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Abstract 

Assembly line balancing is a well-known and extensively researched decision problem which 

arises when assembly line production systems are designed and operated. A large variety of 

real-world problem variations and elaborate solution methods were developed and presented 

in the academic literature in the past 60 years. Nevertheless, computational experiments 

examining and comparing the performance of solution procedures were mostly based on very 

limited data sets unsystematically collected from the literature and from some real-world 

cases. In particular, the precedence graphs used as the basis of former tests are limited in 

number and characteristics. As a consequence, former performance analyses suffer from a 

lack of systematics and statistical evidence. 

In this article, we propose SALPBGen, a new instance generator for the simple assembly line 

balancing problem (SALBP) which can be applied to any other assembly line balancing 

problem, too. It is able to systematically create instances with very diverse structures under 

full control of the experiment’s designer. In particular, based on our analysis of real-world 

problems from automotive and related industries, typical substructures of the precedence 

graph like chains, bottlenecks and modules can be generated and combined as required based 

on a detailed analysis of graph structures and structure measures like the order strength. 

We also present a collection of new challenging benchmark data sets which are suited for 

comprehensive statistical tests in comparative studies of solution methods for SALBP and 

generalized problems as well. Researchers are invited to participate in a challenge to solve 

these new problem instances. 

 

Keywords: manufacturing; benchmark data set; assembly line balancing; precedence graph; 

structure analysis; complexity measures. 
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1 Introduction 

The problem of an optimal allocation of tasks to working stations of an assembly line, or 

assembly line balancing problem (ALBP), describes the planning situation in manual 

assemblies. It can be found, for example, in automotive, white goods and electronics 

industries. Since its formulation by Salveson (1955), a considerable number of exact and 

heuristic methods for the ALBP, known to be NP-hard, were proposed and they are getting 

more and more effective.  

Ongoing developments in research on ALBP set new requirements on benchmark data sets. A 

benchmark data set forms the basis for testing relative performance of computational 

methods. Hereto, researchers are interested not only whether their methods perform better or 

worse in the given benchmark data set, but also, in what kind of instances its performance is 

especially weak or strong. A set of structure measures was proposed in the literature to 

investigate performance of solution methods and estimate the complexity of the problem 

instance. A list of comparative computational studies of solution methods for ALBP that 

emphasize the structure measures of data instances is very long and includes, for example, 

Mastor (1970), Dar-El (1975), Johnson (1981), Wee and Magazine (1981), Talbot et al. 

(1986), Hoffmann (1992), Scholl (1999, Chapter 7), Amen (2001), Levitin et al. (2006), 

Urban and Chiang (2006), Andrés et al. (2008) and Gao et al. (2009). Moreover, a deeper 

knowledge on the interactions of the problem structure and algorithms may facilitate creation 

of even more effective and efficient solution methods. 

Assembly line balancing is a routine planning task at factories. The knowledge, which 

solution method to select is extremely important for practitioners. Thus, in their assembly line 

balancing software “A~Line”, Driscoll and Thilakawardana (2001) used structure measures 

for a guided selection of a suitable solution heuristic.  

The currently existing data sets as well as present data set generation methods exhibit rather 

limited structures of the graphs and do not allow for a systematic variation of structure 

measures, such as described in the literature. Therefore, we propose a new data set generation 

method that overcomes this drawback and allows controlling for the most widely accepted 

structure measures.  

We precede with a short introduction into ALBP and existing structure measures in Section 2. 

In Sections 3 and 4, we review existing data sets and data generation procedures, respectively. 

We describe our new data generation procedure SALBPGen in Section 5. In Section 6 we 

discuss the order strength structure measure and provide insights towards its connection to the 

optional parameters of SALBPGen. Further, characteristics of the instances generated by 



2 

 

 
Figure 1: Example of a precedence graph 

SALBPGen (Section 7) and the new benchmark data set (Section 8) are described. Finally, we 

conclude with a summary and further research directions in Section 9. 

2 Basics and structure measures of ALBP 

Formally speaking, an assembly line is a production system, where a set of tasks   

        with operation times    (for    ) are distributed among a set of (work)stations 

        arranged in a sequential order. The workpieces are launched down the line at a 

fixed rate such that each station has access to every workpiece for a constant timespan. Within 

this cycle time  , the worker operating at station     has to perform all the tasks contained 

in the station load     , i.e., the station time              
 must not exceed the cycle 

time  . This process is repeated for every new workpiece cyclically. 

Due to technological and 

organizational conditions, the 

order of performing the tasks 

is restricted by precedence 

relations      , meaning that a 

task     must be executed 

before another task    . 

The production process can 

be summarized by a non-cyclical digraph          , called precedence graph, where   is 

the node set and                    is the set of arcs representing direct precedence 

relations (see Figure 1).    and    denote the set of direct followers and direct predecessors of 

task  , respectively. The transitive closure of   we call                   
   with   

  

and   
  denoting the sets of indirect followers and predecessors of task  . The node weights 

represent the operation times   .  

For the sake of convenience, we hypothetically insert a dummy source node with      

which is predecessor of all tasks          . We define the depth of task   as the maximal 

number of arcs in a path connecting   with dummy source 0. In this terms, the stage   

          consists of all tasks of the precedence graph with depth  . For example, the 

precedence graph in Figure 1 has six stages:                                          . 

In its basic form, the Assembly Line Balancing Problem (ALBP) is to assign tasks to stations 

such that cycle time and other restrictions as well as precedence relations are met and some 

time-, capacity-, cost- and/or profit-oriented goals are optimized (e.g. Amen 2001; Becker and 

Scholl 2006; Boysen et al. 2007). A feasible task assignment is called (line) balance (cf. 

Baybars 1986). A special case of ALBP is the Simple Assembly Line Balancing Problem-1 
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Graph structure measures: Reference example from the literature 

Number of tasks:   Elmagharaby and Herroelen (1980) 

Order strength:     
      

       
 

(also called TF-ratio; and flexibility ratio         ) 

Mastor (1970), Dar-El (1975) 

Average number of immediate predecessors:      
   

 
 Rosenberg and Ziegler (1992) 

Degree of divergence:       
        

  
, 

where    is number of tasks without predecessors, 

    
              
           

  

Scholl (1999, Chapter 2.2.1.5) 

Degree of convergence:        
       

  
, 

where   is number of tasks without successors,  

    
            
          

  

Scholl (1999, Chapter 2.2.1.5) 

Presence of bottleneck tasks Dar-El (1975) 

Maximum task degree:                    Baybars (1986) 

Form and characteristics of stages Scholl (1999, Chapter 2.2.1.5) 

Number of tasks without predecessors:    Gehrlein (1986) 

Number of stages:   Gehrlein (1986) 

Number of feasible sequences Elmagharaby and Herroelen (1980) 

Time structure measures: 

Maxtime-ratio 
    

 
,                       

(and its inverse 
 

    ) 

Kilbridge and Wester (1961),  

Wee and Magazine (1981) 

Mintime-ratio 
 

                          Wee and Magazine (1981) 

Time variability ratio:     
    

     Scholl (1999, Chapter 2.2.1.5) 

Sumtime-ratio:     
 
   

  Johnson (1981), Hoffmann (1990) 

Standard deviation of task times:        Bhattacharjee and Sahu (1990) 

Table 1: Overview of structure measures for SALBP-1 

(SALBP-1), which is to minimize the number of workstations satisfying cycle time and 

precedence constraints (Scholl and Becker 2006). We restrict our further discussion to data 

instances and structure measures for SALBP-1, since it is the basic and most investigated 

version of ALBP. However, the results of the paper can be easily generalized to other variants 

of ALBP. For example, Scholl et al. (2008, 2009, 2010) as well as Otto and Scholl (2011) 

generated their testing instances based on an existing benchmark data set for SALBP-1. 

