (e.g., SAO paralog1),
which demonstrates an SAO-typical expression in the glandular
tissue. Polycistronic transcription is uncommon in eukaryotes,
and few examples are known. One type of cotranscription is the
polycistronic transcription of clustered genes that are clearly re-
lated in sequence and likely have evolved by gene duplication
(38). However, we found no evidence for polycistronic mRNAs in
the case of SAO, but the screening of a genomic library of willow-
feeding C. lapponica indicates the occurrence of recent gene
duplications and clustering of the duplicates with closely related
GMC oxidoreductases. In total, four SAO-W paralogs with an
amino acid identity of 54–97% were identified. The most similar
paralogs, SAO-W paralog1+3 and 2+4, are clustered pairwise.
Beside their sequence similarity, the highly conserved gene
structure (Dataset S1) supports the view that these paralogs
originated from recent gene duplication events. However, anal-
ogous to the SAO-W paralog1, which has no SAO activity, it is
likely that none of these paralogs is a functional SAO enzyme.
Phylogenetic analyses with SAO sequences from the closely

related salicylaldehyde-producing species C. populi and C.
tremulae (33), C. lapponica, and their paralogs showed a common
origin for all SAOs and their paralogs within the GMC oxido-
reductase family and a most recent common ancestral gene in
the GMCi subfamily. Furthermore, the identification of ortho-
logs of SAO-W paralog1 and paralog2 in the birch-feeding
population and another in C. populi shows that (i) the duplica-
tions arose before the evolution of the interrupta group, and (ii)
the number of duplicates is comparable in willow-feeding and

birch-feeding C. lapponica. Tribolium castaneum has three genes
in the GMCi subfamily, one (TcasGMCi5) that shares a most
recent common ancestor with all of the SAOs (Fig. 4) and re-
lated genes found in the genus Chrysomela, providing evidence
that SAO paralogs are not common to all beetles. The scenario
of sub- or neo-functionalization of one gene-duplicated copy
leading to SAO activity seems likely. The high degree of glyco-
sylation of GMC proteins in general and a predicted secretory
signal peptide common to all known GMCi members can be
interpreted as preadaptations for the development of SAO ac-
tivity. In addition, the lack of SAO activity of the ClapSAO-Wp1
protein indicates that the SAO-related genes have nonredundant
functionalities, making an expansion-mediated diversification in
the GMCi subfamily in Chrysomela species likely.
Our findings suggest that C. lapponica reflects a transition be-

tween larvae specializing on willow and birch or an ongoing spe-
ciation, which likely has occurred in some Chrysomela species of
the interrupta group that are restricted to feeding on birch. The
many previous comparisons of closely related phytophagous insect
species and their host affiliation provide insight into the evolu-
tionary history of host plant specialization/host shift and its impact
on speciation (25, 39–41); in addition, some examples have com-
pared different host affiliations within a species (42, 43). However,
very little is known about the consequences of host shift for specific
biochemical pathways and the underlying genetic background that
is directly linked to host plant adaptation. SAO is an enzyme that
fulfilled its function inChrysomela chemical defense for millions of
years; the loss of its activity in C. lapponica birch feeders shows
which molecular mechanisms—namely, protein truncation, tran-
scriptional down-regulation and most likely inhibition of post-
transcriptional processes—can act within a short time period,
especially if the complete lack of oxidative capacity also precludes
the oxidation of benzyl alcohol to benzylaldehyde (18) that might
be attractive to parasites as well. Therefore, to broaden our find-
ings, SAO could be useful in addressing the evolutionary history of
host plant shifts from willow to birch in the whole interrupta group.
Comparative investigations of the fate of SAO could uncover
whether the several independent shifts to birch (25) are also
reflected by different, independent events of molecular changes of
SAO in these species (e.g., alternative accumulation of mutations).
Most interestingly, by investigating secretory compounds of

crosses between willow-feeding and birch-feeding individuals of
C. lapponica, SAO activity can be reestablished (43). Although no
speciation in progress could be identified by comparing the ge-
netic distances among different European populations (28), the
high reproductive isolation (43), population-specific host plant
specialization and adaptation (30), and host-specific oviposition
behavior (44), along with our results reported here, make ongoing
speciation processes in C. lapponica caused by host plant shift
likely. Although we found a variety of effects at different levels
leading to the complete loss of SAO activity in the birch-feeding
population ofC. lapponica, further research is needed to elucidate
the direction of the evolutionary scenario. Our findings suggest
that the host plant shift from willow to birch caused the loss of
SAO activity through the accumulation of mutations rather than
vice versa. Comparative investigations of the selective forces that
act on SAO genes in different populations feeding on different
host plants will shed light on the dynamic and adaptive host plant
associations of Chrysomelid beetles.

Materials and Methods
See SI Materials and Methods for details on population selection, identifi-
cation of SAO protein in glandular secretions, and amplification of full-
length GMC encoding cDNA and genes.

Heterologous Expression in Sf9 Cells. The cDNAs encoding the SAO proteins
and their paralogs were amplified by PCR using gene-specific primers, in-
cluding a 5′ Kozak sequence and lacking a stop codon for epitope and His-tag
fusion expression after ligation into pIBV5 His TOPO TA vector (Invitrogen)
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used for Sf9 insect cell expression. The correct sequence and direction of
cloning were verified by sequencing. Sf9 cells were cultivated in GIBCO Sf-900
II SFM (Invitrogen) on tissue culture dishes (Falcon, 100 × 20 mm; BD) at 27 °C
until 60% confluence was achieved. Transfection was performed with Insect
Gene Juice (Novagen) following the manufacturer’s protocol.

Genomic Library Construction and Screening. Genomic DNA, isolated from a
C. lapponica willow population, was used for Fosmid Library construction
performed with the CopyControl Fosmid Library Production Kit (Epicentre
Biotechnologies), following themanufacturer’s protocol. The pCC1FOS vectors
were packaged with MaxPlax Lambda extracts (Epicentre Biotechnologies).
The phage particles were used for EPI300-T1 cell infection. Stocks of infected
cells were sent to ImaGenes (Berlin, Germany) for plating, stock library pro-
duction of each clone, and duplicate colony spotting on nylon membranes.
Nylon membranes were hybridized with SAO probes using the Amersham ECL
Direct nucleic acid labeling anddetection system (GEHealthcare) following the
manufacturer’s protocol for probe labeling, hybridization, and detection.
Positive cloneswere amplified for Fosmid preparation followed by shearing on

a HydroShear DNA shearing device (GeneMachines) and cloned into SmaI-
digested pUC19 (Fermentas) for shotgun sequencing.

Phylogenetic Analyses.Multiplealignmentsofproteinsequenceswerecarriedout
using CLUSTALW (46). Phylogenetic relationships were inferred using a neighbor-
joining algorithm (47) implemented in TREECON 1.3, taking insertions and dele-
tions into account. A bootstrap resampling analysis with 1,000 replicates was per-
formed to evaluate the tree topology. Amodel-based phylogenetic analysis using
Bayesian Markov chain Monte Carlo inference, consisting of four Markov chains,
was performed using MrBayes 3.1.2. The analysis was run for 1,000,000 gen-
erations, with sampling from the trees every 100 generations. The first 1,000
generationswerediscardedasburn-in.Treeswerecombined intoasingle summary
tree. Dataset S3 provides the gene sources of all sequences used for the analyses.
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SI Materials and Methods
Leaf Beetle Larvae. Larvae of C. lapponica were collected from
their respective host plants in the field. Willow-feeding speci-
mens were collected from S. breviserrata near St Veran, France
(44°20’ N, 06°50’ E). Birch-feeding specimens from B. rotundi-
folia were collected in the Altai Mountanins in East Kazakhstan,
close to Uryl, near the Burkhat Pass (2130 m altitude, 49°07,438’
N, 86°01,365’ E). Larval tissues were stored in RNAlater (Qia-
gen) at −20 °C until needed. C. populi larvae were collected in
the Bavarian Forest near Furth im Wald on Populus sp. Willow-
feeding C. lapponica and C. populi were also reared in the lab-
oratory (20 °C, long-day conditions, 16-h/8-h light/dark period)
on Salix caprea and Populus x canadensis for collecting glandular
secretion.

Identification of SAO in Glandular Secretion. Larval glandular
secretions were collected in the field using glass capillaries
(Hirschmann Laborgeraete) by gently squeezing the larvae with
forceps until they protrude their glands. The emerging droplets are
then collected with the capillaries and stored at −20 °C. The se-
cretion was used directly for 1D-SDS/PAGE gel runs with the
Criterion XT Precast Gel System (BioRad). In brief, the separated
protein bands were manually picked from deionized water using
a 1- to 200-μL pipette and disposable tips cut to a 3 mm i.d. blunt
inlet. The gel plugs were transferred to 96-well microtiter plates,
reduced by 10 mM DTT, alkylated by 55 mM iodoacetamide
(IAA), and destained in 50 mM ammonium bicarbonate/50%
acetonitrile. The plugs were then air-dried and overlaid with 50
mM ammonium bicarbonate containing 70 ng of porcine trypsin
(sequencing grade; Promega). The microtiter plates were covered
with aluminum foil, and the proteins were digested overnight at
37 °C. The resulting peptides were extracted from the gel plugs by
adding 50 μL of 50% acetonitrile in 0.1% TFA twice for 20 min
each. The extracts were collected in extraction microtiter plates
and vacuum-dried to remove any remaining liquid and ammonium
bicarbonate. The tryptic peptides were reconstituted in 6 μL of
aqueous 0.1% formic acid. The selected volume of samples (∼4.5
μL) was injected on the Waters nanoACQUITY UPLC separator
system. Mobile phase A (0.1% aqueous formic acid, 15 μL/min for
1 min) was used to concentrate and desalt the samples on a 20 ×
0.180 mm Waters Symmetry C18 5-μm particle precolumn. The
samples were then eluted on aWaters 100mm× 75 μm i.d., 1.7-μm
BEHnanoACQUITYC18 column. Phases A and B (100%MeCN
in 0.1% formic acid) were linearly mixed in a gradient to 5% phase
B in 0.33 min, increased to 40% B in 10 min, and finally increased
to 85% B in 10.5 min, held at 85% B to 11 min, and decreased
to 1% B in 11.1 min of the run. The eluted peptides were trans-
ferred to the nanoelectrospray source of a Synapt HDMS tandem
mass spectrometer (Waters) equipped with metal-coated nano-
electrospray tips (Picotip, 50 × 0.36 mm, 10 μm i.d.; Waters). The
source temperature was set at 80 °C, the cone gas flowwas set at 20
L/h, and the nanoelectrospray voltage was 3.2 kV. The TOF an-
alyzer was used in reflectron mode. The MS/MS spectra were
collected at 1-s intervals (50–1,700 m/z). Infusion of 650 fmol/μL
of human Glu-Fibrinopeptide B in 0.1% formic acid/acetonitrile
(1:1 vol/vol) at a flow rate of 0.5 μL/min through the reference
NanoLockSpray source (Waters) was performed every 30th scan
to compensate for mass shifts in the MS and MS/MS fragmenta-
tion mode. The data were collected using MassLynx v4.1 MS
software (Waters). ProteinLynx Global Server Browser v.2.3
software (Waters) was used for baseline subtraction and smooth-
ing, deisotoping, de novo peptide sequence identification, and

database searches. The peptide fragment spectra were searched
against the Uniprot “Chrysomelidae” taxonomy-defined sub-da-
tabase (downloaded on March 18, 2010, from http://www.uniprot.
org/). The protein identification from MS/MS fragment spectra
used a peptide mass tolerance of 15 ppm and a minimum of three
peptides found, an estimated calibration error of 0.002 Da, a 0.03-
Da mass deviation of de novo sequenced peptides, one possible
missed cleavage, and carbamidomethylation of cysteins, possible
oxidation ofmethionines, and possible deamidation of asparagines
and glutamines.

Amplification of Full-Length GMC Encoding cDNAs and Genes. Ex-
pressed sequence tags encoding the SAO-W and SAO-W
paralog1 identified in a cDNA library of willow-feeding C. lap-
ponica were used for rapid amplification of cDNA ends PCR
with the SMART RACE cDNA Amplification Kit (Clontech) in
accordance with the manufacturer’s guidelines. For full-length
amplification of the SAO-B and SAO-B paralog1, sequence in-
formation of the willow-feeding population was used to design
gene-specific primers. Genes were amplified with the LA Taq
Polymerase (Takara), following the manufacturer’s instructions
for long-distance PCR. Gel-purified bands were prepared for
shearing on a HydroShear DNA Shearing Device (Gene-
Machines) and then cloned into a SmaI-digested pUC19 vector
(Fermentas) for shotgun sequencing. Positive clones were picked
manually and grown overnight in DYT medium. The DNA
Walking SpeedUp Premix Kit (Seegene) was used to obtain
unknown flanking regions of SAO and related genes. Dataset S2
provides the complete list of primers used in this study.

Western Blot and Enzyme Assays. At 48 h after transfection, the
culture medium of Sf9 cells was harvested and concentrated 20-
fold with iCON concentrator (20 mL/9K; Pierce). The crude
protein extract was used for Western blot analyses and enzyme
assays. The heterologously expressed proteins were detected in
Western blots using anti-V5 HRP antibody (Invitrogen) and the
SuperSignal West HisProbe Kit (Pierce). The enzyme assay was
performed in 0.5-mL plastic tubes in 50 mM potassium phosphate
buffer (pH 6.0) at 30 °C for 30 min to 2 h with a final salicyl al-
cohol (Sigma-Aldrich) concentration of 350 μM to 3 mM in
a total volume of 100 μL. Assays were stopped by freezing in
liquid nitrogen. After extraction with 100 μL of ethyl acetate
(Roth) and centrifugation for 5 min at 5,000 × g, the organic
phase was directly used for quadrupole GC-MS analysis (Ther-
moQuest Finnigan Trace GC-MS 2000 equipped with an Alltech
EC 5-column, 15 m × 0.25 mm, film thickness 0.25 μm). Com-
pounds were eluted under programmed conditions: 45 °C for 1
min, ramped at 10 °C min−1 to 200 °C, followed by a ramp of 30 °C
min−1 to 280 °C for 3 min. The He carrier gas was maintained at
a flow rate of 1.5 mL min−1. Eluting compounds were detected by
MS and compared with authentic references. The Re-specificity of
the enzyme was determined using chiral 1R-[1-2H1]-salicyl alcohol
(1). The resulting salicyl aldehyde showed no deuterium labeling,
demonstrating the Re-specificity of the oxidation.

Analysis of GMC Expression. Third larval instars were dissected. Fat
body, defensive glands, gut, and Malpighian tubules were stabi-
lized in RNAlater (Qiagen) and stored at −20 °C for further
applications. For qPCR, 500 ng of total RNA pooled from the
tissue of 20 individuals was reverse-transcribed with a mix of
random and oligo-dT20 primers. Real-time qPCR was done in
optical 96-well plates on a Stratagene MX 3000P system. All
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steps were performed with the Verso SYBR Green 2-Step QRT-
PCR Kit Plus ROX Vial (Thermo Scientific) following the
manufacturer’s instructions. Specific amplification of transcripts
was verified by melting curve analysis, followed by sequencing of
the PCR products. All primers were designed using Primer3

(v. 0.4.0). Eukaryotic initiation factor 4A and elongation factor 1α
were used as reference genes to normalize quantities of our
genes of interest. Raw data were analyzed with qBase, using
a logarithmic view of relative expression level on the y-axis of the
graphs, with the lowest transcript abundance set to 1.

1. Veith M, Oldham NJ, Dettner K, Pasteels JM, Boland W (1997) Biosynthesis of defensive
allomones in leaf beetle larvae: Stereochemistry of salicylalcohol oxidation in Phratora
vitellinae and comparison of enzyme substrate and stereospecificity with alcohol
oxidases from several iridoid-producing leaf beetles. J Chem Ecol 23:429–443.

70kDa 75kDa

s1 s2MM2MM1

Fig. S1. A 1D-SDS gel of glandular secretion of C. lapponica feeding on willow (S1) and feeding on birch (S2). The open arrowhead in S1 marks the corre-
sponding SAO-W band, whereas in S2, no SAO could be identified from the weak band of equal size. The black arrowheads denote a band in the secretion that
most likely corresponds to a common protein in both populations based on MS/MS analysis. MM1 and MM2 are two different protein markers.

Percent Identity

D
iv

er
ge

nc
e

1 2 3 4 5 6
1 51.0 53.9 51.8 49.4 51.0 1 TcasGMCi5
2 77.3 55.7 97.3 83.0 82.3 2 ClapSAO-W
3 70.1 65.8 56.6 56.4 57.2 3 ClapSAO-Wp1
4 75.3 2.7 63.8 84.1 83.2 4 ClapSAO-B
5 81.6 19.4 64.3 17.9 89.4 5 CpopSAO
6 77.3 20.2 62.6 19.0 11.4 6 CtreSAO

1 2 3 4 5 6

Fig. S2. GMC oxidoreductase protein sequence distances based on a CLUSTALW alignment implemented in LaserGene 8.02 (DNAStar). A detail of the
alignment is shown in Fig. 1.

