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has supported me throughout my thesis. His encouragement and supervision from the
preliminary to the concluding level enabled me to develop an understanding of the subject.
This thesis is simply impossible without him. Many thanks go to Prof. Martin Heimann
for many useful discussions, advices, and insights throughout my work. I am very grateful
to Prof. Christiane Schmullius, my university advisor and the chairman of my regular
advisory committee meeting, for her encouragement, and useful comments. Furthermore,
I would like to thank Prof. Magdy Abdel wahab, the former Head of the department of
Astronomy and Meteorology, at Cairo University. He has been my teacher and mentor for
many years. He offers advice and suggestions whenever I need him.

Furthermore, I would like to thank Markus Reichstein, the team leader of the MDI-
BGC group, first, for the updated formula of the soil respiration model that used in this
thesis, second, for his contributions and feedbacks during my regular advisory committee
meetings. The MDI-BGC group has been a source of friendships as well as good advice and
collaboration. I am especially grateful to Nuno Carvalhais and Martin Jung for providing
the land cover map and the fAPAR data, and also for their feedbacks and useful comments.
Besides, I would like to thank Miguel Mahecha for answering my questions on statistics. I
am grateful for Christian Beer for providing the global field of GPP used for comparison.

I thank all my colleagues and friends at the MPI-BGC for their support. In particular,
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Abstract

The role of land ecosystems as sources or sinks of carbon in response to human perturbation

is not well understood given the spatial heterogeneity and the temporal variability of the

biospheric CO2 exchange (Ciais et al., 2000). Therefore, understanding and quantifying the

role of the land biosphere in the global carbon budget is necessary, particularly the response

and feedback of carbon fluxes to climatic controls. Atmospheric CO2 measurements have

played a key role in assessing source/sink distributions on global scales using atmospheric

CO2 inversions (top-down approach) (e.g. Enting et al. (1995); Kaminski et al. (2002);

Bousquet et al. (2000); Rödenbeck et al. (2003); Baker et al. (2006)). Process-based models

(bottom-up approaches) of carbon fluxes are also useful tools for exploring the underlying

processes involved in the uptake and release of carbon in the terrestrial biosphere. These

methods on their own are unlikely to provide enough information to fully understand

the biological processes driving the uptake and release of atmospheric CO2. Therefore,

within this thesis, we developed a modeling framework that couples bottom-up and top-

down approaches and uses different data constraints (atmospheric CO2 concentrations,

satellite-driven data, and climate data) in order to quantify the carbon sources and sinks

of the terrestrial biosphere. This allows us to better understand the underlying processes

by optimizing some internal key parameters of the biosphere model in order to fit the

observed CO2 concentrations.

The bottom-up approach is represented by a data-driven Simple Diagnostic Photosynthesis

and Respiration Model (SDPRM) based on pre-existing models. The ecosystem respira-

tion (Reco) model is based on the formulations introduced by Lloyd and Taylor (1994)

and modified by Reichstein et al. (2003) while the photosynthesis model is based on the

light use efficiency logic, suggested by Monteith (1977), for calculating the Gross Primary

Production (GPP). SDPRM is driven by satellite-derived fAPAR (fraction of Absorbed

Photosynthetically Active Radiation) and climate data from NCEP/NCAR. The model

estimates 3-hourly values of GPP for seven major biomes and daily Reco. The motivation

is to provide reliable and fine-grained first guess fields of surface CO2 fluxes for the inverse

model which is presented by the standard inversion algorithm (STD-inv) introduced by

Rödenbeck (2005). Then, from the coupled inversion system, fine-grained adjustments

and interpretable parameters of SDPRM can be achieved based on the atmospheric infor-

mation.

The simulated fluxes from SDPRM showed that the model is capable of producing real-
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istic flux patterns comparable to the ones inferred from the atmospheric CO2 inversion

or inferred from the process-based models. This is promising since the model is much

simpler and easier to apply than sophisticated process-based models. Different analyses

were carried out to test the sensitivity of the estimated fluxes of GPP, Reco and NEE to

their driving forces (fAPAR and climate data). It is found that the interannual variability

of NEE is mainly driven by climate. Also, the results show that temperature is a limit-

ing factor for the interannual variability of GPP and Reco over the northern hemisphere

regions, in particular in the cold boreal forest. Vapor pressure deficit (VPD) is the main

limiting factor of the interannual variability of GPP for the water-limited regions while

radiation is the main limiting factor in tropical regions. Furthermore, the analyses show

that precipitation controls the interannual variability of Reco over a large area of the globe

in particular over the tropics and the southern hemisphere. These results are consistent

with the findings of Nemani et al. (2003).

The results of the coupled system (SDPRM-inv) are promising as they demonstrate that

the method works and is capable of correcting carbon fluxes from SDPRM for annual and

seasonal time scales, as well as for different processes (e.g. GPP and Reco). The optimiza-

tion algorithm in the system substantially reduces the a-priori uncertainties for most of

the parameters (more than 88%). The optimized model produces a good fit to the seasonal

cycle of atmospheric CO2 concentrations and a moderate fit to its interannual variability.

Also, based on the optimized results, the interannual variability of Reco dominates the

interannual variability of NEE in the tropics. Furthermore, from such a system, it has

been found that some of the missing processes in SDPRM (for example biomass burning)

can explain some of the differences between the flux variability simulated by the coupled

system and the one seen by the atmospheric signals as has been shown for Tropical Asia

in 1998.

There is a range of possible results to explore from the coupled system that can improve our

understanding of the terrestrial carbon cycle. For instance, the response of the terrestrial

biosphere fluxes to the climate anomalies can be investigated based on the optimized

results. In addition, the coupled system is flexible enough to be modified and refined in

order to include various sources of information or processes. For example, fire emissions

can be added as an additional process to the model. As a further possibility, the isotopic

composition of the atmospheric CO2 (such as 13CO2,
14CO2) can be used to discriminate

between the signals from different processes (GPP, Reco, and fossil fuel burning).
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Zusammenfassung

Die Rolle von Ökosystemen als Quellen oder Senken von Kohlenstoff infolge der anthro-

pogenen Störung ist noch nicht gut verstanden, insbesondere durch die räumliche Het-

erogenität und zeitliche Variabilität des biosphärischen CO2-Austauschs (Ciais et al.,

2000). Deshalb ist es wichtig, die Rolle der Landbiosphäre im globalen Kohlenstoff-

Budget zu verstehen und zu quantifizieren, besonders die Reaktionen und Feedbacks

der Kohlenstoff-Flüsse auf klimatische Einflüsse. Atmosphärische CO2-Messungen spie-

len eine Schlüsselrolle in der Untersuchung der Verteilung von Quellen und Senken

auf globaler Skala, wobei atmosphärische CO2-Inversionen zum Einsatz kommen (“Top-

down approach”) (e.g. Enting et al. (1995); Kaminski et al. (2002); Bousquet et al.

(2000); Rödenbeck et al. (2003); Baker et al. (2006)). Prozessorientierte Modelle der

Kohlenstoff-Flüsse (“Bottom-up approach”) sind ebenfalls nützliche Werkzeuge, um die

Prozesse zu untersuchen, die der Aufnahme und Abgabe von Kohlenstoff durch die ter-

restrische Biosphäre zugrunde liegen. Diese einzelnen Methoden für sich können aber

noch nicht genug Informationen liefern, um die biologischen Prozesse der Aufnahme

und Abgabe von Kohlenstoff voll zu verstehen. In dieser Dissertation haben wir de-

shalb ein Modellsystem entwickelt, das “Top-down approach” und “Bottom-up approach”

koppelt und verschiedene Datenströme nutzt (atmosphärische CO2-Konzentration, satel-

litenbasierte Daten, Wetterdaten). Ziel ist, die Kohlenstoff-Quellen und -Senken der

Biospäre zu quantifizieren und die zugrundeliegenden Prozesse zu verstehen, indem in-

terne Schlüsselparameter durch Anpassung an die CO2-Beobachtungen optimiert werden.

Der “Bottom-up approach” wird durch ein daten-getriebenes einfaches Diagnostis-

ches Photosynthese- und Respirationsmodell (SDPRM) auf der Grundlage existieren-

der Modelle representiert. Die Ökosystem-Atmung (Reco) beruht auf den Formulierun-

gen von Lloyd and Taylor (1994) mit Änderungen nach Reichstein et al. (2003). Das

Photosynthese-Modell, das die Netto-Primärproduktion (GPP) berechnet, basiert auf der

“light use efficiency”-Formulierung von Monteith (1977). SDPRM wird von satelliten-

basiertem fAPAR (Anteil der absorbierten photosynthetisch aktiven Strahlung) und Kli-

madaten von NCEP/NCAR angetrieben. Das Modell schätzt 3-stündliche Werte von

GPP für 7 Haupt-Biome, sowie tägliches Reco. Es stellt damit verlässliche, hochaufgelöste

a-priori-Felder der CO2-Flüsse bereit, die in der atmosphärischen Inversion (Algorith-

mus nach Rödenbeck (2005)) verwendet werden. Das gekoppelte System erzeugt dann

hochaufgelöste Korrekturen zu den Fluss-Feldern sowie interpretierbare Parameter auf

der Grundlage der atmosphärischen Information.
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Die Simulationen mit SDPRM zeigen, dass das Modell in der Lage ist, realistische Fluss-

Muster zu erzeugen, die mit denen aus der Standard-Inversion oder von Prozessmodellen

vergleichbar sind. Das ist vielversprechend, da das Modell deutlich weniger komplex und

einfacher anwendbar ist als Prozessmodelle. In verschiedenen Analysen wurde die Sensi-

tivität der berechneten Felder von GPP, Reco und NEE bezüglich ihrer Einflussfaktoren

(fAPAR und Klimadaten) untersucht. Es ergibt sich, dass die interannuale Variabilität von

NEE hauptsächlich von Klimadaten bestimmt ist. Temperatur ist der limitierende Fak-

tor der interannualen Variabilität von GPP und Reco in der Nordhemispäre, besonders in

kalten boralen Wäldern. Dampfdruck-Defizit (VPD) ist der wichtigste limitierende Faktor

der interannualen Variabilität von GPP in wasserlimierten Gebieten, während Strahlung

der wichtigste limitierende Faktor in den Tropen ist. Die Analysen zeigten außerdem, dass

Niederschlag die interannuale Variabilität von Reco in weiten Teilen der Erde bestimmt,

besonders in den Tropen und der Südhemispäre. Diese Ergebnisse sind konsistent mit

Nemani et al. (2003).

Die Ergebnisse des gekoppelten Systems bestätigen das Konzept und zeigen, dass das Sys-

tem die Kohlenstoff-Flüsse aus dem SDPRM auf saisonaler und interannualer Zeitskala

sowie für die einzelnen GPP- und Reco-Komponenten korrigieren kann. Der Optimierungs-

Algorithmus reduziert die a-priori-Unsicherheiten der meisten Parameter beträchtlich

(über 88%). Das optimierte Modell zeigt einen guten Fit an den Jahresgang der CO2-

Konzentrationen, und einen mäßigen Fit an die interannuale Variabilität. Nach den opti-

mierten Ergebnissen ist die interannuale Variabilität von NEE von den Tropen dominiert,

die wiederum durch Reco dominiert sind. Weiterhin wurde gefunden, dass Prozesse, die

in SDPRM fehlen (z.B. Biomassen-Verbrennung), manche der Unterschiede zwischen der

Fluss-Variabilität aus dem gekoppelten Modell und den atmospärischen Signalen erklären

können, wie etwa 1998 im tropischen Asien.

Eine Reihe weiterer möglicher Ergebnisse des gekoppelten Systems können genutzt werden,

unser Verstndnis des terrestrischen Kohlenstoff-Kreislaufs zu verbessern. Beispielsweise

kann anhand der optimierten Ergebnisse die Reaktion der biospärischen Flüsse auf Klima-

Anomalien untersucht werden. Daneben kann das gekoppelte System flexibel modifiziert

und erweitert werden, um verschiedene Informationsquellen oder Prozesse hinzuzufügen.

Beispielsweise können Emissionen aus Feuer als weiterer Prozess hinzugefügt werden. Eine

weitere Möglichkeit besteht darin, die Isotopen-Zusammensetzung des atmosphärischen

CO2 (wie 13CO2,
14CO2) zu nutzen, um zwischen den Signalen verschiedener Prozesse

(GPP, Reco, fossile Verbrennung) zu unterscheiden.
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Acronyms

CO2 Carbon Dioxide
O2 Oxygen
CH4 Methane

GPP Gross Primary Production
Ra Autotrophic Respiration
Rh Heterotrophic Respiration
Reco Ecosystem Respiration
NPP Net Primary Production
NEP Net Ecosystem Production
NEE Net Ecosystem Exchange
NBP Net Biome Production
NDVI Normalized Difference Vegetation Index
PAR Photosynthetically Active Radiation
APAR Absorbed Photosynthetically Active Radiation
fAPAR fraction of Absorbed Photosynthetically Active Radiation
LAI Leaf Area Index
PFT Plant Functional Types
VPD Vapor Pressure Deficit

SDPRM The Simple Diagnostic Photosynthesis and Respiration Model
STD-inv The Standard Inversion
SDPRM-inv The coupled inversion system (SDPRM + STD-inv )

TransCom Atmospheric Tracer Transport Model Inter-comparison Project
CCDAS Carbon Cycle Data Assimilation System
GIMMS Global Inventory Modeling and Mapping Studies
AVHRR Advanced Very High Resolution Radiometer
SYNMAP Synergetic land cover product
EDGAR The Emission Database for Global Atmospheric Research
GFEDv2 Global Fire Emissions Database version 2

IPCC The Intergovernmental Panel on Climate Change
UNFCCC The United Nations Framework Convention on Climate Change
FAO Food and Agriculture Organization
NCEP The National Center for Environmental Prediction
NCAR The National Center for Atmospheric Research Reanalysis
NOAA The National Oceanic and Atmospheric Administration

ppm parts-per-million
PgC 1 Petagram = 1 x 1015 gram
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Chapter 1

Introduction

1.1 Background

There is increasing evidence that Earth’s climate is changing (Schär and Jendritzky, 2004;

Trenberth et al., 2007; Klein Tank and Können, 2003). The Earth’s climate is influenced

by many factors such as the amount of incoming solar radiation and also the amount

of greenhouse gases and aerosols in the atmosphere, and the properties of the Earth’s

surface, which determine how much of this solar energy is retained or reflected back to

space. According to the 2007 Fourth Assessment Report (AR4) by the Intergovernmental

Panel on Climate Change (IPCC), global surface temperature increased by 0.74 ± 0.18
◦C during the 20th century. The increase in Earth’s average temperature is called global

warming. Based on measurements and studies of past climate (Joos et al., 1999), the

observed temperature increase since the middle of the 20th century is caused by increasing

carbon dioxide (CO2) concentration, the main anthropogenic greenhouse gas (IPCC AR4,

2007).

Ice core data (EPICA, 2004), which provide a reliable and accurate record of CO2 con-

centration going back hundreds of thousands of years (figure 1.1), show that the CO2

concentration in the atmosphere was never even close to as high as it is at present; the

current CO2 concentration is above 380 ppm (parts-per-million), while the preindustrial

level throughout the Holocene (the past 10,000 years) was close to 280 ppm (Denman

et al., 2007).

Since the late 1950s when Charles D. Keeling began the first systematic monitoring of

CO2 concentrations at Mauna Loa, Hawaii, and at the South Pole (Keeling et al., 2005b),

the annual mixing ratio of CO2 is steadily increasing in the atmosphere and even acceler-

ating (figure 1.2). The increasing concentration of CO2 in the atmosphere comes primarily
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Figure 1.1— The variations in concentration of carbon dioxide (CO2) in the atmosphere during the
last 400 thousand years as measured from ice cores (EPICA, 2004) (Courtesy: Global Warming Art
http://www.globalwarmingart.com).

Figure 1.2— Recent Atmospheric CO2 concentrations at Mauna Loa Observatory (Courtesy: Global
Warming Art http://www.globalwarmingart.com).
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Figure 1.3— Recent CO2 concentrations and emissions. (a) CO2 concentrations (monthly averages)
from Mauna Loa, Hawaii (black; (Keeling and Whorf, 2005)) and Baring Head, New Zealand (blue; (Manning
et al., 1997)). In the lower right of the panel, atmospheric oxygen (O2) measurements from flask samples
are shown from Alert, Canada (pink) and Cape Grim, Australia (cyan) (Manning and Keeling, 2006). (b)
Annual global CO2 emissions from fossil fuel burning and cement manufacture in Gt C/year (gigatonnes
of carbon = 1 billion tonnes = 1 Petagram = 1 x 1015 g) (black) through 2005, using data from the CDIAC
website (Marland et al., 2006) to 2003. Annual averages of the 13C/12C ratio measured in atmospheric CO2

at Mauna Loa from 1981 to 2002 (red) are also shown (Keeling et al., 2005a) (Courtesy:IPCC AR4 (2007)).

from anthropogenic (human) activities, particularly fossil fuel burning (i.e. combustion

of coal, oil, natural gas), and changes in land use, such as the conversion of forests to

agricultural lands (Houghton, 2003). These anthropogenic activities are transferring car-

bon from Earth’s crust and living biomass into the atmosphere in the form of extra CO2

superimposed on the natural fluxes of carbon in the Earth system.
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There is much evidence confirming that anthropogenic emissions are the main cause for

the observed increase in atmospheric CO2. First, figure 1.1 shows that the timing of the

increase is coincident with the rising emissions of carbon from fossil fuel combustion and

land-use change starting with the industrial revolution. Second, the latitudinal gradient in

CO2 concentrations is highest at northern mid-latitudes and lower in the southern hemi-

sphere, consistent with the fact that most of the emissions of fossil fuel are located in

northern mid-latitudes. This latitudinal gradient has increased in proportion to emissions

of carbon from fossil fuels (Keeling et al., 2005b). Third, the characteristic isotopic sig-

natures of fossil fuel (its lack of 14C, and depleted content of 13C) leave their mark in the

atmosphere. Fourth, atmospheric oxygen O2 is declining at a rate comparable with fossil

fuel emissions of CO2 (combustion consumes O2) (figure 1.3).

Therefore, understanding the global carbon cycle is necessary, particularly the response

and feedback of carbon fluxes to climatic controls. In the following section an overview

of the global carbon cycle including the main reservoirs of carbon will be presented. The

main focus of this thesis will be on the processes that lead the land to be an important

sink of carbon.

1.2 Overview of Global Carbon Cycle

The carbon cycle can be viewed as transfer of carbon between a set of reservoirs (figure 1.4).

The major reservoirs (or pools) are the atmosphere, the terrestrial biosphere (including

vegetation and non-living organic material, such as soil carbon), the ocean (including

dissolved inorganic carbon (DIC) and living and non-living marine biota), the sediments

(including fossil fuels), and the Earth’s interior (i.e. the Earth’s mantle and crust). Each

of these reservoirs holds a form of carbon such as calcium carbonate in rocks or CO2 and

methane and other minor gases in the atmosphere. The exchange, or flux, of carbon among

the atmosphere, oceans, and land surface is called the global carbon cycle (figure 1.4).

The rate at which carbon moves between important reservoirs has been changed due to

human actions. Burning fossil fuel speeds up the “weathering” of buried hydrocarbons and

deforestation accelerates the natural pace at which forests die and decompose, releasing

carbon back to the atmosphere.

