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Chapter 1

Introduction

The classical three-body problem refers to the motion of three celestial bodies under their mu-
tual Newtonian gravitational attraction. The three-body problem is one of many scientific prob-
lems where a small generalisation of a simple problem resulted in a very hard problem to solve.
Using a coordinate transformation it is possible to reduce the two-body problem to a single
body problem. The equations of motion of the reduced problem can be integrated to give a
closed-form solution. On the other hand, for the three-body problem only in a few cases the
equations of motion can be reduced in a simple enough form to obtain an analytical solution.
In general, the three-body problem is formulated in terms of a coupled system of 18 first order
non-linear ordinary differential equations. It is possible to find 12 constants of motion which
reduce the system to one of six equations. The solution of the classical three-body problem is
formally given by a convergent power series.

The Three-body problem is important form a historical point of view because many of the
attempts to solve it resulted in new mathematical ideas and methods. In the next paragraphs we
will give a short chronology of highlight attempts to solve the problem. More about the history
of the three-body problem can be found in [15, 132] and references therein. The early attempts
start around 1687 when Issac Newton published Principia and geometrically solved the problem
of two bodies. Newton tried without success to solve with the same techniques the problem of
describing the orbits of the moon, earth and sun. Between 1748 and 1772 Euler studied the
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6 CHAPTER 1. INTRODUCTION

restricted problem1 and found a particular solution2 where the three bodies stay in a collinear
configuration. Clairaut published “Théorie de la lune” in 1752 and two years later he applied
his knowledge of the three-body problem to compute lunar tables and the orbit of Halley’s comet
to predict the date of its return. The approximate method of Clairaut to calculate the orbit of
Halley’s comet was quite accurate and the comet appeared in 1759, only one month before the
predicted date. Lagrange found in 1772 a particular solution where the three bodies are placed
at the corners of an equilateral triangle. In the general case the lengths of the sides can vary,
keeping their ratio constant. Studying the restricted problem, Lagrange found five special points
where the forces acting on the third body of a rotating system are balanced. Jacobi showed in
1836 that the restricted problem can be represented by a system of fourth-order differential
equations. Between 1860 and 1867 Delaunay applied the method of variation of parameters to
the restricted problem and was the first to complete a total elimination of the secular terms in the
problem of lunar theory. Gyldén’s main research from 1881 to 1893 was devoted to the study of
the sun and two planets, where one planet is designated as disturbing and the other is disturbed.
In 1883 Lindstedt provided trigonometric series solutions for the restricted three-body problem.
One year later a phenomenological description of the main features of the planetary and the
lunar motion was published by Airy [4]. Hill published in 1877 a paper on the motion of the
lunar perigee which contains new periodic solutions to the three-body problem. Later in 1878
he published a paper on the lunar theory which included a more complete derivation of the
periodic solutions.

The classical period of the three-body problem research arrives in its final phase with
Poincaré’s works. Hill’s investigation on the theory of periodic solutions had a fundamental
influence on Poincaré’s research in this field. In 1890 Poincaré published a memoir on the
(restricted) three body problem which is a reviewed version of the original work which won
King Oscar’s Price.3 Poincaré’s memoir goes beyond the three-body problem and deals for the
first time with the qualitative theory of dynamical systems. Poincaré’s work also provided the

1The restricted three-body problem refers to the case where a third body, assumed mass-less with respect to
other two, moves in the plane defined by the two revolving bodies. While being gravitationally influenced by them,
it exerts no influence of its own.

2Particular solutions are those solutions in which the geometric configuration of the three bodies remains in-
variant with respect to the time.

3Poincaré’s memoir was published in the journal Acta Mathematica as the winning entry in the international
Price competition honouring the 60th birthday of Oscar II, King of Sweden and Norway.
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foundations for the author’s three-volume “Les Méthodes Nouvelles de la Mécanique Céleste”

and contains the first mathematical description of chaotic behaviour in a dynamical system.
Poincaré’s memoir includes many important results, among others, the discovery of homoclinic

points, the recurrence theorem, application of the theory of asymptotic solutions to the restricted
three body problem and a distinction between autonomous and non-autonomous Hamiltonian
systems of differential equations.

In 1912 Sundman mathematically solved the problem by providing a convergent power
series solution valid for all values of time [15, 119]. However, the rate of convergence of the
series which he had derived is extremely slow, and it is not useful for practical purposes. Barrau
considered in 1913 an initial configuration where three bodies are initially at the corners of a
Pythagorean right triangle.4 The masses of the three bodies are 3, 4 and 5 units, and they are
placed at the corners which face the sides of the triangle of the corresponding length. Between
1750 and the beginning of 20th century more than 800 papers relating to the three body problem
were published.

In 1915 the astrophysical three-body problem changed with the publication of Einstein’s
general relativity theory. In some sense a new three-body problem was born together with the
theory which includes new features. We can refer to the relativistic three-body problem as the
three compact objects problem because only for stellar compact object, like neutron stars and
black holes, its requires a relativistic description. For most of the stellar objects the classical
three-body problem is good enough for describing the dynamics of such objects. This is a
contribution to the study of the three compact objects problem from the numerical point of
view.

Since the 1950’s the computational numerical simulations of the three body problem pro-
vides the best approximation to the solution for a given initial configuration. We have to notice
that numerical solutions of the n−body problem does not distinguish between two, three or more
bodies in the sense that the same techniques works in each case. The only difficulty arrives from
the fact that the computational cost increases with the inclusion of more bodies into the prob-
lem. The same is true for the relativistic case. The numerical relativistic methods to perform
evolutions of two black holes are equally applicable for three or more black holes. There are
many methods for integration of orbits, however the details are beyond the scope of this work.

4A Pythagorean triangle is a right triangle with sides of length 3, 4 and 5 units.
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We describe the numerical techniques that we use to integrate the orbits in Sec. 3.1.1 and 4.0.4.
More about numerical integration of the three-body problem can be found in [2].

The thesis is organised as follows. The rest of this chapter is devoted to the description of
some of the recent work related to the classical three-body problem and the relativistic case
where the inclusion of gravitational radiation is a new ingredient. We give also the motivation
for this work, describing the new contributions presented in this thesis. In Chap. 2 we review the
puncture method [17, 18, 28], which is the basic approach that we use to solve the initial data
problem. This is followed by a description of the multigrid method to solve numerically the
Hamiltonian constraint and its implementation in O, a parallel computational code which
solves three dimensional systems of non-linear elliptic equations with a 2nd, 4th, 6th, and 8th
order finite difference multigrid methods. At the end of the chapter we present the result of
some accuracy tests. In Chap. 3 the evolution of three black holes is presented. In Sec. 3.1
we describe the full numerical relativistic method that we use to evolve three black holes in a
close configuration and we present the result of some simulations. The numerical solution of
the equations of motion in the 2.5 Post-Newtonian regime is presented in Chap. 4. We describe
the numerical approach and we review the basic equations used to calculate the gravitational
waveform from a point-like object. At the end of the chapter we present the numerical results.
We conclude with a discussion in Chap. 5. In the appendices we give some details of the
formulation.

1.1 Background

A well known result on the three body problem is that some of the configurations are chaotic.
On the other hand as we pointed out before there are particular configurations which are periodic
and in some cases stable.5 Recently new periodic solutions were found [75, 104, 105, 106].6

There is evidence of the existence of periodic solutions when non-radiative relativistic correc-
tions are included in the equations of motion via post-Newtonian corrections [80, 93]. The
gravitational waveform of periodic configurations in the Newtonian regime was studied in
[9, 44, 127]. The stability of the Lagrangian points in a black hole binary system which in-

5For example the Lagrange’s solution is stable if one of the bodies holds more than 95% of the total mass [132].
6A subclass of periodic solutions are those where every particle moves periodically in a single closed orbit.

Such solutions are known as choreographic, an example which involve three bodies is Moore’s figure eight [105].
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clude the effect of gravitational radiation was studied in [116].

The chaotic behaviour of triple systems is well known in the Newtonian case, (see e.g., [132]
and references therein). There is evidence that chaos appears in some cases using post-Newtonian
approximation for system of spinning binaries (see e.g., [90, 49, 14, 91, 61, 71, 115]). As natural
generalisation of the Newtonian case we expect that the three compact objects problem exhibit
a chaotic behaviour. An important question is: how does the gravitational radiation change the
chaotic properties of the system?

From the astrophysical point of view several models of three or more black holes have been
studied recently. Hierarchical three black hole configurations interacting in a galactic core were
studied by several authors. For example in [64, 65, 66] some configurations of intermediate-
mass black holes (IMBHs) with different mass ratios were studied. The inclusion of gravita-
tional radiation was done via effective force which includes 1 PN and 2.5 PN correction to the
binary dynamics. The configurations consist of a binary system in a quasi-circular orbit and
a third black hole approaching from a distance around 200 times the binary separation. The
initial eccentricity was specified in a random way. N-body simulations of dynamical evolution
of triple equal-mass super-massive black holes (SMBHs) in a galactic nuclei were done in [81].
The method includes effective force with gravitational radiation terms and galaxy halo interac-
tions. In [78] the dynamics of repeated triple SMBHs interactions in galactic nuclei for several
mass ratios and eccentricities were studied. The simulations were performed using Newtonian
dynamics with corrections through an additional force which includes 2.5 PN correction to the
binary dynamics and stellar dynamical friction. Other astrophysical applications of multiple
black holes simulations include for example three-body kicks [77, 63] and binary-binary en-
counters (see e.g., [98, 99, 103, 74, 131]).

The first complete simulations using general-relativistic numerical evolutions of three black
holes were presented in [42, 94] (see [36, 52]7 for very limited early examples of multiple black

7The first proof of principle simulation showing that puncture evolutions generalise to three or more black
holes with minimal changes to a binary code was performed in 1997 [35]. Since this was an unpublished report,
we summarise one of these simulations here. 30 black holes were arranged in a planar configuration using Brill-
Lindquist data. Evolutions were performed using the fixed puncture method with the ADM formulation, maximal
slicing, and vanishing shift, using an early version of the BAM code [34, 36]. Shown at [1] is the lapse at t = 0.5M,
which was initialised to one and collapsed quickly towards zero near the punctures, thereby marking the location of
the black holes. These simulations were not stable on orbital time scales, so neither the full merger nor waveforms
were computed. About at the same time, there were also experiments with three black holes using the Cactus code,
for which we are only aware of reference [52].
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hole simulations). The recent simulations show that the dynamics of three compact objects
display a qualitative different behaviour than the Newtonian dynamics.

1.2 Motivation

Einstein published in 1915 his general relativity theory and changed the picture of the stellar
dynamics by the inclusion of gravitational radiation which is one of the main results of the the-
ory. Gravitational waves are an extra component in the three-body problem of compact objects
which enrich the phenomenology of the system. The changes in the energy and momentum
resulting from the gravitational radiation produce a difference in the dynamics of the system.
There are open questions related to the general-relativistic dynamics of n compact objects, for
example the possible chaotic behaviour of the dynamics of n black holes, the inverse problem in
gravitational wave emission, the existence of quasi-stationary solutions and their stability, etc.

In previous work on the numerical evolution of three black holes [42, 94], the initial data
for the Hamiltonian constraint has been specified using an analytical approximate solution (see
[94, 86, 51, 58, 59]) which introduces a finite error that does not converge to zero with numerical
resolution. The reason to use such initial data is that, although accurate initial data for two black
holes is readily available, this is not the case for more than two black holes. Below we show that
solving the constraints numerically to obtain initial data for an arbitrary number of black holes,
the result of the evolutions can change dramatically. The actual difference between the analytic
approximation and the numerical initial data is not large (depending on the initial parameters),
but, as expected, even small differences can lead to large changes for multiple black hole orbits.
The new contribution of this work to the full numerical evolution of three black holes is the
simulation of systems which satisfy numerically the Hamiltonian constrain and the comparison
with evolutions made with the approximate prescription.

From the theoretical point of view the close encounter of three black holes is an interesting
problem, as we will show in Sec. 3.1 the strong interaction of three bodies can produce very dif-
ferent kinds of waveforms showing single and double mergers. However, from the astrophysical
point of view close encounters and triple merger are not expected to be common. Nevertheless,
a probable situation is a binary system which is strongly perturbed by a third black hole. For
this case a post-Newtonian approach can be appropriate. For the systems studied in previous
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works the Newtonian dynamics provide a good description to the dynamics of the third body
and the post-Newtonian corrections are considered only for the binary.

Although using post-Newtonian techniques it is possible to describe the dynamics of n com-
pact objects, up to 3.5 PN order, most of the results are specialised for binary systems. The new
contribution of this work to the post-Newtonian study of compact objects is the numerical sim-
ulation of three black holes which include gravitational radiation via 2.5 PN formulation. In
order to perform such simulations, we compute explicitly the equations of motion for the triple
system up to 2.5 post-Newtonian approximation. We consider configurations where the three
bodies require a post-Newtonian description. Moreover, we compute the gravitational wave-
forms of the triple systems. For the stronger perturbed binary, we found a relationship between
the modulation of the mass octupole and current quadrupole part of the waveform and the period
of the external black hole.
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Chapter 2

Initial data for multiple black holes
evolution

Under a 3+1 decomposition, the Einstein equations split into a set of evolution equations and
constraint equations, namely the Hamiltonian and momentum constraints. The Bianchi identi-
ties guarantee that if the constraints are initially satisfied they will remain satisfied during the
subsequent evolution. However, for numerical solutions that is true only in an approximate way.
In vacuum the constraint equations read as follows:

∇ j

(
Ki j − γi jK

)
= 0, (2.1)

R2 + K2 − Ki jKi j = 0, (2.2)

where R is the Ricci scalar, Ki j is the extrinsic curvature and K its trace, γi j is the 3-metric,
and ∇ j the covariant derivative associated with γi j. In the following sections we will present a
way to solve numerically the system of equation (2.1)-(2.2) to specify initial data for multiple
black holes evolutions. The discussion found here can be seen in more detail in [5, 48, 62].
A description of an early version of the computational code O and the mathematical
background was done in [55] (Master Thesis in Spanish). Here we summarise some of the
important results and we give a description of the new features.1

1The original code was a parallel second order multigrid elliptic solver. The main applications were the numer-
ical solution of Brill’s wave initial data and the evolution of the Schröedinger-Poisson system (see Appendix A).
The new implementation includes boxes mesh refinement, high order finite difference scheme and the solution of

13



14 CHAPTER 2. INITIAL DATA FOR MULTIPLE BLACK HOLES EVOLUTION

2.1 Puncture method

The constraints can be solved, for example, with the puncture method of [28]. N black holes are
modelled by adopting the Brill-Lindquist wormhole topology [30] with N+1 asymptotically flat
ends which are compactified and identified with points ri on R3. The coordinate singularities at
the points ri resulting from compactification are referred to as punctures.

Following the conformal transverse-traceless decomposition approach, we make the follow-
ing assumptions for the metric and the extrinsic curvature:

γi j = ψ4
0γ̃i j, (2.3)

Ki j = ψ−2
0 Ãi j + 1

3 Kγi j, (2.4)

where Ãi j is trace free. We choose an initially flat background metric, γ̃i j = δi j, and a maximal
slice, K = 0. The last choice decouples the constraint equations (2.1)-(2.2) which take the form

∂ jÃi j = 0, (2.5)

M ψ0 + 1
8 Ãi jÃi jψ

−7
0 = 0. (2.6)

Bowen and York [23] have obtained a non-trivial solution of Eq. (2.5) in a Cartesian coor-
dinate system (xi), which by linearity of the momentum constraint can be superposed for any
number of black holes (here the index n is a label for each puncture):

Ãi j =
∑

n

 3
2r3

n

xi
nP j

n + x j
nPi

n −
δi j − xi

nx j
n

r2
n

 Pn
k xk

n


+

3
r5

n

(
ε ik

lS
n
k xl

nx j
n + ε

jk
l S

n
k xl

nxi
n

)]
, (2.7)

where rn :=
√

x2
n + y2

n + z2
n, ε ik

l is the Levi-Civita tensor associated with the flat metric, and Pi

and S i are the ADM linear and angular momentum, respectively. The Hamiltonian constraint
(2.6) becomes an elliptic equation for the conformal factor. The solution is split as a sum of a

multiple black hole initial data.
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singular term and a finite correction u,

ψ0 = 1 +
∑

n

mn

2rn
+ u, (2.8)

with u → 0 as rn → ∞. The function u is determined by an elliptic equation on R3 and is C∞

everywhere except at the punctures, where it is C2. The parameter mn is called the bare mass of
the nth puncture.

