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1 General introduction 

Plants are sophisticated light-driven “green” factories able to synthesize an immense number of 

bio-active natural products (Jensen and Møller, 2010). These natural products are also referred 

to as secondary products or secondary metabolites since they are not directly essential for the 

basic processes of growth and development (Theis and Lerdau, 2003). The investigation of plant 

natural products has a long history that started about 200 years ago with the isolation of 

morphine by Friedrich Wilhelm Sertürmer. Since then the number of described secondary 

metabolites has risen to over 200,000 (Hartmann, 2007). They can be divided into two major 

classes, the first class formed by nitrogen-containing substances, such as alkaloids, amines, 

cyanogenic glycosides, non-protein amino acids and glucosinolates, and the second class 

consisting of nitrogen-free substances which are represented by polyketides, polyacetylenes, 

saponins, phenolics and terpenes. Many of the secondary metabolites were found to serve plants 

as defenses against herbivores, pathogens and abiotic stresses (Huang et al., 2010). 

In human society, plants play an irreplaceable role as food sources, not only for their nutritional 

value but also as spices and herbs which help preserve food or improve its taste. The plant 

compounds that add flavor to our food are mainly secondary products, such as capsaicin, an 

alkaloid, which is responsible for the hot taste of chili; or thymol, a terpene, which is one of the 

main flavoring components in herbs like oregano (Origanum sp.) or thyme (Thymus sp.).  

Oregano and thyme belong to the Lamiaceae plant family which harbors many other aromatic 

plants of great scientific and economic interest such as rosemary, sage, mint, and marjoram. The 

aroma associated with these plants arises from the essential oil found in peltate glandular 

trichomes on the aerial parts of the plant. These glandular trichomes consist of highly 

specialized secretory cells in which the components of the essential oil are synthesized and 

subsequently accumulate in a subcuticular storage cavity (Gershenzon et al., 1989; Turner et al., 

1999). The composition of the essential oils of oregano, thyme and marjoram is dominated by 

mono- and sesquiterpenes (Skoula and Harborne, 2002; Stahl-Biskup, 2002).  

These substances are responsible for the aroma and flavor of these herbs, and the extracted 

essential oils are used for the manufacturing of perfumes and cosmetics as well as for medicinal 

and pharmaceutical purposes as antimicrobial or antiseptic agents (Kintzios, 2002; Stahl-

Biskup, 2002). Mono- and sesquiterpenes are also thought to help defend the plant against 

herbivores and pathogens (Gershenzon and Dudareva, 2007).  

Two monoterpenes of the Lamiaceae that have attracted much attention, thymol and carvacrol, 

are found in thyme and oregano but not in marjoram. These phenolic monoterpenes are 

especially known for their antiherbivore, antimicrobial, pharmaceutical and antioxidant  
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activities (Isman, 2000; Hummelbrunner and Isman, 2001; Ultee et al., 2002; Sedy and 

Koschier, 2003; Braga et al., 2008). They are even used to treat bee hives against the varroa 

mite without harming the bees (Floris et al., 2004). According to a prediction by (Poulose and 

Croteau, 1978a), the pathway for thymol formation proceeds from γ-terpinene via the aromatic 

compound, p-cymene, as an intermediate. However, despite extensive efforts to breed oregano 

or thyme varieties with a larger proportion of thymol and carvacrol for pharmaceutical use and 

the interest in these terpenes as plant defenses, no genes or enzymes responsible for thymol or 

carvacrol formation from γ-terpinene or p-cymene have been described. 

 

Questions addressed in this thesis 

As stated above plant secondary compounds are of great importance not only for plant defense 

but also for pharmaceutical and medicinal purposes. Understanding the mechanisms underlying 

the formation and regulation of plant secondary compounds is essential to further investigate 

their roles in plant defense and develop new strategies to make these compounds more readily 

available for pharmaceutical and nutritional usage. In this thesis the biosynthesis of the two 

highly bioactive compounds, thymol and carvacrol, is studied on different levels. Chapter I 

covers the molecular and biochemical mechanisms of mono- and sesquiterpene biosynthesis in 

different oregano cultivars emphasizing the role of terpene synthases in producing the basic 

terpene carbon skeletons. In Chapter II, the next biosynthetic step in the formation of thymol 

and carvacrol is investigated in the closely related plants oregano, thyme and marjoram. Here, 

the focus lies on the oxidation of the basic terpene skeleton by cytochrome P450s. Five novel 

P450 genes from oregano and thyme chemotypes are described, and the biochemical 

characterization of three of them by heterologous expression in a yeast system is presented. In 

Chapter III some of the limitations of the yeast expression system are circumvented by over-

expression in the model plant Arabidopsis thaliana. As a result, a new pathway for thymol and 

carvacrol formation is proposed that is different from the prediction in the literature.  

 

Terpenes 

Terpenes (also known as terpenoids or isoprenoids) form the largest group of natural products 

with more than 30,000 different structures (Buckingham, 1998) spread over the widest 

assortment of structural types with hundreds of different monoterpene, sesquiterpene, diterpene 

and triterpene carbon skeletons (Degenhardt et al., 2010). The majority of terpenes have been 

isolated from plants where their enormous structural variability leads to a great functional 

diversity. Terpenes play important roles in almost all basic plant processes, including growth, 

development, reproduction and defense (Gershenzon, 1999). For example, phytol, the side chain 

of the photosynthetic pigment chlorophyll, is the most abundant plant terpenoid (Davis and 



General introduction 
 

3 

 

Croteau, 2000). Still, comparatively little is known about the actual role of most terpenes in 

nature despite this immens number and the importance of natural products in medicine, 

agriculture and industry (Gershenzon and Dudareva, 2007).  

 
Figure 1 Compartmentation of plant terpene biosynthesis. The Mevalonic acid (MVA) pathway is located 

in the cytosol in peroxisomes and in the endoplasmatic reticulum (ER). It starts with three units of Acetyl-

CoA and the final product farnesyl pyrophosphate (FPP) is the precursor molecule for all sesquiterpenes. 

The Methyl-erythritol-phosphate (MEP) pathway is located in the plastids and the initial substrates are 

glyceraldehyde-3-phosphate (GA3P) and pyruvate. Geranyl diphosphate (GPP) is the precursor for all 

monoterpenes and geranyl geranyldiphsophate (GGPP) the precursor for diterpenes. Carotenoids are 

derived from two units of GGPP. DMAPP (dimethylallyl diphosphate) is the backbone to which different 

numbers of the isomer IPP (isopentenyl diphosphate) are added to form GPP, FPP or GGPP. Ubiquinone 

is formed in mitochondria. An exchange of IPP between different compartments is still under 

investigation. (Redrawn after (Sapir-Mir et al., 2008; Sallaud et al., 2009)).  

Much more is known about the biosynthesis and localization of terpenes within the plant cell. 

Terpenes are formed from the universal five-carbon building blocks, isopentenyl diphosphate 

(IPP) and its isomer dimethylallyl diphosphate (DMAPP), which are both synthesized by the 

plastidic methylerythritol pathway and the cytosolic mevalonate pathway (Gershenzon, 1999; 

Sapir-Mir et al., 2008; Sallaud et al., 2009) (Fig. 1). DMAPP and IPP are fused by 

prenyltransferases to form geranyl diphosphate (GPP, C10), the usual precursor of the 

monoterpenes, and DMAPP and two units of IPP are fused to form farnesyl diphosphate (FPP, 

C15) the precursor of most sesquiterpenes. Next, the linear carbon skeletons of GPP and FPP are 

converted to the basic terpene skeletons by terpene synthases, a widespread class of enzymes 
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responsible for the huge structural diversity of mono- and sesquiterpenes since these enzymes 

often form multiple products (Tholl, 2006; Degenhardt et al., 2010).  

 

Terpene biosynthesis in Lamiaceae 

Plant terpene biosynthesis is often restricted to special morphological structures like idioblasts 

(e.g. oil cells in Laurus sp.) or ducts (e.g. resin ducts in Pinus sp.) or trichomes (e.g. glandular 

trichomes in Lamiaceae and Asteraceae) that can store these lipophilic compounds in high 

concentrations (Fahn, 1988).  

Studies on Lamiaceae species such as mint (Mentha sp.) and sweet basil (Ocimum basilicum) 

have provided many insights into essential oil biosynthesis. In both plants, the essential oil is 

produced in glandular trichomes situated on the aerial parts of the plants. These glandular 

trichomes consist of a cluster of secretory cells covered by a subcuticular storage cavity where 

the essential oil accumulates (Gershenzon et al., 1989; Turner et al., 1999) (Figure 2).  

 
Figure 2 Peltate glandular trichomes of Lamiaceae. (A) Schematic drawing of a peltate glandular 

trichome with a basal cell (b) and the head cells (h) based on one stalk cell (s). Secreted terpenes are 

stored in the subcuticular cavity (sc) as an oil drop (o). (Modified after Fahn, 1988). (B) Micrograph of 

the isolated head cells of a glandular trichome from oregano. Eight larger cells are arranged around four 

smaller inner cells. 

Terpene synthase genes have been isolated and characterized from several Lamiaceae species, 

including the genus Mentha where, among others, a limonene synthase, an (E)-β-farnesene 

synthase, and a cis-muuroladiene synthase have been identified (Colby et al., 1993; 

Haudenschild et al., 2000). From other Lamiaceae, terpene synthase genes are known from 

Salvia officinalis (Wise et al., 1998), S. pomifera and S. fruticosa (Kampranis et al., 2007), 

Rosmarinus officinalis (Tan, 2007), Lavandula angustifolia (Landmann et al., 2007) and 

Ocimum basilicum (Iijima et al., 2004a; Iijima et al., 2004b).  
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Terpene synthases 

Considering the entire protein, plant monoterpene synthase with about 550-650 amino acids are 

longer than sesquiterpene synthases (550–580 amino acids) due to an N-terminal signal peptide 

that targets the initial translation product towards the plastids (Turner et al., 1999; Degenhardt et 

al., 2010). Terpene synthases share several highly conserved motifs in their amino acid 

sequence, such as the RR motif and the DDxxD motif. The RR motif is located in the  

N-terminus and appears to be essential during the isomerization of geranyl pyrophosphate to 

linalyl pyrophosphate, a common mechanism of cyclic monoterpene formation (Williams et al., 

1998) (Fig. 3). The aspartate-rich DDxxD motif has an important function in binding the Mn2+- 

or Mg2+-pyrophosphate complex of the diphosphate substrates GPP or FPP (Cane et al., 1996, 

Ashby and Edwards, 1990).  

 
Figure 3 Reaction mechanism of cyclic monoterpenes formation from geranyl diphosphate (GPP). The 

reaction starts with the ionization of GPP and the resulting geranyl cation is isomerized to a linalyl 

intermediate capable of cyclizations. The initial cyclic α-terpinyl cation is the central intermediate and 

can be subject to further cyclizations, hydride shifts and rearrangements before the reaction is terminated 

by deprotonation or water capture. The numbering of carbon atoms in intermediates and products 

corresponds to that of GPP. 
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Recently, 213 plant mono- and sesquiterpene synthases and the reaction mechanisms leading to 

the structural diversity have been reviewed in detail (Degenhardt et al., 2010). A short overview 

of the initial steps in monoterpene formation from the precursor GPP is shown in Figure 3. 

Ionization of GPP results in a geranyl cation which is most likely the precursor for acyclic 

monoterpenes such as geraniol, linalool, myrcene and (E)-β-ocimene. Isomerization of the 

initial geranyl cation leads to a linalyl cation which is involved in the formation of cyclic 

monoterpenes via the α-terpinyl cation. The α-terpinyl cation is the central precursor for all 

cyclic monoterpenes such as limonene or γ-terpinene. Oxidation, reduction, rearrangement (via 

hydride shifts and additional ring closures), conjugation, double bond isomerization and 

hydration result in a high diversity of monoterpene structures. The initial terpene synthase 

products (olefins and monoalcohols) are often further oxidized or conjugated. One prominent 

class of enzymes, the cytochrome P450s, plays an important role in these downstream 

modifications. 

 

Cytochrome P450s – a widespread enzyme family 

Cytochrome P450s monooxygenases (P450s) form an ubiquitous class of enzymes known from 

all kinds of organisms including animals, bacteria, fungi, archaea, protists and even viruses 

(http://drnelson.uthsc.edu/P450.statistics.Aug2009.pdf). The total P450 count reached over 

11,000 in 2009 which is 39 % (or > 3000) more than in February 2008 

(http://drnelson.uthsc.edu/p450stats.Feb2008.htm). The largest group of P450s (4,266 enzymes) 

is found in plants which is one reason for the immense amount of structurally diverse natural 

products in this kingdom.  

Table 1  Total numbers of known cytochrome P450 monooxygenases from different organisms as of 

August 2009 (http://drnelson.uthsc.edu/P450.statistics.Aug2009.pdf). CYP = cytochrome P450 

Organism Total 

number 

CYP 

families 

CYP 

subfamilies 

Plants 4,266 126 464 

Animals (w/o insects) 1,607 69 169 

Insects 1,675 59 338 

Fungi 2,570 459 1,011 

Protists 247 62 119 

Bacteria 905 196 409 

Archaea 22 12 14 

Viruses 2 2 2 

Total 11,294 977 2519 
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Cytochrome P450 monooxygenases are heme-dependent mixed function oxidases that utilize 

NADPH and / or NADH to reductively cleave atmospheric dioxygen producing a functionalized 

organic product and a molecule of water (Schuler, 1996). All plant cytochrome P450s described 

to date are bound to membranes of the endoplasmic reticulum through a short hydrophobic 

segment of their N-terminus (Williams et al., 2000; Werck-Reichhart et al., 2002). P450s need 

to be coupled to an electron donating protein, a cytochrome P450 reductase or a cytochrome b5, 

which is also anchored to the endoplasmic reticulum by its N- or C-terminus (Schuler, 1996; 

Werck-Reichhart et al., 2002).  

 
Figure 4: Examples of reactions catalyzed by different cytochrome P450 enzymes. 

Although the sequence identity between distantly related P450s can be as low as that between 

two random sets of 500 amino acids (a common sequence length of P450s), a few absolutely 

conserved sequence motifs are known, the WxxxR motif, the GxE/DTT/S motif, the ExLR 

motif, the PxxFxPE/DRF motif and the PFxxGxRxCxG/A motif. The latter, most conserved 

P450 motif (PFxxGxRxCxG/A) represents the heme binding loop and is often considered as a 

‘signature’ sequence for P450 proteins (Feyereisen, 2005). This motif is responsible for the 

characteristic 450 nm absorption of the FeII-CO complex of cytochrome P450 (Mansuy and 

Renaud, 1995). As shown by crystal structure analysis of mostly bacterial P450s, the three-

dimensional structure reveals quite high conservation which would not be expected from the 
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high overall sequence diversity (Poulos et al., 1985; Feyereisen, 2005). Cytochrome P450s 

catalyze a large variety of reactions like aliphatic and aromatic hydroxylations, N-, O-, and S-

dealkylation, oxidative deamination, sulfoxide formation or N-oxidation. An overview of 

common reactions is shown in Figure 4. 

The nomenclature for P450s comprises the CYP prefix, followed by an Arabic numeral which 

designates the family (all members nominally > 40 % identical), a capital letter designates the 

subfamily (all members nominally > 55 % identical) and an Arabic numeral designates the 

individual gene (all numbers and letters in italics) or protein (no italics) (Nebert et al., 1991, 

1991; Nelson et al., 1993; Nelson et al., 1996). This would mean that the mint limonene-3-

hydroxylase CYP71D13 is P450 number 13 of the subfamily D of P450 family 71. The family 

names also indicate the organism the P450 is from; the plant P450s are found in families 51, 71-

99 and 701-804 (http://drnelson.uthsc.edu/CytochromeP450.html).  

 

The catalytic cycle of cytochrome P450s  

Figure 5 shows the catalytic cycle of cytochrome P450s which has been mostly validated by 

experimental evidence (Groves, 2005; Makris et al., 2005; Ortiz de Montellano, 2010). The 

resting enzyme is in the ferric state and has a thiolate proximal ligand while the distal ligand is 

usually a water molecule (A). Upon substrate (RH) binding water is displaced if present. This 

causes a shift in the redox potential of the heme iron atom which enables electron transfer from 

the redox partner, NAD(P)H (B). The higher redox potential can cause a reduction of ferric 

(FeIII) into ferrous (FeII) (C) which is followed by binding of molecular dioxygen to result in the 

instable ferrous dioxy complex (D). An additional reduction generates the ferric peroxy anion 

which is protonated to yield the ferric hydroperoxo complex (E). This second electron transfer 

can be the rate-limiting step of the catalytic cycle. A ferryl intermediate (F) is formed from the 

unstable ferric hydroperoxo intermediate by protonation and heterolytic cleavage of the O-O 

bond, also known as compound I. Different formulations are possible for this state (Ortiz de 

Montellano, 2010). Finally, the ferryl intermediate reacts with the substrate to produce the 

hydroxylated metabolite (G). After release of the product and re-equilibration with water the 

resting ferric state is reached again (A).  

The exact mechanism of how the oxygen is transferred to the substrate is still under invest-

tigation. Most likely, a radical rebound mechanism applies for hydrocarbon hydroxylations. The 

cleavage of the C-H bond results in the formation of a radical in the substrate. In a second step, 

the FeIV+-OH intermediate and the substrate are connected via the oxygen as shown in Figure 5 

(G) and finally the hydroxylated product dissociates (Meunier et al., 2004; Shaik et al., 2005). 

The radical rebound mechanism is largely supported by studies involving the use of 
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hydrocarbons as radical clocks (He and Ortiz de Montellano, 2004; Groves, 2005; Jiang and 

Ortiz de Montellano, 2009; Ortiz de Montellano, 2010).  

 
Figure 5: Summary of the cytochrome P450 catalytic cycle. The heme group is represented by two solid 

bars with the iron (Fe) between them. The S represents the thiolate of the protein. RH is the hydrocarbon 

substrate and ROH is the hydroxylated product. The +. over one heme bar in (F) indicates the position of 

the radical cation on the porphyrin ring. The different steps of the catalytic cycle are described in detail 

within the previous paragraph. (Redrawn after (Karuzina and Archakov, 1994; Ortiz de Montellano, 

2010)). 

In addition to the main pathway three shunt pathways are known which result in the dissociation 

of oxygen without hydroxylation of the substrate (Karuzina and Archakov, 1994). The 

autoxidation shunt leads to an elimination of oxygen from the instable ferrous dioxy complex 

(D). The peroxide shunt describes the elimination of hydrogen peroxide from the ferric 

hydroperoxo complex (E). Via the oxidase shunt the ferryl intermediate or compound I (F) is 

transformed back into intermediate (B) by reduction of oxygen into water which consumes two 

equivalents of NAD(P)H. All three shunt pathways result in an unwanted uncoupling of co-

factor comsumption without hydroxylation of the substrate.   

As shown in the catalytic cycle, electron transfer to the heme is required for oxygen activation. 

Different types of electron transfer chains are known for cytochrome P450s. In plants and other 

eukaryotes, class II P450s bound to the endoplasmic reticulum are the most common 

(Hannemann et al., 2007). Adjacent to the P450 is another membrane-bound protein, a 

cytochrome P450 oxidoreductase (CPR) containing the prosthetic groups FAD and FMN, which 
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are both required to transfer redox equivalents from NADPH to the P450. The estimated ratio 

between CPR and P450 in the microsomal membrane is 1:15 which requires some control to 

ensure efficient electron transfer from CPR to P450s (Shephard et al., 1983). Recently 54 CPRs 

from vascular plants have been reviewed in detail (Jensen and Møller, 2010). In different plant 

species, the number of CPR homologs was found to vary between one and three. In general, 

plant P450s can be catalytically supported by CPRs from other plant species which is reflected 

by the high conservation of amino acid residues involved in CPR-P450 interactions (Bak et al., 

2000; Tattersall et al., 2001). Nevertheless, the efficiency of the electron transfer may still 

depend on the CPR homolog present, and thus different CPRs may differentially influence 

cytochrome P450 performance (Hasemann et al., 1995; Jensen and Møller, 2010).  

 

Secondary modifications of terpenes by cytochrome P450s 

In general, cytochrome P450 monooxygenases play important roles in plant survival both by 

detoxifying xenobiotics and synthesizing defense compounds with high bioactivity against 

enemies (Schuler, 1996; Ohkawa et al., 1999; Werck-Reichhart et al., 2002). Compounds like 

the cyanogenic glucosides in Sorghum bicolor (Halkier and Møller, 1991; Halkier et al., 1995; 

Bak et al., 1998) or glucosinolates in Arabidopsis (Du et al., 1995; Wittstock and Halkier, 2000; 

Chen et al., 2003) are produced in pathways containing multiple P450s. The impact of 

cytochrome P450s in plants becomes even more obvious when realizing the large number of 

P450s that have been described. In the model plant Arabidopsis thaliana, 246 putative P450 

genes and 26 pseudogenes were annotated, which represent approximately 1 % of its gene 

complement (Paquette et al., 2000; Werck-Reichhart et al., 2002; Schuler and Werck-Reichhart, 

2003; Nelson et al., 2004) and in rice the number of 457 annotated P450s is even more 

impressive (Schuler and Werck-Reichhart, 2003).  

Biosynthetic P450s catalyze steps in pathways leading to a range of plant compounds like lignin 

intermediates, sterols, furanocoumarins and terpenes (Bolwell et al., 1994; Schuler, 1996).  

Within the terpenes, mono-, sesqui-, di-, and triterpenes are all substrates for cytochrome P450s 

(Bolwell et al., 1994) and these enzymes play therefore an important role in generating some of 

the enormous structural diversity of plant terpenoid secondary metabolites (Ro et al., 2005). In 

loblolly pine diterpene resin acid biosynthesis, multisubstrate, multifunctional P450s catalyze an 

array of consecutive oxidation steps with several different alcohol and aldehyde intermediates 

(Ro et al., 2005). P450s also catalyze the hydroxylation of sesquiterpenes in chicory (Cichorium 

intybus L.) (de Kraker et al., 2003), and P450-mediated modifications of monoterpenes are 

known to occur for acyclic monoterpenes, such as geraniol-10-hydroxylation in Catharanthus 

roseus (Meijer et al., 1993) or the bicyclic monoterpenes, sabinene and pinene (Karp et al., 

1987).  
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The largest diversity of monoterpenes hydroxylations by cytochrome P450s is reported for 

limonene. Several limonene-using P450s have been identified from mint, caraway and Perilla 

(Karp et al., 1990; Bouwmeester et al., 1998; Mau et al., 2010). In Mentha, the biosynthesis of 

menthol and carvone involves hydroxylation steps catalyzed by cytochrome P450 

monooxygenases (Colby et al., 1993; Lupien et al., 1999; Haudenschild et al., 2000). 

Hydroxylation reactions catalyzed by cytochrome P450s are often highly regiospecific (Schuler, 

1996) which is important since the position of hydroxylation can determine the downstream fate 

of the products in biosynthetic pathways. In mint, the oxygenation pattern of monoterpenes is 

determined by the regiospecificity of P450 mediated (-)-S-limonene-hydroxylation either at 

carbon C3 or C6 (Lupien et al., 1995). The hydroxylation at carbon C6 results in the formation 

of carveol which leads to the accumulation of carvone in spearmint, whereas hydroxylation at 

carbon C3 results in the formation of isopiperitenol which is subsequently transformed into the 

commercially important menthol in peppermint (Karp et al., 1990; Lupien et al., 1995; Croteau 

et al., 2005). The structural similarity of these highly regiospecific limonene hydroxylases to 

those enzymes forming thymol and carvacrol is discussed in Chapters II and III.  

 

 



 

 

 



 

2 Chapter I 

 

Terpene synthases of oregano (Origanum vulgare L.) and their roles 
in the pathway and regulation of terpene biosynthesis 

 

2.1 Abstract 

The aroma, flavor and pharmaceutical value of cultivated oregano (Origanum vulgare L.) is a 

consequence of its essential oil which consists mostly of monoterpenes and sesquiterpenes. To 

investigate the biosynthetic pathway to oregano terpenes and its regulation, we identified and 

characterized seven terpene synthases, key enzymes of terpene biosynthesis, from two cultivars 

of O. vulgare. Heterologous expression of these enzymes showed that each forms multiple 

mono- or sesquiterpene products and together they are responsible for the direct production of 

almost all terpenes found in O. vulgare essential oil. The correlation of essential oil composition 

with relative and absolute terpene synthase transcript concentrations in different lines of O. 

vulgare demonstrated that monoterpene synthase activity is predominantly regulated on the 

level of transcription and that the phenolic monoterpene alcohol thymol is derived from γ-

terpinene, a product of a single monoterpene synthase. The combination of heterologously-

expressed terpene synthases for in vitro assays resulted in blends of mono- and sesquiterpene 

products that strongly resemble those found in vivo, indicating that terpene synthase expression 

levels directly control the composition of the essential oil. These results provide the possibility / 

tools to develop strategies for metabolic engineering and direct breeding of O. vulgare cultivars 

with higher quantity of essential oil and an improved composition. 

   



 Chapter I
 

14 

 

2.2 Introduction 

Throughout the plant kingdom, many species produce aromatic essential oils that contain 

mixtures of terpene or phenylpropanoid metabolites. The well-known culinary herb, oregano, 

Origanum vulgare L., contains an essential oil whose composition is dominated by 

monoterpenes and sesquiterpenes. These substances are responsible for the aroma and flavor of 

oregano, its pharmaceutical uses as an antimicrobial and antiseptic agent, and its anti-oxidant 

activity, often touted as a health benefit (Kintzios, 2002). They are also thought to help defend 

the plant against herbivores and pathogens (Gershenzon and Dudareva, 2007). Two components 

of the essential oil, the phenolic monoterpenes, thymol and carvacrol, are especially known for 

their antiherbivore, antimicrobial, pharmaceutical and antioxidant activities (Isman, 2000; 

Hummelbrunner and Isman, 2001; Sedy and Koschier, 2003; Braga et al., 2008). However, the 

composition and quantity of essential oil varies strongly between populations and accessions of 

O. vulgare (Kintzios, 2002) and within the genus Origanum (Kokkini and Vokou, 1989; Vokou 

et al., 1993). Despite extensive efforts to breed O. vulgare varieties with a larger proportion of 

thymol and carvacrol for pharmaceutical use and the interest in terpenes as plant defenses, little 

is known about the molecular factors determining the biosynthesis and composition of the 

essential oil. 

Studies on other Lamiaceae species such as mint (Mentha sp.) and sweet basil (Ocimum 

basilicum) have provided many insights into essential oil biosynthesis. In both plants, the 

essential oil is produced in glandular trichomes situated on the aerial parts of the plants. The 

glandular trichomes consist of a cluster of secretory cells covered by a subcuticular storage 

cavity where the essential oil accumulates (Gershenzon et al., 1989; Turner et al., 1999). Within 

the secretory cells, the five-carbon building blocks for terpenes, isopentenyl diphosphate and its 

isomer dimethylallyl diphosphate, are synthesized by the plastidic methylerythritol pathway and 

the cytosolic mevalonate pathway (Gershenzon, 1999). Two of these five-carbon units are fused 

to form geranyl diphosphate (GPP), the usual precursor of the monoterpenes, and three of these 

units are fused to form farnesyl diphosphate (FPP) the precursor of most sesquiterpenes. Next, 

the linear carbon skeletons of GPP and FPP are converted to the basic terpene skeletons by 

terpene synthases, a widespread class of enzymes responsible for the huge structural diversity of 

monoterpenes and sesquiterpenes (Tholl, 2006). Terpene synthase genes have been isolated and 

characterized from several Lamiaceae species, including the genus Mentha where a limonene 

synthase, an (E)-β-farnesene synthase, and a cis-muuroladiene synthase have been identified 

(Colby et al., 1993; Haudenschild et al., 2000). From other Lamiaceae, terpene synthase genes 

are known from Salvia officinalis (Wise et al., 1998), S. pomifera and S. fruticosa (Kampranis et 

al., 2007), Rosmarinus officinalis (Tan, 2007) and Ocimum basilicum (Iijima et al., 2004b). The 

initial terpene synthase products (olefins and monoalcohols) are often further oxidized or 
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conjugated. In Mentha, the biosynthesis of menthol and carvone involves hydroxylation steps 

catalyzed by cytochrome P450 monooxygenases (Colby et al., 1993; Lupien et al., 1999; 

Haudenschild et al., 2000).  

These previous results have many implications for monoterpene biosynthesis in oregano. For 

example, the phenolic monoterpene thymol, a major antioxidant and antimicrobial component, 

is likely to be derived from GPP by a terpene synthase followed by oxidative steps. In Thymus 

vulgaris, thymol formation was suggested to proceed via the olefins γ-terpinene and p-cymene 

(Poulose and Croteau, 1978a). A second group of monoterpenes common to O. vulgare 

essential oil is characterized by the bicyclic monoterpene alcohols, cis- and trans-sabinene 

hydrate which impart the typical marjoram flavor (found in Origanum majorana) (Kintzios, 

2002). These are likely to be direct products of terpene synthases based on previous isolation of 

sabinene hydrate synthases (Hallahan and Croteau, 1988, 1989). In most Origanum species, the 

monoterpenes are accompanied by varying amounts of sesquiterpenes (Skoula et al., 1999). 

These are also likely to be direct terpene synthase products based on accumulated knowledge of 

sesquiterpene synthases (Tholl, 2006). 

In order to learn more about the pathway and molecular mechanisms regulating terpene 

production in O. vulgare L., we isolated and characterized seven terpene synthases responsible 

for the production of the major essential oil components. Correlations of terpene synthase 

transcript levels from qRT-PCR and essential oil composition in clonal O. vulgare lines were 

then employed to examine the role of these enzymes in the biosynthesis of various terpenes and 

its control. 
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2.3 Materials and Methods 
 

Plant Material  

Oregano (Origanum vulgare L.) plants were propagated from stem cuttings and grown in the 

greenhouse with additional illumination by sodium lamps (16 h day at 20-22 °C and 8 h night at 

18-20 °C), and 30-55 % humidity. Plants were potted in commercial soil (Tonsubstrat, 

Klasmann, Geeste/Groß-Hesepe, Germany) and watered every 2 to 3 days with tap water. Two 

cultivars of Origanum vulgare L. (cv. ‘d06-01’ and cv. ‘f02-04’) were selected from the 

collection of Origanum species of the botanical garden of Università di Bari, Italy, which were 

chosen for the presence of both sabinyl- and p-cymyl compounds in the essential oil. An 

additional criterion was a low density of hairy trichomes which facilitates the extraction of 

glandular trichomes. Herbarium specimens of the two genotypes are kept at the Herbarium of 

the Institute of Applied Botany, University of Veterinary Medicine, Vienna, Austria. For the 

cultivar d06-01, three clonal lines were chosen (designated d2, d5 and d8) and from the cultivar 

f02-04 four lines were chosen (designated f2 through f5). Additional lines were derived by 

selfing f02-04 plants (seven lines chosen designated ff1, ff2, ff4, ff5, ff6, ff7 and ff8) and 

crossing line d06-01 with f02-04 (four lines chosen designated df5 through df8). 

 

Terpene extraction from leaves 

For terpene extractions correlated to the RNA-hybridization analysis, leaf material of the O. 

vulgare lines d2, d5, d8, f2-f5, df5-df8, ff2, ff4, ff6, and ff7 was harvested in June 2006. Young 

expanding leaves from five plants of each line were pooled and frozen in liquid N2 immediately 

after harvest and ground to a fine powder with mortar and pestle. The powder (50-100 mg) was 

soaked in 1 ml ethyl acetate:pentane (2:1) containing an internal standard (menthol, 50 ng/µl) 

for 24 h at room temperature with constant rotation. The solution was cleared with activated 

charcoal for 5 min and dried over a column of 500 mg water-free Na2SO4. All extractions were 

performed in triplicate. 

For terpene extractions correlated to the qRT-PCR analysis, leaf material of the lines d2, d5, f4, 

f5, df6, df8, ff1, ff2, ff4, ff5, ff6, ff7, ff8 was harvested in November 2009. Young expanding 

leaves from three plants of each line were individually harvested and extracted as described 

above. 

 
Determination of glandular trichome abundance 

The number of glandular trichomes in their secretory stage was determined by imaging leaves 

with an optical scanner at 1200 dpi (HP Scanjet 8000, Hewlett Packard, Palo Alto, CA, USA). 

All visible glands were counted and calculated per cm2 on both sides of the leaf. Three 
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developmental stages of leaves were chosen: not fully expanded (<1 week), mature expanded 

(1-2 weeks) and old expanded (> 3 weeks). 

 

GC-MS Analysis of plant volatiles 

Products of terpene synthase assays were identified by gas chromatography (Agilent Hewlett-

Packard 6890, Agilent Technologies, Santa Clara, CA, USA) coupled to a mass spectrometer 

(Agilent Hewlett-Packard 5973, Agilent Technologies) or a flame ionization detector (FID). For 

analyses, 2 μl of pentane or ethyl acetate:pentane (2:1) extracts were injected with an injector 

temperature of 230 °C. Alternatively, a solid phase micro extraction fiber exposed to leaf 

volatiles (30 min, 30 °C) was introduced into the injector at a temperature of 180 °C. The 

terpenes were separated on a DB5-MS column (30 m length, 0.25 mm inner diameter and 0.25 

µm film (J&W Scientific, Santa Clara, CA, USA); GC-program 40 °C for 2 min, first ramp 5 °C 

min-1 to 175 °C, second ramp 90 °C min-1 to 250 °C, final 3 min hold). GC-MS carrier gas: 

helium at 1 ml min-1; GC-FID carrier gas: hydrogen at 2 ml min-1. All terpene products were 

identified by using Agilent Technologies software with the Wiley275.L and NIST98.L MS 

libraries, as well as by comparison of mass spectra and retention times with those of authentic 

standards (Sigma-Aldrich Chemicals, Steinheim, Germany). The amounts of the individual 

terpenes were determined by GC-FID with monoterpene standards. Spearman’s rank correlation 

coefficient was calculated between the terpene amounts and transcript levels.  

 

Isolation of peltate glandular trichome clusters and cDNA library construction 

Peltate glandular trichomes were isolated from young leaves using a method modified from the 

literature (Gershenzon et al., 1992). In brief, approx. 7 g of young, not fully expanded leaves 

were harvested, soaked in ice cold, distilled water containing 0.05 % Tween 20 for 2 h. The 

water was then decanted and the leaves were washed twice with ice-cold, distilled water, and 

abraded using a cell disrupter (Bead Beater, Biospec Products, Bartlesville, USA). The chamber 

was filled with the plant material, 65 ml of glass beads (0.5-1.0 mm diameter), XAD-4 resin (1 

g/g plant material), and ice-cold extraction buffer (25 mM HEPES pH 7.3, 12 mM KCl, 5 mM 

MgCl2, 0.5 mM K2HPO4, 0.1 mM Na4P2O7, 5 mM DTT, sucrose (2.4 g l-1), D-sorbitol (26.4 g-1), 

methyl cellulose (6 g l-1), and polyvinylpyrrolidone (10 g l-1, PVP; Mr 40,000)) to full volume. 

Glands were abraded from the leaves with three pulses of 1 min at medium speed, with a 1 min 

pause between pulses. Following abrasion, the glands were separated from leaf material, glass 

beads, and XAD-4 resin by passing the supernatant of the chamber through a 500 µm mesh 

cloth (SEFAR NITEX, Sefar AG, Heiden, Switzerland). The residual plant material and beads 

were rinsed twice with 10 ml ice-cold isolation buffer (extraction buffer without 

methylcellulose) and passed through the 500 µm mesh. The combined 500 µm filtrates were 
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then consecutively filtered through membranes with decreasing mesh size (350 µm, 200 µm, 

and 100 µm). Finally, clusters of secretory cells (approx. 60 µm in diameter) were collected by 

passing the 100 µm filtrate through a 20 µm mesh. An aliquot of the isolated cell clusters was 

checked for integrity and purity with a light-microscope before being transferred to a 1.5 ml 

reaction tube and frozen in liquid nitrogen prior to RNA extraction.  

RNA from isolated glandular trichomes was prepared and further purified using Trizol reagent 

(Invitrogen, Carlsbad, USA) and the RNeasy Plant Mini kit (Qiagen, Hilden, Germany) 

following the manufacturer’s instructions. A directional cDNA library was constructed from 

1µg total RNA using the Creator Smart cDNA library construction kit (BD Bioscience 

Clontech, Mountain View, CA, USA) following the manufacturer’s protocol, except using 

Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) to perform first strand 

synthesis of the cDNA. 