According to IPCC AR4 (2007), about 80% of anthropogenic CO2 emissions during the

1990s resulted from fossil fuel burning and cement production, and about 20% from land

use change (primarily deforestation). Measurements of atmospheric carbon dioxide levels

(going on since 1957) indicate that only about 45% of the combined anthropogenic CO2

emissions accumulate in the atmosphere (Prentice, 2001) and show both a pronounced

seasonality (Bolin and Keeling, 1963) and interannual variations associated with vegetation
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Figure 1.4— The global carbon cycle. In the figure the carbon fluxes are shown in Gt C/year with the
natural fluxes depicted by black arrows and the anthropogenic fluxes by red arrows (Courtesy: IPCC AR4
(2007)). Units are in gigatonnes of carbon (1 Gt = 1 billion tonnes = 1 Petagram = 1 x 1015 g).

responses to climatic variations (Keeling et al., 1995; Francey et al., 1995). This suggests

that the actual atmospheric CO2 increase is significantly modified by ocean and land

uptake of CO2 (Prentice, 2001). Based on inorganic carbon measurements and a tracer-

based separation technique, oceans are estimated to have taken up approximately 30% of

the anthropogenic CO2 emissions (fossil fuel plus land use) (Sabine et al., 2004) suggesting

that the rest is taken up by the terrestrial biosphere (25%).

The global carbon budget has several terms that have a higher degree of certainty than

others. For example, fossil fuel emissions, based on international energy statistics (Mar-

land and Rotty, 1984; Andres et al., 1996), are probably the best-known term in the global

carbon budget. Also, the partitioning of the net flux of carbon into the ocean and the

terrestrial biosphere is well constrained by CO2, O2/N2, and δ13C measurements (Ciais

et al., 1995; Francey et al., 1995; Keeling et al., 1993, 1995; Battle et al., 2000; Piper et al.,

2001). In addition, the uptake of carbon by oceans has been estimated by a number of

different ocean models, which generally agree with the observation-based budget estimates

(Gloor et al., 2003; Mikaloff Fletcher et al., 2006; Sabine et al., 2004; Manning and Keel-

ing, 2006). Nevertheless, the most uncertain aspect of the anthropogenic global carbon
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budget is the breakdown of the terrestrial sources (from land use) and terrestrial sinks

or the so-called “residual land sink” which is part of the global carbon cycle calculation

once the other components are accounted for (fossil fuel emissions, land-use emissions,

atmospheric increase, and ocean uptake). For example, for the decade of 2000s, fossil fuel

emissions account for 7.7±0.5 PgC/year (Petagram=1015 g), land use change is 1.1±0.7

PgC/year, oceans take up 2.3±0.4 PgC/year and 4.1±0.1 PgC/year remains in the at-

mosphere (Global Carbon Project: http://www.globalcarbonproject.org/, updated from

Le Quéré et al. (2009)). The land sink is calculated as the residual of the sum of all sources

minus the sum of atmosphere and ocean sinks and accounts for 2.4 PgC/year.

To understand the role of the terrestrial biosphere in the global carbon cycle, it is im-

portant that we understand the processes that transfer carbon between the atmosphere

and terrestrial biosphere reservoirs. Understanding the underlying processes may help to

predict their behavior in the future and predict if the terrestrial biosphere will continue

to store a substantial fraction of the carbon dioxide that human are producing or if it will

stop or even reverse and accelerate the atmospheric increase.

1.3 Terrestrial biosphere carbon cycle processes

There are several processes that exchange carbon between the terrestrial biosphere and the

atmosphere. Carbon exists in the atmosphere as the compound CO2, methane (CH4) and

other minor gases. It first enters the terrestrial biosphere when plants absorb CO2 through

tiny pores in their leaves. The plants then capture CO2 and convert it into simple organic

compounds like glucose through the biochemical process known as “photosynthesis”. Dur-

ing photosynthesis, plants use energy from sunlight to combine CO2 from the atmosphere

with water from the soil to create carbohydrates (carbo- and hydrate, signify carbon and

water) to grow and to reproduce. Current estimates suggest that global photosynthesis

removes about 120 PgC/year from the atmosphere (IPCC AR4, 2007) (see figure 1.4).

Plants also release CO2 back to the atmosphere through the process of respiration, known

as Autotrophic Respiration (Ra). Respiration is the process in which oxygen is used to

break down organic compounds, namely carbohydrates made during photosynthesis, into

CO2 and water (H2O). The CO2 is released back to the atmosphere, ready to be recycled

again. Plant respiration represents approximately half (60 PgC/year) of the CO2 that

is returned to the atmosphere in the terrestrial portion of the carbon cycle (IPCC AR4,

2007).

Soil respiration, known as Heterotrophic Respiration (Rh), is another process and consid-

ered one of the largest sources by which carbon is returned to the atmosphere as CO2. The
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release of CO2 through respiration is not unique to plants, but is something all organisms

do. When dead organic matter is broken down or decomposed (consumed by bacteria

and fungi), CO2 is released into the atmosphere at an average rate of about 60 PgC/year

globally (IPCC AR4, 2007).

Fire and human land use practices (Houghton, 2003) also play an important role in the

transfer of carbon dioxide from the land to the atmosphere. For example, fires consume

biomass and organic matter to produce carbon dioxide, methane, carbon monoxide, and

smoke, and the vegetation that is killed but not consumed by the fire decomposes over

time adding further carbon dioxide to the atmosphere. Also, when forests are cleared for

agriculture the carbon contained in the living material and soil is released. In contrast,

when forests are allowed to re-grow, carbon is stored in the accumulating living biomass

and soils.

The carbon balance of an ecosystem at any point in time is the difference between its

carbon gains through photosynthesis and losses through respiration by autotrophs (plants

and photosynthetic bacteria) and heterotrophs (fungi, animals and some bacteria). The

balance of CO2-assimilation and all respiratory processes is defined as Net Ecosystem Pro-

ductivity (NEP). However, besides respiratory losses, there are carbon losses through fire,

harvest and grazing. Based on that, the total carbon balance, including respiratory and

non-respiratory losses, is termed Net Biome Productivity (NBP) (Schulze and Heimann,

1998; Schulze et al., 2000).

The previous definitions can be summarized in the following terminologies

• Gross Primary Production (GPP): the total amount of carbon fixed by photo-

synthesis in an ecosystem. The total global GPP estimate is about 120 PgC/year

(IPCC AR4, 2007).

• Ecosystem Respiration (Reco): the total respiration of plants, animals, and mi-

crobes (autotrophic and heterotrophic respiration).

Reco = Ra+Rh (1.1)

• Net Primary Production (NPP): the net production of organic carbon by plants

in an ecosystem; equals GPP minus the amount of carbon consumed by plants in

autotrophic respiration (Ra). The total global NPP estimate is about 60 PgC/year

(IPCC AR4, 2007).

NPP = GPP −Ra (1.2)
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• Net Ecosystem Production (NEP): the difference between NPP and het-

erotrophic respiration (Rh), which determines the amount of carbon lost or gained

by the ecosystem without disturbances, such as harvests and fire.

NEP = NPP −Rh = GPP − (Ra+Rh) = GPP −Reco (1.3)

• Net Ecosystem Exchange (NEE): is fairly similar to NEP and determines the

amount of CO2 entering an ecosystem and the amount of carbon being lost through

respiration simultaneously.

NEE = −NEP = Reco −GPP (1.4)

• Net Biome Production (NBP): the carbon accumulated by the terrestrial bio-

sphere when carbon losses from non-respiratory processes (fires, harvests) are taken

into account.

NBP = NEP − (non−respiratory fluxes) (1.5)

When photosynthesis is larger than the sum of plant respiration, soil respiration, fire,

and land use releases, there is a net sink of carbon from the atmosphere to the terrestrial

biosphere. There is a net source of carbon from the ecosystem to the atmosphere when the

photosynthesis is less than the sum of the other terms. The gain and loss of carbon in the

terrestrial biosphere on seasonal time scales is clear from subtle changes in atmospheric

CO2 measurements (Bolin and Keeling, 1963). On longer timescales from decades to

centuries, the amount of carbon stored in the terrestrial biosphere is the result of the

balance between NPP and carbon losses through respiration, land use, fire, and other

disturbance.

Many studies have been carried out to quantify the residual land sink. But which processes

dominate, or in what regions of the Earth this carbon sinks occurs are still open questions.

A major source of uncertainty in quantifying the carbon uptake by the terrestrial biosphere

is the limited understanding of the mechanisms driving carbon sources and sinks, given

the great heterogeneity of vegetation and soils. Several scenarios could cause the land

to take up more CO2 than is released each year. For example re-growth of forests on

previously deforested land (Dixon et al., 1994; Schimel et al., 2001; Houghton, 2003) could

account for some of the missing carbon. However, the contributions of land cover and/or

land use changes to regional and global carbon budgets, are highly uncertain and remains

problematic (Houghton et al., 1999).
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To determine the possible mechanisms behind terrestrial carbon sources and sinks, differ-

ent modeling tools and datasets are used on different spatial and temporal scales. The

main methods, which are used to quantify regional and global carbon budgets, are briefly

summarized in the following section.

1.4 Methods of estimating terrestrial carbon fluxes

Here we review some of the main methods used to determine the size and the geographical

locations of terrestrial carbon.

1.4.1 Measurements

1.4.1.1 Forest inventory

Forests sequester and store more carbon than any other terrestrial ecosystem. The car-

bon stored in the aboveground living biomass of trees is typically the largest pool and

the most directly impacted by deforestation and degradation. Thus, estimating above-

ground forest biomass carbon is a critical step in quantifying carbon stocks and fluxes

from forests. Ground-based measurements of tree height and diameters at breast height

(DBH) can be combined using allometric relationships to estimate forest carbon stocks.

Allometric equations statistically relate these measured forest attributes to destructive

harvest measurements (e.g. Brown (1997); Keller et al. (2001)).

These measurements can be spatially aggregated to estimate the regional fluxes (Dixon

et al., 1994; Goodale et al., 2002). The main disadvantage of inventory-based methods

is that most of the inventories have been carried out in forested ecosystems limited to

the aboveground biomass with limited consideration of belowground processes and non-

forested ecosystems.

Many countries, mainly tropical countries, already carry out regular measurement of ter-

restrial carbon stocks on sub-national and national scales for policy development and

planning. Then, several organizations and research groups collect these data and combine

them in order to estimate spatial pattern of carbon fluxes. For example, FAO (Food and

Agriculture Organization of the United Nations) has been compiling forest inventories

since 1946, providing detailed data on carbon stocks. Also, they calculated the impacts of

forest changes on carbon flux in the temperate and boreal forest (UN-ECE/FAO, 2000). A

further source of inventory data comes from the United Nations Framework Convention on

Climate Change (UNFCCC, 2000). In parallel to these inventories, different forest biomass

inventories (Fang et al., 2001; Goodale et al., 2002; Nabuurs et al., 2003; Shvidenko and

Nilsson, 2003) and soil carbon inventories combined with models (Ogle, 2003; Bellamy

et al., 2005; van Wesemael et al., 2005; Falloon et al., 2006) are compiled for different
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regions to calculate the changes in carbon stocks from which fluxes can be calculated.

1.4.1.2 Eddy flux measurements

The eddy covariance technique is used to measure vertical turbulent fluxes of energy,

water vapor, carbon dioxide, methane, and various other gases within the atmospheric

boundary layer. It provides an accurate way to measure surface-to-atmosphere fluxes.

The basic idea behind the eddy covariance method is simple. Airflow can be imagined

as a horizontal flow of numerous rotating eddies with each eddy having horizontal and

vertical components. The turbulent eddies transport matter and energy vertically within

the atmospheric boundary layer. Measurements are made such that the vertical wind

speed w and a scalar such as concentration c are measured from a few to several tens

of meters above the ground. The measured variables are divided into an average and a

fluctuating component (denoted with a bar and a prime, respectively (Seinfeld and Pandis,

1998):

w = w̄ + w
′

(1.6)

c = c̄+ c
′

(1.7)

In very simple terms, the covariance between the fluctuating components is the eddy flux

(FE) of the desired substance:

FE = w′c′ (1.8)

The eddy covariance technique is a unique data source for measuring Net Ecosystem

Exchange (NEE), Latent Heat flux (LH), and sensible heat flux (H) with high temporal

resolution (less than 1 hour) over a small region (1 km2). At present over 500 flux sites

have been established around the world and operated on a long-term and continuous basis

(Baldocchi and Wilson, 2001). Eddy flux measurements are useful to obtain terrestrial

fluxes at local scales. However, missing or rejected data in these measurements due to

equipment failures, maintenance and calibration, errors or spikes in the raw data when

turbulence is low, and also due to physical and biological constraints (e.g. storms, and

non-optimal wind directions) are a vital problem of the approach. Overall, about 17-50%

of the observations are reported as missing or rejected at FluxNet (a network of regional

networks coordinating regional and global analysis of observations from flux sites) (Falge

et al., 2001).

To accurately calculate annual values of NEE and energy fluxes the gaps in the records

have to be filled. Several gap-filling methods exist (e.g. Greco and Baldocchi (1996);

Jarvis et al. (1997); Falge et al. (2001); Barr et al. (2004); Braswell et al. (2005); Desai
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et al. (2005); Papale and Valentini (2003); Reichstein et al. (2005); Monson et al. (2002);

Hui et al. (2004); Aubinet et al. (1999)) using various approaches, including interpolation

and extrapolation, probabilistic filling, look-up tables, regression analysis, artificial neural

networks, and process-based models operated in data-assimilation mode.

In order to generate spatial flux maps from point data, several studies have attempted to

scale up fluxes at sites to regions, known as “up-scaling”. Up-scaling exercises of eddy

covariance based carbon fluxes to large regions has been conducted for the US (Xiao et al.,

2008; Yang et al., 2007), for Europe (Jung et al., 2008; Papale and Valentini, 2003; Vetter

et al., 2008), and for the globe (Jung et al., 2009). However, given the heterogeneity

of land, the coverage and accuracy of the measurements are not sufficient for obtaining

confidence in the large-scale flux estimates derived through up-scaling approaches.

Further information about eddy covariance methods, tower locations, site char-

acteristics as well as data availability can be found at the FluxNet website

(http://www.fluxnet.ornl.gov).

1.4.2 Modeling

Direct measurements of carbon fluxes using inventory or eddy covariance methods are an

essential approach to measure and monitor carbon fluxes at local scales with high temporal

resolution. However, there are many regions of the globe, the tropics in particular, where

measurements are incomplete or entirely lacking. Thus, there are some difficulties to scale

up these measurements to regional and also to longer time-scales (decadal). Therefore, nu-

merical modeling approaches have been developed to quantify magnitude and geographical

distribution of sources and sinks of carbon at regional and global scales.

Hereafter, two different modeling approaches, so-called bottom-up and top-down models,

are summarized.

1.4.2.1 Bottom-up approach

Under this modeling scheme, models range in complexity from simple regression “sta-

tistical” models to more complex process-based models. The simple statistical biosphere

models are mainly based on empirical relations between one or more estimates of biological

processes (e.g. soil respiration) and important climatic variables (e.g. temperature, pre-

cipitation) (e.g. Raich and Schlesinger (1992); Lloyd and Taylor (1994); Reichstein et al.

(2003, 2005)) (see chapter 2). On the other hand, the process-based models integrate

knowledge of physiological and ecological processes to model the response of the system to

environmental changes (Cramer et al., 2001; Schimel et al., 2000; McGuire et al., 2001).

The process-based models have the advantage of being able to describe the mechanisms of
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how and why the distributions of sources and sinks are changing. However, these complex

models include representations of processes affecting the terrestrial carbon fluxes, which

are based on only limited understanding of these processes. Therefore, it is expected that

some of the processes will be simplified or inadequately represented, and some important

processes will not be included in the models. As a result, different models, using different

simplified assumptions, will produce different estimates of sources and sinks of carbon.

Moreover, these models are driven by various data (e.g. meteorological fields, atmospheric

CO2 observations, land cover maps, etc.), and hence any errors in the input data may

lead to incorrect flux estimates. Furthermore, validation and verification of these models

is difficult on a large scale due to difficulties in scaling up small-scale measurements as

mentioned in the pervious section.

Several ecosystem process-based models have been developed in order to estimate and

to predict the terrestrial carbon fluxes. The Carnegie-Ames-Stanford Approach model

(CASA) (Potter et al., 1993), the Terrestrial Observation and Prediction System model

(TOPS) (Nemani et al., 2003), the Lund- Potsdam-Jena model (LPJ) (Sitch et al., 2003),

LPJ - Dynamic Global Vegetation Model (LPJ-DGVM) (Haxeltine and Prentice, 1996;

Kaplan et al., 2003; Prentice et al., 1992), BioGeochemical Cycles model (BIOME-BGC)

(Thornton et al., 2005), and ORganizing Carbon and Hydrology In Dynamic EcosystEms

model (ORCHIDEE) (Krinner et al., 2005) are examples of process-based terrestrial carbon

cycle models. These models have been applied and tested in various studies (Churkina

and Running, 1998; Churkina et al., 2003; Kimball et al., 2000; Vetter et al., 2005; Brovkin

et al., 2004; Sitch et al., 2005).

Among other related studies, the Carbon Cycle Model Linkages Project CCMLP (McGuire

et al., 2001) has carried out a comprehensive study investigating the role of the terres-

trial biosphere in the Earth system by comparing four global terrestrial biosphere models.

CCMLP used four different process-based terrestrial ecosystem models driven by a combi-

nation of historical climate, CO2 and the historical land use data from Ramankutty and

Foley (1999). This study showed that there were substantial differences in the magnitude

of interannual variability simulated by the models. The models also varied considerably

in their ability to simulate the observed changing amplitude of the seasonal cycle of at-

mospheric CO2.

1.4.2.2 Top-down approach

After the first systematic measurements of CO2 concentrations at Mauna Loa, Hawaii,

and at the South Pole by Charles D. Keeling in the late 1950s, a global observational

network measuring atmospheric CO2 among other trace gases has been implemented since
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the 1980s. This is in order to provide an improved spatial and temporal structure of

the global-scale atmospheric CO2 concentration. Although there are only 100 sampling

sites, at which global observational networks provide concentration measurements of at-

mospheric CO2, they accurately measure gradients in CO2 concentration between two

different points of the globe. This reflects the distribution of the surface fluxes dispersed

by the atmosphere’s transport (Keeling et al., 1989; Tans et al., 1990). Since atmospheric

tracer transport is linear, a model of atmospheric transport can be used in an “inverse”

mode to estimate carbon sources and sinks from observed concentrations. The transport

model simulates how the atmospheric circulation moves the trace gas by advection, dif-

fusion and convection. The inversion of the atmospheric transport model is commonly

referred to as the top-down approach.

Due to the small number of the observing stations, the inverse problem is highly underde-

termined which means there are many flux fields yielding the same modeled concentrations

at the observational sites (Kaminski and Heimann, 2001). In other words, the inferred

fluxes are poorly constrained by the observations. In order to handle the underdetermined

problem, different approaches have been used. As one solution, the number of the sources

and sinks (unknowns) has to be reduced so that the total number of observations is greater

than the number of fluxes to be estimated. This can be achieved by identifying fluxes at

continental or ocean basin scales by dividing the globe into large regions (Tans et al., 1990;

Brown, 1993; Ciais et al., 1995). As another solution, a-priori information of regional land

and ocean fluxes (e.g. direct flux measurements, or modeled fluxes) and their plausible

uncertainty ranges can be included to constrain the results using a classical Bayesian ap-

proach (Tarantola, 1987; Enting, 1993). These approaches have been described in more

details by Kaminski and Heimann (2001).