For the “physical” or outer boundary we require that u → A as r → ∞. The standard
condition used in this case is an inverse power fall-off,

u(r) = A +
B
rq , for r � 1, q > 0, (2.9)

where the factor B is unknown. It is possible to get an equivalent condition which does not
contain B by calculating the derivative of (2.9) with respect to r, solving the equation for B and
making a substitution in the original equation. The result is a Robin boundary condition:

u(~x) +
r
q
∂u(~x)
∂r

= A. (2.10)

In the case of the puncture method typically we set A = 0 and q = 1.

2.2 Numerical solution of the Hamiltonian constraint

The theory of elliptic equations is vast (see e.g., [67, 122, 123, 124, 133]). Analytical methods
to solve elliptic equations include separation of variables, Green’s function and variational

methods among other. However only in a few special cases it is possible to obtain analytical
solutions. For a wide range of problems which involves elliptic equations it is possible to obtain
accurate approximation to the solution through numerical methods. There are several numerical
methods appropriate to solve partial differential elliptic equations (a brief selection of references
are [84, 130, 109, 83, 24, 118, 89, 136]). Finite elements, finite differences and spectral methods
are the most common numerical methods used to solve elliptic equations.

For most of the problems, spectral methods or finite elements produce in general more
accurate solutions to elliptic equations than those obtained by finite difference methods [24].
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However, in order to take full advantage of the spectral method for punctures, it is necessary to
construct a special set of coordinates. Indeed, there exist coordinates in which the conformal
correction u is smooth at the puncture [8]. Although these coordinates are in principal appli-
cable for both spectral and finite differencing methods, the resulting grids are specific to two
black holes. Generalising that approach to more than two punctures is an interesting but non-
trivial challenge that we do not pursue in this work. Using finite difference multigrid methods
with Cartesian coordinates, one advantage of the puncture construction is that it is possible to
produce accurate solutions of the Hamiltonian constraint for multiple black holes with minimal
changes to a code prepared for binaries.

In order to solve Eq. (2.6) numerically, we have written O (see also [55]), a parallel
computational code to solve three dimensional systems of non-linear elliptic equations with a
2nd, 4th, 6th, and 8th order finite difference multigrid method. The elliptic solver uses vertex-
centred stencils and box-based mesh refinement that we describe in the next section. O
uses a standard multigrid method [27, 11, 26, 87, 72, 46] with a Gauss-Seidel Newton relaxation
algorithm (e.g. [45]).

2.2.1 Multigrid method

Although there are different kinds of multigrid methods (for example additive or multiplicative,
local MG, etc), here we summarise of the basic idea behind the multigrid method as it is imple-
mented in O. A brief description of some of the methods can be found in Appendix A.
For a more complete discussion see for example [25, 29, 129, 89, 136].

Let L be an elliptic operator, Ω ⊂ R3 an open domain, and u : Ω → R the solution of the
problem

Lu(~x) = ρi(~x) for ~x ∈ Ω, (2.11)

Bu(~x) = ρb(~x) for ~x ∈ ∂Ω, (2.12)

where B is a boundary operator, ρi : Ω → R and ρb : ∂Ω → R are source terms. As a
model problem we consider a single spinning or boosted puncture in a cubic domain2 Ω̄ =

2We define Ω̄ := Ω ∪ ∂Ω, i.e., Ω̄ is the closure of Ω
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[x0, xnx−1] × [y0, yny−1] × [z0, znz−1]:

M u +
1
8

Ãi jÃi j

(
1 +

m
2|~x − ~x0| + u

)−7

= 0 for ~x ∈ Ω, (2.13)

u(~x) + r
∂u(~x)
∂r

= 0 for ~x ∈ ∂Ω, (2.14)

Where ~x0 is the location of the puncture and r = | ~x |.

  

(a) Boundaries.
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Figure 2.1: (a) 2D representation of a domain divided between 2 processors and with bitant
symmetry. Face (A) is internal to the global domain and handles a reflection symmetry. Face (B)
is internal to the domain and manages the communication with the second processor. Faces (C)
and (D) are physical boundaries, where we impose a Robin boundary condition in the normal
direction ~n (see text). (b) Correction to the conformal factor for 3 punctures initial data. Here
we plot the three finest levels of refinement (the total number of levels is 8). L5 is a single box
which covers the three punctures. L6 contains 2 boxes, one covering 2 of the punctures. L7

consist of 3 boxes each covering a puncture.

In order to solve numerically the equations using finite difference methods, we adopt the
standard discretization approach with box-like mesh refinement. The numerical domain is rep-
resented by a hierarchy of nested Cartesian grids. The hierarchy consists of L + G levels of
refinement indexed by l = 0, . . . , L + G − 1. A refinement level consists of one or more Carte-
sian grids with constant grid-spacing hl on level l. A refinement factor of two is used such that
hl = hG/2|l−G|. The grids are properly nested in that the coordinate extent of any grid at level
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Table 2.1: Symmetries implemented in O.
octant quadrant bitant

z→ −z ∀x, y z→ −z ∀x, y z→ −z ∀x, y
y→ −y ∀x, z y→ −y ∀x, z · · ·
x→ −x ∀y, z · · · · · ·

l > G is completely covered by the grids at level l − 1. The level l = G is the “external box”
where the physical boundary is defined. We use grids with l < G to implement the multigrid
method beyond level l = G. Each level is a uniform discrete set of grid points constituting the
discrete domain Ωh.

The parallelization approach that we use is block decomposition, in which each domain is
divided into rectangular regions among the processors such that the computational work load is
balanced. For levels l ≥ G every domain uses p/2 buffer points at the boundary of the domain.
Levels with l < G contain a single point at the boundary. For every face of the three dimensional
rectangular domain we use these points for different purposes (see Fig. 2.1(a)):

1. If the face is on the outside of the global domain, we use the points as a refinement
boundary (or physical boundary if l = G); the boundary conditions are explained below.

2. If the face is in the internal part of the global domain, then we use ghost zones of the
neighbouring processors to update information of the buffer points.

3. If the face is defined with symmetry, we use a reflection condition to calculate the values
at the boundary.

O can be used with three symmetries which are useful for solutions which are spher-
ical symmetric, axial symmetric or symmetric respect to a plane (see Table 2.1).

We use the negative part of the domain to define the computational grid, because that in-
creases the performance of the relaxation method somewhat since the resulting order of point
traversal helps propagating boundary information into the grid.

We describe first the numerical method as is implemented for the external box, after that
we describe the refinement process. The mesh spacing in each direction is given by hx, hy and
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hz. However, for simplicity we assume hi = h for i ∈ {x, y, z}. Let Lh be a finite difference
representation of order p of L in a mesh Ωh ⊂ R3. The exact solution uh : Ωh → R satisfies

Lhuh(~x h) = ρh
i (~x h) for ~x h ∈ Ωh, (2.15)

Bhuh(~x h) = ρh
b(~x h) for ~x h ∈ ∂Ωh, (2.16)

where Bh is a discrete boundary operator and ρh
i and ρh

b are the restriction of ρi and ρb on Ωh,
respectively.

Points ~xi jk = (xi, y j, zk) ∈ Ωh are defined by xi = x0 + ihx, y j = y0 + jhy and zk = z0 + khz,
where i ∈ {0, 1, . . . , nx−1}, j ∈ {0, 1, . . . , ny−1} and k ∈ {0, 1, . . . , nz−1}. For every grid function
we use as notation ui jk := uh(xi jk). In order to discretize the Laplacian operator in (2.13), we
need finite difference approximation to the second derivatives. We use the standard 2nd, 4th,
6th or 8th order, centred approximations [54]. On the other hand for the first derivative at the
boundary in (2.14) we use a corresponded one sided finite difference stencil of 2nd, 4th, 6th or
8th order.

In solving the system (2.15)-(2.16) iteratively we will only compute the exact discrete solu-
tion uh in the limit of infinite iteration.3

lim
n→∞Uh

n = uh, (2.17)

where n is an iteration index and Uh
n denotes the current numerical approximation to uh. We

define the residual rh by:

rh := LhUh(~x h) − ρh
i (~x h) for ~x h ∈ Ωh, (2.18)

rh := BhUh(~x h) − ρh
b(~x h) for ~x h ∈ ∂Ωh. (2.19)

The task of the relaxation method is to adjust the values of Uh in order to reduce the residual. To
do this it is useful to implement a Newton-Raphson method (see Appendix B for a short review
of the method and examples of its implementation) which we apply pointwise. The iteration

3uh is in the practise exact up to machine accuracy and order O(hp)
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formula is

Un+1
i jk = Un

i jk − rn
i jk

[
∂rn

i jk

∂ui jk

∣∣∣∣
ui jk=Un

i jk

]−1

for ~x h ∈ Ω̄h. (2.20)

Notice that we use also a Newton-Raphson method to update the values on the boundary (using
the appropriate definition of the residual).

The implementation of the boundary condition was a key point to get accurate solutions,
so we describe our implementation in some detail. Rather than taking derivatives in the radial
direction as is required by (2.14), we take derivatives only in the direction normal to the faces
of our rectangular domain. At the edges of the boundary, we use a linear combination of the
derivatives along the normals of the two adjacent faces. At the corners, we use a linear com-
bination of the derivatives for the three adjacent faces. In the computation, we first apply the
boundary condition to the interior of the boundary faces, then compute derivatives inside the
faces to update the edges, and then compute derivatives inside the edges to obtain boundary
data at the corners. Since there are p/2 boundary buffer points, we have to specify a method to
obtain more than one buffer point. In our implementation the method is stable if we update the
values of the boundary points from the inside to the outside of the domain. First, inside points
are used to get the first boundary point using the one-sided derivative. Then the stencil is shifted
by one from the inside to the outside, including the first boundary point to compute data at the
second boundary point, and so forth.

For the inner points we update the values following a lexicographical order of the unknowns
Ui jk, with the i index varying most rapidly than j, and j varying most rapidly than k. In the
computation we use “new” values from iteration n + 1 wherever is available, i.e., we use a
Gauss-Seidel relaxation method. This method is very easy to code and it is storage efficient.
On the other hand relaxation methods are characterised by slow convergence. As we describe
in appendix A a multigrid strategy can accelerate the calculation of the solution.

An important ingredient in a multigrid algorithm is the definition of a prolongation operator

Ih
2h and a restriction operator I2h

h . The prolongation operator interpolates between a coarse grid
and a finer one. O can use either linear interpolation, Lagrange of several orders of
approximation or a method of splines of fourth-order. The restriction operator transfers the
solution from a finner grid to the next coarse grid. In O the grids are vertex-centred,
as a consequence every point of the coarse grid is contained in the finner. For vertex-centred
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arrangements it is possible to transfer the solution by injection4 or doing a weighted restriction.
O implements both approaches, using a half-weighted restriction defined by:

U2h
I,J,K =

1
2

Uh
i, j,k +

1
12

(
Uh

i−1, j,k + Uh
i+1, j,k + Uh

i, j−1,k + Uh
i, j+1,k + Uh

i, j,k−1 + Uh
i, j,k+1

)
,

where indices (i, j, k) and (I, J,K) label the fine and the coarse grids respectively. We use in-
jection as default restriction operator, as long as, our test did not show significant difference in
performance or accuracy.

We employ the Full Approximation Storage Scheme (see e.g., [11, 27, 32, 33] for details
about the scheme). The corresponding pseudo-code for external and internal boxes are shown in
algorithm 2.2.1 and 2.2.2 respectively.5 The three main differences between the implementation
for internal and external boxes are the treatment of the boundary condition, the order of the
interpolation used in the prolongation operator and the construction of the source used in the
coarser level. In the case of the external boxes the procedure includes the calculation of the
boundary condition together with the calculation of the elliptic operator. For internal boxes
the boundary is not updated during the first part of the procedure; after the computation of the
correction we fill the boundary with values which are interpolated from the coarser level. For
external boxes it is enough to use linear interpolation for the prolongation operator. However,
for internal boxes we observed a better results using interpolation of the same order as the finite
difference stencil. For the Internal boxes the source of the coarse level consist on the original
source in the region which is not cover by the finer level, and the standard source-correction of
the FAS method for the points which are cover by the finer grid. In practise both algorithms are
implemented as a single procedure with conditional statements placed in the proper stage.

4The injection restriction consists on do a copy of the corresponding data point by point from the finer to the
coarser grid.

5As we mention before, external boxes are those which cover the whole computational domain. We impose in
external boxes the physical boundary condition. On the other hand internal boxes cover a smaller region around
the punctures (Fig. 2.1(b) shows internal boxes for three punctures.)
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Algorithm 2.2.1: FAS(h, cycle, p, q, ord)

comment: External box

Uh ← S(LhUh = ρh
i ,BhUh = ρh

b, p)
{ωh|Ωh = ρh

i − LhUh} ∧ {ωh|∂Ωh = ρh
b − BhUh}

ω2h ← R(ωh, Ω̄h → Ω̄2h, Injection)
{ρ2h

i = ω2h +L2hU2h} ∧ {ρ2h
b = ω2h + B2hU2h}

U2h ← R(Uh, Ω̄h → Ω̄2h, Injection)
U2h∗ = U2h

if 2h = hmax

then U2h ← S(L2hU2h = ρ2h
i ,B2hU2h = ρ2h

b )
else U2h ← FAS(2h, cycle, p, q)

V2h = U2h − U2h∗
Vh ← P(V2h, Ω̄h ← Ω̄2h,Linear)
Uh = Uh + Vh

Uh ← S(LhUh = ρh
i ,BhUh = ρh

b, q)

cycle + +

Algorithm 2.2.2: FAS(h, cycle, p, q, ord)

comment: Internal box

Uh ← S(LhUh = ρh
i , p)

ωh|Ωh = ρh
i − LhUh

ω2h ← R(ωh,Ωh → Ω2h, Injection)
ρ2h

i |Ωh = ω2h|Ωh +L2hU2h|Ωh

U2h ← R(Uh,Ωh → Ω2h, Injection)
U2h∗ = U2h

U2h ← FAS(2h, cycle, p, q)

V2h = U2h − U2h∗
Vh ← P(V2h,Ωh ← Ω2h, Lagrangeord)
Uh|Ωh = Uh|Ωh + Vh|Ωh

Uh ← P(U2h, ∂Ωh ← Ω2h, Lagrangeord)
Uh ← S(LhUh = ρh

i ,BhUh = ρh
b, q)

cycle + +

2.2.2 Results

Analytic test problems

We published the results that we present in the rest of this section in [56]. We test O
with three simple elliptic equations using the following procedure. Given the solution Uh on a
mesh with grid-spacing h and an elliptic operator Lh, we calculate a source ρh which satisfies
the equation

LhUh = ρh, (2.21)

and then we solve the equation to obtain uh numerically. In this way it is possible to calculate
the error

Eh :=| Uh − uh |, (2.22)

where | · | is a suitable norm. We summarise the grid setup for our tests and puncture initial data
in Table 2.2.

The goals of the first test were to estimate the error introduced by the refinement method and
to investigate the effectiveness of the algorithm to solve non-linear equations. We have solved
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Table 2.2: Grid setups used for tests and puncture initial data. lr := l−G is the number of inner
refinement levels, L is the length of the numerical domain and hmin is the grid size in the finest
level (see text for details about each system).

System Levels Length Grid size
lr L hmin

Test 1 1-4 4.8 ∗ 2l−1 1/20
Test 2 & 3 3 20.0 {0.1, 0.09, . . . , 0.02}
1-puncture 5 40.0 {5/256, 1/64, 5/384}
2-punctures 7 40.0 {1/16, 1/32, 1/64}
3-punctures 7 50.0 5/64

the equation

∇2U(~x) + U(~x)2 = ρ1(~x) for ~x ∈ Ω, (2.23)

U(~x) = ε e−
1
2 ~x·~x for ~x ∈ ∂Ω, (2.24)

where ∇2 is the three-dimensional Laplace operator, and Ω is the interior of a rectangular do-
main. The solution given is a Gaussian function with amplitude ε = 0.004, in this case we use
a Dirichlet boundary condition. We have solved the equation with a single level of refinement
in a cube of length L =4.8, and with mesh size dx = dy = dz = 0.05. Using this solution as
reference, we solve Eq. (2.23), increasing the number of levels up to 3 external boxes. Due to
the Dirichlet boundary condition the numerical solution is exact at the boundary. We use the
norm L∞ to calculate the relative error,

R :=
| Uh − uh |
|Uh| , (2.25)

and as measurement of the error introduced by the refinement method, we calculate the dif-
ference between the error using more than one refinement level and the reference solution,
∆R = |R(l > 1) − R(l = 0)|. The results are summarised in Table 2.3. The results for the
non-linear Eq. (2.23) show that using high order schemes gives a significant improvement in
the accuracy of the solution. Increasing the order from p to p + 2 decreases R by almost three
orders of magnitude.
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Table 2.3: Results of test 1, where p is the order of the stencil which we use to solve the
equation, l is the number of refinement levels, R is the relative error calculated in the finest level
and ∆R is the comparison with the reference solution.
p 2 4 6 8
l R ∆R R ∆R R ∆R R ∆R

(×10−4) (×10−7) (×10−10) (×10−12)
1 3.83 - 4.36 - 9.29 - 3.05 -
2 4.57 0.74 12.56 8.20 32.81 23.52 67.25 64.20
3 5.23 1.40 15.42 11.06 105.37 96.08 207.75 204.70
4 5.54 1.71 16.93 12.56 139.53 130.24 284.75 281.70

In order to test the implementation of the Robin boundary condition, we use a second trial
function,

∇2U(~x) = ρ2(~x) for ~x ∈ Ω, (2.26)

U(~x) = ε
tanh(r)

r
for ~x ∈ ∂Ω, (2.27)

where r := |~x|. The solution U is a function which has the asymptotic behaviour given by
Eq. (2.9) with A = 0, B = 1, and q = 1. In this case we look at the convergence of our numerical
data using 3 levels of refinement in a cubic domain of length 20, and using 7 resolutions going
from 0.1 to 0.04 in the finest level.