80kDa
60kDa

MM 1 2 3 4

Fig. S3. Western blot analysis of heterologously expressed SAO of C. populi (lanes 1 and 2) and SAO-W of C. lapponica (lanes 3 and 4). Lane 2 and 4 show
PNGase F–treated SAO with a similar shift in size compared with untreated proteins, indicating a high degree of posttranslational N-glycosylation.
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GATCTCTTGGACTATACAATGACTTCAATGGTGACATATTCAGCTCCATAATCAA-------------------- 55Clapsao-B
GATCTCTTGGACTATACAATGACTTCAATGGTGACATATTCAGCTCCATAATCAATTTATCAGGCCATATCAAGA 75Clapsao-W
GATCTCTTGGACTATACAATGACTTCAATGGTGACATATTCAGCTCCATAATCAATTTATCAGGCCATATCAAGA 75Clapsao-W E2
--------------------------------------------------------------------------- 0Clapsao-W E3

--------------------------------------------------------------------------- 55Clapsao-B
ACACATTACTCTCTGAATATCCGTCCAATGTAATAGGTAAGTTGAAATGTATGTTCTCTCTTCAGAACGTGAATA 150Clapsao-W
ACACATTACTCTCTGAATATCCGTCCAATGTAATAG                                        111Clapsao-W E2
--------------------------------------------------------------------------- 0Clapsao-W E3

AGAAATGGAATATTTTCAGCTGATAATGCCAAGTACGACTTCGTGATTGTTGGGTCTGGACCCTCAGGGTC     422Clapsao-B
AGGAATGAAATATTTTCAGCTGATAATGCCAAGTACGACTTCGTGATTGTTGGGTCTGGACCCTCAGGGTC     727Clapsao-W
                                                                            111Clapsao-W E2
-------------------CTGATAATGCCAAGTACGACTTCGTGATTGTTGGGTCTGGACCCTCAGGGTC     52Clapsao-W E3

Fig. S4. A detail of the SAO alignment of willow-feeding (Clapsao-W) and birch-feeding (Clapsao-B) populations from exon2 (Clapsao-W E2) to exon3
(Clapsao-W E3), leaving out most of the intron in between. The 5′ splice site of the intron differs in birch-feeding C. lapponica and willow-feeding C. lapponica
sao-W (open arrowheads), whereas the 3′ splice site of the intron is the same in both populations (closed arrowhead). Alternative splicing in the sao-B causes
a truncation but no frame shift in the encoded protein.

654321 MMMM

b
a

Fig. S5. Agarose gel of PCR products of different GMC transcripts of C. lapponica willow-feeding (lanes 1, 3, and 5) and birch-feeding (lanes 2, 4, and 6)
populations. Lanes 1 and 2 show equal lengths of the SAO-W/Bp1 full-length transcript, whereas lanes 3 and 4 show a decreased length of the ClapSAO-B full-
length transcript. In lanes 5 and 6, the forward primer binds to the region that is deleted in the birch population. Sequencing of purified PCR products of lane 6
revealed ClapSAO-B transcripts showing deletions at other positions (bands a and b). MM is the DNA ladder.

Dataset S1. Table of Chrysomela spp. GMC genes and their exon lengths in base pairs

Dataset S1

For genes highlighted in bold, full-length transcript data exist, and the gene architecture was elucidated by mRNA to genomic alignments using Spidey
implemented in NCBI Toolkit. Coding regions of the other genes are based on Fgenesh, an HMM-based gene structure prediction tool implemented in
Softberry, and manual searching.

Dataset S3. Source of gene information of all sequences used for phylogenetic analyses

Dataset S3

Dataset S2. Table of primers used including names, sequences, and uses

Dataset S2
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gene name Exon1 Exon2 Exon3 Exon4 Exon5 Exon6 Exon7 Exon8 Exon9
Cpop sao 6 154 219 335 292 174 197 217 278
Clap sao-W 157 219 335 292 174 197 217 249
Clap sao-B 36 219 335 292 174 197 217 249
Clap sao-Wp1 154 219 335 292 174 196 218 281
Clap sao-Wp2 157 219 335 292 174 197 150
Clap sao-Bp2 130 219 335 292 174 197 217 249
Clap sao-Wp3 162 219 335 292 177 197 217 296
Clap sao-Wp4 70 335 292 174 197 217 281
Cpop 841812791471292533912pOAS
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Gene name used in this study

GB no. used for our analysis ("ts", 
predicted manually in this study, "§¹", 
taken from Iida K et al. 2007 (45))

D . melanogaster
GMCz 1.89384FAA1
GMCi 1.59384FAA1
GMCi 2.49384FAA2

1.83045FAADLG

A . gambiae
GMCi ¹§4
GMCi ¹§3
GMCz ¹§1

¹§DLG

A . mellifera
GMCz 022493_MX1

stDLG

T . castaneum
GMCz 1.13550AFE1
GMCi st5
GMCi 1.73550AFE6
GMCi 1.83550AFE 7

1.72250AFEDLG

A . niger
1.96303BCAXOG ginA

C . populi
451542QHOAS
551542QH1pOAS
841542QHpOAS

C . tremulae
34391QACOAS

C . lapponica (willow feeder)
941542QHW-OAS
051542QH1pW-OAS
441542QH2pW-OAS
541542QH3pW-OAS
641542QH4pW-OAS

C . lapponica (birch feeder)
151542QHB-OAS
251542QH1pB-OAS
741542QH2pB-OAS
351542QHtmpB-OAS

Dataset S3
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To be or not to be convergent in
salicin-based defence in chrysomeline

leaf beetle larvae: evidence from
Phratora vitellinae salicyl alcohol oxidase

Roy Kirsch1, Heiko Vogel1, Alexander Muck1,†, Andreas Vilcinskas2,

Jacques M. Pasteels3 and Wilhelm Boland1,*
1Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knoell-Strasse 8,

07745 Jena, Germany
2Institute of Phytopathology and Applied Zoology, Justus-Liebig-University Giessen,

Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
3Evolutionary Biology and Ecology, Université Libre de Bruxelles, PO Box 160/12,

Avenue F.D. Roosevelt, 1050 Brussels, Belgium

Glandular chemical defence relying on the action of salicylaldehyde is characteristic for Chrysomela leaf

beetle larvae. The salicylaldehyde precursor salicin, sequestered from salicaceous host plants, is degluco-

sylated and the aglycon further oxidized by a salicyl alcohol oxidase (SAO) to the respective aldehyde.

SAOs, key enzymes in salicin-based glandular chemical defence, were previously identified and shown

to be of a single evolutionary origin in Chrysomela species. We here identified and characterized SAO

of Phratora vitellinae, the only species outside the genus Chrysomela that produce salicylaldehyde as

a defensive compound. Although Chrysomela and Phratora are not closest relatives, their SAOs share

glucose–methanol–choline oxidoreductase (GMC) affiliation, a specific GMCi subfamily ancestor,

glandular tissue-specific expression and almost identical gene architectures. Together, this strongly sup-

ports a single origin of SAOs of both Chrysomela and Phratora. Closely related species of Chrysomela and

P. vitellinae use iridoids as defensive compounds, which are like salicylaldehyde synthesized by the con-

secutive action of glucosidase and oxidase. However, we elucidated SAO-like sequences but no SAO

proteins in the glandular secretion of iridoid producers. These findings support a different evolutionary

history of SAO, related genes and other oxidases involved in chemical defence in the glandular system of

salicylaldehyde and iridoid-producing leaf beetle larvae.

Keywords: Phratora vitellinae; salicyl alcohol oxidase; chemical defence; Chrysomelidae

1. INTRODUCTION
Leaf beetle larvae of the subtribe Chrysomelina are effi-

ciently protected against generalist predators (e.g. ants,

wasps, ladybirds, spiders) and microbial infestation by the

use of a glandular chemical defence [1–9]. When attac-

ked by predators, the larvae release droplets of deterrent

secretion throughdorsal openings of eight pairs of defensive

glands. The defensive secretion is partly biosynthesized and

stored inside the gland reservoirs. Although a huge variety

of defensive compounds in different Chrysomelina species

exist, the consecutive action of a glucosidase and an oxidase

is widespread to modify selectively ingested alcohol

glucosides to bioactive compounds inside the glandular

reservoirs [10].

Chrysomelina larvae most frequently use either iridoids

or salicylaldehyde as chemical defensive compounds, the

former being derived from 8-hydroxygeraniol-8-glucoside

and the latter from salicin (figure 1) (reviewed in [13,14]).

Taking the Chrysomelina phylogeny into account, the pre-

dominant de novo biosynthesis of iridoids (e.g. in the

genera Gastrophysa, Phaedon, Phratora) is seen as the ances-

tral state in the evolution of deterrent compound production

[12]. In comparison to this, the salicylaldehyde biosynthesis

ofChrysomela larvae is a derivedandmore economicdefence

strategy, because the precursor salicin is sequestered from

their salicaceous host plants [6]. Whether the salicylalde-

hyde biosynthesis is derived from the iridoid biosynthetic

route (by shift of substrate specificities of the glandular

reservoir oxidases) or different chemical defences in Chry-

somelina evolved independently is not known so far.

Furthermore, the origin of salicylaldehyde biosynthesis is

not clear as beside the genus Chrysomela, also the more dis-

tant relative Phratora vitellinae produce salicylaldehyde

[10,15,16] (figure 1). The salicylaldehyde precursor and

biosynthesis, namely deglucosylation and oxidation, has

been shown to be the same in Chrysomela and P. vitellinae

larvae [6,10], but nevertheless a convergent origin of sali-

cin-based chemical defence in both genera is discussed

owing to phylogenetic analyses [12]. Therein P. vitellinae

is placed isolated within iridoid producers without a

close affiliation to the salicylaldehyde-producing genus

Chrysomela. Moreover, P. vitellinae is the only species of the
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genus Phratora synthesizing salicylaldehyde instead of

iridoids [15]. Therefore, to clarify the origin of salicyl-

aldehyde-based chemical defence, the identification,

characterization and comparison of the enzymes involved

in its biosynthesis are required. In case of severalChrysomela

ssp., salicyl alcohol oxidase (SAO), which catalyses the final

step in salicylaldehyde formation, has been elucidated and

previous studies indicate a similar enzymatic activity and

the presence of an SAO-related protein in the glandular

secretion of P. vitellinae [17–20]. However, the enzyme

itself is not known.

In the present study, we focus on the SAO of P. vitelli-

nae to get insights into the evolution of salicin metabolism

in conjunction with chemical defence and the origin of

the SAO in chrysomelines. Here, we identified the SAO

protein in the glandular secretion and used the correspond-

ing cDNA for cloning and heterologous expression in an

Sf9 insect cell line followed by enzyme assays. The SAO

of P. vitellinae belongs to the glucose–methanol–choline

oxidoreductase (GMC) family and shows high sequence

similarity to Chrysomela ssp. SAOs. Enzymatic activity

and Re specificity could be verified. Phylogenetic analyses

indicate a common ancestor of all known SAOs, which is

additionally supported by both common expression pro-

files and highly conserved gene architecture. The origin

of chemical defence based on salicin sequestration in

chrysomelines is discussed in consideration of these data

and previous findings. This includes for the first time an

elucidation of SAO-like sequences from transcriptome

and genome screenings in iridoid-producing leaf

beetle larvae.

2. MATERIAL AND METHODS
(a) Leaf beetle larvae

Larvae of P. vitellinae and Phratora laticollis were collected

from their respective host plant in the field near Bruxelles

and reared in the laboratory (208C, long-day conditions:

16 L : 8 D period) on S. caprea and Populus � canadensis for

collecting glandular secretion. Larval tissues were stored in

RNAlater (Qiagen) at 2208C until needed.

(b) Identification of the salicyl alcohol oxidase in the

glandular secretion

Larval glandular secretion was collected in the laboratory

using glass capillaries (Hirschmann Laborgeraete, ID:

0.28 mm, L: 100 mm) by gently squeezing the larvae with

forceps until they protruded their glands. The emerging dro-

plets are then collected with the capillaries and stored at

2208C. The secretion was directly used for one-dimensional

sodium dodecyl sulphate–polyacrylamide gel electrophoresis

(SDS–PAGE) gel runs with the help of the Criterion XT

Precast Gel System (BioRad). Briefly, the separated protein

bands were manually picked from deionized water using a

1–200 ml pipette and disposable tips cut to 3 mm ID blunt

inlet. The gel plugs were transferred to 96-well microtitre

plates (MTPs), reduced by 10 mM dithiothreitol, alkylated

by 55 mM iodoacetamide and destained in 50 mM ammonium

bicarbonate/50 per cent acetonitrile. Subsequently, the plugs

were air-dried and overlayed with 50 mM ammonium bicar-

bonate containing 70 ng porcine trypsin (Sequencing grade,

Promega). The MTPs were covered with aluminium foil and

the proteins were digested overnight at 378C. The resulting

peptides were extracted from the gel plugs by adding twice

50 ml of 50 per cent acetonitrile in 0.1 per cent trifluoroacetic

acid for 20 min and the extracts were collected in an extraction

MTP and vacuum-dried to remove any remaining liquid and

ammonium bicarbonate. The tryptic peptides were reconsti-

tuted in 6 ml aqueous 0.1 per cent formic acid (FA). The

selected volumes of samples (ca 4.5 ml) were injected on a

nanoAcquity nanoUPLC system (Waters, Milford, MA,

USA). Mobile phase A (0.1% aqueous FA, 15 ml min21 for

1 min) was used to concentrate and desalt the samples on a

20 � 0.180 mm Symmetry C18, 5 mm particle precolumn.

The samples were then eluted on a 100 mm � 75 mm ID,

1.7 mm BEH nanoAcquity C18 column (Waters). Phases A

and B (100% MeCN in 0.1% FA) were linearly mixed in a

gradient to 5 per cent phase B in 0.33 min, increased to 40

per cent B in 10 min and finally increased to 85 per cent B

in 10.5 min, holding 85 per cent B to 11 min and decreasing

to 1 per cent B in 11.1 min of the run. The eluted peptides

were transferred to the nanoelectrospray source of a Synapt

HDMS tandem mass spectrometer (Waters) equipped with
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metal-coated nanoelectrospray tips (Picotip, 50 � 0.36 mm,

10 mm I.D, Waters). The source temperature was set to

808C, cone gas flow at 20 l h–1 and the nanoelectrospray vol-

tage was 3.2 kV. The TOF analyzer was used in a reflectron

mode. The MS/MS spectra were collected at 1 s intervals

(50–1700 m/z). A 650 fmol ml –1 human Glu-fibrinopeptide

B in 0.1 per cent FA/acetonitrile (1 : 1 v/v) was infused at a

flow rate of 0.5 ml min–1 through the reference NanoLock-

Spray source every 30th scan to compensate for mass shifts

in the MS and MS/MS fragmentation mode. The data

were collected by MASSLYNX v. 4.1 software. PROTEINLYNX

GLOBAL SERVER BROWSER v. 2.3 software (both Waters) was

used for baseline subtraction and smoothing, deisotoping, de

novo peptide sequence identification and database searches.

The peptide fragment spectrawere searched against theUniprot

‘Chrysomelidae’ taxonomy-defined subdatabase downloaded

on 18 March 2010 from http://www.uniprot.org/. The protein

identification from MS/MS fragment spectra used peptide

mass tolerance 15 ppm and minimum three peptides found,

estimated calibration error 0.002 Da, 0.03 Da mass deviation

of de novo-sequenced peptides, one possible missed cleavage,

and carbamidomethylation of cysteins, possible oxidation of

methionines, and possible deamidation of asparagines and glu-

tamines, respectively.

(c) Amplification of full-length salicyl alcohol oxidase

encoding cDNA and genes

An expressed tag sequence (EST) encoding the P. vitellinae

SAO identified by using Chrysomela SAO primers were used

for RACEPCRwith the SMARTRACE cDNAAmplification

Kit (Clontech) according to the manufacturers’ guidelines.

Genes of P. vitellinae SAO and P. laticollis SAO-like protein

were amplified with the LATaq Polymerase (Takara), follow-

ing the recommended instructions for long-distance PCR.

Gel-purified bands were prepared for shearing on a Hydro-

Shear DNA Shearing Device (GeneMachines) and then

cloned into SmaI-digested pUC19 vector (Fermentas) for

shotgun sequencing. Positive clones were picked manually

and grown overnight in DYT medium.

(d) Western blot and enzyme assays

Forty-eight hours after transfection, the culture medium of Sf9

cells was harvested, concentrated 20-fold with iCON concen-

trators (20 ml/9 K, PIERCE) and the crude protein extract

was then used for Western blot analysis and enzyme assays.

For detection of the heterologously expressed proteins in

Western blots, Anti-V5-HRPantibody (Invitrogen) and Super-

Signal West His Probe Kit (Pierce) were used. The enzyme

assay was performed in 0.5 ml plastic tubes in 50 mM potass-

ium phosphate buffer (pH 6.0) at 308C for 10 min to 2 h

with a final salicyl alcohol (Sigma) or 8-hydroxygeraniol [21]

concentration of 350 mM to 3 mM in a total volume of

100 ml. Assays were stopped by freezing in liquid nitrogen.

After extraction with 100 ml ethyl acetate (Roth) and centrifu-

gation for 5 min at 5000g, the organic phase was directly used

for GCMS analysis (ThermoQuest Finnigan Trace GC-MS

2000 (Quadrupole) equipped with Alltech EC 5-column,

15 m � 0.25 mm, film thickness 0.25 mm). Compounds were

eluted under programmed conditions: 458C for 1 min,

ramped at 108Cmin–1 to 2008C, followed by a 308Cmin–1

ramp to 2808C for 3 min. Helium carrier gas was maintained

at a flow rate of 1.5 ml min–1. Eluting compounds were

detected by mass spectrometry and compared with authentic

references. The Re specificity of the enzyme was determined

using chiral 1R-[1-2H1]-salicyl alcohol [20]. The resulting sal-

icyl aldehyde showed no deuterium labelling, demonstrating

the Re specificity of the oxidation.