In the last two decades, a number of atmospheric inversion experiments have been per-

formed in an effort to quantify CO2 sources and sinks at a variety of spatial and temporal

scales. First inversion studies attempted to estimate the long-term mean fluxes at conti-

nental or ocean basin scales. In these studies (defined as synthesis inversions) the globe

has been divided into a few large regions in which flux patterns are prescribed and all grid

cells are adjusted by a single scaling factor (Enting et al., 1995; Ciais et al., 1995; Rayner

et al., 1999; Bousquet et al., 2000; Peylin et al., 2002). The advantage of that approach

is that the inversion problem becomes over-determined. Therefore even if the observation

network samples only part of a region, all points in the region are constrained. The dis-

advantage is that variations of fluxes at scales smaller than the selected regions cannot be

estimated. Also, aggregation errors can occur when incorrectly prescribed flux patterns

are assigned within regions (Kaminski and Heimann, 2001). Most recent studies attempt
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to infer fluxes at the resolution of the underlying transport model (defined as adjoint inver-

sions) (Kaminski and Heimann, 2001; Rödenbeck et al., 2003) using a Bayesian framework

to include additional a-priori information into the solution to constrain the flux estimates.

After the optimization processes, the fluxes are usually aggregated together into larger

regions.

In most of the adjoint inversion studies, the uncertainties of the a-priori information are

fully uncorrelated between grid cells (Kaminski et al., 1999; Houweling et al., 1999). This is

opposite to large-scale studies (synthesis inversions) that assume fluxes are fully correlated

over a region. In Rödenbeck et al. (2003), spatio-temporal correlations between fluxes are

introduced to avoid the “spatial rectification biases”. Overall, significant differences in the

results among these models are shown, in particular when fluxes are partitioned regionally.

This is because of the different inversion methods, setups, and transport models used by

each group (Peylin et al., 2002).

To quantify and diagnose the main sources of uncertainty in atmospheric CO2 inversion

studies and also to have a better view of net carbon uptake in the land and oceans, the At-

mospheric Tracer Transport Model Inter-comparison Project (TransCom) was established

in the 1990s. The most recent phase of this experiment is the TransCom3 in which the

forward CO2 sensitivities from different modeling groups are collected to explore the un-

certainties arising in the inversion process from the transport, the data and the inversion

set-up itself (Gurney et al., 2002, 2003, 2004; Baker et al., 2006). In addition, different

sensitivity studies have been performed to investigate different aspects of the TransCom

atmospheric inversion (e.g. using different CO2 and fossil fuel CO2 data uncertainties,

or using different observing networks) (Law et al., 2003; Gurney et al., 2005; Patra and

Maksyutov, 2003; Patra et al., 2006).

The most important finding of TransCom3 is that the transport model is one of the main

contributors to the inversion uncertainty. Furthermore, incorrect spatial and temporal

patterns in the prescribed fluxes will result in errors in the estimated fluxes. Also, many

of the regional flux estimates for individual models were the result of strong responses at

particular stations or subtle tradeoffs and compensation among regions. These findings

point to some important technical difficulties; first, atmospheric transport models are not

perfect; second, the observational network is sparse, in particular in the tropics; third,

individual measurements are usually not representative of the appropriate temporal and

spatial scale of the transport model.

Commonly, the resolution of atmospheric transport models used in the inversion studies

is on the order of 2◦ latitude × 2◦ longitude or coarser. On the other hand, both the
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surface fluxes and atmospheric transport over land have substantial small-scale variability.

Ignoring such important variability introduce large errors in the flux estimates (Gerbig

et al., 2003a,b; van der Molen and Dolman, 2007; Pérez-Landa et al., 2007; Ahmadov et al.,

2007). Some recent studies have been conducted to solve this problem using “zoomed”

atmospheric transport models (Peylin et al., 2005) or using nested models (Peters et al.,

2007). A recent study by Rödenbeck et al. (2009) used a two-step scheme that uses global

and regional models sequentially in separate inversion steps.

In general, atmospheric CO2 inversion approaches have the attraction that they estimate

the total net flux generated by the sum of all mechanisms (natural and anthropogenic)

giving estimates of the location and magnitude based on the atmospheric measurements

of CO2. However, they provide little or no information about the underlying processes

responsible for the estimated fluxes. Hence, they cannot be used to understand or predict

the future behavior of the carbon cycle.

1.5 Problem statement

In the previous section, the advantages and the disadvantages of different methods used

to estimate terrestrial carbon fluxes are summarized. For example, direct measurement of

carbon sources and sinks (inventory or eddy covariance data) has the disadvantage that

the coverage and accuracy of the measurements are not sufficient for obtaining confidence

in the large-scale flux estimates. From a modeling point of view, terrestrial biosphere

models are useful tools for exploring the processes involved in the uptake and release of

carbon in the terrestrial system and are in theory able to project future fluxes. However,

the validation of these models on the global scale is difficult. Also, the inverse model

(relating concentrations to fluxes by an atmospheric transport model) is a powerful tool

to quantify carbon fluxes over large regions but does not provide any information about

the underlying processes and cannot make future projections.

In light of the above, it is clear that there is an urgent need to combine the different model-

ing approaches (bottom-up “terrestrial biosphere models” and top-down “inverse models”)

to understand and quantify carbon sources and sinks in a “multiple constraint” approach.

As a benefit, the bottom-up approach can be validated on a global scale using atmospheric

measurements of CO2 which integrate the CO2 signal over large areas. Also, optimizing

some key parameters in the biosphere model with respect to the atmospheric CO2 mea-

surements can achieve more understanding about the underlying processes controlling the

fluxes.

Some progress has been made in the direction of tuning or optimizing parameters in

terrestrial biosphere models in order to fit the atmospheric measurements of CO2. For



22 1 Introduction

example, Fung et al. (1987) used the annual cycle of atmospheric CO2 observations to

test their model for estimating the exchange of CO2 between the terrestrial biosphere and

the atmosphere from satellite data and field measurements. A similar study by Knorr

and Heimann (1995) has been performed to optimize some key parameters in a simple

diagnostic biosphere model (SDBM) with respect to the seasonal cycle of atmospheric

CO2 measurements. In these two studies, the parameters were adjusted manually until

they got a reasonable fit with atmospheric CO2 measurements. Later, Kaminski et al.

(2002) introduced a systematic method for optimizing parameters following a similar sys-

tematic approach introduced by Enting et al. (1995) in which the uncertainty of the flux

magnitude can be calculated. In this study, they optimized the controlling parameters of

the SDBM (Knorr and Heimann, 1995) with respect to the seasonal cycle of atmospheric

CO2 concentrations using a variational data assimilation approach. They also estimated

an uncertainty range for the optimized parameters. These optimized parameters are then

used to run the model to predict some diagnostic quantities of interest such as net fluxes

and net primary productivity (NPP).

These studies are purely diagnostic so that they cannot be used to make prediction of

the future carbon sources and sinks. This leads to another approach that combines dif-

ferent data constraints (e.g. satellite data, CO2 measurements) in a more mechanistic

model and allows a prediction of some of the behavior of the terrestrial biosphere. That

approach is usually known as data assimilation. Scholze et al. (2003) and Rayner et al.

(2005) presented a Carbon Cycle Data Assimilation System (CCDAS), in which they

use a more comprehensive, prognostic terrestrial biosphere model, the Biosphere Energy

Transfer Hydrology Scheme (BETHY) (Knorr and Heimann, 2001). CCDAS is capable of

assimilating both remote sensing data as well as atmospheric CO2 concentration measure-

ments into a process-based model of the terrestrial biosphere (Scholze et al., 2003) in order

to (1) calibrate the model parameters, (2) derive terrestrial CO2 fluxes consistent with the

atmospheric observations, and (3) present uncertainties on both model parameters and

derived quantities such as fluxes.

1.6 Objectives of this thesis

Here, we attempt to follow the same path of the data assimilation method discussed

in the previous section, assimilating atmospheric concentration data into a terrestrial

biosphere model but using a simple diagnostic approach. Therefore, within this thesis, we

developed a modeling framework that couples bottom-up and top-down approaches and

uses different data constraints (atmospheric CO2 concentrations, satellite-derived data,

and climate data) in order to quantify the carbon sources and sinks of the terrestrial
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biosphere and to understand the underlying processes by optimizing some internal key

parameters of the biosphere model (the bottom-up approach) in order to fit the observed

CO2 concentrations. Our modeling framework has drawn upon certain techniques from

previous modeling approaches while including new features (see next section).

Also, as an objective, the following scientific questions will be addressed

• What is the role of the climatic drivers (e.g. precipitation, temperature, radiation)

on the interannual variability of the estimated fluxes?

• Similarly, what is the role of different land processes (e.g. respiration, photosynthesis,

fire) on the interannual variability of the estimated fluxes?

• Can we improve CO2 flux estimates by such a coupling?

1.7 Methodology

Since this approach is not new, we follow the methodology of Kaminski et al. (2002) (see

section 1.5) but using a different model algorithm for the biosphere model as well as for the

inverse model. First, we implemented a Simple Diagnostic Photosynthesis and Respiration

Model (SDPRM) based on pre-existing formulations. The ecosystem respiration model is

based on formulations introduced by Lloyd and Taylor (1994), Raich et al. (2002) and the

modification made by Reichstein et al. (2003). The photosynthesis model is based on the

light use efficiency logic presented by Monteith (1977) of calculating the Gross Primary

Production (GPP). The SDPRM is driven by remote sensing and climate data. Second,

for the inverse model, we used the inversion algorithm presented in Rödenbeck (2005),

hereafter referred to as the Standard Inversion (STD-inv).

The SDPRMmodel was then coupled to the STD-inv (hereafter referred to as SDPRM-inv)

by replacing the simple statistical linear flux model of the STD-inv (described in chapter

3). This was done for two reasons: first, to provide a reliable a-priori CO2 fluxes with high

spatio-temporal resolution to the STD-inv so small-scale forcing can transported to the

atmospheric information, second, to optimize some internal (physiological & interpretable)

parameters of the SDPRM in order to fit the atmospheric measurements of CO2.

To couple the SDPRM model to the inverse model, it has been linearized in the adjustable

parameters in order for the quick minimization algorithm in the inverse model to work.

This is one of the difference between the modeling framework used here and the CCDAS

introduced by Rayner et al. (2005) (see section 1.5). In CCDAS, they used a process-

based model (BETHY) (Knorr and Heimann, 2001) which is more complicated than the
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SDPRM. Thus, as the process models tend not to be linear, the minimization algorithm

in the CCDAS is a more involved process.

The model framework is schematically shown in figure 1.5 representing different input

data and calculation steps. Starting from the input data, there is first the satellite data

(Normalized Difference Vegetation Index (NDVI)) that is used to calculate the fraction of

Absorbed Photosynthetically Active Radiation (fAPAR). Besides the satellite-based input

data, there is the climate data taken from the National Center for Environmental Predic-

tion/National Center for Atmospheric Research Reanalysis (NCEP/NCAR) (Kalnay et al.,

1996). Both fAPAR and the climate data are interpolated and mapped to the resolution

4◦ latitude × 5◦ longitude. The SDPRM produces a space-time distribution of mod-

eled Gross Primary Production (GPP), Ecosystem Respiration Reco, and Net-ecosystem

Exchange (NEE= Reco-GPP) (more details in chapter 2).

The next step is to use GPP and Reco as a-priori fluxes with some linearized terms in the

inversion calculation algorithm (more details in chapter 3). NEE is only one component of

the atmospheric carbon budget. Therefore, some other flux components (fossil fuel emis-

sion and ocean-atmosphere carbon fluxes) need to be included in the inversion calculation

(see chapter 3). The main input to the atmospheric inversion is the atmospheric CO2

measurements. Finally, the inverse model produces, among other things, a space-time

distribution of modeled fluxes inferred from the atmospheric CO2 measurements. The op-

timized parameters in the SDPRM models are one of the important outputs of the coupled

system SDPRM-inv that can improve our understanding of the ecosystem behavior.

1.8 Thesis outline

The thesis is comprised of a total of 4 chapters:

Chapter 2 is devoted to the description of the empirical equations of the Simple Diag-

nostic Photosynthesis and Respiration Model (SDPRM). To test the performance of

the model, the output is compared with results of two different approaches (process-

based model and atmospheric inverse model). Furthermore, the sensitivity of the

estimated fluxes to the driving forces based on different analyses is presented. Fi-

nally, a brief conclusion is given at the end of the chapter.

Chapter 3 describes the inverse model algorithm and the implementation details of the

coupled system SDPRM-inv. The results of the coupled system are analyzed and

presented. The time series of the estimated fluxes as well as their annual mean for

different regions of the globe are shown. In addition, the optimized parameters of

the biosphere model and their uncertainties compared to their initial values, along
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with the a-posteriori correlation matrix, are presented and discussed. After that,

some examples of the fit to the concentration data used in the calculations are

shown. Finally, we show the estimated annual mean of GPP for different biomes

and compare it with the results of Beer et al. (2010) . A brief conclusion is given at

the end of the chapter.

Chapter 4 contains the main conclusions of this work and the outlook.
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Figure 1.5— Model framework
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Chapter 2

Simple Diagnostic Photosynthesis

and Respiration Model (SDPRM)

Here, we describe the empirical equations of the Simple Diagnostic Photosynthesis and

Respiration Model (SDPRM). In order to test the performance of the model, the results

of the model are demonstrated and compared with some other modeling approaches. In

addition, various sensitivity analyses are carried out in order to quantify the role of the

climate controls on the estimated fluxes of GPP and Reco. The results of these analyses

are presented along with concluding remarks.

2.1 Introduction

Several methods are used to quantify the size and the geographical locations of terrestrial

carbon sources and sinks at regional and continental scales. One of these methods is the

direct measurement of carbon fluxes (e.g. eddy covariance data). Unfortunately, there are

many regions of the globe, in particular the tropics, where measurements are incomplete

or entirely lacking. Therefore, difficulties arise when scaling up these measurements to

regional and global scales. Thus, estimates of CO2 fluxes at regional and continental

scales require the integration of remote sensing and climate data with field measurements

and experimental manipulations (Running, 1999).

In principle, biosphere-atmosphere carbon exchange, generally referred to as the Net

Ecosystem Exchange of CO2 (NEE), can be approximated as the balance between CO2

uptake through Gross Primary Production (GPP), the photosynthetic uptake of carbon

by plants, and CO2 emission through plant and soil respiration, generally referred to as

Ecosystem Respiration (Reco) (see chapter 1, section 1.3). Many diurnal and seasonal pat-

terns of atmospheric CO2 concentration are dominated by only these two processes (GPP,
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Reco) (Denning et al., 1996; Heimann et al., 1998). However, additional processes including

fire, dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) losses in rivers,

erosion, and land use changes need to be considered when the interannual and decadal

dynamics in atmospheric CO2 are analyzed (Canadell et al., 2000; Pacala et al., 2001).

As the Earth system is regulated by several complex physical, biological, and chemical

processes, the challenge lies in implementing simple models that use few variables and

parameters (easy to be changed and modified) and are robust across the time scales of

interest.

Here, we present a Simple Diagnostic Photosynthesis and Respiration Model (SDPRM)

which is implemented based on pre-existing formulations (see section 2.3 and 2.4). The

model estimates 3-hourly values of Ecosystem Respiration (Reco) and daily values of Gross

Primary Production (GPP). The model is driven by meteorology and remote sensing data,

and uses some adjustable parameters. The motivation is to provide reliable first-guess

fields of surface CO2 fluxes, with fine temporal and spatial scales, for applications in

inverse models. The model will replace the simple statistical flux representation of the

standard inversion (STD-inv) (Rödenbeck, 2005) (see chapter 3) to adjust some selected

parameters of the model in order to fit the observed CO2 concentrations.

The algorithm of SDPRM and the data used are described in the following sections.

2.2 Data

2.2.1 GIMMS NDVI

Usually, terrestrial biosphere models require a set of land-surface biophysical parameters

that control the exchange of energy, mass (e.g. water and CO2) and momentum between

the Earth’s surface and the atmosphere (e.g. land cover classification, Leaf Area Index

(LAI), fraction of Absorbed Photosynthetically Active Radiation (fAPAR)). The estima-

tion of land surface parameters at a global scale, especially with regional scale detail, is, to

some extent, only feasible through remote sensing. The estimations of these key variables

are based on the spectral properties of vegetation; vegetation strongly absorbs visible

light, using the energy for photosynthesis, and strongly reflects near-infrared radiation.

Based on this fact, the Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) is

expressed as:

NDV I =
ρnir − ρred
ρnir + ρred

(2.1)
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where ρred and ρnir stand for the spectral reflectance measurements acquired in the visible

and near-infrared bands, respectively. The possible range of NDVI values is between -1

and 1, and the number is unitless. However, no green leaves give a value close to zero. A

zero means no vegetation and close to +1 (0.8 - 0.9) indicates the highest possible density

of green leaves. Soil and rock will have values that are close to zero while the differential

for water bodies such as rivers will have negative values. Also, clouds and snow will have

negative NDVI values.

Researchers have established quantitative relations between NDVI and biophysical vari-

ables controlling vegetation productivity and land-atmosphere fluxes (Sellers, 1985; Ne-

mani and Running, 1989). For example, it is found that changes in NDVI time series

indicate changes in vegetation conditions proportional to the fAPAR (Sellers, 1985). That

led to the current generation of ecosystem models that use satellite-based vegetation in-

dices for simulating carbon, energy, and water fluxes in response to climate variability and

ecosystem disturbance (Randerson et al., 1996; Sellers et al., 1996b; Kaminski et al., 2002;

van der Werf et al., 2004; Zhao and Running, 2010).

SDPRM requires two (mutually consistent) types of satellite-based information: a land

cover classification into plant functional types (PFTs) (see section 2.2.2), and fAPAR

(f(NDVI)). Therefore, the global NDVI dataset produced by the Global Inventory Mod-

eling and Mapping Studies (GIMMS) –version g– was used to create a fAPAR dataset

using an algorithm described by Los et al. (2000) (section 2.2.3). The GIMMS NDVI

data are available at the Global Land Cover Facility (http://glcf.umiacs.umd.edu/) at

a biweekly temporal resolution from 1982 to 2006 and a spatial resolution of 8 km ×
8 km. The GIMMS NDVI data are derived from imagery obtained from the Advanced

Very High Resolution Radiometer (AVHRR) instrument onboard the NOAA satellite se-

ries 7, 9, 11, 14, 16 and 17 (Tucker et al., 2005). GIMMS NDVI data are chosen because

they cover a longer time period (1982-2006) compared to other satellite data sources (e.g.

MODIS). Furthermore, the data are collected by a consistent series of instruments. In

addition, several independent studies used earlier versions of the GIMMS NDVI data and

showed reasonable agreement between GIMMS NDVI and other measures of vegetation

(Davenport and Nicholson, 1993; Malmstrom et al., 1997; D’Arrigo et al., 2000).