The structure measures proposed in the literature for comparative studies on solution methods 

of SALBP and as indicators for the instance’s complexity are summarized in Table 1. They 

can be divided into: (1) Graph structure measures that describe the number and the 

precedence relations of tasks without connection to their task times. (2) Time structure 

measures that describe the properties of the set of task times (possibly in relation to the cycle 

time) independently from the tasks, to which they are assigned. (3) Interaction measures that 
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describe properties of the graph arising from assignment of certain task times to tasks with 

specific precedence relations to other tasks.  

There has been done little systematical study of implications of structure measures for ALBP 

up to date. However, several results indicate that it is a promising area of research. In his 

studies of exact solution methods for SALBP-1, Johnson (1981) received that computational 

times decrease with the higher order strength of the precedence graph. Hoffmann (1992) for 

the exact solution method EUREKA and Talbot et al. (1986) for heuristic solution methods 

for SALBP-1 showed that higher maxtime-ratio increases computational times and 

deteriorates the performance of heuristic methods. The sumtime-ratio was first investigated by 

Hoffmann (1992). The results of his computational studies indicate that computational times 

of his exact solution method EUREKA increase, if the sum of task times is a multiple of the 

cycle time. 

In more recent studies, researchers applied structure measures to investigate performance of 

solution methods for ALBP with additional extensions and constraints. As a rule, their 

findings support those found for SALBP. Investigations of u-shaped ALBP with stochastic 

task times by Urban and Chiang (2006) confirmed that higher order strength decreases 

computational times. In his study of robotic ALBP with objective to minimize the cycle time, 

Levitin (2006) received that performance of a genetic algorithm relative to a branch and 

bound method improved at lower order strength. 

Also it was found that relative performance of different solution methods depends on the 

underlying structure of the problem. Thus, for example, Mastor (1970) in an analysis of 

SALBP-2 with objective to minimize the cycle time by an iterative solution of SALBP-1 

found that the relative performance of heuristics, both measured in computational time and 

quality of solution, changes at different levels of OS and at different numbers of tasks. Talbot 

et al. (1986) in their study of heuristics for SALBP-1 found that no examined solution method 

consistently dominates the others, but their relative efficiency depends on the problem 

structure parameters. 

A number of structure measures proposed in the literature are not extensively investigated yet. 

In his seminal article, Baybars (1986) wrote that measures of node connectivity, for example, 

maximum degree (or number of direct followers and predecessors of the task), could be better 

structure measures than the order strength. Inspired by Jackson (1956), Scholl (1999, Chapter 

2.2.1.5) suggested that form of stages, their precedence relations to neighboring stages and 

task times of their tasks may be summarized into one/some easy to compute and informative 

structure measures. Based on the computational results of Talbot et al. (1986), Gehrlein 

(1986) noted, that further graph structure measures, such as number of tasks without 
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 Order strength 

[0, 0.33] (0.33, 0.66] (0.66, 1] 

Numberoftasks 

[0, 25) 0 3 4 

[25, 50) 1 4 1 

[50, 100) 1 4 2+ 

>100 0 3+ 0 

Table 2: Benchmark data set of Scholl: Number of 

precedence graphs with certain properties (“+” marks 

graphs with the same structure but modified task times) 

predecessors and number of stages, are important indicators for the (relative) performance of 

solution methods.  

To our best knowledge, no structure measures that we classify as interaction ones, are 

proposed in the literature. Nevertheless they might be important. A prominent but little cited 

result received by Hoffmann (1990) is that interaction parameters matter a lot for the 

instance’s complexity and for the (relative) performance of solution methods. Due to simple 

permutation of task times in Hoffmann’s experiment, computational times of the examined 

solution method for some instances grew up by the factor of 210 for an instance containing 30 

tasks. 

3 Review of existing data sets  

Many of the computational comparisons of solution methodologies are based on the 

benchmark data set of Scholl (1993) or its adaptations to the specific ALBP of interest 

(www.assembly-line-balancing.de). It is a combination and extension of the data sets of 

Talbot et al. (1986) and Hoffmann (1990, 1992) and contains 269 instances. They were 

collected from different sources, both generated and taken from empirical studies, based only 

on 25 precedence graphs (23 distinct graphs and two graphs with modified task times) with 

different cycle times. A detailed description of the benchmark data set with respect to the 

structure measures can be found in Scholl (1999, Chapter 7.1). Unfortunately, the data set 

does not allow for a systematic investigation of solution methods’ performance at different 

levels of graph structure and interaction measures as well as for some time structure measures. 

For example, Table 2 shows that even for the structure parameters most established in the 

literature such as number of tasks and order strength, the number of precedence graphs per 

cell does not exceed 4, while others are empty. Further, only 20 precedence graphs (18 

distinct graphs) have more than 25 tasks and thus are meaningful for comparing elaborate 

solution methods. 

Another and perhaps even a larger 

problem of the current benchmark 

data set is triviality of many 

contained problem instances. We 

call a problem instance trivial, if 

the share of optimal solutions in 

the feasible ones is (almost surely) 

100%. For such a problem instance a simple random generation of one or a few feasible task 

sequence(s) would have a high probability to find an optimal solution. The lower this share of 

optimal solutions is, the more elaborate the solution method should be. Apparently, trivial 
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 c (%) c (%) c (%) c (%) c (%) c (%) 

Arcus 1 

 

3786 

5408 

7571 

0.3 

81.0 

100.0 

3985 

5824 

8412 

0.0 

96.2 

100.0 

4206 

5853 

8898 

0.0 

97.2 

99.9 

4454 

6309 

10816 

1.2 

87.8 

100.0 

4732 

6842 

 

0.4 

31.3 

 

5048 

6883 

 

26.2 

59.9 

 

Arcus 2 

 

5755 

7162 

10027 

0.0 

0.0 

19.5 

5785 

7520 

10743 

0.0 

0.0 

38.0 

6016 

7916 

11378 

0.0 

0.0 

58.2 

6267 

8356 

11570 

0.0 

3.7 

93.4 

6540 

8847 

17067 

0.0 

14.9 

40.5 

6837 

9400 

 