(e) Analysis of glucose–methanol–choline

oxidoreductase expression

Third larval instars were dissected. Fat bodies, defensive

glands, gut and Malpighian tubules were stabilized in RNA-

later (Qiagen) and stored at 2208C for further applications.

For qPCR, 500 ng of total RNA pooled from the tissue of

20 individuals was reverse transcribed with a mix of

random and oligo-dT20 primers. Real-time PCR was done

in optical 96-well plates on an MX 3000P (Stratagene). All

steps were performed with Verso SYBR Green 2-Step

QRT-PCR Kit Plus ROX Vial (Thermo Scientific) following

the manufacturer’s instructions. Specific amplification of

transcripts was verified by melting curve analysis. All primers

were designed by the help of PRIMER 3 (v. 0.4.0.). We used

eukaryotic initiation factor-4A (eIF4A) and elongation

factor-1a (EF1a) as reference genes to normalize quantities

of our genes of interest. For the analysis of raw data, we

used qBase, choosing a logarithmic view of the relative

expression level on the y-axis of the graphs, where the

lowest transcript abundance was set to 1.

(f) Heterologous expression in Sf9 cells

The cDNA encoding the SAO protein was amplified by PCR

using gene-specific primers, including a 50 Kozak sequence

and lacking a stop codon for epitope and His-tag fusion

expression after ligation into pIBV5-His-TOPO TA vector

(Invitrogen) used for Sf9 insect cell expression. The correct

sequence and direction of cloning were verified by sequen-

cing. Sf9 cells were cultivated in Sf-900 II SFM (GIBCO)

on tissue culture dishes (100 � 20 mm, FALCON) at 278C
until 60 per cent confluence. Transfection was performed

with InsectGene Juice (Novagen) following themanufacturer’s

protocol.

(g) Phylogenetic analyses

Multiple alignments of protein sequences were carried out

using CLUSTALW [22]. Phylogenetic relationships were

inferred using a neighbour-joining algorithm [23] implemen-

ted in MAFFT taking insertions and deletions into account.

The bootstrap re-sampling analysis with 1000 replicates was

performed to evaluate the tree topology. A model-based

phylogenetic analysis using Bayesian Markov Chain Monte

Carlo inference was also carried out as implemented in

MRBAYES v. 3.1.2 consisting of fourMarkov chains. The analy-

sis was run for 1 000 000 generations, sampling from the trees

every 100 generations, and the first 1000 generations were dis-

carded as the ‘burn-in’. Trees were combined into a single

summary tree.

3. RESULTS
(a) Identification and sequence analysis of salicyl

alcohol oxidase protein and cDNA

One-dimensional SDS–PAGE gels of P. vitellinae larval

glandular secretion displayed a highly abundant protein

at about 75 kDa (figure 2). Through de novo MS finger-

printing, we could identify this major glandular protein as

a member of the GMC oxidoreductase family. In particu-

lar, de novo peptide sequences could be assigned to

known Chrysomela SAOs [18,19]. The corresponding

cDNAwas obtained using internal SAO primers designed

Phratora vitellinae SAO R. Kirsch et al. 3
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to amplify a partial core fragment followed by P. vitellinae

sequence-specific 30- and 50-RACE. This led to a single

full-length cDNA of 2040 bp with an ORF of 1881 bp

that encodes a protein of 626 amino acids. Sequence

comparison showed an identity of about 72 per cent to

leaf beetle SAOs of Chrysomela lapponica, Chrysomela

populi and Chrysomela tremulae at the amino acid level,

including the N-terminal signal peptide for the secretory

pathway (electronic supplementary material, figure S1

and table S1). In total, 17 peptides identified by

nanoLC-MS/MS of the 75 kDa protein band extract

matched the full-length sequence, allowing approximately

40 per cent of total sequence coverage (electronic sup-

plementary material, figure S2 and table S2), thus

verifying that the amplified transcript corresponds to the

protein present in the glandular secretion. The calculated

molecular mass of P. vitellinae SAO-like protein with/with-

out the signal peptide (70/68 kDa) is lower than its actual

mass (approx. 75 kDa). Comparable post-translational

modifications as shown for Chrysomela SAOs are indicated

by seven predicted N-glycosylation sites in P. vitellinae

SAO-like protein. This predicted glycosylation was con-

firmed by a band shift assay treating the heterologously

expressed protein with PNGase F (figure 3). Interestingly,

not only the total number but also four positions of pre-

dicted N-glycosylation sites are conserved in Chrysomela

ssp. and P. vitellinae SAOs.

(b) Salicyl alcohol oxidase expression and activity

Phratora vitellinae SAO-like full-length cDNA starts with

ATG AAA ATG AAG. We used a six-nucleotide shorter

transcript for characterization because the methionine-

encoding third triplet turned out as the most likely start

codon in comparison with Chrysomela SAOs after multiple

alignment analysis (electronic supplementary material,

figure S1). The SAO-like protein was expressed in Sf9

insect cells and a protein of the predicted size was detected

by Western blot analysis in the Sf9 cultural medium

(figure 3). This demonstrated the functional N-terminal

signal peptide for the secretory pathway and similar post-

translational modifications indicated by a comparable size

of Sf9 cell and beetle-expressed SAO.

Enzyme assays of the heterologously expressed SAO-like

protein revealed SAO activity (figure 4). The oxidation

proceeded Re specifically and removed exclusively the

deuterium atom and yielded [1-1H]-salicylaldehyde from

the 1R-[1-2H1]-salicyl alcohol precursor. This stereochemi-

cal course is in agreement with previous studies using the

glandular secretion of P. vitellinae [20] and confirmed that

the oxidation is not an autoxidative artefact. By contrast,

the previously described oxidation of 8-hydroxygeraniol,

for which glandular secretion of P. vitellinae was used [20],

was not detectable using the heterologously expressed

enzyme. In addition, from MS/MS analyses, no peptides

matching alternative GMC oxidoreductases, other than

the SAO present in the glandular secretion of P. vitellinae,

were identified.

(c) Expression pattern of the P. vitellinae salicyl

alcohol oxidase

SAO gene expression levels were compared in different

larval tissues. The SAO is specifically expressed in the

glandular
secretion
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Figure 2. Coomassie Brilliant Blue-stained one-dimensional
SDS protein gel of the larval glandular secretion of P. vitellinae.
The most prominent band marked with an arrow corresponds

to SAO. The size of the protein standard on the left is indicated
in 103 Da.
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Figure 3. Western blot of heterologously expressed SAOs in Sf9
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Size differences are due to a PNGase F treatment of probe
2 (lane 2), suggesting post-translational N-glycosylations.
Chrysomela populi SAO is blotted (lane 3), demonstrating a
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glandular tissue (figure 5) with an approximately 2000-

fold higher expression level compared with the fat body,

gut and Malpighian tubules, where SAO gene expression

levels are close to the background level. The large amount

of protein present in the glandular secretion (§3a and

figure 2) coincides with the high transcript level of SAO

in the glandular tissue, verifying that the enzyme is

expressed in a tissue-specific manner and most probably

secreted into the glandular reservoir.

(d) Salicyl alcohol oxidase-like sequences

in iridoid-producing species

Phratora vitellinae SAO is closely related toChrysomelaSAOs

in sequence but isolated from these according to species

phylogeny. To address the question of the origin of SAO,

we searched for SAO-like sequences in iridoid producers

first in a species that is, based on phylogenetic data, located

between Phratora and Chrysomela (Phaedon cochleariae) and

second within the genus Phratora (P. laticollis). The analy-

sis of a BLAST search of chrysomeline SAOs against a

P. cochleariae in-house EST library led to a single partial

ORFencoding an SAO-like protein. Full-length sequencing

after RACE PCR showed about 58 per cent sequence iden-

tity to known SAOs and related proteins. However, there

is no indication for the presence of this protein in the gland-

ular reservoir (see §4 for details). From genomic DNA of

P. laticollis, we were able to amplify an 8 kb SAO-like

gene fragment, using P. vitellinae SAO-derived primers.

The predicted encoded protein possesses about 73 per

cent sequence identity to Chrysomela and 90 per cent to

P. vitellinae SAOs (electronic supplementary material,

figure S1 and table S1).

(e) Comparative salicyl alcohol oxidase gene

architecture

Based on the SAO cDNA sequence of P. vitellinae, we were

able to amplify about 8 kb from genomic DNA, which

covers most of the SAO-encoding gene. The alignment of

cDNA and the corresponding genomic region showed

that SAO possesses at least eight exons. In comparison

with known Chrysomela SAO genes [18], both a highly

similar gene length and number of exons could be ident-

ified. Most remarkably, an identical length of almost all

exons in both genera was obvious. The P. laticollis SAO-

like gene fragment (§3d) also possesses identical exon

lengths of its predicted coding sequence. In summary,

comparative SAO gene architecture indicates a common

SAO origin.

Further analysis of genomic DNA sequences of GMC

oxidoreductases in Tribolium castaneum and Drosophila

melanogaster demonstrated one to three encoding exons

of variable length. Furthermore, whereas all the fruitfly

and red flour beetle GMC genes belonging to the

GMCi subfamily possess two exons, the closest relative

to the chrysomeline SAOs (TcasGMCi5) possesses four

exons (figure 6 and electronic supplementary material,

figure S3). Those findings not only show an accumulation

of introns common to chrysomeline GMCi genes, but

also indicate that this increase in gene architecture com-

plexity may have arisen in the most recent common

ancestral gene.

(f) Salicyl alcohol oxidase evolution in

chrysomelines

Phylogenetic analyses, including members of different

GMC oxidoreductase subfamilies, a subset of SAO and

related genes from previous work [18], showed a common

origin of both P. vitellinae and Chrysomela ssp. SAOs within

the GMCi subfamily (figure 6). This is indicated by their

affiliation to TcasGMCi5 supported by a high posterior

probability value (1). Moreover, within the leaf beetle

GMCi members, a clear separation of P. vitellinae SAO

from Chrysomela SAO-related genes (paralogues 1 and 3)

and the clustering of the P. vitellinae SAO with Chrysomela

SAOs (posterior probability value of 1 for each node) indi-

cate a single ancestral gene in both genera. Phratora

vitellinae SAO is not located inside the Chrysomela SAO

clade but represents a sister-group and clusters together

with the P. laticollis SAO-like protein, which is reflective of

the overall species phylogeny.

In addition, we included the SAO-like protein of

P. cochleariae (§3d) in our analysis, which also showed

unambiguously affiliation to the chrysomeline SAO

clade. This generally indicates the presence of SAO-like

proteins in iridoid producers and probably reflects

GMCi subfamily expansion by gene duplications early

in chrysomeline evolution.

4. DISCUSSION
Chrysomela species are known to produce salicylaldehyde

for their chemical defence, a compound shown to be

highly deterrent against generalist predators and microbial

infestations. As the precursor salicin acts as a general feed-

ing repellent of their salicaceous host plants (reviewed in

[24]), the sequestration of this secondary compound is a

remarkable example of an engaging detoxification and

economical defence in leaf beetle larvae. Interestingly,

beside the genus Chrysomela, this remarkable derived

state of chemical defence strategy is only present in

P. vitellinae [15]. This is noteworthy, because the two leaf

beetle genera are not close relatives, and therefore a con-

vergent evolution of host-derived chemical defence based
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on salicin sequestration has been proposed [12]. However,

despite the evolutionary distance between these species,

the mode of sequestration as well as salicylaldehyde biosyn-

thesis and SAO activity in particular are the same in both

genera [6,10,17,20].

To shed light onto salicin-dependent chemical defence

evolution, we first identified and functionally expressed

the SAO of P. vitellinae. The SAO is the most abundant

protein in larval glandular secretions, consists of 626

amino acids including the N-terminal signal peptide

addressing the secretory pathway and shows a complex

N-glycosylation pattern of about 7 kDa. The highly abun-

dant transcript specific for the corresponding glandular

tissue is consistent with both the proportion of oxidative

capacity inside the glandular secretion and the prominent

band in the one-dimensional protein gel. Sequence com-

parisons verified that the SAO belongs to the GMC

oxidoreductase family and possess a 72 per cent amino

acid identity compared with Chrysomela SAOs. The Re

specificity of the heterologously expressed protein was

verified for the first time, which fits to previous findings

with in vitro assays of the glandular secretion [20].

We showed that P. vitellinae and Chrysomela SAOs not

only share a highly tissue-specific expression and high

amounts of protein in the glandular system, the same

protein size, similar post-translational modifications and

the affiliation to GMC oxidoreductases, but also a well

conserved gene architecture (number and lengths of

exons). These findings provide additional support for

the results of our phylogenetic analyses demonstrating a

single origin of P. vitellinae and Chrysomela ssp. SAO

genes in the GMCi subfamily.

Taking leaf beetle species phylogenies into account,

which all support the notion that Chrysomela and Phratora

are not sister genera [12,25,26], the following evolution-

ary scenarios leading to SAO activity are conceivable.

A single gene duplication event led to (gave birth to)

the evolution of the SAO gene and activity in Phratora

and Chrysomela. Whether this proceeded via one sub-/

neofunctionalization in their most recent common

ancestor or convergent SAO acquisitions (and additional

genera-specific gene duplications of a ‘precursor’ gene)

cannot be resolved. Therefore, we cannot exclude the

possibility that Chrysomela and Phratora SAO are not

true orthologues in a strict sense. However, for both scen-

arios, the persistence of the SAO or SAO ‘precursor’ gene

(e.g. through retaining the original function of the SAO

‘precursor’ gene) in the iridoid-producing genera between

Chrysomela and Phratora (e.g. Phaedon, Gastrophysa) is

likely a prerequisite.

Because of a common glucosidase–oxidase pathway

leading to salicylaldehyde and iridoids, shifts from iridoid

to salicylaldehyde biosynthesis in leaf beetle chemical

defence evolution has been proposed to take place via

changing substrate specificity of the oxidase [10,12,20].

This change of substrate specificity is supported by

in vitro oxidation of 8-hydroxygeraniol by the secretion

of salicylaldehyde producing P. vitellinae [20], which is

seen as an argument for the evolution of SAOs from

oxidases of iridoid-producing ancestors.

In contrast to these findings, we were not able to verify

8-hydroxygeraniol oxidation with enzyme assays of the

heterologously expressed P. vitellinae SAO. Furthermore,

we found neither an oxidase with affiliation to the GMCi

subfamily (e.g. P. cochleariae SAO-like protein: §3d) nor

a GMC oxidoreductase of the conserved insect gene clus-

ter at all, present in the secretion of iridoid-producing

P. cochleariae, Gastrophysa viridula or Gastrophysa cyanea

larvae (R. Kirsch 2010, unpublished data). Several chemi-

cal and biochemical properties identified (oxygen

dependence and Re specificity) are consistent between
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Figure 6. Phylogeny of chrysomeline SAOs and related GMC
oxidoreductases, including other insects. The topology was
generated using a Bayesian analysis. Posterior probability
values are shown next to each node. Bootstrap values are

exemplary stated as second numbers (for details of par-
ameters and sequence information, see §2 and electronic
supplementary material, table S3). Chrysomeline SAO and
other insect GMCi gene architectures are depicted next to
the phylogenetic tree. Exons are shown with boxes, the

same colour coding indicates common origin among differ-
ent species, empty boxes mark gaps in our dataset and the
dashed lines mark intron accumulations. Clap (C. lapponica),
Cpop (C. populi), Ctre (C. tremulae), Pvit (P. vitellinae), Plat
(P. laticollis), Phcoc (Phaedon cochleariae), Tcas (T. castaneum),

Anig (Aspergillus niger), SAO-W/B (salicyl alcohol oxidase of
willow/birch-feeder), GMC (glucose–methanol–choline
oxidoreductase), GLD (glucose dehydrogenase), GOX (glu-
cose oxidase), p (SAO paralogues), pmt (SAO paralogues
Malpighian tubule specific).
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SAO and 8-hydroxygeraniol oxidase [27]. However, our

findings strongly argue for distinct, non-SAO related oxi-

dases converting 8-hydroxygeraniol to 8-oxocitral in

iridoid-producing species and, moreover, an independent

evolution of the oxidative step in salicylaldehyde and iri-

doid biosynthesis. In this context, the elucidation of the

SAO-like EST in P. cochleariae and the SAO-like gene in

P. laticollis, both iridoid-producing species, is important.

The presence of SAO-like sequences in these species indi-

cate that gene duplications in the GMCi subfamily started

early in chrysomeline speciation followed by species

specific gene duplications (shown for C. lapponica in

[18]). Furthermore, the persistence of SAO-like genes in

the iridoid producers is probably due to the acquisition of

functions different from SAO activities (i.e. functions not

related to chemical defence).