Nevertheless, as any satellite-based measurement, GIMMS NDVI suffers from numerous

deficiencies including sensor degradation, cloud contamination, limitation due to viewing

geometry, and atmospheric effects. Therefore, GIMMS NDVI has been corrected for the

following effects which are not related to vegetation change (Tucker et al., 2005):

• Residual sensor degradation and sensor inter-calibration differences between satel-
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lites: the coefficients by Vermote and Kaufman (1995) are used to correct the visible

and near infrared reflectances for in-flight sensor degradation.

• Solar zenith angle and viewing angle effects due to satellite orbit drift: the GIMMS

NDVI datasets were corrected using the solar zenith angle values from the AVHRR

sensor for the period 1981-2002 (Tucker et al., 2005).

• Volcanic aerosols: over the measurement period 1982-2006, there were two major vol-

canic eruptions, El Chichon in 1982 and Mt. Pinatubo in 1991, which injected large

quantities of aerosols into the atmosphere. These aerosols can introduce significant

variability in the AVHRR NDVI record. The GIMMS NDVI datasets were corrected

for the known changes of the atmosphere from these two volcanic eruptions, but

reductions in the NDVI signal are still visible over densely-vegetated tropical land

cover for limited time periods.

• Low signal to noise ratios due to sub-pixel cloud contamination and water vapor: in

order to construct cloud-free views of the Earth, composite images were constructed

at regular temporal intervals by selecting pixels with the maximum NDVI during

regularly spaced intervals. Choosing pixels with maximum NDVI reduces cloud cover

and water vapor effects since both strongly reduce NDVI.

GIMMS NDVI spatial/temporal variations for a certain region/time are affected by these

corrections, producing some variations, which are not related to actual variations in the

vegetation. Also, some sources of error are not accounted for by the GIMMS corrections.

One of these errors is caused by soil effects. Soils tend to darken when they are wet, so

that their reflectance is a direct function of water content. If the spectral response to

moistening is not exactly the same in the two spectral bands, the NDVI of an area can

appear to change as a result of soil moisture changes (precipitation or evaporation) and

not because of vegetation changes. However, this affects only low NDVI values, but does

not affect high NDVI values.

Overall, GIMMS NDVI presents generalized patterns that may result in poor representa-

tions of the vegetation changes. Therefore, quantitative conclusions of the satellite-based

estimates of ecosystem productivity should be drawn with caution. Details on development

of the GIMMS NDVI dataset and its quality can be found in Tucker et al. (2005).

In the following sections, the procedures used to produce the land cover map and fAPAR

dataset are discussed.
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Figure 2.1— The SYNMAP (Jung et al., 2006) land cover dataset aggregated into seven major PFTs
(see table 2.1 ). PFT labels are described in table 2.2.

2.2.2 Land Cover Classification

To produce a land cover classification into plant functional types (PFTs), the synergetic

land cover dataset (SYNMAP) from Jung et al. (2006) are projected to the GIMMS

NDVI grid (8 km × 8 km). Then, its classifications are aggregated into seven major PFTs

(see table 2.1 and figure 2.1). As a criterion of this aggregation, the spatial extent of the

aggregated PFTs should not be too small in order to be distinguishable by the atmospheric

observations through the atmospheric inversion calculations (see chapter 3). Therefore,

classes of limited extent are joined to others. Also, all deciduous and mixed forests are

joined into DxF (see table 2.1) (despite ecological differences between them).

For each PFT, a density map (fractional cover) 0 ≤ ϱPFT(x, y) ≤ 1 is taken, by summing

up the original land-surface classes:

ϱPFT(x, y) =
∑

class∈PFT
ϱclass(x, y). (2.2)

The density map of all (non-ignored) land cover classes is

ϱveg(x, y) =
∑
PFT

ϱPFT(x, y). (2.3)
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Table 2.1— SYNMAP (Jung et al., 2006) land cover classification and its aggregation into seven major
PFTs. See table 2.2 for the descriptive abbreviations used for the PFTs.

SYNMAP (Jung et al., 2006) 7 major PFT’s

Class Life forms Tree leaf type Tree leaf longevity PFT(index)

1 Trees Needle Evergreen ENF (1)
2 Trees Needle Deciduous DxF (3)
3 Trees Needle Mixed DxF (3)
4 Trees Broad Evergreen EBF (2)
5 Trees Broad Deciduous DxF (3)
6 Trees Broad Mixed DxF (3)
7 Trees Mixed Evergreen DxF (3)
8 Trees Mixed Deciduous DxF (3)
9 Trees Mixed Mixed DxF (3)
10 Trees & Shrubs Needle Evergreen ENF (1)
11 Trees & Shrubs Needle Deciduous DxF (3)
12 Trees & Shrubs Needle Mixed DxF (3)
13 Trees & Shrubs Broad Evergreen SAV (5)
14 Trees & Shrubs Broad Deciduous SAV (5)
15 Trees & Shrubs Broad Mixed SAV (5)
16 Trees & Shrubs Mixed Evergreen SAV (5)
17 Trees & Shrubs Mixed Deciduous SAV (5)
18 Trees & Shrubs Mixed Mixed DxF (3)
19 Trees & Grasses Needle Evergreen ENF (1)
20 Trees & Grasses Needle Deciduous DxF (3)
21 Trees & Grasses Needle Mixed DxF (3)
22 Trees & Grasses Broad Evergreen EBF (2)
23 Trees & Grasses Broad Deciduous SAV (5)
24 Trees & Grasses Broad Mixed SAV (5)
25 Trees & Grasses Mixed Evergreen DxF (3)
26 Trees & Grasses Mixed Deciduous DxF (3)
27 Trees & Grasses Mixed Mixed SAV (5)
28 Trees & Crops Needle Evergreen CRO (7)
29 Trees & Crops Needle Deciduous CRO (7)
30 Trees & Crops Needle Mixed CRO (7)
31 Trees & Crops Broad Evergreen CRO (7)
32 Trees & Crops Broad Deciduous CRO (7)
33 Trees & Crops Broad Mixed CRO (7)
34 Trees & Crops Mixed Evergreen CRO (7)
35 Trees & Crops Mixed Deciduous CRO (7)
36 Trees & Crops Mixed Mixed CRO (7)
37 Shrubs - - SHR (4)
38 Shrubs & Grasses - - SHR (4)
39 Shrubs & Crops - - SHR (4)
40 Shrubs & Barren - - SHR (4)
41 Grasses - - GRS (6)
42 Grasses & Crops - - GRS (6)
43 Grasses & Barren - - GRS (6)
44 Crops - - CRO (7)
45 Barren - - (ignored) (8)
46 Urban - - (ignored) (8)
47 Snow & Ice - - (ignored) (8)
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Table 2.2— Descriptive abbreviations used for PFTs.

Abbreviation (index) Full name

ENF (1) Evergreen needle

EBF (2) Evergreen broadleaf

DxF (3) Deciduous/mixed forest

SHR (4) Shrubland

SAV (5) Savanna

GRS (6) Grassland

CRO (7) Cropland

2.2.3 fAPAR

fAPAR is calculated following the approach described in Goward and Huemmrich (1992)

and Sellers et al. (1996a) and further adapted by Los et al. (2000). Two linear equations

between fAPAR and NDVI are described, referred to as the fAPARNDV I and fAPARSR

models. In the fAPARNDV I model, maximum and minimum NDVI values for each

vegetation type are related to maximum and minimum fAPAR according to:

fAPARNDV I =
NDV I −NDV Imin

NDV Imax −NDV Imin
· (fAPARmax − fAPARmin) + fAPARmin

(2.4)

where NDV Imin and NDV Imax are the 2nd and 98th percentiles, respectively, of the NDVI

frequency distribution estimated per PFT (see Table 2.3). fAPARmin and fAPARmax

are parameters: 0.01 and 0.95, respectively.

Table 2.3— Lower (2nd) and upper (98th) NDVI percentiles estimated per PFT.

PFT(class) NDV Imin NDV Imax

ENF (1) 0 0.83

EBF (2) 0 0.90

DxF (3) 0 0.75

SHR (4) 0 0.81

SAV (5) 0 0.74

GRS (6) 0 0.80

CRO (7) 0 0.27

In the fAPARSR model, fAPAR is linearly related to the simple ratio (SR) which can be

expressed as a transformation of NDVI:
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SR =
1 +NDV I

1−NDV I
(2.5)

fAPARSR =
SR− SRmin

SRmax − SRmin
· (fAPARmax − fAPARmin) + fAPARmin (2.6)

where SRmin and SRmax respectively correspond to NDV Imin and NDV Imax.

According to Los et al. (2000), an intermediate model, calculating the average fAPAR of

the fAPARNDV I and fAPARSR models, performed better by giving the smallest bias in

fAPAR estimates. Accordingly, fAPAR is calculated using the following relationship:

fAPAR =
fAPARSR + fAPARNDV I

2
(2.7)

These calculations are done on a pixel basis with 8 km × 8 km spatial resolution. After

that, the fAPAR data have been aggregated to a spatial resolution of 4◦ latitude × 5◦

longitude to match the atmospheric transport model (TM3) (Heimann and Körner, 2003)

that is used in the inverse model (see chapter 3). Then, a separate dataset, fAPARPFT ,

is created for each PFT.

The full temporal variability and the interannual variability of the calculated fAPAR

from GIMMS NDVI data are shown in figure 2.2. The time series is aggregated over three

latitudinal bands (for a map of the regions see figure 2.4). The interannual variability (IAV)

is obtained by subtracting the mean seasonal cycle and most variations faster than 1 year

(Gaussian spectral weights, as in Rödenbeck (2005)). In the northern hemisphere, fAPAR

has striking seasonal changes, i.e., small values in winter and high values in summer,

reflecting the vegetation phenology of the region. Over the tropics and the southern

hemisphere bands, the interannual variability has more variations. This was expected since

the NDVI dataset is most affected by satellite orbit drift and changes to the magnitude of

the solar zenith angle in tropics and the southern hemisphere. Also, the natural variability

in atmospheric aerosols and column water vapor may have created surface-independent

variations in the GIMMS NDVI record (Tucker et al., 2005). As a consequence, fAPAR

inherited these variations that may not be caused by vegetation variation. In June 1991,

a major volcanic eruption occurred (the Pinatubo eruption), injecting large quantities of

aerosols into the Earth’s stratosphere. These aerosols and subsequent cooling can explain

the decline in the interannual variability of fAPAR during the period from 1991-1993 over

the tropics.

Consequently, by using satellite-derived fAPAR dataset to drive the photosynthesis model,
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simulated GPP will be affected by a substantial variability in fAPAR that is not related

to actual changes in vegetation function. Therefore, simulated GPP should be interpreted

with caution.

2.2.4 Meteorological Data

Climate data are one of the inputs needed to drive SDPRM. Therefore, the improved

reanalysis dataset from the National Center for Environmental Prediction/National Cen-

ter for Atmospheric Research Reanalysis (NCEP/NCAR) (Kalnay et al., 1996) has been

obtained for the period 1982-2006. The NCEP/NCAR dataset consists of a reanalysis of

the global observational network of meteorological variables (wind, temperature, pressure,

humidity). Data are produced on a 2.5◦ × 2.5◦ grid box with temporal resolution of 6

hours or daily. NCEP/NCAR dataset has been aggregated to the TM3 resolution of 4◦

latitude × 5◦ longitude.
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(A): full temporal variability of fAPAR

(B): IAV variability of fAPAR

Figure 2.2— Integrated fAPAR time series calculated from GIMMS NDVI across three latitudinal bands:
(A) time series of the full temporal variability of fAPAR, (B) time series of the interannual variability of fAPAR
(subtracting the mean seasonal cycle and most variations faster than 1 year (Gaussian spectral weights, as
in Rödenbeck (2005)). For a map of the regions see figure 2.4.
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2.3 Ecosystem Respiration Model

2.3.1 Background

Several approaches have been used in the global modeling of soil respiration. On the

one hand, there are a number of mechanistically based models that integrate knowledge of

physiological and ecological processes to model the response of the system to environmental

changes (Cramer et al., 2001; Schimel et al., 2000; McGuire et al., 2001). On the other

hand, there are simple statistical models that implement empirical relations between soil

respiration and important environmental factors (e.g. Lloyd and Taylor (1994)).

Many studies have highlighted important drivers influencing soil respiration which include

(1) soil temperature (Lloyd and Taylor, 1994; Reichstein et al., 2003), (2) soil water status

(Carlyle and Than, 1988; Howard and Howard, 1993), (3) net primary or net ecosystem

productivity (Norman et al., 1992; Raich and S., 1995; Janssens et al., 2001), (4) substrate

quality (Raich and Schlesinger, 1992), (5) land-use and disturbance regimes (Ewel et al.,

1987), and (6) population and community dynamics of the above- and below-ground flora

and fauna (Raich and Schlesinger, 1992). Modeling of all these complex interactions is

unfeasible particularly at larger spatial scales. Therefore, models have to employ simpler

relations empirically derived from field studies. Thus, soil respiration is often modeled as a

simple Q10 (a parameter that represents the increase in respiration for every 10 ◦C rise in

temperature) or Arhennius-type function of temperature. For example, Lloyd and Taylor

(1994) used the exponential regression model to relate Ecosystem Respiration (Reco) to

either air or soil temperature as follows:

Reco = Rref e
E0(

1
Tref−T0

− 1
T−T0

)
(2.8)

where the regression parameter T0 is -46.0 ◦C, E0 is the activation energy, and Rref is the

soil respiration at the reference temperature Tref (10
◦C).

Likewise, Raich et al. (2002) predict soil respiration from monthly average air temperature

(Ta) and precipitation (P) summed over the preceding 30 days as follows:

Rmonth = R0 · eQ·Ta · P

P +K
(2.9)

where Rmonth refers to the mean monthly soil respiration (gC m−2 day−1), R0

(gC m−2 day−1) is the soil respiration at 0◦C without moisture limitation, Q (K−1) de-

termines the exponential relationship between soil respiration and temperature, and K

(cm) is the half-saturation constant of the hyperbolic relationship of soil respiration with
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monthly precipitation.

Further, Reichstein et al. (2003) introduced new parameters into the model proposed by

Raich et al. (2002) (equation 2.9) to account for the importance of drought effects on soil

respiration as

Rmonth = (RLAI=0 + SLAI · LAI) · eQ·Ta · P + P0

P + P0 +K
(2.10)

where the term (RLAI=0+SLAI .LAI) describes a linear dependency of the basal rate of soil

respiration on site peak Leaf Area Index (LAI), while Q, Ta, P , and K are as in equation

(2.9). The parameter P0 is a simple representation of the fact that there can be soil

respiration in months without rain, amounting to the fraction P0/(K + P0) of non-water-

limited soil respiration. Also, according to the assumption made by Reichstein et al. (2003)

that soil respiration is proportional to site productivity, the term RLAI=0+SLAI .LAI can

be written as an exponential relationship of the form R0 +RLAI .(1− e−k LAI .

2.3.2 Model Equations

Following the formulations introduced by Lloyd and Taylor (1994) and Raich et al. (2002)

and the modification made by Reichstein et al. (2003), the Ecosystem Respiration (Reco)

can be simulated using the following equations

R(x, y, t) =
(
R0(x, y) +RLAI(x, y) · rLAI [k, LAI(x, y, t)]

)
(2.11)

· rT [E(x, y), T (x, y, t)] (2.12)

· rP [P0(x, y),K(x, y), P (x, y, t)] (2.13)

where RLAI is the dependency of the respiration rate on maximum leaf area index

(LAImax), and the leaf area index (LAI) dependence is calculated as

rLAI [k, LAI] = (1− e−k·LAImax) (2.14)

and the temperature dependence is calculated as

rT [E, T ] = exp

(
−E

[
1

T − T0
− 1

Tref − T0

])
(2.15)

where E is the activation energy , T0 = −46◦C (minimum temperature) as in Lloyd and

Taylor (1994) and Tref = 13◦C (reference temperature, taken from the 1901-2002 mean of

the CRU dataset over land [13.1◦C]).
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The precipitation dependence is written as

rP [P0,K, P ] =
P + P0

P + P0 +K
(2.16)

The respiration model comprises both autotrophic and heterotrophic respiration, because,

due to similar dependencies on driving data, it is not expected that the signals from both

can be separated from the atmospheric CO2 measurements (by using the inverse model

- see chapter 3). This model involves the adjustable parameters R0(x, y), RLAI(x, y), k,

E(x, y), P0, and K. It is driven by leaf area index LAI(x, y, t) and the meteorological

fields from NCEP (daily mean temperature at 2 m T (x, y, t), and precipitation summed

over the previous 30 days P (x, y, t)). The model is simplified by the following assumptions:

• LAI dependence can be replaced by the average of the yearly maximum fAPAR

value (Los et al., 2000),

rLAI(x, y) = max(fAPAR(x, y, t)) (2.17)

• The parameters R0 and RLAI are assumed constant over all PFTs, because there is

no solid information on how to break them down spatially. Since the two patterns

rLAI(x, y) and ϱveg(x, y) turn out to be very similar, the atmospheric information

is not expected to be able to distinguish them. Therefore, the parameters R0 and

RLAI are written as

R0(x, y) = R0 · ϱveg(x, y), (2.18)

RLAI(x, y) = RLAI · ϱveg(x, y), (2.19)

• Likewise, the parameters E and K are assumed to be global.

• The parameter P0 is fixed to the global value P pri
0 = 1.55 mm/month (95% confi-

dence interval: [0.2,2.5]) taken from Reichstein et al. (2003).

The model then reads

R(x, y, t) =
(
R0 +RLAI · rLAI(x, y)

)
ϱveg(x, y) (2.20)

· rT [E, T (x, y, t)] (2.21)

· rP [P
pri
0 ,K, P (x, y, t)] (2.22)
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For the a-priori best-guess values and uncertainties of the original parameters, the following

values are chosen from the soil-respiration values of Reichstein et al. (2003) assuming that

soil respiration accounts for 60% of ecosystem respiration.

• Rpri
0 = 0.8 gC/m2/day

• Rpri
LAI = 2.5 gC/m2/day

• Kpri = 2.15 mm/month

• Epri = 135 K

Epri corresponds to Q10 = 1.47 (Reichstein et al., 2003), which is a relatively low value,

reflecting the fact that the present model is formulated in terms of air temperature (rather

than the more usual soil temperature) which has more temporal variability than the tem-

perature of the soil and most of the plant tissue that drive ecosystem respiration.

In chapter 3, the model will be coupled to STD-inv in order to optimize the model pa-

rameters by fitting the atmospheric measurements of CO2.
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2.4 Photosynthesis model

2.4.1 Background

Gross primary production (GPP), the photosynthetic uptake of carbon, is defined as the

total carbon fixed by plants through photosynthesis. The relationship between GPP and

the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) was first proposed

by Monteith (1977). Based on that, GPP is commonly modeled as a function of climatic

and soil variables, and uses satellite-derived estimates of the vegetation’s light-absorbing

properties (e.g. Randerson et al. (1996); Sellers et al. (1996b); Kaminski et al. (2002); van

der Werf et al. (2004)). In general, these models are known as light use efficiency (LUE)

models.

Here, we present the algorithm used in this thesis to provide estimates of

GPP using satellite-derived variables. The algorithm is similar to the radia-

tion conversion efficiency concept presented in the MODIS17 user’s guide (Hein-

sch et al., 2003) (MODIS17 - Global GPP and NPP User’s Guide is available at

http://www.ntsg.umt.edu/modis/MOD17UsersGuide.pdf). The initial parameter values

of the GPP model are taken from the MODIS17 Biome Property Look-Up Table (BPLUT)

(Heinsch et al., 2003). The parameters in BPLUT are based on the synthesized NPP data

and observed GPP derived from some flux tower measurements (Heinsch et al., 2003).

