

Jena Research Papers in
Business and Economics

SALBPGen – A systematic data generator
for (simple) assembly line balancing

Alena Otto, Christian Otto and Armin Scholl
05/2011

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

SALBPGen – A systematic data generator

for (simple) assembly line balancing

Alena Otto
a
, Christian Otto

a
and Armin Scholl

a,*

a
Friedrich-Schiller-University of Jena, Chair of Management Science,

Carl-Zeiß-Straße, D-07743 Jena, Germany

*Corresponding author: phone: +49 3641 943171, e-mail:armin.scholl@uni-jena.de

Abstract

Assembly line balancing is a well-known and extensively researched decision problem which

arises when assembly line production systems are designed and operated. A large variety of

real-world problem variations and elaborate solution methods were developed and presented

in the academic literature in the past 60 years. Nevertheless, computational experiments

examining and comparing the performance of solution procedures were mostly based on very

limited data sets unsystematically collected from the literature and from some real-world

cases. In particular, the precedence graphs used as the basis of former tests are limited in

number and characteristics. As a consequence, former performance analyses suffer from a

lack of systematics and statistical evidence.

In this article, we propose SALPBGen, a new instance generator for the simple assembly line

balancing problem (SALBP) which can be applied to any other assembly line balancing

problem, too. It is able to systematically create instances with very diverse structures under

full control of the experiment’s designer. In particular, based on our analysis of real-world

problems from automotive and related industries, typical substructures of the precedence

graph like chains, bottlenecks and modules can be generated and combined as required based

on a detailed analysis of graph structures and structure measures like the order strength.

We also present a collection of new challenging benchmark data sets which are suited for

comprehensive statistical tests in comparative studies of solution methods for SALBP and

generalized problems as well. Researchers are invited to participate in a challenge to solve

these new problem instances.

Keywords: manufacturing; benchmark data set; assembly line balancing; precedence graph;

structure analysis; complexity measures.

1

1 Introduction

The problem of an optimal allocation of tasks to working stations of an assembly line, or

assembly line balancing problem (ALBP), describes the planning situation in manual

assemblies. It can be found, for example, in automotive, white goods and electronics

industries. Since its formulation by Salveson (1955), a considerable number of exact and

heuristic methods for the ALBP, known to be NP-hard, were proposed and they are getting

more and more effective.

Ongoing developments in research on ALBP set new requirements on benchmark data sets. A

benchmark data set forms the basis for testing relative performance of computational

methods. Hereto, researchers are interested not only whether their methods perform better or

worse in the given benchmark data set, but also, in what kind of instances its performance is

especially weak or strong. A set of structure measures was proposed in the literature to

investigate performance of solution methods and estimate the complexity of the problem

instance. A list of comparative computational studies of solution methods for ALBP that

emphasize the structure measures of data instances is very long and includes, for example,

Mastor (1970), Dar-El (1975), Johnson (1981), Wee and Magazine (1981), Talbot et al.

(1986), Hoffmann (1992), Scholl (1999, Chapter 7), Amen (2001), Levitin et al. (2006),

Urban and Chiang (2006), Andrés et al. (2008) and Gao et al. (2009). Moreover, a deeper

knowledge on the interactions of the problem structure and algorithms may facilitate creation

of even more effective and efficient solution methods.

Assembly line balancing is a routine planning task at factories. The knowledge, which

solution method to select is extremely important for practitioners. Thus, in their assembly line

balancing software “A~Line”, Driscoll and Thilakawardana (2001) used structure measures

for a guided selection of a suitable solution heuristic.

The currently existing data sets as well as present data set generation methods exhibit rather

limited structures of the graphs and do not allow for a systematic variation of structure

measures, such as described in the literature. Therefore, we propose a new data set generation

method that overcomes this drawback and allows controlling for the most widely accepted

structure measures.

We precede with a short introduction into ALBP and existing structure measures in Section 2.

In Sections 3 and 4, we review existing data sets and data generation procedures, respectively.

We describe our new data generation procedure SALBPGen in Section 5. In Section 6 we

discuss the order strength structure measure and provide insights towards its connection to the

optional parameters of SALBPGen. Further, characteristics of the instances generated by

2

Figure 1: Example of a precedence graph

SALBPGen (Section 7) and the new benchmark data set (Section 8) are described. Finally, we

conclude with a summary and further research directions in Section 9.

2 Basics and structure measures of ALBP

Formally speaking, an assembly line is a production system, where a set of tasks

 with operation times (for) are distributed among a set of (work)stations

 arranged in a sequential order. The workpieces are launched down the line at a

fixed rate such that each station has access to every workpiece for a constant timespan. Within

this cycle time , the worker operating at station has to perform all the tasks contained

in the station load , i.e., the station time
 must not exceed the cycle

time . This process is repeated for every new workpiece cyclically.

Due to technological and

organizational conditions, the

order of performing the tasks

is restricted by precedence

relations , meaning that a

task must be executed

before another task .

The production process can

be summarized by a non-cyclical digraph , called precedence graph, where is

the node set and is the set of arcs representing direct precedence

relations (see Figure 1). and denote the set of direct followers and direct predecessors of

task , respectively. The transitive closure of we call
 with

and
 denoting the sets of indirect followers and predecessors of task . The node weights

represent the operation times .

For the sake of convenience, we hypothetically insert a dummy source node with

which is predecessor of all tasks . We define the depth of task as the maximal

number of arcs in a path connecting with dummy source 0. In this terms, the stage

 consists of all tasks of the precedence graph with depth . For example, the

precedence graph in Figure 1 has six stages: .

In its basic form, the Assembly Line Balancing Problem (ALBP) is to assign tasks to stations

such that cycle time and other restrictions as well as precedence relations are met and some

time-, capacity-, cost- and/or profit-oriented goals are optimized (e.g. Amen 2001; Becker and

Scholl 2006; Boysen et al. 2007). A feasible task assignment is called (line) balance (cf.

Baybars 1986). A special case of ALBP is the Simple Assembly Line Balancing Problem-1

3

Graph structure measures: Reference example from the literature

Number of tasks: Elmagharaby and Herroelen (1980)

Order strength:

(also called TF-ratio; and flexibility ratio)

Mastor (1970), Dar-El (1975)

Average number of immediate predecessors:

 Rosenberg and Ziegler (1992)

Degree of divergence:

,

where is number of tasks without predecessors,

Scholl (1999, Chapter 2.2.1.5)

Degree of convergence:

,

where is number of tasks without successors,

Scholl (1999, Chapter 2.2.1.5)

Presence of bottleneck tasks Dar-El (1975)

Maximum task degree: Baybars (1986)

Form and characteristics of stages Scholl (1999, Chapter 2.2.1.5)

Number of tasks without predecessors: Gehrlein (1986)

Number of stages: Gehrlein (1986)

Number of feasible sequences Elmagharaby and Herroelen (1980)

Time structure measures:

Maxtime-ratio

,

(and its inverse

)

Kilbridge and Wester (1961),

Wee and Magazine (1981)

Mintime-ratio

 Wee and Magazine (1981)

Time variability ratio:

 Scholl (1999, Chapter 2.2.1.5)

Sumtime-ratio:

 Johnson (1981), Hoffmann (1990)

Standard deviation of task times: Bhattacharjee and Sahu (1990)

Table 1: Overview of structure measures for SALBP-1

(SALBP-1), which is to minimize the number of workstations satisfying cycle time and

precedence constraints (Scholl and Becker 2006). We restrict our further discussion to data

instances and structure measures for SALBP-1, since it is the basic and most investigated

version of ALBP. However, the results of the paper can be easily generalized to other variants

of ALBP. For example, Scholl et al. (2008, 2009, 2010) as well as Otto and Scholl (2011)

generated their testing instances based on an existing benchmark data set for SALBP-1.