0.0 

36.1 

 

Bartholdi 1 705 0.0  No optimum found for other 7 instances 

Bartholdi 2  No optimum found for any of 27 instances 

Bowman 20 100.0           

Buxey 
27 

54 

0.3 

99.2 

30 

 

8.5 

 

33 

 

0.2 

 

36 

 

57.2 

 

41 

 

2.1 

 

47 

 

0.0 

 

Gunther 
41 

81 

0.8 

86.3 

44 

 

4.4 

 

49 

 

30.7 

 

54 

 

0.0 

 

61 

 

51.1 

 

69 

 

62.7 

 

Hahn 2004 51.6 2338 0.0 2806 100.0 3507 100.0 4676 100.0   

Heskiaoff 138 37.2 205 0.0 216 23.3 256 0.0 324 100.0 342 5.8 

Jackson 7 100.0 9 100.0 10 10.7 13 85.0 14 9.1 21 70.8 

Jaeschke 6 100.0 7 50.0 8 100.0 10 100.0 18 100.0   

Kilbrid 
56 

110 

0.3 

100.0 

57 

111 

9.6 

4.8 

62 

138 

0.0 

0.4 

69 

184 

0.0 

1.6 

79 

 

0.0 

 

92 

 

0.0 

 

Lutz 1 1414 6.5 1572 0.3 1768 81.9 2020 96.4 2357 93.6 2828 100.0 

Lutz 2   No optimum found for any of 11 instances 

Lutz 3 
75 

103 

0.0 

50.1 

79 

110 

0.0 

0.0 

83 

118 

0.0 

0.0 

87 

127 

0.0 

57.0 

92 

137 

4.9 

99.7 

97 

150 

5.5 

95.8 

Mansoor 48 25.0 62 9.1 94 50.0       

Mertens 6 22.2 7 60.0 8 100.0 10 100.0 15 28.6 18 44.4 

Mitchell 14 0.0 15 11.6 21 2.3 26 100.0 35 1.4 39 100.0 

Mukherjee 

176 

234 

351 

0.1 

6.9 

99.9 

183 

248 

 

0.4 

27.9 

 

192 

263 

 

0.0 

70.9 

 

201 

281 

 

0.0 

88.4 

 

211 

301 

 

0.2 

53.3 

 

222 

324 

 

0.0 

92.2 

 

Rosenberg 14 52.4 16 0.0 18 96.5 21 3.2 25 100.0 32 14.6 

Sawyer 
25 
47 

3.4 
0.0 

27 

54 

0.5 
99.9 

30 

75 

49.7 
100.0 

33 
 

20.4 
 

36 
 

27.3 
 

41 
 

0.0 
 

Scholl   No optimum found for any of 26 instances 

Tonge 

160 

220 

364 

0.1 

3.0 

55.1 

168 

234 

410 

0.0 

17.8 

91.7 

176 

251 

468 

0.0 

0.0 

96.0 

185 

270 

527 

0.3 

64.6 

91.4 

195 

293 

 

0.4 

93.6 

 

207 

320 

 

5.6 

0.0 

 

Warnecke 97 3.8  No optimum found for other 15 instances 

Wee-Mag 

28 

34 

40 

47 

1.8 

95.6 

100.0 

0.0 

29 

35 

41 

49 

4.3 

14.6 

67.4 

0.1 

30 

36 

42 

50 

0.1 

85.3 

6.7 

4.1 

31 

37 

43 

52 

14.5 

99.4 

13.6 

0.1 

32 

38 

45 

54 

11.9 

100.0 

0.0 

31.7 

33 

39 

46 

56 

62.9 

100.0 

0.0 

0.2 

Table 3: Benchmark data set of Scholl: Share of optimal solutions in the solution space found  

by enumeration or a random search with 10,000 runs. Instances with share >90% are highlighted. 

problem instances are not suited to test or to compare (different) heuristic solution methods. 

Note, that it may still be hard to solve them with exact solution methods as those have to 

prove optimality. 

To check, how many problem instances in the benchmark data set are trivial, we have taken 

10,000 random solutions for each instance and computed the share of optimal solutions in 

them. For the small instances with less than 12 tasks, we made a full enumeration of feasible 

solutions, i.e., of feasible partitions of tasks between stations. In both cases, we applied the 

well-established maximum load rule which requires adding a further task to the current station 

load whenever it will not violate the cycle time constraint (Jackson 1956).  
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Table 3 summarizes the results by specifying the shares of optimal solutions in the feasible 

solution space. The lower this share is, the more challenging it will be to find an optimum. Of 

course, to find an exact share of optimal solutions for the NP-hard ALBP is not a realistic 

task. But its estimation in 10,000 random runs is sufficient for many purposes. The 95% 

confidence interval for the share of optimal solutions in the feasible solution space is at most 

0.01 for the shares near to 0.50 and less than 0.006 for shares less than 0.001 or larger than 

0.90 (see Appendix A.1). From Table 3, we see that for more than 57% of the instances an 

optimal solution was found by at least one of the 10,000 runs of our simple random search. 

Moreover, for 44 instances (16% of the data set), the share of optimal solutions in the solution 

space exceeds 90%. 24 problem instances appeared to be trivial, because all the solutions 

found in 10,000 runs of the random search were optimal.  

Interestingly, neither a high number of tasks nor a low order strength guarantee a “non-

triviality” of the problem instance. Among the trivial problem instances, we also find rather 

large ones with medium and low order strength, e.g., Arcus 1 with 83 tasks (      , 

        ) and Wee-Mag with 75 tasks (      ,     ).  

4 Review of existing data set generation methods 

Due to restrictions of the available benchmark data set, a number of authors generated their 

own data sets varying selected structure measures of the data instances such as number of 

tasks, order strength and cycle times (e.g. Mastor 1970; Wee and Magazine 1981; Boctor 

1995); Rubinovitz and Levitin 1995). Only three articles describe the used data generation 

procedure(s) explicitly: Gehrlein (1986), Bhattacharjee and Sahu (1990) and Rosenberg and 

Ziegler (1992).  

In the generation methods of Gehrlein (1986) the order strength is a random parameter, which 

can be achieved with standard deviation of 1 to 11% depending on the size of the data set and 

the desired order strength. The method employs a two-step procedure: First, partial orderings 

of tasks are generated according to some rule (cf. Section 7). In the second step, a transitive 

closure of the task set is taken to calculate the order strength. No further structure parameters 

are controlled for. 

In their random generator of precedence graphs, Bhattacharjee and Sahu (1990) actively use 

stages. They randomly generate the stages form, given the specified bounds on the number of 

stages, on the number of tasks per stage and on the number of direct followers for each task. 