 

cDNA library Sequence analysis 

Sequencing of 2,364 clones from a cDNA library of O. vulgare cultivar f02-04 was performed 

at the Purdue University Genomics Core Facility (Purdue University, West Lafayette, IN, 

USA). Sequences were assembled with the SeqMan program (Lasergene DNAStar V5.05, 

Madison, USA) and the resulting contigs were compared by BLAST search via the NCBI 

sequence database (http://www.ncbi.nlm.nih.gov/BLAST/). Sequences with similarities to 

terpene synthase genes from other plants were used to design primers for the isolation of full 

length cDNA clones by RACE-PCR. For this procedure, the primers were used with the cDNA 

libraries of the cultivars d06-01 and f02-04 and the BD SMART RACE cDNA Amplification 

Kit (BD Bioscience Clontech, Mountain View, CA, USA). The components of the PCR reaction 

were: 0.8 µl Adv. Taq DNA Polymerase Mix (5 U/µl), 5 µl 10 x Adv. Taq PCR-buffer, 1 µl 

dNTPs (10 mM each), 5 µl universal primer mix and 1 µl gene-specific primer (10 pmol/µl), 

0.5-1 µl cDNA and PCR grade water added to a final volume of 50 µl. The PCR was conducted 

with an initial denaturation at 94 °C for 2 min, 30-35 cycles of denaturation at 94 °C for 30 s, 

annealing ranging from 52 °C to 57 °C for 30 s, extension at 68 °C for 60 to 150 s, and a final 

step at 70 °C for 5 min. PCR fragments were analyzed by cloning into pCR4-TOPO vector 

(TOPO TA cloning kit for sequencing, Invitrogen, Carlsbad, CA, USA) and subsequently 

sequenced. RACE-PCR was repeated several times to verify the correct 5’ and 3’ ends of the 

cDNAs. cDNA fragments from at least two independent RACE-PCR reactions were fully 

sequenced to prevent sequence errors.  

The SeqMan program (Lasergene DNAStar V5.05, Madison, WI, USA) was used for contig 

assembly. The resulting contigs were compared to nr/nt nucleotide collection databases using 

the BLASTN search algorithm. All amino acid alignments were conducted using ClustalX 
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(protein weight matrix: Gonnet series; gap opening: 10.00; gap extension: 0.20; delay divergent 

sequences: 30 %) (Thompson et al., 1997). The resulting tree was constructed by the neighbor 

joining algorithm with a bootstrap sample of 1000 and visualized by Treecon 1.3b (Van de Peer 

and De Wachter, 1994). 

 

RNA extraction from leaf material and RNA hybridization analysis 

Whole leaf RNA was isolated from the same frozen, homogenized leaf material of O. vulgare 

that had been used for terpene extractions in June 2006. RNA was isolated with the RNeasy 

Plant Mini Kit (Qiagen, Hilden, Germany) and quantified by spectrophotometry and gel 

electrophoresis. Total RNA (6 µg) was run on a denaturing RNA gel (1 % (w/v) agarose, 10 % 

(v/v) NorthernMax 10 x denaturing gel buffer, Ambion, Austin, TX, USA), for approx. 70 min 

at 100 V. The RNA was blotted onto a Hybond-XL membrane (Amersham, Piscataway, NJ, 

USA) by capillary transfer using NorthernMax 10 x running buffer (Ambion, Austin, Texas, 

USA) overnight. RNA was UV-crosslinked to the membrane two times with a fluence of 120 

mJ cm-2. For both prehybridization and hybridization, UltraHyb buffer (Ambion, Austin, TX, 

USA) was used. Probes were labeled with ([32PdATP) using the Strip-EZ PCR Kit (Ambion, 

Austin, TX, USA) according to the manufacturer’s instructions. Probes were amplified as 

ssDNA from short fragments of terpene synthase open reading frames. Fragments with lengths 

from 424 to 577 bp and large sequence differences from corresponding regions of other terpene 

synthase genes were chosen (Ovtps1: bp 1223-1699, Ovtps2: bp 1085-1635, Ovtps3: bp 1156-

1595, Ovtps4: bp 1103-1526, Ovtps5: bp 1210-1647, Ovtps6: bp 975-1551, for primer details 

see Supplementary Material, Table S1). All probes were designed using gene sequences from 

cultivar d06-01. Probes were hybridized overnight at 42 °C. Membranes were washed twice 

with 3x SSC at 42 °C, once with 1x SSC at 42 °C, once with 0.1 x SSC at 42 °C, once with  

0.1 x SSC at 50 °C and depending on the signal strength once with 0.1 x SSC at 55 to 68 °C. All 

SSC buffers contained 0.1 % SDS. Washed blots were sealed in PVC bags and blots were 

exposed to BioMax MS films (Kodak, Carestream Health, Rochester, NY, USA) with an 

intensifying screen for 14-15 h at -80 °C. Films were developed in a film developer (Konica 

medical film developer SRX-101A, Konica, Tokyo, Japan) according to the manufacturer’s 

instructions. Additionally, storage phosphor screens (Amersham Bioscience, Uppsala, Sweden) 

were exposed to the blots for 4-5 h and analyzed with a Storm 840 scanner (Molecular 

Dynamics, Sunnyvale, CA, USA).  
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RNA isolation from leaf material for qRT-PCR 

Total RNA was extracted from homogenized O. vulgare leaf material harvested in November 

2009. The RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). To 

remove residual genomic DNA, RNA was treated with RNAse-free DNAse I (Qiagen, Hilden 

Germany). RNA samples were analyzed on an Agilent Bioanalyzer 2100 and RNA 6000 Nano 

Labchip using the Expert software (Agilent version B.02.02.SI258) to determine qualtity, 

integrity and rRNA ratios. RNA was quantified by spectrophotometry.  

For cDNA synthesis, Superscript III reverse polymerase (Invitrogen, Carlsbad, California, 

USA) was used according to the manufacturer’s instructions but with reverse transcription of 3-

5 µg total RNA in a 2 x scaled-up reaction volume.  

 

Transcript quantification by relative and absolute qRT-PCR 

All experiments were performed on a Stratagene Mx3000P (La Jolla, California, USA) using 

SYBR green I with ROX as an internal loading standard. Each 25-µl reaction contained cDNA 

corresponding to 2.5 ng total RNA. Controls included non-RT controls (using 2.5 ng total RNA 

without reverse transcription to monitor for genomic DNA contamination) and non-template 

controls (water template).  

PCR thermocycles were run as follows: 10 min at 95 °C, 40 cycles of 30 s at 95 °C, 1 min at  

56 °C, and 1 min at 72 °C. Fluorescence was read following each annealing and extension 

phase. All runs were followed by a melting curve analysis from 55-95 °C. The products of each 

primer pair were cloned and sequenced at least six times to verify primer specificity. The linear 

range of template concentration to threshold cycle value (Ct value) was determined by 

performing a series of sixfold dilutions (1- to 1,296-fold) using cDNA from three independent 

RNA extractions analyzed in three technical replicates. All primers were designed using 

BeaconDesigner (version 5.0; PremierBiosoft, Palo Alto, California, USA) and HPLC-purified 

(Invitrogen, Carlsbad, California, USA). Primers were designed for regions identical in all 

known alleles for the respective gene (for primer details see Supplementary Material, Table S1). 

Primer efficiencies for all primers pairs were calculated using the standard curve method (Pfaffl, 

2001). The stability of reference gene expression in the different plant lines was tested by 

comparing Ct values between all lines with cDNA corresponding to 2.5 ng total RNA. All 

amplification plots were analyzed with the MX3000Ptm software to obtain Ct values. For relative 

qRT-PCR elongation factor 1 alpha (OvEF1alpha) was employed as housekeeping gene. 

Relative transcript values were calculated using plant line f5 as calibrator. 

Absolute quantification of Ovtps2 and Ovtps5 copy number in each cDNA sample was 

conducted using a standard curve and the results were normalized against 1 mg fresh weight of 
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plant material. The standard curve was generated with purified plasmid containing the respect-

tive genes. A 10-fold dilution series from 101 to 106 copies was determined.  

 

Functional expression of terpene synthases 

The complete open reading frames of the putative terpene synthases OvTPS1 through OvTPS7 

and corresponding 5’ truncations were cloned into the bacterial expression vector pH9GW. This 

vector is a derivative of the pET-T7 (28a) vector (Novagen, Madison, WI, USA) containing a  

9 x His-tag followed by a Gateway attR cassette (Yu and Liu, 2006). Gene amplification was 

performed with primers (see Supplementary Material, Table S1) using the Advantage Taq 

Polymerase (BD Bioscience Clontech, Mountain View, CA, USA) as directed by the 

manufacturer. The amplification products were cloned into pCR4-TOPO vector (Invitrogen, 

Carlsbad, CA, USA). Expression constructs were created with Gateway technology (Invitrogen, 

Carlsbad, CA, USA). Validated sequences were subcloned from the pCR4-TOPO vector into 

the pDONR207 vector with BP Clonase II (Invitrogen, Carlsbad, CA, USA). Subsequently, the 

constructs were cloned into the pH9GW expression vector with LR Clonase II according to the 

manufacturer’s instructions. The expression constructs were verified by sequencing and 

transformed into the BL21 (DE3) strain (Invitrogen, Carlsbad, CA, USA). For gene expression, 

a starter culture of 5 ml Luria-Bertani (LB) medium with 50 µg ml-1 kanamycin was grown 

overnight at 37 °C. Starter cultures (50 µl) were used to inoculate 125 ml auto-induction terrific 

broth (TB) media (Overnight Express Instant TB Medium, Novagen, Madison, WI, USA) with 

50 µg ml-1 of kanamycin. Cells were harvested by centrifugation for 5 min at 5500 x g. Pellets 

were resuspended in 3 ml extraction buffer (50 Mm MOPSO buffer at pH 7.0, 10 % (v/v) 

glycerol, 5 mM DTT, 5 mM Na-ascorbate, 0.5 mM PMSF) and disrupted by sonification 

(Bandelin Sonopuls HD 2070, Bandelin Electronics, Berlin, Germany) for 3 min, cycle 2, power 

65 %. Cell fragments were removed by centrifugation at 16,100 x g for 30 min at 4 °C. The 

supernatant contained the expressed proteins. Buffer exchange into assay buffer (20 mM 

MOPSO buffer at pH 7.0, 10 % (v/v) glycerol, 1 mM DTT) was performed with 10DG columns 

(BioRad, Hercules, CA, USA). Enzyme activities were assayed in 1 ml volumes containing 200 

µl of the extracted enzyme. For multi-enzyme assays, 50 to 175 µl of the individual enzyme 

extracts were added. Assays contained 10 µM GPP or FPP (both Echelon, Salt Lake City, 

USA). If not mentioned otherwise, metal ions were added at the concentrations 1 mM MgCl2 

and 0.5 mM MnCl2 and phosphatase inhibitors at 0.1 mM NaWo4 and 0.05 mM NaF. Terpene 

products were collected by solid phase micro extraction with a polydimethylsiloxane coated 

fibre. The fibre was exposed for 30 to 60 min to the head space above the assay mixture at 30 

°C in a water bath. 
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Biochemical characterization of terpene synthases 

For biochemical characterization, OvTPS2-d0601 was cloned into the pHIS8-3 vector (Jez et al., 

2000) using the Nco1 and Not1 restriction sites. Two liters of bacterial culture were harvested 

by centrifugation for 5 min at 5500 x g and resuspended in 100 ml lysis buffer (50 mM Tris-

HCl pH 8.0, 500 mM NaCl, 20 mM imidazole pH 8.0, 1 % (v/v) Tween 20, 10 % (v/v) glycerol, 

10 mM -mercaptoethanol, 0.5 mg ml-1 lysozyme, DNAse I) and stirred for 2h at 4 °C. The cell 

suspension was centrifuged 1h at 22,000 x g and 4 °C. HIS-tagged protein was bound to 2 ml 

Ni-NTA agarose (Qiagen, Hilden, Germany), washed with 30 ml lysis buffer and 30 ml washing 

buffer identical to lysis buffer but without Tween 20. The protein was eluted with 10 ml elution 

buffer identical to washing buffer but with 250 mM imidazole and fractionated as aliquots of  

1 ml. The fractions with the highest protein concentrations were pooled. Salt concentration was 

reduced by dialysis (dialysis tubing cutoff 8 kDa) overnight in dialysis buffer (50 mM Tris-HCl 

pH 8.0, 100 mM NaCl, 10 mM -mercaptoethanol). Protein concentrations were measured 

according to (Bradford, 1976) by using the BioRad reagent (BioRad, Hercules, CA, USA) with 

bovine serum albumin (Biorad, Hercules, CA, USA) as standard according to the 

manufacturer’s instructions. The terpene synthase activity assays were performed as described 

above with 1.75 µg purified -terpinene synthase protein (OvTPS2). Assays were overlaid with 

200 µl pentane containing 0.9 ng µl-1 -cadinene as an internal standard. After 60 min at 30 °C 

the assays were shaken at 1400 rpm for 2 min to partition the terpene volatiles into the solvent 

phase. The vial was frozen at -80 °C for 30 min to freeze the aqueous phase. The solvent phase 

was taken off for terpene product analysis and identification by gas chromatography. 
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2.4 Results 
 

Origanum vulgare plant lines show high variab ility in their  essentia l oil 
composition 

To assess the variability of the terpene content of Origanum vulgare, eighteen clonal lines 

derived from two cultivars were selected for this study. Fifteen of these lines were chosen for 

terpene extraction and RNA hybridization analysis. Three of the lines, d2, d5, and d8, were 

clones of the cultivar d06-01 while the lines f2, f3, f4, and f5 were clones of the cultivar f02-04.  

 
Figure 1 Terpene composition of the O. vulgare lines studied. The terpene profiles of three clonal lines of 

the cultivar d06-01 (d2, d5, d8), four clonal lines of cultivar f02-04 (f2, f3, f4, f5), four lines from a 

selfing of the cultivar f02-04 (ff2, ff4, ff6, ff7), and four lines from a cross of both cultivars (df5, df6, df7, 

df8) were measured. Monoterpenes and sesquiterpenes were extracted, identified by GC-MS and 

quantified by GC-FID. The trace of the flame ionization detector is shown. The compounds were 

identified as: 3, sabinene; 7, p-cymene; 9, -terpinene; 10, cis-ocimene; 11, trans--ocimene; 12,  

(-)-germacrene D; 13, bicyclo-germacrene; 14, (E)--caryophyllene; 22, trans-sabinene-hydrate; 23, 

thymol; mts, other monoterpenes: -thujene, -pinene, camphene, -pinene, myrcene, -terpinene, (+)R-

limonene, -phellandrene, cis-sabinene-hydrate, -terpineol, carvacrol; sts, other sesquiterpenes:  

-humulene, alloaromadendrene, 1,6-germacradiene-5-ol. 

In addition to these parental clones, four other lines were generated by selfing of cultivar f02-04 

(ff2, ff4, ff6, and ff7) and four further lines from a cross between both parent cultivars (df5, df6, 

df7, and df8). The total amounts of monoterpenes and sesquiterpenes in these lines ranged from 

4.7 mg g-1 fresh weight for the cultivar d06-01 to a maximum of 13.4 mg g-1 in the cultivar f02-

04 (Figure 1). This amount correlated with the density of peltate glandular trichomes on the leaf 

surfaces. A density of 951 ± 31 glandular trichomes cm-2 was measured on cultivar f02-04 on 

the surface of young leaves less than one week of age, while leaves of the cultivar d06-01 
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displayed only 560 ± 32 glandular trichomes cm-2 on comparable tissue. This two-fold 

difference in gland density was also observed in older leaves between one and three weeks of 

age. In all O. vulgare lines, the essential oil was dominated by monoterpenes, which provided 

between 67.4 % (ff2) and 94.1 % (ff6) of the total oil content (Figure 1). The major 

monoterpene components were -terpinene, trans-sabinene-hydrate, p-cymene, sabinene, cis- 

and trans--ocimene and thymol. The remainder of the essential oil consisted mostly of the 

sesquiterpenes (E)--caryophyllene, -humulene and (-)-germacrene D. Despite the differences 

in total amounts, the composition of the lines of the parental cultivars (d2, d5, d8, f2-f5) was 

rather similar. However, a much higher variation of the terpene composition was observed in 

the lines that resulted from the selfing of cultivar f02-04 (ff lines). For example, line ff6 showed 

reduced levels of both ocimenes and thymol compared to the f parental lines, while lines ff2 and 

ff7 lacked -terpinene, p-cymene and thymol almost completely. In line ff4, the ratio of -

terpinene to thymol was altered in favor of thymol, compared to the f parental lines, and trans-

sabinene-hydrate could not be detected. The lines resulting from a hybridization between the 

two cultivars (df5-8) showed less variability in terpene composition but had consistently high 

amounts of -terpinene and low amounts of trans-sabinene-hydrate (Figure 1) (Supplementary 

Material, Table S2). 

 

Origanum vulgare contains multiple terpene synthase genes with similarity to other 
Lamiaceae terpene synthases 

In order to identify terpene synthases responsible for terpene formation in O. vulgare, we 

generated cDNA libraries from the cultivars d06-01 and f02-04. To enrich for terpene synthase 

cDNAs, glandular trichome cell clusters, the site of essential oil biosynthesis, were sheared off 

the leaf surface, purified and subjected to RNA extraction and cDNA synthesis. Sequencing of 

2364 random clones from a cDNA library of cultivar f02-04 resulted in 69 ESTs that displayed 

sequence similarity to those of terpene synthases from other plants in BLAST searches 

(Supplementary Material, Table S3). These EST fragments were extended by several rounds of 

RACE-PCR to yield six individual full length cDNA clones which were designated putative 

terpene synthases Ovtps1 through 6. With all cDNAs, RACE-PCR was repeated at least twice to 

confirm the 5’ end of the open reading frame. Ovtps7 was not represented in the cDNA library 

but was isolated by PCR with primers for the full-length clone of Ovtps1 (Supplementary 

Material, Table S1). These putative terpene synthases were also isolated from cultivar d06-01 

and showed amino acid identities ranging from 94.0 % to 99.3 % compared to the respective 

genes from f02-04. The Ovtps4 of cultivar d06-01 contained a frame shift mutation that leads to 

early termination of the open reading frame. Within each of the cultivars, apparently only one 

allele could be isolated for nearly all of the genes suggesting that only one allele is actively 
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transcribed. Alternatively, both genes could have alleles with identical sequence. Two alleles 

were found only for Ovtps5 from cultivar d06-01 but one of the alleles was missing part of the 

open reading frame due to a frame shift mutation. However, the assignment of apparent alleles 

can only be tentative and based on high sequence similarity as O. vulgare is not a species where 

there is much genomic sequence information. 

All genes showed the sequence motifs characteristic of terpene synthases, notably the double 

arginine motif (RRx8W) which is commonly found in the N-terminal domain of monoterpene 

synthases (Bohlmann et al., 1998; Dudareva et al., 2003; Pechous and Whitaker, 2004). A 

highly conserved, aspartate-rich DDxxD motif involved in binding the bivalent metal ion 

cofactor (Starks et al., 1997) was found present in the C-terminal domain of six of the genes. In 

Ovtps4, this motif is altered to DDxxE which was previously observed only in 5-epi-

aristolochene synthase from Capsicum annuum (CAA06614) (Zavala-Paramo et al., 2000) 

Transit peptides were predicted for OvTPS1 (35 aa), OvTPS2 (24 aa) and OvTPS7 (32 aa) using 

the ChloroP prediction site (http://www.cbs.dtu.dk/services/ChloroP/) (Emanuelsson et al., 

2000) which target these proteins most likely to the plastid, the location of monoterpene 

biosynthesis in other Lamiaceae, and so these were designated as putative monoterpene 

synthases (Turner et al., 1999) (Table 1).  

Table 1  Properties of terpene synthase genes isolated from Origanum vulgare cultivars d06-01 and  

f02-04 

 ORF length [bp]  

 d06-01 f02-04 Transit peptide Major product type 

Ovtps1 1803 1803 35 AA monoterpenes 

Ovtps2 1782 1782 24 AA monoterpenes 

Ovtps3 1689 1689 No sesquiterpenes 

Ovtps4 16661 1665 No sesquiterpenes 

Ovtps5 16592 16593 No no in vitro activity 

Ovtps6 1662 1662 No sesquiterpenes 

Ovtps7 17853 1785 32 AA monoterpenes 

1Ovtps4-d06-01 contains a frameshift mutation. 2Both alleles of Ovtps5-d06-01 are 

inactive in vitro. One allele contains a frame shift mutation. 3Ovtps5-f0204 and Ovtps7-

d06-01 show no in vitro activity. AA = amino acids. 

OvTPS3 through OvTPS6 did not display transit peptides. These are likely to be targeted to the 

cytosol, and so were tentatively designated as sesquiterpene synthases. The sequence identity 

among putative monoterpene synthases at the amino acid level was within the range of 58-90 % 

and among sesquiterpene synthases 48-57 %, but the groups of mono- and sesquiterpene 

synthases share only 27-32 % identity with each other. However, OvTPS5, considered a 

sesquiterpene synthase for lack of a transit peptide, displays an amino acid sequence identity of 
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74.7 and 76.7 % to the putative monoterpene synthase OvTPS2 from cultivars d06-01 and f02-

04, respectively. The lack of a transit peptide in this gene was verified by CELI-PCR (Ren et al., 

2005). 

Comparisons of the putative O. vulgare monoterpene synthase genes Ovtps1, Ovtps2, and 

Ovtps7 to terpene synthase genes known from other plants showed approx. 60 % amino acid 

sequence identity to monoterpene synthases of other Lamiaceae, including myrcene synthase 

(AY693649) and fenchol synthase (AY693648) of Ocimum basilicum (Iijima et al., 2004), 

sabinene synthase of Salvia officinalis (AF051901) (Wise et al., 1998), linalool synthase of 

Mentha citrata (AY083653), pinene synthase of Rosmarinus officinalis (EF495245) and linalool 

synthase of Perilla frutescens var. crispa (AF444798). The sequences of Ovtps3, Ovtps4 and 

Ovtps6 also showed approx. 60 % amino acid identity to sesquiterpene synthases of other 

Lamiaceae including (-)-germacrene D synthase (AY693644) and selinene synthase 

(AY693643) from Ocimum basilicum (Iijima et al., 2004b). 

 

O. vulgare terpene synthases  produce a variety of mo noterpenes and 
sesquiterpenes 

The putative terpene synthases genes were expressed in a bacterial system to characterize their 

enzymatic activity. Expression of the OvTPS1 full length clone from both cultivars did not 

result in active protein (Figure 2a), and the deletion of the first 35 amino acids predicted to 

encode the transit peptide did not result in the formation of active enzyme. A previous study on 

a terpene synthase from another Lamiaceae, limonene synthase from Mentha spicata, 

demonstrated formation of active enzyme after bacterial expression (in E. coli) following 

removal of the sequence coding for the N-terminal region up-stream of the double arginine 

motif (Williams et al., 1998). A similar truncation of OvTPS1 that removed 59 amino acids of 

the N-terminal region resulted in active enzymes from both the d06-01 and f02-04 cultivars. The 

truncated OvTPS1 converted geranyl diphosphate (GPP) to the monoterpene olefins sabinene 

and -phellandrene with minor amounts of myrcene, -terpinene, α-thujene and α-pinene 

(Figure 2b). OvTPS2 was active both as a full length protein and after deletion of the predicted 

plastidial targeting sequence of 24 amino acids. OvTPS2-d06-01 converted GPP to -terpinene 

(80% of total products) and the minor products, α-thujene (7.2%), α-terpinene (6%), myrcene 

(2.6%), sabinene (1.3%), (+)-R-limonene (1.2%), α-pinene (1%) and α-phellandrene (0.8 %), as 

well as trace amounts of p-cymene and -pinene (Figure 2c). 
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Figure 2 Monoterpene products of OvTPS1, OvTPS2 

OvTPS5 and OvTPS7 measured in vitro. The enzymes 

were expressed in E. coli, extracted, and incubated with 

the substrate GPP and 0.5 mM Mn2+ ions. The resulting 

terpene products were identified by gas 

chromatography coupled to mass spectrometry; the 

total ion chromatogram is shown. (A) OvTPS1 full 

length protein did not give any products, (B) Products 

of OvTPS1 with a truncation of the N-terminal 59 

amino acids: 1, -thujene; 2, -pinene; 3, sabinene; 4, 

myrcene; 5, -phellandrene. (C) Products of the 

OvTPS2 full length protein: 1, -thujene: 2, -pinene; 

3, sabinene; 4, myrcene; 6, -terpinene; 7, p-cymene; 8, 

(+)R-limonene; 9, -terpinene, (D) Products of OvTPS7 

with a truncation of the N-terminal 53 amino acids: 4, 

myrcene; 6, -terpinene; 5, -phellandrene; 10, cis-

ocimene; 11, trans--ocimene and 9, -terpinene. 

Since -terpinene is a major component of Origanum vulgare essential oil and a possible 

precursor of thymol (Poulose and Croteau, 1978a), we characterized the basic biochemical 

properties of this enzyme. OvTPS2-06-01 showed the expected Michaelis-Menten saturation 

kinetics with Km for GPP determined as 8.71 µM, a value typical for monoterpene synthases 

(Wise and Croteau, 1999). Mn2+ was preferred over Mg2+ as the bivalent metal ion cofactor with 

activity maxima at 1 µM and 25 µM, respectively. Vmax for Mn2+ was 2.3-fold higher than for 

Mg2+ (Table 2). The Km values for Mn2+ and Mg2+ are 0.695 mM and 3.4 mM, respectively. The 

pH optimum was determined as 6.8 with half maximal activities between 7.2 and 7.5, and 

between 6.0 and 6.5. The highest enzymatic activity was measured at 28 °C with half maxima at 

20 and 35 °C. The lack of a transit peptide suggested that OvTPS5 was a sesquiterpene 

synthase, yet this enzyme possessed high sequence similarity to other O. vulgare monoterpene 

synthases. However, in our bacterial expression system, the enzyme showed no activity in the 

presence of GPP or FPP, and could not be activated by a 5' truncation of amino acid residues 

just upstream of the RR motif (data not shown). The enzyme OvTPS7 converted GPP to trans-

-ocimene and minor amounts of cis--ocimene, myrcene, α- and -terpinene. The same 

product profile was observed for the full-length protein and after an N-terminal deletion of 53 

amino acids that truncated the protein two amino acids before the RR motif (Fig. 2d). None of 

the active monoterpene synthases, OvTPS1, OvTPS2 or OvTPS7 converted farnesyl 

diphosphate (FPP) into sesquiterpene products (data not shown). 
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Table 2 Biochemical characterization of OvTPS2 of cultivar d06-01, a -terpinene synthase. The kinetic 

constants for GPP were determined in the presence of 0.5 mM Mn2+ ions. Those for Mn2+ and Mg2+ were 

determined in the presence of 10 μM GPP. Vmax for GPP is 6.18 μmol min-1 g protein-1 and provides the 

reference point for measurements of Vrel. All values are ± SE 

 Km Vrel  

GPP   8.71 [µM]± 0.63 100 

Mn2+  0.70 [mM]± 0.02 104 

Mg2+  3.41 [mM]± 0.54 44  

 

The remaining O. vulgare terpene synthase gene products were considered to be sesquiterpene 

synthases as they did not appear to have a transit peptide (Table 1, Supplementary Material, Fig. 

S1) and share high sequence identities with other sesquiterpene synthases. After heterologous 

expression, the terpene synthase OvTPS3 converted FPP to (-)-germacrene D and trace amounts 

of bicyclo-germacrene (Figure 3a).  

Figure 3 Sesquiterpene products of OvTPS3, OvTPS4 

and OvTPS6 measured in vitro. The enzymes were 

expressed in E. coli, extracted, and incubated with the 

substrate FPP and 1 mM Mg2+ or 0.5 mM Mn2+ ions. 

The resulting terpene products were identified by GC-

MS. The total ion chromatogram is shown. (A) 

Products of OvTPS3 in the presence of Mg2+ ions. (B) 

Products of OvTPS4 in the presence of Mg2+ ions. (C) 

Products of OvTPS4 in the presence of Mn2+ ions. (D) 

Products of OvTPS6 in the presence of Mg2+ ions. Key 

to the terpene products were: 12, (-)-germacrene D; 13, 

bicyclo-germacrene, 14, (E)--caryophyllene; 15, -

humulene; 16, alloaromadendrene; 17, unknown 

sesquiterpene. 

 

In the presence of GPP, the enzyme was also active producing moderate amounts of myrcene, 

limonene, terpinolene and linalool (Figure 4b). Expression of OvTPS4 in E. coli resulted in an 

activity converting FPP to alloaromadendrene and bicyclo-germacrene (Figure 3b). However, 

product formation was dependent on the metal ions present in the in vitro assays. While 

alloaromadendrene and bicyclo-germacrene were produced in equivalent amounts in the 

presence of 1 mM magnesium ions, the formation of bicyclo-germacrene was greatly favored in 

the presence of 0.5 mM manganese ions (Figure 3c). The substrate GPP was converted by 

OvTPS4 to terpinolene, limonene, geraniol and traces of myrcene, -terpineol, cis--ocimene, 
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trans--ocimene and -terpinene (Figure 4c). Interestingly, the conversion of GPP was not 

affected by the presence of magnesium or manganese ions in the assay (Figure 4d). Expression 

of OvTPS6 resulted in an enzyme producing (E)-β-caryophyllene and α-humulene from FPP 

(Figure 3d). The enzyme was virtually inactive in the presence of GPP (Figure 4e). 

 
Figure 4 Monoterpene products of OvTPS3, OvTPS4 and OvTPS6 measured in vitro. The enzymes were 

expressed in E. coli, extracted, and incubated with the substrate GPP. The resulting terpene products were 

identified by gas chromatography coupled to mass spectrometry. The total ion chromatogram is shown. 

(A) Control vector without terpene synthase insert, (B) OvTPS3 incubated in the presence of 1 mM Mg2+ 

ions, (C) OvTPS4 incubated in the presence of 1 mM Mg2+ ions, (D) OvTPS4 incubated in the presence 

of 1 mM Mn2+ ions, (E) OvTPS6 incubated in the presence of 1 mM Mg2+ ions. Key to the products: 4, 

myrcene; 8, limonene, 9, -terpinene, 10, cis-ocimene; 11, trans--ocimene; 18, terpinolene; 19, linalool; 

20, -terpineol; 21, geraniol. 

 

Terpene synthase transcript levels regulate monoterpene production in O. vulgare 

To study the expression of each of the terpene synthases in O. vulgare, we first measured their 

transcript levels by hybridization analysis with total RNA from expanding leaves. Under the 

stringent hybridization conditions used, a cross reaction between the terpene synthases 

identified in this study is unlikely due to their sequence differences. Only Ovtps1 and Ovtps7 

have a sequence identity of more than 90 % which does not allow for a clear separation of 

transcripts by RNA hybridization analysis even under the high stringency conditions used 

(Sambrook et al., 1989). The results showed clear terpene synthase transcript differences 

between the two cultivars. Lines of f02-04 had higher transcript levels for Ovtps1, Ovtps3, 

Ovtps5 and Ovtps6 than cultivar d06-01, but similar levels for Ovtps2 and Ovtps4 (Figure 5). 

The selfed lines of f02-04 (ff2, ff4, ff6, ff7) displayed a high variation in terpene synthase 

expression levels. For example, compared to the other selfed lines and lines of parent cultivar 

f02-04, lines ff2 and ff7 showed drastically reduced transcript levels for Ovtps2, while line ff6 

had increased transcript levels of Ovtps5. The hybrid lines df5 through df8 exhibited transcript 

levels that were similar to those of cultivar f02-04 with lower levels of Ovtps3 and Ovtps4.  
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Figure 5 Expression analysis of Ovtps1 through Ovtps6 in planta. Transcript levels of the terpene 

synthases in leaves of O. vulgare were measured by RNA hybridization analyses. The lines measured 

comprise the clones of cultivars d06-01 (d) and f02-04 (f), their crosses (df), and a selfing of f02-04 (ff). 

The lines are identical with those in Fig. 1. The bottom panel shows an ethidium-bromide-stained agarose 

gel with total RNA as control for equal RNA loading. 

 
Figure 6 Correlation between relative transcript levels of Ovtps3 and Ovtps6 and sesquiterpene content in 

O. vulgare lines. (A) Amounts of germacrene D produced by selected O. vulgare lines. (B) Relative 

measurement of Ovtps3 transcript levels by qRT-PCR in same set of lines. (C) Amounts of (E)-β-

caryophyllene produced by selected O. vulgare lines. (D) Relative measurement of Ovtps6 transcript 

levels by qRT-PCR in same set of lines. All experiments were done with three biological and three 

technical replicates per plant line. Plant line f5 was used as calibrator for experiments with rel. qRT-PCR. 

In order to confirm and extend the results from RNA hybridization, relative and absolute qRT-

PCR was employed for the monoterpene synthases Ovtps2 and Ovtps5 as well as the 

sesquiterpene synthases Ovtps3 and Ovtps6. For this experiments, two lines each of both 

cultivars and the hybrids (d2, d5, f4, f5, df6, df8) were chosen along with seven lines of the 
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selfed cultivar f02-04 (ff1, ff2, ff4, ff5, ff6, ff7, ff8) which displayed a high variation of terpene 

synthase expression. Relative quantification of transcripts of the four terpene synthases 

displayed a pattern similar to that of the RNA hybridization (Figures 6, 7).  

 
Figure 7  Correlation between relative transcript levels of Ovtps2 and Ovtps5 and γ-terpinene content in 

O. vulgare lines. (A) γ-Terpinene concentrations in selected O. vulgare lines. (B) Relative transcript 

levels of the γ-terpinene synthase Ovtps2 determined by qRT-PCR. (C) Relative transcript levels of the 

inactive putative terpene synthase Ovtps5 determined by qRT-PCR. Each bar represents mean values ±SE 

of three biological and three technical replicates except for individual plant lines ff2-1 to ff2-3 (n = 3). 

Plant line f5 was used as calibrator for all experiments in relative qRT-PCR. 

Nevertheless, the better quantitative resolution of the qRT-PCR data allowed a correlation ana-

lysis between terpene synthase transcript levels and the terpene amounts in planta. Spearman’s 
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correlation coefficient was calculated between the relative transcript levels and the major 

products of each of the terpene synthases (Table 3).  

Table 3 Spearman’s correlation coefficient rs
1 values for the relationships between the amounts of various 

terpenes in O. vulgare lines and the relative or absolute transcript level of terpene synthases.  

(n = 39). 

Terpene Gene Spearman’s P value  
-terpinene Ovtps2rel2 0.38 0.019 * 

-terpinene Ovtps2abs3 0.43 0.006 ** 

-terpinene Ovtps2rel 0.93 0.000 *** 

-terpinene Ovtps2abs 0.89 0.000 *** 

thymol Ovtps2rel 0.35 0.030 * 

thymol Ovtps2abs 0.38 0.019 * 

-terpinene + p-cymene + thymol Ovtps2rel 0.90 0.000 *** 

-terpinene + p-cymene + thymol Ovtps2abs 0.86 0.000 *** 

(-)-germacrene D Ovtps3rel 0.31 0.055  

sabinene Ovtps5rel -0.29 0.075  

sabinene Ovtps5abs -0.13 0.417  

-terpinene Ovtps5rel 0.59 0.000 *** 

-terpinene Ovtps5abs 0.53 0.000 *** 

(E)--caryophyllene Ovtps6rel 0.302 0.061  

1The Spearman correlation coefficient quantifies the strength of the association between 

the variables and varies between -1 and +1. Correlations are significant if P < 0.05. 
2data from relative qRT-PCR. 3data from absolute qRT-PCR. 

For these sesquiterpene synthases, no correlation could be demonstrated. However, variation in 

sesquiterpene synthase transcript levels and sesquiterpene product formation among the plant 

lines studied are so low that it might be hard to detect any correlations. Therefore, a correlation 

between Ovtps3 and Ovtps6 transcript levels and their terpene products cannot be excluded with 

certainty. For the monoterpene synthase Ovtps2, a significant correlation was found (rs = 0.93,  

P < 0.001) between relative and absolute transcript levels and the in vitro enzyme product  

-terpinene (Figure 7). A weak correlation (rs = 0.38, P < 0.05) was also measured for  

α-terpinene. The three individual plants of line ff2 were plotted separately in Figure 7 due to the 

dramatic intra clonal variation in γ-terpinene content in this line. All other plant lines showed a 

rather low intra-clonal variation in both terpene content and transcript level and were therefore 

combined. The lines which lack the Ovtps2 transcript contain only trace amounts of the 

corresponding -terpinene terpene product. These traces detectable in lines ff1, ff2, ff7, and ff8 
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are most likely produced by OvTPS1 or OvTPS7 which both form small amounts of -terpinene 

upon expression in vitro.  

 
Figure 8  Absolute transcript levels of the γ-terpinene synthase Ovtps2 and the inactive putative terpene 

synthase Ovtps5 in O. vulgare lines. For both transcripts, the copy numbers per µg total RNA were 

determined by absolute qRT-PCR and normalized per mg fresh plant material of selected O. vulgare 

lines. (A) Absolute copy numbers of Ovtps2. (B) Absolute copy numbers for Ovtps5. Each bar represents 

mean values ±SE of three biological and three technical replicates except for individual plants ff2-1 to 

ff2-3 and non-RT (NoRT) controls (control with total RNA without reverse transcription) (n=3).  No data 

were collected for the non-RT control of plant ff2-2 for Ovtps2. 

To test whether p-cymene and thymol might be derived from the Ovtps2 product -terpinene as 

proposed (Poulose and Croteau, 1978a), we determined the correlation between the sum of these 

three terpenes and Ovtps2 transcript levels. This correlation was indeed strong (rs = 0.90,  

P < 0.001) and supports the existence of such a biosynthetic pathway. However, only a weak 

correlation (rs = 0.35, P < 0.05) could be established between Ovtps2 transcript level and thymol 

concentration alone, suggesting that if γ-terpinene is indeed converted to thymol, the later steps 

of this pathway are regulated independently of the terpene synthase step. Surprisingly, the 

transcript levels of Ovtps5 which was inactive in vitro, also correlated with -terpinene 

production. However, this correlation was much weaker (rs = 0.59, P < 0.001 than for Ovtps2. 