We clearly showed a common origin of SAOs in Chry-

somela and P. vitellinae and their most likely independent

evolution from iridoid biosynthesis. However, characteriz-

ations of SAO-like proteins in iridoid producers and the

GMCi5 in T. castaneum are needed to resolve molecular

functional origins and gene-family dynamics of SAO

and related genes.
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25 Gómez-Zurita, J., Hunt, T., Kopliku, F. & Vogler, A. P.
2007 Recalibrated tree of leaf beetles (Chrysomelidae)
indicates independent diversification of angiosperms

and their insect herbivores. PLoS ONE 2, e360.
(doi:10.1071/journal.pone.0000360)
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PHGRVLGGSSIINYMIYTRGNRLDFDRWAAMGNPGWSFDDILPYFLKLESAHLAIKDDGYHNNDGPLSISCtreSAO
PHGKVLGGSSVINYMIYVRGNKLDFDRWAAMGNPGWSYNDVFPYFLRSEAAHIAVTDDGYHNEDGPLSVSPvitSAO
PHGKALGGSSVINYMIYVRGNKLDFDRWAAMGNPGWSYDDVLPYFLKSESAHIAVTDDGYHNDDGPLTVSPlatSAOlike
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DASYRSKLVDVYVKASQEAGLPYVDNNGKNQIGVSYVQTTTKNGKRSDAENAYLRPIRNRNNIKIQKASRCtreSAO
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DVPYRSKLVDVYVEASQEAGHPYVDYNGKTQIGVSYVQTVTNNGRRTSAEKSYLRPIKNRSNIKIQKGCRPlatSAOlike
DVPYRSKVSGVYIEAAEEAGHPYVDYNGARQLGVSYIQTTTKDGRRSFAEKAFIRPVRQRSNLRVQTKCRPhcocSAOlike
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Fig. S1

MKRSVLFLSV LLLLPAIGSQ ELMKDIIRDI LSFIINLTEW GTSSSPQYPS 50
GKIEDNANYD FIIIGSGPSG SVLANRLSEN PNWNILLLEA GEEPSWITDI 100
PLICGGLEYT DYNWGYKCEP QSFFCRDCLD GILQYPHGKV LGGSSVINYM 150
IYVRGNKLDF DRWAAMGNPG WSYNDVFPYF LRSEAAHIAV TDDGYHNEDG 200
PLSVSDVPYR SKLVDVYVKA SQEAGHPYVD YNGQTQIGVS YIQTVTNNGR 250
RTSAEKSYLR PIKDRRNIKI QKGCRATKIL IDSNTKTAYG VEYIHRGQNY 300
TAFASKEVIS SAGSLNSPQL LMLSGIGPRT HLEQFGIPVE SDLPVGTKMY 350
DHATFPGIIF ELNTSIPINL VREIIDTTTY QRYLDGEGVL TSIGGVEAIS 400
FLKTNVSTDP DDSYPDIELV MFGISEAADY GIMNRKVFNI NSKAYDQVFK 450
PLESKYAYQV FPLLLHPKSL GRIELRSSNP LDPPKFYANF MSDTENNDVA 500
TLIAGIREVQ RINLTPTMQK YGATLVRTPF PGCEEIEFDT DEYWECALRS 550
VISSLYHQTS TCRMGPQNDT EAVVDSKLNV HGINKLRVVD VSVIPVPMTA 600
HTVAAAYMVG EKASDIIKND WNES 624

Fig. S2

Alignment of the amino acid sequences of chrysomeline SAOs and related proteins and of their closest 
relative in T. castaneum (TcasGMCi5). Multiple alignments of protein sequences were carried out 
using CLUSTALW [22]. Identical amino acids in all sequences are shown in black boxes. Abbrevia-
tions: Clap (Chrysomela lapponica), Cpop (C. populi), Ctre (C. tremulae), Pvit (Phratora vitellinae), 
Plat (P. laticollis), Phcoc (Phaedon cochleariae), SAO (salicyl alcohol oxidase), GMC (glucose-
methaol-choline oxidoreductase).

P. vitellinae SAO protein sequence coverage map after nano LC-MS/MS identification of the 1D-
SDS-PAGE separated extract of the band marked with an arrow (Fig. 2) reaching 40.86% of total 
sequence coverage (42.19% without signal peptide, which in underlined). All P. vitellinae SAO 
tryptic peptides identified from their fragment spectra are marked bold.
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Percent Identity

D
iv

er
ge

nc
e

1 2 3 4 5 6 7
1 83.0 82.3 71.5 73.1 58.7 51.0 1 ClapSAO-W
2 19.4 89.4 73.7 74.1 57.6 49.5 2 CpopSAO
3 20.2 11.4 73.4 74.5 57.2 51.0 3 CtreSAO
4 35.9 32.4 32.9 89.7 59.3 50.2 4 PvitSAO
5 33.3 31.8 31.3 11.1 60.6 50.8 5 PlatSAOlike
6 59.3 61.5 62.6 58.0 55.3 52.3 6 PhcocSAOlike
7 77.3 81.2 77.3 79.2 77.7 74.0 7 TcasGMCi5

1 2 3 4 5 6 7

Table S1
GMC oxidoreductase protein sequence distances based on a CLUSTALW alignment
implemented in DNAStar Lasergene 8.02.

 )%( erocS reddaL )mpp( atleD WM editpeP z/m
 5191.35 88.6- 6442.1252 5126.1621
 5191.35 55.7- 6442.1252 3614.148
 7666.87 77.1 8817.4151 5863.857
 7666.64 69.01- 8817.4151 5809.505

 04 73.7- 7863.3103 4443.457
 146.52 06.4- 8225.578 2767.834
 6834.57 32.21- 4895.7021 6997.406
 9158.15 50.1- 3632.5232 8426.3611
 6926.94 15.8- 3632.5232 0080.677
 8657.65 87.61- 4860.6602 7420.4301
 4041.65 65.2- 1416.8321 3313.026
 1965.01 09.8- 141.7612 8183.327

 06 15.0 3325.949 7967.574
 4951.18 23.8- 6437.3241 2968.217
 1628.74 60.71- 6437.3241 9775.574
 3333.71 803.0 3188.7851 7849.497
 3333.14 83.11- 3188.7851 6592.035

 945.27 03.2- 6855.0601 5582.135
 1470.47 74.4- 1387.7361 7598.918
 3333.35 16.0- 3805.398 7167.744

 944.22 22.8- 443.3852 4511.268

843.9454 1685.881 -3.48 64.3678 

 ecneuqeS
  RNALVSGSPGSGIIIFDYNANDEI
  RNALVSGSPGSGIIIFDYNANDEI

 KGHPYQLIGDLCD
 KGHPYQLIGDLCD

  RYPVDSVSLPGDENHYGDDTVAIHAAES
  KIPRLYS
  RHIYEVGYAT
  RPGIGSLMLLQPSNLSGASSIVE
  RPGIGSLMLLQPSNLSGASSIVE
  KTGVPLDSEVPIGFQELHT
  RQYTTTDIIE

 KLFSIAEVGGISTLVGEGDLY
 KSNINFVK

 KSELPKFVQDYA
  KSELPKFVQDYA
  KPHLLLPFVQYAY

 KPHLLLPFVQYAY
 KQMTPTLNI

 RCTSTQHYLSSIVS
 KNIGHVNL

  KEGVMYAAAVTHATMPVPIVSVDVV

VLGGSSVINYMIYVR

Table S2
Bioinformatic identification overview of the MS/MS analysis of the P. vitellinae SAO. 17 peptides of 
the band marked with an arrow (Fig. 2) matching to the provided sequence using >20 ppm precursor-
peak and 0.03 Da fragment ion accuracy, carbamydomethylation of cysteins and possible deamidati-
oin of asparagines and glutamines. 
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TcasGMCi5

TcasGMCi6

TcasGMCi7

DmelGMCi2

DmelGMCi1

228148 14939

163 1700

193 1718

1730

1715

151

136

(48) (45)(1477)

(46)

(51)

(56)

(146)

278217197174335 292219 (1393)(1106)(1985)(1642)(1338)(2128)154 (723)6 CpopSAO

217197174335 292219 (157)(125)(1224)(680)(3433)(60)(476) 258155 PvitSAO

249217197174335 292219 (930)(339)(953)(1119)(153)(177)157 (563) ClapSAO-W

(445)

6 (483)

217197174335 292219 (135)(289)(558)(241)(3847)(57)(384) 237139 PlatSAOlike

Fig. S3
GMCi subfamily genes and their exon (boxes) and intron lengths in base pairs. Open boxes indicate 
gaps in our data set. For P. vitellinae SAO, T. castaneum and D. melanogaster GMCi members gene 
architectures were elucidated by mRNA to genomic alignments using Spidey implemented in the 
NCBI Toolkit. The coding region of the P. laticollis SAO like gene is basedon FGENESH, a HMM 
based gene structure prediction implemented in Softberry, and manual searching. The data for Chry-
somela SAO genes are taken from a previous study [18]. Dashed lines indicate intron accululations. 
Abbreviations: Clap (Chrysomela lapponica), Cpop (Chrysomelapopuli), Dmel (Drosophila mela-
nogaster), Plat (Phratora laticollis), Pvit (Phratora vitellinae), GMCi(glucose-methanol-choline 
oxidoreductase i subfamily), SAO (salicyl alcohol oxidase), W (willow feeder). 
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Gene name used in this study
GenBank no. used for our analysis ("ps", predicted 
manually in previous study [18], "§¹", taken from [24])

Drosophila  melanogaster
GMCz 1 AAF48398.1
GMCi 1 AAF48395.1
GMCi 2 AAF48394.2
GLD AAF54038.1
Anopheles gambiae
GMCi 4 §¹
GMCi 3 §¹
GMCz 1 §¹
GLD §¹
Apis  mellifera
GMCz 1 XM_394220
GLD ps
Tribolium  castaneum
GMCz 1 EFA05531.1
GMCi 5 ps
GMCi 6 EFA05537.1
GMCi 7 EFA05538.1
GLD EFA05227.1
Aspergillus niger
Anig GOX ACB30369.1
Chrysomela populi
SAO HQ245154
SAOp1 HQ245155
SAOp HQ245148
Chrysomela  tremulae
SAO CAQ19343
Chrysomela  lapponica (willow feeder)
SAO-W HQ245149
SAO-Wp1 HQ245150
SAO-Wp2 HQ245144
SAO-Wp3 HQ245145
SAO-Wp4 HQ245146
Chrysomela  lapponica (birch feeder)
SAO-B HQ245151
SAO-Bp1 HQ245152
SAO-Bp2 HQ245147
SAO-Bpmt HQ245153
Phaedon cochleariae
SAOlike HQ857156
Phratora laticollis
SAOlike HQ857157
Phratora vitellinae
SAO HQ857158

Table S3
Source of gene information of all sequences used for phylogenetic analyses.
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Abstract Larvae of Chrysomela lapponica (Coleoptera:
Chrysomelidae) sequester characteristic O-glucosides from
the leaves of their food plants, namely Betula and/or Salix
The present study focuses on birch-feeding larvae of C.
lapponica from the Altai region in East Kazakhstan. As in
other sequestering leaf beetle larvae, the compounds are
transported intact via different membrane barriers into the
defensive system, followed by glucoside cleavage and
subsequent transformations of the plant-derived aglycones.
Unlike previous studies with model compounds, we studied
the sequestration of phytogenic precursors by analyzing the
complex pattern of glucosides present in food plant Betula
rotundifolia (39 compounds) and compared this composi-
tion with the aglycones present as butyrate esters in the
defensive secretion. In addition to the analytic approach,
the insect’s ability, to transport individual glucosides was
tested by using hydrolysis-resistant thioglucoside analogs,
applied onto the leaf surface. The test compounds reach
the defensive system intact and without intermediate

transformation. No significant difference of the transport
capacity and selectivity was observed between larvae of
birch-feeding population from Kazakhstan, and previous
results for larvae of birch-feeding population from the
Czech Republic or willow-feeding populations. Overall,
the transport of the phytogenic glucosides is highly
selective and highly efficient, since only minor com-
pounds of the spectrum of phytogenic glucoside pre-
cursors contribute to the limited number of aglycones
utilized in the defensive secretion. Interestingly, salicortin
44 and tremulacin 60 were found in the leaves, but no
aldehyde or esters of salicylalcohol. Surprisingly, we
observed large amounts of free glucose, together with
small amounts of 6-O-butyrate esters of glucose (27a/b
and 28a/b).

Key Words O-glucosides . Butyrate esters . Salicortin .

Tremulacin . Salicylaldehyde . Betula . Salix . Coleoptera .

Chysomelidae . Antipredatory . Beetle defense

Introduction

Larvae of the leaf beetles (Chrysomelina) possess nine pairs
of dorsal exocrine glands from which secretions emerge as
small droplets when a predator appears. As soon as the
disturbance is over, the droplets are resorbed into a large
reservoir into which glandular cells open. The anti-
predatory effect of the secretion is based either on de novo
production of repellents or on compounds derived from
sequestered, plant-derived glucosides. The major compo-
nents, which are secreted by leaf beetle larvae belonging to
the taxa Phaedon, Gastrophysa, Hydrothassa, Prasocuris
Plagiodera, Linaeidea, and Phratora (in part) are iridoid
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monoterpenes (Meinwald et al. 1977; Blum et al. 1978;
Pasteels et al. 1982; Soe et al. 2004). According to
(Termonia et al. 2001) the de novo production of iridoids
is considered the ancestral strategy. Recent studies have
demonstrated, however, that the whole group also is able to
sequester early precursors from plants (Feld et al. 2001;
Kuhn et al. 2004; Kunert et al. 2008). A more advanced and
resource saving strategy to produce chemical defenses, is the
sequestration of plant-derived precursors. The sequestration of
phenol glucosides, especially salicin, has been developed and
optimized by species feeding on Salicaceae, i.e., Phratora
vitellinae and Chrysomela (Pavan 1953; Pasteels et al. 1983).
In these species, the plant-derived glucosides serve as
precursors for the repellent salicylaldehyde; a concomitant
de novo biosynthesis does not seem to play a significant role.

The most derived Chrysomelina species, the interrupta
group sensu (Termonia and Pasteels 1999), which includes
Chrysomela lapponica do not sequester single glucosides, but
import a broad spectrum of glucosidically bound plant-derived
alcohols (Kuhn et al. 2007). After import into the reservoir,
which functions as a bioreactor containing all necessary
enzymes for the transformation of the sequestered precursors,
the glucose moiety is removed, and the aglycones are
esterified with isobutyric acid, 2-methylbutyric acid, and
benzoic acid generated from the insects’ internal pools of
amino acids. This type of “combinatorial biosynthesis” can
generate a cocktail of more than 70 secretion ingredients, as
has been shown for a larval secretion of C. lapponica from
Bavaria, Queyras, Czech Republic, and related North
American species (Hilker and Schulz 1994; Schulz et al.
1997; Termonia and Pasteels 1999; Kuhn et al. 2007).
Bioassays have demonstrated the protective function of
these blends against predators (Hilker and Schulz 1994).
For several defensive secretions of leaf beetle larvae,
antimicrobial effects also have been demonstrated and
discussed (Gross et al. 2002).

The sequestration of glucosides as pro-toxins is advan-
tageous. The compounds often occur in high abundancy in
the food plants. The polar glycosides are not able to pass
membranes unless functional transport systems mediate
their passage, which assures safe guidance of the com-
pounds to their destination through the larval body. The leaf
beetle larvae possess an interconnected network of transport
systems for uptake and excretion of surplus glucosides
(Discher et al. 2009).

According to model experiments with selected (thio)
glucoside mixtures, the phytogenic precursors are imported
via the gut membrane with low selectivity, followed by a
specific import of only a few compounds from the
hemolymph into the reservoir. Model studies were based
on test compounds, comprising a glucoside precursor of
iridoid biosynthesis, salicin for salicylaldehyde production,
and phenylethanolglucoside that is converted into the

corresponding (iso)butyrate (Scheme 1). Uptake into the
glandular reservoir was highly specific, and only the
phytogenic precursors for the genuine defenses accumulated
in the reservoir. For example, only salicin was imported into
the reservoir of Chrysomela populi and converted to
salicylaldehyde. In contrast, the iridoid-producing larvae of
Phaedon cochleariae accumulated only the glucoside of
8-hydroxy-geraniol, which is converted into the iridoid
chrysomelidial (Discher et al. 2009). This is different in the
case of the defensive secretion of C. lapponica feeding on
birch. Their defensive secretion is a rather complex mixture
composed of butyrate esters of very different and most
likely plant-derived aglycones released from sequestered
glucosides (Hilker and Schulz 1994; Schulz et al. 1997;
Kuhn et al. 2007). This implies that larvae of C. lapponica
possess either several different transport systems, each of
them specifically tuned to the imported glucoside, or that
the larvae possess a transport system of low selectivity
that allows the import of a broad range of glucosides, as
demonstrated by Kuhn et al. 2007 with C. lapponica from
Queyras feeding on willow by using thioglucosides as
probes.

In this study, we focused on birch feeding C. lapponica
from Kazakhstan, which also produce butyrate esters, but
lack the production of salicylaldehyde, as will be shown. To
investigate the capacity and the “filter characteristics” of the
transport systems that operate in larvae of birch feeding C.
lapponica, we compared the spectrum of the glucosides
present in the leaves of the host plant Betula rotundifolia
with the spectrum of butyrate esters in the defensive
secretion of the larvae. Here, we demonstrated that the
defensive secretions and the glucoside spectrum of B.
rotundifolia share only a small number of aglycones that
are sequestered and utilized by the insect. Moreover, the
defensive secretion of C. lapponica contains large amounts
of glucose and certain glucose esters (butyrates), which
may serve as cryoprotection.

Scheme 1 Butyrate esters from the defensive secretion of larvae of
birch-feeding larvae of Chrysomela lapponica endemic to the Altai
region, East Kazakhstan
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Methods and Materials

Leaf Beetle Larvae and Host Plant Leaves Larvae of C.
lapponica feeding on leaves of Betula rotundifolia were
collected in the Altai mountains (East Kazakhstan) near the
Burkhat Pass (2130 m altitude, 49°07,438‘N, 86°01,365‘E)
in early August 2008. Larvae were reared for 1 week with
leaves from Betula rotundifolia from the Burkhat Pass.
Freshly harvested Betula twigs were kept alive for several
days in tap water. Additional plant material was sun dried
and stored for phytochemical analysis. Field conditions did
not allow for extraction of fresh plant material.