However, they generate very specific graph structures, allowing direct precedence relations 

only between tasks on neighboring stages. This puts a significant limitation prohibiting 

construction of graphs typical in real-world settings. For example, in an assembly of a 
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pressure reducing device, described by Lutz (1974), about 20% of the tasks have at least one 

direct predecessor from a non-neighboring stage. Furthermore, in the generator of 

Bhattacharjee and Sahu, the target order strength and the desired number of tasks cannot be 

specified. 

Instead of controlling for the order strength, Rosenberg and Ziegler (1992) set limitations on 

the range of immediate predecessors for each task. The generator cannot control for the order 

strength and further structure parameters. 

There exist also a number of generators for related combinatorial optimization problems, but 

they are not directly suited for generating ALBP instances. For example, these are the 

generator of Arthur and Frednewey (1988) for the traveling salesman problem, the generator 

of Uyar and Uyar (2009) for the knapsack problem, ProGen (Kolisch et al. 1995), RanGen 

(Demeulemeester et al. 2003) and the generator of Browning and Yassine (2010) for the 

resource-constrained project scheduling problem, as well as generators for the nurse rostering 

problem (De Causmaecker and Berghe 2011).  

Contrary to the existing generation methods for ALBP, our precedence graph generation 

procedure not only generates problem instances with the desired order strength, but also 

controls for further relevant parameters of the time and graph structure, such as number and 

characteristics of stages. Further, it enables to produce similar-to-real graphs by setting 

structure parameters to values typical for real-world assemblies.  

5 SALBPGen – a new data generator for SALBP-1 

The proposed new data generator SALBPGen is purposefully created for researchers, 

interested in examining solution methods. SALBPGen consists of two mandatory parts, the 

arc-generator and the task times-generator. Both parts can work independently of each other, 

but communication between them could be easily introduced in order to control for the 

interaction parameters. The user of SALBPGen may easily create instances to test effects of 

different task times for the same graphs, different graphs for the same set of task times and a 

simple permutation of task times for the same precedence graph. So, a systematic (statistical) 

analysis is supported by the configuration of the generator. 

Also, the researcher can control for the following structure measures: number of tasks, order 

strength, number and characteristics of stages, distribution parameters of task times, the 

sumtime-ratio, the maximal number of direct followers and the number of isolated tasks (i.e. 

tasks without predecessors and successors).  

The centerpiece of SALBPGen is the concept of stages. It allows for a direct manipulation of 

number of stages, stages form, precedence relations between stages and characteristics of task 
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times assigned to them, propagated by Gehrlein (1986) and Scholl (1999) as useful structure 

measures. Furthermore and even more important, the concept of stages is useful for 

controlling for other graph structures as well and create meaningful graphs even in terms of 

visual inspection.  

For a higher resemblance with real-world precedence graphs, we enriched SALBPGen with 

the possibility of manipulating the number and form of bottleneck tasks, chains, as well as 

modules (Section 5.1). We proceed in Section 5.2 with the description of the basic algorithm 

of SALBPGen. 

5.1 Bottlenecks, chains and modules 

Bottleneck tasks are nodes with a high degree (number of direct followers and predecessors). 

We define a bottleneck as a task that is the only direct follower of at least two of its direct 

predecessors and the only direct predecessor of at least two of its direct followers. Hence, 

bottleneck tasks are at least of degree 4 with in-degree and out-degree, respectively, not 

smaller than 2. In Figure 1, task 7 is a bottleneck of degree 6 with direct predecessors         

and direct followers          . 

Chains are graph structures, whose constituent tasks make up a path and have at most one 

direct predecessor and at most one direct follower. In this paper, we speak about chains only 

in case they contain at least two tasks. In Figure 1, task 10 is not a chain tasks, because its 

direct predecessor has further direct successors and its direct successor has another direct 

predecessor. To the contrary, tasks 2, 6, 8 and 12 form a chain of length four; there are no 

further chains in this example. 

Graph #tasks OS 
Share of tasks 

in chains (%) 

Avg. chain 

length 

Share of bottleneck  

tasks (%) 

Avg. bottleneck 

degree 

Bartholdi 148 0.26 37% 2.6 3% 5.3 

Gunther 35 0.60 43% 2.5 3% 5.0 

Hahn 53 0.84 17% 2.3 2% 7.0 

Heskiaoff 28 0.24 46% 2.2   

Lutz1 32 0.84 44% 3.5 6% 6.0 

Lutz2 89 0.78 33% 2.4 5% 5.5 

Mukherje 94 0.45 3% 3.0 1% 14.0 

Scholl 297 0.58 40% 2.8 3% 7.9 

Tonge 70 0.59 36% 2.8 4% 8.0 

Warnecke 58 0.59 33% 2.4 2% 6.0 

Table 4: Real-world precedence graphs from Scholl data set: frequency of chain tasks and bottleneck tasks 
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From our cooperation with several firms in automotive industry, we gained insight that chains 

and bottleneck tasks are very common in real-world precedence graphs. A typical bottleneck 

task would be an examination task, such as examination of electric equipment in the central 

console: it immediately follows the mounting of electric equipment and must be completed 

before the carpeting will be placed, only then further tasks, as mounting of seats, can be 

performed. Clipping in of the airbag cable would be a typical chain task – a strictly 

predetermined sequence of tasks. Also our analysis of the real-world precedence graphs taken 

from the Scholl data set confirmed the frequent presence of these graph structures (see Table 

4). In most cases, between 30 and 45% of the tasks are within chains, while 1 to 6% of the 

tasks are bottlenecks with an average degree between 5 and 14. 

Complex products like automobiles are nowadays constructed in a modular design. This 

product structure is brought forward to the assembly production process, where, typically, the 

precedence graph is composed of subgraphs, each responsible for assembling such a module. 

This is done not only for technical constraints, but also in order to reduce organizational 

complexity and increase flexibility of production (Garud et al. 2003). Figure 2 shows a typical 

structure of a modular precedence graph, where precedence relations predominantly exist 

between modules (which can be seen as super nodes related to other super nodes in the 

module meta-graph). Examples of modules in automobile production would be wheel 

assembly, gas pedal module or trunk lining.  

5.2 Basic logic of SALBPGen 

The basic algorithm of SALBPGen contains three parts: arc generation, task times generation 

and (if required) connection of single generated graphs as modules to form the final problem 

instance. Figure 3 summarizes required and optional parameters. 

 

      
 

 
 

Matrix   
Modules 

1 2 3 

M
o

d
u

le
s 1 0 0 1 

2 0 0 1 

3 0 0 0 
 

Figure 2: Example of a precedence graph consisting of     modules, each forming a super node. 