To further evaluate possible functions of Ovtps5 in oregano, absolute qRT-PCR similar to 
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(Palovaara and Hakman, 2008) was performed for both Ovtps2 and Ovtps5. The normalized 

copy numbers per µg total RNA for Ovtps5 ranged from 232 (line ff8) to 6,590 (line f4) which 

is relatively low compared to Ovtps2. For Ovtps2, copy numbers per µg total RNA ranged from 

218 in line ff7 to 51,240 in line df6 (Figure 8). Copy number in non-RT controls was always 

lower but in a similar range as the low expression lines, e.g. line ff7 (Supplementary Material 

Table S4). 

 

Most ma jor terpenes  of O. vulgare essen tial o il ar e pro duced by the terpene 
synthases OvTPS1 through OvTPS7  

 
Figure 9  The terpene synthases OvTPS1, OvTPS2, OvTPS3, OvTPS4, OvTPS6 and OvTPS7 produce 

most major terpenes of the O. vulgare essential oil. The terpenes blends were separated by GC and 

analyzed by MS. The traces of the total ion chromatogram are shown. (A) Mono- and sesquiterpenes 

extracted from O. vulgare cultivar f02-04 (line f2). (B) Mono- and sesquiterpenes extracted from O. 

vulgare cultivar d06-01 (line d2). (C) Terpene products resulting from an in vitro assay containing 

OvTPS1, OvTPS2, and OvTPS7. Equal volumes of bacterial extracts containing the heterologously 

expressed monoterpene synthases were mixed and assayed with GPP substrate and Mn2+ cofactor. (D) 

Terpene products resulting from an in vitro assay containing OvTPS3, OvTPS4, and OvTPS6. Equal 

volumes of bacterial extracts containing the heterologously expressed sesquiterpene synthases were 

mixed and assayed with FPP substrate and Mg2+ cofactor. 
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The in vitro product spectra of the six active terpene synthases characterized correspond well to 

the full spectrum of mono- and sesquiterpenes in O. vulgare essential oil. To test the supposition 

that we had characterized essentially all the important terpene synthases involved in essential oil 

formation, we performed mixed assays combining all of the characterized monoterpene or 

sesquiterpene synthases. Assays containing all three monoterpene synthases (OvTPS1, OvTPS2 

and OvTPS7), in approximately equal protein levels along with GPP as a substrate and Mn2+ as 

a cofactor, produced a monoterpene profile almost identical to that of the plant oil (Figure 9a-c). 

Similar results were observed for a mixture containing all the sesquiterpene synthases (OvTPS3, 

OvTPS4 and OvTPS6) with FPP as substrate and Mg2+ as cofactor, whose profile corresponded 

closely to the total sesquiterpene profile of O. vulgare essential oil (Fig. 9a, b, d).  
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2.5 Discussion 
 

Six active monoterpene and sesquiterpene synthases were isolated from O. vulgare 

Over sixty mono- and sesquiterpenes have been reported from the complex and highly variable 

essential oil of Origanum vulgare plants. Almost half of these compounds were extracted from 

the plant lines used in this study, including thymol, -terpinene, and p-cymene, which impart the 

characteristic oregano flavor (Origanum vulgare L.) and sabinene hydrate which is responsible 

for the flavor of marjoram (Origanum majorana L.) (Skoula and Harborne, 2002). To learn 

more about the biosynthesis of these terpenes and its regulation in O. vulgare, we investigated 

the terpene synthases of this species by isolating the members of this gene family, determining 

the enzymatic activity after heterologous expression in E. coli and correlating gene expression 

with the pattern of terpene accumulation in different O. vulgare lines. Terpene synthases 

convert the ubiquitous prenyl diphosphate intermediates, such as GPP and FPP, to monoterpene 

and sesquiterpene products, some of which undergo further oxidation. Here, we isolated seven 

terpene synthase genes, all of which gave active proteins after heterologous expression except 

OvTPS5. OvTPS1, OvTPS2 and OvTPS7 are considered monoterpene synthases because they 

convert the C10 substrate GPP to monoterpenes, but did not form any sesquiterpene products 

from the C15 substrate, FPP. In addition, these proteins show high sequence similarity to other 

monoterpene synthases and all contain a transit peptide for targeting to the plastid, a common 

organelle for monoterpene formation. The other characterized terpene synthases, OvTPS3, 

OvTPS4 and OvTPS6 are considered sesquiterpene synthases. Even though most of these 

enzymes form monoterpenes from GPP as well as sesquiterpenes from FPP, their greater 

sequence similarity to other sesquiterpene synthases vs. monoterpene synthases, and the lack of 

any transit peptide (the cytosol is the most common site for sesquiterpene formation), suggest 

they function in planta as sesquiterpene synthases.  

 

The terpene synthases  described produce most of the terpene constituen ts of O. 

vulgare essential oil 

The six active terpene synthases characterized here produce the majority of terpenes found in  

O. vulgare. One major terpene product not formed by these enzymes is trans-sabinene hydrate. 

Despite the reports of a sabinene hydrate synthase activity in sweet marjoram (Origanum majo-

rana L., previously: Majorana hortensis Moench.) (Hallahan and Croteau, 1988, 1989), no 

enzyme responsible for its formation from GPP could be identified in the present study. Another 

compound not directly formed by the characterized terpene synthases is the aromatic mono-

terpene alcohol thymol, which is predicted to be synthesized from -terpinene (a product of 

OvTPS2) via p-cymene (Poulose and Croteau, 1978a; Poulose and Croteau, 1978b). Analysis of 
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the terpene content of the inbred lines ff2 und ff7 (Figure 1) supports this hypothesis as no 

thymol is found in lines that lack -terpinene and p-cymene. -Terpinene is most likely con-

verted to thymol by the action of one or more cytochrome P450 oxidases, catalyzing a hydroxy-

lation similar to that described for (-)-S-limonene in menthol biosynthesis in Mentha sp. (Lupien 

et al., 1999; Haudenschild et al., 2000). Conversion of -terpinene to thymol might proceed via 

a p-cymene intermediate which was detected in minor amounts in in vitro assays of the -

terpinene synthase OvTPS2. However, these low levels of p-cymene may be instead due to 

spontaneous conversion of -terpinene into p-cymene (Granger et al., 1964).  

The enzyme responsible for γ-terpinene formation in vitro, OvTPS2, is likely to be a major 

terpene synthase activity in O. vulgare in vivo. Between 25.2 and 48.4 % of the total terpene 

content of this species consists of compounds that are products of this enzyme in vitro. The role 

of OvTPS2 in γ-terpinene formation in vivo is also supported by the fact that the Ovtps2 gene 

was only present in lines that produced -terpinene, In addition, the biochemical properties of 

this enzyme closely resemble those of a -terpinene synthase extracted from thyme leaves 

(Poulose and Croteau, 1978b). The Km of OvTPS2 for GPP was 8.71 µM, close to the Km of  

14 µM observed for the thyme -terpinene synthase enzyme. The pH optimum of both enzymes 

(6.8) was identical. The sequence of the OvTPS5 enzyme is quite similar to that of OvTPS2, but 

the fact that OvTPS5 was completely inactive in vitro indicates that it is unlikely to contribute to 

γ-terpinene formation in vivo. This conclusion is also supported by the results from RNA 

hybridization and qRT-PCR. Especially in the plant lines ff1, ff2, ff7, and ff8, the correlation 

between transcript pattern and terpene content excludes Ovtps5 from an active involvement in 

the formation of γ-terpinene. We have not been able to identify a terpene synthase responsible 

for the production of sabinene hydrate. Perhaps the sequence of this enzyme is too different 

from other terpene synthases to be detected from sequence comparison. It is also possible that 

the sequence of the elusive gene(s) is identical to that of other terpene synthases within the 

binding sites of the utilized primers. This could result in the suppression of PCR products with 

the cDNA of the desired gene. 

 

O. vulgare monoterpene and sesquiterpene synt hases have different phylogenetic 
origins 

The terpene synthases of Origanum vulgare fall into two clades separating monoterpene and 

sesquiterpene synthases from each other (Figure 10). The O. vulgare monoterpene synthases are 

joined by many monoterpene synthases from other Lamiaceae. However, only two other 

sesquiterpene synthases from Lamiaceae are found in the sesquiterpene synthase clade, because 
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these are the only two other Lamiaceae sesquiterpene synthases identified to date, both from 

Ocimum basilicum.  

 
Figure 10  Dendrogram analysis of monoterpene and sesquiterpene synthases from O. vulgare and 

functionally related terpene synthases. The dendrogram was constructed using the neighbour-joining 

method. The name of the major product of each enzyme is given after the abbreviation of the species (or 

after the abbreviation of the gene and cultivar designation in case of the O. vulgare sequences). GenBank 

accession numbers are in parentheses. Aa – Artemisia annua: (E)--caryophyllene synthase (AF472361); 

Cl – Citrus limon: -terpinene synthase (AF514286); Mc – Mentha citrata: linalool synthase 

(AY083653); Ob – Ocimum basilicum: fenchol synthase (AY693648), myrcene synthase (AY693649), 

selinene synthase (AY693643 ), germacrene D synthase (AY693644); Ov – Origanum vulgare: TPS1-

d06-01 (GU385980), TPS1-f02-04 (GU385979), TPS2-d06-01 (GU385978), TPS2-f02-04 (GU385977), 

TPS3-d06-01 (GU385976), TPS3-f02-04 (GU385975), TPS4-d06-01 (GU385974), TPS4-f02-04 

(GU385973), TPS5-d06-01 (GU385972), TPS5-f02-04 (GU385971), TPS6-d06-01 (GU385970), TPS6-

f02-04 (GU385969), TPS7-d06-01 (GU385968), and TPS7-f02-04 (GU385967 Pf – Perilla frutescens: 

geraniol synthase (DQ088667); Pfc – Perilla frutescens var. crispa: linalool synthase (AF444798); Pc – 

Perilla citriodora: linalool synthase  (AY917193), geraniol synthase (DQ234300); Ro – Rosmarinus 

officinalis: pinene synthase (EF495245); So – Salvia officinalis: sabinene synthase (AF051901). 

It is worth noting that the sesquiterpene synthase OvTPS6, an (E)--caryophyllene synthase, 

displayed a low sequence identity with (E)--caryophyllene synthases from the Asteraceae, 

Artemisia annua (41.2 %) and the Cucurbitaceae, Cucumis sativus (44.0 %).  

Two trends previously noted for other terpene synthases were also found to be true here. The 

monoterpene synthases of Lamiaceae share rather high amino acid identities (usually 55-90 % 

despite their different catalytic functions. Yet terpene synthases outside this family are much 

more divergent even though they might have the same catalytic function. For example, a -

terpinene synthase from Citrus limon (included in Fig. 10) is clearly separated from OvTPS2, 
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the -terpinene synthase of O. vulgare, with 37 % amino acid identity indicating that these 

genes are the result of repeated evolution (Gang, 2005). The phylogenetic analysis also indicates 

that OvTPS1 and OvTPS7 appear to result from gene duplication and neofunctionalization. 

OvTPS2 and OvTPS5 might also result from gene duplication followed by functional loss of 

OvTPS5 due to inactivation accompanied by loss of the transit peptide.  

For most of the characterized O. vulgare terpene synthases, only a single allele was apparently 

identified from the EST libraries, suggesting that the other allele of these genes is not trans-

cribed or does not encode an active enzyme. This assumption is supported by our analyses of 

the selfed lines of O. vulgare cultivar f02-04. Since products of OvTPS2 are completely absent 

in four of the studied lines, only one of the two OvTPS2 alleles is likely to be active in the 

cultivar f02-04. For OvTPS5, two alleles were found but none displayed any terpene synthase 

activity in the in vitro assay. The presence of catalytically inactive alleles appears to be typical 

for the terpene synthase gene family in other species as well (Köllner et al., 2004; Köllner et al., 

2008). It is conceivable that OvTPS2 and OvTPS5 originate from a duplication event within the 

genome of O. vulgare. Subsequently, OvTPS5 might have lost is function due to a frameshift 

mutation but still kept its expression pattern due to preservation of the promoter and other 

regulatory sequences. This is not consistent with the usual expectation that the regulatory 

sequences are more quickly altered than the structural gene. For example, the diversification of 

a pair of terpene synthases of strawberry resulted in altered spatial regulation (cytoplasmatic 

versus plastidic expression) but did not change the sequence of the structural gene (Aharoni et 

al., 2004). A high rate of diversification of genes involved in plant secondary metabolism has 

often been observed and both structural and regulatory changes might contribute to the large 

variety of terpene patterns found in plants (Köllner et al., 2004; Iijima et al., 2004b).  

 

Terpene synthase gene expression determines terpene composition in O. vulgare  

The isolated terpene synthase genes of O. vulgare appear to play a major role in controlling 

terpene composition in this species since the transcript levels of individual genes correlate 

closely with the amounts of the encoded enzyme products found in the essential oil.  

The close correlation of γ-terpinene synthase expression and terpene composition indicates that 

transcript regulation of terpene synthase genes is the most important regulatory mechanism 

controlling terpene composition in O. vulgare. The results of the RNA hybridization assays 

suggest that this mechanism regulates the activity of other monoterpene synthases as well. In 

contrast, the low levels of sesquiterpenes in O. vulgare essential oil might not be regulated 

strictly on transcript level. Our correlation analysis of Ovtps3 and Ovtps6, however, was 

hampered by the limited variation of sesquiterpene content between the O. vulgare lines. 

Further support for the assertion of transcript level regulation at least for monoterpene formation 



 Chapter I
 

40 

 

comes from the combined in vitro assays of the heterologously expressed terpene synthases. 

When approximately equal amounts of the expressed active terpene synthases were combined in 

the presence of GPP or FPP as substrates, the blends of monoterpenes or sesquiterpenes 

produced strongly resembled those of O. vulgare terpene blends with the absence of the 

monoterpene trans-sabinene hydrate and thymol (Figure 9). This suggests that terpene synthase 

expression levels directly control the composition of the essential oil, and provide no indication 

for operation of any further regulatory mechanisms like compartmentation or metabolite 

channeling at the site of O. vulgare terpene biosynthesis. However, control of total terpene yield 

may result from processes at other levels of organization. The O. vulgare cultivars used in this 

study, f02-04 and d01-06, showed major differences in the quantity of terpenes produced, with 

the quantity of cultivar f02-04 being approximately twice that of d01-06. This difference is 

likely caused by the fact that the leaf surface of f02-04 has a higher density of glandular 

trichomes, the sites of synthesis and storage of the monoterpenes and sesquiterpenes 

(Gershenzon et al., 1989; Turner et al., 1999).  

 

Terpene synthases have value for molecu lar engineering of terpene biosynthesis in  
O. vulgare 

Our results suggest several ways in which the terpene composition of O. vulgare could be 

modified by molecular methods to produce plants with greater value as culinary herbs or 

sources of pharmaceuticals. Given the regulatory importance of terpene synthases in this 

species, over-expression or suppression of these catalysts is a straightforward way of altering 

the concentrations of their products. Alteration of the product profile of a single terpene syn-

thase requires modification of the reaction mechanism of the terpene synthase itself. This can be 

achieved by site-directed mutagenesis of the enzyme or breeding in other alleles of this gene. 

For a general increase in monoterpene production, it may be possible to overexpress enzymes of 

the plastidial methylerythritol phosphate pathway. For example, overexpression of deoxy-

xylulose phosphate reductoisomerase in mint resulted in a significant increase in monoterpene 

production (Mahmoud and Croteau, 2001). A prerequisite for all of these strategies is the 

development of a transformation system for O. vulgare. However, in the meantime, the terpene 

synthase genes can still be utilized as markers for directed breeding of O. vulgare varieties with 

higher value essential oil (Novak et al., 2008). 

 



 

3 Chapter II  

 

Cytochrome P450s participate in  the biosynthesis of the phenolic 
monoterpenes, thymol and carvacrol, in oregano ( Origanum 

vulgare L.) and thyme (Thymus vulgaris L.) 

 

3.1 Abstract 

Thymol and carvacrol are major aroma constituents of the essential oil of two culinary herbs, 

oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.). These phenolic monoterpenes 

have a broad range of biological activities acting as antimicrobial compounds, insecticides, anti-

oxidants and pharmaceutical agents. A pathway for the biosynthesis of thymol from the mono-

terpene γ-terpinene via an intermediate p-cymene was proposed in the late 1970s (Poulose and 

Croteau, 1978a) but has never been validated. Here, we demonstrate the involvement of 

cytochrome P450 monooxygenases in the conversion of γ-terpinene to thymol and carvacrol. 

We isolated eleven cytochrome P450 gene sequences from oregano, thyme and marjoram that 

were assigned to five gene names, CYP71D178 through CYP71D182. The transcript levels of 

most of these genes are well-correlated with the occurrence of thymol and carvacrol. 

Heterologous expression of two of them in yeast resulted in active proteins catalyzing the 

formation of p-cymene, thymol and carvacrol from γ-terpinene. Since p-cymene itself was not 

accepted as a substrate, it is likely that γ-terpinene is directly converted to thymol and carvacrol 

with p-cymene as a side product. The properties and sequence motifs of these P450s are similar 

to those of well-characterized monoterpene hydroxylases isolated from mint. 
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3.2 Introduction 

The Lamiaceae plant family contains many aromatic plants of great scientific and economic 

interest such as rosemary, sage, mint, marjoram, oregano and thyme. The aroma associated with 

these plants arises from the essential oil found in peltate glandular trichomes on the aerial parts 

of the plant. These glandular trichomes consist of highly specialized secretory cells in which the 

components of the essential oil are synthesized and subsequently accumulate in a subcuticular 

storage cavity (Gershenzon et al., 1989; Turner et al., 1999). The composition of the essential 

oils of oregano, thyme and marjoram is dominated by mono- and sesquiterpenes (Skoula and 

Harborne, 2002; Stahl-Biskup, 2002). These substances are responsible for the aroma and flavor 

of these herbs, and the extracted essential oils are used for the manufacturing of perfumes and 

cosmetics as well as for medicinal and pharmaceutical purposes as antimicrobial or antiseptic 

agents (Kintzios, 2002; Stahl-Biskup, 2002). Mono- and sesquiterpenes are also thought to help 

defend the plant against herbivores and pathogens (Gershenzon and Dudareva, 2007).  

Two monoterpenes of the Lamiaceae that have attracted much attention are thymol and 

carvacrol which are often found in thyme and oregano. These two phenolic monoterpenes are 

especially known for their antiherbivore, antimicrobial, pharmaceutical and antioxidant 

activities (Isman, 2000; Hummelbrunner and Isman, 2001; Ultee et al., 2002; Sedy and 

Koschier, 2003; Braga et al., 2008). They are even used to treat bee hives against varroa mite 

without harming the bees (Floris et al., 2004).  

The general outline of monoterpene biosynthesis is well known (Gershenzon, 1999; Wise and 

Croteau, 1999). First, the ubiquitous C10 intermediate, geranyl diphosphate (GPP), is converted 

by enzymes known as monoterpene synthases to cyclic or acyclic products. Then, oxidized 

monoterpenes are formed from these initial cyclic or acyclic products by reactions catalyzed 

frequently by cytochrome P450s monooxygenases (Gershenzon, 1999; Wise and Croteau, 

1999). The oxidized monoterpenes, thymol and carvacrol, are most likely derived from one of 

the initial cyclic products, γ-terpinene, by oxidation (Poulose and Croteau, 1978a). In two 

cultivars of oregano (Origanum vulgare L.), γ-terpinene was recently demonstrated to be 

formed from GPP by a monoterpene synthase, OvTPS2 (Crocoll et al., 2010). From γ-terpinene, 

the pathway for thymol formation is thought to proceed via the aromatic compound, p-cymene, 

as an intermediate (Fig. 1a) (Poulose and Croteau, 1978a). It seems conceivable that the 

conversions of γ-terpinene via p-cymene to thymol and carvacrol could be catalyzed by 

cytochrome P450s. Despite the interest in thymol and carvacrol as pharmaceuticals and plant 

defenses, no genes or enzymes responsible for the formation of these phenolic monoterpenes 

from γ-terpinene or p-cymene have been described to date.   

Here, we report several lines of evidence supporting the involvement of cytochrome P450s in 

thymol and carvacrol biosynthesis. First, eleven new cytochrome P450 gene sequences are 
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described from oregano, thyme and marjoram which were assigned to five new cytochrome 

P450 genes, CYP71D178 through CYP71D182. The expression levels of these genes, quantified 

by relative and absolute quantitative real-time PCR (qRT-PCR), were then correlated with 

thymol and carvacrol formation in different oregano (Origanum vulgare L.), thyme (Thymus 

vulgaris L.) and marjoram (Origanum majorana L.) plant lines. Finally, the expression of three 

of these P450 genes in yeast resulted activities that converted γ-terpinene to p-cymene as the 

major product, but also to thymol and carvacrol. 
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3.3 Materials and Methods 
 
Plant Material  

Oregano (Origanum vulgare L.) plants were propagated from stem cuttings and grown in the 

greenhouse with additional illumination by sodium lamps (16 h day) at 20-22 °C (day) and 18-

20 °C (night), and relative humidity ranged from 30-55 %. Plants were potted in commercial 

soil (Tonsubstrat, Klasmann, Geeste / Groß-Hesepe, Germany) and watered every 2 to 3 days 

with tap water. Two cultivars of Origanum vulgare L. (cv. ‘d06-01’ and cv. ‘f02-04’) were 

selected from the collection of Origanum species of the botanical garden of Università di Bari, 

Italy. These were chosen for the presence of γ-terpinene, p-cymene, thymol, and carvacrol in the 

essential oil. An additional criterion was a low density of hairy trichomes which facilitates the 

extraction of glandular trichomes for RNA isolation. Herbarium specimens of the two genotypes 

are kept at the Herbarium of the Institute of Applied Botany, University of Veterinary Medicine, 

Vienna, Austria. For the cultivar d06-01, three clonal lines were chosen (designated d2, d5 and 

d8) and from the cultivar f02-04 four lines were chosen (designated f2 through f5). Additional 

lines were derived by selfing f02-04 plants (seven lines chosen designated ff1, ff2, ff4, ff5, ff6, 

ff7 and ff8) and crossing line d06-01 with f02-04 (four lines chosen designated df5 through 

df8). 

Thyme (Thymus vulgaris L.) chemotypes T28 and L48 were kindly provided by J.D. Thompson 

(Thompson et al., 1998; Thompson, 2002). Thyme cultivar (cv. ‘Tc’), oregano cultivar (cv. 

‘Ct’) and marjoram (Origanum majorana L.) cultivar (cv. ‘gT’) were bought at local markets in 

Jena, Germany. These plants were chosen for their extreme differences in thymol and carvacrol 

contents compared to the above mentioned thyme chemotypes and oregano plant lines. All 

plants were grown in the greenhouse as described above. 

 

Terpene extraction from leaves 

For terpene extractions to compare with the measurement of gene expression by RNA 

hybridization, leaf material of the O. vulgare lines d2, d5, d8, f2-f5, df5-df8, ff2, ff4, ff6, ff7 

was harvested in June. Young expanding leaves from five plants of each line were pooled and 

frozen in liquid N2 immediately after harvest and ground to a fine powder with mortar and 

pestle. The powder (50-100 mg) was soaked in 1 ml ethyl acetate:pentane (2:1) containing an 

internal standard (menthol, 50 ng µl-1) for 24 h at room temperature with constant rotation. The 

solution was cleared with activated charcoal for 5 min and dried over a column of 500 mg 

water-free Na2SO4. All extractions were performed in triplicate. 

For terpene extractions to compare with the measurement of gene expression by qRT-PCR, leaf 

material of the lines d2, d5, f4, f5, df6, df8, ff1, ff2, ff4, ff5, ff6, ff7, ff8 was harvested in No-
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vember, while plant material from the thyme cultivar ‘Tc’, oregano cultivar ‘Ct’ and marjoram 

cultivar ‘gT’ was harvested in April. Young expanding leaves from three plants of each line 

were individually harvested and extracted as described above. All extractions were done with 

three biological and three technical replicates except for thyme ‘Tc’, oregano ‘Ct’ and marjoram 

‘gT’ where only one biological replicate was available.  

 

GC-MS Analysis of volatiles 

Products of terpene extractions from plants and from cytochrome P450 assays were identified 

by gas chromatography (Agilent Hewlett-Packard 6890, Agilent Technologies, Santa Clara, CA, 

USA) coupled to a mass spectrometer (Agilent Hewlett-Packard 5973, Agilent Technologies) or 

a flame ionization detector (FID). For analyses, 1 μl injections of pentane or ethyl 

acetate:pentane (2:1) extracts were made with an injector temperature of 230 °C. The terpenes 

were separated on a DB5-MS column: 30 m length, 0.25 mm inner diameter and 0.25 µm film 

(J&W Scientific, Santa Clara, CA, USA). The program had an initial temperature hold at 40, 50 

or 65 °C for 2 min, first ramp 2-8 °C min-1 to 175 °C, second ramp 90 °C min-1 to 250 °C, final 

3 min hold. Limonene enantiomers and hydroxylated products were further identified on a 

chiral column (HYDRODEX®-ß-3P, Macherey-Nagel, Düren, Germany): 25 m length, 0.25 mm 

inner diameter. The temperature program was 80 °C for 2 min, first ramp 2 °C min-1 to 165 °C, 

second ramp 50 °C min-1 to 200 °C, final 3 min hold. The GC-MS carrier gas was helium at 1 

ml min-1 and the GC-FID carrier gas was hydrogen at 2 ml min-1. All terpene products were 

identified by using Agilent Technologies software with the Wiley275.L, NIST98.L and 

Adams2205.L MS libraries, as well as by comparison of mass spectra and retention times with 

those of authentic standards (Sigma-Aldrich Chemicals, Steinheim, Germany). The amounts of 

the individual terpenes were determined by GC-FID by comparison with the peak areas of the 

internal standard. Spearman’s rank correlation coefficient was calculated to determine the 

correspondence of the terpene amounts and transcript levels.  

 

Identification of cytochrome P450 gene candidates 

The first gene fragments for a cytochrome P450 were isolated by sequencing of 2,364 clones of 

a cDNA library of isolated peltate glandular trichome clusters from Origanum vulgare cultivar 

‘f02-04’ For further details see (Crocoll et al., 2010). ESTs with similarities to the monoterpene 

hydroxylase CYP71D18 previously isolated from mint (Lupien et al., 1999) were chosen to 

design primers to isolate full length cDNA clones by RACE-PCR. For this procedure, primers 

were used with cDNA libraries of oregano cultivars d06-01 and f02-04 and the BD SMART 

RACE cDNA Amplification Kit (BD Bioscience Clontech, Mountain View, CA, USA). The 

components of the PCR reaction were: 0.8 µl Adv. Taq DNA Polymerase Mix (5 U µl-1), 5 µl 
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10 x Adv. Taq PCR-buffer, 1 µl dNTPs (10 mM each), 5 µl universal primer mix and 1 µl gene-

specific primer (10 pmol µl-1), 0.5-1 µl cDNA and PCR grade water added to a final volume of 

50 µl. The PCR was conducted with an initial denaturation at 94 °C for 2 min, followed by 30-

35 cycles: denaturation at 94 °C for 30 s, annealing ranging from 54 °C to 57 °C for 30 s, and 

extension at 68 °C for 60 to 150 s, and a final step at 70 °C for 5 min. PCR fragments were 

analyzed by cloning into the pCR4-TOPO vector (TOPO TA cloning kit for sequencing, 

Invitrogen, Carlsbad, CA, USA) and subsequently sequenced. RACE-PCR was repeated several 

times to verify the correct 5’ and 3’ ends of the cDNAs. cDNA fragments from at least three 

independent RACE-PCR reactions were fully sequenced to prevent errors.  

Further cytochrome P450 sequences were isolated from peltate glandular trichome cDNA 

libraries of oregano cultivar f02-04 (CYP71D179-f2) and Thymus vulgaris L. chemotypes L48 

(CYP71D179v1-L48) and T28 (CYP71D180v1-T28) by RACE-PCR. Additional cytochrome 

P450 gene sequences were amplified from the cDNA of young expanding leaves of the oregano 

cultivar ‘Ct’ (CYP71D181-Ct1 and CYP71D180-Ct2), the thyme cultivar ‘Tc’ (CYP71D182-

Tc1, CYP71D179v2-Tc2, CYP71D180-Tc3, CYP71D181-Tc4) and the marjoram cultivar ‘gT’ 

(CYP71D180v-gT1) employing  primers for the 5’ and 3’ ends of the open reading frames of 

the already isolated cytochrome P450 sequences of CYP71D178, CYP71D179 and CYP71D180 

(CYP71D178-182-fwd: 5’-GATGGATATTTCAATTTCATGGGT-3’, CYP71D178-182-rev: 

5’-ATTATGAGGTTGGATTGTGGATT-3’). 

The SeqMan program (Lasergene DNAStar V8.02, Madison, WI, USA) was used for contig 

assembly. Resulting contigs were compared to nr/nt nucleotide collection databases using the 

BLASTN search algorithm. All amino acid alignments were conducted using ClustalX (protein 

weight matrix: Gonnet series; gap opening: 10.00; gap extension: 0.20; delay divergent 

sequences: 30%) (Thompson et al., 1997). The resulting tree was constructed by the neighbor 

joining algorithm with a bootstrap sample of 1000 and visualized by Treecon 1.3b (Van de Peer 

and De Wachter, 1994). 

 

RNA extraction from leaf material and RNA hybridization analysis 

Whole leaf RNA was isolated from the same frozen, homogenized leaf material of O. vulgare 

that had been used for terpene extractions. The probe for CYP71D178 was amplified as ssDNA 

from a short fragment of 360 bp (bp 1079-1438) of its open reading frame. Hybridization and 

washing conditions were identical to those previously described (Crocoll et al., 2010). Washed 

blots were sealed in PVC bags, exposed to BioMax MS films (Kodak, Carestream Health, 

Rochester, NY, USA) with an intensifying screen for 15 h at -80 °C. Films were developed in a 

film developer (Konica medical film developer SRX-101A, Konica, Tokyo, Japan) according to 

the manufacturer’s instructions.  
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RNA isolation from leaf material for qRT-PCR 

Total RNA was extracted from homogenized leaf material harvested in November (O. vulgare 

plant lines d2, f5, ff4, ff7, ff8, df6) and April (thyme cv. ‘Tc’, oregano cv. ‘Ct’ and marjoram 

cv. ‘gT’). The RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). 

To remove residual genomic DNA, RNA was treated with RNAse-free DNAse I (Qiagen, 

Hilden Germany). RNA samples were analyzed on an Agilent Bioanalyzer 2100 and RNA 6000 

Nano Labchip using the Expert software (Agilent version B.02.02.SI258) to determine quality, 

integrity and rRNA ratios. RNA was quantified by spectrophotometry.  

For cDNA synthesis, Superscript III reverse polymerase (Invitrogen, Carlsbad, California, 

USA) was used according to the manufacturer’s instructions but with reverse transcription of  

3-5 µg total RNA in a 2 x scaled-up reaction volume.  

 

Transcript quantification by relative and absolute qRT-PCR 

All experiments were performed on a Stratagene Mx3000P (La Jolla, California, USA) using 

SYBR green I with ROX as an internal loading standard. Each 25 µl reaction contained cDNA 

corresponding to 2.5 ng total RNA. Controls included non-RT controls (using 2.5 ng total RNA 

without reverse transcription to monitor for genomic DNA contamination) and non-template 

controls (water as template).  

PCR thermocycles were run as follows: an initial 10 min at 95 °C followed by 40 cycles of 30 s 

at 95 °C, 1 min at 57 °C (Ovtps2) or 60 °C (all P450s), and 1 min at 72 °C. Fluorescence was 

read following each annealing and extension phase. All runs were followed by a melting curve 

analysis from 55-95 °C. The products of each primer pair were cloned and sequenced at least 

eight times to verify primer specificity. The linear range of template concentration to threshold 

cycle value (Ct value) was determined by performing a series of sixfold dilutions (1- to 1,296-

fold) using cDNA from three independent RNA extractions analyzed in three technical 

replicates. Cytochrome P450 primer pairs were tested with the other P450s as potentially cross-

hybridizing templates. Amplification efficiencies were identical for CYP71D179/182 primers 

with CYP71D178, CYP71D179 and CYP71D182 as templates. All primers were designed using 

BeaconDesigner (version 5.0; PremierBiosoft, Palo Alto, California, USA) and HPLC-purified 

(Invitrogen, Carlsbad, California, USA). Primers were designed for regions identical in all 

known alleles for the respective gene (for primer details see Supplementary Material, Table S6). 

Primer efficiencies for all primer pairs were calculated using the standard curve method (Pfaffl, 

2001). The stability of reference gene expression in the different oregano plant lines was tested 

by comparing Ct values between all lines with cDNA corresponding to 2.5 ng total RNA. All 

amplification plots were analyzed with the MX3000Ptm software to obtain Ct values. For relative 
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qRT-PCR, elongation factor 1 alpha (OvEF1alpha) was employed as a housekeeping gene. 

Relative transcript values were calculated using plant line f5 as calibrator. 

Absolute quantification of Ovtps2 and cytochrome P450 gene copy numbers in each cDNA 

sample was conducted using a standard curve. Results were normalized against 1 mg fresh 

weight of plant material. The standard curves were generated with purified plasmid containing 

the respective genes. A 10-fold dilution series from 101 to 106 copies was determined for each 

template. The copy numbers found in non-RT controls (RNA without reverse transcription to 

monitor for genomic contamination) ranged from zero to a maximum of 33 copies per µg RNA 

and mg fresh plant material.   

 

Heterologous expression in Saccharomyces cerevisiae 

Open reading frames of four cytochrome P450 sequences (CYP71D178 from cv. ‘d06-01’ and 

‘f02-04’, CYP71D180v1-T28, CYP71D179v1-L48 and CYP71D181) were cloned into the 

pESC-Leu2d vector (Ro et al., 2008) and transformed into the S. cerevisiae strains WAT11 and 

W(R) (Pompon et al., 1996) by chemical transformation as described in (Gietz and Woods, 

2002). The nucleotide sequence of CYP71D181 was optimized for yeast codon usage and 

cloned into pESC-Leu2d by Geneart (Regensburg, Germany). pESC-Leu2d was chosen since it 

harbors a modified Leu promoter region resulting in higher plasmid copy numbers in yeast and 

therefore higher protein production. The S. cerevisiae strain WAT11 also expresses the A. 

thaliana cytochrome P450 reductase ATR1 (At4g24520) and W(R) expresses high levels of the 

endogenous yeast P450 reductase. Single colonies were used to inoculate 30 ml overnight 

cultures in SC minimal medium at 28 °C and 160 rpm. SC minimal medium (without leucine): 

6.7 g l-1 yeast nitrogen base (without amino acids with ammonium sulfate) (Sigma-Aldrich 

Chemicals, Steinheim, Germany), 100 mg l-1 of the amino acids adenine, arginine, cysteine, 

lysine, threonine, tryptophan, uracil; 50 mg l-1 of the amino acids aspartic acid, histidine, 

isoleucine, methionine, phenylalanine, proline, serine, tyrosine, valine; 20 g l-1 D-glucose. The 

following day, 100 ml of YPDA full medium (10 g l-1 yeast extract, 10 g l-1 bactopeptone (BD, 

Le Pont de Claix, France), 74 mg l-1 adenine hemisulfate, 20 g l-1 D-glucose) was inoculated 

with overnight culture corresponding to one unit of OD600 (approx. 2 x 107 cells ml-1) and the 

culture grown for 32 to 35 h at 28 °C and 160 rpm shaking. The cultures were then centrifuged 

for 5 min at 5000 x g at 16 °C, resuspended in 100 ml YPGA induction medium (10 g l-1 yeast 

extract, 10 g l-1 bactopeptone, 74 mg l-1 adenine hemisulfate, 20 g l-1 D-galactose) and grown for 

another 15-18 h at 25 °C and 160 rpm. 
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Preparation of microsomal protein 

The extraction of microsomal cytochrome P450 was performed similar to that previously 

described (Urban et al., 1994). In brief, induced cultures were harvested by centrifugation at 

7,500 x g for 10 min at 4 °C. The supernatant was decanted and the pellet resuspended in 30 ml 

of TEK buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 100 mM KCl). The suspension was 

again centrifuged for 10 min at 7,500 x g at 4 °C. The supernatant was discarded and the pellet 

carefully resuspended in 1 ml of TES buffer (50 mM Tris-HCl pH 7.5, 1 mM EDTA, 600 mM 

sorbitol, 10 g l-1 Bovine serum fraction V protein and 1.5 mM β-mercaptoethanol). The solution 

was transferred to a 50 ml conical tube, and the centrifugation tube washed with another 1 ml 

TES buffer which was added to the resuspension. Glass beads (0.45-0.50 mm diameter, Sigma-

Aldrich Chemicals, Steinheim, Germany) were then added until their volume was up to the top 

of the cell suspension. Yeast cell walls were disrupted by 1 min shaking by hand, 5 x, with 1 

min breaks and cooling on ice in between. The crude extract was recovered and glass beads 

were washed 4 times with 5 ml TES. The supernatant was pooled and centrifuged at 7,500 x g 

for 10 min at 4 °C to pellet the larger cell fragments. The supernatant was carefully recovered 

and centrifuged at 100,000 x g for 60 min at 4 °C in an ultracentrifuge. The microsomal protein 

fraction collected in the pellet was washed once with 2 ml TES and once with TEG (50 mM 

Tris-HCl, 1 mM EDTA, 30 % w/v glycerol). Finally, the pellet was resuspended in 2 ml TEG 

buffer and completely homogenized in a glass homogenizer (Potter-Elvehjem, Fisher Scientific, 

Schwerte, Germany). Aliquots were stored at -20 °C and used for protein assays, CO difference 

spectra measurements and quantification of total protein content. Amounts of cytochrome P450 

in microsomal preparations were calculated from the reduced carbon monoxide difference 

spectra (A450 minus A490) by using the differential absorption coefficient of 91 mM-1 (Omura 

and Sato, 1964). 