The model is driven by fAPAR data calculated from GIMMS NDVI data (see section

2.2.3), and meteorological fields (from NCEP). GPP is calculated for 7 Plant Functional

Types (PFTs) (see section 2.2.2 and 2.2.3).

2.4.2 Model Equations

The MODIS17 algorithm (LUE algorithm) calculates GPP as the product of Absorbed

Photosynthetically Active Radiation (APAR) and light use efficiency (ε):

GPP = ε ·APAR (2.23)

where ε is calculated by attenuating maximum light use efficiency (mass of assimilated

carbon per unit energy of absorbed radiation) (εmax) via the effect of temperature (gT )

and vapor pressure deficit (gV PD) factors:

ε = εmax · gT · gV PD (2.24)

APAR is calculated by the product of the amount of Photosynthetically Active Solar
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Radiation (PAR) and the fraction of incident PAR absorbed by vegetation (fAPAR):

APAR = PAR · fAPAR (2.25)

The attenuation factors (gT ) (gV PD) in equation 2.24 are simple ramp functions of daily

minimum temperature Tmin and vapor pressure deficit VPD (see figure 2.3). Based on

that, the dependence on daytime mean VPD can be defined as:

gV PD[V PD1, V PD0, V PD] =


1, V PD < V PD1

V PD0−V PD
V PD0−V PD1

, V PD1 < V PD < V PD0

0, V PD > V PD0

(2.26)

and the dependence on daily minimum temperature can be defined as:

gT [Tmin,0, Tmin,1, Tmin] =


0, Tmin < Tmin,0
Tmin−Tmin,0

Tmin,1−Tmin,0
, Tmin,0 < Tmin < Tmin,1

1, Tmin > Tmin,1

(2.27)

with Tmin,0 = -8◦C/. The values of Tmin,1, V PD1 and V PD0 are given in table 2.4.

In this study, GPP calculation focuses on seven major Plant Functional Types (PFTs).

Thus, the GPP formula can be written as:

GPP (x, y, t) =
∑
PFT

εmaxPFT · ϱPFT(x, y) · fAPARPFT(x, y, t) · PAR(x, y, t)

× gV PD[V PD1(PFT), V PD0(PFT), V PD(x, y, t)]

× gT [Tmin,0(PFT), Tmin,1(PFT), Tmin(x, y, t)]

(2.28)

with εmaxPFT: Maximum light use efficiencies per PFT(see table 2.4), fAPARPFT(x, y, t):

fraction of Absorbed Photosynthetically Active Radiation per PFT, V PD(x, y, t): Day-

time mean vapor pressure deficit of the air, Tmin(x, y, t): Daily minimum air temperature,

and Photosynthetically Active Radiation (PAR) is calculated as approximately 45% of

incident solar radiation I, as

PAR(x, y, t) = 0.45 · I(x, y, t) (2.29)
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Table 2.4— Definition of plant functional types, and values of PFT-dependent parameters of the pho-
tosynthesis model.

Class εpriPFT Tmin,1
pri
PFT V PD1

pri
PFT V PD0

pri
PFT

(gC/MJ) (◦C) (Pa) (Pa)

ENF 1.0 8.3 650 3100

EBF 1.0 9.1 1100 3600

DxF 1.2 9.5 935 3350

SHR 0.8 8.7 970 4100

SAV 0.8 11.4 1100 5000

GRS 0.6 12.0 1000 5000

CRO 1.1 12.0 930 4100

The a-priori GPP fields given for each PFT can be written as

GPP pri
PFT(x, y, t) = εprimaxPFT · ϱPFT(x, y) · fAPARPFT(x, y, t) · I(x, y, t) · 0.45

· gV PD[V PD1, V PD0, V PD(x, y, t)]

· gT [Tmin,0, Tmin,1, Tmin(x, y, t)]

(2.30)

Figure 2.3— The VPD and TMIN attenuation scalars are simple linear ramp functions of daily Tmin and
VPD.

Incident radiation I(x, y, t) is calculated from the downward shortwave radiation

ISW(x, y, t) from NCEP meteorological reanalysis, which should contain both the sea-

sonal and synoptic variability, while the diurnal variation is only coarsely represented in

the 6-hourly fields. Therefore, incident radiation is calculated by
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I(x, y, t) = j(x, y, t) · I0(x, y, t) (2.31)

from the purely geometrical clear-sky radiation

I0(x, y, t) = max(0, sin(y) · sin(x∆) + cos(y) · cos(x∆) · cos(xh)) (2.32)

with

xh = 360◦rday(t) + x− 180◦ (2.33)

x∆ = −23.4◦ · cos(360◦ryear(t) + 10◦) (2.34)

where rday(t) and ryear(t) give the fractions of the day (since 00Z UTC) and of the year

(since Jan 1) at time t, and x and y are taken to represent longitude and latitude. The

cloud factor j(x, y, t) is obtained by the following equation at the 6-hourly meteorological

intervals, and linearly interpolated in between.

j(x, y, t) =
ISW(x, y, t)

I0(x, y, t)
(2.35)

V PD(x, y, t) is calculated as a daytime mean from specific humidity q (kg/kg), surface

pressure p (Pa) ≈ 101300Pa, air temperature at 2 m height T (◦C , and the ratio κ =

0.62197 of the molar masses of water vs. air as

V PD = 611Pa · exp
(
17.26938818 · T

237.3 + T

)
− q · p

κ− q(κ− 1)
(2.36)

(difference between actual partial pressure of water vapor and saturation water vapor

pressure in Pa). The daytime average was done using I0(x, y, t) from equation 2.32 as

weighting, and applying a triangular filter to de-diurnalize.

GPP from the photosynthesis model, like Reco, is used as a-priori fields in STD-inv (more

details in chapter 3). The results of both the respiration and photosynthesis models are

presented in the following sections.
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2.5 Implementation Details and Results

SDPRM calculates 3-hourly GPP for seven major PFTs and daily Reco. The calculations

for GPP and Reco are conducted independently based on equations 2.20 and 2.30, respec-

tively. Then, daily NEE is calculated as the difference of the two fluxes at each 4◦ latitude

× 5◦ longitude land grid cell as

NEE = Reco −GPP (2.37)

As climatic input, we used daily mean and minimum temperature, daily precipitation, and

6-hourly incoming surface solar radiation. In addition, other inputs are used: (1) daytime

VPD calculated from reanalyzed specific humidity, surface pressure, and temperature using

equation 2.36 and (2) fAPAR calculated from GIMMS NDVI data (section 2.2.3). The

a-priori values of the model’s parameter are shown in table 2.4 and section 2.3.

Kaminski and Heimann (2001) showed that using incorrect a-priori fluxes could seriously

distort the inversion calculations. Therefore, we have performed several experiments to

test the performance of the model and its ability to produce realistic a-priori fields for

the inverse model. The estimates of NEE from SDPRM are compared with the land flux

inferred from the atmospheric measurements of CO2 using STD-inv. This is in order to

justify that the a-priori land fluxes from SDPRM can, to some extent, capture some of

the variability inferred from the atmospheric measurements.

Furthermore, the simulated carbon cycle components (NEE, GPP, and Reco) from SDPRM

were compared with the results of the BIOME-BGCv1 process-based model provided by

the Max-Planck Institute for Biogeochemistry (Trusilova and Churkina, 2008). BIOME-

BGCv1 is based on the core of the BIOME-BGC version 4.1.1 (Thornton et al., 2005)

point-based model. BIOME-BGC prognostically simulates the states and fluxes of car-

bon, nitrogen, and water within the vegetation, litter, and soil components of a terrestrial

ecosystem. BIOME-BGC Version 4.1.1 was developed by the Numerical Terradynamic

Simulation Group, School of Forestry, The University of Montana, Missoula, Montana,

USA. Additional information can be found at http://www.ntsg.umt.edu/. The flux es-

timates from BIOME-BGC depend strongly on daily weather conditions. The model

behavior over time depends on the history of these weather conditions (Climate). The

BIOME-BGCv1 model uses the NCEP/NCAR meteorological fields as driving data. The

model uses a daily time-step, hence each flux is estimated for a one-day period.

In BIOME-BGCv1, the total ecosystem respiration (Reco) includes three components:

maintenance respiration (MR), growth respiration (GR), and heterotrophic respiration



46 2 Simple Diagnostic Photosynthesis and Respiration Model (SDPRM)

(HR). MR of each plant compartment is computed as a function of compartment nitrogen

content and temperature. GR is calculated on the basis of construction costs by plant

compartment. Different construction costs are applied to woody and non-woody plant

tissues. HR includes decomposition of both litter and soil. It is related to their chemical

composition (cellulose, lignin, and humus), to their carbon to nitrogen ratios, to soil min-

eral nitrogen availability and to soil moisture and temperature. The Gross Photosynthetic

Production (GPP) is calculated based on absorbed photosynthetically active radiation,

atmospheric carbon dioxide concentration, air temperature, vapor pressure deficit, soil

water content, atmospheric nitrogen deposition, the leaf area index, and available nitro-

gen content in soil. For the comparison, the BIOME-BGCv1 results were aggregated to

the spatial resolution of 4◦ × 5◦ to be the same as the spatial resolution of both SDPRM

and STD-inv. Further details about the structure of BIOME-BGCv1 are described in

Trusilova et al. (2009).

The comparison between SDPRM, BIOME-BGCv1, and STD-inv is referred to as

Experiment-1. In addition, we performed another analysis, Experiment-2, to understand

the controlling mechanisms of GPP and Reco by evaluating the contribution of each climate

variable to the interannual variations in GPP and Reco.

Several studies have shown that most ecosystem models can easily capture the general

seasonality of ecosystem productivity because temperature and solar radiation dominate

seasonal phenology (White et al., 1997; Leuning et al., 2005). But on the other hand,

comparison between the interannual variations (IAV) in ecosystem productivity simulated

by different ecosystem models show large differences. This is because different models

have different formulations representing ecosystem processes and environmental stresses

(McGuire et al., 2001). Therefore, the focus of the analyses is mainly on the interannual

variability and to a lesser extent on the full temporal variability of the results (seasonal

cycle). To obtain the interannual variability from the daily fluxes, the estimated fluxes

are filtered by subtracting the mean seasonal cycle and most variations faster than 1

year (Gaussian spectral weights, as in Rödenbeck (2005)). This filter essentially retains

annual averages. Likewise for the spatial resolution of the results, the estimated fluxes are

integrated either into three latitudinal bands (90◦S - 20◦S, 20◦S - 20◦N and 20◦N - 90◦N)

or into regions as defined in the TransCom3 project (Gurney et al., 2002) (see figure 2.4).

Before we present Experiment-1 and Experiment-2, it is useful to show the spatial pattern

of annual GPP and Reco estimated by SDPRM for the period 1982-2006. In addition, the

standard deviation (σ) of the seasonal cycle and the interannual variability of the estimated

fluxes (GPP and Reco) have been calculated for each grid cell (see figures 2.5 and 2.6).



2.5 Implementation Details and Results 47

Based on the flux estimates from SDPRM, the long-term mean of Reco and GPP are 74.5

and 75.5 PgC/year, respectively (1 Petagram = 1 x 1015 g). These values are smaller in

comparison to earlier estimates presented in the IPCC AR4 (2007) (GPP = 120 PgC/year,

Reco = 119.6 PgC/year). There are two possibilities to adjust the long-term mean of GPP

and Reco from SDPRM. One possibility is to change the model parameters manually until

they reach long-term values that match earlier estimates. The other possibility, which is

the aim of this thesis, is to use a systematic method for optimizing parameters by coupling

the biosphere model to the atmospheric inversion (see chapter 3).

Figure 2.5-A and 2.6-A show that GPP and Reco have high values (global annual) in

areas covered by forests and woody savannas, especially in the tropical regions. Low GPP

and Reco occur in areas dominated by adverse environments, such as high latitudes with

short growing seasons constrained by low temperatures, and dry areas with limited water

availability. The highest annual GPP and Reco are found in Amazonia, central Africa,

and temperate regions in northern and southern America where both temperature and

moisture requirements are fully satisfied for photosynthesis and respiration. The lowest

GPP and Reco are found in cold or arid regions, where either temperature or precipitation

are limiting (see section 2.5.2).

The spatial distribution of the standard deviation of the IAV of GPP and Reco are shown

in figure 2.5-B and 2.6-B, respectively. It is clear that the standard deviation of GPP and

Reco is large where their annual values are high and small where they are low. Similarly,

figure 2.5-C and 2.6-C show the spatial distribution of the standard deviation of the

seasonal cycle (full temporal variability) of GPP and Reco. The figures show that the

largest amplitude of the seasonal cycle of GPP occurs in the northern hemisphere. This

reflects the vegetation phenology of the northern hemisphere regions, small GPP estimates

in winter and high GPP estimates in summer. Similar behavior for the amplitude of the

seasonal cycle of Reco can be seen in figure 2.6-C. It is also clear that the amplitude of

the seasonal cycle of GPP is higher than the amplitude of the seasonal cycle of Reco, in

particular in the northern hemisphere regions (see also figure 2.12 and 2.14).

2.5.1 Experiment-1

As an evaluation of the results of SDPRM, we present the inter-comparison between the

IAV of the estimated fluxes from SDPRM, STD-inv, and BIOME-BGCv1 for the period

from 1982 to 2006. As noted in section 2.2.3, the fAPAR dataset may contain some

variations which are not related to actual changes in the vegetation. As a consequence, the

simulated GPP will be affected by these variations in fAPAR (and hence NEE). Therefore,

to remove the spurious trends in the fAPAR data, we performed a sensitivity simulation
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(A): Three latitudinal regions

(B): TransCom regions

Figure 2.4— Map of the land regions over which the estimated fluxes are integrated to obtain time
series. (A) land regions for three latitudinal bands defined as (90◦S - 20◦S, 20◦S - 20◦N and 20◦N - 90◦N).
(B) Land regions as defined in the TransCom3 project (Gurney et al., 2002).
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(A): Annual GPP (gC/m2/year)

(B): Standard deviation of the IAV of GPP (gC/m2/year)

(C): Standard deviation of the seasonal cycle of GPP (gC/m2/year)

Figure 2.5— A: global map of annual GPP, B: standard deviation of the IAV of GPP, C: standard deviation
of the seasonal cycle of GPP. The calculations are done for each grid cell for the period 1982-2006. Units
are gC/m2/year.
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(A): Annual Reco (gC/m2/year)

(B): Standard deviation of the IAV of Reco (gC/m2/year)

(C): Standard deviation of the seasonal cycle of Reco (gC/m2/year)

Figure 2.6— A: global map of annual Reco, B: standard deviation of the IAV of Reco, C: standard deviation
of the seasonal cycle of Reco. The calculations are done for each grid cell for the period 1982-2006. Units
are gC/m2/year.
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assuming constant vegetation by using the mean seasonal cycle of the fAPAR time series

for the period 1982-2006 (hereafter referred to as CfAPAR). Then the simulated NEE from

the CfAPAR run is compared with the simulated NEE using the full temporal variability of

fAPAR time series (referred to as VfAPAR). In both simulations, we used varying climate

(daily NCEP/NCAR reanalysis data).

Table 2.5— Summary of the sensitivity runs (Experiment-1).

Acronym Description

VfAPAR full temporal variability of fAPAR + Climate varying
CfAPAR Mean seasonal cycle of fAPAR + Climate varying

Figure 2.7 shows the comparison between the anomaly (subtracting the mean of 1982-

2006) of the IAV of the simulated NEE from the two runs CfAPAR and VfAPAR and the

estimated land flux from STD-inv. We can see that the IAV of the NEE from the VfAPAR

case has some striking peaks, in particular over the tropics, during the period 1991-1993

compared to STD-inv. This can be explained by the variability in fAPAR (inherited

from GIMMS NDVI) during the period from 1991-1993 over the tropical region due to

the Pinatubo eruption, which injected large quantities of aerosols into the stratosphere.

These aerosols, along with smoke from biomass burning and dust from soil erosion and

other factors, can introduce significant variability in the AVHRR NDVI record (Tucker

et al., 2005) and hence the fAPAR data. The correlation analysis shows that the correlation

coefficient between the IAV of the global NEE time series from the VfAPAR run and the

estimated global land flux from STD-inv is r = 0.31.

On the other hand, we can see that the IAV of NEE estimates from the CfAPAR run can

capture a substantial fraction of the IAV of the land flux as inferred from the atmospheric

information using STD-inv. The correlation coefficient between the two land estimates is

higher compared to the estimates from the VfAPAR run (r = 0.53). This suggests that

most of the IAV of NEE is dominated by the climate signal, not by the fAPAR. Or in

other words, modeling ecosystem productivity using climatological fAPAR and varying

climate date would produce a reasonable match to the inversion results. This also may

indicate that the GIMMS NDVI data may not be accurate and may be problematic in

certain regions/periods and should be used with caution (see also Nemani et al. (2003)).

Further comparison has been carried out between the simulated NEE from SDPRM using

CfAPAR run and NEE simulated by BIOME-BGCv1, which is a process-based model.

The comparison between the two models is illustrated in figure 2.9 for 3 latitudinal bands

(see figure 2.4-A). The estimates of the land flux from STD-inv is shown in the same
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figure. The comparison shows that the IAV of NEE from the CfAPAR run has a similar

pattern compared to the NEE estimated by the BIOME-BGCv1 model, in particular over

the tropics (r = 0.63). Similarly, figure 2.11 shows the same comparison but over smaller

regions (see figure 2.4-B). There are two things we can see in this figure. First, SDPRM

and BIOME-BGCv1 agree well but not perfectly over many regions, second. STD-inv

has higher IAV of the land flux as well as a different pattern compared to SDPRM and

BIOME-BGCv1. Due to the scarcity of the atmospheric CO2 observations, the results of

STD-inv might not be well constrained over smaller regions. Also, missing processes (e.g.

fire) in the biosphere models can also be the reason for the differences between the flux

variability shown in figure 2.11.

The seasonal cycle of the flux estimates from the three models are shown (in figures 2.8

and 2.10) for a selected period. The general phase of the seasonal cycle of NEE from

the CfAPAR run is similar to the seasonal cycle of the land flux estimated from STD-

inv over northern hemisphere land (NH). Furthermore, the amplitude is higher in our

model but is fairly well simulated compared to the more sophisticated model (BIOME-

BGCv1), which leads STD-inv by perhaps 2 months. The seasonality over the tropical and

southern hemisphere (SH) regions is smaller compared to the NH land. This is because

the high variations of major drivers of the carbon cycle (precipitation, temperature, fire,

and nutrient availability) in tropical regions.

Additionally, the simulated carbon cycle components (GPP and Reco) from SDPRM (CfA-

PAR run) are compared with the results from BIOME-BGCv1 for both the IAV and the

seasonal cycle (figures 2.13 and 2.14). The comparisons show that GPP and Reco from

SDPRM agree well with those from BIOME-BGCv1 although both models are using dif-

ferent algorithms for calculating GPP and Reco. GPP calculation in SDPRM is based on

the MODIS17 algorithm which uses the light use efficiency logic suggested by Monteith

(1977). In the MOD17 algorithm, VPD is the only variable directly related to environ-

mental water stress, while both VPD and soil water content are used for water stress

calculations in BIOME-BGCv1.