The structure measures proposed in the literature for comparative studies on solution methods

of SALBP and as indicators for the instance’s complexity are summarized in Table 1. They

can be divided into: (1) Graph structure measures that describe the number and the

precedence relations of tasks without connection to their task times. (2) Time structure

measures that describe the properties of the set of task times (possibly in relation to the cycle

time) independently from the tasks, to which they are assigned. (3) Interaction measures that

4

describe properties of the graph arising from assignment of certain task times to tasks with

specific precedence relations to other tasks.

There has been done little systematical study of implications of structure measures for ALBP

up to date. However, several results indicate that it is a promising area of research. In his

studies of exact solution methods for SALBP-1, Johnson (1981) received that computational

times decrease with the higher order strength of the precedence graph. Hoffmann (1992) for

the exact solution method EUREKA and Talbot et al. (1986) for heuristic solution methods

for SALBP-1 showed that higher maxtime-ratio increases computational times and

deteriorates the performance of heuristic methods. The sumtime-ratio was first investigated by

Hoffmann (1992). The results of his computational studies indicate that computational times

of his exact solution method EUREKA increase, if the sum of task times is a multiple of the

cycle time.

In more recent studies, researchers applied structure measures to investigate performance of

solution methods for ALBP with additional extensions and constraints. As a rule, their

findings support those found for SALBP. Investigations of u-shaped ALBP with stochastic

task times by Urban and Chiang (2006) confirmed that higher order strength decreases

computational times. In his study of robotic ALBP with objective to minimize the cycle time,

Levitin (2006) received that performance of a genetic algorithm relative to a branch and

bound method improved at lower order strength.

Also it was found that relative performance of different solution methods depends on the

underlying structure of the problem. Thus, for example, Mastor (1970) in an analysis of

SALBP-2 with objective to minimize the cycle time by an iterative solution of SALBP-1

found that the relative performance of heuristics, both measured in computational time and

quality of solution, changes at different levels of OS and at different numbers of tasks. Talbot

et al. (1986) in their study of heuristics for SALBP-1 found that no examined solution method

consistently dominates the others, but their relative efficiency depends on the problem

structure parameters.

A number of structure measures proposed in the literature are not extensively investigated yet.

In his seminal article, Baybars (1986) wrote that measures of node connectivity, for example,

maximum degree (or number of direct followers and predecessors of the task), could be better

structure measures than the order strength. Inspired by Jackson (1956), Scholl (1999, Chapter

2.2.1.5) suggested that form of stages, their precedence relations to neighboring stages and

task times of their tasks may be summarized into one/some easy to compute and informative

structure measures. Based on the computational results of Talbot et al. (1986), Gehrlein

(1986) noted, that further graph structure measures, such as number of tasks without

5

 Order strength

[0, 0.33] (0.33, 0.66] (0.66, 1]

Numberoftasks

[0, 25) 0 3 4

[25, 50) 1 4 1

[50, 100) 1 4 2+

>100 0 3+ 0

Table 2: Benchmark data set of Scholl: Number of

precedence graphs with certain properties (“+” marks

graphs with the same structure but modified task times)

predecessors and number of stages, are important indicators for the (relative) performance of

solution methods.

To our best knowledge, no structure measures that we classify as interaction ones, are

proposed in the literature. Nevertheless they might be important. A prominent but little cited

result received by Hoffmann (1990) is that interaction parameters matter a lot for the

instance’s complexity and for the (relative) performance of solution methods. Due to simple

permutation of task times in Hoffmann’s experiment, computational times of the examined

solution method for some instances grew up by the factor of 210 for an instance containing 30

tasks.

3 Review of existing data sets

Many of the computational comparisons of solution methodologies are based on the

benchmark data set of Scholl (1993) or its adaptations to the specific ALBP of interest

(www.assembly-line-balancing.de). It is a combination and extension of the data sets of

Talbot et al. (1986) and Hoffmann (1990, 1992) and contains 269 instances. They were

collected from different sources, both generated and taken from empirical studies, based only

on 25 precedence graphs (23 distinct graphs and two graphs with modified task times) with

different cycle times. A detailed description of the benchmark data set with respect to the

structure measures can be found in Scholl (1999, Chapter 7.1). Unfortunately, the data set

does not allow for a systematic investigation of solution methods’ performance at different

levels of graph structure and interaction measures as well as for some time structure measures.

For example, Table 2 shows that even for the structure parameters most established in the

literature such as number of tasks and order strength, the number of precedence graphs per

cell does not exceed 4, while others are empty. Further, only 20 precedence graphs (18

distinct graphs) have more than 25 tasks and thus are meaningful for comparing elaborate

solution methods.

Another and perhaps even a larger

problem of the current benchmark

data set is triviality of many

contained problem instances. We

call a problem instance trivial, if

the share of optimal solutions in

the feasible ones is (almost surely)

100%. For such a problem instance a simple random generation of one or a few feasible task

sequence(s) would have a high probability to find an optimal solution. The lower this share of

optimal solutions is, the more elaborate the solution method should be. Apparently, trivial

6

 c (%) c (%) c (%) c (%) c (%) c (%)