 

Cytochrome P450 enzyme assays 

Standard assays were conducted in 1.5 ml GC vials with 0.3 to 3 µg protein per 300 µl assay 

volume, 75 mM sodium phosphate buffer, pH 6.8, and 100 µM substrate (supplied in a 

maximum of 6 µl DMSO which had no detectable effect on the reaction). The reaction was 

initiated by the addition of 1mM NADPH. The assay mixture was incubated for 20 min at 28 °C 

with constant shaking on a thermo mixer (Eppendorf, Hamburg, Germany). Reaction was linear 

for 1 h under these conditions. Supplying NADPH at 1 mM at the beginning of the reaction was 

found to be sufficient to support catalysis without addition of a regeneration system. The 

reaction was stopped by freezing at -80 °C, and products were extracted with 200 µl pentane 

(containing 10 ng µl-1 nonyl acetate as internal standard) by 5 min shaking at 1400 rpm. Assay-

pentane mixtures were then centrifuged for 10 min at 4,200 rpm and frozen at -80 °C for at least 
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2 h. The solvent layer was recovered and analyzed by GC-MS and GC-FID as described under 

GC-MS analysis of volatiles. Monoterpene substrates tested were: γ-terpinene, p-cymene, α-

terpinene, (-)-R-α-phellandrene, (+)-R-limonene, (-)-S-limonene. Boiled controls and controls 

without substrate, without cofactor or with substrate and cofactor at time point zero were 

included in the experiments. The substrates, γ- and α-terpinene and (-)-R-α-phellandrene were 

found to be contaminated with small amounts of p-cymene. Spontaneous aromatization is 

known to occur with γ-terpinene to form p-cymene (Granger et al., 1964). This is also likely to 

happen with the reactive substrates, α-terpinene and (-)-R-α-phellandrene. To accurately 

measure enzymatic formation of p-cymene, assays were performed without microsomal protein 

and the amounts of p-cymene detected were subtracted from the assay results with protein. The 

need for oxygen was tested by treating the reaction mixture (without protein and NADPH) with 

argon for 20 min. Protein and NADPH were added afterwards with a syringe through the 

septum of the lid. pH optima were determined by testing with sodium phosphate as the standard 

buffer (gave higher activity than potassium phosphate or Tris-HCl) over a range from 5.5 to 8.5. 
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3.4 Results 
 

CYP71D178 express ion is  correlated w ith th ymol and carvacrol biosynthesis in 
oregano 

The formation of thymol and carvacrol is thought to involve hydroxylation of γ-terpinene and  

p-cymene precursors. We searched an Origanum vulgare L. (oregano) cDNA library for 

sequences similar to those of known cytochrome P450 monoterpene hydroxylases. Sequencing 

of 2,364 random clones of a library of isolated peltate glandular trichome clusters from O. 

vulgare L. cultivar ‘f02-04’ resulted in a contig of 504 bp made up of three ESTs which was 

similar to the limonene-6-hydroxylase previously isolated from mint (Lupien et al., 1999).  

 
Figure 1  Proposed pathway to thymol and expression analysis of Ovtps2 and CYP71D178 in planta 

compared to essential oil contents of various oregano plant lines. (A) Possible pathway of thymol 

formation in thyme predicted by (Poulose and Croteau, 1978a). (B) The amounts for γ-terpinene,  

p-cymene, thymol and carvacrol are shown for 15 oregano lines: three clonal lines of the cultivar d06-01 

(d2, d5, d8), four clonal lines of cultivar f02-04 (f2, f3, f4, f5), four lines from a selfing of the cultivar 

f02-04 (ff2, ff4, ff6, ff7), and four lines from a cross of both cultivars (df5, df6, df7, df8). Transcript 

levels of the terpene synthase Ovtps2 and CYP71D178 in leaves of O. vulgare were measured by RNA 

hybridization analyses. The bottom panel shows an ethidium-bromide-stained agarose gel with total RNA 

as control for equal RNA loading. 

This cytochrome P450-like gene fragment was used to design a probe for RNA hybridization to 

check whether expression of the full-length gene is correlated with thymol formation in an array 

of 15 oregano plant lines. The plant lines were derived from two oregano cultivars as described 
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in (Crocoll et al., 2010). Three of the lines, d2, d5, and d8, were clones of the cultivar d06-01 

while the lines f2, f3, f4, and f5 were clones of the cultivar f02-04. In addition to these parental 

clones, four other lines were generated by selfing of cultivar f02-04 (ff2, ff4, ff6, and ff7) and 

four further lines from a cross between both parent cultivars (df5, df6, df7, and df8). When the 

results of the RNA hybridization blot were compared to the terpene content of the oregano plant 

lines, a strong correlation between transcript abundance and thymol content was evident (Fig. 

1b). Thymol and to a lesser extent carvacrol were only found in the essential oil of plant lines 

which had transcripts for both this putative cytochrome P450 gene and the γ-terpinene synthase 

Ovtps2 which forms the substrate for the P450 enzyme. Plant line ff7 showed high transcript 

abundance of the P450 gene but only traces of thymol and carvacrol. However, this plant line 

almost completely lacked the predicted precursor γ-terpinene; hence no thymol or carvacrol 

could be formed (Fig. 1b).  

 
Figure 2 Correlation between (A) thymol content in selected O. vulgare lines and (B) relative transcript 

levels of CYP71D178 determined by qRT-PCR. Each bar represents mean values ±SE of three biological 

and three technical replicates except for individual plant lines ff2-1 to ff2-3 (n = 3). Plant line f5 was used 

as calibrator for all relative qRT-PCR experiments.  

The results from the RNA hybridizations were verified by relative qRT-PCR performed on 13 

of the same oregano plant lines (d2, d5, f4, f5, ff1, ff2, ff4, ff6, ff7, ff8, df6, df8). The same 
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pattern was found as observed for the RNA hybridization analysis (Fig. 2). Only those lines 

containing transcript of the P450 gene had thymol in their essential oil except for plant line ff7. 

Despite the high transcript levels in ff7, neither thymol and carvacrol nor p-cymene could be 

detected. γ-Terpinene was found in trace amounts only. Spearman’s correlation coefficient (rs) 

was calculated for the relationship of thymol content to transcript abundance for the P450 gene 

both with and without plant line ff7. Both calculations gave a positive and significant 

correlation of rs = 0.69 (P < 0.001) (with line ff7) and of rs = 0.91 (P < 0.001) (without line ff7). 

The complete open reading frame for this putative cytochrome P450 from oregano was isolated 

from cDNA libraries of cultivars ‘f02-04’ and ‘d06-01’ by RACE-PCR. The nucleotide 

sequences were identical from both cultivars, and the gene was named CYP71D178 according 

to the P450 nomenclature (Nelson et al., 1996; Nelson, 2009).  

 

A group of  ten cytochrome P450 sequences w ith high identity to CYP71D178 was 
isolated from thyme, oregano and marjoram  

A search for similar sequences in oregano led to the isolation of another cytochrome P450 gene 

from oregano cultivar f02-04. The sequence had high similarity to CYP71D178 and was named 

CYP71D179. Two additional sequences with similarity were isolated from thyme (Thymus 

vulgaris L.) by colony screening and RACE-PCR. These sequences were kindly provided by 

Julia Asbach. One gene was annotated as CYP71D180 and the other included in CYP71D179. 

Amino acid identity between two sequences of more than 97% leads to inclusion under the same 

gene name, according to the rules of cytochrome P450 nomenclature (Nelson et al., 1996). The 

thyme sequences were isolated from two different chemotypes of T. vulgaris: chemotype T28, 

which contains thymol and carvacrol in a 1:2 ratio although the larger part of its essential oil 

consists of γ-terpinene and p-cymene, and chemotype L48 which is dominated by linalool but 

contains thymol in amounts comparable to oregano plant line df6 (Julia Asbach, personal 

communication). 

Since CYP71D178 through 180 had identical 5’ and 3’ sequences, we designed primers for both 

ends and used them to isolate additional cytochrome P450 sequences from cDNA of three 

commercial oregano, thyme and marjoram cultivars. These had been selected for their high 

diversity in thymol and carvacrol content and named accordingly. The oregano cultivar ‘Ct’ 

contains very high amounts of carvacrol (6.3 mg g-1 fresh weight) and minor amounts of thymol 

(0.06 mg g-1 fresh weight). In contrast, the thyme cultivar ‘Tc’ contains mainly thymol (1.6 mg 

g-1 fresh weight) and very little carvacrol (0.05 mg g-1 fresh weight). The marjoram cultivar ‘gT’ 

is devoid of thymol and carvacrol but contains the putative precursor γ-terpinene (0.38 mg g-1 

fresh weight) and small amounts of the predicted intermediate p-cymene (0.05 mg g-1 fresh 

weight) (Supplementary Material, Table S5).  
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Seven cytochrome P450 gene sequences were isolated from these commercial cultivars, four 

from thyme cultivar ‘Tc’, two from oregano ‘Ct’ and one from marjoram ‘gT’. Four of these 

additional seven sequences were assigned to CYP71D179 and CYP71D180 according to the 

cytochrome P450 nomenclature (Nelson et al., 1996; Nelson, 2009). The other three sequences 

were assigned to new gene names, two to CYP71D181 and one to CYP71D182. A list of all 

these cloned P450s and their origin can be found in Table 1. 

Table 1 Names of cytochrome P450 genes isolated in the course of this study with their plant and cultivar 

origins. Reference sequences for comparing the five named cytochrome P450s are underlined. Potential 

alleles from one plant species are designated with a suffix, v1 or v2, for CYP71D179 and CYP71D180. 

Plant species ‘cultivar’ CYP name cultivar gene # 

Oregano ‘d06-01’ CY71D178a d1 

Oregano ‘f02-04’ CY71D178a f1 

 CY71D179 f2 

Oregano ‘Ct’ CY71D181 Ct1 

 CY71D180 Ct2 

Thyme ‘T28’ CY71D180v1 T28 

Thyme ‘L48’ CY71D179v1 L48 

Thyme ‘Tc’ CY71D182 Tc1 

 CY71D179v2 Tc2 

 CY71D180v2 Tc3 

 CY71D181 Tc4 

Marjoram ‘gT’ CY71D180 gT1 

aBoth CYP71D178 nucleotide sequences from oregano cultivars d06-01 and f02-04 are  

identical. 

An amino acid sequence alignment of all clones resulted in four clusters each representing one 

of the CYP71D sequences, except that CYP71D179 and CYP71D182 were placed together 

(Fig. 3). Between clusters, sequence identity was less than 80 %. All proteins shared similarity 

with the limonene-6-hydroxylase, CYP71D18, from mint. All eleven cytochrome P450 

sequences, CYP71D178 to CYP71D182, shared amino acid identities of 73 to 76 % with the 

mint monoterpene hydroxylase while two clearly separated clusters were evident: one 

containing CYP71D178, CYP71D179 and CPY71D182 and the other CYP71D180 and 

CYP71D181. Within clusters, sequence identities were 97 % or higher. Therefore, the 

sequences are designated as the same gene, according to P450 nomenclature standards (Nelson 

et al., 1996; Nelson, 2009). For a typical 500 amino acid cytochrome P450 protein, 97 % 

identity translates to less than 15 amino acid differences. Most sequences within each cluster 

differed by less than 6 amino acids, except the CYP71D182 which has 11 amino acid 

differences from CYP71D179 and was therefore considered a different gene and named 

accordingly (David R. Nelson, personal communication). Sequences coming from plants of the 
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same species but different chemotypes, are designated with a suffix, e.g. v1, v2 in CYP71D179 

and CYP71D180 (Table 1). 

 
Figure 3  Dendrogram analysis of cytochrome P450s from oregano, thyme and marjoram compared to 

one member of the same cytochrome P450 subfamily CYP71D from mint, CYP71D18 which encodes a 

previously characterized monoterpene hydroxylase (Colby et al., 1993; Lupien et al., 1999; Haudenschild 

et al., 2000). Two subgroups are shown. Subgroup (a) contains CYP71D178, CYP71D179 and 

CYP71D182. Subgroup (b) consists of CYP71D180 and CYP71D181. The dendrogram was constructed 

using the neighbour-joining method. The CYP name of each cytochrome P450 is given after the abbre-

viation of the species of origin and followed by the internal numbering within one cultivar: Ov – 

Origanum vulgare, Tv – Thymus vulgaris, Om – Origanum majorana; d – oregano cv. d06-01, f –oregano 

cv. f02-04, Ct – oregano cv. ‘Ct’, Tc – thyme cv. ‘Tc’, gT – marjoram cv. ‘gT’. 

CYP71D178-182 share sequence motifs and substrate recognition sites  

For each CYP gene, a single reference sequence (indicated in Table 1 and Fig. 3) was chosen 

for a more detailed analysis of the amino acid sequences. Sequences were compared to the 

limonene-6- and the limonene-3-hydroxylases from mint (CYP71D18 and CYP71D13), and 

common sequence motifs for cytochrome P450s were identified (Fig. 4). The most conserved 

P450 motif (PFxxGxRxCxG) represents the heme binding loop and is often considered a 

‘signature’ sequence for P450 proteins (Feyereisen, 2005). This motif is responsible for the 

characteristic 450 nm absorption of the FeII-CO complex of cytochrome P450 (Mansuy and 

Renaud, 1995).  

Possible substrate recognition sites (SRS) were deduced from alignments with other P450s with 

known or modeled SRS (Gotoh, 1992; Rupasinghe et al., 2003) (Fig. 4). Substrate recognition 

sites SRS1 and SRS4 through SRS6 show considerable sequence conservation and were 

therefore easy to recognize without structural modeling (Mansuy and Renaud, 1995). On the 

other hand, SRS2 and SRS3 contain no conserved amino acid residues (Rupasinghe et al., 2003) 

but their location can be estimated since cytochrome P450s share a high degree of secondary 
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and tertiary structural homology in which secondary structure elements are found in similar 

locations.  

 
Figure 4  Amino acid alignment of reference sequences for all five named cytochrome P450s, 

CYP71D178-CYP71D182. Mint CYP71D13 and CYP71D18 are included for comparison. Common 

sequence motifs of cytochrome P450s are shown: the P450 ‘signature’ sequence PFxxGxRxcxG; WxxxR 

motif; ExLR motif; proline rich hinge (PPxPP); the membrane anchor is underlined with a dotted line. 

Putative substrate recognition sites are underlined and named from SRS1 to SRS6. SRS2 and SRS3 are 

likely found within the markings of the broader dotted regions. The arrow indicates an amino acid residue 

which is responsible for catalytic differences in CYP71D13 and CYP71D18. 

Approximately 50 % of the amino acids are found in α-helices and 15 % in β-sheets 

(Ravichandran et al., 1993; Halkier, 1996). SRS2 is located at the end of helix F and SRS3 at 

the beginning of helix G (Gotoh, 1992). The possible locations of SRS2 and SRS3 in our eleven 
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cytochrome P450 sequences were predicted based on protein secondary structure determined via 

the SWISS-MODEL workspace (Jones, 1999; Arnold et al., 2006). SRS2 most likely lies in the 

region between amino acids residues 210-225 and SRS3 between residues 230-250. Among the 

five cytochrome P450 sequences compared, there are many amino acid similarities in the SRS 

regions. For example, for CYP71D180 and CYP71D181 all amino acids in SRS4-SRS6 are 

identical and these are the same as those in the limonene-6-hydroxylase from mint. 

CYP71D178, CYP71D179 and CPY71D182 also share amino acids at most sites in these 

regions too, but these are sometimes different from those in CYP71D180 and CYP71D18. 

CYP71D178 has some unique amino acid substitutions in SRS5 and SRS6 compared to all other 

sequences, but is identical to CYP71D179 and CYP71D182 in SRS1 and to CYP71D179 in 

SRS4. The arrow in Figure 4 indicates a phenylalanine residue in SRS5 which is replaced by 

isoleucine in the mint limonene-3-hydroxylase (CYP71D13). This single amino acid was found 

to be responsible for the regiospecificity of (-)-S-limonene hydroxylation, either at carbon 

position C6 (CYP71D18) or at C3 (CYP71D13) (Schalk and Croteau, 2000). All cytochrome 

P450 sequences in the present study have a phenylalanine at this position but differ at a site two 

amino acids downstream. CYP71D180 and CYP71D181 have a methionine at this position, 

CYP71D178 an isoleucine and CYP71D179 and CYP71D182 share a leucine together with 

both mint limonene hydroxylases. Within the five designated P450s, the individual sequences 

share the same residues in the putative substrate recognition sites as their reference sequences 

(Supplementary Material, Fig. S2) besides the following exceptions. CYP71D179-f2 differs in a 

few amino acids in SRS1, SRS4 and SRS5 compared to the reference CYP71D179v1. 

CYP71D181-Ct1 and Tc4 differ in SRS1 at position 105 where CYP71D181-Tc4 contains a 

phenylalanine residue in exchange for an isoleucine found in all other P450s of this study. 

CYP71D180 from marjoram contains a histidine residue at position 122 instead of a tyrosine as 

in all other P450s.  

 

CYP71D178-182 are differentially transcribed in various oregano, thyme and 
marjoram lines 

To determine the role of the P450 genes in thymol and carvacrol formation, we performed a 

comparison between terpene content and transcript abundance for CYP71D178 through 182 

using an array of nine oregano plant lines, six used in the initial RNA hybridizations (d2, f5, ff4, 

ff7, ff8 and df6) and three commercial cultivars: oregano (cv. ‘Ct’), thyme (cv. ‘Tc’) and 

marjoram (cv. ’gT’). The same plant material was used for RNA and terpene extractions. 

Absolute qRT-PCR was performed to avoid possible problems caused by variable expression 

levels of housekeeping genes among different plant species. In previous studies, absolute qRT-

PCR was found to produce the same expression pattern as relative qRT-PCR but with the 
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advantage of absolute transcript numbers to compare between genotypes (Palovaara and 

Hakman, 2008; Crocoll et al., 2010). 

The five cytochrome P450s were represented by a set of four primer pairs designed for the 

consensus sequences of each of the P450 sequence clusters in Fig. 3. However, due to the high 

sequence identity among the four clusters, cross binding of primers could not be avoided in all 

cases. For example, primers designed for CYP71D178 bound exclusively to CYP71D178, but 

for CYP71D179 this was not possible. CYP71D180 primers were designed to bind exclusively 

to CYP71D180 sequences, but it seemed likely that CYP71D181 primers would also amplify 

CYP71D180 since the reverse primer was 100 % identical for these sequences (Table 2).  

In order to elucidate primer specificity, individual gene fragments amplified by PCR with the 

P450 primer pairs were sequenced from selected plant lines. All fragments amplified with 

CYP71D178, CYP71D180 and CYP71D181 primer pairs belonged to the respective P450 genes. 

However, PCR with CYP71D179 primers resulted in considerable cross-reaction depending on 

the plant line used. In the oregano plant lines d2 to df6, the majority of the fragments amplified 

with CYP71D179 primers belonged to CYP71D179 (75 %) and the rest to CYP71D178 (25 %). 

In oregano cultivar ‘Ct’, only CYP71D179 was amplified; no fragments for a gene similar to 

CYP71D182 were found in this cultivar. In thyme cv. ‘Tc’, the majority of the fragments 

amplified with CYP71D179 primers actually belonged to CYP71D182 (69 %) with lesser 

amounts of CYP71D179 (25 %) and CYP71D178 (6 %). Therefore, no clear resolution of 

CYP71D179 and CYP71D182 expression levels was possible.  

Table 2  Specificity of primer pairs used for absolute qRT-PCR with cytochrome P450 genes from 

oregano, thyme and marjoram. The data are based on in silico predictions that were confirmed in the 

course of the actual analysis, with the exception that CYP71D181 primers were not found to amplify any 

CYP71D180 fragments (listed in parentheses). 

 

 

     P450 

Primer pair 

CYP71D178 CYP71D179 / 182 CYP71D180 CYP71D181 

CYP71D178 ++ ++ -- -- 

CYP71D179 -- ++ -- -- 

CYP71D182 -- ++ -- -- 

CYP71D180 -- -- ++ (-+) 

CYP71D181 -- -- -- ++ 

++ = binding of both primers, -- = no primer binding, -+ = binding of reverse primer 

The results of the qRT-PCR analysis showed that CYP71D178 and CYP71D179 / 182 were 

expressed in the original oregano plant lines d2 to df6, but CYP71D180 and 181 were not. 

CYP71D178 was transcribed in relatively low copy numbers (~26,000 copies in plant line ff4) 

compared to CYP71D179 / 182 which showed much higher transcript abundance especially in 
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thyme cultivar ‘Ct’ (147,000 copies) (Fig. 5). (Complete copy numbers can be found in Table 

S7, Supplementary material.) CYP71D180 was transcribed only in the oregano cultivar ‘Ct’ and 

thyme cultivar ‘Tc’ with 381 in very low copy numbers. CYP71D181 was expressed exclusively 

in oregano cultivar ‘Ct’ with 85,000 copies.  

 
Figure 5 Absolute transcript levels of CYP71D178 through CYP71D182 in six O. vulgare lines (d2, f5, 

ff4, ff7, ff8, df6) and three commercial cultivars, oregano cultivar ‘Ct’, thyme cultivar ‘Tc’ and marjoram 

cultivar ‘gT’. (A) Absolute copy numbers of CYP71D178. (B) Absolute copy numbers for the three 

P450s CYP71D178, CYP71D179 and CYP71D182. All three P450s were amplified with the same 

efficiency. (C) Absolute copy numbers of CYP71D180. (D) Absolute copy numbers of CYP71D181. For 

all transcripts, copy numbers per µg total RNA were determined by absolute qRT-PCR and normalized 

per mg fresh plant material. Each bar represents mean values ±SE of three biological and three technical 

replicates except for oregano  cv. ‘Ct’, thyme cv. ‘Tc’ and marjoram cv. ‘gT’ which had only three 

technical replicates. 
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Correlation of CYP71D178-182 transcript levels to thymol and carvacrol con tent 
suggests specific biosynthetic roles for these genes 

CYP71D179 / 182 showed highest transcript abundance in thyme cultivar ‘Tc’ (Fig. 5) where 

thymol was found in highest amounts (Fig. 6a), and thus may encode a protein involved in 

thymol biosynthesis. By contrast, the CYP71D181 transcript was found in high amounts almost 

exclusively in oregano cultivar ‘Ct’ (Fig. 5) where carvacrol was in highest abundance (Fig. 6), 

and may be involved in carvacrol biosynthesis. CYP71D180 transcript might also be involved in 

carvacrol biosynthesis because of its presence in low levels in oregano ‘Ct’ as well as in thyme 

‘Tc’, which has traces of carvacrol. The oregano plant lines, d2 to df6, had thymol but virtually 

no detectable carvacrol. However, their thymol levels were relatively low compared to those of 

the thyme cultivar ‘Tc’.  

 
Figure 6 (A) Terpene contents of plant lines from Figure 5 and (B) Expression data for γ-terpinene 

synthases from absolute qRT-PCR. Absolute copy numbers for transcript of Ovtps2 are shown. Each bar 

represents mean values ±SE (n = 9 except for oregano cv. ‘Ct’, thyme cv. ‘Tc’ and marjoram cv. ‘gT’ 

n=3). 

Nevertheless, the presence of CYP71D178 and CYP71D179 / 182 transcripts in these oregano 

lines suggests that these genes are also involved in thymol biosynthesis. Virtually none of these 

transcripts were detected in the lines ff8 or the marjoram cultivar ‘gT’, plants which both lacked 

thymol and carvacrol. Surprisingly, line ff7 had high levels of transcript, despite containing only 
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traces of these phenolic monoterpenes. Co-expression of two or three cytochrome P450s in the 

same plant could indicate that the pathway to thymol and carvacrol involves more than one 

cytochrome P450.  

 

In oregano and marjoram, γ-terpinene, is formed by closely related enzymes  

Ovtps2 has been previously isolated from Origanum vulgare and described as a γ-terpinene 

synthase (Crocoll et al., 2010). To check whether similar genes might be responsible for  

γ-terpinene formation in the three oregano, thyme and marjoram cultivars, ’Ct’, ‘Tc’ and ‘gT’, 

we compared the transcript levels (determined by qRT-PCR with primers designed for Ovtps2) 

with γ-terpinene content in these plant lines. The data showed there is a good association 

between the presence of transcripts and γ-terpinene content in 7 of 8 lines (Fig. 6). In marjoram, 

a closely related gene with high sequence identity seems to be present and responsible for  

γ-terpinene formation. However, the exception is thyme, where in the cultivar ‘Tc’ no 

expression of a corresponding gene was found (Fig. 6b) despite an abundance of γ-terpinene. A 

different gene might be responsible for γ-terpinene formation in thyme. In fact, in a related 

project, a γ-terpinene synthase was isolated and characterized from thyme chemotype T28 (Julia 

Asbach, unpublished results). The gene sequence of this Tvtps1 is 90 % identical to that of the 

oregano Ovtps2. Recently, we isolated a second γ-terpinene synthase, Ovtps8, from oregano 

cultivars d06-01 and f02-04. The newly designated Ovtps8 gene sequence is 99.6 % identical to 

Tvtps1 from thyme and after heterologous expression in E. coli gave active enzyme producing γ-

terpinene from geranyl diphosphate as substrate (data not shown). Transcript levels for these 

genes have not yet been determined. 

 

Heterologous expression of CYP71D178, CYP71D180v1 and CYP71D181 in  
S. cerevisiae demonstrated the for mation of p-cymene, thymol and carvacrol from 
γ-terpinene and α-terpinene 

To characterize the enzyme catalytic activities of the identified P450, five of the sequences 

(CYP71D178, CYP71D179, CYP71D179v1, CYP71D180v1 and CYP71D181) were expressed 

in S. cerevisiae strains modified to express high levels of the endogenous yeast cytochrome 

P450 reductase or the P450 reductase 1 from A. thaliana (AtR1). Three of the genes showed 

enzyme activity after extraction of microsomal protein from the yeast cultures: CYP71D178, 

CYP71D180v1 and CYP71D181. Assays were carried out under linear conditions with 100 μM 

substrate and 1 mM NADPH as cofactor. γ-Terpinene was accepted as substrate by all three 

proteins to form mostly p-cymene, the predicted intermediate in thymol biosynthesis (Poulose 

and Croteau, 1978a) (Fig. 7a). Small amounts of carvacrol were also detected in CYP71D180v1 

and CYP71D181 enzyme assays, and small amounts of both thymol and carvacrol were 
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detected in CYP71D178 assays, (Fig. 7b). The formation of p-cymene may be artifactual since 

spontaneous conversion of γ-terpinene into p-cymene is known (Granger et al., 1964) and was 

observed in assays with microsomal protein from empty vector controls (Fig. 8) as well as with 

the two other substrates, α-terpinene and (-)-R-α-phellandrene (data not shown).  

 
Figure 7 Products of CYP71D178 and CYP71D180v1 measured in vitro after incubation with γ-terpinene 

in the presence of 1 mM NADPH. The resulting terpene products were identified by gas chromatography 

coupled to mass spectrometry; the total ion chromatogram is shown. (A) Major product of CYP71D178 

and CYP71D180v1: 1, p-cymene; 2, the substrate γ-terpinene. (B) Minor products of CYP71D178 and 

CYP71D180v1: 3, thymol and 4, carvacrol. Nonyl acetate was used as internal standard (IS) for 

quantification. 

When p-cymene was offered as a substrate, it was not accepted by any of the three active 

enzymes (Fig. 9a). However, other cyclohexanoid monoterpene dienes like α-terpinene (Fig. 9b) 

and (-)-R-α-phellandrene (data not shown), were both converted by CYP71D178 and 

CYP71D180v1 into p-cymene. CYP71D181 converted α-terpinene into p-cymene and carvacrol 

(data not shown). α-Terpinene may also be an enzyme substrate in vivo since this comound was 

present in amounts ranging from 6 (plant line ff8) to 157 µg g-1 fresh weight (plant line df6).  

(-)-R-α-Phellandrene was present in the commercial oregano, thyme and marjoram plants. Exact 

values for all terpenes can be found in Table S5, Supplementary Material. γ-Terpinene content 

ranged from 8 µg g-1 fresh weight (plant line ff8) up to 2868 µg g-1 fresh weight in plant line 

df8.  
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Figure 8  Empty vector control assay results after incubation with substrate in the presence of 1 mM 

NADPH. The resulting terpene products were identified by gas chromatography coupled to mass 

spectrometry; the total ion chromatogram is shown. (A) Low formation of 1, p-cymene from 2, γ-

terpinene. (B) No product formation from 1, p-cymene. (C) No product formation from 6, (-)-S-limonene. 
(D) No product formation from 10, (+)-R-limonene. Nonyl acetate was used as internal standard (IS) for 

quantification. 

 

 
Figure 9 Products of CYP71D178 and CYP71D180v1 measured in vitro after incubation with p-cymene 

or α-terpinene in the presence of 1 mM NADPH. The resulting terpene products were identified by gas 

chromatography coupled to mass spectrometry; the total ion chromatogram is shown. (A) No product 

formation by CYP71D178 and CYP71D180v1 with p-cymene as substrate. (B) Products from α-terpinene 

as substrate: 1, p-cymene; 5, α-terpinene. Nonyl acetate was used as internal standard (IS) for 

quantification. 
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Enzymatic properties of CYP71D178 and CYP71D180v1 differ only sligh tly from 
those of other P450 monoterpene hydroxylases 

The pH optima for cytochrome P450s are usually on the basic side of neutrality (Mihaliak et al., 

1993). However, the pH optimum for γ-terpinene conversion by CYP71D178 was determined 

between pH 6.8 and 7.0 with half maximal activities at 5.8 and 8.5. The pH optimum was 

identical for CYP71D181 but with a narrower range of half maximal activities at 6.4 and 8.0. 

For CYP71D180v1, the optimum was more acidic at pH 6.4, but there was minimal activity loss 

when the pH was raised to 6.8. Activities were drastically reduced at pH 6.  

The apparent Km values for p-cymene formation from γ-terpinene were determined to be 37 µM 

for CYP71D178 and 40 µM for CYP71D180v1. These are in the same range as for the 

limonene hydroxylases from mint, which have a Km of 20 µM for the substrate (-)-S-limonene 

(Karp et al., 1990). In the present study, conversion rates were V = 975 ng mg protein-1 h-1 for 

CYP71D178 and V = 1658 ng mg protein-1 h-1 for CYP71D180v1. kcat was determined for 

CYP71D180v1 as 1.24 s-1, but not for the other proteins as no clear CO-difference spectra could 

be measured for these to calculate the exact amounts of active P450 enzyme in the microsomal 

preparations (Table 3).  

Table 3  Apparent Km values and catalytic efficiencies for CYP71D178 and CYP71D180v1. kcat could 

only be calculated for CYP71D180v1 since no clear CO difference spectra could be measured for 

CYP71D178 and CYP71D181 to calculate molar protein amounts. 

 CYP71D178 CYP71D180v1 

Substrate Kmapp [µM] Kmapp [µM] kcat [s
-1] 

γ-terpinene 37.2 40.3 1.24 

(+)-R-limonene n.d. 14.1 0.08 

(-)-S-limonene n.d. 0.11 0.15 

n.d. = not determined 

 

The regiospecificity of hydroxylation of the substrate limonene differs betw een 
CYP71D178 and CYP71D180 / CYP71D181 

We investigated the ability of the CYP71D178, CYP71D180v1 and CYP71D181 enzymes to 

utilize limonene, the substrate of the very similar CYP71D13 / 18 hydroxylases characterized 

from mint species. In mint, (-)-S-limonene is either hydroxylated by CYP71D13 in peppermint 

to the C3-oxidized product, (-)-trans-isopiperitenol or in spearmint by CYP71D18 to the C6-

oxidized product, (-)-trans-carveol. The positions of limonene hydroxylation (C3 vs. C6) are 

relevant to the present study since thymol is a product of C3 hydroxylation (Fig. 11), while 

carvacrol is hydroxylated at a position (C2) which corresponds to that of C6 in limonene.  
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Figure 10 Products of CYP71D178 and CYP71D180v1 measured in vitro after incubation with limonene 

in the presence of 1 mM NADPH. The resulting terpene products were identified by gas chromatography 

coupled to mass spectrometry; the total ion chromatogram is shown. (A) Products formed by 

CYP71D178 and CYP71D180v1 from (-)-S-limonene (6): 7, (-)-trans-carveol, 8, (-)-cis-carveol, 9, (-)-

trans-isopiperitenol. (B) Products formed by CYP71D178 and CYP71D180v1 from (+)-R-limonene (10): 

11, (+)-trans-isopiperitenol, 12, (+)-trans-carveol, 13, (+)-cis-carveol. Nonyl acetate was used as internal 

standard (IS) for quantification. 

All three enzymes accepted (-)-S-limonene as substrate and converted it into (-)-trans-carveol, a 

C6-oxidation product (Figs. 10a and 11). On the other hand, administration of the enantiomeric 

(+)-R-limonene resulted in a more complex pattern of results. (+)-R-Limonene was previously 

shown to be converted by the mint 3-hydroxylase, CYP71D13, to the corresponding  

3-oxygenated product, (+)-trans-isopiperitenol, while the mint 6-hydroxylase, CYP71D18, 

converted the substrate to a mixture dominated by the corresponding 6-oxygenated product,  

(+)-cis-carveol (Wüst et al., 2001; Wüst and Croteau, 2002). Interestingly, the P450s in this 

study did not follow this pattern. (+)-R-Limonene was converted to a C3-oxygenated product, 

(+)-trans-isopiperitenol, by CYP71D178, but to a C2(C6)-oxygenated product, (+)-cis-carveol 

by CYP71D180v1 (Fig. 10b) and CYP71D181 (data not shown). With both, limonene and  

γ-terpinene, the stereospecificity of the enzyme are similar. While CYP71D178 produces both, 

thymol and carvacrol, (both C3 and C2 oxidation products), CYP71D180v1 and CYP71D181 

produce carvacrol only (C2 oxidation product). The enzyme activities correspond well to the 

transcript patterns and the essential oil composition among different plant lines (Figs. 5, 6). 

CYP71D178 transcript was correlated with thymol (C3) content while CYP71D180 and 

CYP71D181 transcripts were correlated with carvacrol (C2) content. Although these enzymes 
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are able to use the substrate limonene, no mint cytochrome P450 has been reported to use  

p-cymene, -terpinene, -phellandrene or α-terpinene as substrates (Karp et al., 1990). The 

products formed from all monoterpene substrates tested are listed in Table 4. 

The apparent Km values of CYP71D180v1 for the enantiomeric limonenes were lower than for 

γ-terpinene. For (-)-S-limonene, the apparent Km value was only 0.11 µM, but the velocity of the 

reaction was 4.5-fold lower compared to p-cymene formation from γ-terpinene (V = 365 ng mg-1 

protein h-1). For (+)-R-limonene apparent Km was 14 µM with an 8-fold slower conversion rate 

(V = 205 ng mg-1 protein h-1). kcat values for limonene substrates were 15-fold and 9-fold lower 

than for γ-terpinene (Table 3). The limonenes are unlikely to be substrates for CYP71D178 and 

CYP71D180v1 in vivo because limonene occurs only in very low amounts as the (+)-R-

enantiomer (6 to 60 µg g-1 fresh weight) in the oregano plant lines studied. No limonene was 

found in the commercial oregano, thyme or marjoram cultivars. And none of the possible 

limonene metabolites, including carveol and isopiperitenol, could be identified in any of the 

investigated plants (Table S5, Supplementary Material). 

Table 4  Major in vitro products formed from monoterpene substrates by CYP71D178, CYP71D180v1 

and CYP71D181 from oregano and thyme compared to CYP71D13 and CYP71D18 from mint. Chemical 

structures can be found in Figure 11. 