In figure 2.14, the seasonal cycles of Reco from SDPRM and BIOME-BGCv1 are presented.

As mentioned earlier, the parameters and the structure of the respiration model in SDPRM

were chosen from the soil-respiration model of Reichstein et al. (2003) which was calibrated

using field measurements from Europe and North America. The comparison in figure 2.13

shows that there are some differences in the amplitude of the seasonal cycle between the

two models over Europe, North American Temperate and Boreal and Eurasian Boreal,

but they agree well over the other regions. The two models agree perfectly over Eurasian
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Temperate and the tropical regions. This is encouraging because it implies that SDPRM

can produce flux fields over different regions of the globe consistent with the process-based

estimates.

Based on the inter-comparison between SDPRM, BIOME-BGCv1 and the STDinv, we can

conclude that our model is capable of reproducing realistic flux patterns comparable to

the ones inferred from the atmospheric measurements or inferred based on process under-

standing. SDPRM has very simple structure and few adjustable parameters, and hence it

is much easier to modify than more sophisticated process-based models. Accordingly, we

assume that SDPRM is suitable to be coupled into the inverse model for the optimization

of some internal model parameters. However, we should keep in mind that the real world

is more complex than the models. The limitation of SDPRM can arise from

• The simplification of our model structure,

• The global application of the adjustable parameters, the initial values of which were

derived from field studies,

• Deficiencies in the climate data (NCEP/NCAR),

• The limited resolution of the land cover classification, and

• The lack of some important processes (e.g. fire)

However, by coupling that model into the inversion, we expect that some of the model

parameter can be optimized by the atmospheric constraints. Accordingly, more direct

process understanding can be achieved that current atmospheric inversions do not provide.
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Figure 2.7— The comparison between the anomaly (subtracting the mean of 1982-2006) of the IAV
of the simulated NEE from the two runs, CfAPAR (using the mean seasonal cycle of fAPAR) [Blue] and
VfAPAR (using the full variability fAPAR) [Magenta dashed] and the total land flux simulated by STD-inv
[Black]. The time series are integrated over three latitudinal bands (for the map of the regions see figure 2.4)
and de-seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck (2005)). The fossil fuel
emissions have been subtracted for STD-inv line. Positive values denotes a net source of natural fluxes into
the atmosphere.
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Figure 2.8— The comparison between the anomaly (subtracting the mean of 1982-2006) of the full
variability of the simulated NEE from the CfAPAR run (using the mean seasonal cycle of fAPAR) [Blue], NEE
estimates from BIOME-BGCv1 [Red] ,and the land flux simulated by STD-inv [Black]. The time series are
integrated over three latitudinal bands (for the map of the regions see figure 2.4). The fossil fuel emissions
have been subtracted from STD-inv line. Positive values denotes a net source of natural fluxes into the
atmosphere.
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Figure 2.9— The same as figure 2.8 but for full variability of the land flux from STD-inv (Black), NEE
from CfAPAR (Blue), and from BIOME-BGCv1 (red). The time series are de-seasonalized and filtered for
interannual variability (IAV) (as in Rödenbeck (2005)). The fossil fuel emissions have been subtracted from
STD-inv line. Positive values denotes a net source of natural fluxes into the atmosphere.
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Figure 2.10— The same as figure 2.8 but the time series are integrated over 11 land regions (for the
map of the regions see figure 2.4).
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Figure 2.11— The same as figure 2.9 but the time series are integrated over 11 land regions (for the
map of the regions see figure 2.4).
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Figure 2.12— The comparison between the anomaly (subtracting the mean of 1982-2006) of the full
variability of the simulated GPP from the CfAPAR run (using the mean seasonal cycle of fAPAR) [Blue], and
from BIOME-BGCv1 [Red]. The time series are integrated over 11 land regions (for the map of the regions
see figure 2.4).
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Figure 2.13— The comparison between the anomaly (subtracting the mean of 1982-2006) of the IAV
of the simulated GPP from the CfAPAR run (using the mean seasonal cycle of fAPAR) [Blue], and from
BIOME-BGCv1 [Red]. The time series are integrated over 11 land regions (for the map of the regions see
figure 2.4) and de-seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck (2005)).
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Figure 2.14— The comparison between the anomaly (subtracting the mean of 1982-2006) of the full
variability of the simulated Reco from the CfAPAR run (using the mean seasonal cycle of fAPAR) [Blue], and
from BIOME-BGCv1 [Red]. The time series are integrated over 11 land regions (for the map of the regions
see figure 2.4).
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Figure 2.15— The comparison between the anomaly (subtracting the mean of 1982-2006) of the IAV of
the simulated Reco from the CfAPAR run (using the mean seasonal cycle of fAPAR) [Blue], and from BIOME-
BGCv1 [Red]. The time series are integrated over 11 land regions (for the map of the regions see figure 2.4)
and de-seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck (2005)).
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2.5.2 Experiment-2

Many studies have shown strong relationships between the annual climate (means) and

vegetation distribution and ecosystem productivity (e.g Stephenson (1990) and others).

They also show that any small variation in the annual climate can have a significant impact

on the plant growth and biome stability. Thus, it seems reasonable to use the year-to-year

variation (interannual variability (IAV)) of climate variables as indicators of the ecosystem

productivity limitation.

In experiment-2, we tested the sensitivities of GPP and Reco to the driving climate vari-

ables. This has been carried out by estimating the relative contribution of individual

climate variables to the simulated interannual variability of GPP and Reco.

We tested the effects of interannual variation in each climate variable by removing the

IAV of the other climate variables (using only the mean seasonal cycle for the period

1982 to 2006) and using constant vegetation (mean seasonal cycle fAPAR). In the case of

GPP, simulations allow for the isolation of the effects of daily minimum temperature (GT-

only), vapor pressure deficit (GV-only), and downward short wave radiation (GS-only).

In the case of Reco, simulations allow isolation of the effects daily temperature (RT-only),

and precipitation (RP-only). Then, the relative contribution of each independent climate

variable on GPP and Reco estimates (1982-2006) is calculated with a logic similar to the

one suggested by Ichii et al. (2005) which can be expressed as:

GCi =
σ2
i

σ2
GT + σ2

GV + σ2
GS

(2.38)

RCi =
σ2
i

σ2
RT + σ2

RP

(2.39)

Here GCi and RCi are the proportional contribution of σ2
i , the variance of anomalies

in the simulated IAV of GPP and Reco respectively, for each of the climate sensitivity

simulations (i= GT-only, GV-only, GS-only, RT-only, or TP-only), to the sum of the

variance of each of the climate sensitivity simulations . High/low GCi or RCi indicates

large/small contribution of the climate simulation i on overall variance.

Based on the calculations of the squared correlation coefficient (R2), we found that GPP

and Reco anomalies in the default simulation (CfAPAR – all climate variables are varying)

were mostly explained by the sum of each climate sensitivity simulation (for GPP: GT-only

+ GV-only + GS-only and for Reco: RT-only + RP-only) (R2 = 0.98 for GPP and also

for Reco). This indicates that the main effects were essentially additive and that extensive
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Table 2.6— Summary of the sensitivity runs (Experiment-2).

Acronym Description

GPP-default CfAPAR + Climate varying
GT-only CfAPAR + Temperature only Varying + mean seasonal cycle of the other variables
GV-only CfAPAR + VPD only Varying + mean seasonal cycle of the other variables
GS-only CfAPAR + Radiation only Varying + mean seasonal cycle of the other variables

Reco-default CfAPAR + Climate varying
RT-only CfAPAR + Temperature only Varying + mean seasonal cycle of the other variables
RP-only CfAPAR + Precipitation only Varying + mean seasonal cycle of the other variables

non-linear interactions do not exist. Therefore, non-linear responses of GPP and Reco

to interactions among climate variables (e.g. simultaneous increase in temperature and

radiation) were not investigated.

Climate Controls on GPP

Based on equation 2.38, figure 2.20 shows the global distribution of the relative contribu-

tion of each climate variable (temperature, vapor pressure deficit, and radiation) to the

IAV of GPP. Also, the time series of the integrated IAV of GPP for simulation in which all

climate variables varied (GPP-default) and in which only a single climate variable (GT-

only, GV-only, and GS-only) are shown in figures 2.16 and 2.17 and summarized in table

2.7 for different eco-regions . The results of the relative contribution of each climate factor

to GPP are summarized as follow:

1. Temperature:

In the high latitudes, temperature is clearly the primary control on GPP (figure 2.20),

in particular over the North American boreal forest and Eurasian boreal forest (77%

and 63%, respectively) and to a lesser extent over Europe and the Eurasian temperate

forest (27% and 13%, respectively, see table 2.7). On average, temperature limits

GPP over the northern hemisphere by almost 43%. But on the other hand, the

tropics and the southern hemisphere areas are not limited by low temperature (less

than 2%). This can be explained by the fact that at low temperatures the enzymes

responsible for photosynthesis have very little energy so the rate of photosynthesis

is very slow. Thus, very low mean annual temperatures limit plant productivity

as in the case of tundra and boreal forests in northern latitudes. Similar findings

were presented by Nemani et al. (2003). In this study, they investigated vegetation

responses to climatic changes by analyzing 18 years (1982 to 1999) of both climatic

data and satellite observations of vegetation activity. According to their study, cold

winter temperatures limit high-latitude Eurasian vegetation, while tropical areas
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are never limited by low temperatures. Figures 2.16 and 2.17 show that over the

northern hemisphere, in particular over the boreal regions, the IAV of GPP when

only the temperature varied (GT-only) is similar to the IAV of GPP-default.

2. Vapor pressure deficit:

As mentioned earlier, in the MOD17 algorithm for calculating GPP, VPD is the only

variable directly related to environmental water stress. Therefore, VPD is used as

an indicator of environment water stress.

It is clear from figure 2.20 that VPD is a dominant control on GPP over large areas of

the globe where water is severely limited, mainly Australia (91%), North and South

American temperate forest (77% and 76%, respectively), southern Africa (76%),

southern Europe (56%), and the Sahara desert (58%) (see table 2.7). This also can

be seen in figures 2.16 and 2.17 where the IAV of GPP when only the VPD varied

(GV-only) is in good agreement with the IAV of GPP-default over different part of

the globe, in particular in the water-limited regions (e.g. temperate forest in North

America, Australia, and India). This is also consistent with the finding of Nemani

et al. (2003) who estimated that water availability most strongly limits vegetation

growth over 40% of the Earth’s vegetated surface, and vapor pressure deficit (VPD)

is a limiting factor of vegetation growth in water-limited ecosystems of Australia,

Africa, and the Indian subcontinent.

3. Radiation:

Radiation is another important limiting factor on GPP, because photosynthesis oc-

curs only in the presence of a sufficient amount of light. Intense cloud cover could

dramatically reduce the incoming solar radiation. According to that, we can see

from figure 2.20 that radiation limits GPP by almost 56% over the area covered

most of the year by cloud (tropical regions). But radiation is also a limiting control

on GPP, over some areas in the northern hemisphere, such as Eurasian temperate

(39%), Europe (17%), and north American temperate (14%), but with a lesser de-

gree . Nemani et al. (2003) also found that radiation is a limiting factor in western

Europe and the equatorial tropics regions.

Climate Controls on Reco

Similarly, based on equation 2.39, figure 2.21 shows the global distribution of the rela-

tive contribution of each climate variable (temperature, precipitation) to the interannual

variability of Reco. Also, the time series of the integrated IAV of Reco driven by fully-

varying climate data (Reco-default) and cases in which only one variable varied (RT-only
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Table 2.7— Climatic contributions to the interannual variability of GPP and Reco over different land
regions. The contribution was calculated using equations 2.38 and 2.39
.

GPP Reco

Land Regions VPD Radiation Temperature Precipitation Temperature

Land Total 0.43 0.39 0.18 0.32 0.68
Northern Hemisphere 0.47 0.10 0.43 0.13 0.87
Tropical Land 0.44 0.56 0.00 0.51 0.49
Southern Hemisphere 0.89 0.09 0.02 0.83 0.17

North American Bor. 0.17 0.05 0.77 0.02 0.98
North American Temp. 0.77 0.14 0.09 0.40 0.60
South American Trop. 0.46 0.53 0.00 0.74 0.26
South American Temp. 0.76 0.21 0.03 0.68 0.32
Europe 0.56 0.17 0.27 0.14 0.86
Northern Africa 0.58 0.42 0.00 0.62 0.38
Southern Africa 0.76 0.24 0.00 0.91 0.09
Eurasian Boreal 0.28 0.10 0.63 0.10 0.90
Eurasian Temperate 0.53 0.34 0.13 0.45 0.55
Tropical Asia 0.11 0.89 0.00 0.55 0.45
Australia 0.91 0.09 0.01 0.88 0.12

and RP-only) are shown in figures 2.18 and 2.19 for different eco-regions. Additionally,

the calculated values based on equation 2.39 for different regions are shown in table 2.7.

The results of the relative contribution of each climate factor to Reco are summarized as

follow:

1. Temperature:

Similar to GPP, temperature partially determines the respiration rates of vegetation.

Consequently, plants growing in cold regions are usually less productive. Thus,

Reco of plants from cold regions is primarily limited by temperature. Figure 2.21

shows that clearly, where temperature limits Reco by almost 87% over the northern

hemisphere and by a lower rate over tropical regions (49%). This is also clear in

figures 2.18 and 2.19 where the time series of the IAV of Reco simulated by RT-only

and Reco-default are shown.

2. Precipitation:

Figure 2.21 shows that precipitation is a dominant control on Reco over large areas

of the globe where water is severely limiting, in particular the tropics and southern

hemisphere regions (51% and 83% respectively).
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Figure 2.16— The comparison between the anomalies (subtracting the mean of 1982-2006) of the IAV
of the simulated GPP: GPP-default (Black), GV-only (Blue), GT-only (Red), and GS-only (violet) (see table
2.6) . The time series are integrated over three latitudinal bands (for the map of the regions see figure 2.4)
and de-seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck (2005)).
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Figure 2.17— As in figure 2.16, but the time series are integrated over 11 land regions (for the map of
the regions see figure 2.4)
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Figure 2.18— The comparison between the anomalies (subtracting the mean of 1982-2006) of the
IAV of the simulated Reco fluxes : Reco-default (Black), RP-only (Blue), and RT-only (Red)(see table 2.6).
The time series are integrated over three latitudinal bands (for the map of the regions see figure 2.4) and
de-seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck (2005)).
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Figure 2.19— As in figure 2.16, but the time series are integrated over 11 land regions (for the map of
the regions see figure 2.4)
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(A): Temperature contribution to the IAV of GPP

(B): VPD contribution to the IAV of GPP

(C): Radiation contribution to the IAV of GPP

Figure 2.20— The global distribution of the relative contribution of each climate variable (temperature
(A), vapor pressure deficit (B), and radiation (C)) to the IAV of GPP.
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(A): Temperature contribution to the IAV of Reco

(B): Precipitation contribution to the IAV of Reco

Figure 2.21— The global distribution of the relative contribution of each climate variable (temperature
(A), precipitation (B)) to the IAV of Reco.
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2.5.3 Summary and Conclusion

In this chapter, we presented the algorithm that is used to implement the Simple Diagnostic

Photosynthesis and Respiration Model (SDPRM). The model estimates 3-hourly values

of Gross Primary Production (GPP) and daily values of ecosystem respiration (Reco) .

The spatial resolution of the model is 4◦ latitude × 5◦ longitude. The model is driven by

climate data from NCEP/NCAR and satellite-derived fAPAR data.

To test the performance of the model, we compared simulated carbon flux components

with two different approaches for estimating the land fluxes. One approach is the process-

understanding approach presented by the BIOME-BGCv1 model. The second approach is

the atmospheric CO2 inversion in which the land fluxes are inferred from the atmospheric

information. We used the results of an updated version of the standard inversion (STD-

inv) presented by Rödenbeck (2005).

The main conclusions are:

• The interannual variability of NEE is mainly driven by climate. That means mod-

eling ecosystem productivity using climatological fAPAR and varying climate data

would produce a reasonable match to the inversion results and to the process-based

models.

• SDPRM is capable of reproducing realistic flux patterns comparable to the ones

inferred from the atmospheric measurements or inferred based on process under-

standing.

• Accordingly, we assume that SDPRM is suitable to be coupled into the inverse model

in order to optimize some selected model parameters.

Furthermore, we have tested the sensitivities of GPP and Reco to the driving climate

variables. This has been carried out by estimating the relative contribution of individual

climate variables to the simulated interannual variability of GPP and Reco. The results

of the sensitivity analyses were consistent with the finding of Nemani et al. (2003). The

main conclusions are:

• Temperature controls the IAV of GPP over cold boreal forest.

• VPD controls the IAV of GPP in water-limited ecosystems.

• Radiation is the main control of the IAV of GPP over the tropical regions.
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• Temperature controls the IAV of Reco over large areas of the globe, in particular

over northern hemisphere regions.

• Also, precipitation controls the IAV of Reco over large areas of the globe, in particular

over the tropics and southern hemisphere regions.

By coupling SDPRM to the inverse model, we expect that some of the model parameters

can be optimized by the atmospheric measurements. Accordingly, more direct process

understanding can be achieved, which currently STD-inv does not provide.
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Chapter 3

Atmospheric CO2 Inversion

For the purpose of this chapter, it is useful to recall briefly what has been achieved in

chapter 2. As described in chapter 2, SDPRM calculates the Gross Primary Production

(GPP) and the Ecosystem Respiration (Reco) independently. The model is driven by

the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and climate data

and uses few adjustable parameters. To test the performance of the model, the simu-

lated fluxes have been compared with the flux estimates from two different approaches; a

process-based modeling approach represented by BIOME-BGCv1 and the atmospheric in-

version approach represented by the inverse model introduced by Rödenbeck et al. (2003)

and its extension, described by Rödenbeck (2005) (referred to as STD-inv introduced in

this chapter). Based on the comparisons, SDPRM shows its capability to produce flux

estimates consistent with the estimates from the other two approaches, suggesting that

SDPRM can provide reasonable a-priori CO2 fluxes for the inverse model application.

In this chapter, we aim to infer carbon sources and sinks of the land biosphere using

different modeling approaches and data constraints. Therefore, SDPRM is coupled to

STD-inv (referred to as SDPRM-inv). SDPRM replaces the simple statistical linear flux

model of STD-inv (described in section 3.1.1) for different aims: first, to provide reasonable

a-priori CO2 fluxes with high spatio-temporal resolution to STD-inv, second, to optimize

some internal physiological and interpretable parameters of SDPRM in order to fit the

atmospheric measurements of CO2. For the coupling, SDPRM is linearized around the

adjustable parameters (see section 3.2) in order for the minimization algorithm to work

more efficiently. From the coupled system, we can learn which of these parameters can

be constrained by the CO2 measurements. Accordingly, we can understand the model

behavior and define strategies for further assimilation experiments.

In STD-inv, special care has been taken to overcome of the shortcoming of previous studies:
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(1) avoiding spurious variability due to data gaps by selecting homogeneous data records,

(2) avoiding spatial rectification biases by solving for higher-resolved fluxes correlated in

time and space (this problem will not be relevant in the coupled system, see remark in

section 3.2.3), (3) reducing model errors by using time-varying meteorological drivers and

consistent representation of data sampling in the model (i.e., sampling of the model at the

same time and location as the observations) rather than monthly mean concentrations as

in many inversion studies (e.g. Kaminski et al. (2002)). Also, the time resolution of the

fluxes was increased to daily flux values.