The adjacency matrix M represents the transitive closure of the meta graph connecting the modules. 
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Arc generation 

Required parameters: number of tasks n and order strength OS  

Optional parameters / default values: 

Tolerance                         

(Exact) form of stages (incl.  ) uniform (in expectation) 

Min No. of isolated tasks      
Max No. of direct followers for each task    
Min No. of chains and distribution of their lengths    
Min No. of bottlenecks and distribution of their degree    

Task time generation 

Optional parameters / default values: 

Cycle time         
Distribution of task times Bimodal 

           not specified 

Sumtime-ratio must be integral not activated 

Module connector (optional) 

Required parameters: 

Super precedence matrix M for modules  

Reference to the settings of the constituent graphs (modules) specified in the arc and 

task time generation parts  

Figure 3: Constituent parts of SALBPGen 

Arc generation. The user is required to specify the number of tasks and desired order strength 

   with the tolerance range     . By default the tolerance parameter is set to         for 

small graphs with      tasks,          for medium graphs with         tasks and 

to           for large graphs with      tasks.  

The user has an option either to apply a default random generator of stages, to set a rough 

direction for the stage form, for example, a diamond or a thin waist, or to specify exactly the 

number of tasks for each stage. The desired number of stages may be chosen by the user, 

whereby the default values are motivated by our investigations in Section 6.2 (see Table 5). 

For random variables, wherever needed, SALBPGen offers five kinds of distributions: 

uniform, normal, beta, bimodal (a mixture of two normal distributions) and exponential. 

Optional parameters available in the arc generation part include the number of isolated tasks 

as well as the maximal number of direct followers of each task. Further, chain and bottleneck 

modes may be activated. In the chain mode, inputs are the number of chains and the 

distribution and its parameters according to which the length of chains will be generated. 

Similarly, in the bottleneck mode, the number of bottleneck tasks and the distributions for the 

number of direct predecessors and for the number of direct followers are set by the user. 

SALBPGen, if necessary, sets lower and upper bounds for the specified distributions 
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(truncation) in order to avoid contradictions with other parameters specified by users (for 

example, length of chains is restricted by the number of stages).  

The arc-generation consists of the following four steps: 

1. Lengths of chains as well as numbers of direct predecessors and followers for each 

bottleneck task are generated (according to the specified distributions) and their locations 

(stages) are defined.  

2. The remaining tasks are distributed among the stages according to the stage-form 

parameters given by the user. If the stages form is not explicitly specified by the user, it is 

assumed to be uniform and SALBPGen randomly generates a number of tasks for each 

stage ensuring that the overall number of tasks fits the specified parameter  . 

3. To assure that every task remains on its stage in the generated graph, we first connect each 

task   of stage     with exactly one (randomly chosen) task   of stage     paying 

attention to the maximal number of direct followers of task  .  

4. We randomly insert non-redundant arcs and update the transitive closure of the graph until 

   achieves the desired interval                 or no more non-redundant arcs are 

allowed due to constrictions of specified graph structures. A direct arc       is allowed, if: 

- the stage number of task   is smaller than that of  , 

- task   is not designated to be an isolated node, 

- restrictions for the specified bottlenecks, its direct predecessors and direct followers, 

given in the definition (see Section 5.1), are satisfied, 

- restrictions for the specified chains, given in the definition (see Section 5.1), are 

satisfied, 

- the maximal number of direct followers of task   will not be exceeded, and 

- by inserting arc       the    value would not exceed the desired upper limit. 

Task times generation. Here the user optionally sets the cycle time, minimal and maximal task 

times and characteristics of the distribution (chosen from the list given above), the task times 

are taken from. Following the proposition of Hoffmann (1992), it is also possible to generate 

task times, the sum of which is a multiple of the cycle time.  

The task times are rounded to the next integer as some solution procedures require integer 

data. Possible rounding effects are compensated by setting default value of the cycle time to 

1,000 as this is a matter of normalizing the time units only. Furthermore, this value seems to 

be large enough to flexibly generate a wide range for the time variability ratio and further 

time structure measures. 
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If the optional task time distribution parameters are not specified, SALBPGen selects the 

bimodal distribution, which is a two-step distribution. Firstly, we choose from which of two 

normal distributions the task time is to be drawn, then we generate a random number from the 

selected distribution. With probability 0.85, the lower normal distribution with expectation of 

           and standard deviation of        is selected. The upper normal distribution, 

chosen with probability 0.15, has expectation of            and standard deviation of 

      . In each case the lower bound of task times is set to        and the upper bound to  , 

i.e., the distributions are truncated correspondingly. The parameters are motivated by the 

empirical study of task time distributions at four assembly lines performed by Kilbridge and 

Wester (1961) and the task time distributions we experienced in different case studies in 

automotive industry.  

Module connector (optional). Several graphs can be connected here to   modules   

          according to a (super) precedence matrix   for modules specified by the user. 

Given the order strengths of the individual modules     (           ) and the order 

strength of module meta graph    , SALBPGen simply connects the given subgraphs in the 

way specified by the meta graph adjacency matrix   and computes the final order strength of 

the resulting data instance as described in Section 6.1. 

6 Implications of the parameters on the minimal and maximal order strength 

The most widespread structure measure of ALBP instances is the order strength. This easy to 

compute measure also helps to approximate the number of feasible sequences, which is 

believed to indicate the complexity of problem instances (Thesen 1977; Elmagharaby and 

Herroelen 1980; Schwindt 1998). Besides the number of tasks,    is the only required 

parameter for instance generation by SALBPGen. In the following, we sketch the implications 

of optional structure parameters of SALBPGen on the order strength of the resulting graph. 

We do it in order to illustrate, how and to which extent specifications of optional parameters 

restrict the range of possible graphs and which combinations are possible and useful. 

6.1 Modules 

There is an intimate relation of the order strengths of single modules    , the order strength of 

the module matrix       and the order strength    of the resulting graph as the latter is the 

weighted sum of the first:                      
 
    

Let   modules, with each module             having order strength     and containing    

tasks, are connected with precedence relations having order strength      . Then, according 

to the definition of modules, order strength of the resulting graph will be: 
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Figure 4: Dynamics of       and       (with      ) 
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If all the modules have an equal number of tasks  , i.e.,      , then: 

       
 
    

   

        
       

       

    
  

Example (see Figure 2):    ,    ,     
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 and       

 

 
. So,  
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. The resulting order strength is 

  

  
 

 

  
 

 

 
 
  

  
 

  

  
.  

Ceteris paribus, the influence of the module matrix,     , on the order strength of the whole 

graph increases if: 

- the number of modules increases, 

- the size of modules is more uniformly distributed (maximal      is achieved for 

modules of equal size), 

- larger modules are subject to precedence relations. 

If each module contains the same number of tasks, then the sum of weights equals to 1: 

                and           . Hereby for any number of tasks, the weight 

     is more than 0.5 (if at least two modules are present) and it increases rapidly if the 

number of modules grows.  

6.2 Stages 

The predefined stages form 

restricts the possible value 

range of the order strength. 

Given the number of stages 

  and the number of tasks 

   for stage          , a 

lower bound on the order 

strength is          

 

       
   

 
          as 

at least a path of     tasks leads from a task on the first stage to each task at stage  . As an 

upper bound, we get          
 

       
       

   
   

 
   , because a task at stage   could be 

connected to all tasks at preceding stages directly or indirectly (see also Appendix A.2). 