Collection of Defensive Secretion Larvae were gently
squeezed by forceps and forced to protrude their mesothoracal
glands. The emerging droplets were collected with glass
capillaries (Hirschmann Laborgeräte, diam: 0.28 mm, length:
100 mm). The capillaries were sealed by melting with a micro
gas torch and stored at −20°C.

Analytical Procedures Analysis of defensive secretions. An
aliquot of the secretion (1-3 μg) was dissolved in 20 μl
dichloromethane. After vortexing and centrifuging, 1 μl was
subjected to GC-EIMS analysis (ThermoQuest Finnigan Trace
GC-MS 2000 (Quadrupole) equipped with Alltech EC 5-
column, 15 m×0.25 mm, film thickness 0.25 μm). Substances
were separated using helium as carrier (1 ml/min); conditions:
45°C (2 min), then at 10°C min−1 to 280°C (5 min).

Highly concentrated samples were appropriately diluted.
For quantification, external standards at different concen-
trations were used. Polar components were analyzed after
derivatization with MSTFA. The defensive secretion (5 μl
solution in dichloromethane) was mixed with N-
methyltrimethylsilyltrifluoroacetamide (MSTFA) (10 μl)
and pyridine (5 μl). After heating to 70°C for 1 h, an
aliquot (1 μl) of the solution was analyzed directly by GC-
EIMS. Free fatty acids were derivatized with pentafluoro-
benzylbromide (PFBB) prior to analysis (Attygalle et al.
1991). For esterification, the secretion (0.5 μl) was
dissolved in triethylamine (10 μl) containing PFBB (5 μl).
The solution was kept at 25°C for 3 h and hydrolyzed with
water (30 μl). After extraction with n-hexane (20 μl), the
solution was analyzed by GC-EIMS (conditions see above).
All compounds were identified by comparison with
authentic references and sample chromatograms, respec-
tively. Secretion analysis was carried out against external
standards (N=3). No replicates were measured owing to the
restricted availability of secretion.

Transport Analysis with Thioglucosides Leaves from
Betula pendula (used instead of B. rotundifolia because of
the larger surface area for the transport experiments) were

painted on the upper side with 0.5 ml of MeOH/H2O (1:1,
v/v) containing the test compound at a concentration of
25 mM. After evaporation of the solvent with an air stream,
third instars (four larvae per ca. 3.5 cm−2 leaf segment)
were allowed to feed on the treated leaves for 48 h,
followed by sampling of defensive secretion. The defensive
secretion was withdrawn with a small capillary from the
everted glands of the larvae. The secretion was stored and
transported in sealed capillaries. The thioglucosides trans-
ported into the glandular system were analyzed and
quantified as described (Kuhn et al. 2007).

Statistics To obtain valid data, feeding experiments with
thioglucosides were repeated several times. Chrysomela
lapponica (Kazakhstan): compounds 1 to 6 (N=6), C.
lapponica (Czech Republic): compound 1 (N=5), com-
pounds 2, 4, and 6 (N=4). Variances between groups were
not homogeneous according to Levene’s test. Hence, Mann-
Whitney test was used to evaluate significant differences.
Statistics were calculated with SPSS Statistics 17.0.

Analysis of Leaf Glycosides Air dried leaves (3 g) of B.
rotundifolia were pestled in liquid nitrogen and extracted
with 20 ml 80% aqueous methanol using an Ultra-Turrax
homogenizer for 3 min. Extraction was continued by
shaking for 1 h at ambient temperature. Solids were
removed by filtration and re-extracted with methanol
(20 ml) for another 1 h at ambient temperature. The
combined extracts were evaporated to dryness, re-dissolved
in methanol (10 mg/ml), and after filtration (0.45 μm pore
size) the glycosides were determined by HPLC using a
Thermoquest LCQ (Thermoquest, D-63329 Egelsbach,
Germany) in the APCI mode (vaporizer temperature:
560°C) connected to an Agilent HP1100 HPLC-system
equipped with an RP18 column, (Purosphere 4×250 mm
(5 μm). Samples (10 μl) were analyzed by using gradient
elution at 0.65 ml min−1. Solvent A: 0.5% acetic acid in
water; solvent B: 0.5% acetic acid in acetonitrile. Com-
pounds were eluted according to the following protocol: 0-
10 min, 10% of B in A; 10–50 min 10–60% of B in A.
UV-detection at 254, 266, and 360 nm prior to the mass
spectrometer allowed us to gain further information on the
analytes. Commercially unavailable compounds were
isolated and identified based on data from HR-ESI-MS,
1H- and HSQC-NMR spectroscopy, and literature data.
Known compounds were compared by their retention times
and UV-Vis and MS data with authentic references. Myricetin
derivatives were identified after hydrolysis of the crude extract
of B. rotundifolia (1.2 M HCl for 4 h at 100°C) by HPLC
using an authentic reference. In addition, the aglycones were
determined after enzymatic hydrolysis (Schulz et al. 1997) of
the raw extracts followed by GC-EIMS. Compounds were
identified using authentic standards.
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Synthesis of Glucose Esters Acylation was carried out
according to a modified method from Woudenberg
(Woudenberg-van Oosterom et al. 1995). The procedure
was conducted under an inert atmosphere. 100 mg glucose
were dissolved in 10 ml t-butanol. 1 g molecular sieve 4Å
was added. 10 ml 12.5% ethylisobutyrate and ethyl-2-
CH3-butyrate, respectively, in t-butanol then were added.
The reaction was started by adding 100 mg Candida
antarctica lipase B. The suspension was stirred for 72 h at
50°C. The molecular sieve and the immobilized enzyme
were separated by filtration, and the solvent was evapo-
rated. The raw product was fractionated by column

chromatography (CHCl3/MeOH/H2O=75/22/3) to yield
the acylated glucoses. The described procedure produced
an anomeric mixture. Hence, multiple signals were observed.
Assignment of peaks was carried out using 2D-NMR-
experiments (HSQC and HMBC).

Spectral Data of 6-O-isobutyryl-a/b-D-glucopyranoside 1H
NMR (MeOD4) [ppm]: 5.01 (d, J=3.67 Hz, 0.5 H), 4.41 (d,
J=7.74 Hz, 0.5 H), 4.30 (ddd, J=19.13 Hz, J=11.88 Hz, J=
2.15 Hz, 1 H), 4.15-4.08 (m, 1 H), 3.89 (ddd, J=10.17 Hz,
J=5.48 Hz, J=2.17 Hz, 0.5 H), 3.60 (t, J=9.29 Hz, 0.5 H),
3.43-3.38 (m, 1 H), 3.30-3.20 (m, 1 H), 3.17 (masked by

Table 1 Identification and quantification of defensive substances in the birch-feeding population of Chrysomela lapponica from the Burkhat
Pass, East Kazakhstan

Peak number Substance Compounds [nmol/mg secretion]

Acetic acid 3.6a

Isobutyric acid 1.1a

2-Methylbutyric acid 0.3a

1 Benzyl alcohol 0.3

2 (Z)-3-Hexenylisobutyrate 2.2

3 Hexylisobutyrate 1.2

4 5-Hexenyl isobutyrate Not quantifiedb

5 Benzoic acid trace

6 (Z)-3-Hexenyl-2-methylbutyrate 5.3

7 Hexyl-2-methylbutyrate 1.5

8 5-Hexenyl-2-methylbutyrate Not quantifiedb

9 Benzylisobutyrate 8.7

10 Benzyl-2-methylbutyrate 4.6

11 Phenylethylisobutyrate 1.5

12 Phenylethyl-2-methylbutyrate 1.8

13 1,3-Hexandiyl-1,3-diisobutyrate Not quantifiedb

14 (Z)-3-Hexenylbenzoate trace

15 8-OH-Geranylisobutyrate Not quantifiedb

16 8-OH-Linalylisobutyrate 0.1

17 mixture of 1,3-Hexandiyl-1-isobutyrate-3-(2-methylbutyrate), 1,3-Hexandiyl-1-
(2-methylbutyrate)-3-isobutyrate

Not quantifiedb

18 8-OH-Geranyl-2-methylbutyrate Not quantifiedb

19 p-OH-Phenylethylisobutyrate 13.0

20 8-OH-Linalyl-2-methylbutyrate 0.2

21 1,3-Hexandiyl-1,3-di-2-methylbutyrate Not quantifiedb

22 p-OH-Phenylethyl-2-methylbutyrate 25.0

23 Betuligenolisobutyrate 4.2

24 Betuligenol-2-methylbutyrate 4.3

25 Linolenic acid methylester 1.6

26a–e Glucose 468.7

27a,b Glucose-6-O-isobutyrate 17.2

28a,b Glucose-6-O-2-methylbutyrate 26.8

Quantification was carried out using external standards (N=3), a quantified after derivatization with PFBB (Attygalle et al. 1991), b determined by
spectral data comparison. Numbering in Table 1 corresponds peak numbering of Fig. 1.
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MeOD4 signal, 1 H), 3.08-3.04 (t, J=8.69 Hz, 0.5 H), 2.51
(sept, J=7.00 Hz, 1 H), 1.10 (d, J=7.01 Hz, 6 H). 13C NMR
(MeOD4) δ [ppm]: 178.8/178.7, 98.3/94.0, 78.0/73.8, 76.2/
74.8, 75.4/70.8, 72.0/71.7, 64.9/64.8, 35.2/35.2, 19.4/19.3.
MS (70 eV) m/z (%): 233(0.5), 219(3), 203(3), 173(5), 161
(5), 143(5), 131(18), 103(17), 89(28), 71(100), 60(19), 43
(97). ESI-HR-MS m/z [M+H]+: calculated for C10H19O7:
251.25366; found: 251.11276.

Spectral Data for 6-O-(2-methylpropanyl)-α/β-D-
glucopyranoside 1H NMR (MeOD4) [ppm]: 5.03 (d, J=
3.53, 0.5 H), 4.42 (d, J=7.83, 0.5 H), 4.38-4.30 (m, 1 H),
4.16-4.09 (m, 0.5 H), 3.90 (dd, J=10.04 Hz, J=5.02 Hz,
0.5 H), 3.62 (t, J=9.42 Hz, 0.5 H), 3.44-3.39 (m, 0.5 H),
3.32-3.26 (m, 1 H), 3.24 (masked by MeOD4 signal, 1 H),
3.08 (dd, J=9.62 Hz, J=7.90 Hz, 0.5 H), 2.40-2.30 (m,
1 H), 1.67-1.56 (m, 1 H), 1.48-1.38 (m, 1 H), 1.09 (td, J=
6.91 Hz, J=0.92 Hz, 3 H), 0.86 (dt, J=7.47 Hz, J=1.03 Hz,
3 H). 13C NMR (MeOD4) δ [ppm]: 178.4/178.3, 98.2/94.0,
78.0/73.8, 76.2/74.8, 75.5/70.8, 72.0/71.8, 64.8/64.7, 42.5/
42.3, 28.0/27.9, 17.1/17.0, 12.0/11.9. MS (70 eV) m/z (%):
233(2), 217(2), 187(4), 175(4), 145(10), 103(27), 85(66),
74(37), 57(100). ESI-HR-MS m/z [M+Na]+: calculated for
C11H20O7Na: 287.26207; found 287.11025.

Spectral Data of Santin-7-O-glucoside yellow amorphous
powder; UV λmax nm: 272, 338 (MeOH); HR ESI-FTMS
m/z 507.14884 (([M+H]+, calcd. for C24H27O12,

507.14970), 1H NMR (DMSO-d6) δ: 12.61 (s, 1 H), 8.04
(d, J=8,8 Hz, 2 H), 714 (d, J=8.8 Hz, 2 H), 6.99 (s, 1 H),
5.12 (d, J=7.1 Hz, 1 H), 3.86 (s, 3 H), 3.79 (s, 3 H), 3.18-
3.75 (sugar H), 13C NMR (DMSO-d6) δ:178.4, 161.5,
156.6, 155.9, 152.1, 151.4, 137.9, 132.3, 130.1, 122.2,
114.4, 106.3, 100.1, 94.2, 77.3, 76.7, 73.2, 69.5, 60.6, 60.4,
59.8, 55.6.

Results

The defensive secretion of the larvae of C. lapponica
mainly comprised 2-methylbutyric and isobutyric acid
esters of aglycones, which occur as glucosides in the leaves
of the host plant (Table 1). Major compounds are the
butyrate esters of hexanol (3 and 7), (Z)-3-hexenol (2 and
6), benzyl alcohol (9 and 10), phenylethanol (11 and 12),
p-OH-phenylethanol (19 and 22), and betuligenol (23 and
24). While the concentration of free alcohols in the
secretion was low, significant amounts of free 2-
methylbutyric- and isobutyric acids along with acetic acid
and traces of benzoic acid were found after derivatization
with pentafluorobenzylbromide (Table 1). In addition, the
secretion contained large amounts of free glucose (26a-e)
along with glucose-6-O-butyrates (27a/b and 28a/b), which
are identified for the first time in leaf beetle defenses.
Glucose and the two 6-O-glucose esters 27a/b and 28a/b
were identified after derivatization with MSTFA by GC-
EIMS using synthetic references. Identified compounds
are compiled in Table 1 according to the elution order
shown in Fig. 1.

The presence of large amounts of glucose was
unexpected. Even more remarkable was the presence of
C(6) glucose esters, indicating that the easily accessible
primary hydroxy group of glucose can serve as a
substrate for the acyl transferase(s) that catalyze the
acylation of the plant-derived aglucones. Only the 6-O-
butyrates 27a/b and 28a/b (a and b refer to α- and β-
anomers of the butyrates) were detected (Scheme 2).
Esters linked to a secondary hydroxyl group of the glucose
moiety were not observed.

Glycosides in Leaves of B. rotundifolia We addressed the
full spectrum of glycosides from dry leaves of the food

Fig. 1 Gaschromatographic profile of the defensive secretion of
birch-feeding larvae of Chrysomela lapponica from the Altai
Mountains, East Kazakhstan. Numbering and identification of the
peaks corresponds to Table 1. a GC-EIMS analysis of the volatile
esters of the secretion b GC-EIMS analysis of the polar constituents of

the defensive secretion after derivatization with MSTFA. Low boiling
silyl-derivatives are not shown. The four signals for 27a/b and 28a/b
correspond to the α- and β-enantiomers of the silylated glucose esters.
Silylated glucose is represented by the signals 26a-e
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plant B. rotundifolia by exhaustive extraction and analysis
by HPLC-MS, LC-UV, and NMR of isolated compounds.
The LC-profile (Fig. 2) of the polar extract of B.
rotundifolia displayed a rich pattern of glycosylated
flavonoids (45), (46), (49), (53) derived from quercetin
(58), kaempferol (62), and the 3′,5′-trihydroxy-6,7,4′-
trimethoxyflavones (55), and (66) (Table 2). To our
knowledge, santin-7-O-glucoside (59) is isolated for the
first time. The presence of tremulacin (60) and salicortin
(44), which can ultimately serve for the production of
salicylaldehyde after hydrolysis in the gut (Julkunen-Tiitto
and Meier 1992), is noteworthy, since no butyrate esters of
saligenin or free salicylaldehyde were found in the larval
secretion. In general, comparison of the host plant
chemistry with secretion revealed that the glycoside pattern
of the host plant dramatically differed from the aglycone
pattern found in the larval secretion. The predominant
flavonoid glycosides were completely absent in the larval
secretion, while the low molecular weight aromatic/phenolic
esters and aliphatic hexenyl esters, which are minor or even
trace components of the plant-extracted glycosides, domina-
ted the larval secretions. Nevertheless, the aglycones of

several plant-produced precursors like betuloside (37),
phenylethyl-Glc (42), salidroside (29), and 8-OH-linaloyl-
Glc (39) matched the aglycones present in the secretion.
The identities of the 39 identified compounds are given
in Table 2.

Since not all aglycones present in the defensive secretion
were found as glucosides, we hydrolyzed the total extract
with a mixture of glucosidases and galactosidases according
to (Schulz et al. 1997). Analysis of the released compounds
indeed revealed the presence of (Z)-3-hexenol, and benzyl-
alcohol, which for unknown reasons were not found among
the leaf-derived glycosides.

Hemolymph Transport of the Phytogenic Glycosides After
uptake into the digestive system, the gut epithelial cells
constitute the first membranes that the glycosides have to
pass. Previously, we tested this passage in birch-feeding
larvae from the Czech Republic and willow-feeding larvae
of C. lapponica from Queyras by using hydrolysis-resistant
thioglucosides (Kuhn et al. 2007). After application of the
compounds to the leaf surface, larvae of the birch-feeding
C. lapponica were allowed to feed on the treated leaves,
and the amount of thioglucosides transported through the
insect into the glandular reservoir was determined by
HPLC-MS.