Arcus 1

3786

5408

7571

0.3

81.0

100.0

3985

5824

8412

0.0

96.2

100.0

4206

5853

8898

0.0

97.2

99.9

4454

6309

10816

1.2

87.8

100.0

4732

6842

0.4

31.3

5048

6883

26.2

59.9

Arcus 2

5755

7162

10027

0.0

0.0

19.5

5785

7520

10743

0.0

0.0

38.0

6016

7916

11378

0.0

0.0

58.2

6267

8356

11570

0.0

3.7

93.4

6540

8847

17067

0.0

14.9

40.5

6837

9400

0.0

36.1

Bartholdi 1 705 0.0 No optimum found for other 7 instances

Bartholdi 2 No optimum found for any of 27 instances

Bowman 20 100.0

Buxey
27

54

0.3

99.2

30

8.5

33

0.2

36

57.2

41

2.1

47

0.0

Gunther
41

81

0.8

86.3

44

4.4

49

30.7

54

0.0

61

51.1

69

62.7

Hahn 2004 51.6 2338 0.0 2806 100.0 3507 100.0 4676 100.0

Heskiaoff 138 37.2 205 0.0 216 23.3 256 0.0 324 100.0 342 5.8

Jackson 7 100.0 9 100.0 10 10.7 13 85.0 14 9.1 21 70.8

Jaeschke 6 100.0 7 50.0 8 100.0 10 100.0 18 100.0

Kilbrid
56

110

0.3

100.0

57

111

9.6

4.8

62

138

0.0

0.4

69

184

0.0

1.6

79

0.0

92

0.0

Lutz 1 1414 6.5 1572 0.3 1768 81.9 2020 96.4 2357 93.6 2828 100.0

Lutz 2 No optimum found for any of 11 instances

Lutz 3
75

103

0.0

50.1

79

110

0.0

0.0

83

118

0.0

0.0

87

127

0.0

57.0

92

137

4.9

99.7

97

150

5.5

95.8

Mansoor 48 25.0 62 9.1 94 50.0

Mertens 6 22.2 7 60.0 8 100.0 10 100.0 15 28.6 18 44.4

Mitchell 14 0.0 15 11.6 21 2.3 26 100.0 35 1.4 39 100.0

Mukherjee

176

234

351

0.1

6.9

99.9

183

248

0.4

27.9

192

263

0.0

70.9

201

281

0.0

88.4

211

301

0.2

53.3

222

324

0.0

92.2

Rosenberg 14 52.4 16 0.0 18 96.5 21 3.2 25 100.0 32 14.6

Sawyer
25
47

3.4
0.0

27

54

0.5
99.9

30

75

49.7
100.0

33

20.4

36

27.3

41

0.0

Scholl No optimum found for any of 26 instances

Tonge

160

220

364

0.1

3.0

55.1

168

234

410

0.0

17.8

91.7

176

251

468

0.0

0.0

96.0

185

270

527

0.3

64.6

91.4

195

293

0.4

93.6

207

320

5.6

0.0

Warnecke 97 3.8 No optimum found for other 15 instances

Wee-Mag

28

34

40

47

1.8

95.6

100.0

0.0

29

35

41

49

4.3

14.6

67.4

0.1

30

36

42

50

0.1

85.3

6.7

4.1

31

37

43

52

14.5

99.4

13.6

0.1

32

38

45

54

11.9

100.0

0.0

31.7

33

39

46

56

62.9

100.0

0.0

0.2

Table 3: Benchmark data set of Scholl: Share of optimal solutions in the solution space found

by enumeration or a random search with 10,000 runs. Instances with share >90% are highlighted.

problem instances are not suited to test or to compare (different) heuristic solution methods.

Note, that it may still be hard to solve them with exact solution methods as those have to

prove optimality.

To check, how many problem instances in the benchmark data set are trivial, we have taken

10,000 random solutions for each instance and computed the share of optimal solutions in

them. For the small instances with less than 12 tasks, we made a full enumeration of feasible

solutions, i.e., of feasible partitions of tasks between stations. In both cases, we applied the

well-established maximum load rule which requires adding a further task to the current station

load whenever it will not violate the cycle time constraint (Jackson 1956).

7

Table 3 summarizes the results by specifying the shares of optimal solutions in the feasible

solution space. The lower this share is, the more challenging it will be to find an optimum. Of

course, to find an exact share of optimal solutions for the NP-hard ALBP is not a realistic

task. But its estimation in 10,000 random runs is sufficient for many purposes. The 95%

confidence interval for the share of optimal solutions in the feasible solution space is at most

0.01 for the shares near to 0.50 and less than 0.006 for shares less than 0.001 or larger than

0.90 (see Appendix A.1). From Table 3, we see that for more than 57% of the instances an

optimal solution was found by at least one of the 10,000 runs of our simple random search.

Moreover, for 44 instances (16% of the data set), the share of optimal solutions in the solution

space exceeds 90%. 24 problem instances appeared to be trivial, because all the solutions

found in 10,000 runs of the random search were optimal.

Interestingly, neither a high number of tasks nor a low order strength guarantee a “non-

triviality” of the problem instance. Among the trivial problem instances, we also find rather

large ones with medium and low order strength, e.g., Arcus 1 with 83 tasks (,

) and Wee-Mag with 75 tasks (,).

4 Review of existing data set generation methods

Due to restrictions of the available benchmark data set, a number of authors generated their

own data sets varying selected structure measures of the data instances such as number of

tasks, order strength and cycle times (e.g. Mastor 1970; Wee and Magazine 1981; Boctor

1995); Rubinovitz and Levitin 1995). Only three articles describe the used data generation

procedure(s) explicitly: Gehrlein (1986), Bhattacharjee and Sahu (1990) and Rosenberg and

Ziegler (1992).

In the generation methods of Gehrlein (1986) the order strength is a random parameter, which

can be achieved with standard deviation of 1 to 11% depending on the size of the data set and

the desired order strength. The method employs a two-step procedure: First, partial orderings

of tasks are generated according to some rule (cf. Section 7). In the second step, a transitive

closure of the task set is taken to calculate the order strength. No further structure parameters

are controlled for.

In their random generator of precedence graphs, Bhattacharjee and Sahu (1990) actively use

stages. They randomly generate the stages form, given the specified bounds on the number of

stages, on the number of tasks per stage and on the number of direct followers for each task.

However, they generate very specific graph structures, allowing direct precedence relations

only between tasks on neighboring stages. This puts a significant limitation prohibiting

construction of graphs typical in real-world settings. For example, in an assembly of a

8

pressure reducing device, described by Lutz (1974), about 20% of the tasks have at least one

direct predecessor from a non-neighboring stage. Furthermore, in the generator of

Bhattacharjee and Sahu, the target order strength and the desired number of tasks cannot be

specified.

Instead of controlling for the order strength, Rosenberg and Ziegler (1992) set limitations on

the range of immediate predecessors for each task. The generator cannot control for the order

strength and further structure parameters.

There exist also a number of generators for related combinatorial optimization problems, but

they are not directly suited for generating ALBP instances. For example, these are the

generator of Arthur and Frednewey (1988) for the traveling salesman problem, the generator

of Uyar and Uyar (2009) for the knapsack problem, ProGen (Kolisch et al. 1995), RanGen

(Demeulemeester et al. 2003) and the generator of Browning and Yassine (2010) for the

resource-constrained project scheduling problem, as well as generators for the nurse rostering

problem (De Causmaecker and Berghe 2011).

Contrary to the existing generation methods for ALBP, our precedence graph generation

procedure not only generates problem instances with the desired order strength, but also

controls for further relevant parameters of the time and graph structure, such as number and

characteristics of stages. Further, it enables to produce similar-to-real graphs by setting

structure parameters to values typical for real-world assemblies.

5 SALBPGen – a new data generator for SALBP-1

The proposed new data generator SALBPGen is purposefully created for researchers,

interested in examining solution methods. SALBPGen consists of two mandatory parts, the

arc-generator and the task times-generator. Both parts can work independently of each other,

but communication between them could be easily introduced in order to control for the

interaction parameters. The user of SALBPGen may easily create instances to test effects of

different task times for the same graphs, different graphs for the same set of task times and a

simple permutation of task times for the same precedence graph. So, a systematic (statistical)

analysis is supported by the configuration of the generator.

Also, the researcher can control for the following structure measures: number of tasks, order

strength, number and characteristics of stages, distribution parameters of task times, the

sumtime-ratio, the maximal number of direct followers and the number of isolated tasks (i.e.

tasks without predecessors and successors).

The centerpiece of SALBPGen is the concept of stages. It allows for a direct manipulation of

number of stages, stages form, precedence relations between stages and characteristics of task

9

times assigned to them, propagated by Gehrlein (1986) and Scholl (1999) as useful structure

measures. Furthermore and even more important, the concept of stages is useful for

controlling for other graph structures as well and create meaningful graphs even in terms of

visual inspection.

For a higher resemblance with real-world precedence graphs, we enriched SALBPGen with

the possibility of manipulating the number and form of bottleneck tasks, chains, as well as

modules (Section 5.1). We proceed in Section 5.2 with the description of the basic algorithm

of SALBPGen.