For a finite difference implementation of order p, for h � 1, we expect

Eh ' Chp, (2.28)

where Eh, is given by Eq. (2.22) using the L2 norm, h is the mesh size, and C is constant with
respect to h. After calculating the logarithm of Eq. (2.28) we get a linear function of p,

ln(Eh) ' p ln(h) + C′. (2.29)

Using this expression with our data and doing a linear regression analysis, we estimate the
convergence order P for our numerical experiment (in the best case P −→ p as h −→ 0). As
measurement of the error we use the standard deviation and the coefficient of variation of our
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Table 2.4: Convergence test for the Robin boundary condition. Here p is the order of the finite
difference, P, σ, and cv are the mean, the standard deviation, and the coefficient of variation
of the convergence order for our numerical experiments, respectively, and ∆P is the relative
deviation of our results with respect to p.
p P σ cv ∆P
2 2.002 0.0002 0.009% 0.10%
4 3.994 0.0005 0.013% 0.15%
6 5.985 0.0013 0.022% 0.26%
8 7.969 0.0020 0.026% 0.39%

data. The results are displayed in Table 2.4. We have obtained an accurate implementation of the
boundaries for problem (2.26)-(2.27), where the difference between the theoretical convergence
order and the experimental one is less than 0.5%. However, note that the convergence at the
boundary depends on specific properties of the test problem.

For the last analytic test, we verify the accuracy of the method for a function which is
C∞
~0

:= C∞(R3 \ {~0}). The problem to solve was

∇2U(~x) = ρ3(~x) for ~x ∈ Ω, (2.30)

U(~x) = rk for ~x ∈ ∂Ω, (2.31)

where we set k = 3 or k = 5, r := |~x|, and U is C∞ everywhere except at the origin, where it
is Ck−1. We use the procedure of the second test to estimate the convergence order, changing
the equation and the boundaries (in this case we use a Dirichlet boundary condition). The result
of our numerical experiments (detailed in Table 2.5) shows that the overall convergence of the
numerical solution calculated using a standard finite differencing scheme is restricted by the
differentiability of the analytical solution. The convergence order close to the origin (within a
few grid points) is the same as the order of differentiability and improves significantly moving
away from the origin (see Fig. 2.2 where we show the results for the case with k = 5). For more
convergence test of an early version of the code see [55]. We show some of the performance
results already presented in the previous reference in the Appendix A.
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Table 2.5: Convergence for a solution which is C∞
~0

. Here k is the exponent given in (2.31).

k 3 5
p P σ cv ∆P P σ cv ∆P
2 2.003 0.0003 0.013% 0.16% 1.999 0.0001 0.005% 0.06%
4 3.782 0.0088 0.233% 5.46% 3.995 0.0003 0.007% 0.12%
6 3.848 0.0067 0.175% 35.86% 5.715 0.0124 0.216% 4.74%
8 3.836 0.0038 0.098% 52.05% 5.868 0.0294 0.500% 26.65%
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Figure 2.2: Convergence test for a solution which is C∞(Ω)∪C4(~0). (a) Convergence test using
O with 4th, 6th and 8th order finite difference stencils. (b) Analysis of the convergence
using the Eq. (2.29).
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(a) Boosted puncture (2nd Order).

  

(b) Spinning puncture (2nd Order).

Figure 2.3: Regular part u of the conformal factor along the Y-axis of a single puncture. (a)
Solution with vanishing spin parameter and with linear momentum Py = 0.2M. (b) Solution
with vanishing linear momentum and with spin S y = 0.2M. In both cases, shown is a con-
vergence test without scaling (left) and with scaling (right) for second-order convergence using
cf2 = 1.8409.

Single puncture initial data

After calibrating our code, we calculate the Hamiltonian constraint for a single puncture. We
tested the convergence of our second-order implementation for a single boosted puncture (Pi =

0.2 δi
2M, S i = 0) by looking at the value of the regular part u of the conformal factor along the

Y-axis for a cubic domain of length 40M, 5 levels of refinement, and 3 resolutions h1 = (5/8)M,
h2 = 4h1/5, and h3 = 2h1/3 in the coarse level. In Fig. 2.3(a), we show rescaled and unscaled
data for positive and negative values of Y , respectively.

We plot the values of |uh1 − uh2 | and |uh2 − uh3 | for Y < 0 on the left, and on the right values
for Y > 0 with |uh2 − uh3 | multiplied by a factor cf2 = 1.8409 which corresponds to the proper
scaling of second order. The lines in the right panel of the plot coincide almost everywhere,
indicating second order convergence. We also show details of a region close to the puncture
in the insets. We perform a similar test calculating spinning black hole initial data (Pi = 0,
S i = 0.2 δi

2M). Fig. 2.3(b) shows the result of the convergence test for this case where we found
second order convergence again.

As an example of a high order solution, in Fig. 2.4(a) we show the convergence test for the
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(a) Boosted puncture (8th Order).

  

(b) Spinning puncture (4th Order).

Figure 2.4: Regular part u of the conformal factor along the Y-axis of a single puncture. (a)
Solution with vanishing spin parameter and with linear momentum Py = 0.2M. Eighth-order
convergence of u is obtained far from the puncture (cf8 = 6.4637). (b) Solution with vanishing
linear momentum and with spin S y = 0.2M. Convergence test using cf4 = 2.7840.

eighth order scheme of the boosted puncture. In this case the plot shows a drop of the conver-
gence ratio close to the puncture. However, far from the puncture the convergence behaviour is
better. In Fig. 2.4(b) we plot the results for the spinning black hole, obtained by using our fourth
order implementation. Compared to the boosted puncture, in this case we see better behaviour
close to the puncture (the solution of the 8th order spinning puncture is similar to the boosted
case). Far from the puncture the convergence ratio is approximately second order.

As we saw in our third test and in our numerical experiment for a single boosted or spinning
puncture, the convergence rate of the high order finite differencing scheme for functions C∞

~0

drops near to ~0. This is a well known property of high order finite difference schemes (e.g. [92,
11]). We review some basics of this effect in Appendix C. Nevertheless, as we show in 3.1.2
and in the two-punctures test (see below), the numerical solution produced by our high order
implementation seems to be accurate enough to perform numerical evolutions of multiple black
holes. Looking at the waveforms, we found that the errors close to the puncture do not modify
significantly the convergence during the evolution.



2.2. NUMERICAL SOLUTION OF THE HAMILTONIAN CONSTRAINT 29

Two-puncture initial data

  

(a) u along the X-axis

  

(b) Differences.

Figure 2.5: Comparison between the numerical solution of the Hamiltonian constraint calcu-
lated using a single-domain spectral method and the high-order multigrid solver. (a) The plot
shows u along the X-axis produced by the spectral code (denoted by uS ) and using three reso-
lutions calculated with the eighth order implementation of the multigrid code (labels uhi). (b)
Absolute value of the differences between the numerical solution of u for the second, fourth,
sixth, and eighth order finite difference implementation and the spectral solution.

As a test for a binary system we set the parameters for two punctures to x1 = −x2 = 3M,
Pi

1 = −Pi
2 = 0.2 δi

2M. This configuration was studied before using a single-domain spectral
method [8]. We compared the result of our new code with the solution produced by the spectral
solver. For the spectral solution we use nA = nB = 40 and nφ = 20 collocation-points (see
reference for details about the definition of spectral coordinates (A, B, φ)). We calculate the
multigrid solution in a cubic domain of length 40M, 7 levels of refinement and 3 resolutions of
h1 = (1/16)M, h2 = h1/2 and h3 = h1/4 in the finest level.

Fig. 2.5(a) shows a plot similar to Fig. 5 of [8]. We compare the spectral solution with the
eighth order multigrid solution. The fact that the four lines coincide on the scale of the plot (3
resolutions of multigird and one spectral solution) indicates that the two methods agree with
each other on the whole domain. Using the same setting we solve the Hamiltonian constraint
with the second, fourth, and sixth order stencil of the multigrid code. Then we use the highly
accurate solution of the spectral code as reference to compare with the different orders. As we
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Figure 2.6: Plot of u along X-axis for system 3BH102, comparing the approximate solution
with a second order numerical solution. The higher order numerical solutions would not be
distinguishable from second order in this plot, compare Fig. 2.2.2.

showed before in the case of a single puncture, the accuracy close to the puncture decreases.
However, the comparison with the spectral code (see Fig. 2.5(b)) shows that using high order
finite differencing stencils improves the accuracy of the solution.

Three-puncture initial data

In previous work on the numerical evolution of three black holes [42, 94], the Hamiltonian
constraint has been specified using an approximate solution (see [94, 86, 51, 58, 59]). We
compare our numerical solution with the approximate solution (which we implemented as well)
for the set of parameters labelled 3BH102 given in Table I of [42], see our Table 3.1.

In Fig. 2.6 we show a plot of the solution obtained using a cubic domain of length 50M, a
mesh size h = 0.5M in the coarse level and 9 levels of refinement. The approximate solution
was calculated in the same numerical grid. The result shows a significant difference between the
two methods, and, as we will show later in 3.1.2, that fact leads to a quantitative and qualitative
difference for evolutions.



Chapter 3

Numerical evolution of three black holes

3.1 Numerical relativistic three black hole simulations

In the mid 1960’s, Hahn and Lindquist started the numerical investigation of colliding black
holes [70]. After more than forty years and a series of breakthroughs starting in 2005 [110,
41, 13, 38, 114], the numerical relativity community is now able to produce stable black hole
inspiral simulations and to compute gravitational waves signals. The most common formula-
tion used to perform numerical evolutions of black holes is based on the work of Shibata and
Nakamura [117], and Baumgarte and Shapiro [16] and is known as the BSSN formulation.

3.1.1 The moving puncture approach

We have performed the three black hole simulations using the BAM code as described in [37,
38], and with the AMSS-NCKU code [43]. BAM uses a sixth order discretization for the spatial
derivatives [79] and fourth order accurate integration in time. Initial data are provided by the
O code. Gravitational waves are calculated in the form of the Newman-Penrose scalar
Ψ4 according to the procedure described in Sec. III of [37]. We use the BSSN system together
with the 1 + log and gamma freezing coordinate gauges [6, 12, 7] as described in [37] (choosing
in particular the parameter η = 2/M in the gamma freezing shift condition). All the runs
are carried out with the symmetry (x, y, z) → (x, y,−z) in order to reduce the computational
cost. The Courant factor, C := ∆t/hi, seems to be an important ingredient to obtain clean

31
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convergence. For long evolutions (evolution time t > 200), we set C = 1/4, in other cases we
use C = 1/2.

We provide initial data for evolutions using the AMSS-NCKU in collaboration with Bernd
Brügmann and Zhoujian Cao [57]. Later we show the results of the evolution, here we sum-
marise the main features of the code. The AMSS-NCKU code is an extended version of the code
described in [43]. Instead of GrACE, the new code includes a driver which combine C++ and
F 90 to implement moving box style mesh refinement. Regarding the numerical scheme
dealing with the interface of neighbour levels, the implementation closely follows the meth-
ods described in [37, 135]. AMSS-NCKU can implement both the 6 point buffer zone method
[37] and interpolation at each sub-Rung-Kutta step [135]. For simplicity, all simulations pre-
sented here use the 6 point buffer zone method. For time evolution, AMSS-NCKU implements
a methods of lines with a 4th order Runge-Kutta method. The Sommerfeld boundary condition
is implemented with 5th order interpolation.

3.1.2 Mergers and gravitational waves

With the BAM code we simulate three black holes with initial parameters as given in Table 3.1.
In the first experiments, we focus on runs that use the initial data parameters of runs “3BH1” and
“3BH102” in [42]. We evolve this data with both the numerical initial data and the approximate
solution to the conformal factor. We compare the puncture tracks and the extracted wave forms
with those produced by the AMSS-NCKU code. The puncture tracks give a convenient measure
of the black hole motion. It is much more cumbersome to compute the event horizon, which we
do for a simple black hole triple in [125].

Analytical approximate and numerical initial data

System 3BH1 is a short simulation which is useful for convergence tests. We use our sixth
order implementation to calculate initial data, a cubic domain of length 1052M, 10 levels of
refinement and three resolution h1 = (125/12)M, h2 = 6h1/7 and h3 = 2h1/3 on the finer level.
We have obtained roughly sixth order convergence for the gravitational waveform, as shown in
Fig. 3.1(a). Our results show a Ψ4 waveform similar to that shown in Fig. 16 of [94]. For this
evolution, we did not find a significant difference when using approximate initial data or solving
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Table 3.1: Initial data parameters
Parameter 3BH1 3BH102 TBHLa TBHLb BBH
x1/M -2.4085600 -3.5223800 -5.0000000 -5.0000000 0.0000000
y1/M 2.2341300 2.5850900 8.6602540 8.6602540 3.3941971
px

1/M -0.0460284 0.0782693 -0.2795689 -0.2648550 -0.1270851
py

1/M -0.0126181 -0.0433529 -0.1614092 -0.1529140 0.0000000
m1/M 0.3152690 0.3175780 0.3152690 0.3152690 0.4792131
x2/M -2.4085600 -3.5246200 -5.0000000 -5.0000000 0.0000000
y2/M -2.1053400 -2.5850900 -8.6602540 -8.6602540 -3.3941971
px

2/M 0.1307260 -0.0782693 0.2795689 0.2648550 0.1270851
py

2/M -0.0126181 -0.0433529 -0.1614092 -0.1529140 0.0000000
m2/M 0.3152690 0.3175780 0.3152690 0.3152690 0.4792131
x3/M 4.8735000 7.0447600 10.0000000 10.0000000 · · ·
y3/M 0.0643941 0.0000000 0.0000000 0.0000000 · · ·
px

3/M -0.0846974 0.0000000 0.0000000 0.0000000 · · ·
py

3/M 0.0252361 0.0867057 0.3228184 0.3058280 · · ·
m3/M 0.3152690 0.3185850 0.3152690 0.3152690 · · ·

  

(a) Waveform.
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Figure 3.1: (a) Real part of Ψ4 (mode l = m = 2) calculated at r = 40M for system 3BH1.
The lower panel shows the convergence test for 6th order (cf6 = 1.9542). (b) Trajectory of the
punctures.
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(a) Approximate initial data.

  

(b) Numerical initial data.

Figure 3.2: Puncture tracks for system 3BH102 using approximate initial data (a), and using
the numerical solution of the Hamiltonian constraint with the 8th order multigrid method (b).
There is a drastic change in the puncture tracks compared to the evolution of the approximate
initial data, in particular the black holes merge in a different order.

the constraint equations numerically.

Our second example is black hole configuration 3BH102, which we consider first for ap-
proximate initial data, and later for the numerical solution. This set of parameters is a system
which, starting with approximate initial data, leads to trajectories forming a nice figure similar
to the Greek letters γ, σ and τ (see Fig. 3.2(a), computed with BAM). Our convergence test for
this system shows sixth-order (see Fig. 3.3(a)), with small deviations from second and fourth
order which are consistent with the accuracy of the evolution method of our code.

Comparing with Fig. 3 of [42], there is a small but noticeable difference in the puncture
tracks of roughly up to 1M in the coordinates compared to our results. There are several pos-
sible explanations for this difference. Evolutions of multiple black holes are sensitive to small
changes in the grid setup and initial data. We tested possible sources of errors, for example intro-
duced by numerical dissipation or finite resolution. Changing these lead to negligible changes
in the trajectories on the scale of the plot and do not seem to explain the existing difference.
However, since the deviation from [42] does not change the qualitative shape of the tracks, we
conclude that we have consistently reproduced that simulation.