In the following sections, we briefly describe: (1) the mathematical algorithm of STD-inv,

in particular the construction of the statistical linear flux model, (2) the atmospheric CO2

data and atmospheric transport model used in this study and (3) the implementation

details of the coupled system (SDPRM-inv).

3.1 Overview of STD-inv

In principle, the inverse modeling technique is used to estimate CO2 fluxes at a variety

of spatial and temporal scales using a combination of various sources of information. The

primary source of information is observed atmospheric CO2 concentrations at a set of sites.

Global observational networks provide concentration measurements of atmospheric CO2

at only around 100 sites. However, they accurately measure gradients in CO2 concentra-

tions between two different points of the globe, reflecting the distribution of the surface

fluxes dispersed by transport in the atmosphere (Keeling et al., 1989; Tans et al., 1990).

Atmospheric tracer transport is linear, therefore a model of atmospheric transport can be

used in an inverse mode if the source and sink distribution are to be inferred from observed

concentrations. The transport model simulates how the atmospheric circulation moves the

trace gas by advection, diffusion and convection. Therefore the modeled atmospheric CO2

concentrations, cmod, that arise from a given temporally and spatially varying discretized

flux field, f , are computed by an atmospheric transport model as:

cmod = Af + cini (3.1)

with an initial concentration, cini, which is assumed fixed and corresponds to a well-mixed

atmosphere (i.e., all elements of the vector cini are equal. A is a transport operator that

maps fluxes onto atmospheric concentrations. The dimensions of the matrix A are the

number of flux components times the number of observables. The values in cmod are

sampled in the model for every individual time and location where there is a measured

value in cmeas.
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The inversion calculation seeks those fluxes f that lead to modeled concentration values

that should be as close as possible to the actual measured concentrations, taking into

account measurement and model errors. The desired result, the so-called a posteriori flux

estimate, is then obtained by minimizing the following cost function:

Jc =
1

2
(cmeas − cmod)

TQ−1
c (cmeas − cmod) (3.2)

where the covariance matrix Qc introduces a weighting among the concentration values.

Since the number of sampling sites is limited, the matrix A becomes a rectangular matrix

with a much larger number of columns than rows. In this case the inverse problem is highly

underdetermined which means that there are many flux fields yielding the same modeled

concentrations at the observational sites (Kaminski and Heimann, 2001). This problem can

be partially solved by using a Bayesian approach that includes a-priori information about

land and ocean fluxes in the inversion calculation. Both atmospheric CO2 observations

and a-priori fluxes are described in terms of Gaussian probability densities. Following

the inversion algorithm introduced by Rödenbeck et al. (2003) and Rödenbeck (2005),

the deviation from the a-priori fluxes are structured by introducing a linear statistical

flux model (more details in the next section). Briefly, this flux model defines the a-priori

probability distribution of the fluxes f around the mean ffix (the first-guess) according to:

f = ffix + Fp (3.3)

where the matrix F represent a series of spatial-temporal flux patterns composing the

total flux. The vector p represents the set of adjustable parameters, each of which acts as

a multiplier to one of the columns of the matrix F. The a-priori covariance matrix of the

fluxes is Qfpri = FFT . By considering the a-priori information in equation 3.2, the cost

function J , to be minimized with respect to p, can be written as:

J = Jc +
1

2
pTp (3.4)

where the a-priori parameters vector p has zero mean, unit variance and is uncorrelated.

The minimization of the cost function J with respect to the parameters p has been done us-

ing a Conjugate Gradients algorithm with re-orthogonalization after each step (Rödenbeck,

2005).
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3.1.1 The linear flux model of STD-inv

Referring to equation 3.3, the flux model introduces all a-priori information in the inversion

calculation. The total flux, f , is considered as the sum of Ncomp different source and sink

components (Rödenbeck, 2005):

f =

Ncomp∑
i=1

(βiffix,i + αiFipi) (3.5)

where i is the index of source and sink components. In STD-inv, the individual flux

components correspond to: (1) fossil fuel emission, (2) land-atmosphere carbon exchange

and (3) ocean-atmosphere carbon fluxes. In general, the total flux can be expressed by

fixed (ffix,i(x, y, t)) and adjustable terms. The flux model can then be written in a 3D

field f(x, y, t) as:

f(x, y, t) =

NComp∑
i=1

βiffix,i(x, y, t)︸ ︷︷ ︸
fixed

+αifsh,i(x, y, t)

Nt,i∑
mt

Ns,i∑
ms

gtime
mt,i

(t)gspacems,i
(x, y)pmt,ms,i︸ ︷︷ ︸

δfi(x,y,t) adjustable


(3.6)

where, fsh,i(x, y, t) represents a weighting in space and time that defines the domain of

activity of the flux component, while {gtime
mt,i

(t)} and {gspacems,i (x, y)} determine a temporal

and spatial, respectively, decomposition into statistically independent elements. In other

words, it introduces temporal and spatial correlations among source strengths. β and α

are scaling factors. The individual adjustable parameters pmt,ms,i determine the relative

strength of all combinations of elements. Detailed explanations of these various quantities

are described in (Rödenbeck, 2005).

3.1.1.1 Fixed and adjustable terms of STD-inv

Under the framework of STD-inv the following settings are considered:

• The fixed terms, ffix,i(x, y, t), (a-priori flux fields) do not have year-to-year varia-

tions. That means the variability found in the estimated fluxes are explained by the

atmospheric information. This is a slightly different view than the classical Bayesian

interpretation of ffix,i(x, y, t) being an a-priori “best guess” flux estimate and the

adjustable term just being its error. Therefore, in STD-inv, the adjustable term play
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the role of the actual flux component, while ffix,i(x, y, t) just pre-subtracts some part

of it that cannot be retrieved by the inversion.

• The flux components/processes can be split into different time scales, such as their

long-term mean, mean seasonal cycle, interannual and short-term variability, each

of which is treated a separate component in the flux model.

Taking into account the remarks above, the individual flux components in the STD-inv

set-up (updated version of Rödenbeck (2005)) used in this thesis, are:

1. Land-atmosphere exchange:

• Long-term:

The long-term component has the fixed term (ffix,nee,lt(x,y,t)) that equals the

1980-1992 mean NEE flux from the CCMLP-LPJ biosphere model (Sitch et al.,

2000; McGuire et al., 2001) and the adjustable term has a spatial weight-

ing (fsh,nee,lt(x,y,t)) proportional to the mean NPP of CCMLP-LPJ. This NPP

weighting is taken as a proxy for vegetation activity.

• Seasonal:

The seasonal cycle does not have a fixed term, because the fixed term al-

ready exists in the long-term component. The shape of the adjustable term

(fsh,nee,seas(x,y,t)) is constant in time and has a spatial structure that equals the

amplitude of the mean seasonal cycle of NEE from CCMLP-LPJ.

• Interannual:

Also, there is no fixed term for the interannual variations, but the shape of the

adjustable term (fsh,nee,iav(x,y,t)) is NPP weighted, as in the long-term NEE-

component.

Based on that the land flux components in STD-inv have only the long-term mean

in the fixed-term. However, the optimization algorithm in the model has the ability

to adjust the flux for different time scales including the long-term mean, seasonal

cycle, and interannual variability.

2. Ocean-atmosphere Exchange:

The fixed term of the ocean flux is taken from the flux estimates by Takahashi

et al. (2009) based on the net air-sea CO2 flux that is estimated using the air-

sea pCO2 (partial pressure of CO2) difference and an air-sea gas transfer rate that

is parameterized as a function of wind speed. The fixed term of ocean flux from
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Takahashi et al. (2009) contains the mean seasonal cycle and the long-term mean.

There is no adjustable term for ocean fluxes, where the interannual variability is

generally believed to be small compared to land (Prentice, 2001; Rödenbeck et al.,

2003).

3. Fossil Fuel emissions:

Fossil fuel emissions are generally considered to be better known than the land-

atmosphere flux exchange or ocean fluxes. Moreover, they have a very peaked spatial

structure, which cannot be resolved by the atmospheric data. Therefore, emission

estimates are taken from fuel use statistics.

In STD-inv, the fixed term is based on the yearly totals and geographical dis-

tribution of the fossil fuel emissions that is taken from EDGAR (the Emission

Database for Global Atmospheric Research) version 4.0 (EC-JRC/PBL, 2009)

(source: http://edgar.jrc.ec.europa.eu/), which provides a complete gridded histori-

cal emission trend from 1970 until 2005 calculated based on energy production and

consumption, industrial manufacturing, agricultural production, waste treatment,

and disposal and burning of biomass. For 2006, the data have been extrapolated

based on the global totals from PBL statistics (Netherlands Environmental Assess-

ment Agency (PBL)). There is no adjustable term.

3.1.2 Atmospheric transport model

The global atmospheric transport model TM3 (Heimann and Körner, 2003) is used to cal-

culate the transport matrix A. The TM3 model is a three dimensional Eulerian transport

model that solves the continuity equation based on given time-dependent meteorological

fields for an arbitrary number of atmospheric tracers (in our case CO2). The model is

driven by meteorological fields derived from the NCEP reanalysis (Kalnay et al., 1996)

that cover the our simulation period (1982-2006). The meteorological input varies interan-

nually according to the true year of the simulation (Rödenbeck et al., 2003). The spatial

structure of the model is a regular latitude longitude grid and a sigma coordinate system

in the vertical. In this study, the spatial resolution of the model is 4◦ latitude × 5◦ lon-

gitude × 19 vertical levels. Modeled concentration values are picked from the model grid

box that contains the respective site. Each modeled value is taken at the same date and

time at which the corresponding measured value has been sampled (Rödenbeck, 2005).

3.1.3 CO2 concentration data

The CO2 concentration data are provided by different institutions (e.g. flask data of

NOAA/CMDL’s sampling network, update of Conway et al. (1994)), Japan Meteoro-
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logical Agency (JMA), Meteorological Service of Canada (MSC), and many others, see

Rödenbeck (2005)). The choice of the CO2 stations is a vital problem for many reasons:

(1) The sampling at the different stations began at different times, so the dataset is not

homogeneous with time, (2) some measurements may not be representative for large source

areas or badly reproduced in the transport model (small scale features can not be captured

due to the coarseness of the transport model), (3) some of these stations are affected by

local emissions, (4) at some locations, two or more alternative records exist, measured by

different institutions or using different experimental techniques, (5) varying temporal data

density (flask records vs. continuous records). These factors are explained in more detail

in Rödenbeck (2005).

In Rödenbeck (2005), automatic and manual section of the data has been done to solve

some of these issues. For example, some data records are merged together where both

flask records and continuous records exist by applying a data weighting density approach

(explained in (Rödenbeck, 2005)) to compensate potentially varying temporal data density.

Also, some “spikes” in some data records (suspected to be due to some local emission)

are removed manually. For that, the dataset based on the updated version of Rödenbeck

(2005) are used in our study here.

For codes, names, and locations of the sites see table 3.1 and figure 3.1. Figure 3.2 shows

the data availability for each station used during our simulation period (1982-2006).

Remark: spurious flux variations

In the choice of CO2 observing stations, there are some competing requirements. The more

stations we use the better the constraint on the simulated fluxes and the lower the uncer-

tainty on the optimized parameters and vice versa. In STD-inv (mainly constrained by the

atmospheric information, section 3.1.1.1), changes in station density throughout the study

period (1982-2006) can lead to spurious flux variations over the regions influenced by the

new stations. This is due to changes from prior-constrained to data-constrained. Accord-

ingly, the resulting time-series of the flux estimates may be misinterpreted as interannual

variability in concentration (Rödenbeck et al., 2003; Rayner et al., 2005).

3.2 The coupled inversion system (SDPRM-inv)

Referring to equation 3.6, the flux field can be written in terms of a set of dimensionless

adjustable parameters (vector p) as:
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Table 3.1— Sites measuring CO2 concentrations that were used in the inversion. The locations are
shown in figure 3.1

Code Name/Geographic location Latitude Longitude height
(◦) (◦) (m a.s.l.)

ALT Alert, Canada 82.45 -62.52 210
ASC Ascension Island, Atlantic -7.92 -14.42 54
BAL Baltic Sea, Poland 55.50 16.67 7
BHD Baring Head, New Zealand -41.42 174.87 85
BME St. David’s Head, Bermuda 32.37 -64.65 30
BMW Southhampton, Bermuda 32.27 -64.88 30
BRW Barrow, Alaska 71.32 -156.60 11
CBA Cold Bay, Alaska 55.20 -162.72 25
CFA Cape Ferguson, Australia -19.28 147.05 2
CGO Cape Grim, Tasmania -40.68 144.68 94
CHR Christmas Island, Pacific 1.70 -157.17 3
CMN Monte Cimone 44.18 10.70 2165
ESP Estevan Point, Canada 49.38 -126.53 39
HUN Hegyhatsal, Hungary 46.95 16.65 344
ICE Heimaey, Iceland 63.25 -20.15 100
IZO Izana, Tenerife 28.30 -16.48 2360
KER Kermadec Island -29.03 -177.15 2
KEY Key Biscayne, Florida 25.67 -80.20 3
KUM Cape Kumukahi, Hawaii 19.52 -154.82 3
LJO La Jolla Pier, California 32.87 -117.25 15
LMP Lampedusa, Italy 35.51 12.61 50
MAA Mawson, Australia -67.62 62.87 32
MHD Mace Head, Ireland 53.33 -9.90 25
MLO Mauna Loa, Hawaii 19.53 -155.58 3397
MNM Minamitorishima, Japan 24.30 153.97 8
MQA Macquarie Island, s. ocean -54.48 158.97 12
NWR Niwot Ridge, USA 40.05 -105.58 3475
PSA Palmer Station, Antarctica -64.92 -64.00 10
RPB Ragged Point, Barbados 13.17 -59.43 3
RYO Ryori, Japan 39.03 141.83 230
SCH Schauinsland, Germany 47.92 7.92 1205
SHM Shemya Island, Alaska 52.72 174.10 40
SIS Shetland Islands, UK 60.17 -1.17 30
SMO Tutuila, American Samoa, Pacific -14.25 -170.57 42
SPO South Pole -89.98 -24.80 2810
STM Station ‘M’, Atlantic 66.00 2.00 7
UTA Wendover, Utah, USA 39.90 -113.72 1320
UUM Ulaan Uul, Mongolia 44.45 111.10 914

SUR Aircraft Measurements 61.00 73.00
EOM Aircraft Measurements Between Japan and Australia
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Figure 3.1— Locations of the stations measuring atmospheric CO2 concentrations.

f(p) = ffix + fadj

= ffix + Fp (3.7)

where F is the deviation term from the fixed term ffix that will be scaled by adjusting p

through the inversion calculation.

As mentioned earlier, the total flux f is considered as the sum of different source and

sink components. These components are, (1) fossil fuel emission (ff), (2) land-atmosphere

carbon exchange (nee) and (3) ocean-atmosphere carbon fluxes (oce). Therefore, the fixed

term can be written as:

ffix = ffffix + fneefix + focefix (3.8)

In this study, ocean and fossil fuel fluxes are considered to be known fluxes. Consequently,

the adjustable term has only contributions from land fluxes as:

fadj = fneeadj (3.9)

By replacing the land components by Reco and GPP from SDPRM, we can rewrite the
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Figure 3.2— CO2 concentration records. The left part shows the time coverage. The right part shows
the list of the stations. F /or the full names and the location of each station see table 3.1, and figure 3.1,
respectively.
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fixed and adjustable terms as:

ffix = (fReco
fix − fGPP

fix ) + ffffix + focefix (3.10)

fadj = fReco
adj − fGPP

adj (3.11)

where fReco
fix and fGPP

fix are the a-priori fields from SDPRM. The fixed terms of the ocean

and fossil fuel fluxes are the same as in STD-inv (see section 3.1.1.1).

The adjustable terms fReco
adj and fGPP

adj are split into the contributions of their control pa-

rameters as:

fReco
adj =

∑
i

∂Reco

∂pi
σipi (3.12)

fGPP
adj =

∑
j

∂GPP

∂pj
σjpj (3.13)

where pi and pj are the adjustable parameters of Reco and GPP, respectively, which will be

optimized and σi and σj are their a-priori uncertainties. Therefore, GPP and Reco need to

be linearized around the adjustable parameter. This is explained in the next sub-sections.

3.2.1 Linearization of Reco

Referring to equations 2.20, 2.21, and 2.22 from chapter 2, the respiration model is written

as:

R(x, y, t) =
(
R0 +RLAI · rLAI(x, y)

)
ϱveg(x, y) (3.14)

× exp

(
−E

[
1

T − T0
− 1

Tref − T0

])
(3.15)

× P + P0

P + P0 +K
(3.16)

where E is the activation energy, T0 = −46◦C (minimum temperature) as in Lloyd and

Taylor (1994) and Tref = 13◦C (reference temperature, taken from the 1901-2002 mean of

the CRU dataset over land [13.1◦C]). P is the precipitation of the previous 30 days (mm),

K (mm) is the half-saturation constant of the hyperbolic relationship of soil respiration

with monthly precipitation, and P0 is fixed to the global value 1.55 mm/month (95%

confidence interval: [0.2,2.5]) taken from Reichstein et al. (2003).



86 3 Atmospheric CO2 Inversion

For the normalization, the remaining adjustable parameters R0, RLAI , E, and K are

normalized by writing them as:

R0 = Rpri
0 + σR0pR0 (3.17)

RLAI = Rpri
LAI + σRLAI

pRLAI
(3.18)

E = Epri + σEpE (3.19)

K = Kpri + σKpK (3.20)

in terms of the dimensionless adjustable parameters pR0 , pRLAI
, pE , and pK with a-priori

zero mean and unit variance. For the a-priori best-guess values and uncertainties of the

original parameters, the values in table 3.5 are chosen from the soil-respiration values

of Reichstein et al. (2003) assuming that soil respiration accounts for 60% of ecosystem

respiration.

The simplified respiration model is linearized around (pR0 , pRLAI
, pE , pK) = (0, 0, 0, 0)

according to:

R(x, y, t)|(pR0
,pRLAI

,pE ,pK) = R(x, y, t)|(0,0,0,0)︸ ︷︷ ︸
Rpri(x,y,t)

+
∂R(x, y, t)

∂R0

∣∣∣∣
(0,0,0,0)

pR0 +
∂R(x, y, t)

∂RLAI

∣∣∣∣
(0,0,0,0)

pRLAI

+
∂R(x, y, t)

∂E

∣∣∣∣
(0,0,0,0)

pE +
∂R(x, y, t)

∂K

∣∣∣∣
(0,0,0,0)

pK

+ . . . (3.21)

where the dots represent all higher-order terms of the Taylor expansion which are omitted
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in the following equations. This gives

R(x, y, t) = Rpri(x, y, t) (3.22)

+ Rpri(x, y, t)
σR0

Rpri
0 +Rpri

LAI · rLAI(x, y)
pR0 (3.23)

+ Rpri(x, y, t)
σRLAI

· rLAI(x, y)

Rpri
0 +Rpri

LAI · rLAI(x, y)
pRLAI

(3.24)

+ Rpri(x, y, t)

(
−σE

[
1

T (x, y, t)− T0
− 1

Tref − T0

])
pE (3.25)

+ Rpri(x, y, t)
−σK

P (x, y, t) + P pri
0 +Kpri

pK (3.26)

This linearization has approximately the same functional dependence on T as the non-

linearized model rT [E, T ] (see equation 3.15) over a temperature range of T = −5 . . . 30◦C

and a parameter range of E = 70 . . . 200 K (≈ 2σ range), as shown in figure 3.3. For

parameter values pE well outside the 2σ interval a non-monotonic temperature dependence

occurs; therefore, if pE should take such values a-posteriori, the sigma interval would need

to be reduced in the later parameter optimization algorithm.