5.1 Bottlenecks, chains and modules

Bottleneck tasks are nodes with a high degree (number of direct followers and predecessors).

We define a bottleneck as a task that is the only direct follower of at least two of its direct

predecessors and the only direct predecessor of at least two of its direct followers. Hence,

bottleneck tasks are at least of degree 4 with in-degree and out-degree, respectively, not

smaller than 2. In Figure 1, task 7 is a bottleneck of degree 6 with direct predecessors

and direct followers .

Chains are graph structures, whose constituent tasks make up a path and have at most one

direct predecessor and at most one direct follower. In this paper, we speak about chains only

in case they contain at least two tasks. In Figure 1, task 10 is not a chain tasks, because its

direct predecessor has further direct successors and its direct successor has another direct

predecessor. To the contrary, tasks 2, 6, 8 and 12 form a chain of length four; there are no

further chains in this example.

Graph #tasks OS
Share of tasks

in chains (%)

Avg. chain

length

Share of bottleneck

tasks (%)

Avg. bottleneck

degree

Bartholdi 148 0.26 37% 2.6 3% 5.3

Gunther 35 0.60 43% 2.5 3% 5.0

Hahn 53 0.84 17% 2.3 2% 7.0

Heskiaoff 28 0.24 46% 2.2  

Lutz1 32 0.84 44% 3.5 6% 6.0

Lutz2 89 0.78 33% 2.4 5% 5.5

Mukherje 94 0.45 3% 3.0 1% 14.0

Scholl 297 0.58 40% 2.8 3% 7.9

Tonge 70 0.59 36% 2.8 4% 8.0

Warnecke 58 0.59 33% 2.4 2% 6.0

Table 4: Real-world precedence graphs from Scholl data set: frequency of chain tasks and bottleneck tasks

10

From our cooperation with several firms in automotive industry, we gained insight that chains

and bottleneck tasks are very common in real-world precedence graphs. A typical bottleneck

task would be an examination task, such as examination of electric equipment in the central

console: it immediately follows the mounting of electric equipment and must be completed

before the carpeting will be placed, only then further tasks, as mounting of seats, can be

performed. Clipping in of the airbag cable would be a typical chain task – a strictly

predetermined sequence of tasks. Also our analysis of the real-world precedence graphs taken

from the Scholl data set confirmed the frequent presence of these graph structures (see Table

4). In most cases, between 30 and 45% of the tasks are within chains, while 1 to 6% of the

tasks are bottlenecks with an average degree between 5 and 14.

Complex products like automobiles are nowadays constructed in a modular design. This

product structure is brought forward to the assembly production process, where, typically, the

precedence graph is composed of subgraphs, each responsible for assembling such a module.

This is done not only for technical constraints, but also in order to reduce organizational

complexity and increase flexibility of production (Garud et al. 2003). Figure 2 shows a typical

structure of a modular precedence graph, where precedence relations predominantly exist

between modules (which can be seen as super nodes related to other super nodes in the

module meta-graph). Examples of modules in automobile production would be wheel

assembly, gas pedal module or trunk lining.

5.2 Basic logic of SALBPGen

The basic algorithm of SALBPGen contains three parts: arc generation, task times generation

and (if required) connection of single generated graphs as modules to form the final problem

instance. Figure 3 summarizes required and optional parameters.

Matrix
Modules

1 2 3

M
o

d
u

le
s 1 0 0 1

2 0 0 1

3 0 0 0

Figure 2: Example of a precedence graph consisting of modules, each forming a super node.

The adjacency matrix M represents the transitive closure of the meta graph connecting the modules.

11

Arc generation

Required parameters: number of tasks n and order strength OS

Optional parameters / default values:

Tolerance

(Exact) form of stages (incl.) uniform (in expectation)

Min No. of isolated tasks
Max No. of direct followers for each task
Min No. of chains and distribution of their lengths
Min No. of bottlenecks and distribution of their degree

Task time generation

Optional parameters / default values:

Cycle time
Distribution of task times Bimodal

 not specified

Sumtime-ratio must be integral not activated

Module connector (optional)

Required parameters:

Super precedence matrix M for modules

Reference to the settings of the constituent graphs (modules) specified in the arc and

task time generation parts

Figure 3: Constituent parts of SALBPGen

Arc generation. The user is required to specify the number of tasks and desired order strength

 with the tolerance range . By default the tolerance parameter is set to for

small graphs with tasks, for medium graphs with tasks and

to for large graphs with tasks.

The user has an option either to apply a default random generator of stages, to set a rough

direction for the stage form, for example, a diamond or a thin waist, or to specify exactly the

number of tasks for each stage. The desired number of stages may be chosen by the user,

whereby the default values are motivated by our investigations in Section 6.2 (see Table 5).

For random variables, wherever needed, SALBPGen offers five kinds of distributions:

uniform, normal, beta, bimodal (a mixture of two normal distributions) and exponential.

Optional parameters available in the arc generation part include the number of isolated tasks

as well as the maximal number of direct followers of each task. Further, chain and bottleneck

modes may be activated. In the chain mode, inputs are the number of chains and the

distribution and its parameters according to which the length of chains will be generated.

Similarly, in the bottleneck mode, the number of bottleneck tasks and the distributions for the

number of direct predecessors and for the number of direct followers are set by the user.

SALBPGen, if necessary, sets lower and upper bounds for the specified distributions

12

(truncation) in order to avoid contradictions with other parameters specified by users (for

example, length of chains is restricted by the number of stages).

The arc-generation consists of the following four steps:

1. Lengths of chains as well as numbers of direct predecessors and followers for each

bottleneck task are generated (according to the specified distributions) and their locations

(stages) are defined.

2. The remaining tasks are distributed among the stages according to the stage-form

parameters given by the user. If the stages form is not explicitly specified by the user, it is

assumed to be uniform and SALBPGen randomly generates a number of tasks for each

stage ensuring that the overall number of tasks fits the specified parameter .

3. To assure that every task remains on its stage in the generated graph, we first connect each

task of stage with exactly one (randomly chosen) task of stage paying

attention to the maximal number of direct followers of task .

4. We randomly insert non-redundant arcs and update the transitive closure of the graph until

 achieves the desired interval or no more non-redundant arcs are

allowed due to constrictions of specified graph structures. A direct arc is allowed, if:

- the stage number of task is smaller than that of ,

- task is not designated to be an isolated node,

- restrictions for the specified bottlenecks, its direct predecessors and direct followers,

given in the definition (see Section 5.1), are satisfied,

- restrictions for the specified chains, given in the definition (see Section 5.1), are

satisfied,

- the maximal number of direct followers of task will not be exceeded, and

- by inserting arc the value would not exceed the desired upper limit.

Task times generation. Here the user optionally sets the cycle time, minimal and maximal task

times and characteristics of the distribution (chosen from the list given above), the task times

are taken from. Following the proposition of Hoffmann (1992), it is also possible to generate

task times, the sum of which is a multiple of the cycle time.

The task times are rounded to the next integer as some solution procedures require integer

data. Possible rounding effects are compensated by setting default value of the cycle time to

1,000 as this is a matter of normalizing the time units only. Furthermore, this value seems to

be large enough to flexibly generate a wide range for the time variability ratio and further

time structure measures.