We now focus on the evolution of system 3BH102 solving the Hamiltonian constraint with
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(a) Approximate initial data.

  

(b) Numerical initial data.

Figure 3.3: Real part of rΨ4 (mode l = m = 2) calculated at r = 50M for system 3BH102 using
approximate initial data (a) and using the numerical solution of the Hamiltonian constraint (b).
In both cases the upper panel shows the rΨ4 waveform for 3 resolutions, the bottom plot shows
sixth-order convergence scaling with a factor cf6 = 1.9542.

the eighth-order multigrid method. As shown in Sec. 2.2.2, for system 3BH102 the numerical
solution of the Hamiltonian constraint differs from the approximate prescription. As a conse-
quence, the trajectories and waveform change. We show the paths followed by the punctures
for this case in Fig. 3.2(b). Instead of the grazing collisions of the previous evolution, in this
case the black holes with labels 2 and 3 merge after a small inspiral, producing a higher ampli-
tude in the wave. The second merger is almost a head-on collision, which generates a smaller
amplitude in the wave. Notice that the order in which the black holes merge differs from the
previous evolution.

The Ψ4 waveform and convergence are shown in Fig. 3.3(b). Note that we see approximately
sixth-order convergence in the waveform except for the first merger where the convergence is
close to 4th order. Looking at the wave forms, for the approximate initial data Fig. 3.3(a) shows
a relatively large burst of “junk”-radiation which does not converge. Solving the Hamiltonian
constraint we see a better convergence behaviour, see Fig. 3.3(b). Moreover, the difference in the
junk-radiation between resolutions using the approximate initial data is one order of magnitude
bigger than solving the Hamiltonian constraint numerically (compare the insets in Fig. 3.3).

In the case of a binary system it is possible to produce the same evolution for numerical and
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(a) Puncture track (approximate initial data).
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Figure 3.4: Puncture tracks and waveform for system 3BH102 comparing results for the BAM
and AMSS-NCKU codes. (a) The difference in the trajectories is small, and the results agree
in the general shape. Note that AMSS-NCKU uses fourth-order spatial discretization instead of
sixth-order which is implemented in BAM. (b) The waveform shows differences in the phase of
about 0.4% and of about 2% in the amplitude.

approximate initial data by adjusting the mass parameter [94]. In the case of three black holes,
there does not seem to be a simple procedure to fit the initial parameters in order to reproduce
the same trajectory with both types of initial data. We tried changes in the momentum, the
mass, and the momentum and mass together, looking at the maximum of the regular part u of
the conformal factor in order to reduce the difference between the analytical prescription and the
numerical data. The result is not satisfactory, i.e. we did not find a way to change the parameters
of the approximate data to better approximate the solution of the Hamiltonian constraint, and
the large differences in the puncture tracks could not be removed.

Alternatively, we can compare the paths of the punctures obtained with BAM with those
produced by the AMSS-NCKU code. The implementation of the approximate initial data was
done independently for the two codes, and in both cases the formula from [94] is used. We see
in Fig. 3.4(a) that the results from the two codes agree within a maximum difference of about
0.2M in the given coordinates, or 2% with respect to an orbital scale of 10M. An analysis of the
l = m = 2 mode of Ψ4 showed that there are differences in the phase of about 0.4% and of about
2% in the amplitude. Fig. 3.4(b) shows the result of comparing the waveforms for the evolution
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which use numerical solution for initial data.
When comparing codes, recall that the BAM evolutions use 6th order spatial differencing,

AMSS-NCKU 4th order, and [42] also 4th order for the figures, pointing out that there was little
difference to an 8th order run. Our conclusion is that differences due to resolution are small, and
they are significantly smaller than the changes introduced by replacing the approximate initial
data by a numerical solution of the Hamiltonian constraint.

Looking at the waveforms of Fig. 3.3, is easy to identify a double merger. However, the
waveform shown in Fig. 3.1(a) does not exhibit any particular shape that allow us to conclude
that there was the presence of a triple merger. In the case of system TBH1 we do not see a double
modulation because the bodies merge in a quick secession. To do a comparison between the
merger of a binary system and a triple one under similar conditions we setup initial parameters
to mimic the inspiral merger of a binary system (see Table 3.1). We use an equal mass system
setting in a equilateral triangle. Each body is at r = 10M from the origin. We choose the initial
momentum taking as basis the Newtonian momentum of the equivalent Lagrangian system
multiplied by 1.05 in order to reproduce an spiral merger. The initial momentum parameters of
TBHLb is %5 smaller than TBHLa. The BBH system is an equal mass binary in a quasi-circular
orbit studied previously in [37].

In Fig. 3.5 we show the trajectory of one of the punctures. It is clear that any of the two triple
configurations is equivalent to the binary system, the initial separation and the path is different.
However, the three systems follows a spiral trajectory, so we can try to see general properties of
the waves. Fig. 3.6 shows a comparison of the Ψ4 modes l = m = 2 and l = m = 3 for the three
configurations. First we have to noted the scale in time and in amplitude. The binary system
merger earlier than the others because the shorter initial separation, and TBHLb merges earlier
than TBHLa because the smaller initial momentum. However, looking at the amplitude of the
modes we observe that for the triple systems the contribution of the l = m = 2 mode is of the
same order (in TBHLa) or smaller (in TBHLb) than the contribution of the mode l = m = 3. For
the binary system the opposite happens, the contribution of the mode l = m = 3 is negligible and
in our simulations looks just like numerical noise. From this result we conjecture that the way
to identify a triple merger is by the characterisation of the l = 3 modes. In the next chapter we
explore this idea for the pre-merger phase using post-Newtonian techniques. As we will show
a the end of the next chapter, the post-Newtonian simulations also support this hypothesis.
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Figure 3.5: Trajectory of one of the bodies (puncture 1), for the triple and the binary systems.
(a) The punctures in systems TBHLa and TBHLb start in the same position. The initial momen-
tum parameters of TBHLb is %5 smaller than TBHLa. The trajectory of the other two punctures
follow the same path as puncture 1 rotated by 2π/3 and 4π/3. (b) Trajectory of puncture 1 for
the binary system BBH. The other puncture follows a trajectory which is symmetric respect to
the origin.
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Figure 3.6: Real part of Ψ4 calculated at r = 50M. (a) Comparison of the mode l = m = 2
for system TBHLa (top), TBHLb (middle) and BBH (bottom). (b) Comparison of the modes
l = m = 3 for the same cases of (a). In every case, notice the differences in the scale.
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Chapter 4

Post-Newtonian simulation of three black
holes

In addition to the full numerical relativistic approach to study the dynamics of three black holes
we use post-Newtonian techniques. Using post-Newtonian techniques (PN), it is now possible
to describe the dynamics of n compact objects, up to 3.5 PN order (see e.g. [82, 22, 128]).
For binary systems the ADM Hamiltonian has been specialised up to 3.5 PN order [85], and
for three bodies there are explicit formula up to 2 PN order [47, 113, 93]. In this section we
present the post-Newtonian equation of motion for n point-particles derived using Hamiltonian
formulation in the ADM gauge. The equations of motion includes the effect of the 2.5 PN
gravitational radiation reaction.

Notation and units

We employ the following notation: ~x = (xi) denotes a point in the three-dimensional Euclidean
space R3, letters a, b, . . . are particles labels. We define ~ra := ~x − ~xa, ra := |~ra|, n̂a := ~ra/ra; for
a , b, ~rab := ~xa − ~xb, rab := |~rab|, n̂ab := ~rab/rab; here | · | denote the length of a vector. The mass
parameter of the ath particle is denoted by ma, with M =

∑
a ma. Summation runs from 1 to 3.

The linear momentum vector is denoted by ~pa. A dot over a symbol, like in ~̇x, means the total
time derivative, and partial differentiation with respect to xi is denoted by ∂i.

In order to simplify the calculations it is useful to define dimensionless variables (see, e.g.,
[120]). We use as basis quantities for the Newtonian and post-Newtonian calculation the gravi-

41
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tational constant G, the speed of light c and the total mass of the system M. Using derived con-
stants for time τ = MG/c3, length l = MG/c2, linear momentum P = Mc and energy E = Mc2

we construct dimensionless variables. The physical variables are related with the dimensionless
variables by mean of a scaling, for example denoting with capital letters the physical variables
with the usual dimensions and with lowercase the dimensionless variable we define for a parti-
cle a its position ~xa := ~Xa/l, linear momentum ~pa := ~Pa/P and mass ma = Ma/M (notice that
ma < 1, ∀a).1

Hamiltonian formulation

A well known result in the ADM post-Newtonian approach is that it is possible to split the
Hamiltonian in a series with coefficients which are inverse powers of the speed of light (see,
e.g.,[21, 95])

H≤2.5 = H0 + c−2H1 + c−4H2 + c−5H2.5. (4.1)

Here each term of the Hamiltonian cnHn/2, is a quantity with dimension of energy and we
write it explicitly in factors of c. The dimensionless Hamiltonian is given by Hn/2 = cnHn/2/E.
For each term we calculate the equations of motion

(ẋi
a)n =

∂Hn

∂pi
a
, (4.2)

−( ṗi
a)n =

∂Hn

∂xi
a
. (4.3)

where the total equations of motion up to 2.5 PN approximation is

~̇xa = (~̇xa)0 + (~̇xa)1 + (~̇xa)2 + (~̇xa)2.5, (4.4)

~̇pa = (~̇pa)0 + (~̇pa)1 + (~̇pa)2 + (~̇pa)2.5. (4.5)

1The system of units used in numerical relativity is the so-called geometric units, in which the speed of light c
and Newton’s gravitational constant G are taken to be equal to one. In previous sections we use geometric units
for the general-relativistic numerical evolutions.
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The first term in (4.1) is the Hamiltonian for n particles interacting under Newtonian gravity

H0 =
1
2

n∑
a

~p 2
a

ma
− 1

2

n∑
a,b,a

mamb

rab
, (4.6)

with ~pa = ma~̇x 2
a . The inclusion of post-Newtonian corrections are an extra component which

enrich the phenomenology of the system.

4.0.3 Post-Newtonian equations of motion up to 2.5 order

The first post-Newtonian correction to the equations of motion is discussed in many papers and
textbooks (see e.g., [50, 21]). The three-body Hamiltonian at first and second post-Newtonian
order is given in Appendix D. The equations of motion for the first post-Newtonian order are
given by (4.2), (4.3) and (D.1). For particle a we obtain

(~̇xa)1 = − ~p 2
a

2m3
a
~pa − 1

2

∑
b,a

1
rab

(
6

mb

ma
~pa − 7~pb − (n̂ab · ~pb)n̂ab

)
, (4.7)

(~̇pa)1 = − 1
2

∑
b,a

[
3

mb

ma
~p 2

a + 3
ma

mb
~p 2

b − 7(~pa · ~pb) − 3(n̂ab · ~pa)(n̂ab · ~pa)
]

n̂ab

r2
ab

+
∑
b,a

∑
c,a

mambmc

r2
abrac

n̂ab +
∑
b,a

∑
c,b

mambmc

r2
abrbc

n̂ab

− 1
2

∑
a,b

[
(n̂ab · ~pb)~pa + (n̂ab · ~pa)~pb

r2
ab

]
.

(4.8)

For the second post-Newtonian approximation the equation of motion are calculated using (4.2),
(4.3) and (D.2). For brevity we do not display the explicit equations.

We follow the procedure given in [82, 85] to obtain equations of motions from the 2.5 PN
Hamiltonian in the ADM gauge. The general 2.5 PN Hamiltonian is

H2.5 =
1

45
χ̇(4)i j(~xa′ , ~pa′; t)χ(4)i j(~xa, ~pa), (4.9)
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where is defined the auxiliary function

χ(4)i j(~xa, ~pa) :=
∑

a

2
ma

(
~p 2

a δi j − 3pai pa j

)
+

∑
a

∑
b,a

mamb

rab

(
3nabinab j − δi j

)
.

Notice that our expressions contain different factors than [82, 85] due to a different choice of
units. The explicitly form of the derivative in (4.9) is

χ̇(4)i j(~xa′ , ~pa′) =
∑

a′

2
ma′

[
2(~̇pa′ · ~pa′)δi j − 3( ṗa′i pa′ j + pa′i ṗa′ j)

]
+

∑
a′

∑
b′,a′

ma′mb′

r2
a′b′

[
3(ṙa′b′ina′b′ j + na′b′iṙa′b′ j)

+ (n̂a′b′ · ~̇ra′b′)(δi j − 9na′b′ina′b′ j)
]
.

(4.10)

We denote with primed quantities the retarded variables. The position and momenta appearing
in Eq. (4.10) are not affected by the derivative operators given by (4.2) and (4.3), and only
after calculating those derivatives we identify positions and momenta inside and outside the
transverse-traceless variables (i.e. the primed and unprimed quantities). We replace the time
derivatives of the primed coordinates and position given in Eq. (4.10) by the 1PN equations of
motion Eqs. (4.7) and (4.8).

The equations of motion for 2.5 PN are given in a short representation by

(~̇xa)2.5 =
1
45
χ̇(4)i j(~xa, ~pa; (~̇xa)1, (~̇pa)1, t)

∂

∂~pa
χ(4)i j(~xa, ~pa), (4.11)

(~̇pa)2.5 = − 1
45
χ̇(4)i j(~xa, ~pa; (~̇xa)1, (~̇pa)1, t)

∂

∂~xa
χ(4)i j(~xa, ~pa). (4.12)

Given initial values for ~xa and ~pa of each particle it is possible to integrate numerically the
resulting equations of motion.

4.0.4 Gravitational radiation in the linear regime

We consider linearised gravitational waves calculated using trajectories which contain post-
Newtonian corrections. We compute the gravitational waveforms for a given observational
direction and alternatively we calculate the multipole decomposition which allow us to recon-
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struct the waves for an arbitrary direction. The inclusion of post-Newtonian corrections to the
gravitational waveforms is a topic for future research in the three-compact-body problem.

Quadrupole and octupole formulas

Here we summarise the formulas for quadrupole and octupole mass radiation and current quadrupole
radiation (for a review see e.g. [95, 53]). The second and third mass momentum are define by

Mi j(t) =

∫
T 00(~x, t)xix jd3x, (4.13)

Mi jk(t) =

∫
T 00(~x, t)xix jxkd3x. (4.14)

The third momenta of the momentum density is

Pi, jk(t) =

∫
T 0i(~x, t)x jxkd3x. (4.15)

For n point particles

T µν(~x, t) =
∑

a

pµa pνa
γama

δ3(~x − ~xa(t)), (4.16)

where γa := (1 − ~p 2
a )−1/2 is the Lorentz factor, and pµa := γa(ma, ~pa) is the four-momentum. In

this case Eqs (4.13)-(4.15) reduce to

Mi j(t) =
∑

a

γamaxi
a(t)x j

a(t), (4.17)

Mi jk(t) =
∑

a

γamaxi
a(t)x j

a(t)xk
a(t), (4.18)

Pi, jk(t) =
∑

a

pi
a(t)x j

a(t)xk
a(t). (4.19)

The mass quadrupole and octupole moment are given by:

Qi j(t) = Mi j − 1
3
δi jMkk,

Oi jk(t) = Mi jk − 1
5

(δi jMllk + δikMlkl + δ jkMill),
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where repeated indices means summation from 1 to 3. The current quadrupole is given by

Ck,lm(t) = Pk,lm + Pl,km − 2Pm,kl. (4.20)

A projection tensor in the normal plane of propagation n̂ of the wave is defined by

Pi j := δi j − nin j, (4.21)

Λi jkl(n̂) := PikP jl − 1
2

Pi jPkl. (4.22)

The mass quadrupole and octupole waveform are given by

hTT
i j (~x, t)MQ =

2
r

Λi jkl(n̂)Q̈kl(t − r), (4.23)

hTT
i j (~x, t)MO =

2
3r

Λi jkl(n̂)nm
...Oklm(t − r), (4.24)

and the current quadrupole contribution to the waveform is

hTT
i j (~x, t)CQ =

4
3r

Λi jkl(n̂)nmC̈k,lm. (4.25)

We perform the standard multipole moments decomposition using standard spherical har-
monics (see e.g., [95, 126]):

Y lm(θ, φ) =

 Clm(eiφ sin θ)m ∑[(l−m)/2]
k=0 alm

k (cos θ)l−m−2k for m ≥ 0

(−1)mY
l,−m

for m < 0
(4.26)

The notation [(l − m)/2] denotes the largest integer smaller or equal to (l − m)/2, the over-line
refers to the complex conjugate, and the coefficients are given by

Clm = (−1)m

(
2l + 1

4π
(l − m)!
(l + m)!