As shown (Fig. 3), the birch-feeding populations of C.
lapponica from Kazakhstan and also from the Czech
Republic (Kuhn 2005) show similar transport characteristics.
No significant differences could be evaluated for thiosalicin
(1), o-kresolthioglucoside (2), or 8-OH-geraniolthioglucoside
(6). Only the uptake of phenylethylthioglucoside (4) differed
significantly between the birch-feeding populations. Com-
mon to both population (birch and willow feeders) (Kuhn
et al. 2007), is the selective import of only thioglucosides;
galactosides were not taken up. Moreover, the birch-feeding

Fig. 2 HPLC-MS chromatogram
of the methanolic extract of
Betula rotundifolia. Compounds
of the methanolic extract were
separated and monitored by
HPLC-MS on Purosphere RP18,
5 μm, 4×250 mm (Merck) using
an isocratic solvent system 10%
of B (10 min) and linear gradient
from 10% B to 60% B (50 min).
Solvent A: 0.5% CH3COOH in
H2O, solvent B: 0.5%
CH3COOH in CH3CN. Flow
rate 0.65 ml/min. Numbering
and identification of the peaks
correspond to Table 2

Scheme 2 Butyrate esters (27a/b) and (28a/b) of glucose
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larvae were able to sequester salicin from the food plants.
Thus, a defect in the transport system does not account for
the total lack of salicylaldehyde or other aldehydes (e.g.,
benzaldehyde from benzylalcohol; see Table 1). Fig. 3 also
demonstrates that the thioanalogs of (Z)-3-hexenylglucoside,

phenylethylglucoside (42), and 8-OH-geraniolglucoside
(39) are easily imported with a similar efficiency. In
general, almost identical transport characteristics and
capacities were observed for willow- and birch-feeding
larvae of C. lapponica.

Table 2 Identification and quantification of glucosides and other compounds from the polar extract of Betula rotundifolia

Peak Molecular formula [M+H]+ m/z Compound

29 C14H20O7 301 Salidrosidea

30 C20H22O10 423 Catechin-7-0-xylopyranosided

31 C16H18O9 355 Chlorogenic acid a

32 C15H14O6 291 (+)-Catechin a

33 C19H32O8 389 Blumenol B – 9-O-glucosidea

34 C19H30O8 387 Blumenol derivatived

35 C16H18O9 355 Neochlorogenic acidd

36 C15H14O6 291 (-)-Epicatechina

37 C16H24O7 329 Betulosideb, (Smite et al. 1993)

38 C27H30O17 627 Myricetin-rutinosidec

39 C16H28O7 333 8-Hydroxylinaloyl-glucosided

40 C21H20O13 481 Myricetin-glucosidec

41 C21H20O13 481 Myricetin-galactosidec

42 C14H20O6 285 Phenethyl-glucosidea

43 C27H30O16 611 Quercetin-3-O-rutinosidea

44 C20H24O10 425 Salicortina

45 C21H20O12 465 Quercetin-3-O-glucosidea

46 C21H20O12 465 Quercetin-3-O-galactosidea

47 C27H30O15 595 Kaempferol-3-O-rutinosidea

48 C28H32O16 625 Isorhamnetin-3-O-rutinosidea

49 C20H18O11 435 Quercetin-3-O-arabinosideb, (Hansen et al. 1999)

50 C19H32O7 373 Blumenol C – 9-O-glucosidea

51 C21H20O11 449 Kaempferol-3-O-glucosidea

52 C22H22O12 479 Isorhamnetin-3-O-glucosidea

53 C21H20O11 449 Quercetin-3-O-rhamnosidea

54 C21H20O10 433 Kaempferol-3-O-rhamnosideb, (Chung et al. 2004)

55 C24H26O13 523 5.3′.5′-Trihydroxy-6.7.4′-trimethoxyflavone+hexosed

56 C23H24O11 477 Pectolinaringenin-7-O-glucosideb, (Yim et al. 2003)

57 C22H22O10 447 Acacetin+hexosed

58 C15H10O7 303 Quercetina

59 C24H26O12 507 Santin-7-O-glucosideb,

60 C27H28O11 529 Tremulacina

61 C15H12O5 273 Naringenin (internal standard)

62 C15H10O6 287 Kaempferola

63 C16H12O7 317 Isorhamnetina

64 C18H16O8 361 5.3′.5′-Trihydroxy-6.7.4′-trimethoxyflavoneb, (Kinoshita and Firman 1996)

65 C16H12O5 285 Acacetina

66 C17H14O6 315 Pectolinaringeninb, (Greenham et al. 2003; Horie et al. 1998; Vieira et al. 2003)

67 C18H16O7 345 Santinb, (Greenham et al. 2003; Horie et al. 1998)

Compounds were identified using authentic reference substances, by isolation, or by release of the aglycones by enzymatic hydrolysis (see
Experimental). Numbering in Table 2 corresponds peak numbering of Fig. 2. a compared with reference substances, b isolated and compared 1 H and
HSQC-NMR and UV, HR-ESI MS spectroscopic data with literature, c identification based on the APCI-MS and compared the aglycone with reference
substances after hydrolysis, d identification based on the APCI-MS and HR-ESI-MS.
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Discussion

Sequestering leaf beetle larvae or those using a mixed-
mode biosynthesis (sequestration and de novo biosynthesis)
have developed an efficient network of transporters in their
guts and glandular systems to channel phytogenic precur-
sors into their reservoirs (Kunert et al. 2008; Discher et al.
2009). In general, only the glucoside precursor of the
genuine chemical defense (e.g., salicylaldehyde or iridoid) is
imported and channeled via hemolymph transport through
the larval body to the glandular reservoir for the final
toxification reactions. For example, larvae of Chrysomela
populi and Phratora vitellinae specifically import salicin
(Kuhn et al. 2004) and almost no related compounds. The de
novo producers Phratora laticollis, Hydrotassa marginella,
Phaedon cochleariae, Gastrophysa viridula, and Plagiodera
versicolora also possess the ability to selectively uptake
glucosidically bound 8-hydroxygeraniol (Feld et al. 2001;
Kuhn et al. 2004) provided that the compound is present in
the food plant (Kunert et al. 2008). In all cases, the imported
glucosides coincided with the biosynthetic precursors of the
final chemical defenses of the defensive cocktail that is based
mostly on a single or only a few compounds.

In contrast, C. lapponica should possess transport
systems of lower selectivity, thus allowing the sequestration
of a range of plant-derived glucosides that is reflected in the
remarkable pattern of substances within the secretion. Their

principal ability to sequester structurally different gluco-
sides was shown previously in Salix-feeders from Queyras
using hydrolysis-resistant thioglucosides, which remain
intact all the way from the leave to the defensive gland
(Kuhn et al. 2007). By direct inspection of Tables 1 and 2,
which compare the spectrum of glucosides present in the
food plant (Fig. 2, Table 2) and the enzymatically released
aglycones with the components of the defensive secretion,
the selectivity of the sequestration process becomes
obvious. For example, neither the dominant flavanoids,
nor any of their ester derivatives, accumulate in the
defensive secretion. Instead, the aglycones of (Z)-3-
hexenol, phenylethanol, p-OH-phenylethanol, and betuligenol
are present as major constituents in the blend of 2-
methylbutyryl- and isobutyryl esters. The aglycones are
imported into the reservoir as their glucosides, as demonstrated
by the successful import of thioglucosides (Fig. 3, similar to
the results shown for the Queyras population, (Kuhn et al.
2007). After import into the gland, the sugar moiety is
hydrolyzed, followed by acylation of the resulting aglucone
with the butyrates. Interestingly, all glucoside precursors of the
defensive compounds were present only as minor components
in the leaf extract (Fig. 2) suggesting a selective and highly
efficient transport process in the larvae.

The complete lack of derivatives of salicortin (44) and
tremulacin (60) in the defensive secretion is striking, although
they are present in small amounts in the birch extract.
Unspecific esterases, generally occurring in the enzymatic
inventory of a gut, could remove the cyclohexenoic acid
moiety (Lindroth 1988; Julkunen-Tiitto and Meier 1992), thus
generating salicin, which would be readily sequestered into
the glandular reservoir (Fig. 3). After hydrolytic cleavage in
the reservoir, the released aglycone could be converted into a
butyrate or oxidized to salicylaldehyde. Neither reaction was
observed. However, the lack of salicylaldehyde or benzaldehyde
is readily explained since the birch-feeding population of C.
lapponica from Kazakhstan has no functional salicylalcohol
oxidase (unpublished data).

Additionally, striking is the presence of high amounts of
glucose (469 nmol mg−1 secretion) and minor amounts of
the two glucose-6-O-butyrates 27a/b and 28a/b in the
secretion (44 nmol mg−1 secretion). Apparently, glucose not
only acts as a carrier for import of plant-derived aglycones
into the glandular system, but also may serve as a scaffold for
acylation reactions. The same compounds are known from
trichomes of tomato (Neal et al. 1990), and an insecticidal
activity has been demonstrated (Juvik et al. 1994).

The biological relevance of the high amounts of glucose
in the larvae of the Altai populations is not clearly
understood, but the sugar apparently does not interfere
with the repellent function of the esters, as has been
demonstrated (Hilker and Schulz 1994); probably the volatile
esters form a repellent plume around the larvae, thus

Fig. 3 Accumulation of the thioglucosides 1 to 6 in the defensive
secretion of the birch-feeding larvae of Chrysomela lapponica. Test
compounds: 1: thiosalicin, 2: o-kresolthioglucoside, 3: salicylthioga-
lactoside, 4: phenylethylthioglucoside, 5: (Z)-3-hexenylthioglucoside,
6: 8-OH-geraniolthioglucoside. Compounds were determined and
quantified by HPLC-MS (see Experimental). Boxplots represent
median, 25% and 75% percentile and inner fences show lowest and
highest value. Data for larvae collected in the Czech Republic are
taken from (Kuhn et al. 2004). According to Mann-Whitney test
significant differences were only observed for 4 (P=0.019). No
significant differences (n.s.) were observed for 1 (P=0.126), 2 (P=
0.914) and 6 (P=0.257). Statistics were not applicable (n.a.) to 3 and 5

202 J Chem Ecol (2011) 37:195–204



60

preventing the necessity of a direct contact, which has been
shown previously for Phratora vitellinae and Phaedon
cochleariae (Gross et al. 2008; Gross and Schmidtberg 2009).

On the other hand, since the larvae experience rather low
temperatures that go well beyond 0°C at night during the
season (July, August), the high amount of glucose may
function as a cryoprotectant (Calderon et al. 2009).
Moreover, since the defensive secretion is an emulsion of
organic esters and water, the actual concentration of free
glucose in the aqueous phase, and hence its cryoprotective
effect, might be even higher than calculated from the molar
concentration (ca. 1.1°C at ca. 470 nmol mg−1 secretion).
Since in the Altai region predators seem to be rare
compared to other habitats of C. lapponica (personal
observations), the selective pressure on adaptation to
climate may be higher than to predation. The risk of
infections by microorganism that utilize the “sweet secretion”,
particularly by entomophagous fungi (e.g.,Beauveria bassiana)
might be reduced by the presence of a few antimicrobially
active constituents, such as p-OH-phenylethyl-isobutyrate (19),
p-OH-phenylethyl-2-methylbutyrate (22), and betuligenoliso-
butyrate (23) in the secretion (Tolzin-Banasch 2009).

By studying the selective import from the whole
spectrum of glucosides that occur in the leaves of the food
plant (B. rotundifolia), instead of a limited set of model
compounds (Discher et al. 2009), we were able to better
evaluate the selectivity and efficiency of transport. Although
the larvae import several compounds (e.g., 37 or 42), this
corresponds only to a minor fraction of glycosides present in
the food plants (Fig. 2). Moreover, the imported compounds
do not belong to the major constituents of the plant, thus
demonstrating a high enrichment capacity of the transport
system. However, de novo biosynthesis of certain aglycones,
especially phenylethanol and benzylalcohol from phenylalanine
(unpublished results) in addition to sequestration cannot
be excluded.

Whether or not the transport systems in the two
membrane barriers (gut epithelial cells, glandular system)
indeed have different selectivities (Discher et al. 2009)
remains to be established.
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4 General Discussion 
 

 

ost of the major published findings of my thesis have been discussed in detail 

individually in the previous manuscripts. For this reason it is the aim of the 

following general discussion to connect the results and embed them in a broader, more 

super-ordinate context. “Prerequisites”, origin, evolutionary dynamics and ecological 

significance of salicin-based chemical defense in Chrysomelina larvae are discussed. 

Thereby also some speculative aspects as well as future perspectives have been 

considered. 

 

 

4.1 Evolution of salicin-based defense in Chrysomelina larvae

4.1.1 Salicylaldehyde biosynthesis 
 

The survey of 16 ecological and entomological journals from 1969-1989 for articles 

concerning defenses in arthropods (354 publications) revealed that 46 % of relevant 

papers dealt with chemical defenses (Witz 1990). These findings reflect the impact and 

abundance of these anti-predator mechanisms in nature. In insects chemical defense is 

achieved by the release of toxins/poison through bites, stings, reflex-bleeding, 

regurgitate, excrement or exocrine glands (reviewed in Dettner 2007). In this context 

Chrysomelina leaf beetle larval exocrine glandular defense is remarkable. Not only the 

chemical defensive compounds themselves but also their biosynthetic steps, efficacy 

and especially their host plant origin are well known for a variety of species. Those data 

build up the fundament to comparatively address questions related to “prerequisites”, 

constraints, adaptation, dependence and evolution of insect chemical defense in a 

specialist herbivore host plant interaction. 

In particular, salicin-based defense in Chrysomelina larvae has been shown to be highly 

efficient and of ecological relevance. The defensive secretion in general and especially 

the salicin-derived salicylaldehyde act as deterrents against ants, wasps, ladybirds and 

spiders (Wallace and Blum 1969, Blum et al. 1972, Matsuda and Sugawara 1980, 

Denno et al. 1990, Palokangas and Neuvonen 1992, Hilker and Schulz 1994) and 

possess anti-microbial and cytotoxic activity (Schildknecht et al. 1968, Gross et al. 

2002). 

M 
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To my knowledge beside its presence in Chrysomelina species the highly bioactive 

salicylaldehyde has been detected only in few other insects: 

(1) In pygidial glands of ground beetles (Eisner et al. 1963, Schildknecht et al. 

1968)

(2) In mandibular glands of the bee Pithitis smaragdula (Hefetz et al. 1979)

(3) In abdominal glands of the butterfly Limenitis archippus (Prudic et al. 2007)

This makes a convergent use of salicylaldehyde for defensive properties in those 

distantly related insect taxa likely. Moreover, it is interesting to note that the caterpillar 

of Limenitis archippus feeds on salicaceous plants and the adults possess beside the 

volatile salicylaldehyde also the phytogenic salicin and tremulacin in their abdominal 

glands. Therefore K. L. Prudic (2007) argued for a phytogenic origin of salicylaldehyde 

and a transfer between different developmental stages is likely. If this can be further 

verified not only the utilization but also origin and biosynthesis of salicylaldehyde in 

specialized exocrine glands convergently evolved in Chrysomelina larvae and Limenitis 

archippus.  

Even within Chrysomelina the origin of salicylaldehyde biosynthesis is not clear as 

beside the genus Chrysomela also larvae of Phratora vitellinae produce salicylaldehyde 

(Wain 1943). Due to phylogenetic analyses a convergent origin of salicin-based defense 

in both, not closely related genera, by independent recruitments of the ancestral iridoid 

biosynthesis machinery for salicylaldehyde formation has been discussed (Termonia et 

al. 2001). The main argument for this scenario is the similarity of chemical properties of 

the oxidative step in both iridoid and salicylaldehyde biosynthesis (Pasteels et al. 1990, 

Veith et al. 1997), which favored the evolution of the more derived salicin-based 

defense by changes in ancestral glandular oxidase specificities of iridoid producers. 

However, manuscript one and two provide data supporting a single origin of salicyl 

alcohol oxidase in Phratora vitellinae and Chrysomela species, although they are not 

closely related species. Phratora vitellinae and Chrysomela SAO genes not only share a 

common ancestor in the GMC oxidoreductase multi-gene family, but also display 

identical gene architecture, glandular tissue specific expression, SAO enzyme substrate 

specificity and high amount of SAO protein in the glandular secretion. Therefore, strong 

evidence for a single origin of Phratora vitellinae and Chrysomela SAOs is provided. 

However, I am aware of the fact that it is not verified yet that both species´ SAO genes 

are true orthologs as long as additional genomic data of more Chrysomelina species for 

a complete SAO phylogenetic analysis are lacking. 
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Regarding the scenario of iridoid biosynthesis-derived enzymatic machinery for 

salicylaldehyde formation I can conclude, based on manuscript two and additional 

unpublished data, that SAO related proteins are not involved in defensive compound 

formation in iridoid producing species of Chrysomelina. Although a variety of proteins 

of glandular secretions has been observed by MS/MS analyses, no evidence for the 

presence of a SAO related GMC oxidoreductase in the defensive system of the iridoid 

producing species Phaedon cochleariae, Gastrophysa viridula and Gastrophysa cyanea 

has been found. Contrary to previous assumptions (Pasteels et al. 1990, Veith et al. 

1997, Termonia et al. 2001), this strongly supports at least the independent evolution of 

the oxidative step in salicylaldehyde and iridoid defended larvae. 

Therefore, I suggest an alternative evolutionary scenario for SAO emergence in 

Chrysomela and Phratora vitellinae. The SAO paraloga found in Chrysomela lapponica 

and Chrysomela populi (manuscript one) as well as the SAO-like genes in the iridoid 

producing species Phratora laticollis and Phaedon cochleariae (manuscript two and 

additional unpublished data for P. cochleariae) indicate gene duplication events starting 

early in Chrysomelina speciation. The expansion of a specific GMC oxidoreductase 

subfamily (GMCi) most likely gave birth to an SAO ancestral gene followed by further 

lineage-specific gene duplications. The glandular-specific expression of SAO paralog1 

of C. lapponica (manuscript one) allows for the assumption that the SAO “precursor” 

gene already possessed glandular tissue-specific expression even before its 

recruitment/selection for SAO catalytic activity. It is conceivable that the SAO ancestral 

protein already had a SAO side-activity, which became the main-activity through 

selection. Additionally, typical features of insect GMCi proteins like high degree of N-

glycosylations and N-terminal signal peptides (personal observation), may have favored 

SAO functionalization. 