Since the user of SALBPGen not always specifies the exact distribution of tasks to stages, we 

are also interested in defining the possible range of the order strength, if only the number   of 



15 

 

stages is given. Theorem 1 shows how to compute those values. Figure 4 visualizes the    

boundaries for an example instance with       tasks depending on the number   of stages. 

The difference of both values can be interpreted as precedence flexibility, as it indicates the 

degree of flexibility to generate different precedence settings for a given number of stages. As 

a principle in problem generation, this flexibility should be as large as possible in order to be 

able to generate a large variety of possible precedence graphs. So, as a default, we set the 

number of stages to the value which guarantees largest precedence flexibility computed as 

given in Theorem 1. For the above example in Figure 4, about 17 stages, i.e., 6 tasks per stage 

on average, provide largest flexibility.  

Theorem 1. Given the number of tasks n and the number of stages   or, equivalently, given 

the average number of tasks per stage    , the achievable order strength is bounded by 

      
       

       
 and       

  
 
 
   

 

 
   

   
 

   
 

 
         

 

 
     

 

 
  

 
 
 
 

, where      
 

 
   . The 

maximal precedence flexibility             is observed at             . 

Proof: The main idea is that       is lower, if there are more tasks on the first stages and to 

the contrary,       is higher at a more uniform distribution of tasks by stages. For a detailed 

proof see Appendix A.3. 

Table 5 shows the number of stages   for different problem sizes   to achieve the maximal 

flexibility. When generating instances with not extremely low or high levels of   , these 

values are taken by default. 

6.3 Bottlenecks, chains and isolated tasks 

The predefined form of stages has also an influence on the graph structure. For example, 

several stages with cardinality 1 in a row make emergence of chains more probable at low and 

high order strengths. Bottlenecks with high node degree are more likely to appear in graphs, 

where a stage with low and a stage with high cardinality follow each other. 

Generally, presence of chains and bottleneck tasks increases the minimal achievable order 

strength and decreases the maximal one as the flexibility of the graph structure is reduced. 

For a bottleneck assigned to some stage             with                
     

claimed (user-specified) direct predecessors and          claimed direct followers for 

given         the minimal possible order strength is 

n 20 30 40 50 60 70 80 90 100 125 150 175 200 300 

# stages 6 8 9 11 12 14 15 16 17 20 23 25 27 36 

Table 5: Number of stages, where the maximum flexibility in order strength is achieved 
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                        ,  

because   claimed direct predecessors of the bottleneck lead to at least     additional arcs 

for the bottleneck node and each of its claimed followers. The maximal possible order 

strength is achieved if all predecessors of the bottleneck are placed on the stage    , 

otherwise, among others, indirect arcs from further stages to the bottleneck node would be 

lost. Then,    cannot exceed  

       
 

       
          

    
   

 
                  ,  

because   predecessors of the bottleneck task cannot have arcs to the other tasks on stage k. 

As well, all claimed followers cannot have predecessors on stage   except the bottleneck task. 

Presence of a chain with a given length   that starts from stage   does not change the minimal 

achievable order strength.Technically assuming       and       , the chain restricts the 

maximal achievable order strength to 

       
 

       
        

   
   

 
                                     

    ,  

because along the whole length of the chain, other tasks at the stages cannot be connected 

with the chain tasks. Also, chain tasks are connected with only one task on stages adjacent to 

the chain. So the minimal restriction of the flexibility of the order strength generation will be, 

if there are no other tasks at the stages covered by the chain. 

Given number of stages  , the number of tasks per stage         and the number of isolated 

tasks     , the order strength cannot exceed 

        
 

       
          

   
    

 
               

    ,  

whereas the minimum possible order strength remains unchanged. 

Maximal number of direct followers per task. Introducing this restriction, we followed the 

tradition of the generators of Bhattacharjee and Sahu (1990) and Rosenberg and Ziegler 

(1992), which contain limits on the number of direct predecessors or direct followers. The 

main role of this parameter is to restrict appearance of certain graph structures. There is no 

general direction of influence of this parameter neither on the minimal nor on the maximal 

achievable order strength.  

7 Characteristics of instances generated by SALBPGen 

Due to the stage generation concept, graphs generated by SALBPGen get a meaningful layout 

and structure even in default regime without external control for the structure parameters (see 

Figure 5). 
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Figure 5: Three example graphs with different order strengths and default settings 

To check the characteristics of the generated instances, we created a data set in the default 

modus of SALBPGen in a full-factorial manner for different numbers of tasks per instance 

(                       ) and various levels of the order strength (             

   ) with 500 instances per cell. So, the data set for this experiment contains 31,500 instances.  

An important characteristic of a generator is its likelihood to generate different graphs, 

whereby we examine the dissimilarity of the graph structure and do not consider the 

assignment of task times. Among the instances generated by SALBPGen, no duplicate graphs 

were found for instances with more than 40 tasks. The share of duplicate graphs is negligible 

for generations of 20-task and 30-task instances (      and      ) respectively. Surely, for 

very high and very low levels of the order strength, the probability to receive duplicate graphs 

increases sharply. For example, independently on the number of tasks in the instance, only 

one distinctive graph (layout) is possible for      and     , respectively. 

For the examination whether the target order strength was achieved, we used tolerance 

intervals (   ) as described in Section 5.2. The target order strength was always achieved for 

problem instances with      and for medium problem instances with           except 

for       . For         the target order strength was achieved in 96 % for 30-task 

instances and in 57 % for 20-task instances. Overall, it is difficult to meet low levels of order 

strength for small problem instances.  
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Former generators (see Section 4) have difficulties in achieving the desired order strength 

even for medium and large instances. We illustrate it for 50-task problem instances. The 

generation was performed with the parameter values recommended by the authors of the 

respective method. For our suggested precision parameter of ±0.005, just 6–13% of the graphs 

generated by the method 1 of Gehrlein (1986), 16–47 % by his method 2 and 7–20% by his 

method 3 satisfied the required precision. The generator of Rosenberg and Ziegler (1992) 

resulted in a very large variability of order strengths at different parameter levels 

recommended by the authors and, thus, is not able to generate instances with desired order 

strength reliably. Furthermore, it is very unlikely to produce instances with small order 

strengths at all. 

Each generator may occasionally create a precedence graph of any structure, but still has its 

own specificity. The methods of Gehrlein (especially method 2) are very unlikely to produce 

either chains or bottlenecks, default parameters of SALBPGen lead to a creation of some 

instances (up to 20%) containing chains and the generator of Rosenberg and Ziegler 

mostly(more than 80%) produces instances with chains and bottlenecks. We omit the method 

of Bhattacharjee and Sahu (1990), since it is very restrictive as it only produces graphs with a 

limited structure (see the discussion in Section 4). 