13

If the optional task time distribution parameters are not specified, SALBPGen selects the

bimodal distribution, which is a two-step distribution. Firstly, we choose from which of two

normal distributions the task time is to be drawn, then we generate a random number from the

selected distribution. With probability 0.85, the lower normal distribution with expectation of

 and standard deviation of is selected. The upper normal distribution,

chosen with probability 0.15, has expectation of and standard deviation of

 . In each case the lower bound of task times is set to and the upper bound to ,

i.e., the distributions are truncated correspondingly. The parameters are motivated by the

empirical study of task time distributions at four assembly lines performed by Kilbridge and

Wester (1961) and the task time distributions we experienced in different case studies in

automotive industry.

Module connector (optional). Several graphs can be connected here to modules

 according to a (super) precedence matrix for modules specified by the user.

Given the order strengths of the individual modules () and the order

strength of module meta graph , SALBPGen simply connects the given subgraphs in the

way specified by the meta graph adjacency matrix and computes the final order strength of

the resulting data instance as described in Section 6.1.

6 Implications of the parameters on the minimal and maximal order strength

The most widespread structure measure of ALBP instances is the order strength. This easy to

compute measure also helps to approximate the number of feasible sequences, which is

believed to indicate the complexity of problem instances (Thesen 1977; Elmagharaby and

Herroelen 1980; Schwindt 1998). Besides the number of tasks, is the only required

parameter for instance generation by SALBPGen. In the following, we sketch the implications

of optional structure parameters of SALBPGen on the order strength of the resulting graph.

We do it in order to illustrate, how and to which extent specifications of optional parameters

restrict the range of possible graphs and which combinations are possible and useful.

6.1 Modules

There is an intimate relation of the order strengths of single modules , the order strength of

the module matrix and the order strength of the resulting graph as the latter is the

weighted sum of the first:

Let modules, with each module having order strength and containing

tasks, are connected with precedence relations having order strength . Then, according

to the definition of modules, order strength of the resulting graph will be:

14

Figure 4: Dynamics of and (with)

0%

20%

40%

60%

80%

100%

1 11 21 31 41 51 61 71 81 91

O
r
d

e
r
 s

tr
e
n

g
th

Number of stages

OSmin

OSmax

If all the modules have an equal number of tasks , i.e., , then:

Example (see Figure 2): , ,

,

,

 and

. So,

 and

. The resulting order strength is

.

Ceteris paribus, the influence of the module matrix, , on the order strength of the whole

graph increases if:

- the number of modules increases,

- the size of modules is more uniformly distributed (maximal is achieved for

modules of equal size),

- larger modules are subject to precedence relations.

If each module contains the same number of tasks, then the sum of weights equals to 1:

 and . Hereby for any number of tasks, the weight

 is more than 0.5 (if at least two modules are present) and it increases rapidly if the

number of modules grows.

6.2 Stages

The predefined stages form

restricts the possible value

range of the order strength.

Given the number of stages

 and the number of tasks

 for stage , a

lower bound on the order

strength is

 as

at least a path of tasks leads from a task on the first stage to each task at stage . As an

upper bound, we get

 , because a task at stage could be

connected to all tasks at preceding stages directly or indirectly (see also Appendix A.2).

Since the user of SALBPGen not always specifies the exact distribution of tasks to stages, we

are also interested in defining the possible range of the order strength, if only the number of

15

stages is given. Theorem 1 shows how to compute those values. Figure 4 visualizes the

boundaries for an example instance with tasks depending on the number of stages.

The difference of both values can be interpreted as precedence flexibility, as it indicates the

degree of flexibility to generate different precedence settings for a given number of stages. As

a principle in problem generation, this flexibility should be as large as possible in order to be

able to generate a large variety of possible precedence graphs. So, as a default, we set the

number of stages to the value which guarantees largest precedence flexibility computed as

given in Theorem 1. For the above example in Figure 4, about 17 stages, i.e., 6 tasks per stage

on average, provide largest flexibility.

Theorem 1. Given the number of tasks n and the number of stages or, equivalently, given

the average number of tasks per stage , the achievable order strength is bounded by

 and

, where

 . The

maximal precedence flexibility is observed at .

Proof: The main idea is that is lower, if there are more tasks on the first stages and to

the contrary, is higher at a more uniform distribution of tasks by stages. For a detailed

proof see Appendix A.3.

Table 5 shows the number of stages for different problem sizes to achieve the maximal

flexibility. When generating instances with not extremely low or high levels of , these

values are taken by default.

6.3 Bottlenecks, chains and isolated tasks

The predefined form of stages has also an influence on the graph structure. For example,

several stages with cardinality 1 in a row make emergence of chains more probable at low and

high order strengths. Bottlenecks with high node degree are more likely to appear in graphs,

where a stage with low and a stage with high cardinality follow each other.

Generally, presence of chains and bottleneck tasks increases the minimal achievable order

strength and decreases the maximal one as the flexibility of the graph structure is reduced.

For a bottleneck assigned to some stage with

claimed (user-specified) direct predecessors and claimed direct followers for

given the minimal possible order strength is

n 20 30 40 50 60 70 80 90 100 125 150 175 200 300

stages 6 8 9 11 12 14 15 16 17 20 23 25 27 36

Table 5: Number of stages, where the maximum flexibility in order strength is achieved

16

 ,

because claimed direct predecessors of the bottleneck lead to at least additional arcs

for the bottleneck node and each of its claimed followers. The maximal possible order

strength is achieved if all predecessors of the bottleneck are placed on the stage ,

otherwise, among others, indirect arcs from further stages to the bottleneck node would be

lost. Then, cannot exceed

 ,

because predecessors of the bottleneck task cannot have arcs to the other tasks on stage k.

As well, all claimed followers cannot have predecessors on stage except the bottleneck task.

Presence of a chain with a given length that starts from stage does not change the minimal

achievable order strength.Technically assuming and , the chain restricts the

maximal achievable order strength to

 ,

because along the whole length of the chain, other tasks at the stages cannot be connected

with the chain tasks. Also, chain tasks are connected with only one task on stages adjacent to

the chain. So the minimal restriction of the flexibility of the order strength generation will be,

if there are no other tasks at the stages covered by the chain.

Given number of stages , the number of tasks per stage and the number of isolated

tasks , the order strength cannot exceed

 ,

whereas the minimum possible order strength remains unchanged.

Maximal number of direct followers per task. Introducing this restriction, we followed the

tradition of the generators of Bhattacharjee and Sahu (1990) and Rosenberg and Ziegler

(1992), which contain limits on the number of direct predecessors or direct followers. The

main role of this parameter is to restrict appearance of certain graph structures. There is no

general direction of influence of this parameter neither on the minimal nor on the maximal

achievable order strength.

7 Characteristics of instances generated by SALBPGen

Due to the stage generation concept, graphs generated by SALBPGen get a meaningful layout

and structure even in default regime without external control for the structure parameters (see

Figure 5).

17

Figure 5: Three example graphs with different order strengths and default settings

To check the characteristics of the generated instances, we created a data set in the default

modus of SALBPGen in a full-factorial manner for different numbers of tasks per instance

() and various levels of the order strength (

) with 500 instances per cell. So, the data set for this experiment contains 31,500 instances.

An important characteristic of a generator is its likelihood to generate different graphs,

whereby we examine the dissimilarity of the graph structure and do not consider the

assignment of task times. Among the instances generated by SALBPGen, no duplicate graphs

were found for instances with more than 40 tasks. The share of duplicate graphs is negligible

for generations of 20-task and 30-task instances (and) respectively. Surely, for

very high and very low levels of the order strength, the probability to receive duplicate graphs

increases sharply. For example, independently on the number of tasks in the instance, only

one distinctive graph (layout) is possible for and , respectively.