)1/2

, (4.27)

alm
k =

(−1)k

2lk!(l − k)!
(2l − 2k)!

(l − m − 2k)!
. (4.28)
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The spherical components are given by

Qm
l=2 = Q̈i j

∫ 2π

0

∫ π

0
nin jY

2m
dΩ for m ∈ {−2, . . . 2}, (4.29)

Qm
l=3 = Ṡ i jk

∫ 2π

0

∫ π

0
nin jnkY

2m
dΩ for m ∈ {−3, . . . 3}. (4.30)

Here n̂ = (sin θ cos φ, sin θ sin φ, cos θ), dΩ = sin θ dθ dφ and S i jk join up the current quadrupole
and the mass octupole contributions. For point particles S i jk is given by

S i jk =
∑

a

pi
a p j

a

γama
xk

a. (4.31)

It is possible to reconstruct the waveforms for a given direction using the spherical components

hTT
i j (~x, t)MQ =

2
r

Λi jkl(n̂)
2∑

m−2

Qm
l=2(t − r)Ykl

l=2,m, (4.32)

hTT
i j (~x, t)MO+CQ =

2
3r

Λi jkl(n̂)nm

2∑
m−2

Qm
l=3(t − r)Yklm

l=3,m, (4.33)

where Ykl
l=2,m and Yklm

l=3,m are a basis of symmetric trace-free tensors (see [126] for a definition
valid for an arbitrary SFT-l tensors with arbitrary number for index). Using the identities

Yi j
l=2,m

∫
nin jnanbdΩ =

∫
nanbY 2mdΩ, (4.34)

Yi jk
l=3,m

∫
nin jnknanbncdΩ =

∫
nanbncY 3mdΩ, (4.35)

together with2 ∫
ni1 · · · ni2ldΩ =

4π
(2l + 1)!!

(δi1i2δi3i4 · · · δi2l−1i2l + . . . ), (4.36)

we can read off the values of Ykl
l=2,m and Yklm

l=3,m

2In 4.36 the final dots denotes all possible paring of indices
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Figure 4.1: Agekyan-Anosova map: The two bodies with larger separation are placed on the
horizontal axis one unit apart, the one which is further to the third in the negative part and the
third body is at (x, y), inside a curved triangle.

4.1 Simulations and results

From the Newtonian Hamiltonian (4.6) and the equations of motion (4.2) and (4.3) it is easy to
show that for λ ∈ R+ and given ~x1(t), ~x2(t) and ~x3(t) which represent a solution of the three-
body problem, then λ2~x1(λ3t), λ2~x2(λ3t) and λ2~x3(λ3t) is a solution to the same problem . As
consequence in the Newtonian case lengths scale as l′ → λ2l, time as t′ → λ3t, energy as
E′ → λ−2E, momentum as p′ → λ−1 p and angular momentum as L′ → λL. The scaling
properties of the three-body problem allow us to reduce the set of initial configurations into a
subset. One example is the Agekyan-Anosova (AA) map [3, 132, 88], where two bodies are
placed on the horizontal axis one unit apart and the third body is at (x, y) coordinates, inside a
region

Θ = {(x, y) ∈ R2| 0 ≤ x ≤ 1/2, y ≥ 0, y2 ≤ 1 − (x + 1/2)2}, (4.37)

which is a curved triangle (see Fig 4.1). For initial position and momentum (~x1, ~p1, ~x2, ~p2, ~x3, ~p3) ∈
R18, we can associate the initial configuration to a point in the subset (x, y, ~p1, ~p2, ~p3) ∈ Θ × R9.
The AA map gives a unique description of the three-body configuration for several “length
scales”.

If we include post-Newtonian corrections it is not always possible to scale the solutions.
There is evidence about scaling properties in the case of first and second post-Newtonian cor-
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rections [93]3. However, the inclusion of higher post-Newtonian corrections, particularly grav-
itational radiation, breaks the scaling properties. Full numerical relativistic simulations confirm
that close to the merger phase the Newtonian dynamics and the General relativistic one produce
different trajectories for the same initial parameters [94]. However, the main difference is the
damping due to gravitational radiation and as consequence the merger of the black holes.

4.1.1 Numerical integration

We solve the equations of motion numerically using M 7.0 [134]. We use the built-in
low-level functions of NDSolve routine with a “double step” method using as sub-algorithm an
“explicit mid-point” method. We divided a long simulation in sub-steps in order to store the
result from time to time and avoid saturating the RAM. With this approach we can produce
accurate numerical solutions of the equations of motion. An important issue in the numerical
integration of a three-body system arises when two of the bodies come very close each other.
In the case of adaptive step size methods its is necessary to reduce the step size in order to
resolve properly the orbits in the close interaction. An usual approach to cure this problem is
to perform a regularisation of the equations of motion, see e.g., [39, 73, 100, 101, 102] and
references therein. However, in our simulations we include a different criteria. We monitor
the absolute value of each conservative part of the Hamiltonian (4.1) relative to the sum of the
absolute values

H%
i := 100

( |Hi|
|H0| + |H1| + |H2|

)
. (4.38)

We stop our simulation when the contribution of the first post-Newtonian correction is larger
than 10%. We perform several tests to estimate the numerical errors. Here we summarise the
results of these tests.

We use the Lagrangian equilateral triangle solution to compare the numerical with an an-
alytical solution. In Lagrange’s solution every body is sitting in one corner of an equilateral
triangle (see e.g., [60]). We set the side of such triangle to L = 1000, the mass ratio to 1:2:3
and the eccentricity to zero, then every body follows a circular orbit around the center of mass.
The solution in this case is not stable [132], however for circular orbits we can compute the

3In [93] Moore’s figure-eight [105] was studied using first and second Post-Newtonian approximations. The
numerical experiments show that the scaling properties of the initial momentum are well approximated by a inverse
power series.
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Figure 4.2: Test using Lagrange’s equilateral solution of the Newtonian three body problem.
(a) shows the relative variation of the Hamiltonian (top) and the relative change in the orbits
(bottom). (b) shows the error for the mass quadrupole MQ (top), mass octupole MO (middle)
and the current quadrupole CQ (bottom).

waveforms. Then we can compare the waveforms with the analytical expressions.

In Fig. 4.2(a), we show the relative variation of the Hamiltonian

∆H :=
H(0) − H(t)

H(0)
, (4.39)

and for each body the relative variation of the position respect to the center of mass. The
variation of the Hamiltonian is small (close to machine accuracy), however the error in the
orbits grow fast breaking the regular trajectory. In this case, after seven orbits the numerical
solution fail. The waves exhibit a similar behaviour. In Fig. 4.2(b), we show the error for each
polarisation of the waveforms (4.23)-(4.25). The error is defined as the difference between the
analytical expression and the numerical calculation. The mass octupole exhibit a noisy error
due to the complicate of the analytical expression.
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Figure 4.3: Moore’s figure eight solution. (a) Relative variation of the Hamiltonian for a solu-
tion which includes 2PN corrections. (b) Initial position (marks +, × and ∗) and path followed
by the bodies (dashed line).

We reproduce a few of the result from [93], specifically the simulation of the equal-mass
Moore’s figure eight which includes first and second post-Newtonian corrections. Our imple-
mentation seems to be more accurate, we obtain variations on the Hamiltonian of 10−14 (see
Fig. 4.3(a)), instead previous results shown a variation of 10−5 (compare Fig. 6 of [93]).

We tested our n−body 2.5 PN equations of motions for the case n = 2, i.e, for binary
systems. The variation of the semi-major axis and eccentricity of a binary system due to the
gravitational radiation is given by [108]

da
dt

= −64
5

m1m2

a3(1 − e2)7/2

(
1 +

73
24

e2 +
37
96

e4
)
, (4.40)

de
dt

= −304
15

m1m2

a4(1 − e2)5/2

(
e +

121
304

e3
)
. (4.41)

We tested the 2.5 PN equations of motion (4.11) and (4.12) by comparison with direct numerical
integration of the equations (4.40) and (4.41). We did the test for two different binaries, one with
initial eccentricity e0 = 0.1 and one with e0 = 0.5. In both cases we set m1 = 2m2, a0 = 160.
The numerical integration of the 2.5 PN equations agree very well with the result provided by
the numerical integration of (4.40) and (4.41). We calculate the eccentricity of our orbits with
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the Newtonian formula

e =

√
1 +

2l2Hc

(m1m2)3 , (4.42)

where l is the magnitude of the total angular momentum and Hc is the value of the conservative
part of the Hamiltonian. The apoapsis4 is related to the semi-major axis by rap = a(1 + e). For
simplicity we compare in upper panel of Fig. 4.4 the relative variation of rap respect to its initial
value and in the lower panel the variation of the eccentricity.

In order to test the script for long evolution of three bodies we use Hénon’s Criss-cross
solution [75, 105, 106]. This solution is stable with respect to a wide range of perturbations
[104]. We evolve the equal mass Criss-cross solution with M = 200 M� for around 103 orbits,
and initial parameters ad-hoc for our system of units

~x1(0) = 1.07590λ2 x̂, ~p1(0) = 3−3/2 · 0.19509λ−1ŷ

~x2(0) = −0.07095λ2 x̂, ~p2(0) = 3−3/2 · 1.23187λ−1ŷ

~x3(0) = −1.00496λ2 x̂, ~p3(0) = 3−3/2 · 0.19509λ−1ŷ,

4The apoapsis is the maximum separation of the two bodies.
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Figure 4.5: Hénon Criss-cross solution for Newtonian, 2 and 2.5 PN dynamics. The main panel
shows the relative variation of the Hamiltonian for the three cases. The inset shows only the
conservative systems (Newtonian and 2 PN).

where x̂, ŷ and ẑ are the unitary basis vectors in Cartesian coordinates, and λ is a scaling
factor (for our simulation λ = 10). In Fig. 4.5 we plot the relative variation of the Hamilto-
nian for the evolution using a Newtonian potential and the corresponding Hamiltonian variation
for evolutions which includes 2 and 2.5 PN corrections. As is expected the variation of the
Hamiltonian in the 2.5 PN case is huge in comparison with the conservative case and the bodies
separate after around t = 7825(s). The inner panel in Fig. 4.5 shows a detail of the conservative
part. In this case the 2.5 PN dynamics shows better conservation of the Hamiltonian in contrast
to the Newtonian case which has a variation on the Hamiltonian of around 4 × 10−12.

We confirm that the system is stable even after the inclusion of 2 and 2.5 PN corrections, see
Fig. 4.6. In the Newtonian case the accumulation of numerical errors and probably a round-off

in the initial parameters lead to a small variation of the orbits. The basic shape of the Criss-
cross figure suffers a small rotation. The 2 PN correction includes the effect of precession in
the orbits, the original figure spin many times around the origin preserving the same shape. The
inclusion of gravitational radiation via the 2.5 PN corrections makes a stronger effect in the
orbits, slowly deforming the original figure. The body in the circular-like orbit has a significant
reduction on the orbital radius, the two other bodies follow at the end a triangular-like orbit with
narrow corners.

We use also the Newtonian Hénon Criss-cross solution for a performance and accuracy test.
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The performance test consisted on the measurement of the wall time for 9 evolutions. We solve
the system in a progression of 1, 2, . . . , 28 orbits. The upper panel of Fig. 4.7 shows the result
where we found that the performance is well described by a linear function f (x) = ax with a
slope of a = 4.39 ± 0.05. The accuracy test is based on the time reversibility of the orbits. For
the same set of runs we solve the system backward in time starting with the last position of each
particle but replacing every linear momentum for its opposite value. This process was done
in run-time avoiding to reload the parameters. As measurement of the error we compute the
variation on the phase space of the initial position and momentum respect to the final position
and momentum of the backward evolution

(∆Lps)2 :=
[∑

a |~x +
a (0) − ~x−a (t f )|∑

a |~x +
a (0)|

]2

+

[∑
a |~p +

a (0) + ~p−a (t f )|∑
a |~p +

a (0)|
]2

, (4.43)

where ~x +
a (0) and ~p +

a (0) are the initial position and momentum of the particles (with this data
we evolve forward), ~x−a (t f ) and ~p−a (t f ) are the final position and momentum of the backward
evolution. In the case of infinite precision the bodies should retrace their trajectories exactly
and the variation should be zero. For a numerical solution there are small differences which
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accumulate for each time step, then for the computation in one direction we expect the error
to be half of the variation of the cyclic calculation. In the lower panel of Fig. 4.7 we show the
result. In this case the phase space error5 is well represented by a quadratic function f (x) = ax2

with a = 1.99 · 10−15 ± 8.16 · 10−17.

The performance tests are representative for the Newtonian case. Including higher PN cor-
rection would lead to a different results. The post-Newtonian equations of motion contain many
more terms than the Newtonian case, which significant increase in computational cost for a
given accuracy. However, we expect the same functional behaviour, the computational time
growing linearly respect to the number of orbits and the error accumulating quadratically.

4.1.2 Strong perturbation of a binary system

Here we consider the strong perturbation on the dynamics and waveform of a binary black hole
system due to a third smaller black hole. We take all PN corrections up to 2.5 PN for the three
bodies. This approach gives us a good description of the third body orbiting close to the binary.
However, the computational cost of each simulation increases respect to the Newtonian simu-
lations avoiding the possibility to produce a set of runs necessary to do a systematic statistics
of the system. Nevertheless, we selected a representative case in order to try to identify key
properties.

We study a Jacobian system 6 with mass ratio 10:20:1. The inner binary system has initial
semi-major axis ab(0) = 160 and eccentricity eb(0) = 0.7 We consider the third compact body
and the center of mass of the inner binary as a new binary (we will refer to it as the external
binary). The external binary has initial semi-major axis a3(0) = 10000 and initial eccentricity
e3(0) = 0. The bodies start from a configuration where the apoapsis of the inner binary is
perpendicular to the apoapsis of the external binary (see Fig. 4.8(b)).

We denote the inclination angle between the osculating orbital planes Πin and Πout by i (see
Fig. 4.8(b)). The behaviour of the Hamiltonian is similar in every case. The conservative part of
the Hamiltonian decreases relatively slowly during most of the simulation. However, when the

5We define the phase space error as ∆Lps/2.
6In a Jacobian system the three-body configuration is composed of two parts, a clearly defined binary and a

third body orbiting faraway. We will refer to this kind of systems as hierarchical as well.
7We set the initial parameters considering only the Newtonian dynamics, particularly the eccentricity refers to

the Newtonian case.
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(a) Trajectory in the x − y − t subspace (b) osculating orbital planes.

Figure 4.8: Hierarchical system formed by a binary system with a lighter body orbiting faraway.
(a) The plot shows the trajectory in the x−y− t subspace. The helix is the perturbed inner binary
system. (b) The osculating orbital planes Πin and Πout for inner and outer binary orbits. The two
planes are inclined by angle i.

system approaches to the merger phase, the Hamiltonian decreases fast (see Fig. 4.9(a)). As we
mention before, the simulations are finished when the contribution of the first post-Newtonian
correction becomes larger than 10%. We consider that instant the time when the merger phase
start.

In the case of planar motion i = 0 we did a comparison with the case where the inner bi-
nary is not being perturbed by the third compact body. Fig. 4.9(b) shows the components of
the waveform for h+ polarisation. In both cases the plot shows in grey the mass quadrupole.8

The mass octupole plus the current quadrupole MO + CQ are the red line (for the triple system)
and the blue one (for the binary). Notice that in the triple system the MO + CQ is modulated
by the period of the third body (one cycle of modulation is half orbit of the third body). The
perturbation affects also the merger time, the triple system take less time before the inner binary
merge. However, for other initial configuration we observe the opposite behaviour, i.e., the sin-
gle binary can merge before than the perturbed one. For each case, a combination of parameters
like initial eccentricities, mass ratio or semi-major ratio can modify the merger time.