But although a scenario of SAO gene evolution can be developed, the (gradual or fast) 

enzyme evolution from an ancestral catalytic activity and whether neo- or sub-

functionalization of the ancestral gene took place cannot be reconstructed. This is 

because nothing is known about enzymatic activities of SAO-related proteins in other 

insect species neither within Chrysomelina nor in other beetle families of the 

Cucujiformia. However, knowledge about SAO-related proteins and insect GMCi 

proteins in general would be helpful to elucidate the gain of salicyl alcohol oxidase 

activity starting from an SAO ancestor. For Chrysomelina SAO-related proteins I can 

conclude that, as SAO-like genes are also present in iridoid producers but not encode 
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for proteins in the defensive secretion, they most likely persisted due to the acquisition 

of other functions than defensive glandular oxidases. Therefore, SAOs most likely 

originated outside the ancestral defensive compound machinery of the iridoid producers. 

GMC oxidoreductases in general are known to be ubiquitous present and fulfill a 

multiplicity of enzymatic reactions that are in most cases alcohol dehydrogenations 

(oxidations) leading to the respective aldehydes (Cavener 1992, Li et al. 1993, Mattevi 

1998, Hallberg et al. 2002, Hallberg et al. 2004, Zamocky et al. 2004, Zamocky et al. 

2006, Sarfare et al. 2005), which holds true for the SAOs, too. In insects the only well-

characterized GMC oxidoreductase members are the glucose dehydrogenases (Cavener 

and MacIntyre 1983, Krasney et al. 1990). However, most of the insect GMC genes 

(including GMCi-subfamily) are located in a highly conserved cluster (Kunieda et al. 

2006, Iida et al. 2007) but neither their affiliation with any specific biochemical 

pathway nor their precise catalytic activities are known. The only gene of the insect 

GMC cluster which is characterized so far is an ecdysone oxidase of Drosophila 

melanogaster (Takeuchi et al. 2005), leading to speculate that the whole cluster may be 

involved in ecdysone metabolism (Iida et al. 2007). However, this is not supported by 

any data so far and thus provides no hint for the catalytic activity of the SAO ancestor. 

In summary, the SAO activity most likely arose from a precursor in the GMCi-

subfamily of the insect GMC gene-cluster after gene duplication. In general, the process 

of duplicate gene evolution leads to one of the three following alternative fates: 

i) One copy may be lost (non-functionalization) through e.g. null-mutation, leading to 

failure of transcription or translation into a functional protein.  

ii) The acquisition of mutation(s) can also be fixed by positive selection and enable one 

copy to gain a new function (neo-functionalization) whereas the other copy persists by 

retaining the ancestral function. 

iii) Both duplicates accumulate degenerative mutations and may therefore undergo loss 

or reduction of expression for different sub-functions (sub-functionalization sensu Force 

et al. 1998), leading to a partitioning of functionalities of one ancestral locus to two loci.  

Applying those definitions to the SAO evolutionary scenario, either the ancestral gene 

already possessed SAO activity (sub-functionalization of one copy) or not (neo-

functionalization of one copy). As already pointed out, these alternative evolutionary 

scenarios cannot be resolved so far. 
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4.1.2 “Prerequisites” for phenolic-glycoside utilization 
 

In the previous paragraph I discussed the single origin and the evolution of SAO 

proteins in Chrysomelina species, which may have taken place in a step-wise manner. 

Starting with gene duplications in a specific GMC subfamily, glandular tissue-specific 

expression and selection for SAO activity of an ancestral protein with an already 

existing SAO side-activity may have followed. This evolutionary scenario proceeded 

most likely independently from the iridoid pathway at least with respect to the oxidative 

step in the defensive glands.  

However, taking the phylogenetic analyses of A. Termonia and co-authors (2001) into 

account, the ancestors of recent species utilizing salicin-based defense were iridoid-

protected leaf beetles. Therefore, most likely some features of the more basal iridoid-

producers favored salicin-based defense. In the following I call those features 

prerequisites and I will focus on host plant chemistry, glycoside transport processes and 

defensive gland glucosidases in the larvae.  

I am well aware that the recent iridoid producing species do not reflect exactly the 

character states of the salicylaldehyde producing species´ ancestors that produced 

iridoids due to their own evolutionary history after split from their common ancestor. 

However, by examining recent iridoid producers an underlying ground-pattern of the 

most recent common ancestor of iridoid and salicylaldehyde producing species can be 

reconstructed. 

 

 

4.1.2.1 Host plant chemistry 
 

Phenolic glycosides (PGs) e.g. salicortin, tremulacin, salicin (Fig. 1) have been shown 

to be typical secondary plant metabolites of the plant family Salicaceae (Thieme 1971, 

Palo 1984, Babst et al. 2010). PGs are feeding deterrents and toxic compounds acting 

against generalist herbivorous insects (Tahvanainen et al. 1985, Lindroth et al. 1988, 

Clausen et al. 1989, Denno et al. 1990, Lindroth and Hemming 1990, Ruuhola et al. 

2001a, Ruuhola et al. 2001b, Ruuhola et al. 2003). Their impact in herbivore host plant 

interaction is most likely due to break-down products acting as toxins or inhibitors in 

insects As an example, in case of salicortin-degradation a mix of enzymes of both 

herbivore and plant origin can be assumed (Lindroth 1988, Julkunen-Tiitto and Meier 
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1992, Ruuhola et al. 2003, unpublished data), leading to the deleterious compounds 

saligenin and cyclohexenone (Fig. 1). 

 

 

 

Additionally, salicortin itself has been shown to be a �-glucosidase inhibitor (Clausen et 

al. 1990, Zhu et al. 1998) and salicin possesses an inhibitory effect on human serine 

proteases (Jedinák et al. 2006). Moreover, salicortin and disalicortin are even 

systemically up-regulated by herbivory (Clausen et al. 1989, Ruuhola et al. 2001a). 

Altogether, salicaceous plants are efficiently protected against generalist herbivores by 

PGs. Thus, to benefit from those glycosides for larval defensive properties the ability to 

cope with the PGs is likely a prerequisite in Chrysomelina. Most European Phratora 

species and Plagiodera versicolora are protected by iridoids but feed on salicaceous 

plants and in some cases even accept moderate to high levels of PGs (Tahvanainen et al. 

1985, Köpf et al. 1996, Köpf et al. 1998). Moreover, the adults of both iridoid and 

salicylaldehyde protected larvae feed on the same salicaceous hosts like their immature 

stages. In my view, this implies the evolution of an ability to cope with PG-containing 
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plants early in Chrysomelina radiation and most likely before and independent of 

salicin-based defense. To my knowledge up to now it is not known whether this ability 

is due to a tolerance to PGs to a certain degree or resistance mediated by detoxification 

mechanisms. However, as up to 70 leaf beetle species are reported to feed on 

salicaceous plants (Krüssmann 1962, Freude et al. 1966), most likely convergent 

adaptations to PGs evolved in different, distantly related chrysomelid taxa. A common 

origin in Chrysomelina is likely but needs to be proven. Nevertheless, salicin-based 

defense is strikingly economic as the PGs salicin and salicortin are both in parallel 

detoxified and utilized for the larval defense (Rowell-Rahier and Pasteels 1986). 

Salicin-based defense is an innovative strategy as it likely enabled the salicin 

sequestering species to feed on salicaceous plants with higher PG content than the 

iridoid producing species and, moreover, make the salicin-bound glucose moiety 

available (Pasteels et al. 1983, Pasteels et al. 1990). Interestingly, host plant PG and 

larval salicylaldehyde concentrations are positively correlated in salicin sequestering 

species (Pasteels et al. 1983, Termonia and Pasteels 1999) but above a certain amount of 

salicin the salicylaldehyde concentration is not significantly increased (Soetens et al. 

1998). This implies that also larvae sequestering PGs for defensive properties need to 

cope with salicin and salicortin that are not required for their defense. Therefore, they 

may have retained an ancestral PG tolerance/resistance which is likely present in iridoid 

producing species feeding on salicaceous plants enabling them to feed on plants rich in 

PGs. 

 

 

4.1.2.2 Phytogenic glycoside sequestration and glandular deglucosylation 
 

Although I have shown an independent evolution of SAO enzymes of salicin 

sequestering species from the glandular oxidase in iridoid producers, for maintenance of 

chemical defense the prior glycoside transport and their glandular deglucosylation seem 

to be common to all Chrysomelina larvae, irrespective of the mode of their chemical 

defense (Pasteels et a. 1990, Kuhn et al. 2004, Discher et al. 2009). Based on the 

biochemical knowledge to date, both the transporter and glandular glucosidases show 

respective similarities in different species. However, as shown for SAO evolution, 

further investigations of transport proteins and glandular glucosidases on a molecular-

genetic level are needed to enable formulation of hypotheses of their evolutionary 
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origins. Only a combination of biochemical and molecular-genetic data will clarify 

whether a single origin for each protein family (glycoside transporter, glandular 

glucosidases) in Chrysomelina and, in more detail, if a derivation from iridoid-protected 

ancestors during salicin-based defense evolution instead of repetitive new innovations is 

likely. At least for the glandular glucosidase activity I would, for two reasons, suppose a 

single origin in Chrysomelina larvae (�-glucosidases of the glycoside hydrolase family 

1: unpublished data) instead of convergent recruitments. First, �-glucosidases of 

different insect orders have been shown to possess broad substrate acceptance (Chararas 

and Chipoulet 1982, Chararas et al. 1983, Pratviel-Sosa et al. 1987, Ferreira et al. 1998, 

Scharf et al. 2010). Second, in vitro assays with larval defensive secretions resulted in 

glucosidase cross-activities in different Chrysomelina species (Pasteels et al. 1990, 

Soetens et al. 1993). Salicin and 8-hydroxygeraniol-glucoside were comparably 

deglucosylated independent of adding the secretion of salicylaldehyde or iridoid 

producing species. Therefore, there seems to be no absolute requirement for the 

recruitment of different glucosidases for specific activities in the glandular secretion, 

but rather slight changes in substrate affinities would be sufficient to maintain 

glucosidase capacity, irrespective of the leaf beetles defensive strategies. However, 

although the enzymatic activity of a glucosidase has been shown to be responsible for 

deglucosylation in the glandular secretion of a variety of Chrysomelina species, I would 

not exclude the possibility of a spontaneous (but slow) acid hydrolysis of ingested 

glucosides in some species as the glandular secretions possess a pH of 4 to 5 (personal 

observation). 

 

 

4.1.3 Fate of SAO gene and salicin-based defense 
 

To illuminate the evolutionary dynamics of the leaf beetle SAO enzymes that are 

involved in host plant-dependent defense of those herbivores, not only their origin 

within the Chrysomelina but also the fate of C. lapponica SAO after host 

shift/expansion to birch trees has been investigated (manuscript 1). In conjunction to 

that the “new” host plant chemistry is important, because a changing phytochemical 

environment can affect the leaf beetle larval defense (Hilker and Schulz 1994, Termonia 

and Pasteels 1999, Termonia et al. 2002, manuscript 3) and therefore affect also the 

enzymes involved in deterrent compound biosynthesis (manuscript 1). 
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The step-wise scenario of SAO evolution that I have discussed and postulated in the 

previous two paragraphs includes gene duplication and the preservation of a SAO 

“precursor” gene as key events. Potential reasons for the subsequent loss of SAO gene 

functionality and enzyme activity will be addressed here. It has been shown that 

salicylaldehyde attracts specialist natural enemies (Pasteels and Gregoire 1984, Köpf et 

al. 1997, Zvereva and Rank 2003/2004, Gross et al. 2004) and therefore the lack of 

salicylaldehyde biosynthesis would be advantageous for larval survival. A dual defense, 

based on butyrate-ester biosynthesis (found in interrupta-species) in addition to 

salicylaldehyde production, may have allowed the lack of salicylaldehyde without 

complete loss of defensive capacity in larval glandular secretions (Termonia et al. 2001, 

Termonia et al. 2002). One could ask why salicylaldehyde is only absent in those 

interrupta-species feeding on birch instead of willow and why the loss of SAO activity 

did not evolve in willow-feeding species as well. Both questions cannot be resolved so 

far, but a possible explanation could be that the loss of SAO activity is somehow related 

to the host shift from willow to birch, maybe because salicylaldehyde formation is still 

essentially needed as a detoxification mechanism or energy source for willow-

associated interrupta-species (assumed for other species in Rowell-Rahier and Pasteels 

1986). 

Beside the ecology driven selection pressures on the loss of salicylaldehyde biosynthetic 

capacity, simply a lack of selection pressure on its persistence due to ecological changes 

is also conceivable. As the shift from willow to salicin-free birch (manuscript 3) caused 

the ebbing of the phytogenic salicylaldehyde-source there is no need to retain SAO 

activity, which otherwise would be potential costs for maintenance of the SAO 

expression. On the other hand, small amounts of salicortin and tremulacin have been 

detected in birch (manuscript 3) which can be transformed to the salicylaldehyde 

precursor salicin/saligenin (Fig. 1) by degradation in the larval gut (Julkunen-Tiitto and 

Meier 1992, Ruuhola et al. 2003) and, moreover, the ability to sequester salicin is 

preserved in birch-feeding C. lapponica juveniles (manuscript 3, Kuhn 2005, Hilker and 

Schulz 1994). Additionally, P. Soetens (1993) has already shown salicortin as a 

salicylaldehyde precursor in Phratora vitellinae. Altogether, this argues for changes in 

gut enzyme specificities in birch-feeders since no salicylaldehyde or butyrate esters of 

saligenin were found in their secretion (manuscript 3) and/or support the hypothesis that 

salicylaldehyde formation is an essential detoxification mechanism/energy source for 

willow-associated interrupta-species but not for birch-associated species. Changes of 
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the gut enzymatic composition due to host plant shifts is supported by differential 

expression of glycosidases comparing birch- and willow-feeding populations of C. 

lapponica (unpublished data). In addition, although no significant differences in 

glucoside uptake were found comparing willow and birch-feeding larvae of C. 

lapponica (manuscript 3) I would not exclude, that changes in transport specificities 

beside alterations in gut enzyme composition account for the lack of saligenin-

derivatives in the secretion of birch-feeding larvae. 

In general, in my view the host shift to birch is the most convincing reason for loss of 

SAO activity. But the exciting question what favored or maybe forced the shift from 

willow to birch is still open. It is likely due to a complex engagement of abiotic and 

biotic factors (reviewed in Gross et al. 2004a/b) or, as pointed out by A. Termonia and 

coauthors (2001), just due to the fact that willow and birch very often co-existed during 

radiation and speciation of the interrupta-group. 

 

 

4.2 Future Perspectives 
 

In consideration of the fact that only a few transcriptome and no genome data for leaf 

beetles were available when I have started my thesis, simultaneous glandular protein 

analyses by MS/MS and the establishment of various genomic and glandular 

transcriptome data-sets is an appropriate approach to identify key enzymes involved in 

defensive compound biosynthesis of Chrysomelina larvae. The expression of candidate 

genes in a eukaryotic instead of a prokaryotic cell line for following characterizations is 

essential, as the proteins I investigated possess several post-translational modifications. 

However, to study comparatively the evolutionary dynamics in a multi-copy gene 

family, like the GMCs, whole transcriptome data-sets would improve the knowledge 

rapidly, as I have seen for example in case of screening the P. cochleariae transcriptome 

(manuscript 2). 

Nevertheless, based on the results described herein I could imagine three specific future 

directions for research on evolutionary aspects of Chrysomelina host plant adaptations 

with special emphasis on their chemical defense-involved glandular oxidases. 

First, to elucidate the origin of SAO enzymes and their activity in the Chrysomelina leaf 

beetles, the characterization of SAO-like proteins in iridoid producing species and 

related proteins in other beetles is essential. I already identified three SAO-like 
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transcripts in P. cochleariae and one SAO-like gene in P. laticollis (manuscript 2, 

unpublished data) and showed a close relationship of all SAOs and related proteins with 

T. castaneum GMCi5. Their spatial/temporal expression pattern, enzymatic activities 

and number of paraloga would provide knowledge to postulate the changes in substrate 

specificities and help to discriminate between sub- and neo-functionalization which 

most likely led to the catalytic activity of the SAO. Beside those, the reasons for SAO-

like gene persistence in iridoid producers, although not involved in salicylaldehyde 

biosynthesis, could be addressed. 

Second, to prove the hypothesis of an independent evolution of larval glandular 

oxidases in salicylaldehyde and iridoid producing species (manuscript 2), the 

elucidation and characterization of the oxidase involved in iridoid biosynthesis would 

be of great impact.  

Third, to get more insights into host shift origin/dynamics from willow to birch in the 

interrupta-group, the SAO and related proteins could be helpful. Previous investigations 

indicate several independent shifts within the interrupta-group and also even within C. 

lapponica (Termonia et al. 2001, Mardulyn et al. submitted) in addition to population 

specific host adaptations (Zvereva et al. 2010). The fate of SAO gene and protein in 

birch-feeding species/populations compared to my results (manuscript 1), could uncover 

the number of host shift events from willow to birch in C. lapponica and moreover the 

entire interrupta-group. 