 γ-terpinene α-terpinene (+)-R-limonene (-)-S-limonene (-)-R-α-phellandrene 

CYP71D178 p-cymene, 

thymol, 

carvacrol 
p-cymene 

(+)-trans-

isopiperitenol, 

(+)-cis-carveol 

(-)-trans-carveol, 

(-)-trans-

isopiperitenol 

p-cymene 

CYP71D180v1 p-cymene, 

carvacrol 
p-cymene (+)-cis-carveol (-)-trans-carveol p-cymene 

CYP71D181 p-cymene, 

carvacrol 

p-cymene, 

carvacrol 
(+)-cis-carveol (-)-trans-carveol p-cymene 

CYP71D13a 
nc nc 

(+)-trans-

isopiperitenol 
(-)-trans-

isopiperitenol 
nc 

CYP71D18a 

nc nc 

(+)-cis-carveol 

(-)-trans-

isopiperitenol 

(-)-trans-carveol nc 

nc = no conversion, a Data from (Karp et al., 1990; Wüst et al., 2001; Wüst and Croteau, 2002) 
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3.5 Discussion 
 

Thymol and carvacrol formation is widespread throughout the plant kingdom 

The pathway of thymol formation has been studied since the early 1960s when Yamazaki and 

coworkers identified thymol as a terpenoid biosynthetic product despite the fact that it is 

aromatic (Yamazaki et al., 1963). At the end of the 1970s, experiments were performed in 

which the radioactively labeled monoterpenes, γ-terpinene and p-cymene, were fed to thyme 

(Poulose and Croteau, 1978a). Based on the results, it was postulated that the biosynthesis of 

thymol starts with γ-terpinene as initial monoterpene substrate and proceeds via the aromatic  

p-cymene as an intermediate (Fig. 1a). Thymol and its chemical relative carvacrol are found not 

only in thyme and oregano, but also in many other plant species in different families, e.g. in 

horsemint or bee balm (Monarda sp.), savory (Satureja sp.) and Thymbra sp. (all from the 

Lamiaceae); in ajwain or bishop’s weed (Trachyspermum ammi [L.] Sprague, Apiaceae), and in 

the so-called Mexican oregano (Lippia sp., Verbenaceae) (Craveiro et al., 1981; Matos et al., 

2000; Catalan, 2002; Gwinn et al., 2010; Stashenko et al., 2010). Most species which produce 

thymol and / or carvacrol also contain γ-terpinene and p-cymene. The co-occurrence of  

γ-terpinene and p-cymene with either one or both phenolic monoterpenes hints towards a 

common mechanism for thymol and carvacrol biosynthesis which might have evolved 

independently several times in the plant kingdom.  

 

Thymol and carvacrol formatio n depends on the presence of γ-terpinene in 
oregano, marjoram and thyme 

The γ-terpinene synthase OvTPS2 was found to be the enzyme responsible for γ-terpinene bio-

synthesis in oregano (Crocoll et al., 2010). In the closely related marjoram, an ortholog of 

Ovtps2 seems to be responsible for γ-terpinene formation (Fig. 5). In thyme, the monoterpene 

synthase, TvTPS1, was identified as the major γ-terpinene synthase (Julia Asbach, unpublished 

data). Tvtps1 is most closely related to Ovtps8 in oregano (99.5 % sequence identity on both, 

nucleotide and amino acid level) but only 90 % identical to Ovtps2. Transcript levels for Tvtps1 

have been measured in different thyme chemotypes and were found to strongly correlate with  

γ-terpinene content (Julia Asbach, personal communication). Whether or not Ovtps8 has any 

importance in γ-terpinene formation in oregano needs to be tested in the future. Since no ESTs 

with similarity to Ovtps8 were found in a cDNA library made from oregano cultivar f02-04 

(Crocoll et al., 2010), it might not be actively involved in γ-terpinene biosynthesis. 
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The identified cytochrome P450s are invo lved in the production of thymol or 
carvacrol  

The gene expression pattern of CYP71D178 in oregano was well-correlated with thymol content 

in different sets of oregano lines (Figs. 1b and 2). The only exception was oregano line ff7 

which showed a high transcript accumulation but only traces of thymol and carvacrol. However, 

this line lacked γ-terpinene which is a precursor of phenolic monoterpene formation.  

Nevertheless, it remained unclear whether only one cytochrome P450 enzyme is sufficient for 

the formation of thymol or carvacrol since this conversion involves two formal oxidation steps. 

Hence, additional P450 sequences were sought from oregano, thyme and marjoram cultivars 

using primers from CYP71D178. Eleven sequences were found classified into five different 

P450s that gave a clear differentiation into two subgroups a) and b) (Fig. 3).  

The two subgroups of P450s could conceivably represent the two different catalytic activities, 

one for thymol and one for carvacrol. This hypothesis was tested by absolute qRT-PCR on a 

group of oregano plant lines as well as three oregano, thyme and marjoram cultivars with 

varying thymol and carvacrol content. Although qRT-PCR was partly hampered by the high 

nucleotide sequence identity between the different P450s, a clear differentiation of expression 

pattern was observed for three of the five cytochrome genes (Fig. 5). The high copy numbers of 

CYP71D181 correlated with the very high carvacrol content in oregano cultivar ‘Ct’, and the 

expression levels of CYP71D179 and CYP71D182 correlated with thymol content. Plants in 

which transcripts of any of the P450s could not be detected produced no thymol and carvacrol. 

These correlations suggested that expression of these CYP71D P450s is regulated at the 

transcript level in these plants.  

Other studies have reported on the roles of cytochrome P450s in monoterpene metabolism. 

Geraniol is hydroxylated by a geraniol-10-hydroxylase in Catharanthus roseus (Meijer et al., 

1993), and sabinene hydroxylase catalyzes the formation to sabinol in sage (Karp et al., 1987). 

Several examples are known of limonene hydroxylases which catalyze hydroxylations at 

different carbon atoms in this cyclic monoterpene. In spearmint, a 6-hydroxylase forms 

(-)-trans-carveol from (-)-S-limonene, whereas in peppermint this substrate is hydroxylated by a 

3-hydroxylase to form (-)-trans-isopiperitenol, an intermediate in the menthol biosynthesis 

pathway (Karp et al., 1990; Lupien et al., 1995). Recently, a cytochrome P450 candidate for the 

hydroxylation of (-)-S-limonene was reported for Perilla which is able to catalyze the 

hydroxylation at three different positions to either form (-)-trans-isopiperitenol, (-)-trans-

carveol or (-)-perillyl alcohol (Mau et al., 2010). In caraway, another limonene-6-hydroxylase 

catalyzes the reaction of the other enantiomer, (+)-R-limonene, into (+)-trans-carveol 

(Bouwmeester et al., 1998). Another important P450 in monoterpene modification is the 
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menthofuran synthase from mint which uses as a substrate pulegone, an intermediate in the 

menthol biosynthesis pathway (Bertea et al., 2001).  

 

CYP71D178, CYP71D180v1 and CYP71D181 form  thymol or carvacrol and  
p-cymene from γ-terpinene  

Although five P450s were expressed in yeast, microsomal preparations gave enzymatically 

active protein for only three enzmyes, CYP71D178, CYP71D180v1 and CYP71D181. Despite 

the high substrate specificity reported for plant biosynthetic P450s (Schuler, 1996) all three 

enzymes accepted a variety of different monoterpenes as substrates, including γ-terpinene,  

α-terpinene, (-)-R-α-phellandrene, (+)-R-limonene and (-)-S-limonene, which are all cyclo-

hexanoid monoterpenes with two double bonds (Fig. 11). Given the proposed role of γ-terpinene 

in the pathway to thymol and carvacrol, γ-terpinene was expected to be the natural substrate. All 

three active P450 enzymes converted γ-terpinene to one of these phenolic monoterpenes in 

small amounts: CYP71D180 and CYP71D181 formed carvacrol and CYP71D178 formed both 

thymol and carvacrol. But the main product in all cases was p-cymene. This aromatic 

monoterpene was suggested to be an intermediate of thymol biosynthesis, between γ-terpinene 

and thymol (Fig. 1a) (Poulose and Croteau, 1978a). However none of the enzymes converted  

p-cymene to thymol, carvacrol or any other product. The original pathway prediction suggested 

two separate steps of oxidation, one from γ-terpinene to the aromatic p-cymene and the second 

from p-cymene to the phenol, thymol (or carvacrol) (Fig. 1a). Both could be catalyzed by P450-

type enzymes. The hydroxylation of aromatic rings in the second step is a widespread reaction 

for P450s which typically follows the so-called NIH shift mechanism (Jerina and Daly, 1974). If 

there are two separate P450-catalyzed steps and the enzymes investigated here are assumed to 

make p-cymene in planta, perhaps one of the not yet characterized CYP71D P450s is 

responsible for the second step from p-cymene to thymol or carvacrol. The co-expression of two 

or more CYP71D P450s in most of the plant lines studied (Fig. 6) supports such a two-enzyme 

scenario.  

On the other hand, both oxidations from γ-terpinene to thymol (or carvacrol) could be catalyzed 

by a single P450 without release of the intermediate. It would also be possible that p-cymene 

cannot access the active site to act as an intermediate. Cytochrome P450s are known to catalyze 

multiple oxidations on a single substrate (Halkier et al., 1995; Bak et al., 1998; Ro et al., 2005). 

In such a scenario, p-cymene might be a bound intermediate or simply an in vitro artifact. The 

formation of p-cymene from γ-terpinene is known to occur non-enzymatically in the presence of 

oxygen (Granger et al., 1964) and might be enhanced by binding to P450s. p-Cymene is also a 

major product formed from the substrates α-terpinene and (-)-R-α-phellandrene. These 
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monoterpenes were found to form p-cymene spontaneously even more rapidly than γ-terpinene 

which might be due to the fact that the double bonds are conjugated (Fig. 11). 

 
Figure 11  Chemical structures of all substrates and major products formed by CYP71D178, 

CYP71D180v1 and CYP71D181 in vitro. (A) All three enzymes form mainly p-cymene from γ-terpinene, 

α-terpinene and (-)-R-α-phellandrene as indicated by the arrows. CYP71D178 forms thymol and carvacrol 

from g-terpinene while CYP71D180v1 and CYP71D181 from only carvacrol. CYP71D181 forms 

carvacrol also from a-terpinene. (B) Major products formed from (-)-S-limonene and (+)-R-limonene. 

Mainly carveol is formed from (-)-S-limonene by all three enzymes. CYP71D180v1 and CYP71D181 

hydroxylate (+)-R-limonene only at carbon C6 while CYP71D178 catalyzes a hydroxylation at C3. 

Hydroxyl groups at carbon C2 in carvacrol corresponds to that designated as C6 in carveol. The 

numbering differs because of different substituent priorities in the p-cymene vs. limonene carbon 

skeleton.  

Given the similarity of CYP71D178-182 to the mint limonene hydroxylases CYP71D13 and 18, 

which produce allylic alcohols, the intermediate in a two-step reaction might be an allylic 

oxidation product of γ-terpinene. In this case, aromatization would constitute the second step.   

Interestingly, the two mint limonene hydroxylases exhibit different regiospecificities for their 

native (-)-S-limonene substrate, with CYP71D13 forming a C3 alcohol and CYP71D18 forming 

a C6 alcohol (equivalent to the C2 position on the thymol/carvacrol carbon skeleton). The 

formation of thymol and carvacrol could conceivably also involve regiospecific C2 and C3 

oxidations of γ-terpinene catalyzed by separate P450s of the CYP71D family. Since 

CYP71D178 converted (+)-R-limonene to a C3 oxidation product and CYP71D180 and 181 to a 

C6 (C2) oxidation product (Figs. 7 and 11), CYP71D178 and other enzymes of high sequence 

similarity in group “a” (Fig. 3), CYP71D179 and CYP71D182, are potential thymol synthases 
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and that the group “b” enzymes, CYP71D180 and CYP71D181, are carvacrol synthases. Further 

characterization of CYP71D178-182 with a different expression system is necessary to confirm 

their catalytic properties.  

 

The properties of oregano and thyme CYP 71D enz ymes resemble those of P450 
limonene hydroxylases from mint 

The oregano and thyme P450s share many structural and biochemical characteristics with the 

limonene hydroxylases of mint, which are the most closely-related P450s on the basis of amino 

acid similarity that have been characterized to date. The shared characteristics include the 

potential substrate recognition sites SRS1-SRS6. These sites also differ among CYP71D178 

through CYP71D182 which might explain some of the biochemical properties observed in vitro. 

In SRS5 (Fig. 4), it was reported that a single amino acid substitution (F361I) converts the 

regiospecificity of CYP71D18 from a C6- to a C3-hydroxylase (Schalk and Croteau, 2000). At 

the corresponding positions, CYP71D178 through D182 all bear a phenylalanine (F) like the 

mint C6-hydroxylase so this position cannot be responsible for regiospecific differences in 

catalysis. However, only two amino acids downstream of this position, there is a marked 

difference among the enzymes with CYP71D178 containing an isoleucine residue, CYP71D179 

and 182 containing a methionine residue, and CYP71D180 and 181 (as well as the mint 

limonene hydroxylases, CYP71D13 and CYP71D18) containing a leucine at this position. An 

exchange in one of these residues might lead to a different regiospecificity. 

The biochemical properties of the oregano and thyme CYP71D enzymes are slightly different 

from what was reported for CYP71D13 and CYP71D18 from mint  (Karp et al., 1990) (Lupien 

et al., 1999). The pH optima for the mint P450s was reported to be around pH 7.4 whereas 

CYP71D178, CYP71D180v1 and CYP71D181 showed more acidic pH optima around 6.4 to 

6.8. Although the Km values of CYP71D180v1 for the limonene substrates were found to be 

much lower than for γ-terpinene, the velocity of conversion was much more rapid with  

γ-terpinene (Table 3). Since only very low amounts of limonene was found in the investigated 

plant lines (14- to 147-fold lower than γ-terpinene concentrations), γ-terpinene is expected to be 

the natural substrate. Still, it would be interesting to see whether elevated amounts of limonene 

would lead to the formation of carveol or isopiperitenol in these plants. For Lippia species, 

different chemotypes were described, some of which contain γ-terpinene together with  

p-cymene, thymol and/or carvacrol whereas others contain limonene together with carveol, 

carvone and piperitenone (Mesa-Arango et al., 2009; Escobar et al., 2010). To our knowledge 

no oregano or thyme chemotypes with elevated amounts of limonene or any of the latter 

products were described so far. A lemon-like thyme chemotype has been described that contains 

mainly geraniol, nerol and citral but no limonene or related products.  
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More information on the CYP71D178-182 enzymes and their role in thymol and carvacrol 

biosynthesis requires more precise characterization of their enzyme properties. Due to the 

presence of possible artifacts in yeast expression, overexpression in the model plant A. thaliana 

was tried. The results will be discussed in chapter III. 

 



 

4 Chapter III 

 

Thymol and carvacrol formation from γ-terpinene by CYP71D178 and 
CYP71D180 from oregano and thyme over-expressed in A. thaliana 

 

4.1 Abstract 

Thymol and carvacrol are biologically active compounds found in the essential oils of the two 

culinary herbs oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.). Several studies 

have shown an activity of thymol and carvacrol towards a broad range of organisms: microbes, 

fungi, insects and mammals. Also, important pharmaceutical and antioxidant functions are 

associated with these two phenolic monoterpenes.  

A pathway for the formation of thymol in thyme had been predicted in the late 1970’s to start 

with the monoterpene γ-terpinene and proceed via the aromatic p-cymene on the way to thymol 

and carvacrol (Poulose and Croteau, 1978a). Recently, different cytochrome P450s, 

CYP71D178 through CYP71D182, from thyme and oregano have been described to be involved 

in thymol and carvacrol biosynthesis and characterized from a yeast heterologous expression 

system. These enzymes were found to form thymol and / or carvacrol in vitro directly from  

γ-terpinene but could not use p-cymene as substrate (chapter II). However, they did produce  

p-cymene as a major product, so their catalytic roles are still uncertain. A second P450 might be 

present that converts p-cymene to thymol and carvacrol.   

Here, we demonstrate direct thymol and carvacrol formation from γ-terpinene by two of these 

P450s, CYP71D178 and CYP71D180, after over-expression in the model plant Arabidopsis 

thaliana. Transgenic plants were fed with different monoterpene substrates including  

γ-terpinene and p-cymene. Thymol and carvacrol were formed by the transgenic plants from  

γ-terpinene whereas p-cymene feeding resulted in the formation of two other monoterpene 

alcohols, p-cymene-8-ol and cuminol (p-cymene-7-ol). Further experiments with structurally 

similar monoterpenes such as α-terpinene, (-)-R-α-phellandrene, (-)-S-limonene and (+)-R-

limonene revealed that these P450s have broad substrate specificities, but are also capable of 

hydroxylation and aromatization of other monoterpenes. Thus, it is conceivable that the 

formation of thymol and carvacrol is catalyzed by single P450s directly from γ-terpinene via a 

two-step oxidation, whereas p-cymene is a side product resulting from premature release of the 

substrate from the active site.  

The majority of the hydroxylated products formed by transgenic Arabidopsis plants were not 

released as free volatiles but bound as glycosides. This might be due to a detoxification 

mechanism to prevent cell damage.  
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4.2 Introduction 
 
Plant cytochrome P450 monooxygenases (P450s) play important roles in metabolism by detoxi-

fying xenobiotics and the biosynthesis of defense compounds against herbivores and pathogens 

(Schuler, 1996; Ohkawa et al., 1999; Werck-Reichhart et al., 2002). The impact of P450s 

becomes clear when one realizes the large sizes of P450 gene families in plants. In Arabidopsis 

thaliana, 246 putative P450 genes and 26 pseudogenes were annotated which represent 

approximately 1 % of its gene complement (Paquette et al., 2000; Werck-Reichhart et al., 2002; 

Schuler and Werck-Reichhart, 2003; Nelson et al., 2004), and in rice the number of 457 P450s 

is even more impressive (Schuler and Werck-Reichhart, 2003). Biosynthetic P450s catalyze 

steps in pathways leading to a vast range of plant compounds like lignin intermediates, sterols, 

furanocoumarins, flavonoids and terpenes (Bolwell et al., 1994; Schuler, 1996).  

Cytochrome P450s are very important to generate some of the enormous structural diversity of 

terpenoid secondary metabolites in plants (Ro et al., 2005). Triterpenes, diterpenes, sesqui-

terpenes and monoterpenes are all substrates for these enzymes (Bolwell et al., 1994). For 

example, in diterpene resin acid biosynthesis in loblolly pine, multisubstrate, multifunctional 

P450s catalyze an array of consecutive oxidation steps with several different alcohol and 

aldehyde intermediates (Ro et al., 2005). In chicory, P450s catalyze the hydroxylation of 

sesquiterpenes (Cichorium intybus L.) (de Kraker et al., 2003). Monoterpenes are also substrates 

for P450s including acyclic monoterpenes, as in the 10-hydroxylation of geraniol in 

Catharanthus roseus (Meijer et al., 1993), and the hydroxylation of the bicyclic monoterpenes, 

sabinene and pinene (Karp et al., 1987) . The largest diversity of hydroxylations by cytochrome 

P450s is reported for limonene, and several P450s have been identified from mint, caraway and 

Perilla that use this cyclohexanoid monoterpene as a substrate (Karp et al., 1990; Bouwmeester 

et al., 1998; Mau et al., 2010). The regiospecificity of limonene hydroxylation can determine the 

downstream fate of the products in biosynthetic pathways. In mint, P450 mediated 

hydroxylation of (-)-S-limonene occurs either at position C3 or C6 (Lupien et al., 1995). 

Hydroxylation at C6 results in the formation of carveol which leads to the accumulation of 

carvone in spearmint whereas hydroxylation at C3 forms isopiperitenol in peppermint which is 

subsequently transformed into the commercially valuable menthol (Karp et al., 1990; Lupien et 

al., 1995; Croteau et al., 2005).  

Recently, five cytochrome P450s, CYP71D178 through CYP71D182 have been isolated from 

oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.). They are involved in the 

biosynthesis of the two aromatic monoterpenes, thymol and carvacrol (chapter II). These two 

phenolic monoterpenes are especially known for their antiherbivore, antimicrobial, insecticidal, 

pharmaceutical and antioxidant activities (Isman, 2000; Hummelbrunner and Isman, 2001; 

Ultee et al., 2002; Sedy and Koschier, 2003; Floris et al., 2004; Braga et al., 2008).  
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Microsomal preparations from yeast over-expressing three of the described P450s, CYP71D178, 

CYP71D180v1 and CYP71D181, were found to form thymol and carvacrol directly from the 

monoterpene olefin, γ-terpinene. These results do not support an earlier prediction that the 

pathway to thymol and carvacrol starts with γ-terpinene and proceeds via the aromatic p-cymene 

as an intermediate (Poulose and Croteau, 1978a). Nevertheless, the in vitro conversion into 

thymol and carvacrol was rather low, and the major product formed by these P450s was p-

cymene. This was regarded as side product which might arise as an artifact of the in vitro assay 

conditions. Arguments for the direct conversion were supported by the capability of all three 

P450s to form hydroxylated products from (-)-S- and (+)-R-limonene with the same regio-

specific positioning of the hydroxyl groups as found in thymol and carvacrol (chapter II).  

Here, we report the results from using Arabidopsis thaliana to over-express these P450s. In 

addition, we generated plants co-expressing CYP71D178 and a gene encoding a γ-terpinene 

synthase. We also fed γ-terpinene directly to plant lines over-expressing CYP71D178 and 

CYP71D180v1. The results support the prediction of a direct conversion of γ-terpinene to 

thymol and carvacrol by single cytochrome P450s in oregano and thyme. We therefore propose 

a new pathway for thymol and carvacrol formation directly from γ-terpinene, and that p-cymene 

is a side product formed by premature release from the active site of the cytochrome P450s 

involved. 
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4.3 Materials and Methods 
 

Plant culture 

Arabidopsis thaliana Col-0 wild type (WT) and transgenic plants were grown on soil in a 

controlled environment chamber (21°C, 55% relative humidity, and 100 μmol m-2 s-1 

photosynthetically active radiation) for 4-5 weeks. The photoperiod was 10:14 hr light:dark for 

plants grown for monoterpene feeding experiments and 16:8 hr light:dark for plants grown for 

transformation or seed production.  

 

Generation of transgenic plants 

The complete open reading frames of γ-terpinene synthase Ovtps2-f0204 (GU385977) (Crocoll 

et al., 2010) and the cytochrome P450s, CYP71D178 and CYP71D180v1 were transformed into 

A. thaliana Col-0. Expression constructs were created with Gateway technology (Invitrogen, 

Carlsbad, CA, USA). Validated sequences were subcloned from the pCR4-TOPO vector into 

the pDONR207 vector with BP Clonase II (Invitrogen, Carlsbad, CA, USA). Subsequently, the 

constructs were cloned into the pB2GW7,0 expression vector (Karimi et al., 2002) with LR 

Clonase II (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. 

Agrobacterium tumefaciens strain GV3101 transformed with the constructs or the empty 

pB2GW7,0 vector was used to transform A. thaliana ecotype Col-0 by vacuum infiltration 

(Bechtold et al., 1993). For selection of positive transformants, seeds were germinated on soil 

and watered 4 times with PESTANALTM solution (200 g l-1 glufosinate ammonium, Hoechst 

Schering AgrEvo, Düsseldorf, Germany). Transformed plants surviving this treatment were 

further selected for cytochrome P450 over-expression by RNA hybridization analysis. Whole 

leaf RNA was isolated from two expanding leaves. Leaves were harvested and frozen with 

liquid nitrogen prior to homogenization and RNA extraction. Total RNA (7 µg) was run on a 

denaturing RNA gel (1 % (w/v) agarose, 10 % (v/v) NorthernMax 10 x denaturing gel buffer, 

Ambion, Austin, TX, USA), for approx. 70 min at 100 V. The RNA was blotted onto a Hybond-

XL membrane (Amersham, Piscataway, NJ, USA) by capillary transfer using NorthernMax 10 x 

running buffer (Ambion, Austin, TX, USA) overnight. RNA was UV-crosslinked to the 

membrane two times with a fluence of 120 mJ cm-2. For both prehybridization and 

hybridization, UltraHyb buffer (Ambion, Austin, TX, USA) was used. Probes were labeled with 

α[32P]dATP using the Strip-EZ PCR Kit (Ambion, Austin, TX, USA) according to the 

manufacturer’s instructions. The probe for CYP71D178 was amplified as ssDNA from a short 

fragment of 360 bp (bp 1079-1438) from its open reading frame. Probes were hybridized 

overnight at 42 °C. Membranes were washed twice with 3 x SSC at 42 °C, once with 1 x SSC at 

42 °C, once with 0.1 x SSC at 42 °C, once with 0.1 x SSC at 50 °C and depending on the signal 
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strength once with 0.1 x SSC at 55-68 °C. All SSC buffers contained 0.1 % SDS. Washed blots 

were sealed in PVC bags and blots were exposed to storage phosphor screens (Amersham 

Bioscience, Uppsala, Sweden) for 4 to 5 h and analyzed with a Storm 840 scanner (Molecular 

Dynamics, Sunnyvale, CA, USA). A. thaliana plants showing high expression rates of 

CYP71D178 or CYP71D180v1 were chosen for subsequent seed production. Independent 

homozygous lines with a single T-DNA insertion were chosen based on the segregation of 

PESTANALTM resistance. In brief, seeds were sterilized and germinated on MS medium (2 % 

(w/v) sucrose, 0.9 % (w/v) agar, and 30 μg ml-1 PESTANALTM). Two independent lines were 

chosen from each transformation event. Ovtps2-f0204: f7 and f39; CYP71D178: f5-6 and f5-8; 

CYP71D180v1: T28-12 and T28-22; pB2GW7,0: Vec-3. Plant crossings and monoterpene 

feeding were done with T3 generation plants.  

 

Crossing of transgenic A. thaliana 

T3-generation plants were grown under long day conditions (16 h light, 60 % humidity). The 

pistil of unopened flowers was dissected and stamina completely removed. Pollen was collected 

from a second plant expressing the other gene of interest and transferred to the dissected pistils. 

Crossings were done in both directions. All other flowers were removed. Seeds were collected 

after approximately 10 days and sown on soil. Arabidopsis plants were grown until flowering 

stage and flowers were checked for their volatile emission by solid phase micro extraction 

(SPME). SPME fibers (PDMS-100, Polydimethylsiloxane, Supelco, Bellefonte, PA, USA) were 

exposed for 30 min to open flowers. 

 

Administration of volatile terpenes to transgenic A. thaliana plants 

Transgenic A. thaliana plants (T3 generation) were grown under short day conditions with 8 

hours light and 60 % humidity. Feeding experiments were performed in two different ways. In a 

first trial, the plants were separated by line. Two plants from each of two transgenic plant lines 

of CYP71D178 (lines f5-6 and f5-8) and CYP71D180v1 (lines 12 and 22) and one vector 

control line (pB2GW7,0 line 3) and Col-0 wild type were put in 1 l glass beakers with sealed 

lids. Monoterpenes were added on 3 consecutive days with 100 µl (~ 75 mg) monoterpene each 

day, except for (-)-R-α-phellandrene which was only fed in amounts of 50 µl (~ 37.5 mg) per 

day. These preliminary experiments were used to pick over-expressing lines of both P450s for 

subsequent experiments and to test the vector control and wild type Arabidopsis plants for their 

hydroxylation activities (Results are shown in Supplementary Material, Figures S4-S9). Based 

on the results of these first trials, transgenic lines CYP71D178 line f5-6 and CYP71D180v1 line 

22 were chosen for a second trial. Representatives of these lines and control plants (pB2GW7,0 
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line 3 and Col-0 WT) were put in 3 l glass beakers with sealed lids. Pots with three plants of 

each line were put in one glass beaker and 100 µl (~ 75 mg) pure monoterpenes were added on 

five consecutive days to supply fresh, unmodified substrate. In both trials, monoterpenes were 

applied in 5 ml beakers set next to the plants for evaporation. Approximately 65 mg of  

γ-terpinene and each of the other monoterpenes (15-20 % of the amount added to the beakers) 

was volatilized over the course of the five days and thus available for conversion by the plants. 

Transgenic and wild type Arabidopsis plants were 4 to 5 weeks old when the experiments were 

started. Complete rosettes were harvested 24 h after the last monoterpene application, 

immediately frozen in liquid nitrogen and freeze dried for 2 days.  

 

Extraction and determination of glycosid ically bound m onoterpene alcohols from  

A. thaliana 

For quantification of glycosidically bound monoterpene alcohols freeze-dried leaf material was 

ground to a fine powder in a paint shaker (Kliebenstein et al., 2001b) and approx. 20 mg were 

extracted with 1 ml 80 % methanol containing β-n-octyl-glucopyranoside as an internal standard 

(5 µg ml-1) to control for the efficiency of hydrolysis. Leaf material was extracted over night 

with constant shaking at room temperature. The solution was centrifuged at 16,100 x g for 10 

min. Then, 750 µl of the supernatant were transferred into 1.5 ml glass vials and reduced under 

nitrogen at 35 °C to complete dryness. The dried plant extracts were resuspended in 300 µl 

citric acid buffer, pH 5.2. Next, 100 µl of the same buffer supplied with 10 mg ml-1  

β-glucosidase from Aspergillus niger (Sigma-Aldrich, Steinheim, Germany) were added. The 

solution was carefully covered with 200 µl pentane containing nonyl acetate as internal standard 

(10 ng µl-1) and incubated in a water bath at 37 °C for 24 h. The reaction was stopped by 2 min 

shaking at 1400 rpm. The vials were centrifuged for 10 min at 4200 x g to divide solvent phases 

and frozen at -80 °C for > 2 hours. The pentane layer was recovered and transferred to a new 

vial for analysis on GC-MS and GC-FID for product identification and quantification. A range 

of 1.5-282.5 µg (0.06-1 %) of the various substrates administered were hydroxylated and 

converted to glycosides (Supplementary Material, Table S9).  

Products from initial feeding experiments were collected by solid phase micro extraction 

(SPME). SPME fibers (PDMS-100, Polydimethylsiloxane, Supelco, Bellefonte, PA, USA) were 

exposed for 5 min to A. thaliana plants fed for 24 h with monoterpenes and bound volatiles 

were analyzed by GC-MS. Alternatively, methanol extracts from A. thaliana plants fed with 

monoterpenes were dried as described above and treated with β-glucosidase (1 mg) for 2 hours. 

SPME fibers were exposed for 20 min to volatiles released from these assays and bound terpene 

volatiles were analyzed by GC-MS.   
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Analysis of terpene volatiles by gas chromatography 

Products of β-glucosidase assays were identified by gas chromatography (Agilent Hewlett-

Packard 6890, Agilent Technologies, Santa Clara, CA, USA) coupled to a mass spectrometer 

(Agilent Hewlett-Packard 5973, Agilent Technologies) or a flame ionization detector (FID). For 

analyses, 2 μl of pentane extracts were injected with an injector temperature of 230 °C. 

Alternatively, a SPME fiber exposed to volatiles as described above was introduced into the 

injector. The terpenes were separated on a DB5-MS column: 30 m length, 0.25 mm inner 

diameter and 0.25 µm film (J&W Scientific, Santa Clara, CA, USA). Different GC-programs 

were used with initial temperature from 40-65 °C for 2 min, first ramp 2-6 °C min-1 to 175 °C, 

second ramp 90 °C min-1 to 250 °C, final 3 min hold. Limonene enantiomers and hydroxylated 

products thereof were further identified on a chiral column (HYDRODEX®-ß-3P: 25 m length, 

0.25 mm inner diameter (Macherey-Nagel, Düren, Germany); GC-program: 80 °C for 2 min, 

first ramp 2 °C min-1 to 165 °C, second ramp 50 °C min-1 to 200 °C, final 3 min hold. GC-MS 

carrier gas: helium at 1 ml min-1; GC-FID carrier gas: hydrogen at 2 ml min-1. All terpene 

products were identified by using Agilent Technologies software with the Wiley275.L, 

NIST98.L and Adams2205.L MS libraries, as well as by comparison of mass spectra and 

retention times with those of authentic standards (Sigma-Aldrich Chemicals, Steinheim, 

Germany). The amounts of the individual terpenes were determined by GC-FID.  

Statistical analysis was performed with SigmaStat (Version 2.03, Systat Software, Erkrath, 

Germany). 
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4.4 Results 
 

A. thaliana plants expressing CYP71D178 and a γ-terpinene synthase produce low 
amounts of p-cymene  

To determine the catalytic abilities of the cytochrome P450, CPY71D178 from oregano 

(Origanum vulgare L.), the gene was over-expressed in Arabidopsis thaliana. Plants over-

expressing CYP71D178 were then crossed with a line over-expressing the γ-terpinene synthase 

Ovtps2 (GU385977) from oregano to supply the necessary substrate, which is not found in A. 

thaliana. All genes were constitutively expressed under the control of a 35S promoter. 

Transgenic Arabidopsis plants expressing Ovtps2 produced γ-terpinene and also p-cymene 

almost exclusively from the flowers as volatiles (Fig. 1a). Terpene emission from leaves was 

hardly detectable (data not shown). The simultaneous expression of CYP71D178 and Ovtps2 in 

A. thaliana resulted in the exclusive formation of p-cymene (Fig. 1b). We could not detect any 

volatile or glycosidically bound hydroxylated products from plants co-expressing CYP71D178 

and Ovtps2. 

 

Figure 1 GC-MS traces of volatiles released from flowers of transgenic A. thaliana expressing 

CYP71D178 and a γ-terpinene synthase show release of p-cymene. (A) Volatiles released from plants 

over-expressing only the γ-terpinene synthase Ovtps2: 1, p-cymene; 2, γ-terpinene; car, (E)-β-

caryophyllene; hu, α-humulene. (B)  Volatiles released from plants co-expressing both CYP71D178 and 

the γ-terpinene synthase, Ovtps2: 2, p-cymene; car, (E)-β-caryophyllene; hu, α-humulene. (C) Volatiles 

released from WT A. thaliana plants: car, (E)-β-caryophyllene; hu, α-humulene. (E)-β-caryophyllene and 

α-humulene are released constitutively by Arabidopsis flowers and were used as a reference for terpene 

formation by transgenic plant lines. Volatiles were collected by SPME. 
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Feeding of different monoterpenes to transg enic A. thaliana plants over-expressing 
CYP71D178 or CYP71D180v1 results in hydroxylated products bound as glycosides 

As another approach to supplying γ-terpinene as substrate for the over-expressed P450s, 

monoterpenes were fed to transgenic Arabidopsis plants over-expressing CYP71D178 from 

oregano or CYP71D180v1 from thyme in closed glass vessels via the surrounding air (Fig. 2c). 

Various monoterpenes were used as substrates: γ-terpinene as the predicted initial substrate,  

p-cymene as the potential intermediate and α-terpinene and (-)-R-α-phellandrene as structurally 

similar substrates to γ-terpinene. In addition, (+)-R-limonene and (-)-S-limonene were tested 

since these gave different hydroxylation products from in vitro assays with CYP71D178, 

CYP71D180v1 and CYP71D181 (chapter II). Moreover, both limonene substrates were used as 

references in order to qualify the amounts of products formed in comparison to the amounts fed. 

Both limonene enantiomers are converted into hydroxylated products by both P450s with high 

efficiency in vitro (chapter II). All tested monoterpenes have similar structures and were 

assumed to have a similar efficiency in permeating plant membranes to encounter the over-

expressed cytochrome P450s. 

 

Figure 2 GC-MS traces of volatiles released from leaves of transgenic A. thaliana over-expressing 

CYP71D178 after feeding with 50 µl γ-terpinene for 24 h in a closed glass vessel. SPME measurements 

of (A) Volatiles released from Col-0 wild-type control plants. (B) Volatiles released from transgenic A. 

thaliana plants: 1, γ-terpinene; 2, p-cymene; 3, thymol; 4, carvacrol. (C) Experimental setup for mono-

terpene feeding to A. thaliana plants. Four to five week old plants were put into closed glass vessels and 

monoterpenes were applied into a glass beaker next to the plants.  

 

Initial feeding tests with γ-terpinene indicated that, as in the in vitro assays with microsomal 

protein produced in S. cerevisiae, p-cymene was released as the major volatile product. Only 

small amounts of thymol and carvacrol were released from transgenic A. thaliana plants. Wild 

type A. thaliana Col-0 plants fed with γ-terpinene released p-cymene too, and trace amounts of 

carvacrol (Fig. 2a). Nevertheless, carvacrol and thymol were identified from plants over-
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expressing CYP71D178 in much larger proportions than those observed from wild type  

A. thaliana plants (Fig. 2b).  

p-Cymene is spontaneously formed from γ-terpinene, α-terpinene and (-)-R-α-phellandrene 

upon contact with oxygen (Granger et al., 1964). After 24 h, 30 to 40 % of the volatile  

γ-terpinene and 50 to 70 % of the volatile (-)-R-α-phellandrene were found to have been 

converted into p-cymene when put in a glass vessel (Supplemental Material, Figures S3, S4). 

Therefore, it was not possible to determine the exact conversion of these substrates to p-cymene 

by the introduced cytochrome P450s. In the presence of transgenic A. thaliana plants over-

expressing the oregano and thyme P450s, more than 90 % of volatile γ-terpinene was 

transformed into p-cymene. 

We suspected that some thymol and carvacrol formed by the P450s could have been stored as 

glycosides since linalool synthase over-expression in petunia resulted in the formation of S-

linalyl-β-D-glucopyranoside (Lücker et al., 2001) rather than in the release of volatile linalool. 

Therefore, methanol extracts from transgenic A. thaliana plants that had been fed with  

γ-terpinene were subjected to β-glucosidase treatment. This resulted in the release of thymol, 

carvacrol and thymoquinone from A. thaliana plants over-expressing CYP71D178 which were 

quantified by GC-FID (Fig. 3). Thymoquinone was found to arise from further hydroxylation of 

thymol by A. thaliana by direct feeding of wild-type plants with thymol (Data not shown). The 

parent thymol and carvacrol glycosides could also be detected and identified by LC-MS. 