For the examination whether the target order strength was achieved, we used tolerance

intervals () as described in Section 5.2. The target order strength was always achieved for

problem instances with and for medium problem instances with except

for . For the target order strength was achieved in 96 % for 30-task

instances and in 57 % for 20-task instances. Overall, it is difficult to meet low levels of order

strength for small problem instances.

18

Former generators (see Section 4) have difficulties in achieving the desired order strength

even for medium and large instances. We illustrate it for 50-task problem instances. The

generation was performed with the parameter values recommended by the authors of the

respective method. For our suggested precision parameter of ±0.005, just 6–13% of the graphs

generated by the method 1 of Gehrlein (1986), 16–47 % by his method 2 and 7–20% by his

method 3 satisfied the required precision. The generator of Rosenberg and Ziegler (1992)

resulted in a very large variability of order strengths at different parameter levels

recommended by the authors and, thus, is not able to generate instances with desired order

strength reliably. Furthermore, it is very unlikely to produce instances with small order

strengths at all.

Each generator may occasionally create a precedence graph of any structure, but still has its

own specificity. The methods of Gehrlein (especially method 2) are very unlikely to produce

either chains or bottlenecks, default parameters of SALBPGen lead to a creation of some

instances (up to 20%) containing chains and the generator of Rosenberg and Ziegler

mostly(more than 80%) produces instances with chains and bottlenecks. We omit the method

of Bhattacharjee and Sahu (1990), since it is very restrictive as it only produces graphs with a

limited structure (see the discussion in Section 4).

However, in order to control for the minimum share of chain tasks and the number and

characteristics of bottlenecks, we recommend to apply SALBPGen with specifying the modes

“chains” and “bottlenecks”. It is especially important for creating problem instances that show

typical properties of real-world assembly processes (see Section 5.1).

8 New benchmark data set

We propose a collection of new diversified and challenging benchmark data sets. The new

benchmark data sets are constructed by a full-factorial design for the following parameters:

number of tasks (“small” with , “medium” with , “large” with and

“very large” with), order strength (“low” , “medium” and

“high”), distribution of task times, and type of the graph. It contains 25

observations per cell. Table 6 shows all useful combinations of parameters that sum up to 84

cells, i.e., 2,100 instances in total and 525 instances per graph size. We suggest to utilize the

“medium” data (sub)set for testing exact solution methods, the “large” one is well suited for

testing heuristics. We also include a “very large” data set since problems of this size are

common in practice. The “small” data set is provided for speedy pre-tests of solution

methods.

19

We employ three types of distributions for the task times: normal with peak at small tasks

(“peak at the bottom”), bimodal, which is a combination of two normal distributions with a

higher peak at small tasks (see Section 5.2), and normal with peak at (“peak in the

middle”). The first two were motivated by the task time distributions typically found in the

real-world, the third one is likely to constitute “hard” instances. This type of task time

distribution is similar to that of the problem instances of Wee and Magazine contained in the

Scholl benchmark data set, which contain many “hard” ones.

Precedence graphs are grouped into three categories according to the presence of chains and

bottleneck tasks in them. Instances of the first one, “CH”, contain at least 40% chain tasks.

The second category, “BN”, consists of instances containing bottleneck tasks with the least

degree of eight except for small instances which observe a minimum degree of four. Category

“MIXED” has no such structure requirements.

We also report a trickiness measure for each instance. We define the trickiness as a share

of non-optimal solutions found by 10,000 runs of a random search method including the

maximum load rule (see Section 3) in the solution space. It can be readily used as a reference

of performance for heuristic solution methods. For the simplicity of use, we subdivide the

instances into “extremely tricky” (), “very tricky” (), “tricky”

(and “less tricky” (). For some unsolved instances, where

during the random search the upper bound on the number of stations was found, the trickiness

 Distribution of task times

Graph

structure

OS „peak at the

bottom“

„bimodal“ „peak in the

middle“

„peak at the

bottom“

„bimodal“ „peak in the

middle“

 n = 20 n = 50

MIXED 0.20 0/1/2/22/0 0/0/8/17/0 3/8/11/3/0 1/0/1/23/0 6/1/2/16/0 12/0/6/0/7

 0.60 0/2/7/16/0 0/3/2/20/0 4/7/12/2/0 4/0/4/17/0 9/4/8/4/0 14/0/0/0/11

 0.90 0/1/7/17/0 1/1/8/15/0 0/3/14/7/1 1/3/6/15/0 4/3/10/8/0 7/0/0/0/18

CH 0.20 0/0/8/17/0 1/1/7/16/0 4/9/10/2/0 5/0/2/18/0 8/3/8/6/0 16/1/0/0/8

 0.60 0/3/6/16/0 1/0/8/16/0 2/6/14/2/1 4/2/5/14/0 7/7/8/3/0 11/0/0/0/14

BN 0.20 0/3/5/17/0 1/1/4/19/0 2/13/7/3/0 0/1/3/21/0 6/5/7/7/0 20/0/0/0/5

 0.60 1/0/9/15/0 0/4/6/15/0 7/5/9/2/2 3/1/5/16/0 11/3/7/4/0 15/2/0/0/8

 n = 100 n = 1000

MIXED 0.20 6/3/4/12/0 17/5/3/0/0 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

 0.60 6/5/3/11/0 18/5/1/0/1 17/0/0/0/8 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

 0.90 5/1/6/13/0 15/7/3/0/0 13/0/0/0/12 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

CH 0.20 5/1/6/13/0 13/5/5/0/2 22/0/0/0/3 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

 0.60 7/1/5/12/0 21/1/1/0/2 11/0/0/0/14 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

BN 0.20 6/1/4/14/0 15/3/6/1/0 23/0/0/0/2 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

 0.60 5/2/3/15/0 21/3/0/0/1 24/0/0/0/1 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0

Table 6: Trickiness of the instances in the new data set
(No of “extremely tricky”/ “very tricky”/ “tricky”/ “less tricky”/”open”)

20

Data set
Total number

of instances

Number of

unsolved

instances

small () 525 4

medium () 525 99

large () 525 170

very large () 525 339

Table 7: Current status for the known optimal solution
 of the new benchmark data set

measure remains “open”. Note that this classification might be a bit misleading for exact

solution methods, which also have to prove optimality of the found solution. We excluded the

trivial instances, where all the solutions found by the random search were optimal (),

from the benchmark data set, since such problem instances are badly suited for testing

(heuristic) solution methods. A summary of the trickiness distributions can be found in Table

6. From the table, we can see that even the small benchmark data set with 20 tasks contains 27

(of 225) extremely tricky instances.

Note that the trickiness measure loses its power of differentiation for very large instances.

Due to the size of these instances, the share of optimal solutions even for lighter instances is

extremely low so that an immense increase of the number of runs for the random search

would be required to capture it.

For the case, researchers would like to test thoroughly the role of the structure measures in

their study of interest, we provide a further data set including permutations of medium

instances (“medium permuted”). For each instance with from the “medium” data set,

nine instances with randomly permuted assignment of task times are added, i.e., these ten

instances do not differ from each other in any possible graph structure and time structure

measures. In some cases, a simple permutation of the task times may significantly change the

complexity of the problem instance. For example, we found instances where one permutation

shows a trickiness of , whereas another one has a value . We see it

as an indication that working out of interaction measures (see Section 2) may be important for

some research and real-world inquiries.