8The waveform looks like a shadow region because for the whole timescale of the evolution a single cycle looks
like a very high frequency wave.
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Figure 4.10: Successive change in the waveform due to post-Newtonian corrections. (a) Wave-
form of a radiative Newtonian system (bottom), radiative 1 PN system (middle), and full 2.5 PN
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m=3} for the three cases
referred in (a) for early time in the evolution t < 107.
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Additionally to the comparison to the non-perturbed binary system, we use the planar con-
figuration to explore the influence of the conservative post-Newtonian corrections. As in the
previous case (which we will denote as full 2.5 PN case), we solve the system for equations
of motion where we remove the 2 PN part of the Hamiltonian (radiative 1 PN) and where we
remove both 1 and 2 PN corrections (radiative Newtonian). The full 2.5 PN case does not
show a big difference respect to the radiative 1 PN case. The merger phase time changes from
t = 4.8325 × 107 in the first case to t = 4.8075 × 107 in the second one. The waveform does
not suffer a noticeable change (see Fig. 4.10). On the other hand, in the radiative Newtonian
case the result changes dramatically. The merger phase time start later than in previous cases
(around t = 5.6352 × 107) and also later than the non-perturbed case (see Fig. 4.10(a)). The
resulted waveform is also different. In the radiative Newtonian case each part of the waveform
(mass and current quadrupole and the mass octupole) produces a relative constructive inter-
ference. The resulted waveform is bigger in amplitude than in the other cases (see the scales
in Fig. 4.10(a)). The individual components of the waveform and the modes are of the same
amplitude. Nevertheless, the additional precession and change on the dynamics of the full 2.5
PN case and the radiative 1 PN case produces different wave components (see Fig. 4.10(b)).
The radiative Newtonian case produces a smoother waveform than the one produces with the
inclusion of 1 and 2 PN corrections.

The modulation of the l = 3 modes of the waveform are related to the period of the third
body. On the other hand, the amplitude of the l = 3 spherical components of the waveform
encode information about the inclination angle i. We run simulations with the same initial
configuration for i ∈ {0, π/8, π/4, 3π/8, π/2}. Fig 4.11(a) shows the variation on the amplitude
for the real part of the modes Q l=3

m=2 and Q l=3
m=3 as function of i.9 The real part of Q l=3

m=2 is zero
for planar motion i = 0. However, the contribution of this mode increases with i. On the
other hand, the contribution of Re{Q l=3

m=3} is maximum in the planar case and decreases when i

increase. This behaviour is symmetric respect to i = π/2 and periodic of period π. We estimate
the contribution of each mode calculating the area which is cover by the real part of the mode

A l
m(τ) := −

∫ τ

τ f

|Re{Q l
m}| dτ, (4.44)

9The real and the imaginary part of the modes show the same behaviour. For simplicity we present only the
analysis of the real part.
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Figure 4.11: Variation on the amplitude of l = 3, m = 2, 3, modes as function of the inclination
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m=3} as function of i. (b) Variation of A l
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function of i for t = t f (upper panel) and t = t f /2 (lower panel).

where τ f = 4.8325 × 107 is the final time of the evolution.10 We compute A l
m(t) for 6 equal

spaced times in the interval of simulation. We normalise the results using the maximum value
Amax = A l=2

m=2. We denote the normalise area by A l
m. As an example we show the results for

τ = 0 in Table 4.1 where we present the relevant modes. In total we compute 6 tables similar to
the previous one, however for brevity we don’t present them here. Notice that the contribution of
l = 2 modes is almost constant respect to the variation of the inclination angle i. In Fig. 4.11(b)
we show the variation of A l=3

m=2 and A l=3
m=3 for two integration times (τ = 0 and τ = τ f /2).

We found that the variation of A l=3
m=2 is well represented by

Al=3
m=2(t, i) = a(τ)| sin i|. (4.45)

On the other hand, A l=3
m=3 is well modelled by

Al=3
m=3(t, i) = b(τ) + c(τ)| cos i|3/2, (4.46)

where the fitting coefficients a, b and c depend on the integration interval. Table 4.2 shows the

10We integrate backward on time, then we define the beginning of the merger phase t f as the origin.
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Table 4.1: Variation of A l
m as function of the inclination angle i.

τ = 0 i = 0 i = π/8 i = π/4 i = 2π/8 i = π/2
l m A l

m
2 0 0.0147 0.0147 0.0147 0.0147 0.0147
2 2 1.0000 1.0000 1.0000 1.0000 1.0000
3 0 0.0000 0.0005 0.0009 0.0012 0.0013
3 1 0.0199 0.0192 0.0171 0.0144 0.0127
3 2 0.0000 0.0157 0.0291 0.0380 0.0412
3 3 0.0777 0.0747 0.0668 0.0566 0.0503

variation of the fitting coefficients as function of the time integration τ. From this data it is
possible to fit a function to establish the functional behaviour of the coefficients respect to the
integration time (Fig 4.12 shows the result). The coefficients a, b and c are well represented by

a(τ) = α1 + α2/τ
1/2, (4.47)

b(τ) = β1 + β2/τ
1/5, (4.48)

c(τ) = γ1 + γ2/τ
1/2, (4.49)

where

α1 = (1.48 ± 0.053) × 10−2, (4.50)

α2 = (5.88 ± 0.075) × 10−2, (4.51)

β1 = (−4.4 ± 0.13) × 10−2, (4.52)

β2 = (12.9 ± 0.16) × 10−2, (4.53)

γ1 = (1.00 ± 0.049) × 10−2, (4.54)

γ2 = (3.91 ± 0.069) × 10−2. (4.55)

More general statements about the information related to the three compact object dynamics
studying the high modes of the waveform require an extensive parameter study. The previous
example shows the characterisation that we can do with this techniques.
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Table 4.2: Fitting coefficients of Eqns. (4.45) and (4.46). For the 6 time intervals we compute
the fitting coefficients a, b and c. We include the error of each coefficient.
τ [×107] a(τ) [×10−2] b(τ) [×10−2] c(τ) [×10−2]
0.8054 8.020 ±0.0044 9.058 ±0.0115 5.37 ±0.017
1.6108 6.097 ±0.0025 7.363 ±0.0089 4.04 ±0.013
2.4163 5.332 ±0.0018 6.340 ±0.0087 3.57 ±0.013
3.2217 4.763 ±0.0014 5.789 ±0.0080 3.18 ±0.012
4.0271 4.408 ±0.0012 5.342 ±0.0078 2.95 ±0.011
4.8325 4.116 ±0.0010 5.023 ±0.0075 2.76 ±0.011

3
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10.5

0 1 2 3 4 5

τ

b(τ)/100 = −4.44 + 12.93/τ1/5

a(τ)/100 = 1.48 + 5.88/τ1/2

c(τ)/100 = 1.00 + 3.91/τ1/2

[×107]

[×10−2]

a(τ)
b(τ)
c(τ)

Figure 4.12: Functional behaviour of the fitting coefficients. The coefficients are well described
by an inverse power function in τ.
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Chapter 5

Conclusions

We have presented a numerical elliptic solver, O. As a first application, we solve the
Hamiltonian constraint to obtain numerical initial data for multiple black hole evolutions. O-
 implements a high-order multigrid method, which is parallelized and uses a box-based
mesh refinement. The tests and first applications of the code showed that the new code seems
to be sufficiently accurate for our purposes. However, we found that close to the puncture the
convergence rate is less than that desired, which is expected for puncture data (see Appendix
C). The drop in the convergence close to the punctures is not reflected in the convergence of the
evolution.

We have shown evolutions of three black holes which use as initial data solutions to the
Hamiltonian constraint generated with the new elliptic solver. We compared with results for a
certain analytic approximation for the initial data. In the case of three black holes, the dynamics
resulting from approximate data is different from the dynamics produced by evolutions which
satisfy the Hamiltonian constraint numerically. As anticipated, the puncture tracks are sensitive
to small changes in the initial data. Especially for three and more black holes changing the initial
data, e.g. by solving the constraints rather than using an analytical approximation, can lead to
qualitatively and quantitatively very different merger sequences. In any case, we confirmed the
result of [42, 94] that, as expected, the puncture method lends itself naturally to the simulation
of multiple black holes.
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Simulations of three, four, or even more black holes lead to the following question about
more general merger situations: How can we determine the number of black holes involved in
a merger from the observation of gravitational waves? A first analysis of this topic was given
previously using a Newtonian approach [9, 127]. Using post-Newtonian techniques and full
numerical relativistic simulations, we started exploring a simple case where we give evidence
which support the initial conjecture of [127] which we reformulate: In order to characterise

a system of N compact objects, it is necessary to perform an analysis of the waveform which

includes at least the l ≤ N modes.1 In the highly relativistic case, we explore a symmetric
triple equal-mass black hole configuration which merge in a spiral way similar to the merger
of an equal-mass binary system in an quasi-circular merger. We found that in the case of the
triple merger the mode l = m = 3 is of the same order or bigger than the l = m = 2 mode.
For the binary system we find the opposite, namely the l = m = 3 mode is almost zero. Us-
ing post-Newtonian simulations for a particularly hierarchical configuration, we analysed the
waveforms. We found that, looking at the mass octupole and current quadrupole part of the
waveform, it is possible to distinguish between a Jacobian system and a binary system. Ad-
ditionally, in this case we found a relation between the modulation of the modes l = 3 and
the period of the third compact object. We established a link between the amplitude of the
l = 3,m = 2 and l = 3,m = 3 modes and the angle of the osculating orbital planes.

In the future, we plan to extend our research of the three-compact-body problem presented
in this thesis. Using numerical relativity methods, we plan to explore the characterisation of a
triple merger from the analysis of the high modes of the waveform. We plan to study the influ-
ence of the spin in the ejection or merger of the three bodies. Using the post-Newtonian tech-
niques we plan to do a systematic study of other hierarchical systems, as well as, slow encoun-
ters. We plan to improve the calculation of the waveforms (perhaps including post-Newtonian
corrections) and the multipole decomposition as well. The study of three compact spinning bod-
ies in the post-Newtonian formalism is a problem which is in our scope. An interesting problem
is the study of chaos in the three compact body problem from the post-Newtonian point of view
and particularly with the inclusion of gravitational radiation.

1The original statement in [127] reads: ...Classification of N (or fewer) particles producing (nearly) the same
wave forms requires inclusion of the lth multiple part with l ≤ N.
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[34] B. Brügmann. Adaptive mesh and geodesically sliced Schwarzschild spacetime in 3+1 dimensions. Phys.
Rev. D, 54(12):7361–7372, 1996.



BIBLIOGRAPHY 69
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[50] Thibault Damour and Gerhard Schäfer. Lagrangians for n point masses at the second post-newtonian ap-
proximation of general relativity. Gen. Rel. Grav., 17(9):879–905, 1985.

[51] Kenneth A. Dennison, Thomas W. Baumgarte, and Harald P. Pfeiffer. Approximate initial data for binary
black holes. Phys. Rev., D74:064016, 2006.

[52] P. Diener. A new general purpose event horizon finder for 3D numerical spacetimes. Class. Quantum Grav.,
20(22):4901–4917, 2003.

[53] Eanna E. Flanagan and Scott A. Hughes. The basics of gravitational wave theory. New J. Phys., 7:204,
2005.

[54] Bengt Fornberg. Classroom note:calculation of weights in finite difference formulas. SIAM Review,
40(3):685–691, 1998.



70 BIBLIOGRAPHY

[55] Pablo Galaviz. Codigo computacional para resolver equaciones elipticas en relativi-
dad numerica. Master’s thesis, Universidad Nacional Autonoma de Mexico, 2007.
http://www.archive.org/details/PabloGalavizMasterThesis.
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[74] P. Heinämäki. Symmetry of black hole ejections in mergers of galaxies. Astron. Astrophys., 371:795–805,
June 2001.
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[125] Marcus Thierfelder, Bernd Brügmann, and Pablo Galaviz. Finding event horizons in multiple black hole
simulations. 2010.

[126] K. Thorne. Multipole expansions of gravitational radiation. Rev. Mod. Phys., 52(2):299, 1980.

[127] Yuji Torigoe, Keisuke Hattori, and Hideki Asada. Gravitational wave forms for two- and three-body gravi-
tating systems. Phys. Rev. Lett., 102(25):251101, Jun 2009.

[128] Yousuke Itoh Toshifumi Futamase. The post-newtonian approximation for relativistic compact binaries.
Living Reviews in Relativity, 10(2), 2007.

[129] Ulrich Trottenberg, Cornelis Oosterlee, and Anton Schüller. Multigrid. Academic Press, San Diego, 2001.

[130] Aslak Tveito and Ragnar Winther. Introduction to Partial Differential Equations: A Computational Ap-
proach . Texts in Applied Mathematics. Springer, 2004.

[131] M. Valtonen and S. Mikkola. The few-body problem in astrophysics. Annu. Rev. Astron. Astrophys., 29:9–
29, 1991.

[132] Mauri J. Valtonen and Hannu Karttunen. The three-body problem. Cambridge University Press, New York,
2006.

[133] H. F. Weinberger. A First Course in Partial Differential Equations: with Complex Variables and Transform
Methods. Dover, 1965.

[134] Wolfram Research, Inc. Mathematica. Wolfram Research, Inc., version 7.0 edition, 2008.

[135] Tetsuro Yamamoto, Masaru Shibata, and Keisuke Taniguchi. Simulating coalescing compact binaries by a
new code (sacra). Phys. Rev. D, 78(6):064054, Sep 2008.



74 BIBLIOGRAPHY

[136] Gerhard Zumbusch. Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing. Teubner,
January 2003.



Appendix A

Multigrid methods

Multigrid (MG) methods have a wide range of applications. For example there are MG methods
suitable for solving elliptic partial differential equations [129], algebraic problems [10], image
reconstruction and tomography [76], optimisation [121], statistical mechanics [111], quantum
chromodynamics [31] and integral equations [107] among others. We can consider MG methods
part of a more general class of algorithms known as multilevel methods [118].

We focus here on the MG method for solving elliptic partial differential equations. However,
in every MG method the basic idea is to solve a given problem at some scale, using coarser
scales to accelerate the computation. In our case, using a finite difference approach we solve
a problem in a domain Ω for some fine grid of length h, using a set of coarse grids Ωh/2l

for
l ∈ {1, . . . , n}. We define a set of grids which contains a geometrical structure related to a
physical domain Ω. For that reason this kind of MG methods are known as Geometric Multigrid

GMG. In contrast to geometrical base multigrid, an algorithm which operate directly on linear
sparse algebraic equations is known as Algebraic Multigrid AMG. Formally AMG and GMG
can be describe in the same way (see e.g., [10] for the details).

Here we describe the MG approach for elliptic partial differential equations. For simplicity,
we consider equations Lu = ρ in some domain Ω ⊂ R2 where

Lu = a11∂
2
xu + a12∂x∂yu + a22∂

2
yu + a1∂xu + a2∂yu + a0u. (A.1)

where the coefficients ai j, ai and the source ρ are in general functions of x, y, u, ∂xu and ∂yu.
The operator L is called hyperbolic if 4a11a22 < a2

12, parabolic if 4a11a22 = a2
12 and elliptic if
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4a11a22 > a2
12. Let us focus in the last kind of operators and particularly in the Poisson equation

with Dirichlet boundary condition.

∂2
xu(x, y) + ∂2

yu(x, y) = ρ(x, y) for (x, y) ∈ Ω, (A.2)

u(x, y) = f (x, y) for (x, y) ∈ ∂Ω, (A.3)

where f : ∂Ω → R is a given smooth function. The finite difference representation of the
problem using second order centred stencil in a uniform discretization grid with mesh size h is

ui, j−1 + ui−1, j − 4ui, j + ui+1, j + ui, j+1 = h2ρi, j for (xi, y j) ∈ Ωh, (A.4)

ui, j = fi, j for (xi, y j) ∈ ∂Ωh, (A.5)

where xi = x0 + ih, y j = y0 + jh are the grid coordinates with indexes i, j ∈ {0, . . . , n−1} defined
in the mesh Ω̄ = [x0, xn−1] × [y0, yn−1] and, ui, j := u(xi, y j), ρi, j := ρ(xi, y j) and fi, j := f (xi, y j).
We can map the two indices to a single one by I := i + jn, then

(i, j) → I, (A.6)

(i + 1, j) → I + 1, (A.7)

(i − 1, j) → I − 1, (A.8)

(i, j + 1) → I + n, (A.9)

(i, j − 1) → I − n, (A.10)

after this (A.4) becomes:

uI−n + uI−1 − 4uI + uI+1 + uI+n = h2ρI . (A.11)

With the appropriate remapping of the boundary condition (A.5), we can associate to the equa-
tion (A.11) an equivalent linear system

A~u = ~ρ, (A.12)

where A is an n2 × n2 sparse, banded matrix, with band-with 2n + 1, ~u and ~ρ are n−component
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vectors with entrance uI and ρI respectively. The direct method to solve (A.4)-(A.5) consist
on invert numerically (A.12) using for example a Gaussian elimination method. However, the
computational cost of invert a linear system of size N = n2 is of order O(N2). This is very
expensive, especially for three dimensional problems where N = n3 and typical grid size are
n ∼ 100.