 

Figure 3 Detection of monoterpene glycosides in transgenic A. thaliana expressing CYP71D178. (A) 

GC-MS traces of volatiles from leaf extracts of plants fed γ-terpinene for 24 h. The extract was treated 

with β-glucosidase. Volatiles were collected by SPME: 3, thymol; 4, carvacrol; 5, thymoquinone. (B) As 

above, except extract was not treated with β-glucosidase: 4, carvacrol. 

 

Transgenic A. thaliana plants over-expressing CYP71D178 or CYP71D180v1 form 
thymol and carvacrol from γ-terpinene 

Thymol and carvacrol were both readily detected as glycosides from A. thaliana over-

expressing the thyme and oregano CYP71D P450s. While thymol was found in low amounts 
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only in CYP71D178 plant lines, carvacrol was found in higher amounts in these lines and in 

those over-expressing CYP71D180v1 (Fig. 4). Both control lines (vector control and wild type 

plants) contained only small amounts of carvacrol, cuminol (p-cymene-7-ol) and p-cymene-8-

ol. Other minor products can be found in Table S8, Supplementary Material. 

 

Figure 4  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with γ-terpinene. Controls include 

plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana (Col-0 WT) plants. 

Structures of substrate, γ-terpinene, and important products, thymol and carvacrol, are shown. All plants 

were put in one glass vessel for monoterpene feeding. Amounts presented are mean values ± standard 

error (n = 9). Mean values were tested for significant differences (P < 0.05) by One-Way ANOVA 

followed by Tukey’s test for all pairwise comparisons. Significant differences are indicated by different 

letters. Statistics were performed separately for each compound. n.d. = not detectable. 

 

Other cyclohexanoid monoterpenes are al so metabolized by the P450s, bu t not  
p-cymene 

Feeding of p-cymene to transgenic, vector control and wild-type lines resulted in the formation 

of p-cymene-8-ol or cuminol as principal products, but thymol and carvacrol were not detected 

(Fig. 5). Other cyclohexanoid, non-aromatic monoterpenes were metabolized by P450 over-

expression lines. The monoterpene α-terpinene, an isomer of γ-terpinene with one double bond 

in an adjacent position in the ring was converted to carvacrol by CYP71D180v1, but 

CYP71D178 did not produce significantly more carvacrol than the control lines (Fig. 6). (-)-R-

α-Phellandrene, another cyclohexanoid monoterpene diene, was converted solely to an unknown 

monoterpene product (Fig. 7) with an m/z of 152, that is likely a hydroxylated monoterpene 

without an aromatic ring system (Fig. 8).  
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Figure 5  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with p-cymene. Controls include 

plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana (Col-0 WT) plants. 

Structures of substrate, p-cymene, and major products, p-cymene-8-ol and cuminol, are shown. All plants 

were put in one glass vessel for monoterpene feeding. Amounts presented are mean values ± standard 

error (n = 9). Mean values were tested for significant differences (P < 0.05) by One-Way ANOVA 

followed by Tukey’s test for all pairwise comparisons. Significant differences are indicated by different 

letters. Statistics were performed separately for each compound. n.d. = not detectable. 

 
Figure 6  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with α-terpinene. Controls include 

plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana (Col-0 WT) plants. 

Structures of substrate, α-terpinene, and the major products, carvacrol, are shown. All plants were put in 

one glass vessel for monoterpene feeding. Amounts presented are mean values ± standard error  

(n = 9). Mean values were tested for significant differences (P < 0.05) by One-Way ANOVA followed by 

Tukey’s test for all pairwise comparisons. Significant differences are indicated by different letters. 

Statistics were performed separately for each compound. n.d. = not detectable. mt10 = unidentified 

monoterpene. 
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Figure 7  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with (-)-R-α-phellandrene. Controls 

include plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana (Col-0 WT) 

plants. The structure of the substrate, (-)-R-α-phellandrene, is shown. All plants were put in one glass 

vessel for monoterpene feeding. Amounts presented are mean values ± standard error  

(n = 9). Mean values were tested for significant differences (P < 0.05) by One-Way ANOVA followed by 

Tukey’s test for all pairwise comparisons. Significant differences are indicated by different letters. 

Statistics were performed separately for each compound. n.d. = not detectable. mt10 = unidentified mono-

terpene. 

Figure 8  GC-MS-chromatogram of 

CYP71D180 plant line extract after β-

glucosidase treatment. (A) GC-MS 

traces of volatiles released from 

extracts of A. thaliana Col-0; IS1, 

internal standard 1; 6, p-cymene-8-ol; 

7, unidentified monoterpene; 8, 

cuminol; 4, carvacrol; IS2, internal 

standard 2. (B) GC-MS traces of 

volatiles released from extracts of A. 

thaliana over-expressing CYP71-

D180v1; IS1, internal standard 1; 6, 

p-cymene-8-ol; 7, unidentified 

monoterpene; 3, thymol; 8, cuminol; 

4, carvacrol; IS2, internal standard 2; 

9, unidentified monoterpene; 10, 

unidentified monoterpene (mt10). (C) 

MS-Spectrum of peak 10 represents 

an unidentified monoterpene alcohol. 
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Limonene is converted into the allylic alcohols, carveol and isopiperitenol 

The feeding of limonene enantiomers resulted in the same regiospecific production of 

hydroxylated monoterpenes as was already observed in vitro with microsomal protein from 

yeast expression (chapter II). Plant line CYP71D178 accumulated mainly (-)-trans-carveol from 

(-)-S-limonene feeding, but also some (-)-trans-isopiperitenol (Fig. 9). (+)-trans-Isopiperitenol 

was formed from (+)-R-limonene (Fig. 10). CYP71D180v1 plant lines formed almost 

exclusively (-)-trans-carveol from both limonene enantiomers (Figs. 9 and 10). A. thaliana wild 

type and vector control lines formed mainly limonene-10-ol or perillyl alcohol from both 

enantiomers which were also present in similar amounts in the P450 over-expressing plant lines. 

The overall conversion with the limonene substrates was slightly higher than with the other 

substrates tested. The high amounts of carveol present in vector control and wild type A. 

thaliana after feeding especially with (-)-S-limonene probably result from cross-contamination. 

Separate feeding of these lines resulted only in very low carveol formation (Supplementary 

Material, Figs. S8, S9) 

 

Figure 9  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with (+)-R-limonene. Controls 

include plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana (Col-0 WT) 

plants. Structure of the substrate, (+)-R-limonene, and major products, (+)-trans-isopiperitenol,  

(+)-trans-carveol and (+)-cis-carveol, are shown. All plants were put in one glass vessel for monoterpene 

feeding. Amounts presented are mean values ± standard error (n = 9). Mean values were tested for 

significant differences (P < 0.05) by One-Way ANOVA followed by Tukey’s test for all pairwise 

comparisons. Significant differences are indicated by different letters. Statistics were performed 

separately for each compound. 
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Figure 10  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with (-)-S-limonene. Controls 

include plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana (Col-0 WT) 

plants. Structure of the substrate, (-)-S-limonene, and major products, (-)-trans-isopiperitenol and  

(-)-trans-carveol, are shown. All plants were put in one glass vessel for monoterpene feeding. Amounts 

presented are mean values ± standard error (n = 9). Mean values were tested for significant differences  

(P < 0.05) by One-Way ANOVA followed by Tukey’s test for all pairwise comparisons. Significant 

differences are indicated by different letters. Statistics were performed separately for each compound. 
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4.5 Discussion 
 

CYP71D178 and CYP71D180 convert γ-terpinene into thymol and carvacrol 

The heterologous expression of three cytochrome P450s from oregano and thyme, CYP71D178, 

CYP71D180v1 and CYP71D181 in yeast had already hinted towards a direct conversion of  

γ-terpinene into thymol and carvacrol. This hypothesis had been supported by correlation of the 

expression of these genes with thymol and carvacrol accumulation, by trace production of 

thymol and carvacrol upon administration of γ-terpinene, and by the regiospecificity of 

hydroxylation with (+)-R-limonene as substrate at either carbon C3 or C6. The positions of the 

hydroxyl groups resembled very much those of thymol and carvacrol (chapter II) (Fig. 11). In 

the present study we could confirm these findings by feeding γ-terpinene to transgenic  

A. thaliana over-expressing CYP71D178 or CYP71D180v1. CYP71D178 over-expressers 

formed both thymol and carvacrol (accumulated as glycosides) while CYP71D180v1 over-

expressors formed only carvacrol from γ-terpinene (Fig. 4).  

 

Figure 11  Summary of products formed from γ-terpinene and limonene fed to A. thaliana lines trans-

formed with CYP71D genes. (A) Products formed from γ-terpinene: CYP71D178 catalyzes C2- and C3-

hydroxylations to carvacrol or thymol while CYP71D180v1 forms only carvacrol. (B) Products formed 

from (+)-R- and (-)-S-limonene: CYP71D178 catalyzes C3- or C6-hydroxylations depending on the 

limonene enantiomer while CYP71D180v1 catalyzes only C6-hydroxylations from both enantiomers. 

 

The aromatic monoterpene, p-cymene, was found as the major product from γ-terpinene when 

these P450s were expressed in yeast and microsomal extracts assayed in vitro. Here, a similar 

pattern was found on feeding γ-terpinene to transgenic A. thaliana over-expressing CYP71D178 

or CYP71D180v1. However, p-cymene was also formed by wild type and vector control 
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Arabidopsis plants. Given these results and the previously described spontaneous formation 

upon contact with oxygen (Granger et al., 1964), we conclude that the formation of p-cymene in 

vitro and in vivo is very likely an artifact of enzyme catalysis in a heterologous system.  

The fact that CYP71D178 and 180 convert γ-terpinene to thymol and carvacrol, a process 

requiring two formal oxidations, is not unusual for a member of the P450 family. Catalysis of 

multi-step oxidations is well known for a number of cytochrome P450s. In diterpene resin acid 

biosynthesis in loblolly pine, multisubstrate, multi-step P450s catalyze an array of consecutive 

oxidation steps with several different alcohol and aldehyde intermediates (Ro et al., 2005). 

Another example for multifunctional P450s is the well studied pathway of cyanogenic glucoside 

formation where the two P450s each catalyze a series of multi-step oxidations on the way from 

amino acids to α-hydroxynitriles (Halkier et al., 1995; Bak et al., 1998). 

 

p-Cymene is not an in termediate in thymo l a nd carvacr ol fo rmation by orega no 
and thyme CYP71D P450s 

The aromatic monoterpene p-cymene was originally suggested as intermediate in the pathway 

of thymol and carvacrol biosynthesis proposed for thyme over thirty years ago (Poulose and 

Croteau, 1978a). The initial substrate, γ-terpinene, was predicted to be oxidized to p-cymene 

which in a second step is hydroxylated to form either thymol or carvacrol (Fig. 1a). This was a 

likely pathway since cytochrome P450s are often responsible for the hydroxylation of aromatic 

rings (Jerina and Daly, 1974), which are present in many pathways for plant secondary products 

such as furanocoumarins, anthocyanins, flavonoids and many more (Schuler, 1996).  

In the work reported here, we were unable to find any proof for the intermediacy of p-cymene in 

the conversion of γ-terpinene to thymol and carvacrol. In the feeding experiments described in 

this chapter with the A. thaliana lines over-expressing CYP71D178 and CYP71D180v1 and the 

in vitro assays conducted with CYP71D178, 180v1 and 181 protein expressed in yeast (chapter 

II), it was found that p-cymene itself was not converted to form thymol and carvacrol in any 

amounts above background levels (Supplementary Material, Fig. S5). Instead, p-cymene formed 

two other products at much higher rates, cuminol and p-cymene-8-ol, which carry hydroxyl 

groups at carbon positions C7 and C8 outside the aromatic ring. These two derivatives were 

most probably formed by enzymes from Arabidopsis thaliana itself, possibly by one of the 246 

P450s found in the Arabidopsis genome (Paquette et al., 2000; Werck-Reichhart et al., 2002; 

Schuler and Werck-Reichhart, 2003). Some of these P450s might be capable of catalyzing the 

hydroxylation of the aromatic p-cymene to thymol possibly by an NIH shift mechanism (Guroff 

et al., 1967).  

Thymol formation from p-cymene was reported to be catalyzed by several human P450 

enzymes (Meesters et al., 2009). To insure that this conversion would not have been missed in 
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our own system, one of the P450s from this study, the human enzyme, CYP2D6, was purchased 

and tested for its activities. Unfortunately, we could not confirm thymol formation from  

p-cymene. Instead we identified carvacrol formation from γ-terpinene and cuminol formation 

from p-cymene rather than thymol (data not shown).  

 

CYP71D178 and CYP71D180 give different profiles of thymol and carvacrol 
formation 

While CYP71D178 over-expressing A. thaliana plants formed both thymol and carvacrol, 

CYP71D180 over-expressers produced only carvacrol from γ-terpinene (Fig 4). Such differences 

in the regiospecificity of hydroxylation reactions are well known for cytochrome P450s 

(Schuler, 1996) and have been especially well described for several P450s hydroxylating 

limonene in mint, caraway and Perilla (Karp et al., 1990; Bouwmeester et al., 1998; Mau et al., 

2010).  

The oregano and thyme P450s, CYP71D178, CYP71D180v1 and CYP71D181, also showed 

such a difference in the regiospecificity of the hydroxylation from (-)-S- and (+)-R-limonene in 

vitro (chapter II). In the present study with A. thaliana over-expression lines, we found the same 

pattern. CYP71D178 over-expressing plant lines form mainly (-)-trans-carveol from (-)-S-

limonene and (+)-trans-isopiperitenol from (+)-R-limonene whereas CYP71D180v1lines form 

only carveols from either substrate (Figs. 9, 10). The position of the hydroxyl-group in carveol 

at carbon C6 is identical to C2 in carvacrol whereas the C3-hydroxylation in isopiperitenol is 

identical in its position to the hydroxyl group in thymol (Fig. 11).  

The reason for these differences in hydroxylation position might be related to differences found 

in the substrate recognition sites (SRS) of these enzymes as described in chapter II. 

CYP71D180 and CYP71D181 belong to one subgroup of the P450s studied while CYP71D178, 

CYP71D179 and CYP71D182 belong to a second subgroup (chapter II). For the two mint 

limonene hydroxylase P450s, CYP71D13 and CYP71D18, it was shown that only one amino 

acid residue in SRS5 is responsible for a different regiospecificity of limonene hydroxylation, 

C3 vs. C6 (Schalk and Croteau, 2000). The SRS5 of oregano and thyme CYP71D P450 

sequences shows a similar pattern. All CYP71D180 and CYP71D181 sequences contain a 

leucine residue at amino acid position 364 whereas all CYP71D179 and CYP71D182 sequences 

contain a methionine. CYP71D178 is different from all other sequences with an isoleucine at 

the same position. Other major amino acid differences between the two oregano and thyme 

CYP71D P450 subgroups are found within the other SRS (chapter II). Whether these 

differences, especially in SRS5 are responsible for the formation of either thymol or carvacrol 

and isopiperitenol or carveol needs further investigations, e.g. site directed mutagenesis 

combined with structural modeling of these P450s. In vitro CYP71D180 and CYP71D181 had 
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shown identical hydroxylation patterns with both limonene substrates. Whether CYP71D179 

and CYP71D182 show similar or different hydroxylation abilities compared to CYP71D178 is 

currently under investigation. 

Based on these data we suggest that the two subgroups found in the amino acid alignment of the 

five CYP71D P450s from oregano and thyme shown in chapter II represent also a functional 

difference. CYP71D178, CYP71D179 and CYP71D182 are proposed to be thymol synthases, 

while CYP71D180 and CYP71D181 are proposed to be carvacrol synthases.   

  

Thyme and oregano CYP71D P450s have broad substrate specificities  

The narrow product specificity of hydroxylation at only two positions in the cyclohexanoid ring 

is paired with broad substrate specificity. The two CYP71D P450s studied in A. thaliana 

accepted five different cyclohexanoid monoterpenes as substrates. All accepted substrates 

contain two double bonds, at least one of which is within the cyclohexanoid ring. The position 

of the double bonds within the ring had an effect on the product. While γ-terpinene was 

hydroxylated at either C2 or C3 by CYP71D178, α-terpinene was exclusively hydroxylated at 

C2 by both enzymes. Moreover, the rate of formation of carvacrol by CYP71D180 was higher 

with α-terpinene as substrate. Thus, although γ-terpinene is the native substrate for thymol 

formation, carvacrol can be formed from α-terpinene as well. 

The presence of two double bonds is also an important prerequisite for the formation of 

aromatic alcohols though this feature does not always lead to an aromatic product as seen with 

(-)-R-α-phellandrene. This cyclohexanoid monoterpene with two double bonds in the ring was 

converted by CYP71D180 into what is most likely an allylic alcohol, rather than a phenolic 

product as indicated by the m/z of 152 (Figs. 7, 8). The position of the hydroxyl-group within 

this compound might be the same as found in carveol and carvacrol. 

 

The reaction mechanism of the oregan o and thyme CYP71D P450s probably 
involves an allylic alcohol intermediate  

Instead of p-cymene as an intermediate for thymol or carvacrol formation by the oregano and 

thyme CYP71D P450s, the mechanism of these reactions might involve an allylic alcohol 

intermediate formed from γ-terpinene which is then followed by a second oxidation resulting in 

aromatization (Fig. 12).  

An initial allylic hydroxylation is supported by the high sequence similarity (> 73 % at the 

amino acid level) of the oregano and thyme CYP71D P450s with CYP71D13 and CYP71D18 

from mint, which both carry out allylic hydroxylation of the cyclohexanoid monoterpene, 

limonene. Sequence similarity is especially high in the potential substrate recognition sites 

(chapter II). Moreover, CYP71D178 and CYP71D180 catalyze the hydroxylation of both 
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limonene substrates into products with identical regiospecificity to that seen in thymol and 

carvacrol (Fig. 11). Following the first allylic hydroxylation, a second oxidation may take place 

to form a ketone. Multi-step oxidations are a characteristic feature of P450s as stated above 

(Halkier et al., 1995; Bak et al., 1998; Ro et al., 2005). The proposed α,β-unsaturated ketone is 

inherently unstable and should aromatize to thymol or carvacrol via a keto-enol tautomerism.  

The artifactual formation of p-cymene might also be explained by details of the reaction 

mechanism. P450 oxidation of γ-terpinene would be expected to be initiated by abstraction of a 

hydrogen radical (Meunier et al., 2004; Shaik et al., 2005). If the resulting γ-terpinene radical 

species were released from the active site, it might spontaneously oxidize to p-cymene even 

more readily than γ-terpinene itself upon contact with oxygen (Granger et al., 1964).  

 

Figure 12 Possible steps in the reaction mechanisms for thymol and carvacrol formation from γ-terpinene 

by CYP71D P450s. The mechanism of thymol and carvacrol formation from γ-terpinene might involve an 

initial formation of an allylic alcohol just like in the most closely-related characterized P450, the mint 

limonene hydroxylase CYP71D18. This intermediate might be subsequently subject to a second oxidation 

to convert the alcohol to a ketone. Finally, the aromatic end products, thymol or carvacrol, are formed by 

a keto-enol tautomerism.  

 

A. thaliana readily glycosylates monoterpene alcohols to detoxify these xenobiotics 

In the course of this study, A. thaliana was found to convert hydroxylated monoterpenes very 

efficiently to glycosides. Free monoterpene alcohols were not detected in the plant or as 

volatiles in the headspace. A similar phenomenon was previously described for petunia over-

expressing a linalool synthase from Clarkia breweri where the linalool (a monoterpene alcohol) 

formed was completely bound as glycosides (Lücker et al., 2001). The formation of glycosides 

from thymol, carvacrol and other monoterpene alcohols might be detoxification reactions to 

prevent cell damage by these compounds which are known to have strong anti-herbivore and 
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anti-microbial activities (Isman, 2000; Hummelbrunner and Isman, 2001; Ultee et al., 2002; 

Sedy and Koschier, 2003; Floris et al., 2004; Braga et al., 2008).  

Interestingly, thymol- and carvacrol-glycosides have also been reported to occur in oregano at 

levels of 80-300 µg g-1 fresh weight (Skoula and Harborne, 2002; Stahl-Biskup, 2002). The 

amounts of free thymol and carvacrol, however, which are stored in the glandular trichomes, are 

30 to 400 times higher than these glycosidically bound forms (Stahl-Biskup, 1993, 2002). 

Observations of the glycoside content in relation to the filling of the glandular trichomes 

indicated that glycosides are formed when the storage capacity of the subcuticular space is 

reached and is thought to be a protection mechanism to prevent cell damage, especially 

membrane destruction, by excess lipophilic volatiles such as phenols or alcohols from 

destroying membranes (Stahl-Biskup, 1993, 2002).  

A. thaliana lacks specialized storage compartments for lipophilic secondary metabolites, like 

glandular trichomes, resin ducts and secretory cavities, and therefore needs to employ a 

different strategy to prevent autotoxicity. Glycosylation is such a mechanism which is involved 

in inactivation or detoxification of xenobiotics and other harmful components (Vogt and Jones, 

2000; Meßner et al., 2003; Gachon et al., 2005). The conjugation of plant metabolites to sugar 

moieties is performed by enzymes from family 1 of glycosyltransferases. They are known to 

occur in conjunction with cytochrome P450s as part of a detoxification sequence (Pedras et al., 

2001). Arabidopsis contains more than 100 glycosyltransferases but the in planta functions are 

established for only about 10 % (Yonekura-Sakakibara, 2009). One or more of these enzymes is 

probably responsible for the glycosylation of the hydroxylated products formed by CYP71D178 

and CYP71D180. 
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5 General Discussion 

 

The phenolic monoterpenes, thymol and carvacrol, are two highly bioactive compounds found 

in oregano and thyme as well as in a great diversity of other plant species. But despite the fact 

that thymol and carvacrol are widespread plant secondary compounds with some importance as 

plant defenses, flavors and pharmaceuticals, not much is known about their biosynthesis.  

The pathway of thymol formation has been studied since the early 1960s when Yamazaki and 

coworkers identified thymol as a terpenoid biosynthetic product despite the fact that it is 

aromatic (Yamazaki et al., 1963). At the end of the 1970s, experiments were performed in 

which the radioactively labeled  monoterpenes, γ-terpinene and p-cymene, were fed to thyme 

(Poulose and Croteau, 1978a). Based on the results, it was postulated that the biosynthesis of 

thymol starts with γ-terpinene as initial monoterpene precursor and proceeds via the aromatic  

p-cymene as an intermediate.  

In this thesis, the biosynthetic pathway of thymol and carvacrol was investigated at different 

levels. First, the genes encoding enzymes of mono- and sesquiterpene biosynthesis were studied 

in oregano at both the genetic and the biochemical levels (chapter I). Terpene synthases provide 

products which can be further oxidized by cytochrome P450s. In chapter II five novel 

cytochrome P450s from oregano, thyme and marjoram were investigated for their role in the 

formation of thymol and carvacrol. Finally, a new pathway for the formation of thymol and 

carvacrol is proposed based on the results from over-expression of two cytochrome P450s in the 

model plant Arabidopsis thaliana (chapter III). Together, these chapters provide the first genetic 

and biochemical evidence for a two step pathway of thymol and carvacrol formation in the 

Lamiaceae species, oregano and thyme. 

The essential oils of oregano, thyme and marjoram consist of a complex and highly variable 

mixture of over a hundred mono- and sesquiterpenes. About one third of these compounds were 

extracted from oregano plant lines used for the investigations in chapter I. Within these, thymol, 

carvacrol, γ-terpinene and p-cymene, impart the characteristic flavor associated with oregano 

(Origanum vulgare L.) and thyme (Thymus vulgaris L.), while sabinene hydrate represents the 

flavor of marjoram (Origanum majorana L.) (Skoula and Harborne, 2002). To learn more about 

the biosynthesis of these terpenes and its regulation in these plants, terpene synthases of  

O. vulgare were investigated by isolating members of this gene family, determining their 

enzymatic activity after heterologous expression in E. coli and correlating gene expression with 

the pattern of terpene accumulation in different O. vulgare lines (chapter I).  
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The terpene synthases of Origanum vulgare fall into two clades in which the monoterpene and 

sesquiterpene synthases are separated from each other (Fig. 1). The O. vulgare monoterpene 

synthases are joined by many monoterpene synthases from other Lamiaceae. However, only two 

other sesquiterpene synthases from Lamiaceae are found in the sesquiterpene synthase clade, 

because these are the only two other Lamiaceae sesquiterpene synthases identified to date, both 

from sweet basil (Ocimum basilicum).  

 

Figure 1  Dendrogram analysis of monoterpene and sesquiterpene synthases from O. vulgare and 

functionally related terpene synthases. The dendrogram was constructed using the neighbour-joining 

method. The name of the major product of each enzyme is given after the abbreviation of the species (or 

after the abbreviation of the gene and cultivar designation in case of the O. vulgare sequences). Aa – 

Artemisia annua: (E)--caryophyllene synthase; Cl – Citrus limon: -terpinene synthase; Mc – Mentha 

citrata: linalool synthase; Ob – Ocimum basilicum: fenchol synthase, myrcene synthase, selinene 

synthase, germacrene D synthase; Ov – Origanum vulgare: TPS1-d06-01, TPS1-f02-04, TPS2-d06-01, 

TPS2-f02-04, TPS3-d06-01, TPS3-f02-04, TPS4-d06-01, TPS4-f02-04, TPS5-d06-01, TPS5-f02-04, 

TPS6-d06-01, TPS6-f02-04, TPS7-d06-01, and TPS7-f02-04. Pf – Perilla frutescens: geraniol synthase; 

Pfc – Perilla frutescens var. crispa: linalool synthase; Pc – Perilla citriodora: linalool synthase, geraniol 

synthase; Ro – Rosmarinus officinalis: pinene synthase; So – Salvia officinalis: sabinene synthase. 

Two trends previously noted for other terpene synthases were also found to be true in oregano. 

The monoterpene synthases of Lamiaceae share rather high amino acid identities (usually 55-90 

%) despite their different catalytic functions. Yet terpene synthases outside this family are much 

more divergent even though they might have the same catalytic function. For example, a -

terpinene synthase from Citrus limon (included in Fig. 1) is clearly separated from OvTPS2, the 

-terpinene synthase of O. vulgare, with 37 % amino acid identity indicating that these genes are 
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the result of repeated evolution (Gang, 2005). The phylogenetic analysis also indicates that 

some terpene synthases appear to result from gene duplication and neofunctionalization or loss 

of function.  

For most of the characterized O. vulgare terpene synthases, only a single allele was apparently 

identified from the EST libraries, suggesting that the other allele of these genes is not 

transcribed or does not encode an active enzyme. This assumption is supported by the analyses 

of the selfed lines of O. vulgare cultivar f02-04. Since products of OvTPS2 are completely 

absent in four of the studied lines, only one of the two OvTPS2 alleles is likely to be active in 

the cultivar f02-04. For another monoterpene synthase, OvTPS5, two alleles were found but 

none displayed any terpene synthase activity in vitro. The presence of catalytically inactive 

alleles appears to be typical for the terpene synthase gene family in other species as well 

(Köllner et al., 2004; Köllner et al., 2008). Since OvTPS2 and OvTPS5 are highly identical, it is 

conceivable that they originate from a duplication event within the genome of O. vulgare. 

Subsequently, OvTPS5 might have lost is function due to a frameshift mutation, but still kept its 

expression pattern due to preservation of the promoter and other regulatory sequences. This is 

not consistent with the usual expectation that the regulatory sequences are more quickly altered 

than the structural gene. For example, the diversification of a pair of terpene synthases of 

strawberry resulted in altered spatial regulation (cytoplasmatic versus plastidic expression), but 

did not change the sequence of the structural gene (Aharoni et al., 2004). A high rate of 

diversification of genes involved in plant secondary metabolism has often been observed and 

both structural and regulatory changes might contribute to the large variety of terpene patterns 

found in plants (Köllner et al., 2004; Iijima et al., 2004b).  

 

Terpene synthase gene expression determines terpene composition 

The isolated terpene synthase genes of O. vulgare appear to play a major role in controlling 

terpene composition in this species since the transcript levels of individual genes correlate 

closely with the amounts of the encoded enzyme products found in the essential oil.  

The close correlation of γ-terpinene synthase expression and terpene composition indicates that 

transcript regulation of terpene synthase genes is the most important regulatory mechanism 

controlling terpene composition in O. vulgare. The results of RNA hybridization assays and 

qRT-PCR suggest that this mechanism regulates the activity of other monoterpene synthases as 

well. In contrast, the low levels of sesquiterpenes in O. vulgare essential oil might not be 

regulated strictly on a transcript level. However, the correlation analysis of the sesquiterpene 

synthases, Ovtps3 and Ovtps6, was hampered by the limited variation of sesquiterpene content 

between the O. vulgare lines. Further support for the assertion of transcript level regulation at 

least for monoterpene formation comes from the combined in vitro assays of the heterologously 
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expressed terpene synthases. When approximately equal amounts of the expressed active 

terpene synthases were combined in the presence of GPP or FPP as substrates, the blends of 

monoterpenes or sesquiterpenes produced strongly resembled those of O. vulgare terpene 

blends with the absence of the monoterpene trans-sabinene hydrate and thymol. This suggests 

that terpene synthase expression levels directly control the composition of the essential oil, and 

provide no indication for operation of any further regulatory mechanisms like compartmentation 

or metabolite channeling at the site of O. vulgare terpene biosynthesis. However, control of total 

terpene yield may result from processes at other levels of organization. The O. vulgare cultivars 

used in chapter I, f02-04 and d01-06, showed major differences in the quantity of terpenes 

produced, with the quantity of cultivar f02-04 being approximately twice that of d01-06. This 

difference is likely caused by the fact that the leaf surface of f02-04 has a higher density of 

glandular trichomes, the sites of synthesis and storage of the monoterpenes and sesquiterpenes 

(Gershenzon et al., 1989; Turner et al., 1999).  

 

Thymol and carvacrol formatio n depends on the presence of γ-terpinene in 
oregano and thyme 

The six active terpene synthases characterized in chapter I produce the majority of terpenes 

found in O. vulgare. One major terpene product not formed by these enzymes is trans-sabinene 

hydrate. Despite the reports of a sabinene hydrate synthase activity in sweet marjoram 

(Origanum majorana L., previously: Majorana hortensis Moench.) (Hallahan and Croteau, 

1988, 1989), no enzyme responsible for its formation from GPP could be identified in the 

present study.  

Other compounds not directly formed by the characterized terpene synthases are the aromatic 

monoterpene alcohols, thymol and carvacrol. As mentioned above, they were predicted to be 

synthesized from -terpinene via p-cymene (Poulose and Croteau, 1978a; Poulose and Croteau, 

1978b). Analysis of the terpene content of the oregano lines supported this hypothesis as no 

thymol or carvacrol are found in lines that lack -terpinene and p-cymene (Fig. 2). Therefore, 

the enzyme responsible for γ-terpinene formation in vitro, OvTPS2, is likely to be a major 

terpene synthase activity in oregano in vivo. Between 25.2 and 48.4 % of the total terpene 

content of this species consists of compounds that are products of this enzyme in vitro. The role 

of OvTPS2 in γ-terpinene formation in vivo is also supported by the fact that the Ovtps2 gene 

was only present in lines that produced -terpinene (Fig. 2). In addition, the biochemical 

properties of this enzyme closely resemble those of a -terpinene synthase extracted from thyme 

leaves (Poulose and Croteau, 1978b).  
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The importance of γ-terpinene supply for the formation of thymol and carvacrol was confirmed 

in chapter II. Analysis of oregano, thyme and marjoram plant lines shows that an ortholog of 

Ovtps2 seems to be responsible for γ-terpinene formation in marjoram, another member of the 

genus Origanum. In thyme, a different monoterpene synthase gene, Tvtps1, was characterized as 

a γ-terpinene synthase (Julia Asbach, unpublished data), which is similar to another gene 

isolated from oregano (Ovtps8). Tvtps1 and Ovtps8 are 99.5 % identical at the nucleotide and 

the amino acid level, but both are only 90 % identical to Ovtps2. Transcript levels for Tvtps1 

have been measured in different thyme chemotypes and found to strongly correlate with γ-

terpinene content (Julia Asbach, unpublished data). Whether or not Ovtps8 has any importance 

in γ-terpinene formation in oregano needs to be tested in the future. Since no ESTs for this gene 

were found in a cDNA library made from oregano cultivar f02-04, Ovtps8 might not be actively 

involved in γ-terpinene biosynthesis in cultivars f02-04 and d06-01(chapter I). 

 

Figure 2 Expression analysis of Ovtps2 and CYP71D178 in planta compared to essential oil contents of 

various oregano plant lines. The amounts for γ-terpinene, p-cymene, thymol and carvacrol are shown for 

15 oregano lines: three clonal lines of the cultivar d06-01 (d2, d5, d8), four clonal lines of cultivar f02-04 

(f2, f3, f4, f5), four lines from a selfing of the cultivar f02-04 (ff2, ff4, ff6, ff7), and four lines from a 

cross of both cultivars (df5, df6, df7, df8). Transcript levels of the terpene synthase Ovtps2 and 

CYP71D178 in leaves of O. vulgare were measured by RNA hybridization analyses. The bottom panel 

shows an ethidium-bromide-stained agarose gel with total RNA as control for equal RNA loading. 

 

Cytochrome P450s are involved in thymol and carvacrol formation in oregano and 
thyme 

From the beginning of the investigations, the biosynthesis of thymol and carvacrol from  

γ-terpinene was thought  likely to be catalyzed by the action of one or more cytochrome P450 
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oxidases, carrying out  a hydroxylation similar to that described for other monoterpenes like (-)-

S-limonene in menthol biosynthesis in Mentha sp. (Lupien et al., 1999; Haudenschild et al., 

2000). Several studies have reported on the roles of cytochrome P450s in monoterpene 

metabolism. Geraniol is hydroxylated by a geraniol-10-hydroxylase in Catharanthus roseus 

(Meijer et al., 1993), and sabinene hydroxylase catalyzes the formation of sabinol in sage (Karp 

et al., 1987). Several examples are known of limonene hydroxylases which catalyze 

hydroxylations at different carbon atoms in this cyclic monoterpene. In spearmint, a 6-

hydroxylase forms (-)-trans-carveol from (-)-S-limonene, whereas in peppermint this substrate 

is hydroxylated by a 3-hydroxylase to form (-)-trans-isopiperitenol, an intermediate in the 

menthol biosynthesis pathway (Karp et al., 1990; Lupien et al., 1995). Recently, a cytochrome 

P450 candidate for the hydroxylation of (-)-S-limonene was reported for Perilla which is able to 

catalyze the hydroxylation at three different positions to either form (-)-trans-isopiperitenol, (-)-

trans-carveol or (-)-perillyl alcohol (Mau et al., 2010). In caraway another limonene-6-

hydroxylase catalyzes the reaction of the other enantiomer, (+)-R-limonene, into (+)-trans-

carveol (Bouwmeester et al., 1998).  

An oregano gene sequence (CYP71D178) with similarity to a known monoterpene hydroxylase 

from mint (CYP71D18) was first suggested to be involved in thymol and carvacrol biosynthesis 

in oregano based on RNA hybridization and relative qRT-PCR (chapter II). The gene 

expression of CYP71D178 in oregano was well-correlated with thymol content in different sets 

of oregano lines (Fig. 2). Oregano line ff7, which showed a high transcript accumulation but 

only traces of thymol and carvacrol, lacked γ-terpinene underlying the importance of this 

compound as a precursor of phenolic monoterpene formation.  

Nevertheless, it remained unclear if only one cytochrome P450 enzyme would be involved in 

thymol or carvacrol formation since conversion of γ-terpinene to thymol or carvacrol involves 

two formal oxidation steps. Hence, additional P450 sequences were sought from oregano, thyme 

and marjoram cultivars using primers from CYP71D178. Eleven sequences were found 

classified into five different cytochrome P450s that gave a clear differentiation into two large 

subgroups a) and b) (Fig. 3).  

The two subgroups of P450s could conceivably represent two different catalytic activities, one 

for thymol and one for carvacrol. This hypothesis was first tested by absolute qRT-PCR on a 

group of oregano plant lines also used in chapter I and three oregano, thyme and marjoram 

cultivars with varying thymol and carvacrol content. Although qRT-PCR was partly hampered 

by the high nucleotide sequence identity between the different P450s, a clear differentiation of 

expression pattern was observed for three of the five cytochrome genes. High copy numbers of 

CYP71D181 correlated with the very high carvacrol content in oregano cultivar ‘Ct’, and the 

expression levels of CYP71D179 and CYP71D182 correlated with thymol content. Plant lines 
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without transcript of any of the described P450s had a complete absence of thymol and 

carvacrol even if γ-terpinene was present. These correlations also suggested that expression of 

these CYP71D P450s is regulated at the transcript level in these plants (chapter II) similar to 

what was found for the terpene synthases of oregano (chapter I).  