Besides being constructed in a systematic manner, the new benchmark data set is challenging.

Contrary to the current benchmark data set (see Table 3), it does not contain trivial instances.

A quarter of the new benchmark data set represents extremely tricky instances (see Table 6).

To find first optimal solutions for

instances of the new benchmark

data set, we run the exact solution

procedure SALOME (Scholl and

Klein 1997) with a low time limit

for each instance (20, 50, 70 and

100 seconds, respectively, for the small, medium, large and very large data set). These

preliminary results are summarized in Table 7. About 29% of the instances in the collection of

new benchmark data sets are currently unsolved, especially large and very large instances. We

welcome contributions to a competition on www.assembly-line-balancing.de for solving the

http://www.assembly-line-balancing.de/

21

instances of the entire data set. The collection of new benchmark data sets as well as its

detailed description can be downloaded from this site.

9 Summary and conclusions

Systematically generated data instances are required for performing comparative studies of

solution methods. SALBPGen allows for a more thorough quality of computational

experiments as it enables to generate sufficiently large data sets with systematically varied

structure measures. To control the received results, SALBPGen enables a check for permuted

task times, the same graph structures with different task times or the same sets of task times

for different graphs.

The final goal of each investigation in operations research is to derive conclusions for real-

world applications. Therefore, SALBPGen gives the possibility to generate data instances

with structures that are typical for real-world assembly lines. Although it was created for

SALBP-1, with few modifications this generator can be used for most variations of assembly

line balancing problems as well as for some related scheduling and packing problems.

(Boysen et al. 2008)

Systematically generated data instances are required for comparative studies of solution

methods, but they are also needed to study further research questions. Since ALBP is NP-

hard, exploiting knowledge on its structure is extremely valuable. For example, we could gain

insights whether we could approximate the optimal ALBP solution by solving a less hard

problem with a slightly modified precedence graph (cf. Klindworth et al. 2010). Further, with

the very large data set, solution methods for more general ALBP (e.g. Becker and Scholl

2009; Scholl and Boysen 2009; Scholl et al. 2010) can be pre-tested before applying them in

manufacturing planning systems.

Further research steps should include a systematic review of established as well as suggested

and not yet stated structure measures on their predictive power of the problem’s complexity

and relative performance of solution methods. This study would not only revisit conclusions

of previous inquiries, which were sometimes lacking statistical significance due to limited

diversity of the tested data set. It would also aim at creating a “which method to use when?”-

map as a guidance for practitioners and further research.

Acknowledgements

This article was supported by the Federal Program “ProExzellenz” of the Free State of

Thuringia.

22

References

Amen, M. (2001). Heuristic methods for cost-oriented assembly line balancing: A comparison on

solution quality and computing time. International Journal of Production Research, 69(3), 255–

264.

Andrés, C., Miralles, C., & Pastor, R. (2008). Balancing and scheduling tasks in assembly lines with

sequence-dependent setup times. European Journal of Operational Research, 187(3), 1212–1223.

Arthur, J. L., & Frendewey, J. O. (1988). Generating travelling-salesman problems with known

optimal tours. The Journal of the Operational Research Society, 39(2), 153–159.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line balancing problem.

Management Science, 32(8), 909–932.

Becker, C., & Scholl, A. (2006). A survey on problems and methods in generalized assembly line

balancing. European Journal of Operational Research, 168(3), 694–715.

Becker, C., & Scholl, A. (2009). Balancing assembly lines with variable parallel workplaces: Problem

definition and effective solution procedure. European Journal of Operational Research, 199(2),

359–374.

Bhattacharjee, T., & Sahu, S. (1990). Complexity of single model assembly line balancing problems.

Engineering Costs and Production Economics, 18(3), 203–214.

Boctor, F.F. (1995). A multiple-rule heuristic for assembly line balancing. Journal of the Operational

Research Society, 46(1), 62–69.

Boysen, N.; Fliedner, & M.; Scholl, A. (2007). A classification of assembly line balancing problems.

European Journal of Operational Research, 183(2), 674–693.

Boysen, N., Fliedner, M., & Scholl, A. (2008). Assembly line balancing: Which model to use when?

International Journal of Production Economics, 111(2), 509–528.

Brown, L. D., Cai, T. T., & DasGupta, A. (2001). Interval Estimation for a Binomial Proportion.

Statistical Science, 16(2), 101–133.

Browning, T. R., & Yassine, A. A. (2010). A random generator of resource-constrained multi-project

network problems. Journal of Scheduling, 13(2), 143–161.

Dar-El (Mansoor), E. M. (1975). Solving large single-model assembly line balancing problems – A

comparative study. IIE Transactions, 7(3), 302–310.

De Causmaecker, P., & Berghe, G. V. (2011). A categorisation of nurse rostering problems. Journal of

Scheduling, 14(1), 3–16.

Demeulemeester, E., Vanhoucke, M., & Herroelen, W. (2003). RanGen: A random network generator

for activitity-on-the-node networks. Journal of Scheduling, 6(1), 17–38.

Driscoll, J., & Thilakawardana, D. (2001). The definition of assembly line balancing difficulty and

evaluation of balance solution quality. Robotics and Computer Integrated Manufacturing, 17(1–

2), 81–86.

Elmaghraby, S. E., & Herroelen, W. S. (1980). On the measurement of complexity in activity

networks. European Journal of Operational Research, 5(4), 223–234.

Gao, J., Sun, L., Wang, L., & Gen, M. (2009). An efficient approach for type II robotic assembly line

balancing problems. Computers & Industrial Engineering, 56(3), 1065–1080.

Garud, R., Kumaraswany, A, & Langlois, R. L. (2003). Managing in the modular age: architectures,

networks, and organizations. Blackwell Publishers Ltd.

Gehrlein, W. V. (1986). On methods for generating random partial orders. Operations Research

Letters, 5(6), 285–291.

23

Hoffmann, T. R. (1990). Assembly line balancing: a set of challenging problems. International

Journal of Production Research, 28(10), 1807–1815.

Hoffmann, T. R. (1992). EUREKA – a hybrid system for assembly line balancing. Management

Science, 38(1), 39–46.

Jackson, J.R. (1956). A computing procedure for a line balancing problem. Management Science, 2(3),

261–271.

Johnson, R. V. (1981). Assembly line balancing algorithms: Computational comparisons.

International Journal of Production Research, 19(3), 277–287.

Kilbridge, M., &Wester, L. (1961). The balance delay problem. Management science, 8(1), 69–84.

Klindworth, H., Otto., C., & Scholl, A. (2010). On the learning precedence graph concept for the

automotive industry. In: Jena Research Papers in Business and Economics 9/2010. Jena: School

of Economics and Business Administration, Friedrich-Schiller University Jena.

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and Generation of a General Class of

Resource-Constrained Project Scheduling Problems. Management Science, 41(10), 1693–1703.

Levitin, G., Rubinovitz, J., & Shnits, B. (2006). A genetic algorithm for robotic assembly line

balancing. European Journal of Operational Research, 168(3), 811–825.

Lutz, L. (1974). Abtakten von Montagelinien. Mainz: Krausskopf.