 

Beside those specific directions, more general aspects of phenolic glycoside tolerance or 

detoxification in iridoid producing species should be addressed. So far very little is 

known about how those compounds cause feeding deterrence or toxicity in generalist 

herbivores and what mechanisms specialist herbivores utilize to enable them feeding on 

high amounts of PGs with impunity. 
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5 Summary 
 

 

5.1 Background knowledge about Chrysomelina defense 

5.1.1 Chemical defense of larvae differs in host dependency 
 

s most leaf beetles (Chrysomelidae) spend their whole life exposed on the foliar 

surface, multifaceted defense mechanisms against predators are present in 

different taxa. In this context, the glandular chemical defense of Chrysomelina larvae is 

remarkable as it provides the possibility to investigate the intimate relationship between 

host plant adaptation and protection of specialist herbivores. The implementation of 

larval chemical defense is either, not, in part, or completely dependent on host derived 

glucosides and the degree of host dependency is strongly correlated with plasticity of 

host affiliation. Whereas the basal species, protected by autogenously synthesized 

iridoids, colonized seven plant families, the more derived salicylaldehyde producers 

Chrysomela spp. and P. vitellinae are adapted to sequester the phytogenic precursor 

salicin and therefore are restricted to feed on salicaceous hosts containing this 

secondary metabolite. However, the utilization of butyrate-esters of a mixed, beetle and 

host, origin may have enabled several species of the interrupta-group of the genus 

Chrysomela to broaden their host spectrum or shift from Salicaceae to Betulacea. Thus, 

Chrysomelina larvae and their glandular chemical defense is an excellent biological 

system to understand evolutionary dynamics of host plant adaptation in a clade of 

specialist herbivores. While a lot of work has been done on defensive compound 

identification and origin, and a limited amount of data is available on their precursor 

transport system, very little is known about the enzymes catalyzing the final steps of 

defensive compound formation on a molecular level. However, to understand the 

mechanisms of chemical defense evolution and the connected host plant adaptation in 

Chrysomelina, comparative molecular knowledge about these glandular enzymes is 

necessary. 

 

 

5.1.2 Defensive gland enzymes and hypotheses on evolutionary origin of oxidases 
 

Irrespective of the kind of defensive compound, after selective uptake of glucoside 

precursors into the glandular reservoir deglucosylation and further modification of the 

A
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aglucon to the bioactive principle falls into line. In case of iridoid and salicylaldehyde 

formation the deglucosylation is followed by a common oxidation step, which led to 

assume a single origin of the oxidases in those species and, moreover, would enable a 

shift from basal iridoid to derived salicylaldehyde biosynthesis just by slight changes in 

oxidase substrate specificity. If this holds true, and as the two genera are not closely 

related, salicylaldehyde formation common to Chrysomela spp. and P. vitellinae would 

imply a convergent recruitment of an ancestral oxidase of iridoid producers for salicyl 

alcohol oxidase (SAO) activity. 

 

 

5.2 Major findings of the thesis 

5.2.1 Elucidation of SAO and related sequences 
 

SAO transcripts and genes have been identified in C. lapponica and P. vitellinae. The 

presence of the corresponding protein in the defensive secretion was verified by MS/MS 

analyses. SAO heterologous expression in a Sf9 insect cell line followed by in vitro 

enzyme assays revealed their SAO activity, Re-selectivity and a complex pattern of N-

glycosylations. SAO glandular tissue-specific expression reflects the high amount of 

protein present in the glandular secretion. Screening of a C. lapponica genomic library 

and further gene amplification led to 4 SAO paraloga in a willow-feeding population 

and 3 in a birch-feeding population as well as 2 SAO paraloga in closely related C. 

populi. Additionally, SAO related sequences were found in the iridoid producing species 

P. laticollis and P. cochleariae. The common origin of all SAOs and related sequences 

in a specific GMC oxidoreductase subfamily was shown by phylogenetic analyses. 

 

 

5.2.2 Establishment of a hypothesis on SAO evolution 
 

Contrary to previous hypotheses on glandular oxidase evolution in Chrysomelina leaf 

beetles, I provide another step-wise scenario for SAO evolution based on molecular 

data. Therein, multiple gene duplications in the GMCi subfamily early in Chrysomelina 

speciation followed by lineage specific duplications took place. One of the generated 

copies has then been sub- or neo-functionalized to SAO activity. Thereby, a signal 

peptide for the secretory pathway and a high degree of N-glycosylations were most 
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likely already present as those are features typical for members of the insect GMCi 

subfamily. The identical expression pattern of SAO and SAO paralog1 in C. lapponica 

indicate that their ancestral gene already possessed glandular specific expression. 

Phylogenetic analyses revealed that SAO is of single origin in Chrysomela spp. and P. 

vitellinae, additionally supported by highly similar SAO gene architecture, expression 

patterns and post-translational modifications. Moreover, the presence of SAO-like genes 

but lack of their encoded proteins in the defensive secretion of iridoid producers 

indicate both an independent evolution of SAO from glandular oxidases in iridoid 

producers and the recruitment of SAO related proteins for functions other than in the 

defensive system of iridoid protected species. In summary, gene duplicates of the GMCi 

subfamily have undergone different paths of functionalization in iridoid and 

salicylaldehyde producing species during Chrysomelina evolution but SAO has most 

likely a single ancestral GMCi gene origin in both Chrysomela spp. and P. vitellinae. 

 

 

5.2.3 Loss of SAO activity after host shift 
 

Whereas specialization to feed on salicaceous plants may have favored salicin-based 

defense and stabilized SAO activity for millions of years in Chrysomelina species, the 

shift to Betulaceae within the genus Chrysomela negatively affected the fate of SAO. 

This altogether shows the impact of host plants on chemical defense and on enzymes 

involved in this defense system. Comparing isolated willow- and birch-adapted C. 

lapponica populations elucidated a loss of SAO activity caused by mutations, 

alternative splicing, massive transcript down-regulation, N-terminal protein truncation 

and most likely post-translational changes in the birch-feeder. Interestingly, the loss of 

SAO activity cannot be solely explained by the absence of salicin in birch. Salicortin 

and tremulacin were detected in birch, which could in principle also serve as salicyl 

alcohol source by degradation in the larval gut, and the ability to sequester salicin has 

been shown for the birch-feeder. Thus, the shift from willow to birch likely had little/no 

effects on the precursor transport system but may have affected - beside SAO - other 

enzymes as well. 
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5.3 Concluding remarks 
 

In a nutshell, glandular chemical defense in Chrysomelina larvae is fascinating for 

chemical, biochemical, molecular-genetic, ecological and evolutionary aspects. But in 

my mind, and in order to understand favoring circumstances, mechanisms, constraints, 

dynamics and evolutionary histories of host plant adaptation in those specialized 

insects, the future challenge will be to look beyond their chemical defense. Thus, 

investigations of the Chrysomelina detoxification and digestion machinery should be 

included. Over and above that, research on functionalities of their larval exocrine 

secretion beside defensive properties may provide additional insights in selecting 

parameters that force or favor gain, retention and loss of chemical defensive strategies 

in Chrysomelina leaf beetles. 
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6 Zusammenfassung 
 

 

6.1 Hintergrundwissen zur Verteidigung der Chrysomelina Larven 

6.1.1 Die larvale chemische Abwehr unterscheidet sich hinsichtlich der 
Abhängigkeit von der Wirtspflanze 

 

ufgrund der meist exponierten Lebensweise an den Blättern ihrer Wirtspflanzen, 

finden sich in den unterschiedlichen Taxa der Chrysomelidae vielfältige 

Verteidigungsstrategien gegen Fraßfeinde. In diesem Zusammenhang stellt die 

glanduläre chemische Abwehr der Chrysomelina Larven eine Besonderheit dar, weil sie 

die Möglichkeit bietet, das enge Zusammenspiel von Verteidigungsmechanismen und 

Angepasstheit an die Wirtspflanze in einem phytophagen Spezialisten zu untersuchen. 

Die Implementierung dieser larvalen chemischen Abwehr ist entweder nicht, zum Teil, 

oder vollständig an die Bereitstellung phytogener Glukoside gebunden und die 

unterschiedliche Plastizität in Bezug auf Wirtspflanzenassoziation spiegelt den Grad der 

Abhängigkeit der Larven von ihren Futterpflanzen wieder. Während basale, durch 

autogen synthetisierte Iridoide geschützte Arten 7 Pflanzenfamilien im Laufe ihrer 

Evolution kolonisiert haben, sind abgeleitete, Salicylaldehyd-produzierende Spezies 

(Chrysomela spp. und P. vitellinae) an die Sequestrierung der phytogenen Vorstufe 

Salicin angepasst und daher auf salicinhaltige Wirtspflanzen der Salicaceae als 

Lebensraum beschränkt. Allerdings ermöglichte wahrscheinlich die Etablierung von 

Butyrat-Estern als Wehrsubstanzen, aus phytogenen und larvalen Vorstufen kombiniert, 

einigen Spezies der interrupta-Gruppe der Gattung Chrysomela ihr 

Wirtspflanzenspektrum um die Betulaceae zu erweitern beziehungsweise von Weiden 

auf Birken zu wechseln. Dies verdeutlicht, dass die Chrysomelina Larven mit ihrer 

glandulären chemischen Abwehr ein exzellentes biologisches System darstellen, um die 

evolutive Dynamik, die der Wirtspflanzenanpassung phytophager Spezialisten zu 

Grunde liegt, zu verstehen. Während Identität und Ursprung der Wehrsubstanzen 

weitgehend und zum Teil auch der Transport ihrer Vorstufen in den Larven bekannt 

sind, wurden die an der Biosynthese der Wehrsubstanzen beteiligten Enzyme auf 

molekular-biologischer Ebene kaum charakterisiert. Allerdings sind vergleichende 

molekulare Untersuchungen zu diesen Enzymen nötig, um die Mechanismen der 

Wirtspflanzenanpassung und die damit verbundene Evolution der chemischen Abwehr 

in Chrysomelina Larven nachvollziehen zu können. 

A



78 
 

6.1.2 Wehrdrüsenenzyme und Hypothesen zum evolutiven Ursprung der 
glandulären Oxidaseaktivität 

 

Unabhängig von der Art der Wehrsubstanzklasse werden deren glukosidische Vorstufen 

selektiv in das Wehrdrüsenreservoir transportiert, anschließend dort deglukosyliert und 

das Aglukon an freigewordenen funktionellen Gruppen bis zur bioaktiven Substanz 

modifiziert. Die der Iridoid- und Salicylaldehyd-Synthese gemeine Oxidation des 

Aglukons, nach Abspaltung der Glukose, führte zur Annahme eines gemeinsamen 

evolutiven Ursprungs der Oxidase in beiden Produzenten. Darüber hinaus wurde ein 

evolutives Szenario diskutiert, in dem durch eine Änderung der Oxidase-

Substratspezifität ein Übergang von basaler Iridoid- zu weiterentwickelter 

Salicylaldehyd-Synthese ermöglicht wurde. Wenn dieses Szenario die Realität korrekt 

abbildet, dann wäre zweimal unabhängig, in den nicht näher verwandten Taxa 

Chrysomela und P. vitellinae, eine ancestrale Oxidase von Iridoid-Produzenten zur 

SAO Aktivität rekrutiert worden. 

 

 

6.2 Zentrale Ergebnisse der Dissertation 

6.2.1 Aufdeckung der SAO und verwandter Gene 
 

SAO Transkript und Gen wurden jeweils in C. lapponica und P. vitellinae identifiziert. 

Die korrespondierenden Proteine wurden mittels MS/MS im glandulären Sekret 

nachgewiesen. Die heterologe Expression der SAOs in einer Sf9 Insekten-Zelllinie und 

anschließender in vitro Inkubationsexperimente bestätigten deren katalytische Aktivität, 

Re-Selektivität und bioinformatisch vorhergesagte N-Glykosilierungen. Die 

Wehrdrüsen-spezifische Expression der SAO reflektiert die große Menge an SAO 

Protein im Wehrsekret der Larven. Das Screening einer genomischen Bibliothek und 

weitere Amplifikationen von Chrysomela Genen führte sowohl zu 4 SAO paraloga in 

einer Weide- und 3 in einer Birke-adaptierten Population von C. lapponica als auch zu 2 

SAO paraloga in dem nah verwandten C. populi. Zusätzlich konnten SAO verwandte 

Sequenzen in den Iridoid-produzierenden Spezies P. laticollis und P. cochleariae 

nachgewiesen werden. Phylogenetische Analysen zeigen einen gemeinsamen evolutiven 

Ursprung aller SAOs und verwandter Sequenzen in einer spezifischen Unterfamilie der 

GMC Oxidoreduktasen (GMCi). 
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6.2.2 Aufstellung einer Hypothese zur Evolution der SAO 
 

Im Gegensatz zu bestehenden Hypothesen zur Evolution der glandulären Oxidasen in 

den Blattkäferlarven des Subtribus Chrysomelina, schlage ich ein schrittweises Szenario 

zur SAO Evolution basierend auf molekularen Daten vor. Darin vollzogen sich nach 

multiplen Genduplikationen früh in der Chrysomelina Speziation weitere Linien-

spezifische Duplikationsereignisse. Eine Genkopie wurde zur SAO Aktivität sub- oder 

neo-funktionalisiert. Währenddessen waren GMCi typische Merkmale wie ein             

N-terminales Signalpeptid und hochgradige N-Glykosylierung wahrscheinlich bereits 

vorhanden. Das identische Expressionsmuster von SAO und SAO paralog 1 in             

C. lapponica deutet auf eine bereits Wehrdrüsen-spezifische Expression des ancestralen 

Gens der SAO hin. Phylogenetische Analysen zeigen den gemeinsamen evolutiven 

Ursprung der SAO in Chrysomela spp. und P. vitellinae, was durch deren sehr ähnliche 

SAO-Genarchitektur, Expressionsmuster und post-translationale Modifikation 

zusätzlich unterstützt wird. Darüber hinaus lassen SAO-ähnliche Gene der Iridoid-

Produzenten, deren kodierte Proteine allerdings nicht in deren Wehrsekret nachweisbar 

waren, eine unabhängige Evolution der SAO von glandulären Oxidasen der Iridoid-

Produzenten vermuten. Das wiederrum impliziert eine Rekrutierung von SAO ähnlichen 

Genen in Iridoid-verteidigten Spezies zu anderen Aufgaben als zur Synthese der 

Wehrsubstanzen. Zusammenfassend lässt sich sagen, dass Genduplikate der GMCi 

Unterfamilie während der Evolution der Chrysomelina sehr wahrscheinlich 

unterschiedliche Wege der Funktionalisierung in Iridoid- und Salicylaldehyd-

produzierenden Spezies durchlaufen haben. Allerdings besitzen alle SAOs der Gattung 

Chrysomela zusammen mit der P. vitellinae SAO ein gemeinsames ancestrales GMCi 

Gen. 

 

 

6.2.3 Wirtswechsel in Verbindung mit dem Verlust der SAO Aktivität 
 

Während die Spezialisierung auf Salicaceae als Nahrungsquelle die Salicin-basierte 

Verteidigung möglicherweise begünstigt und die SAO Aktivität für mehrere Millionen 

Jahre in Chrysomelina Spezies stabilisiert hat, hat der Wirtspflanzenwechsel zu den 

Betulaceae innerhalb der Gattung Chrysomela das Schicksal der SAO negativ 

beeinflusst. Das verdeutlicht den großen Einfluss der Wirtspflanze auf die chemische 
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Verteidigung der Chrysomelina Larven und darin involvierte Enzyme. Ein Vergleich 

isolierter Weide- und Birke-adaptierter C. lapponica Populationen deckte den Verlust 

der SAO Aktivität durch Mutationen, alternative Prozessierung des Primärtranskripts, 

massive Abnahme an Transkriptmenge, N-terminale Trunkierung des Proteins und 

wahrscheinlich auch deren post-translationale Veränderungen in der Birke-fressenden 

Population auf. Interessanterweise kann der Verlust der SAO Aktivität nicht allein durch 

das Fehlen von Salicin erklärt werden, da geringe Mengen Salicortin und Tremulacin in 

der Birke nachweisbar sind. Diese beiden phenolischen Glukoside sind nach 

Degradierung im larvalen Darm potentielle Vorstufen des Salicins und darüber hinaus 

besitzen die Birke-adaptierten Larven von C. lapponica, wie die Weide-adaptierten 

Populationen, die Fähigkeit Salicin zu sequestrieren. Daraus kann man schließen, dass 

der Wirtspflanzenwechsel von Salicaceae zu Betulaceae wahrscheinlich zwar wenige 

oder gar keine Effekte auf die Transportmechanismen wohl aber, neben der SAO, auch 

einen Einfluss auf andere larvale Enzyme gehabt hat. 

 

 

6.3 Schlussbemerkung
 

Alles in allem ist die glanduläre chemische Abwehr der Chrysomelina Larven aufgrund 

chemischer, biochemischer, molekular-genetischer, ökologischer und evolutiver Aspekte 

faszinierend. Allerdings ist aus meiner Sicht und um die begünstigenden Umstände, 

Mechanismen, Bedingungen, Dynamiken und evolutionären Entstehungsgeschichten 

von Wirtspflanzenanpassung in diesen hoch-spezialisierten Herbivoren verstehen zu 

können, der Blick über deren chemische Abwehr hinaus eine zukünftige 

Herausforderung. Deshalb sollten Untersuchungen zu allgemeinen Entgiftungs- und 

Verdauungsprozessen der Chrysomelina mit eingeschlossen werden. Zusätzlich könnte 

die Erforschung der Funktionen der glandulären Sekrete, neben der 

Abwehrkomponente, Einblicke in selektive Parameter liefern, die Entstehung, 

Manifestierung und Verlust von chemischen Abwehrstrategien in den Chrysomelina 

erzwungen beziehungsweise begünstigt haben. 
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