 
Figure 3 Dendrogram analysis of amino acid sequences of cytochrome P450s from oregano, thyme and 

marjoram compared to one member of the same cytochrome P450 subfamily CYP71D from mint, 

CYP71D18 which encodes a previously characterized monoterpene hydroxylase (Colby et al., 1993; 

Lupien et al., 1999; Haudenschild et al., 2000). Two subgroups are shown. Subgroup (a) contains 

CYP71D178, CYP71D179 and CYP71D182. Subgroup (b) consists of CYP71D180 and CYP71D181. 

The dendrogram was constructed using the neighbour-joining method. The CYP name of each 

cytochrome P450 is given after the abbreviation of the species of origin and followed by the internal 

numbering within one cultivar: Ov – Origanum vulgare, Tv – Thymus vulgaris, Om – Origanum 

majorana; d – oregano cv. d06-01, f –oregano cv. f02-04, Ct – oregano cv. ‘Ct’, Tc – thyme cv. ‘Tc’, gT 

– marjoram cv. ‘gT’. 

 

Although five P450s were expressed in yeast, microsomal preparations gave enzymatically 

active protein for only three, CYP71D178, CYP71D180v1 and CYP71D181. Despite the high 

substrate specificity reported for plant biosynthetic P450s (Schuler, 1996), all three enzymes 

accepted a variety of different monoterpenes as substrates, including γ-terpinene, α-terpinene,  

(-)-R-α-phellandrene, (+)-R-limonene and (-)-S-limonene, all cyclohexanoid monoterpenes with 

two double bonds. Given the correlation of three P450s with thymol and carvacrol accumulation 

and the proposed role of γ-terpinene in the pathway to thymol and carvacrol, γ-terpinene was 

expected to be the natural substrate. All three active P450 enzymes converted γ-terpinene to one 

of these phenolic monoterpenes in small amounts: CYP71D180 and CYP71D181 formed 

carvacrol and CYP71D178 formed both thymol and carvacrol. But, the main product in all cases 

was p-cymene. This aromatic monoterpene was suggested to be an intermediate of thymol 
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biosynthesis, between γ-terpinene and thymol (Poulose and Croteau, 1978a). However, none of 

the enzymes converted p-cymene to thymol, carvacrol or any other product in vitro.  

Nevertheless, the three tested P450s were able to convert the limonene enantiomers, (+)-R- and 

(-)-S-limonene, into allylic alcohols with similar regiospecificity of the hydroxyl groups as in 

thymol and carvacrol. These substrates were tested because of the remarkably high amino acid 

identity of the oregano and thyme CYP71D P450s to the mint enzymes, CYP71D13 and 

CYP71D18. The oregano and thyme P450s share many structural and biochemical 

characteristics with the limonene hydroxylases of mint, which are the most closely-related 

P450s on the basis of amino acid similarity that have been characterized to date. The shared 

characteristics include the potential substrate recognition sites SRS1-SRS6. These sites also 

differ among CYP71D178 through CYP71D182 which might explain some of the biochemical 

properties observed in vitro. In SRS5, it was reported that a single amino acid substitution 

(F361I) converts the regiospecificity of CYP71D18 from a C6- to a C3-hydroxylase (Schalk and 

Croteau, 2000). At the corresponding positions, CYP71D178 through D182 all bear a 

phenylalanine (F) like the mint C6-hydroxylase so this position cannot be responsible for 

regiospecific differences in catalysis. However, only two amino acids downstream of this 

position, there is a marked difference among the enzymes with CYP71D178 containing an 

isoleucine residue, CYP71D179 and D182 containing a methionine residue, and CYP71D180 

and D181 (as well as the mint limonene hydroxylases, CYP71D13 and CYP71D18) containing 

a leucine at this position.  

At this point it remained unclear whether there are one or two separate P450-catalyzed steps on 

the pathway from γ-terpinene to thymol and carvacrol. The enzymes investigated in vitro could 

perform the first step to form p-cymene in planta, and one of the not yet characterized CYP71D 

P450s could be responsible for the second step from p-cymene to thymol or carvacrol. The co-

expression of two or more CYP71D P450s in several of the investigated plant lines supported 

such a two-enzyme scenario (chapter II). However, based on the conversion of (+)-R-limonene 

to either a C3 oxidation product (CYP71D178) or a C6 oxidation product (CYP71D180 and 

CYP71D181) it was conceivable that thymol and carvacrol formation could also involve an 

allylic intermediate formed from γ-terpinene. In this case, aromatization would constitute the 

second step. This suggested that p-cymene would be an artifact, possibly due to not optimal in 

vitro assay conditions. 
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Thymol and carvacrol forma tion by transgenic Arabidopsis thaliana over-
expressing CYP71D178 or CYP71D180 

To circumvent the difficulties inherent in carrying out in vitro assays with these P450s under 

non-natural conditions, a different approach was necessary. Therefore, two P450s, CYP71D178 

and CYP71D180v1, were transformed into Arabidopsis thaliana Col-0 (chapter III). First, the  

γ-terpinene synthase, OvTPS2, was transformed into Arabidopsis to provide the potential 

substrate for the P450s. However, this approach was stopped since the emission of γ-terpinene 

was extremely low and only present in flowers. Co-expression of both the γ-terpinene synthase 

and CYP71D178 resulted in the release of low levels of p-cymene only. The supply of substrate 

was enhanced by direct feeding of different monoterpenes in high concentrations via the 

surrounding air to transgenic A. thaliana over-expressing CYP71D178 or CYP71D180v1 kept in 

closed glass vessels. By this experimental setup, the hypothesis of a direct conversion of  

γ-terpinene into thymol or carvacrol by oregano and thyme CYP71D P450s was tested.  

Similar to the in vitro results from chapter II, CYP71D178 over-expressers formed both thymol 

and carvacrol while CYP71D180v1 over-expressers formed only carvacrol from γ-terpinene 

(chapter III). p-Cymene was found as the major product and was also formed by wild type and 

vector control Arabidopsis plants. Given these results and the previously described spontaneous 

formation upon contact with oxygen (Granger et al., 1964), it was concluded that the formation 

of p-cymene in vitro and in vivo is very likely an artifact of enzyme catalysis in a heterologous 

system. The fact that CYP71D178 and 180 convert γ-terpinene to thymol and carvacrol, a 

process requiring two formal oxidations, is not unusual for a member of the P450 family. 

Catalysis of multi-step oxidations is well known for a number of cytochrome P450s (Halkier et 

al., 1995; Bak et al., 1998; Ro et al., 2005). 

 

p-Cymene is not an in termediate in thymo l a nd carvacr ol fo rmation by orega no 
and thyme CYP71D P450s 

The aromatic monoterpene p-cymene was originally suggested as intermediate in the pathway 

of thymol and carvacrol biosynthesis proposed for thyme over thirty years ago (Poulose and 

Croteau, 1978a). The initial substrate, γ-terpinene, was predicted to be oxidized to p-cymene 

which in a second step is hydroxylated to form either thymol or carvacrol. This was a likely 

pathway since cytochrome P450s are often responsible for the hydroxylation of aromatic rings 

(Jerina and Daly, 1974), which are present in many pathways for plant secondary products such 

as furanocoumarins, anthocyanins, flavonoids and many more (Schuler, 1996).  

In the work reported here, no proof was found for the intermediacy of p-cymene in the 

conversion of γ-terpinene to thymol and carvacrol. In the feeding experiments described in this 
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chapter with the A. thaliana lines over-expressing CYP71D178 and CYP71D180v1 and the in 

vitro assays conducted with CYP71D178, 180v1 and 181 protein expressed in yeast (chapter II), 

it was found that p-cymene itself was not converted to form thymol and carvacrol in any 

amounts above background levels. Instead, p-cymene formed two other products at much higher 

rates, cuminol and p-cymene-8-ol, which carry hydroxyl groups at carbon positions C7 and C8 

outside the aromatic ring. These two derivatives were most probably formed by enzymes from 

Arabidopsis thaliana itself, possibly by one of the 246 P450s found in the Arabidopsis genome 

(Paquette et al., 2000; Werck-Reichhart et al., 2002; Schuler and Werck-Reichhart, 2003). Some 

of these P450s might be capable of catalyzing the hydroxylation of the aromatic p-cymene to 

thymol possibly by an NIH shift mechanism (Guroff et al., 1967).  

 

Thyme and oregano CYP71D P450s have narrow prod uct specificity but broad 
substrate specificity 

While CYP71D178 over-expressing A. thaliana plants formed both thymol and carvacrol, 

CYP71D180v1 over-expressers produced only carvacrol from γ-terpinene. Such differences in 

the regiospecificity of hydroxylation reactions are well known for cytochrome P450s (Schuler, 

1996) and have been especially well described for several P450s hydroxylating limonene in 

mint, caraway and Perilla (Karp et al., 1990; Bouwmeester et al., 1998; Mau et al., 2010).  

The oregano and thyme P450s, CYP71D178, CYP71D180v1 and CYP71D181, also showed 

such a difference in the regiospecificity of the hydroxylation from (-)-S- and (+)-R-limonene in 

vitro (chapter II). In chapter III, with A. thaliana over-expression lines, we found the same 

pattern. CYP71D178 over-expressing plant lines form mainly (-)-trans-carveol from (-)-S-

limonene and (+)-trans-isopiperitenol from (+)-R-limonene whereas CYP71D180v1lines form 

only carveols from either substrate. The position of the hydroxyl-group in carveol at carbon C6 

is identical to C2 in carvacrol whereas the C3-hydroxylation in isopiperitenol is identical in its 

position to the hydroxyl group in thymol (Fig. 4). 

As indicated above, the reason for these differences in the hydroxylation position might be 

related to differences found in the substrate recognition sites described in chapter II. Whether 

these differences, especially in SRS5 are responsible for the formation of either thymol or 

carvacrol and isopiperitenol or carveol needs further investigations, e.g. site directed 

mutagenesis combined with structural modeling of these P450s. In vitro CYP71D180 and 

CYP71D181 had shown identical hydroxylation patterns with both limonene substrates. 

Whether CYP71D179 and CYP71D182 show similar or different hydroxylation abilities 

compared to CYP71D178 is currently under investigation.  
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Figure 4  Summary of hydroxylated products formed from γ-terpinene and limonene fed to A. thaliana 

lines transformed with CYP71D genes. (A) Products formed from γ-terpinene: CYP71D178 catalyzes C2- 

and C3-hydroxylations to carvacrol or thymol while CYP71D180v1 forms only carvacrol. (B) Products 

formed from (+)-R- and (-)-S-limonene: CYP71D178 catalyzes C3- or C6-hydroxylations depending on 

the limonene enantiomer while CYP71D180v1 catalyzes only C6-hydroxylations from both enantiomers. 

The narrow product specificity of hydroxylation at only two positions in the cyclohexanoid ring 

is paired with broad substrate specificity. The three CYP71D P450s studied with yeast-

expressed proteins and in A. thaliana accepted five different cyclohexanoid monoterpenes as 

substrates. All accepted substrates contain two double bonds, at least one of which is within the 

cyclohexanoid ring. The position of the double bonds within the ring had an effect on the 

product. While γ-terpinene was hydroxylated at either C2 or C3 by CYP71D178, α-terpinene 

was exclusively hydroxylated at C2 by both enzymes. Moreover, the rate of formation of 

carvacrol by CYP71D180 was higher with α-terpinene as substrate. Thus, although γ-terpinene 

is the native substrate for thymol formation, carvacrol can be formed from α-terpinene as well. 

 

Arabidopsis readily glycosylates monoterpene alcohols as detoxification reactions 

 A. thaliana was found to convert hydroxylated monoterpenes very efficiently to glycosides. 

Only low amounts of free monoterpene alcohols were detected as volatiles in the headspace. A 

similar phenomenon was previously described for petunia over-expressing a linalool synthase 

from Clarkia breweri where the linalool (a monoterpene alcohol) formed was completely bound 

as glycosides (Lücker et al., 2001). The formation of glycosides from thymol, carvacrol and 

other monoterpene alcohols might be detoxification reactions to prevent cell damage by these 

compounds which are known to have strong anti-herbivore and anti-microbial activities (Isman, 
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2000; Hummelbrunner and Isman, 2001; Ultee et al., 2002; Sedy and Koschier, 2003; Floris et 

al., 2004; Braga et al., 2008). 

Interestingly, thymol- and carvacrol-glycosides have also been reported to occur in oregano at 

levels of 80-300 µg g-1 fresh weight (Skoula and Harborne, 2002; Stahl-Biskup, 2002). The 

amounts of free thymol and carvacrol, however, which are stored in the glandular trichomes, are 

30 to 400 times higher than these glycosidically bound forms (Stahl-Biskup, 1993, 2002). 

Observations of the glycoside content in relation to the filling of the glandular trichomes 

indicated that glycosides are formed when the storage capacity of the subcuticular space is 

reached and is thought to be a protection mechanism to prevent cell damage, especially 

membrane destruction, by excess lipophilic volatiles such as phenols or alcohols from 

destroying membranes (Stahl-Biskup, 1993, 2002).  

A. thaliana lacks specialized storage compartments for lipophilic secondary metabolites, like 

glandular trichomes, resin ducts and secretory cavities, and therefore needs to employ a 

different strategy to prevent autotoxicity. Glycosylation is such a mechanism which is involved 

in inactivation or detoxification of xenobiotics and other harmful components (Vogt and Jones, 

2000; Meßner et al., 2003; Gachon et al., 2005). The conjugation of plant metabolites to sugar 

moieties is performed by family 1 glycosyltransferases. They are known to occur in conjunction 

with cytochrome P450s as part of a detoxification sequence (Pedras et al., 2001). Arabidopsis 

contains more than 100 glycosyltransferases but the in planta functions are established for only 

about 10 % (Yonekura-Sakakibara, 2009). One or more of these enzymes is probably 

responsible for the glycosylation of the hydroxylated products formed by CYP71D178 and 

CYP71D180. 

 

The reaction of oregano and thyme CYP71D P450s probably involves an  allylic 
alcohol intermediate  

The data presented in chapters II and III clearly show that instead of p-cymene serving as an 

intermediate for thymol or carvacrol formation by the oregano and thyme CYP71D P450s, the 

mechanism of these reactions might involve an allylic alcohol intermediate formed from  

γ-terpinene which is then followed by a second oxidation resulting in aromatization.  

An initial allylic hydroxylation is supported by the high sequence similarity (> 73 % at the 

amino acid level) of the oregano and thyme CYP71D P450s with CYP71D13 and CYP71D18 

from mint, which both carry out allylic hydroxylation of the cyclohexanoid monoterpene, 

limonene. Sequence similarity is especially high in the potential substrate recognition sites 

(chapter II). Moreover, CYP71D13 and 18 catalyze the hydroxylation of both limonene 

substrates into products with identical regiospecificity to that seen in thymol and carvacrol. 

Following the first allylic hydroxylation, a second oxidation may take place to forma ketone. 
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Multi-step oxidations are a characteristic feature of P450s as stated above (Halkier et al., 1995; 

Bak et al., 1998; Ro et al., 2005). The proposed α,β-unsaturated ketone is inherently unstable 

and should aromatize to thymol or carvacrol via a keto-enol tautomerism.  

The artifactual formation of p-cymene might also be explained by details of the reaction 

mechanism. P450 oxidation of γ-terpinene would be expected to be initiated by abstraction of a 

hydrogen radical (Meunier et al., 2004; Shaik et al., 2005). If the resulting γ-terpinene radical 

species were released from the active site, it might spontaneously oxidize to p-cymene even 

more readily than p-cymene itself upon contact with oxygen (Granger et al., 1964). 

 

A pathway for thymol and carvacrol formation in oregano and thyme 

 

Figure 5 Proposed pathway for thymol and carvacrol formation in oregano and thyme.  

Based on the data presented in the three chapters, only two enzymes seem to be necessary to 

catalyze the reactions from geranyl diphosphate (GPP) to thymol and carvacrol in oregano and 

thyme. The first step from GPP to γ-terpinene is performed by monoterpenes synthases (TPS). 

γ-Terpinene is then transformed into thymol and carvacrol by the action of single cytochrome 

P450s. The two subgroups found in the amino acid alignment of the five CYP71D P450s from 

oregano and thyme seem to represent the functional difference. Therefore, CYP71D178, 

CYP71D179 and CYP71D182 are proposed to be thymol synthases while CYP71D180 and 

CYP71D182 are proposed to be carvacrol synthases. 
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Outlook 

Thymol and / or carvacrol are found in several plant species from at least three different plant 

families often together with γ-terpinene and p-cymene. This indicates a similar mechanism of 

thymol and carvacrol formation, possibly via cytochrome P450s of the CYP71D subfamily. 

Nevertheless, it is conceivable that different pathways have evolved, especially in plant species 

outside the Lamiaceae. Elsewhere in plant metabolism, different pathways or different enzymes 

are sometimes involved in the biosynthesis of the same product.  

The oregano and thyme CYP71D P450s characterized seem to have clear differences in product 

spectra between thymol and carvacrol. However, this point is still equivocal, since CYP71D178 

seems to produce both compounds. The difference in product spectra might be related to amino 

acid difference found in the substrate recognition sites. This might be tested either in vitro by 

site directed mutagenesis or by structural modeling and substrate fitting. 

Another aspect not discussed in this thesis is the role of the native cytochrome P450 reductase 

for the reaction mechanism of thymol and carvacrol formation. Almost all P450s require such a 

reductase for electron transfer to the active site. Though most plant P450s work very well with 

other plant P450 reductases the efficiency of the electron transfer may still depend on the CPR 

homolog present, and thus different CPRs may differentially influence cytochrome P450 

performance (Hasemann et al., 1995; Jensen and Møller, 2010). This possibility could be 

investigated by isolation of the CPR from thyme or oregano and its utilization in functional 

expression. 
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6 Summary 

Plant secondary compounds are of great importance not only to the plant as defense but also for 

pharmaceutical and medicinal purposes. Understanding the mechanisms underlying the 

formation and regulation of plant secondary compounds is essential to further investigate their 

roles in plant defense and develop new strategies to make these compounds more available for 

pharmaceutical and nutritional usage. Thymol and carvacrol are two aromatic monoterpenes 

often found in the essential oil of two culinary herbs, oregano (Origanum vulgare L.) and thyme 

(Thymus vulgaris L.) but also in a great diversity of other plant species. These compounds have 

a broad range of biological activities acting as antimicrobial compounds, insecticides, anti-

oxidants and pharmaceutical agents. A pathway for the biosynthesis of thymol from the 

monoterpene γ-terpinene via an intermediate p-cymene was proposed in the late 1970s which 

has never been validated.  

 

The research conducted for this thesis led to the elucidation of a new pathway to thymol and 

carvacrol and generated knowledge about the properties of the enzymes involved.  

Terpene synthases catalyze the formation of basic terpene skeletons from acyclic precursors. 

The genes coding for terpene synthases were investigated in two different oregano cultivars. 

Seven terpene synthase genes, Ovtps1 through Ovtps7, were isolated. Heterologous expression 

of these genes in E. coli resulted in six active terpene synthases which were found to form 

multiple mono- or sesquiterpenes. Together these terpene synthases are responsible for the 

direct production of the majority of terpenes found in O. vulgare essential oil. The isolated 

monoterpene synthase genes of O. vulgare appear to play a major role in controlling terpene 

composition in this species since the transcript levels of individual genes correlate closely with 

the amounts of the encoded enzyme products found in the essential oil.  

The enzymes responsible for γ-terpinene formation in vivo are likely to be the major terpene 

synthase activities in oregano and thyme. These enzymes provide the first intermediate in 

thymol and carvacrol biosynthesis. Only plant lines expressing the encoding genes contain  

γ-terpinene and related compounds such as p-cymene, thymol and carvacrol.  

 

Cytochrome P450 enzymes (P450s) are known to catalyze a number of oxidations of terpene 

metabolism and were likely to be involved in the reactions from γ-terpinene to thymol. Eleven 

cytochrome P450 gene sequences were isolated from oregano, thyme and marjoram that were 

assigned to five gene names, CYP71D178 through CYP71D182. The transcript levels of most of 

these genes are well-correlated with the occurrence of thymol and carvacrol. Heterologous 

expression of CYP71D178, CYP71D180 and CYP71D181 in yeast resulted in active proteins 

catalyzing the formation of p-cymene, thymol and carvacrol from γ-terpinene. p-Cymene was 
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not accepted as a substrate in vitro. This suggested that γ-terpinene is directly converted to 

thymol and carvacrol in vivo with p-cymene as a side product. The properties and sequence 

motifs of these P450s are similar to those of well-characterized limonene hydroxylases isolated 

from mint, CYP71D13 and CYP71D18. Moreover, the oregano and thyme CYP71D P450s 

hydroxylated limonene with similar regiospecificity as found in thymol and carvacrol. 

 

In order to circumvent the difficulties inherent in carrying out in vitro assays with these P450s 

under non-natural conditions, a different approach was necessary. Therefore, two of the oregano 

and thyme P450s were transformed into Arabidopsis thaliana. Transgenic A. thaliana plants 

over-expressing CYP71D178 or CYP71D180v1 were fed with different monoterpenes as 

substrates. Thymol and carvacrol were formed by these transgenic plants from γ-terpinene while 

p-cymene was not accepted as a substrate by the introduced CYP71D P450s. The majority of 

the hydroxylated products formed by transgenic Arabidopsis plants were not released as free 

volatiles but bound as glycosides. This might be a detoxification mechanism to prevent cell 

damage. 

Further experiments with structurally similar monoterpenes such as α-terpinene, (-)-R-α-

phellandrene, (-)-S-limonene and (+)-R-limonene revealed that these P450s have broad substrate 

specificities paired with narrow product specificity. Hydroxylations catalyzed by these oregano 

and thyme P450s occur only at two distinct carbon positions within the cyclohexanoid ring, 

either at C3 or at C2 (C6).  

 

In conclusion, it is proposed that the formation of thymol and carvacrol is catalyzed by single 

P450s directly from γ-terpinene via a two-step oxidation, whereas p-cymene is a side product 

resulting from premature release of the substrate from the active site. The mechanism of these 

reactions might involve an allylic alcohol intermediate formed from γ-terpinene which is then 

followed by a second oxidation resulting in aromatization.  

A pathway for thymol and carvacrol is proposed to start with the formation of γ-terpinene by a 

monoterpene synthase. The second step is catalyzed by cytochrome P450s in a two-step 

oxidation. CYP71D178, CYP71D179 and CYP71D82 are proposed to be thymol synthases 

while CYP71D180 and CYP71D181 are proposed to be carvacrol synthases. 
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7 Zusammenfassung 

Sekundäre Pflanzeninhaltsstoffe (auch pflanzliche Naturstoffe genannt) sind einerseits wichtig 

für Pflanzen zur Abwehr von Fraßschäden, andererseits werden sie häufig auch im 

pharmazeutischen oder medizinischen Bereich eingesetzt. Einblicke in die Mechanismen der 

Biosynthese und Regulation dieser Naturstoffe sind unverzichtbar, um neue Strategien zur 

Nutzbarmachung dieser Naturstoffe zu entwickeln und ihre eigentliche Rolle in der 

Pflanzenabwehr zu verstehen. Thymol und Carvacrol sind zwei Naturstoffe, die eine hohe 

Bioaktivität besitzen, z.B. als antimikrobielle Agentien, als Insektizid, Antioxidans oder als 

pharmazeutisches Mittel. Diese beiden phenolischen Monoterpene sind typische Inhaltsstoffe 

der Ätherischen Öle in Oregano (Origanum vulgare L.) und Thymian (Thymus vulgaris L.). 

Bereits in den späten 1970er Jahren wurde ein möglicher Weg für die Biosynthese von Thymol 

beschrieben. Es wurde postuliert, dass aus γ-Terpinen, einem Monoterpen, über ein 

aromatisches Intermediat (p-Cymen) Thymol gebildet wird. 

Die Zielstellung der vorliegenden Arbeit lag darin, den genauen Biosyntheseweg von Thymol 

und Carvacrol in den beiden Pflanzen, Oregano und Thymian, zu entschlüsseln. 

Terpensynthasen sind die Enzyme, die für die Biosynthese von Mono- und Sesquiterpenen 

verantwortlich sind. Daher wurden zuerst die Gene verschiedener Terpensynthasen in zwei 

Kultursorten von Oregano untersucht. Dabei wurden sieben Terpensynthasegene (Ovtps1 bis 

Ovtps7) isoliert, deren heterologe Expression in E. coli resultierte in sechs aktiven 

Terpensynthasen, die jeweils mehrere verschiedene Mono- oder Sesquiterpene bilden. 

Zusammen sind diese Enzyme für die Biosynthese eines Großteils der Terpene im ätherischen 

Öl von Oregano verantwortlich. Die Regulation scheint sich dabei vorwiegend auf der Ebene 

der Gene abzuspielen. Die Transkriptmengen der einzelnen Monoterpensynthasegene 

korrelieren sehr genau mit den Produkten der einzelnen Terpensynthasen im ätherischen Öl. 

Besonders wichtig sind die Monoterpensynthasen aus Oregano und Thymian, die γ-Terpinen 

bilden, da dieses Monoterpen die Vorstufe für die Biosynthese von Thymol und Carvacrol 

darstellt.  

Die nächsten Schritte im ursprünglich postulierten Biosyntheseweg für Thymol beinhalten 

Reaktionen, die häufig durch Enzyme aus der Familie der sogenannten Cytochrom P450 (P450) 

katalysiert werden. Aus verschiedenen Oregano, Thymian und Majoran Kultursorten konnten 

insgesamt elf Gene von Cytochrom P450 Enzymen isoliert werden, die sich auf fünf P450 

verteilen: CYP71D178 bis CYP71D182. Die Expression der meisten dieser Gene korreliert 

deutlich mit dem Vorkommen von Thymol und Carvacrol in den entsprechenden Pflanzen. Drei 

der isolierten Gene (CYP71D178, CYP71D180 und CYP71D181) wurden in S. cerevisiae 

heterolog exprimiert. Die resultierenden Enzyme setzen γ-Terpinen in p-Cymen, Thymol und 
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Carvacrol um. Da p-Cymen nicht umgewandelt werden konnte wurde angenommen, dass p-

Cymen ein Nebenprodukt sein könnte.  

Die Proteinsequenzen der untersuchten P450 Enzyme weisen große Ähnlichkeit mit anderen 

P450 Enzymen auf, besonders mit zwei Limonene-Hydroxylasen aus Minze (CYP71D13 und 

CYP71D18). Auch die enzymatischen Eigenschaften ähneln denen aus der Minze isolierten 

Enzyme.  

Um Probleme mit der Bildung von Artefakten in vitro zu umgehen, wurden zwei der P450 Gene 

in Arabidopsis thaliana transformiert. Die daraus resultierenden transgenen A. thaliana 

Pflanzen, die entweder CYP71D178 oder CYP71D180 überexprimieren, wurden mit 

verschiedenen Monoterpenen gefüttert. Nach Zugabe von γ-Terpinen bildeten die transgenen 

Pflanzen Thymol und Carvacrol. p-Cymen konnte auch von den in A. thaliana überexprimierten 

CYP71D P450 Enzymen nicht als Substrat verwendet werden, um Thymol oder Carvacrol zu 

synthetisieren. Der überwiegende Teil der in den transgenen Pflanzen gebildeten hydroxylierten 

Produkte wurde nicht als flüchtige Terpene abgegeben, sondern in Glykosiden gebunden. Der 

zugrunde liegende Mechanismus könnte eine Entgiftungsreaktion der Pflanze sein, um Schäden 

an den Zellen zu verhindern. 

In weiteren Experimenten wurden strukturell ähnliche Monoterpene getestet, wie α-Terpinen, (-

)-R-α-Phellandren, (+)-R-Limonen und (-)-S-Limonen. Diese Versuche zeigten, dass die 

getesteten Cytochrom P450 Enzyme eine relativ große Menge an verschiedenen Monoterpenen 

als Substrat verwenden können. Die entstandenen Produkte sind allerdings nur an zwei 

verschiedenen Positionen des Cyclohexan-Rings hydroxyliert, entweder am Kohlenstoffatom 

C3 oder C2 (C6).  Daraus lässt sich ableiten, dass Thymol und Carvacrol vermutlich durch zwei 

nacheinander ablaufende Oxidationen direkt aus γ-Terpinen gebildet werden. p-Cymen scheint 

ein Nebenprodukt durch zu frühes Entweichen aus dem aktiven Zentrum des Enzyms zu sein. 

Als Schlussfolgerung ergibt sich aus den vorliegenden Ergebnissen, dass p-Cymen kein 

Zwischenprodukt in der Biosynthese von Thymol und Carvacrol aus γ-Terpinen durch die P450 

Enzyme aus Oregano und Thymian darstellt. Eine mögliche Zwischenstufe könnte ein 

Allylalkohol sein, aus dem durch eine weitere Oxidation die aromatischen Endprodukte gebildet 

werden. Es wird postuliert, dass der  Biosyntheseweg von Thymol und Carvacrol in Oregano 

und Thymian aus zwei Teilen besteht. Zuerst wird γ-Terpinen durch Monoterpensynthasen 

gebildet, welches im zweiten  Schritt durch Cytochrom P450 Enzyme in einer zweistufigen 

Oxidation in Thymol oder Carvacrol umgewandelt wird. CYP71D178, CYP71D179 und 

CYP71D182 sind vermutlich Thymol-Synthasen und CYP71D180 und CYP71D182 sind 

vermutlich Carvacrol-Synthasen.  
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9 Supplementary Material 

9.1 Supplementary Material for Chapter I 

Table S1 Oligonucleotide sequences used for gene expression and synthesis of RNA hybridization probes 

Oligo sequences for gene expression. Start and stop codons are underlined. 

OvTPS1-gt-fwd 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTACCATTAGCATACATCATGT-3’ 

OvTPS1truSig-gt- 

fwd 

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCGTCATCTGCCTCTCGCCTC-3’ 

OvTPS1truRR-gt- 

fwd 

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACCCGGCGTTCCGCAAACTACGAGC-3’

OvTPS1-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATCATACGTATGGGTGGAAGAAC-3’ 

OvTPS2-gt-fwd 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCTACCCTTAGCATGCAAGTGTC -3’ 

OvTPS2truSig-gt- 

fwd 

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCATCTAAACCAATGGTGGC-3’ 

OvTPS2-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTCTCACACATATGGCTCGAAAATAAGGC-3’ 

OvTPS3-gt-fwd 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCAGAAATCTGTGCATCGGCT-3’ 

OvTPS3-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAATATGATACTCGATCGAGTGTAT-3’ 

OvTPS4-gt-fwd 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAAATATATTCACCGGTGGTTCC-3’ 

OvTPS4-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATCAAATGGGATCAACAAACACCATC-3’ 

OvTPS5-gt-fwd 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAAGGTTCAAAACCAGCT-3’ 

OvTPS5truRR-gt- 

fwd 

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGCGACGTTCTGGAAACTAC-3’ 

OvTPS5-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATCATGCATATGTCTCGAACAAC-3’ 

OvTPS6-gt-fwd 5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGAATTTCCGGCATCGGTTGCT-3’ 

OvTPS6-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATTATACGGGATCAACGAGTATGGATTT-3’ 

OvTPS7-gt-fwd 5’-GGGACAAGTTTGTACAAAAAAGCAGGCTTCATGTCTACCATTAGCATAAATCTTA-3’ 

OvTPS7truRR-gt- 

fwd 

5’-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGACCCGGCGTTCCGCAAACTACGAGC-3’

OvTPS7-gt-rev 5’-GGGGACCACTTTGTACAAGAAAGCTGGGTATCATACGTATGGGTGGAAGAAC-3’ 

Oligos for RNA hybridization probe synthesis: 

Ovtps1-fwd  5’-TTCTCAAAGACCGCGGCATCAACACTATCCT-3’ 

Ovtps1-rev 5’-CTGCAGCCCCCGCCCCTTGTTC-3’ 

Ovtps2-fwd 5’-TCACCGACGCGATTCGAAAATGGGACTT-3’ 

Ovtps2-rev 5’-GGGGTCCGCCATCGCCGTGTTC-3’ 

Ovtps3-fwd 5’-GTGATGGCATACATGGTAGAGGCAGAATGGTGT-3’ 

Ovtps3-rev 5’-ACGTACAATAAATTGATGACGCGAGCAAGATTGAGAAC-3’ 

Ovtps4-fwd 5’-GAGGGGGAGCGTTGTACCGCGTTGAAT-3’ 

Ovtps4-rev 5’- GGCTCGATGCATTCTTCGTTCATGTCCTTCC-3’ 

Ovtps5-fwd 5’-TCGATATCGTCTCCGACGATCATTTCCCAGT-3’ 

Ovtps5-rev 5’-TGTCTCGAACAACAGCCCTCCCATCTGTTTATGTATT-3’ 

Ovtps6-fwd 5’-CACACTATTCACTAGCGTTGTTCGAAGGTGGGACAT-3’ 

Ovtps6-rev 5’-GGTCGTAAGGATTGGAACAGAGGCTGGTCGT-3' 

Oligos for qRT-PCR 

Ovtps2-fwd 5’-GTGGCTGAGTTTGGTGGAAGG-3’ 

Ovtps2-rev 5’-TTGGCGTTCTCTAGGTATTCTGC-3’ 

Ovtps3-fwd 5’-AGGCAGAATGGTGTTTTAGCAAG-3’ 
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Ovtps3-rev 5’-GATCCTCCATCCCAACTAAAGAAG-3’ 

Ovtps5-fwd 5’-ACCTCAACAATGCCAAAGTTTCG-3’ 

Ovtps5-rev 5’-TGGTATCCGTACACGCTCTCG-3’ 

Ovtps6-fwd 5’-AGGGCGTATCGGAGGAAGAAG-3’ 

Ovtps6-rev 5’-GGTCGTAAGGATTGGAACAGAGG-3’ 

OvEF1alpha-fwd 5’-CTCCAGTTCTTGATTGCCACAC-3’ 

OvEF1alpha-rev 5’-GCTCCTTTCCAGACCTCCTATC-3’ 

 
Table S2 Essential oil composition of the Origanum vulgare plant lines (June 2006). Mean values (± SE) 

in mg g-1 fresh weight (n=3). 