A better approach is to use an iterative method. The general idea is to split A as the sum of
two suitable sub-matrices A = M + N, then we obtain the solution through the iterative process

M~u k+1 = ~ρ − N~u k. (A.13)

We define a global error vector ~ε k := ~u k − ~u ∞, where ~u ∞ is the exact solution. Then ~u ∞ is
solution of A.12, i.e,

(M + N)~u ∞ = ~ρ. (A.14)

From (A.13), (A.14) and the definition of the global error we obtain:

M~ε k+1 = −N~ε k, (A.15)

for a non-singular M

~ε k+1 = −M−1N~ε k (A.16)

= (−M−1N)k+1~ε 0. (A.17)

We define the amplification matrix as

G = −M−1N, (A.18)

where the unfortunate term “amplification” comes from the fact that after n + 1 iterations the
error can be amplified by the application of the matrix. However, the goal of the method is to
reduce the error, then Gn has to be bounded. A necessary condition for stability of the method
is that the spectral radius1 satisfy

ρ(G) < 1. (A.19)

1The spectral radius of a matrix is defined as the maximum magnitude of its eigenvalues.
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Defining the matrix U, D and L as the strictly upper, diagonal and strictly lower part of the
matrix A respectively, we can specify some common iterative methods, particularly relaxation
methods:

• Jacobi - Computational cost O(N2)

M = D, (A.20)

N = L + U. (A.21)

• Gauss-Seidel - Computational cost O(N2)

M = D + L, (A.22)

N = U. (A.23)

• Successive over-relaxation (SOR) - Computational cost O(N3/2)

M = ω−1D + L, (A.24)

N = (1 − ω1)D + U, (A.25)

where 1 < ω < 2.

• Symmetric successive over-relaxation (SSOR) - Computational cost O(N5/4)

M =
(D + ωU)D−1(D + ωL)

ω(2 − ω)
, (A.26)

N = − [(1 − ω)D − ωL]D−1[(1 − ω)D − ωU]
ω(2 − ω)

, (A.27)

where 1 < ω < 2.

For SOR and SSOR, the optimal value of the parameter ω depends on the problem to solve.
Relaxation methods are characterised by a slow convergence. In practise they are useful only
for one dimensional problems or for relatively small meshes. However, relaxation methods are
good at reducing the error at some scales (relative to the mesh resolution). To see this we expand
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the initial global error into eigen-components

~ε 0 =

n−1∑
i=0

ci~e i, (A.28)

then using (A.17)

~ε k =

n−1∑
i=0

λk
i ci~e i, (A.29)

where λi are the eigenvalues of Gk. For a large number of iterations k, the error is dominated
by the components λk

i ci~e i with λi . 1, typically that is the case for i ' 0 and i ' n − 1. This
determines the overall convergence rate. Nevertheless, other components of the error decay
much more rapidly like the middle range components, those nearest i ' n/2 with λi ∼ 1/2.
Usually just with a few iterations it is possible to reduce middle range frequencies of the error
to a desired tolerance. In contrast, other frequencies may required thousand of iterations.

The key idea of the MG methods is that middle range frequencies of the errors in a coarse
grid represent low frequency in a finer one. Then, if we transfer the solution between coarse
grids and finer grids we can reduce the error in an efficient way. In practise, instead of transfer-
ring the solution between grids, we solve an equation for the error. After taking ν iterations on
a fine grid we obtain an error

~ε ν = ~u ν − ~u ∞. (A.30)

This is related to the residual vector

~r ν = ~ρ − A~u ν, (A.31)

by the linear system
A~ε ν = −~r ν. (A.32)

If we approximate this system in a coarse grid, we can subtract ~ε ν from ~u ν to obtain a better
approximation to ~u ∞.

To summarise and using a differential operator form instead of the matrix one. We consider
that the exact solution uh is given by the sum of the current numerical approximation Uh plus
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an exact2 correction vh

uh = Uh + vh, (A.33)

then for a discrete elliptic operator Lh

Lh(Uh + vh) = ρh. (A.34)

If Lh is linear
Lhvh = ρh − LhUh := −Rh. (A.35)

At this point we can solve (A.35) on a coarser grid

L2hv2h = −r2h. (A.36)

However, we have to provide the right hand side of (A.36). To do that we use a restricted

version of the right hand side of (A.35) via a restriction operator3 I2h
h . Then we solve for

L2hV2h = −I2h
h Rh. (A.37)

If 2h is sufficiently coarse then we can solve this equation to machine accuracy in an inexpensive
way, otherwise we can transfer the problem to an even coarser grid. In any case we end with a
solution V2h that we can use to correct the solution in the next finer level

Uh
new = Uh

old + Ih
2hV2h, (A.38)

where Ih
2h is a prolongation operator which maps values from the coarse grid to the finer grid

via some interpolation operation. The algorithm described before is know as Linear Correc-

tion Scheme (LCS). For non-linear operator we have to combine a linearization scheme (see
Appendix B) with the Full Approximation Storage Scheme (see the algorithms 2.2.1 and 2.2.2).

The two-levels multigrid strategy can be used in several ways, two common are V-Cycles

and W-Cycles. In a V-Cycle we start with an initial guess on the fine grid, at level hmax. Then
we perform some number of smoothing sweeps p and restrict the problem to a coarser grid. We

2In general we use capital letter for numerical approximations and lowercase for exact functions.
3See the details of the restriction and prolongation operators implementation in Sec. 2.2.1
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Figure A.1: Sketch of a V-Cycle and W-Cycle with three multigrid levels. In practise it is
necessary to perform several V-Cycles before reach the desired accuracy. In some cases a W-
Cycle may require several sub-cycles to solve each level.

continue smoothing and restricting to a coarser grids until we arrive at a grid coarse enough
to solve the problem to machine accuracy. This coarse grid is at level hmin. Then we prolong
this solution to finer grids by performing a series of coarse-grid corrections, with additional
smoothing operations q. In a W-Cycle we start again in a finer grid performing a smooth-
restriction process until we arrive to the level hmin. In the prolongation process we perform a
V-Cycle to solve to solve each finer level. At the end we visit each level several times. Fig. A.1
shows a diagram which represent both cycles for three multigrid levels. With more number of
cycles and depending on the problem the sketch can be more complicated.

Performance

Here we summarise some of the previous results of the performance tests originally presented
in [55]. The main difference between the original version of O and the used to produce
the initial data for multiple black hole evolutions are the interface, the mesh refinement and
the implementation of high order finite difference stencils. However, the core routines which
implement the multigrid method and the parallelization are the same. The original code uses as
interface the C code [40] to read the parameters. However, the grid structure and memory
allocation was independent. The new code includes a separate interface which reads parameters
from the command line. The implementation of the mesh refinement is straightforward, we only
have to apply the algorithm 2.2.2 and redefine the size of the mesh to cover internal regions.
The definition of the high order finite difference stencils requires more effort since we have to
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Table A.1: O performance in a single cpu for MG method solving a Poisson equation.
For each grid setup we did 6 runs. We use the linux command time to measure the cpu and wall
time. The time displayed in the table is the average of the 6 runs and the uncertainty is given by
the standard deviation.

Mesh points Time (sec)
Sub-grids Nx Ny Nz Ntotal Wall time cpu time

1 33 33 33 35937 0.091 ± 0.0015 0.089 ± 0.0022
2 65 65 65 274625 1.75 ± 0.07 1.62 ± 0.078
2 81 81 81 531441 4.8 ± 0.39 4.48 ± 0.059
2 97 97 97 912673 10.6 ± 0.99 9.3 ± 0.43
2 105 105 105 1157625 14.6 ± 0.74 14.5 ± 0.78
3 113 113 113 1442897 20 ± 1.1 18.4 ± 0.23
3 129 129 129 2146689 33.9 ± 0.17 33.7 ± 0.16
3 145 145 145 3048625 52 ± 1.5 50.8 ± 0.45

implement in a general way to switch between orders in an efficient way. O is written
in C++ so we take advantage of the object oriented programing paradigm to provide such im-
plementation. Brief test shows that there is not a big difference in the performance of the new
code comparing with the previous version. In fact the new interface work faster and uses less
memory. However, the result depends on the hardware, compiler, MPI and OS distribution,
etc. The main goal of the original code was the evolution of the Schröedinger-Poisson system
[20, 19, 69, 68, 97, 96, 112], where a Poisson equation has to be solved at each time-step. The
efficiency in that case was crucial. On the other hand, for initial data the goal is to provide accu-
rate solutions. The new version of the code was exhaustive tested to determine the accuracy but
only partially tested to estimate the performance. The old performance test, which we present
here are directly applicable for the new second order implementation. We are confident that the
high order implementation does not suffer a significant reduction in the performance.

The first test was a comparison between the relaxation method (Gauss-Seidel) and the MG
method. We solve a Poisson equation in a single processor for 8 resolutions.4 We calculate
the working time using the linux command time. Every run was repeated 6 times to make an
statistic. We present the result for the MG method in the table A.1 and in table A.2 for the Gauss-
Seidel method. Fig. A.2(a) shows the results and functions which we fit to the data. For MG the

4The computer was a desktop with processor AMD-Sempron 1.8 GHz and 1 GB of RAM.
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Table A.2: O performance in a single cpu for Gauss-Seidel method solving a Poisson
equation. We use the same procedure as in the MG case (see Table A.1)

Mesh points Time (sec)
Nx Ny Nz Ntotal Wall time cpu time
33 33 33 35937 0.123 ± 0.006 0.117 ± 0.009
65 65 65 274625 3.2 ± 0.19 2.94 ± 0.078
81 81 81 531441 9.5 ± 0.23 8.3 ± 0.15
97 97 97 912673 21.2 ± 0.98 19.7 ± 0.47

105 105 105 1157625 30 ± 1.8 28.6 ± 0.84
113 113 113 1442897 43 ± 2.2 40.8 ± 0.81
129 129 129 2146689 80 ± 4.1 79 ± 1.5
145 145 145 3048625 146 ± 6.8 138 ± 1.3

results are well represented by a linear function T (N) = a1N + b1 with a1 = (1.77± 0.06)× 10−5

and b1 = −4 ± 1. On the other hand the results for the Gauss-Seidel method are represented by
a quadratic function T (N) = (a2N + b2)2 with a2 = (3.8 ± 0.06) × 10−6 and b2 = 0.83 ± 0.6.

The test for parallel computation was done in the Kan-Balam computer cluster.5 The results
were not entirely satisfactory due to hardware issues. Here we show one of the tests in which we
keep the total number of grid point approximately constant and we solve the problem increasing
the number of processors. In table A.3 we summarise the grid configuration. Table A.4 shows
the results where we run 5 times for each configuration to have a representative measurement
of the running times. In Fig. A.2(b) we show plot in logarithmic scale of the results. We
observe a quite erratic behaviour which can be divided in two sets. Each set is well represented
by a function T (N) = (a3N + b3)−2/3 and T (N) = (a4N + b4)−2/3 with a3 = (7 ± 2) × 10−4,
b3 = (−4 ± 1) × 10−4, a4 = (2 ± 0.1) × 10−4, b4 = (−5 ± 1.2) × 10−4. As we can see the
“slow” group correspond to the partitions with 2n with n ∈ {2, · · · , 6} processors. We did not do
additional test of the hardware. However, the results suggested a communication problem with
the cpu array.

5Kan-Balam is a computer cluster available for the numerical relativity group from Instituto de Cienacias
Nucleares, Universidad Nacional Autónoma de México.
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Table A.3: Domain partition per cpus. For MG test we choice the global grid size and partition
of the domain in order to keep the total number of grid points almost constant.

Local mesh size Partition Total mesh size
NxL NyL NzL X Y Z NxG NxG NyG Ntotal Ncpu

289 289 289 1 1 1 289 289 289 24137569 1
289 145 145 1 2 2 289 290 290 24304900 4
145 145 145 2 2 2 290 290 290 24389000 8
145 145 97 2 2 3 290 290 291 24473100 12
145 145 73 2 2 4 290 290 292 24557200 16
145 97 97 2 3 3 290 291 291 24557490 18
97 97 97 3 3 3 291 291 291 24642171 27

145 73 73 2 4 4 290 292 292 24726560 32
73 73 73 4 4 4 292 292 292 24897088 64

Average 24520564

Table A.4: O performance running in parallel for MG method solving a Poisson equation.
Using the grid configuration of Table A.3, we did 5 runs for each configuration. As before we
take the average of the time as central value and the standard deviation as error.

Total grid points: ∼24520564
Sub-grids cpus Time -wall- (sec) Time -cpu- (sec)

5 1 667.15 ± 0.32 661.80 ± 0.10
4 4 773.13 ± 0.45 761.53 ± 0.02
4 8 410.20 ± 0.26 398.44 ± 0.11
4 12 111.54 ± 0.89 104.49 ± 0.09
3 16 243.53 ± 0.48 225.59 ± 0.03
4 18 88.65 ± 0.23 77.36 ± 0.10
5 27 63.89 ± 0.56 53.33 ± 0.12
3 32 137.09 ± 0.12 122.18 ± 0.02
3 64 67.45 ± 0.46 52.93 ± 0.19
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Figure A.2: (a) We compare the performance of the MG method and the Gauss-Seidel method.
We confirm the theoretical performance of both methods, for MG the computational cost in-
creases linearly with the total number of mesh points. For the Gauss-Seidel the computational
cost grows quadratically. (b) The parallel performance of the code for the MG method is quite
erratic. The general behaviour is as an inverse power. However the results group in two cate-
gories, each with different coefficients.
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Appendix B

Newton-Raphson method

In this appendix we review the Newton-Raphson method and we describe its implementation
in O. The Newton-Raphson method is one of several root-finding algorithm. Given a
smooth function f : R→ R with a root in s

f (s) = 0, (B.1)

it is possible, given a initial test point x0, to write down s as the initial value plus a correction h:
s = x0 + h. We can use a Taylor expansion of the function

f (s) = f (x0 + h) = f (x0) + h f ′(x0) +
h2

2
f ′′(x0) + · · · = 0. (B.2)

to get an approximation to the correction

h ≈ h0 := − f (x0)
f ′(x0)

. (B.3)

where we used only the linear terms of the series. Using now x1 := x0 + h0 as a new test point
we get a new correction h1. We can apply the algorithm iteratively

hn = − f (xn)
f ′(xn)

, (B.4)

xn+1 = x0 +

n∑
i=0

hi. (B.5)

87
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Figure B.1: Newton-Raphson root-finding method. Geometrical example of a few iterations. In
one case starting at point x0 the solution may converge. If the initial guess (for example starting
at x′0) is far from the root, then the root search may fail.

It is possible to combine (B.4) and (B.5) in a single equation

xn+1 = xn − f (xn)
f ′(xn)

. (B.6)

Each iteration of the Newton-Raphson method has a geometrical meaning. The new test point
xn+1 is given by the abscissa of the tangent line which touches the point (xn, f (xn)). In Fig. B.1
we illustrate the procedure for a few iterations. The Newton-Raphson methods converge for
a smooth function if we start with an initial guess point that is sufficiently close to a solution.
Depending on the function it is possible to start in a point which diverges (see Fig. B.1).1

Further improvements to the method include the addition of more terms in the Taylor series or
the combination with other methods in order to guarantee the convergence in an interval which
contain a root.2

In the case of non-linear partial differential equations it is possible to use a similar approach.
Particularly in the case of elliptic equations a direct method involve the solution of non-linear

1If the derivative in (B.6) tends to zero, then the tangent to the curve in (xn, f (xn)) will cross the x−axis far from
the origin and probably far from the root. The tangent in the successive guess points can fall off the approximation.

2A popular method which uses this idea is Brent’s algorithm, it combine the bisection method, the secant
method and inverse quadratic interpolation [109].
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system of equations A : Rm → Rm (see Appendix A and [55, 136, 89])

A~u = ~ρ (B.7)

The Newton-Raphson method in this case is given by:

~un+1 = ~un + ~δn, (B.8)

where ~δn is the solution of
J(~un)~δn = −A~un. (B.9)

Here J(~u) := A′(~u) ∈ Rm×m is the Jacobian matrix of A with elements

Ji j(~un) =
∂

∂u j
A(~un)i. (B.10)

In O we use an alternative approach. From the definition of the residual (2.18) we get on
the lattice location xi jk a non-linear equation

ri jk = Lh (un
i jk) − ρi jk, (B.11)

where Lh is the finite difference representation of the non-linear partial differential operator.
Depending on the order of the finite difference scheme L in xi jk can be function of the neigh-
bours (see example below). However, we can consider to solve the equation for ui jk so that the
corresponding residual becomes pointwise zero. The Newton-Raphson method that we apply
in each point of our grid is

un+1
i jk = un

i jk −
rn

i jk

drn
i jk

, (B.12)

here drw
i jk := ∂

∂ui jk
Lh (un

i jk). In practise instead of solving Eq. (B.12), we do only one itera-
tion in order to reduce ri jk. It is important to notice that in this case we take an entire vector
of unknowns ~un, and we calculate a new estimation ~un+1 working component by component.
Then, we have to distinguish between the convergences of the iterative solver (Gauss-Seidel
relaxation) and the convergence of the root-finding algorithm. Taking a single step in the root-
finding procedure we combine the two iterations in a single process. If the solution of the
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PDE problem has a local unique solution, and we start with an initial guess function pointwise
enough close to that solution, then during the iterative process the vector solution will converge
component by component to the solution. In O we use as initial guess function ~u0 = ~0.
For our numerical experiments the solution converges to the analytical one in every case.