However, in order to control for the minimum share of chain tasks and the number and 

characteristics of bottlenecks, we recommend to apply SALBPGen with specifying the modes 

“chains” and “bottlenecks”. It is especially important for creating problem instances that show 

typical properties of real-world assembly processes (see Section 5.1). 

8 New benchmark data set 

We propose a collection of new diversified and challenging benchmark data sets. The new 

benchmark data sets are constructed by a full-factorial design for the following parameters: 

number of tasks (“small” with     , “medium” with     , “large” with       and 

“very large” with       ), order strength (“low”        , “medium”         and 

“high”        ), distribution of task times, and type of the graph. It contains 25 

observations per cell. Table 6 shows all useful combinations of parameters that sum up to 84 

cells, i.e., 2,100 instances in total and 525 instances per graph size. We suggest to utilize the 

“medium” data (sub)set for testing exact solution methods, the “large” one is well suited for 

testing heuristics. We also include a “very large” data set since problems of this size are 

common in practice. The “small” data set is provided for speedy pre-tests of solution 

methods. 
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We employ three types of distributions for the task times: normal with peak at small tasks 

(“peak at the bottom”), bimodal, which is a combination of two normal distributions with a 

higher peak at small tasks (see Section 5.2), and normal with peak at       (“peak in the 

middle”). The first two were motivated by the task time distributions typically found in the 

real-world, the third one is likely to constitute “hard” instances. This type of task time 

distribution is similar to that of the problem instances of Wee and Magazine contained in the 

Scholl benchmark data set, which contain many “hard” ones. 

Precedence graphs are grouped into three categories according to the presence of chains and 

bottleneck tasks in them. Instances of the first one, “CH”, contain at least 40% chain tasks. 

The second category, “BN”, consists of instances containing bottleneck tasks with the least 

degree of eight except for small instances which observe a minimum degree of four. Category 

“MIXED” has no such structure requirements.  

We also report a trickiness measure    for each instance. We define the trickiness as a share 

of non-optimal solutions found by 10,000 runs of a random search method including the 

maximum load rule (see Section 3) in the solution space. It can be readily used as a reference 

of performance for heuristic solution methods. For the simplicity of use, we subdivide the 

instances into “extremely tricky” (        ), “very tricky” (               ), “tricky” 

(               and “less tricky” (          ). For some unsolved instances, where 

during the random search the upper bound on the number of stations was found, the trickiness 

 Distribution of task times 

Graph 

structure 

OS „peak at the 

bottom“ 

„bimodal“ „peak in the 

middle“ 

„peak at the 

bottom“ 

„bimodal“ „peak in the 

middle“ 

  n = 20 n = 50 

MIXED 0.20 0/1/2/22/0 0/0/8/17/0 3/8/11/3/0 1/0/1/23/0 6/1/2/16/0 12/0/6/0/7 

 0.60 0/2/7/16/0 0/3/2/20/0 4/7/12/2/0 4/0/4/17/0 9/4/8/4/0 14/0/0/0/11 

 0.90 0/1/7/17/0 1/1/8/15/0 0/3/14/7/1 1/3/6/15/0 4/3/10/8/0 7/0/0/0/18 

CH 0.20 0/0/8/17/0 1/1/7/16/0 4/9/10/2/0 5/0/2/18/0 8/3/8/6/0 16/1/0/0/8 

 0.60 0/3/6/16/0 1/0/8/16/0 2/6/14/2/1 4/2/5/14/0 7/7/8/3/0 11/0/0/0/14 

BN 0.20 0/3/5/17/0 1/1/4/19/0 2/13/7/3/0 0/1/3/21/0 6/5/7/7/0 20/0/0/0/5 

 0.60 1/0/9/15/0 0/4/6/15/0 7/5/9/2/2 3/1/5/16/0 11/3/7/4/0 15/2/0/0/8 

  n = 100 n = 1000 

MIXED 0.20 6/3/4/12/0 17/5/3/0/0 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

 0.60 6/5/3/11/0 18/5/1/0/1 17/0/0/0/8 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

 0.90 5/1/6/13/0 15/7/3/0/0 13/0/0/0/12 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

CH 0.20 5/1/6/13/0 13/5/5/0/2 22/0/0/0/3 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

 0.60 7/1/5/12/0 21/1/1/0/2 11/0/0/0/14 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

BN 0.20 6/1/4/14/0 15/3/6/1/0 23/0/0/0/2 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

 0.60 5/2/3/15/0 21/3/0/0/1 24/0/0/0/1 25/0/0/0/0 25/0/0/0/0 25/0/0/0/0 

Table 6: Trickiness of the instances in the new data set 
(No of “extremely tricky”/ “very tricky”/ “tricky”/ “less tricky”/”open”) 
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Data set 
Total number 

of instances 

Number of 

unsolved 

instances 

small (    ) 525 4 

medium (    ) 525 99 

large (     ) 525 170 

very large (       ) 525 339 

Table 7: Current status for the known optimal solution 
 of the new benchmark data set 

measure remains “open”. Note that this classification might be a bit misleading for exact 

solution methods, which also have to prove optimality of the found solution. We excluded the 

trivial instances, where all the solutions found by the random search were optimal (    ), 

from the benchmark data set, since such problem instances are badly suited for testing 

(heuristic) solution methods. A summary of the trickiness distributions can be found in Table 

6. From the table, we can see that even the small benchmark data set with 20 tasks contains 27 

(of 225) extremely tricky instances. 

Note that the trickiness measure loses its power of differentiation for very large instances. 

Due to the size of these instances, the share of optimal solutions even for lighter instances is 

extremely low so that an immense increase of the number of runs for the random search 

would be required to capture it. 

For the case, researchers would like to test thoroughly the role of the structure measures in 

their study of interest, we provide a further data set including permutations of medium 

instances (“medium permuted”). For each instance with      from the “medium” data set, 

nine instances with randomly permuted assignment of task times are added, i.e., these ten 

instances do not differ from each other in any possible graph structure and time structure 

measures. In some cases, a simple permutation of the task times may significantly change the 

complexity of the problem instance. For example, we found instances where one permutation 

shows a trickiness of          , whereas another one has a value          . We see it 

as an indication that working out of interaction measures (see Section 2) may be important for 

some research and real-world inquiries. 

Besides being constructed in a systematic manner, the new benchmark data set is challenging. 

Contrary to the current benchmark data set (see Table 3), it does not contain trivial instances. 

A quarter of the new benchmark data set represents extremely tricky instances (see Table 6).  

To find first optimal solutions for 

instances of the new benchmark 

data set, we run the exact solution 

procedure SALOME (Scholl and 

Klein 1997) with a low time limit 

for each instance (20, 50, 70 and 

100 seconds, respectively, for the small, medium, large and very large data set). These 

preliminary results are summarized in Table 7. About 29% of the instances in the collection of 

new benchmark data sets are currently unsolved, especially large and very large instances. We 

welcome contributions to a competition on www.assembly-line-balancing.de for solving the 

http://www.assembly-line-balancing.de/
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instances of the entire data set. The collection of new benchmark data sets as well as its 

detailed description can be downloaded from this site. 