Mastor, A. A. (1970). An experimental investigation and comparative evaluation of production line

balancing techniques. Management Science, 16(11), 728–746.

Otto, A., & Scholl, A. (2011). Incorporating ergonomic risks into assembly line balancing. European

Journal of Operational Research, 212(2), 277–286.

Rosenberg, O., & Ziegler, A. (1992). A comparison of heuristic algorithms for cost-oriented assembly

line balancing. ZOR – Methods and Models of Operations Research, 36(6), 477–495.

Rubinovitz, J., & Levitin, G. (1995). Genetic algorithm for assembly line balancing. International

Journal of Production Economics, 41(1–3), 343–354.

Salveson, M. E. (1955). The assembly line balancing problem. Journal of Industrial Engineering, 6(3),

18–25.

Scholl, A. (1993). Data of assembly line balancing problems. Schriften zur Quantitativen

Betriebswirtschaftslehre, 16, TH Darmstadt.

Scholl, A. (1999). Balancing and sequencing assembly lines. (2nd ed.). Heidelberg: Physica.

Scholl, A., & Becker, C. (2006). State-of-the-art exact and heuristic solution procedures for simple

assembly line balancing. European Journal of Operational Research, 168(3), 666−693.

Scholl, A., & Klein, R. (1997). SALOME: A bidirectional branch and bound procedure for assembly

line balancing. INFORMS Journal on Computing, 9(4), 319−334.

Scholl, A., Boysen, N., & Fliedner, M. (2008). The sequence-dependent assembly line balancing

problem. Operations Research Spectrum, 30(3), 579−609.

Scholl, A., & Boysen, N. (2009). Designing parallel assembly lines with split workplaces: Model and

optimization procedure. International Journal of Production Economics, 119(1), 90−100.

Scholl, A., Boysen, N., & Fliedner, M. (2009). Optimally solving the alternative subgraphs assembly

line balancing problem. Annals of Operations Research, 172(1), 243−258.

Scholl, A., Fliedner, M., & Boysen, N. (2010). Absalom: Balancing assembly lines with assignment

restrictions. European Journal of Operational Research, 200(3), 688−701.

Schwindt, C. (1998). Generation of resource-constrained project scheduling problems subject to

temporal constraints. Report WIOR – 543. Karlsruhe University.

24

Talbot, F. B., Patterson, J. H., & Gehrlein, W. V. (1986). A comparative evaluation of heuristic line

balancing techniques. Management Science, 32(4), 430–454.

Thesen, A. (1977). Measures of the restrictiveness of project networks. Networks, 7(3), 193–208.

Urban, T., & Chiang, W. (2006). An optimal piecewise-linear program for the U-line balancing

problem with stochastic task times. European Journal of Operational Research, 168(3), 771–782.

Uyar, Ş., & Uyar, H. T. (2009). A critical look at dynamic multi-dimensional knapsack problem

generation. In M. Giacobini et al. (Eds.), Applications of evolutionary computing, 5484/2009 (pp.

762–767). Berlin Heidelberg: Springer.

Wee, T. S., & Magazine, M. J. (1981). An efficient branch and bound algorithm for an assembly line

balancing – Part I: Minimize the number of work stations. Working paper, No. 150. University of

Waterloo, Waterloo.

APPENDIX A.1

Actually, each run of our random experiment could be seen as a draw of some solution from

the solution space with replacement. The probability for occurrence of optimal solutions is

unknown, but the same in each run (or draw, or trial). The trials are statistically independent

from each other. Therefore, the number of optimal solutions found by our random search runs

is distributed binomially (no matter, what is the underlying distribution of the optimal

solutions in the solution space).

Although no efficient exact procedure is known to compute the binomial confidence intervals,

there exist a number of good approximations for it. We chose the Wilson score interval,

recommended by Brown et al. (2001):

 , (A1)

where is the share of optimal solutions found, is for the 95% confidence

interval and runs were taken.

APPENDIX A.2

We derive the upper bound on the number of direct and indirect arcs , knowing that

at given distribution of tasks to stages the maximal number of direct and indirect arcs

is as follows:

 (A2)

From

, we get

.

25

Figure A.1: Illustration for the proof of maximal OS in

the discrete case (examples of transitive arcs are dotted)

Obviously, only depends on the different values of , irrespective to which stage

these numbers are assigned. So, the same maximal order strength might be achieved for very

different stages forms.

APPENDIX A.3: Proof for Theorem 1

Proof for : As argued above, each task on a stage has at least (direct or

indirect) predecessors. Since, according to the definition, each stage must contain at least one

task, then the lower bound on the number of direct and indirect arcs is

. This lower

bound is sharp, since it is achieved if tasks are assigned to the first stage and only

one task to any other of the remaining stages. If all but one tasks of the first stage have

no successors, then there is only a single chain with

 direct and indirect arcs connecting

the stages. Setting this value in proportion to the number of arcs in a complete precedence

graph

 results in

.

Proof for : Given the number of tasks per stage , , the achievable order

strength is restricted to as defined in Appendix A.2.

Let us first assume that the average number of tasks per stage

 is integral. To determine a

valid upper bound on the order strength, we take into account the constraint on the total

number of tasks
 in a Lagrangian optimization. Using a multiplier , we get from

(A2) the following Lagrangian function to be maximized:

 ,
 (A3)

Computing partial derivatives for all variables and setting to zero yields:

Examining the second-order conditions confirms that

 indeed is a maximum.

Hence, if

 is an integer number, we get

the maximal order strength if each stage

contains the same number

 of

tasks:

.

If

 , the maximal order strength is

only achievable, if

 stages

26

each contain

 tasks and the other stages each include

 tasks (see the separate proof in

Appendix A.4). Without loss of generality (see Appendix A.2), we assume the stages form as

outlined in Figure A.1. Thus, we get a maximum of

 (direct and indirect) arcs in the

right block,

 arcs in the left block and

 arcs between the

two blocks. So the order strength cannot exceed

.

Proof for maximal flexibility. For the sake of simplicity, we ignore the integrality requirement

for the number of tasks at each stage and get

. Taking the

derivative by for this expression, we receive the first order condition for the maximum

flexibility: .

APPENDIX A.4: Proof for maximal order strength in case of non-integral

In (A2), we have to correct the number of tasks of each stage for the optimal solution (in the

continuous case) up by some or down by some :

, with (A4)

For each stage some correction must be present. Because we correct

 to an integer number at

each stage , either and

 or

 and .

Let for stages and for stages. Then the lower bounds on the sums of

corrections are

 and

 . Since

 , it follows =1 = =1 and we search for a sharp lower bound. In the first case,

 , hence

 and

 . In the second case, we receive the same lower bound on the amount

of correction

 .

To find the maximal achievable order strength, we take into account the constraints on the

minimal amount of correction:

 and

 .

The first order conditions we receive by taking l partial derivatives in and partial

derivatives in from the following Lagrangian function:

27

 , (A5)

given

 . (A6)

By regrouping and taking into account , we get:

 (A7)

From the first order conditions (and

), we receive that:

If and then for all and , (A8)

If and , then for all and , (A9)

 and hence

 . (A10)

From our earlier considerations, that

 and

 for these stages, and

(A10) it follows that

 and that there are

 stages with

 .

The second order conditions ensure that we found the maximum.

In other words, we received an integer solution. The maximal achievable order strength could

be received if

 stages have

 tasks and the rest of the stages have

 tasks each.