For example, the implementation for the boundary condition (2.10) in direction −ŷ is given
by

ri jk := Dp+
y un

i jk −
qyi jk

r2
i jk

(A − un
i jk), (B.13)

dri jk :=
∂

∂ui jk
D+

y un
i jk +

qyi jk

r2
i jk

un
i jk, (B.14)

un+1
i jk → un

i jk −
ri jk

dri jk
, (B.15)

where Dp+
y is the forward difference operator of order p in the y-direction, ui jk, ri jk and yi jk are

the values of u, r, and y, respectively, at the lattice location (i, j, k), and n is an iteration index.
For example, in the case p = 2 we obtain

D2+
y ui jk = −3ui jk−4ui, j+1,k+ui, j+2,k

2∆y , (B.16)
∂

∂ui jk
D2+

y un
i jk = −3/2∆y. (B.17)

Note that Eq. (B.13) is linear in ui jk, so in fact the algorithm is equivalent to implementing the
explicit finite difference formula, with the advantage that its implementation is easier.
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Convergence of Cn functions

In certain cases, the order of convergence of a finite difference scheme can be higher in the
interior than at the boundary, without the lower order at the boundary spoiling the convergence
in the interior (e.g. [89], Sec. 2.12). Here we estimate the order of convergence of a standard
p-order finite difference scheme for an elliptic problem, where the solution is C∞ everywhere
except on the origin where it is Cn (where n < p). In order to simplify the notation, we will
later restrict the examples to the one dimensional case. However, the extension to the three
dimensional case is straightforward.

Let L be an elliptic operator, Ω ⊂ R3 an open domain, and u : Ω → R the solution of the
problem

Lu(~x) = ρ for ~x ∈ Ω, (C.1)

Bu(~x) = ub(~x) for ~x ∈ ∂Ω, (C.2)

where B is a boundary operator, ρ : Ω→ R is a source term, and u ∈ C∞0 (Ω)∩Cn(0). Let Lh be
a finite difference representation of order p of L in a mesh Ωh ⊂ N3 with a uniform grid size h.
The numerical solution Uh : Ωh → R satisfies

LhUh(~xh) = ρh(~xh) for ~xh ∈ Ωh, (C.3)

BhUh(~xh) = uh
b(~xh) for ~xh ∈ ∂Ωh, (C.4)

where Bh is a discrete boundary operator and ρh is the restriction of ρ on Ωh.
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Given a point x ∈ Ω, we identify points between Ωh and Ω by xi = x0 + ih, where i ∈
{0, 1, . . . ,N}. For every grid function we use as notation Ui := Uh(xi). The finite difference
representation of L on the lattice location xi has for each direction the form

LhUh
i =

i+p∑
I=i−p

aI−iUI , (C.5)

where the coefficients aI−i depend of the order of approximation and the kind of stencil. For
example, the standard 2nd order centred approximation to the second derivative is defined by
a0 = −2/h2, a±1 = 1/h2.

The truncation error is defined by

τh := |Lhuh − ρh|, (C.6)

where uh is the restriction of u to the grid Ωh. The approximation has the order of consistency
p > 0 if there is h0 > 0 which for all positive h < h0 satisfies

τh ≤ Chp, (C.7)

with a constant C > 0 independent of h. The standard approach to analysing the error in a finite
difference approximation is to expand each of the function values of uh in a Taylor series about
the point (xi). Taylor’s theorem states that for a function u ∈ Cn−1([xi, x]) and u ∈ Cn((xi, x)),

u(x) =

n−1∑
k=0

u(k)
i

k!
(x − xi)k +

u(n)(ξ)
n!

(x − xi)n, (C.8)

where ξ ∈ [xi, x] and u(n) denotes the n-th derivative. For grid functions the expansion formula
is

u j =

n−1∑
k=0

u(k)
i

k!
( j − i)khk +

u(n)(ξ)
n!

( j − i)nhn. (C.9)
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Using (C.5) and (C.9), it is possible to calculate

Lhuh
i =

i+p∑
I=i−p

n−1∑
k=0

aI−i
u(k)

i

k!
(I − i)khk

+

i+p∑
I=i−p

n−1∑
k=0

aI−i
u(n)(ξ)

n!
( j − i)nhn.

(C.10)

If n ≥ p and the operator L contains a linear combination of derivatives up to order n − 1, then
it is possible to select the coefficients ai to cancel the remaining factors. We obtain

Lhuh
i =Luh

i +

i+p∑
I=i−p

n−1∑
k=p

aI−i
u(k)

i

k!
(I − i)khk

+

i+p∑
I=i−p

n−1∑
k=0

aI−i
u(n)(ξ)

n!
( j − i)nhn,

(C.11)

where now the second summand starts at k = p. If |u(n)(ξ)| is bounded, the dominant term is of
order hp. A substitution with (C.6) leads to

τh ≤ ∣∣∣ i+p∑
I=i−p

aI−i
u(p)

i

p!
(I − i)p

∣∣∣hp, (C.12)

where the factor is bounded and independent of h. If we use the same scheme close to the origin,
where n < p, we are not able to cancel terms lower than hn:

Lhuh
i =Luh

i +

i+p∑
I=i−p

n−1∑
k=0

aI−i
u(n)(ξ)

n!
( j − i)nhn. (C.13)

The truncation error in this case is of order n < p,

τh ≤ ∣∣∣ i+p∑
I=i−p

aI−i
u(n)(ξ)

n!
(I − i)n

∣∣∣hn. (C.14)
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For example, for the operator

L =
∂2

∂x2 , (C.15)

the 4th order centred approximation to the second derivative is

Lhuh
i = −ui−2 − 16ui−1 + 30ui − 16ui+1 + ui+2

12h2 . (C.16)

If u ∈ C∞0 (R) ∩ C2(0) and 0 ∈ [xi+1, xi+2], a substitution of the Taylor series of xi±2 and xi±1 in
equation (C.16) results in

Lhuh
i =

∂2uh
i

∂x2 +
1
9

h
(
∂3uh

i

∂x3 −
∂3uh(ξ)
∂x3

)
+

1
18

h2∂
4uh(ξ)
∂x4 + O(h3),

(C.17)

where we expand the term xi+2 only up to O(h2). The truncation error is of order O(h) .



Appendix D

First and second post-Newtonian
Hamiltonian

Here we reproduce in our notation the Hamiltonian given in [113, 93]

H1 = − 1
8

∑
a

ma

(
~p 2

a

m2
a

)2

− 1
4

∑
a

∑
b,a

1
rab

(
6

mb

ma
~p 2

a − 7~pa · ~pb − (n̂ab · ~pa)(n̂ab · ~pb)
)

+
1
2

∑
a

∑
b,a

∑
c,a

mambmc

rabrac
.

(D.1)

H2 =
1

16
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ma

(
~p 2
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∑
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(
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1
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[
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(
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) (
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)
+14ma

(
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) (
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(
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) (
n̂ac · ~pc

) ]
+

1
8

∑
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b,a

∑
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1
r2
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[
2mb

(
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) (
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)
+ 2mb

(
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) (
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)
+

mamb

mc

(
5(n̂ab · n̂ac)~p 2
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(
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)2 − 14
(
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) (
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)) ]
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+
1
4

∑
a

∑
b,a

ma

r2
ab

[mb

ma
~p 2

a +
ma

mb
~p 2
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∑
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(ni
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8mb(pai pc j) − 16mb(pa j pci)
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Zusammenfassung

In dieser Arbeit wurde ein numerischer, elliptischer Löser, O, präsentiert. Als erste
Anwendung wurde die Hamiltonsche Zwangsbedingung gelöst, um numerische Anfangsdaten
für Simulationen mit mehreren Schwarzen Löchern zu erhalten. Olliptic implementiert eine
”Multigrid”-Methode hoher Ordnung, die parallelisiert ist und Boxen-basierte Gitterverfeinerung
verwendet. Die Tests und ersten Anwendungen des Codes zeigen, dass der neue Code für un-
sere Zwecke genau genug zu sein scheint. Allerdings fanden wir das Nahe an der Punktur die
Konvergenz-Rate geringer ist als gewünscht, was man für Punktur Daten (siehe Anhang C) er-
wartet. Der Abfall der Konvergenz nahe der Punkturen spiegelt sich nicht in der Konvergenz
der Zeitentwicklung wieder.

Wir haben Entwicklungen von drei Schwarzen Löchern gezeigt, für deren Anfangsdaten
die Lösungen der Hamiltonschen Zwangsbedingung, wie sie durch den neuen ellptischen Löser
generiert wurden, verwendet wurden. Wir haben unsere Anfangsdaten mit denen einer bes-
timmten analytischen Näherung für Anfangsdaten verglichen. Im Falle dreier Schwarzer Löcher
ist die aus den genäherten Anfangsdaten resultierende Dynamik von der in Zeitentwicklungen,
die die Hamiltonsche Zwangsbedingung numerisch erfüllen, verschieden. Wie zu vermuten,
sind die Trajektorien der Punkturen sensitiv auf kleine änderungen in den Anfangsdaten. Beson-
ders, für drei und mehr Schwarze Löcher kann eine änderung der Anfangsdaten, z.B. durch das
Lösen der Zwangsbedingungen statt eine analytische Näherung zu verwenden, zu qualitativ
und quantitativ sehr unterschiedlichen Verschmelzungssequenzen führen. Dennoch haben wir
die Resultate von [42, 94] bestätigt, wie erwartet, dass sich die Punktur Methode auf natürliche
Weise für die Simulation mehrerer Schwarzer Löcher eignet.

Simulationen dreier, vierer oder gar mehrerer Schwarzer Löcher führt zur der folgenden
Frage über allgemeinere Verschmelzungs Situationen: Wie kann man die Anzahl der in einer
Verschmelzung beteiligten Schwarzen Löchern aus der Beobachtung ihrer Gravitationswellen
bestimmen? Eine erste Analyse dieses Themas wurde zuvor im Newtonschen Fall gegeben
[9, 127]. Unter Verwendung Post-Newtonscher Techniken und voll relativistischer, numerischer
Simulationen haben wir mit der Erforschung eines einfachen Falles begonnen, in dem wir Ev-
idenz aufzeigen, die die anfängliche Vermutung von [127] unterstützt, welche wir hier umfor-
mulieren:
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Um ein System mit N kompakten Objekten zu charakterisieren ist es nötig eine Analyse
der Wellenformen einschliesslich mindestens der l ≤ N Moden durchzuführen.1 Im hoch-
relativistischen Fall untersuchen wir eine symmetrische Konfiguration dreier Schwarzer Löcher
gleicher Massen, die spiralförmig verschmelzen ähnlich wie ein Binärsystem zweier Schwarzer
Löcher gleicher Massen in einer quasi-zirkularen Verschmelzung. Wir haben im Fall der drei
Schwarzen Löcher gefunden, dass die l = 3,m = 3 Moden von gleicher Grössenordnung oder
grösser sind als die l = 2,m = 2 Moden. Für das binär System finden wir gegenteilig, dass die
l = m = 3 Moden beinahe Null sind. Unter Verwendung Post-Newtonscher Simulationen einer
bestimmten hierarchischen Konfiguration haben wir die Wellenformen betrachtet. Wir fanden,
dass es möglich ist zwischen dem Jacobischen - und dem Binärsystem durch den Massenoktupol
- und Stromquadrupolteil der Wellenform zu unterscheiden. Zusätzlich fanden wir in diesem
Fall eine Beziehung zwischen den Modulationen der l = 3 Moden und der Periode des dritten
kompakten Objekts. Wir haben einen Zusammenhang zwischen der Amplitude der l = 3,m = 2
und l = 3,m = 3 Moden und dem Winkel der oskulierenden Orbitalebene gefunden.

In Zukunft planen wir unsere in dieser Thesis präsentierte Forschung des Dreikörperproblems
auszuweiten. Mit numerischen Methoden planen wir die Charakterisierung der dreifach Ver-
schmelzung mithilfe der Analyse der höheren Moden der Wellenformen zu untersuchen. Wir
planen den Einfluss des Spins auf den Ausstoss oder die Verschmelzung der drei Körper zu
studieren. Mit Post-Newtonschen Techniken planen wir eine systematische Studie des hierar-
chischen Systems sowie langsamen Zusammentreffen. Wir planen die Berechnung der Wellen-
formen (wahrscheinlich inklusive Post-Newtonscher Korrekturen) und die Multipolzerlegung
zu verbessern. Das Studium dreier kompakter, spinnender Körper im Post-Newtonschen For-
malismus ist ein Problem in unserer Reichweite. Ein interessantes Problem ist das Studium von
Chaos im Dreikörperproblem aus der Post-Newtonschen Sichtweise und insbesondere unter
Berücksichtigung gravitativer Abstrahlung.

1Die ursprüngliche Aussage in [127] lautet: ...Classification of N (or fewer) particles producing (nearly) the
same wave forms requires inclusion of the lth multiple part with l ≤ N
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Numerical simulations of three black holes
Juan Pablo Galaviz Vilchis

1. “We have presented a numerical elliptic solver, O . . . the new code seems to be
sufficiently accurate for our purposes.”

2. “. . . we found that close to the puncture the convergence rate is less than that desired ”

3. “The drop in the convergence close to the punctures is not reflected in the convergence of
the evolution.”

4. “In the case of three black holes, the dynamics resulting from approximate data is differ-
ent from the dynamics produced by evolutions which satisfy the Hamiltonian constraint
numerically.”

5. “As anticipated, the puncture tracks are sensitive to small changes in the initial data.”

6. “. . . the puncture method lends itself naturally to the simulation of multiple black holes.”

7. “In the highly relativistic case, . . . in the case of the triple merger the mode l = m = 3 is
of the same order or bigger than the l = m = 2 mode. For the binary system we find the
opposite, namely the l = m = 3 mode is almost zero.”

8. “Using post-Newtonian simulations . . . looking at the mass octupole and current quadrupole
part of the waveform, it is possible to distinguish between a Jacobian system and a binary
system.“

9. “. . . we found a relation between the modulation of the modes l = 3 and the period of the
third compact object.”

10. “We established a link between the amplitude of the l = 3,m = 2 and l = 3,m = 3 modes
and the angle of the osculating orbital planes.”



Numerische Simulationen dreier Schwarzer Loecher
Juan Pablo Galaviz Vilchis

1. “In dieser Arbeit wurde ein numerischer, elliptischer Löser, O, präsentiert . . . Der
neue Code scheint für unsere Zwecke genau genug zu sein.”

2. “. . . fanden wir das Nahe an der Punktur die Konvergenz-Rate geringer ist als gewünscht
”

3. “Der Abfall der Konvergenz nahe der Punkturen spiegelt sich nicht in der Konvergenz der
Zeitentwicklung wieder.”

4. “Im Falle dreier Schwarzer Löcher ist die aus den genäherten Anfangsdaten resultierende
Dynamik von der in Zeitentwicklungen, die die Hamiltonsche Zwangsbedingung nu-
merisch erfüllen, verschieden.”

5. “Wie zu vermuten, sind die Trajektorien der Punkturen sensitiv auf kleine änderungen in
den Anfangsdaten.”

6. “. . . die Punktur Methode eignet sich auf natürliche Weise für die Simulation mehrerer
Schwarzer Löcher.”

7. “Im hoch-relativistischen Fall haben wir im Fall der drei Schwarzen Löcher gefunden,
dass die l = 3,m = 3 Moden von gleicher Grössenordnung oder grösser sind als die
l = 2,m = 2 Moden. Für das binär System finden wir gegenteilig, dass die l = m = 3
Moden beinahe Null sind.”

8. “Unter Verwendung Post-Newtonscher Simulationen fanden wir, dass es möglich ist zwis-
chen dem Jacobischen - und dem Binärsystem durch den Massenoktupol - und Stromquadrupolteil
der Wellenform zu unterscheiden.”

9. “. . . wir fanden in diesem Fall eine Beziehung zwischen den Modulationen der l = 3
Moden und der Periode des dritten kompakten Objekts.”

10. “Wir haben einen Zusammenhang zwischen der Amplitude der l = 3,m = 2 und l =

3,m = 3 Moden und dem Winkel der oskulierenden Orbitalebene gefunden.”