Plant line: 
Terpene 

d2 
 

d5 
 

d8 
 

f2 
 

f3 
 

f4 
 

f5 
 

ff2 
 

ff4 
 

ff6 
 

ff7 
 

df5 
 

df6 
 

df7 
 

df8 
 

-thujene 
 

0.07 
(0.02) 

0.08 
(0.00) 

0.07 
(0.01) 

0.13 
(0.01) 

0.14 
(0.01) 

0.14 
(0.03) 

0.14 
(0.04) 

0.02 
(0.00) 

0.07 
(0.00) 

0.12 
(0.01) 

0.03 
(0.00) 

0.21 
(0.04) 

0.25 
(0.07) 

0.24 
(0.04) 

0.20 
(0.03) 

-pinene 
 

0.07 
(0.02) 

0.08 
(0.00) 

0.07 
(0.01) 

0.14 
(0.02) 

0.16 
(0.00) 

0.15 
(0.03) 

0.14 
(0.04) 

0.05 
(0.01) 

0.06 
(0.00) 

0.14 
(0.02) 

0.12 
(0.00) 

0.11 
(0.02) 

0.12 
(0.03) 

0.12 
(0.02) 

0.10 
(0.02) 

camphene 
 

0.00 
(0.00) 

0.01 
(0.01) 

0.00 
(0.00) 

0.01 
(0.01) 

0.04 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

0.00 
(0.00) 

0.03 
(0.00) 

0.07 
(0.01) 

0.00 
(0.00) 

0.00 
(0.00) 

0.05 
(0.02) 

0.00 
(0.00) 

0.02 
(0.02) 

sabinene 
 

0.37 
(0.05) 

0.51 
(0.02) 

0.44 
(0.01) 

1.03 
(0.05) 

1.12 
(0.00) 

1.21 
(0.11) 

1.08 
(0.24) 

0.48 
(0.03) 

0.47 
(0.01) 

0.84 
(0.06) 

0.72 
(0.01) 

0.70 
(0.07) 

0.52 
(0.05) 

0.56 
(0.03) 

0.56 
(0.11) 

-pinene 
 

0.04 
(0.01) 

0.06 
(0.01) 

0.04 
(0.01) 

0.09 
(0.01) 

0.11 
(0.01) 

0.09 
(0.02) 

0.09 
(0.02) 

0.03 
(0.00) 

0.04 
(0.00) 

0.06 
(0.01) 

0.07 
(0.01) 

0.06 
(0.01) 

0.06 
(0.02) 

0.05 
(0.00) 

0.05 
(0.02) 

myrcene 
 

0.12 
(0.02) 

0.18 
(0.04) 

0.14 
(0.01) 

0.27 
(0.01) 

0.31 
(0.00) 

0.32 
(0.03) 

0.28 
(0.08) 

0.12 
(0.01) 

0.14 
(0.00) 

0.28 
(0.02) 

0.21 
(0.01) 

0.29 
(0.04) 

0.31 
(0.04) 

0.28 
(0.02) 

0.28 
(0.06) 

-terpinene 
 

0.06 
(0.01) 

0.06 
(0.01) 

0.08 
(0.02) 

0.10 
(0.01) 

0.11 
(0.03) 

0.10 
(0.03) 

0.11 
(0.05) 

0.01 
(0.01) 

0.08 
(0.00) 

0.10 
(0.01) 

0.03 
(0.02) 

0.24 
(0.05) 

0.24 
(0.02) 

0.24 
(0.01) 

0.24 
(0.05) 

p-cymene 
 

0.38 
(0.07) 

0.49 
(0.04) 

0.45 
(0.04) 

0.50 
(0.03) 

0.59 
(0.01) 

0.54 
(0.06) 

0.44 
(0.05) 

0.01 
(0.01) 

0.35 
(0.01) 

1.03 
(0.08) 

0.00 
(0.00) 

1.12 
(0.05) 

0.96 
(0.12) 

1.07 
(0.12) 

1.03 
(0.17) 

limonene 
 

0.05 
(0.01) 

0.07 
(0.01) 

0.06 
(0.00) 

0.13 
(0.01) 

0.22 
(0.07) 

0.15 
(0.02) 

0.13 
(0.03) 

0.04 
(0.02) 

0.03 
(0.01) 

0.13 
(0.01) 

0.14 
(0.00) 

0.08 
(0.02) 

0.07 
(0.01) 

0.06 
(0.00) 

0.06 
(0.01) 

-phellandrene 
 

0.05 
(0.01) 

0.06 
(0.00) 

0.05 
(0.00) 

0.12 
(0.01) 

0.07 
(0.07) 

0.14 
(0.01) 

0.13 
(0.03) 

0.06 
(0.00) 

0.05 
(0.01) 

0.10 
(0.01) 

0.12 
(0.00) 

0.07 
(0.01) 

0.06 
(0.01) 

0.04 
(0.02) 

0.06 
(0.01) 

cis-ocimene 
 

0.30 
(0.02) 

0.40 
(0.01) 

0.36 
(0.01) 

0.16 
(0.01) 

0.19 
(0.00) 

0.21 
(0.03) 

0.17 
(0.03) 

0.31 
(0.02) 

0.08 
(0.01) 

0.04 
(0.01) 

0.33 
(0.01) 

0.64 
(0.09) 

0.55 
(0.05) 

0.54 
(0.01) 

0.56 
(0.10) 

trans--ocimene 
 

0.16 
(0.03) 

0.16 
(0.01) 

0.14 
(0.02) 

0.25 
(0.01) 

0.30 
(0.00) 

0.30 
(0.03) 

0.29 
(0.07) 

0.19 
(0.01) 

0.25 
(0.01) 

0.20 
(0.01) 

0.07 
(0.01) 

0.36 
(0.04) 

0.28 
(0.02) 

0.32 
(0.02) 

0.33 
(0.07) 

-terpinene 
 

1.01 
(0.06) 

1.39 
(0.02) 

1.18 
(0.01) 

2.46 
(0.06) 

2.67 
(0.06) 

3.11 
(0.24) 

2.59 
(0.45) 

0.03 
(0.01) 

1.19 
(0.03) 

2.91 
(0.09) 

0.05 
(0.01) 

4.64 
(0.45) 

4.30 
(0.19) 

4.26 
(0.13) 

4.60 
(0.75) 

cis-sabinene-
hydrate 

0.09 
(0.02) 

0.07 
(0.01) 

0.06 
(0.01) 

0.17 
(0.00) 

0.25 
(0.02) 

0.21 
(0.01) 

0.20 
(0.02) 

0.10 
(0.00) 

0.05 
(0.01) 

0.14 
(0.01) 

0.16 
(0.02) 

0.14 
(0.05) 

0.09 
(0.01) 

0.09 
(0.01) 

0.08 
(0.00) 

terpinolene 
 

0.02 
(0.02) 

0.03 
(0.02) 

0.02 
(0.01) 

0.02 
(0.02) 

0.05 
(0.01) 

0.02 
(0.01) 

0.00 
(0.00) 

0.01 
(0.01) 

0.00 
(0.00) 

0.03 
(0.01) 

0.03 
(0.03) 

0.02 
(0.01) 

0.07 
(0.05) 

0.00 
(0.00) 

0.02 
(0.02) 

trans-sabinene-
hydrate 

0.83 
(0.04) 

1.28 
(0.01) 

1.16 
(0.06) 

3.48 
(0.03) 

3.69 
(0.07) 

3.75 
(0.11) 

3.38 
(0.25) 

2.01 
(0.06) 

0.03 
(0.00) 

3.57 
(0.05) 

4.96 
(0.17) 

0.09 
(0.05) 

0.05 
(0.01) 

0.02 
(0.02) 

0.04 
(0.00) 

-terpineol 
 

0.06 
(0.04) 

0.09 
(0.01) 

0.09 
(0.02) 

0.17 
(0.02) 

0.22 
(0.02) 

0.23 
(0.05) 

0.17 
(0.01) 

0.08 
(0.00) 

0.05 
(0.01) 

0.19 
(0.00) 

0.22 
(0.01) 

0.14 
(0.05) 

0.08 
(0.02) 

0.09 
(0.02) 

0.09 
(0.00) 

thymol 
 

0.07 
(0.01) 

0.10 
(0.01) 

0.06 
(0.01) 

1.23 
(0.04) 

1.27 
(0.06) 

1.19 
(0.00) 

1.07 
(0.06) 

0.03 
(0.01) 

1.36 
(0.06) 

0.10 
(0.00) 

0.01 
(0.01) 

0.77 
(0.01) 

0.61 
(0.02) 

0.68 
(0.01) 

0.88 
(0.11) 

carvacrol 
 

0.02 
(0.01) 

0.04 
(0.01) 

0.05 
(0.01) 

0.09 
(0.00) 

0.11 
(0.01) 

0.10 
(0.01) 

0.10 
(0.01) 

0.03 
(0.01) 

0.10 
(0.01) 

0.02 
(0.01) 

0.03 
(0.03) 

0.14 
(0.02) 

0.12 
(0.03) 

0.13 
(0.02) 

0.12 
(0.03) 

trans--
caryophyllene 

0.26 
(0.03) 

0.36 
(0.00) 

0.30 
(0.02) 

0.23 
(0.01) 

0.26 
(0.04) 

0.26 
(0.01) 

0.26 
(0.02) 

0.28 
(0.02) 

0.23 
(0.01) 

0.16 
(0.01) 

0.26 
(0.03) 

0.45 
(0.01) 

0.37 
(0.01) 

0.43 
(0.01) 

0.46 
(0.05) 

-humulene 
 

0.07 
(0.01) 

0.08 
(0.00) 

0.09 
(0.00) 

0.06 
(0.01) 

0.06 
(0.01) 

0.07 
(0.01) 

0.04 
(0.02) 

0.07 
(0.02) 

0.06 
(0.01) 

0.03 
(0.00) 

0.06 
(0.01) 

0.07 
(0.00) 

0.10 
(0.03) 

0.10 
(0.05) 

0.06 
(0.00) 

alloaromadendrene 
 

0.02 
(0.01) 

0.04 
(0.00) 

0.05 
(0.01) 

0.02 
(0.00) 

0.03 
(0.00) 

0.01 
(0.01) 

0.03 
(0.02) 

0.03 
(0.00) 

0.01 
(0.01) 

0.01 
(0.01) 

0.01 
(0.01) 

0.04 
(0.02) 

0.02 
(0.01) 

0.03 
(0.01) 

0.06 
(0.01) 

germacrene D 
 

0.32 
(0.01) 

0.46 
(0.01) 

0.39 
(0.02) 

0.70 
(0.01) 

0.77 
(0.01) 

0.82 
(0.03) 

0.77 
(0.04) 

1.22 
(0.12) 

0.67 
(0.03) 

0.33 
(0.01) 

0.47 
(0.02) 

0.89 
(0.04) 

0.81 
(0.07) 

0.87 
(0.03) 

1.09 
(0.19) 

bicyclo-
germacrene 

0.07 
(0.03) 

0.06 
(0.01) 

0.05 
(0.01) 

0.09 
(0.01) 

0.11 
(0.00) 

0.16 
(0.05) 

0.27 
(0.12) 

0.09 
(0.01) 

0.03 
(0.00) 

0.03 
(0.00) 

0.24 
(0.01) 

0.11 
(0.01) 

0.09 
(0.03) 

0.11 
(0.00) 

0.10 
(0.01) 

1,6-germa-
cradiene-5-ol 

0.19 
(0.01) 

0.33 
(0.02) 

0.27 
(0.01) 

0.07 
(0.00) 

0.07 
(0.01) 

0.08 
(0.01) 

0.07 
(0.01) 

0.05 
(0.01) 

0.10 
(0.00) 

0.08 
(0.00) 

0.05 
(0.02) 

0.26 
(0.03) 

0.12 
(0.01) 

0.17 
(0.01) 

0.21 
(0.05) 

total 
 

4.68 
(0.19) 

6.51 
(0.17) 

5.64 
(0.25) 

11.74 
(0.22) 

12.94 
(0.38) 

13.37 
(0.76) 

11.96 
(1.35) 

5.37 
(0.31) 

5.54 
(0.11) 

10.71 
(0.38) 

8.40 
(0.09) 

11.63 
(1.09) 

10.29 
(0.68) 

10.52 
(0.34) 

11.30 
(1.07) 

monoterpenes 
 

3.75 
(0.20) 

5.19 
(0.28) 

4.50 
(0.36) 

10.56 
(0.12) 

11.63 
(0.32) 

11.98 
(1.12) 

10.52 
(1.85) 

3.63 
(0.22) 

4.44 
(0.06) 

10.08 
(0.15) 

7.30 
(0.09) 

9.81 
(1.71) 

8.78 
(0.59) 

8.80 
(0.31) 

9.32 
(1.37) 

sesquiterpenes 
 

0.93 
(0.02) 

1.32 
(0.01) 

1.15 
(0.04) 

1.18 
(0.03) 

1.31 
(0.68) 

1.40 
(0.06) 

1.44 
(0.16) 

1.74 
(0.12) 

1.10 
(0.11) 

0.63 
(0.03) 

1.10 
(0.04) 

1.82 
(0.06) 

1.51 
(0.07) 

1.72 
(0.05) 

1.98 
(0.30) 
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Figure S1 Amino acid sequence alignment of the Origanum vulgare terpene synthases and closely related 

enzymes from other plants. The DDxxD and the RR(x8)W motifs (solid lines) and the ChloroP predicted 

transit peptides (solid line under last amino acid) are shown. 

Figure on next page as fold-out. 
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Table S3 Putative terpene synthase genes represented by ESTs in a glandular trichome cDNA library of 

Origanum vulgare cultivar f0204 
Gene # ESTs 

Ovtps1 16 

Ovtps2 18 

Ovtps3 19 

Ovtps4 8 

Ovtps5 5 

Ovtps6 3 

Ovtps7 - 

 
Table S4 Copy numbers per µg total RNA (normalized for mg plant material) from absolute qRT-PCR. 

Mean values (±SE), (n=9 except for NoRT and ff2 single plants n=3) 

 
Ovtps2 

 
Ovtps5

d2 
 

7254.1 
(920.6) 

1575.9
(193.2)

d5 
 

6150.0 
(421.2) 

1326.0
(108.4)

f4 
 

15795.8 
(1347.5) 

6590.7
(716.9)

f5 
 

10254.8  
(448.8) 

4190.5
(136.9)

ff1 
 

345.8 
(61.8) 

2609.8
(205.5)

ff1 NoRT 
 

238.5 
(52.8) 

59.6
(12.9)

ff2-1 
 

8835.1 
(223.9) 

2248.0
(30.3)

ff2-2 
 

227.1 
(21.8) 

1820.1
(118.9)

ff2-2 NoRT 
 

- 
 

23.8
(3.9)

ff2-3 
 

10715.7 
(166.1) 

3820.6
(244.7)

ff4 
 

9862.2 
(1508.0) 

2646.1
(364.5)

ff5 
 

8656.4 
(407.5) 

4832.9
(189.0)

ff6 
 

11897.3 
(846.1) 

4384.0
(280.6)

ff7 
 

219.0 
(52.2) 

4510.6
(325.9)

ff7 NoRT 
 

129.8 
(53.1) 

36.4
(12.0)

ff8 
 

431.6 
(63.5) 

232.1
(28.4)

ff8 NoRT 
 

142.0 
(30.4) 

29.7
(10.8)

df6 
 

51240.6 
(8927.3) 

4265.6
(705.9)

df8 
 

30449.3 
(2957.2) 

2653.9
(282.4)
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9.2 Supplementary Material for Chapter II 

Table S5 Essential oil composition of the oregano (Ov), thyme (Tv) and marjoram (Om) plant lines. Mean 

values (± SE) in mg g-1 fresh weight (n=9, except for Tv-Tc, Ov-Ct and Om-gT n=3).   

Plant line: 
Terpene 

Tv-Tc 
 

Ov-Ct 
 

Om-gT 
 

Ov-d2 
 

Ov-d5 
 

Ov-f4 
 

Ov-f5 
 

Ov-df6 
 

Ov-df8 
 

Ov-ff1 
 

Ov-ff2 
 

Ov-ff4 
 

Ov-ff5 
 

Ov-ff6 
 

Ov-ff7 
 

Ov-ff8 
 

α-thujene 33.5 
(0.8) 

50.4 
(5.2) 

cov. cov. cov. 36.9 
(1.9) 

34.4 
(4.7) 

cov. cov. 2.4 
(0.3) 

7.4 
(1.4) 

15.5 
(1.2) 

19.3 
(0.8) 

cov. cov. 2.5 
(0.1) 

α-pinene 22.2 
(0.5) 

26.4 
(2.8) 

10.8 
(0.3) 

1.8 
(0.5) 

2.3 
(0.3) 

32.2 
(2.0) 

33.4 
(1.3) 

19.7 
(0.9) 

21.4 
(1.5) 

5.5 
(0.3) 

11.1 
(1.4) 

9.9 
(0.8) 

22.6 
(1.0) 

17.9 
(0.4) 

15.2 
(1.2) 

5.2 
(0.4) 

camphene 
 

22.6 
(0.5) 

6.8 
(0.5) n.d. n.d. n.d. 

0.9 
(0.3) 

0.8 
(0.3) 

5.1 
(0.3) 

5.9 
(0.6) n.d. 

6.9 
(1.8) 

7.8 
(0.6) n.d. 

13.3 
(0.4) n.d. n.d. 

sabinene 
 

4.8 
(0.2) 

20.0 
(1.5) 

96.9 
(1.0) 

37.4 
(2.5) 

36.1 
(1.2) 

356.2 
(25.1) 

382.7 
(14.4) 

188.4 
(12.8) 

176.2 
(8.9) 

94.3 
(5.3) 

85.6 
(4.0) 

45.7 
(2.8) 

577.1 
(21.2) 

124.9 
(2.1) 

158.7 
(10.1) 

88.9 
(6.9) 

β-myrcene 
 

48.5 
(1.5) 

79.7 
(7.9) 

25.3 
(0.5) 

10.7 
(0.5) 

9.6 
(0.3) 

83.3 
(3.7) 

80.1 
(8.4) 

110.4 
(6.3) 

118.5 
(4.0) 

16.2 
(0.7) 

22.2 
(1.8) 

25.2 
(1.8) 

45.5 
(1.5) 

36.2. 
(0.7) 

40.6 
(2.9) 

14.9 
(1.1) 

α-phellandrene 
 

3.5 
(0.4) 

2.9 
(0.4) 

5.7 
(0.1) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

α-terpinene 
 

13.5 
(1.9) n.d. 

32.7 
(1.2) 

9.9 
(0.6) 

8.1 
(0.4) 

80.4 
(5.9) 

65.6 
(6.2) 

157.3 
(12.8) 

99.7 
(5.1) 

8.3 
(0.4) 

21.9 
(4.4) 

28.5 
(2.2) 

46.4 
(2.3) 

45.8 
(1.5) 

45.4 
(3.2) 

6.9 
(0.5) 

p-cymene 
 

400.4 
(1.6) 

216.1 
(16.5) 

45.9 
(3.4) 

22.3 
(1.6) 

35.2 
(3.5) 

223.6 
(17.9) 

154.1 
(8.7) 

265.5 
(18.3) 

219.8 
(6.3) n.d. 

48.1 
(16.1) 

107.4 
(6.6) 

138.0 
(10.3) 

108.3 
(6.8) n.d. n.d. 

limonene 
 n.d. n.d. n.d. 

6.4 
(1.3) 

6.3 
(1.2) 

60.6 
(9.5) 

57.2 
(6.1) 

19.1 
(1.2) 

18.5 
(0.7) 

11.8 
(0.8) 

14.6 
(1.1) 

8.3 
(0.6) 

22.1 
(2.4) 

26.7 
(2.3) 

39.8 
(3.8) 

10.5 
(1.0) 

β-phellandrene 
 n.d. n.d. n.d. 

3.3 
(1.1) 

4.0 
(1.4) 

55.0 
(8.3) 

53.6 
(11.8) 

6.6 
(2.2) 

12.2 
(0.4) 

10.3 
(2.0) 

7.6 
(3.8) n.d. 

51.8 
(2.0) 

21.4 
(3.2) 

50.5 
(10.1) 

9.0 
(1.9) 

cis-ocimene 
 

1.5 
(0.5) 

16.5 
(1.6) 

38.1 
(1.3) 

44.9 
(1.8) 

41.1 
(1.7) 

21.8 
(2.0) 

23.2 
(3.0) 

237.5 
(9.0) 

271.8 
(9.5) 

69.9 
(3.1) 

28.0 
(14.1) 

6.7 
(0.4) 

4.0 
(1.3) n.d. 

94.5 
(5.0) 

70.2 
(5.2) 

(E)-β-ocimene 
 

2.5 
(0.5) 

18.2 
(0.5) 

4.7 
(0.4) 

13.6 
(0.4) 

11.6 
(0.4) 

59.1 
(4.5) 

71.3 
(2.7) 

78.9 
(6.7) 

86.2 
(4.6) 

20.1 
(0.5) 

15.3 
(1.5) 

25.2 
(2.0) 

317.6 
(11.4) 

15.4 
(0.5) 

12.8 
(0.6) 

16.8 
(1.2) 

γ-terpinene 
 

858.4 
(21.0) 

497.4 
(45.6) 

380.1 
(5.4) 

164.5 
(11.4) 

133.8 
(4.8) 

877.8 
(38.0) 

944.6 
(42.1) 

2810.2 
(170.9) 

2868.8 
(97.9) 

10.3 
(0.5) 

211.1 
(52.3) 

301.1 
(24.4) 

553.5 
(21.8) 

460.2 
(15.0) 

48.2 
(3.2) 

8.7 
(0.5) 

cis-sabinene 
hydrate 

36.8 
(0.8) 

17.2 
(0.4) 

32.3 
(1.0) n.d. n.d. 

28.8 
(1.5) 

26.4 
(0.6) 

8.5 
(0.3) 

9.5 
(0.3) 

9.5 
(0.3) 

10.9 
(0.6) n.d. 

13.1 
(0.3) 

13.8 
(0.2) 

14.8 
(0.8) 

8.2 
(0.9) 

Linalool 
 

48.9 
(1.6) 

9.8 
(0.1) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

trans-sabinene  
hydrate n.d. n.d. 

859.2 
(3.3) 

91.9 
(4.1) 

87.0 
(2.2) 

932.3 
(29.5) 

918.7 
(29.1) 

2.3 
(0.9) 

5.0 
(0.2) 

258.6 
(7.4) 

296.0 
(20.6) 

11.7 
(0.8) 

71.6 
(1.9) 

526.3 
(7.0) 

952.0 
(66.4) 

232.5 
(26.9) 

carvacrol methyl 
ether 

29.4 
(0.5) 

35.7 
(2.1) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

thymoquinone 
 

39.9 
(0.9) 

124.3 
(7.2) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

thymol 
 

1641.4 
(48.9) 

63.6 
(3.7) n.d. n.d. n.d. 

160.5 
(18.9) 

172.2 
(17.2) 

89.2 
(12.3) 

146.4 
(7.7) n.d. 

2.4 
(1.2) 

165.3 
(9.5) 

57.8 
(4,.0) 

12.3 
(0.6) n.d. n.d. 

carvacrol 
 

51.1 
(1.7) 

6297.6 
(108.8) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

carvacrol acetate 
 

n.d. 33.3 
(1.4) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

(E)-β-
caryophyllene 

125.0 
(2.3) 

83.8 
(13.9) 

134.0 
(0.8) 

49.5 
(2.6) 

35.9 
(3.2) 

69.2 
(4.1) 

82.8 
(5.9) 

197.1 
(12.8) 

231.3 
(5.2) 

55.1 
(1.9) 

35.5 
(5.7) 

55.7 
(4.1) 

54.4 
(1.9) 

22.2 
(1.0) 

54.4 
(4.8) 

51.2 
(2.9) 

α-humulene 
 

3.4 
(0.1) 

9.2 
(1.4) 

20.1 
(0.2) 

4.1 
(1.3) 

2.1 
(1.1) 

9.9 
(0.6) 

12.1 
(1.1) 

12.0 
(0.9) 

13.7 
(0.3) 

3.7 
(1.5) n.d. 

8.0 
(1.2) n.d. n.d. 

7.1 
(1.4) 

7.7 
(0.3) 

(-)-germacrene D 
 

31.8 
(0.6) 

34.8 
(6.5) 

376.9 
(3.2) 

79.1 
(4.6) 

60.2 
(5.0) 

228.8 
(10.7) 

265.0 
(17.0) 

525.3 
(24.5) 

610.9 
(14.3) 

279.7 
(10.2) 

152.7 
(29.7) 

189.9 
(14.6) 

239.7 
(7.4) 

77.5 
(3.3) 

121.5 
(10.9) 

256.0 
(13.8) 

bicyclo-
germacrene 

4.2 
(0.0) 

1.6 
(1.6) 

16.2 
(0.1) n.d. n.d. 

17.1 
(0.8) 

18.9 
(1.7) 

13.7 
(1.2) 

21.1 
(0.7) 

2.9 
(1.5) n.d. n.d. 

16.0 
(0.6) n.d. 

37.0 
(3.8) 

5.3 
(3.8) 

cis-α-bisabolene 7.1 
(0.2) 

60.8 
(9.9) 

2.7 
(0.1) n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 

cov. = peaks of α-thujene in GC analysis were covered by a non-terpene compound and could not be 

calculated; n.d. = not detectable 
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Table S6 Oligonucleotide sequences used for gene expression, synthesis of RNA hybridization probes 

and qRT-PCR 

Oligo sequences for gene expression, Start and stop codons are underlined 

CYP71D178-182-fwd 5’- GATGGATATTTCAATTTCATGGGT -3’ 
CYP71D178-182rev 5’- ATTATGAGGTTGGATTGTGGATT-3’ 
CYP71D178-182-Not1-fwd 5’- TAAAAGCGGCCGCGATGGATATTTCAATTTC -3’ 
CYP71D178-182-Spe1-rev 5’- TTAAACTAGTTTATGAGGTTGGATT -3’ 

Oligo sequences for RNA hybridization analysis 

CYP71D178-fwd 5’- GGCTTCACCCTCCTTTCCCGATTATACCAAGAC -3’ 
CYP71D178-rev 5’- GGCCTGGCTTCTCCGTCATGTCAATGTC -3’ 

Oligo sequences for qRT-PCR analysis 

CYP71D178-fwd 5’- CAAGGAATGACTGCTGCTGAC -3’ 
CYP71D178-rev 5’- TTGGATTGTGGATTGTTGGAACC -3’ 
CYP71D179/182-fwd 5’- CGTGGCTTCTCAACCTTCTC -3’ 
CYP71D179/182-rev 5’- CGCTCTTCTTCACCCTATGC -3’ 
CYP71D180-fwd 5’- GCAAAGAAGAATGCGAGGTC -3’ 

CYP71D180-rev 5’- GATTGAACGTGTCGGGATCT-3’ 
CYP71D181-fwd 5’- TACTGGAAAGACCCCGACAC -3’ 
CYP71D181-rev 5’- CGAACGGGATTAACTCGAAA -3’ 

 

Table S7 Copy numbers per µg total RNA (normalized for mg plant material) from absolute qRT-PCR. 
Mean values (±SE), (n=9 except for plant lines Ov-Ct, Tv-Tc and Om-gT n=3) 

 CYP71D178 CYP71D178/179/182 CYP71D180 CYP71D181 Ovtps2 

Ov-d2 

 

862.9 
(152.0) 

1349.2 
(201.2) 

10.1 
(3.8) 

3.5 
(1.1) 

7622.9 
(1215.4) 

Ov-f5 
 

11850.5 
(386.0) 

17385.5 
(373.3) 

0.1 
(0.1) 

5.1 
(1.0) 

10937.7 
(627.0) 

Ov-ff4 
 

25965.4 
(3767.1) 

32086.2 
(4651.4) 

1.7 
(0.8) 

22.4 
(20.1) 

19715.3 
(3149.5) 

Ov-ff7 
 

17089.0 
(1126.1) 

21789.9 
(1160.7) 

4.1 
(2.2) 

0.1 
(0.1) 

290.0 
(77.8) 

Ov-ff8 
 

12.3 
(4.2) 

18.3 
(3.7) 

5.3 
(3.0) 

33.5 
(5.8) 

539.7 
(90.9) 

Ov-df6 
 

10008.4 
(1520.1) 

13677.2 
(1971.4) 

1.7 
(1.1) 

3.4 
(2.9) 

58443.8 
(8126.0) 

Ov-Ct 
 

2360.4 
(49.6) 

9344.8 
(124.1) 

381.0 
(29.2) 

85007.0 
(1880.0) 

198714.1 
(9640.0) 

Tv-Tc 
 

399.2 
(10.4) 

146901.5 
(314.0) 

205.6 
(16.5) 

17.6 
(0.6) 

129.7 
(7.6) 

Om-gT 
 

0.1 
(0.1) 

13.3 
(6.7) n.d. 

7.7 
(1.8) 

21071.1 
(1982.8) 
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Figure S2  Amino acid alignment of eleven cytochrome P450s all five named cytochrome P450s, 

CYP71D178-CYP71D182. CYP71D18 from mint is added for comparison. Common sequence motifs of 

cytochrome P450s are shown: the P450 ‘signature’ sequence PFxxGxRxcxG; WxxxR motif; ExLR motif; 

proline rich hinge (PPxPP); the membrane anchor is underlined with a dotted line. Putative substrate 

recognition sites are underlined and named from SRS1 to SRS6. SRS2 and SRS3 are likely found within 

the markings of the broader dotted regions.  

Figure on next page as fold-out. 
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9.3 Supplementary Material for Chapter III 

Table S8  Data of Figures 5, 7, 8, 10 and 11. Amounts of terpenes released from β-glucosidase-treated 

extracts of A. thaliana transformed with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed 

with different monoterpenes. Controls include plants transformed with an empty vector (Vector Ctrl) and 

wild-type A. thaliana Col-0 (Col-0 WT) plants. All plants were put in one glass vessel for monoterpene 

feeding. Amounts presented are mean values (± standard error) in µg g-1 dry weight (n = 9).  
  Plant line 

Terpene fed Terpene products CYP71D178 CYP71D180v1 Vector Ctrl Col-0 WT 
γ-terpinene      

 
p-cymen-8-ol 
 

4.92 
(0.68) 

5.72 
(0.75) 

4.02 
(1.37) 

5.12 
(0.98) 

 
thymol 
 

6.51 
(0.45) 

n.d. n.d. n.d. 

 
cuminol 
 

11.19 
(0.72) 

11.17 
(0.38) 

9.08 
(1.01) 

8.59 
(0.44) 

 
carvacrol 
 

152.52a 
(8.04) 

443.78b 
(12.09) 

13.85c 
(1.50) 

23.58c 
(2.77) 

α-terpinene      

 
p-cymen-8-ol 
 

6.80b 
(0.37) 

18.12a 
(0.66) 

10.04b 

(0.58) 
9.72b

(0.94) 

 
mt3 
 

3.41b 

(3.41) 
34.67a 

(1.94) 
5.63b 

(0.73) 
2.84b 

(1.48) 

 
thymol 
 

n.d. 2.81 
(2.81) 

n.d. n.d. 

 
cuminol 
 

11.08b 

(0.36) 
20.58a 

(0.80) 
10.99b 

(0.46) 
11.53b 

(0.51) 

 
carvacrol 
 

81.55b 

(3.71) 
476.93a 

(59.89) 
25.93b 

(1.55) 
93.08b 

(19.66) 

 
mt10 
 

9.04 
(0.74) 

43.92 
(2.66) 

n.d. n.d. 

p-cymene      

 
p-cymene-8-ol 
 

10.77a

(0.46) 
13.83b

(0.30) 
15.11b 

(0.49) 
19.99c

(0.63) 

 
mt2 
 

1.39a 

(0.56) 
8.89ab 

(0.26) 
2.20a 

(0.76) 
4.19a 

(0.16) 

 
mt3 
 

4.32 
(1.21) 

2.98 
(0.14) 

2.20 
(0.42) 

3.22 
(0.42) 

 
cuminol 
 

12.99a 

(2.03) 
26.12b 

(1.31) 
22.97b 

(0.68) 
24.73b 

(0.74) 

 
carvacrol 
 

n.d. 2.78 
(0.13) 

n.d. n.d. 

Values followed by different letters (a-c) are significantly different (P < 0.05) in one-way ANOVA followed by a 
Tukey’s test for all pairwise comparisons. mt1, mt2, mt3, mt10 are unidentified monoterpenes. 
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Table S8 continuation of previous page 
  Plant line 

Terpene fed Terpene products CYP71D178 CYP71D180v1 Vector Ctrl Col-0 WT 
(-)-R-α-

phellandrene  
    

 
p-cymene-8-ol 
 

1.87ab

(0.60) 
13.69ab

(1.32) 
0.44b 

(0.29) 
24.86ab 

(1.91) 

 
mt1 
 

n.d. 
11.04 
(2.55) 

n.d. n.d. 

 
mt3 
 

2.57 
(0.85) 

0.32 
(0.32) 

3.32 
(0.93) 

5.82 
(0.23) 

 
cuminol 
 

6.28 
(1.88) 

5.40 
(0.34) 

3.56 
(0.69) 

5.66 
(0.23) 

 
carvacrol 
 

n.d. 
2.57 

(0.55) 
n.d. n.d. 

 
mt10 
 

n.d. 
250.44 
(11.01) 

n.d. 
0.37 

(0.37) 
(+)-R-limonene      

 
trans-p-menth- 
2,8-dien-1-ol 

66.17 
(1.54) 

48.72 
(3.58) 

60.25 
(2.66) 

57.03 
(4.79) 

 
cis-p-menth- 
2,8-dien-1-ol 

109.07a 

(2.49) 
42.05b 

(3.10) 
71.09b 

(2.57) 
56.32b 

(3.98) 

 
(+)-trans- 
isopiperitenol 

386.22a 

(30.66) 
68.04b 

(4.38) 
112.52b 

(11.43) 
52.09b 

(2.96) 

 
(+)-trans-carveol 
 

44.22b 

(1.65) 
231.25a 

(7.45) 
47.61b 

(2.21) 
48.05b 

(3.15) 

 
(+)-cis-carveol 
 

102.07b 

(7.71) 
829.16a 

(32.35) 
88.70b 

(7.54) 
187.53c 

(12.95) 

 
carvone 
 

0.27b 

(0.27) 
9.38a 

(0.31) 
1.20b 

(0.38) 
3.78b 

(0.32) 

 
limonene-10-ol 
 

23.08 
(1.06) 

31.65 
(2.40) 

32.82 
(3.98) 

29.43 
(2.05) 

 
perillyl-alcohol 
 

18.11b 

(1.12) 
34.32a 

(2.52) 
15.28b 

(0.86) 
17.28b 

(1.14) 
(-)-S-limonene      

 
trans-p-menth- 
2,8-dien-1-ol 

8.90 
(1.42) 

7.09 
(0.99) 

6.94 
(0.62) 

8.72 
(0.33) 

 
cis-p-menth- 
2,8-dien-1-ol 

11.69 
(2.08) 

6.18 
(0.80) 

6.30 
(0.48) 

7.20 
(0.19) 

 
(-)-trans- 
isopiperitenol 

47.35 
(7.49) 

10.49 
(1.33) 

13.18 
(0.35) 

11.16 
(0.48) 

 
(-)-trans-carveol 
 

258.13b 

(47.38) 
689.26a 

(23.91) 
138.75b 

(5.25) 
446.52c 

(29.24) 

 
(-)-cis-carveol 
 

29.29ab 

(5.10) 
49.92a 

(5.96) 
10.78b 

(0.11) 
21.20ab 

(1.36) 

 
carvone 
 

0.29a 

(0.19) 
4.61a 

(0.52) 
n.d.b 2.28a 

(0.10) 

 
limonene-10-ol 
 

2.47ab 

(0.51) 
12.51a 

(1.25) 
n.d.b 3.90ab 

(0.18) 

 
perillyl-alcohol 
 

10.56b 

(1.09) 
22.70a 

(0.97) 
13.98b 

(0.39) 
11.12b 

(0.35) 
Values followed by different letters (a-c) are significantly different (P < 0.05) in one-way ANOVA followed by a 
Tukey’s test for all pairwise comparisons. mt1, mt2, mt3, mt10 are unidentified monoterpenes. 
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Table S9  Total amounts of hydroxylated products obtained from feeding of different monoterpene 

substrates to A. thaliana plants. All plant lines were fed together with one substrate in a single vessel (n = 

3 per plant line, 12 plants in total per vessel). Approximately 65 mg of each monoterpene were available 

in the volatile phase for conversion over the 5 day-period of the experiment. 

Plant line 

Substrate 

CYP71D178 
[µg] 

CYP71D180v1 
[µg] 

Vector Ctrl 
[µg] 

Col-0 WT 
[µg] 

Total 
[µg] 

γ-terpinene 36.7 96.8 4.0 8.2 145.7 

p-cymene 6.2 10.4 9.3 11.4 37.3 

α-terpinene 23.9 121.5 10.0 25.8 181.2 

(-)-R-α-phellandrene 1.8 41.9 1.5 9.1 54.3 

(+)-R-limonene 143.3 282.5 64.5 99.7 589.9 

(-)-S-limonene 62.1 164.8 21.7 110.1 358.6 

 

 

Figure S3 Spontaneous formation of p-cymene from γ-terpinene after 24 h. 20 µl γ-terpinene was applied 

in 1 l glass vessels with sealed lids and the conversion was monitored after 30 min and 24 h. (A) 

Conversion in the presence of A. thaliana Col-0 plants , 1, p-cymene; 2, γ-terpinene. (B) Spontaneous 

conversion in an empty glass vessel, 1, p-cymene; 2, γ-terpinene. 
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Figure S4  Spontaneous formation of p-cymene from (-)-R-α-phellandrene after 24 h. 20 µl (-)-R-α-

phellandrene was applied in 1 l glass vessels with sealed lids and the conversion was monitored after 30 

min and 24 h. (A) Conversion in the presence of A. thaliana Col-0 plants , 1, p-cymene; 6, (-)-R-α-

phellandrene. (B) Spontaneous conversion in an empty glass vessel, 1, p-cymene; 6, (-)-R-α-phellandrene. 

 
Figure S5  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with γ-terpinene. Controls include 

plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana Col-0 (Col-0 WT) 

plants. Structures of substrate, γ-terpinene, and important products, thymol and carvacrol, are shown. 

Plant lines were fed separately. Amounts presented are mean values ± standard error (n = 6). n.d. = not 

detectable.  
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Figure S6  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with p-cymene. Controls include 

plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana Col-0 (Col-0 WT) 

plants. Structures of substrate, p-cymene, and important products, p-cymene-8-ol and cuminol, are shown. 

Plant lines were fed separately. Amounts presented are mean values ± standard error (n = 6). n.d. = not 

detectable. 

 

 
Figure S7  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with α-terpinene. Controls include 

plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana Col-0 (Col-0 WT) 

plants. Structures of substrate, α-terpinene, and the most abundant product, carvacrol, are shown. Plant 

lines were fed separately. Amounts presented are mean values ± standard error (n = 6). n.d. = not 

detectable. mt10 = unidentified monoterpene. 
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Figure S8  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with α-phellandrene. Controls 

include plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana Col-0 (Col-0 

WT) plants. The structure of substrate, α-phellandrene, is shown. Plant lines were fed separately. 

Amounts presented are mean values ± standard error (n = 6). n.d. = not detectable. mt10 = unidentified 

monoterpene. 

 

 
Figure S9  Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with (+)-R-limonene. Controls 

include plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana Col-0 (Col-0 

WT) plants. Structure of the substrate, (+)-R-limonene, and major products, (+)-trans-isopiperitenol, (+)-

trans-carveol and (+)-cis-carveol, are shown. Plant lines were fed separately. Amounts presented are 

mean values ± standard error (n = 6). n.d. = not detectable.  
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Figure S10 Amounts of terpenes released from β-glucosidase-treated extracts of A. thaliana transformed 

with CYP71D genes (CYP71D178, CYP71D180v1) that had been fed with (+)-R-limonene. Controls 

include plants transformed with an empty vector (Vector Ctrl) and wild-type A. thaliana Col-0 (Col-0 

WT) plants. Structure of the substrate, (-)-S-limonene, and major products, (-)-trans-isopiperitenol and (-

)-trans-carveol, are shown. Plant lines were fed separately. Amounts presented are mean values ± 

standard error (n = 6). n.d. = not detectable. 
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