9 Summary and conclusions 

Systematically generated data instances are required for performing comparative studies of 

solution methods. SALBPGen allows for a more thorough quality of computational 

experiments as it enables to generate sufficiently large data sets with systematically varied 

structure measures. To control the received results, SALBPGen enables a check for permuted 

task times, the same graph structures with different task times or the same sets of task times 

for different graphs.  

The final goal of each investigation in operations research is to derive conclusions for real-

world applications. Therefore, SALBPGen gives the possibility to generate data instances 

with structures that are typical for real-world assembly lines. Although it was created for 

SALBP-1, with few modifications this generator can be used for most variations of assembly 

line balancing problems as well as for some related scheduling and packing problems. 

(Boysen et al. 2008) 

Systematically generated data instances are required for comparative studies of solution 

methods, but they are also needed to study further research questions. Since ALBP is NP-

hard, exploiting knowledge on its structure is extremely valuable. For example, we could gain 

insights whether we could approximate the optimal ALBP solution by solving a less hard 

problem with a slightly modified precedence graph (cf. Klindworth et al. 2010). Further, with 

the very large data set, solution methods for more general ALBP (e.g. Becker and Scholl 

2009; Scholl and Boysen 2009; Scholl et al. 2010) can be pre-tested before applying them in 

manufacturing planning systems. 

Further research steps should include a systematic review of established as well as suggested 

and not yet stated structure measures on their predictive power of the problem’s complexity 

and relative performance of solution methods. This study would not only revisit conclusions 

of previous inquiries, which were sometimes lacking statistical significance due to limited 

diversity of the tested data set. It would also aim at creating a “which method to use when?”-

map as a guidance for practitioners and further research.  
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APPENDIX A.1 

Actually, each run of our random experiment could be seen as a draw of some solution from 

the solution space with replacement. The probability for occurrence of optimal solutions is 

unknown, but the same in each run (or draw, or trial). The trials are statistically independent 

from each other. Therefore, the number of optimal solutions found by our random search runs 

is distributed binomially (no matter, what is the underlying distribution of the optimal 

solutions in the solution space).  

Although no efficient exact procedure is known to compute the binomial confidence intervals, 

there exist a number of good approximations for it. We chose the Wilson score interval, 

recommended by Brown et al. (2001): 
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where    is the share of optimal solutions found,             is for the 95% confidence 

interval and          runs were taken. 

APPENDIX A.2 

We derive the upper bound on the number of direct and indirect arcs        , knowing that 

at given distribution of tasks to stages         the maximal number of direct and indirect arcs 

is as follows: 
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Figure A.1: Illustration for the proof of maximal OS in 

the discrete case (examples of transitive arcs are dotted) 

 

 

Obviously,       only depends on the different values of   , irrespective to which stage 

these numbers are assigned. So, the same maximal order strength might be achieved for very 

different stages forms. 

APPENDIX A.3: Proof for Theorem 1 

Proof for      : As argued above, each task on a stage   has at least     (direct or 

indirect) predecessors. Since, according to the definition, each stage must contain at least one 

task, then the lower bound on the number of direct and indirect arcs is 
       

 
. This lower 

bound is sharp, since it is achieved if       tasks are assigned to the first stage and only 

one task to any other of the remaining     stages. If all but one tasks of the first stage have 

no successors, then there is only a single chain with 
       

 
 direct and indirect arcs connecting 

the   stages. Setting this value in proportion to the number of arcs in a complete precedence 

graph 
       

 
 results in       

       

       
. 

Proof for      : Given the number of tasks per stage   ,            , the achievable order 

strength is restricted to          as defined in Appendix A.2. 

Let us first assume that the average number of tasks per stage 
 

 
 is integral. To determine a 

valid upper bound on the order strength, we take into account the constraint on the total 

number of tasks       
    in a Lagrangian optimization. Using a multiplier  , we get from 

(A2) the following Lagrangian function to be maximized: 
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Computing partial derivatives for all variables and setting to zero yields: 

  

   
        

 
          

 
           

 
    

 

 

 
    

 

 
    

     

Examining the second-order conditions confirms that    
 

 
   indeed is a maximum. 

Hence, if 
 

 
 is an integer number, we get 

the maximal order strength if each stage 

contains the same number    
 

 
 of 

tasks:       
  

   
       

       
 

       

       
. 

If 
 

 
  , the maximal order strength is 

only achievable, if      
 

 
    stages 
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each contain  
 

 
  tasks and the other stages each include  

 

 
  tasks (see the separate proof in 

Appendix A.4). Without loss of generality (see Appendix A.2), we assume the stages form as 

outlined in Figure A.1. Thus, we get a maximum of  
 
 
   

 

 
  (direct and indirect) arcs in the 

right block,  
   

 
   

 

 
  arcs in the left block and        

 

 
     

 

 
  arcs between the 

two blocks. So the order strength cannot exceed       
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Proof for maximal flexibility. For the sake of simplicity, we ignore the integrality requirement 

for the number of tasks at each stage and get             
       

       
 

       

       
. Taking the 

derivative by   for this expression, we receive the first order condition for the maximum 

flexibility:             . 

APPENDIX A.4: Proof for maximal order strength in case of non-integral 
 

 
 

In (A2), we have to correct the number of tasks of each stage for the optimal solution (in the 

continuous case) up by some      or down by some     : 

      
     

 

 
       

 
 
   

 
, with            (A4) 

For each stage some correction must be present. Because we correct 
 

 
 to an integer number at 

each stage  , either      and     
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  and     .  

Let      for   stages and      for     stages. Then the lower bounds on the sums of 

corrections are    
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 . Since      

   

 , it follows  =1   = =1    and we search for a sharp lower bound. In the first case, 
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  . In the second case, we receive the same lower bound on the amount 

of correction    
 
   . 

To find the maximal achievable order strength, we take into account the constraints on the 

minimal amount of correction:    
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   . 

The first order conditions we receive by taking l partial derivatives in    and       partial 

derivatives in    from the following Lagrangian function: 
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given        
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By regrouping and taking into account        , we get: 
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From the first order conditions (                     and         

           ), we receive that: 

If      and       then        for all   and   , (A8) 

If      and      , then        for all   and   , (A9) 

     and hence    
 
      

 

 
        

 

 
  

 

 
  . (A10) 

From our earlier considerations, that    
 

 
      and    

 

 
  

 

 
  for these   stages, and 

(A10) it follows that    
 

 
  

 

 
          and that there are    

 

 
      stages   with 

    . 

The second order conditions ensure that we found the maximum. 

In other words, we received an integer solution. The maximal achievable order strength could 

be received if  
 

 
      stages have  

 

 
  tasks and the rest of the stages have  

 

 
  tasks each. 