Figure 3.3— Temperature dependence of rT[E,T] for different values of E (lines) (equation 3.15), and
temperature dependence of the linearized model rT[p,T] for different values of p (symbols) (equation 3.25).

Referring to equation 3.12, the adjustable term of Reco can be written as:
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fReco
adj = f

R0PFT
adj + fRLAI

adj + fKadj + fEadj (3.27)

where the terms in the right hand side “r.h.s.” of equation 3.27 are the r.h.s. of equations

3.23 to 3.26, respectively. The parameters (pR0 ,pRLAI
,pk,pE) shown in the r.h.s. of

equations 3.23 to 3.26 will be adjusted by minimizing the cost function (equation 3.4).

3.2.2 Linearization of GPP

Referring to equation 2.30 in chapter 2, GPP fields are given for each PFT by:

GPP pri
PFT(x, y, t) = εprimaxPFT · ϱPFT(x, y) · fAPARPFT(x, y, t) · I(x, y, t) · 0.45

· gV PD[V PD1, V PD0, V PD(x, y, t)]

· gT [Tmin,0, Tmin,1, Tmin(x, y, t)]

(3.28)

with εmaxPFT: Maximum light use efficiencies per PFT, fAPARPFT(x, y, t): fraction of

Absorbed Photosynthetically Active Radiation per PFT, I: incident radiation. The func-

tions gVPD and gT (between 0 and 1) describe the influence of meteorological conditions on

ε with VPD(x, y, t) being daytime mean vapor pressure deficit of the air, and Tmin(x, y, t)

being the daily minimum air temperature (see figure 2.3 and equations 2.26 and 2.27 in

chapter 2).

For the linearization, the adjustable parameter εPFT is normalized as:

εPFT = εpriPFT + σεPFTpεPFT (3.29)

and relative errors
σεPFT

εpriPFT

= 0.3 (3.30)

To adjust the upper limit of V PD0 of the linear range (see figure 2.3), a linear combi-

nation of two VPD dependencies with different values of V PD0 per PFT are introduced.

Similarly, V PD1 and Tmin,1 can be adjusted in the same way, but are not shown in this

thesis. The adjustable parameter V PD0 is normalized as:

V PD0PFT = V PD0
pri
PFT + σV PD0PFT

pV PD0PFT
(3.31)

The simplified photosynthesis model is linearized around the adjustable parameter V PD0
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by approximating the derivative by the symmetric difference quotient according to:

∂GPP

∂V PD0
≈ △ GPP

△ V PD0
=

GPPV PDH
0
−GPPV PDL

0

V PDH
0 − V PDL

0

(3.32)

where H and L represent higher and lower values calculated by adding/subtracting 2σ

(standard deviation) value of the a-priori values of V PD0 for all PFTs (see table 2.4).

The H/L values of V PD0 for each PFT are given in table 3.2.

Table 3.2— Higher (H) and lower (L) limits of V PD0 for each PFT used in equation 3.32.

PFT(class) V PDH
0 (Pa) V PDL

0 (Pa)

ENF (1) 954 346

EBF (2) 1404 796

DxF (3) 1239 631

SHR (4) 1274 666

SAV (5) 1404 796

GRS (6) 1304 696

CRO (7) 1234 626

Using equations 3.29 and 3.31 in terms of the dimensionless adjustable parameters pεPFT

and pV PD0PFT
, with a-priori zero mean and unit variance, the simplified photosynthesis

model is linearized around (pεPFT , pV PD0PFT
) = (0, 0) according to:

GPP (x, y, t)|(pεPFT
) = GPP (x, y, t)|(0)︸ ︷︷ ︸

GPPpri(x,y,t)

+
∂GPP (x, y, t)

∂pεPFT

∣∣∣∣
(0)

pεPFT +
∂GPP (x, y, t)

∂pV PD0PFT

∣∣∣∣
(0)

pV PD0PFT

+ . . . (3.33)

where the dots represent all higher-order terms of the Taylor expansion, which are omitted

in the following equations. The GPP model becomes
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GPP (x, y, t) =
∑
PFT

GPP pri
PFT(x, y, t) (3.34)

+
∑
PFT

GPP pri
PFT(x, y, t)

σεPFT

εpriPFT

pεPFT (3.35)

+
∑
PFT

GPPV PD0
H
PFT

−GPPV PD0
L
PFT

V PD0
H
PFT − V PD0

L
PFT

σV PD0PFT
pV PD0PFT

(3.36)

Referring to equation 3.13, the adjustable term of GPP can be written as:

fGPP
adj = f

GPPεPFT
adj + f

GPPVPD0PFT
adj (3.37)

where f
GPPεPFT
adj and f

GPPVPD0PFT
adj are the r.h.s. of equations 3.35 and 3.36, respectively.

The parameters pεPFT , and pVPD0PFT
, shown in the r.h.s. of the equations 3.35 and 3.36,

will be adjusted by minimizing the cost function (equation 3.4).

3.2.3 SDPRM-inv set-up

SDPRM-inv produces optimized daily fluxes of CO2. The land fluxes can be split into

their processes (e.g. GPP, Reco). The spatial resolution of the model is 4◦ latitude × 5◦

longitude.

Based on the equations 3.27 and 3.37, there are ten controlling parameters for the respi-

ration model: R0PFT is applied for the seven PFTs, while RLAI, E, and K are applied

globally. For the photosynthesis model, we have 14 controlling parameters: εPFT, and

VPD0PFT are applied for each PFT. The full list of the initial values of all parameters

and their uncertainties is given in table 3.5.

Many other choices for the parameters are possible. Some parameters can be dropped off

or assigned by other criteria (e.g. globally or per PFT) or some others can be added (e.g.

V PD1 and Tmin,1). In the preparation of this study, we have already tried using different

sets of parameters with different descriptions, but results are not shown in this thesis.

These parameters were not used either because they did not improve the flux estimates

compared to the setup used here or because they produced unrealistic flux estimates

compared to STD-inv or the process-based model (BIOME-BGCv1).

As mentioned before, respiration and photosynthesis are calculated independently in SD-
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PRM. Based on the flux estimates from SDPRM, the long-term mean of Reco and GPP

are 74.5 and 75.5 PgC/year, respectively (1 Petagram = 1 x 1015 g). These values are

smaller in comparison with the earlier estimates presented in the IPCC AR4 (2007) (GPP

= 120 PgC/year, Reco = 119.6 PgC/year). Therefore, several assumptions in the base

set-up of the model are considered. First, we scaled the a-priori fluxes of Reco in order

to have net annual flux of Reco similar to the estimate in the IPCC AR4 (2007). Sec-

ond, we used the capability of the inversion system that allows the flux components to be

split into different temporal variability. Thus, the temporal variability of Reco is split into

long-term (LT) and all other temporal variability (the anomaly (subtracting the LT) of

the full time variability) components. The LT component of Reco is kept fixed during the

inversion calculation while the other temporal variability components of Reco are free to

be adjusted (e.g. the anomaly of IAV or the seasonal cycle) by optimizing the parameters

controlling Reco. For GPP, all temporal variability including the LT are adjustable.

Based on the assumptions made for the LT of Reco, the a-posteriori estimate of the long-

term mean of GPP is considered prescribed as well. This is because the inversion will try

to balance the net annual fluxes by scaling up the mean annual value of GPP. However,

this setup will help to identify the processes which can be constrained by atmospheric

information. Also, based on the a-posteriori estimate of GPP, we can identify which regions

act as sources or sinks of CO2. In addition, the a-posteriori estimates of GPP for each

PFT are compared with the estimates from the recent study by Beer et al. (2010) which

presented an observation-based estimate of global terrestrial GPP for different biomes.

3.2.3.1 The main difference between STD-inv and SDPRM-inv

The main difference between STD-inv and the coupled system SDPRM-inv is that STD-

inv is used to estimate CO2 fluxes, while SDPRM-inv is used to optimize terrestrial

model parameters (time-independent) using CO2 measurements as a constraint. Therefore,

SDPRM-inv combines the powerful constraints provided by SDPRM and the atmospheric

data. Since SDPRM-inv is looking for the optimal time-independent parameters that fit

the observations, such a system should not have the problem of spurious flux variations

due to the appearance of new data records during the simulation (see the remark in section

3.1.3). Also, as mentioned, each PFT has its own set of parameters that provides a strong

link between the various regions in which that PFT is found. Therefore, CO2 observation

over one region may help to constrain fluxes over another region (Rayner et al., 2005).

Another difference is that, in STD-inv, the aggregated affect, not the individual contribu-

tions, of different processes seen by the atmospheric CO2 signal are reproduced in the total

flux estimated by inversion simulation. Thus, STD-inv may account for all flux sources,
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but without providing information about the underlying processes responsible for the es-

timated fluxes. On the other hand, in SDPRM-inv system, only the contribution from

Reco and GPP are accounted for. That means some other important processes are missing

in the system (e.g. fire emission due to biomass burning). Consequently, the a-priori

fluxes from SDPRM will probably not be sufficient to satisfy the atmospheric data. In

this case, the adjustable components may be forced to account for these missing processes,

and hence produce unrealistic results.

3.2.4 Results

In this section we summarize and show the results of the framework described in the

previous sections. First, we show the time variation of the estimated fluxes as well as their

totals. Next, we show the optimized parameters and their uncertainties compared to their

a-priori values, along with the a-posteriori correlation matrix. After that, some examples

of the fit to the concentration data used in the calculations are presented. Finally, we

show the estimated quantities of GPP for different biomes compared to the findings of the

recent study by Beer et al. (2010).

3.2.4.1 Time series of the estimated fluxes

Figure 3.5 shows the comparison between the time series of a-priori and a-posteriori

land fluxes estimated from SDPRM-inv and a-posteriori land fluxes estimated from STD-

inv. The time series are integrated over three latitudinal bands (see figure 2.4) and de-

seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck (2005)). We

are comparing SDPRM-inv to STD-inv because the two models are not completely inde-

pendent since both use the same atmospheric data as well as the background fluxes for

fossil fuel and ocean.

In figure 3.5, the amplitude of the a-posteriori fluxes from SDPRM-inv are shifted from

their a-priori estimates and become closer to the amplitude of the estimated fluxes

from STD-inv, in particular over the tropics. This is more clear during El-Niño events

(1982/1983, 1987/1988, and 1997/1998) which are associated with high concentration in-

crease (Rödenbeck et al., 2003; Rayner et al., 2005; Baker et al., 2006). This indicates

that the inversion is adding more information to the a-priori fluxes by adjusting some of

the parameters controlling GPP and Reco (to be discussed below).

Figure 3.6 shows a similar plot but the land fluxes are integrated over 11 land regions

(TransCom regions, see figure 2.4). It can be seen that the a-posteriori fluxes are shifted

from their a-priori estimates over many regions including regions where few or no obser-

vations are exist (e.g. Southern American tropical/temperate, Eurasian Boreal). This is

interesting because it indicates that CO2 observations over one region could adjust fluxes
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over another region with the same type of vegetation (SDPRM divides the globe into

seven major PFTs). However, figure 3.6 also shows some differences between the esti-

mated fluxes from the two models, either because STD-inv is badly constrained in smaller

regions or because SDPRM is too simple to produce accurate estimates of CO2 fluxes over

certain regions of the globe (e.g. Australia).

The study by van der Werf et al. (2006) shows a significant relationship between larger

flux anomalies in the terrestrial tropics and fire emissions. Also, based on the study by

van der Werf et al. (2006), roughly two thirds of the 1997 global carbon emissions due to

fire were attributed to the Tropical Asia region. In figure 3.6, the monthly data from the

Global Fire Emissions Database version 2 (GFEDv2) (van der Werf et al., 2010) integrated

over the topical land regions is also plotted. This may explain part of the difference

between SDPRM-inv and STD-inv in the Tropical Asia region in 1998, as SDPRM does

not include the contribution from fire emission. Figure 3.4 shows the time series of the

full time variability of the flux estimates integrated over different regions. In general, we

can see that the amplitudes of the a-posteriori fluxes from SDPRM-inv are shifted from

their a-priori estimates mainly in Eurasian Boreal/Temperate regions. During the growing

season, the optimized fluxes have larger amplitude compared to the results from STD-inv

for most of the regions. This might be consistent with the conclusion of Nemry et al.

(1999) that most terrestrial biosphere models underestimate seasonality of concentrations

at high latitudes. This could be true for the setting of the a-priori parameter in SDPRM,

so the optimization increases some of the parameters that control Reco and GPP to match

the seasonal cycle of the atmospheric measurements.

Figure 3.8 shows the interannual variability of the a-priori and a-posteriori (optimized)

GPP and Reco integrated over three latitudinal bands. It can be seen that the optimized

GPP and Reco shifted from their a-priori estimates particularly during El-Niño events

(1982/1983, 1987/1988, and 1997/1998) to match the high flux anomalies for NEE as

shown in figure 3.5. The changes in the IAV of Reco over the tropics during these periods

are more striking than for GPP, suggesting that respiration is a major driver of the IAV

of NEE. This is confirmed by the high correlation coefficient (r = 0.85) between the IAV

of Reco and the IAV of NEE. This is consistent with previous findings (IPCC AR4, 2007)

that show the large amount of carbon release during the large El-Niño events is due to

either increased heterotrophic respiration or increased biomass burning in the tropics.

Also figure 3.7 shows that the amplitudes of the seasonal cycle of the optimized GPP

and Reco are increased compared to the a-priori amplitudes, in particular for the northern

hemisphere land which has a larger seasonal cycle compared to the tropical and southern
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hemisphere land. This is encouraging because it indicates that both processes (GPP and

Reco) can be constrained by the atmospheric signals using the current system.

Figure 3.4— Time series of the anomaly of the full variability of the a-priori (Magenta) and a-posteriori
(Blue) of the CO2 fluxes as estimated by SDPRM-inv, and the a-posteriori (Black) of the land CO2 fluxes as
estimated by STD-inv. The time series are integrated over three latitudinal bands (for the map of the regions
see figure 2.4).



3.2 The coupled inversion system (SDPRM-inv) 95

Figure 3.5— Time series of the anomaly of the interannual variability of the a-priori (Magenta) and a-
posteriori (Blue) CO2 fluxes as estimated by SDPRM-inv, and the a-posteriori (Black) of the land CO2 fluxes
as estimated by STD-inv. The time series are integrated over three latitudinal bands (for the map of the
regions see figure 2.4) and de-seasonalized and filtered for interannual variability (IAV) (as in Rödenbeck
(2005)). The fossil fuel emissions have been subtracted. Positive values denote a net source of natural
fluxes (non-fossil-fuel) into the atmosphere.
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(A):

(B):

Figure 3.6— (A) is as figure 3.5 but the time series are integrated over 11 land regions (for the map
of the regions see figure 2.4). Additionally, the data from the Global Fire Emissions Database version 2
(GFEDv2) (van der Werf et al., 2010) integrated over the tropics is also shown (Green line). (B) is only for
the tropical land regions and for the period during which fire data are available.
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(A): GPP

(B): Reco

Figure 3.7— The time series of the anomaly of the full variability of the a-priori (Magenta) and the a-
posteriori (Black) of (A) GPP and (B) Reco as estimated by SDPRM-inv. The time series are integrated over
three latitudinal bands (for the map of the regions see figure 2.4) .
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(A): GPP

(B): Reco

Figure 3.8— The time series of the anomaly of the interannual variability of the a-priori (Magenta) and
the a-posteriori (Black) of (A) GPP and (B) Reco as estimated by SDPRM-inv. The time series are integrated
over three latitudinal bands (for the map of the regions see figure 2.4) and de-seasonalized and filtered for
interannual variability (IAV) (as in Rödenbeck (2005)).
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3.2.4.2 Fit to Data

One way to verify the quality of the results is to check how well the inversion is able to

fit the measurements. Taylor diagrams are useful in this context since they provide a

visual framework for comparing model results to observations and show how closely the

simulated patterns match the observations. Basically, the diagram summarizes correlation

coefficients, root mean squared errors, and standard deviations of several models in a single

plot (Taylor, 2001). Therefore, the comparison between the simulated and observed CO2

concentrations at the 40 stations (listed in table 3.1) used in this study are represented

with Taylor diagrams.

In these Taylor diagrams, the position of each dot appearing on the plot quantifies how

closely the modeled concentrations match the observations. The centered root-mean-

square (RMS) difference between the simulated and observed patterns is proportional to

the distance to the point on the x-axis identified as “1.0”, which is the observations.

It reflects the full agreement in shape and phasing. The normalized standard deviation

of the simulated pattern (dividing the standard deviation of simulated by the standard

deviation of the observed) is proportional to the radial distance from the origin and it

represents the agreement in the amplitude of the variability between the modeled and

observed concentrations. In general, simulated patterns that agree well with observations

(have relatively high correlation and low RMS errors) will lie nearest the point marked

“1.0” on the x-axis. Models lying on the same arc of the observation will have the correct

standard deviation (which indicates that the pattern variations are of the right amplitude).

Figure 3.9 shows Taylor diagrams for the seasonal cycles (the data has been de-seasonalized

and de-trended and filtered to remove only the short-term synoptic variations (less than 3

months) of the modeled CO2 concentrations from SDPRM-inv (a-priori and a-posteriori)

as well as from STD-inv (a-posteriori). Also, figure 3.10 shows similar diagrams but for

the interannual variation (the data have been de-seasonalized and filtered for interannual

variability (IAV) (as in Rödenbeck (2005)) of the modeled and the observed concentrations.

The mean seasonal cycle and the long-term trend have been subtracted from the time series

to highlight the short-term and interannual variations.

Based on that, in figure 3.9, it can be seen that the modeled concentrations using the

a-posteriori flux estimates from SDPRM-STD-inv are shifted from their a-priori concen-

trations to be closer to the observations, in particular for the stations CBA, SIS, SHM,

RYO, ALT, ICE, CMN, BRW, IZO, BAL, and LMP (for the full names and the location

of each station see table 3.1, and figure 3.1)). Interestingly, for the station HUN (Hegyhat-

sal, Hungary), the amplitude of the simulated concentrations from SDPRM-inv generally
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agree very well with the observations in comparison with the simulation from STD-inv

(see table 3.3). This indicates that SDPRM is producing land fluxes (a-priori) that match

the atmospheric signal well. In addition, figure 3.11 shows the time series of the seasonal

cycle of the simulated and observed concentrations at three stations as examples (ALT:

Alert, Canada, CMN: Monte Cimone, Italy, and CGO:Cape Grim, Tasmania). The figure

shows that the modeled concentration from SDPRM-inv has been improved to match the

shape and the phase of the observations. This is also true for the station CGO, which has

a small seasonal cycle (see table 3.3).

Table 3.3— Statistics from Taylor diagrams for the seasonal cycles of modeled and observed CO2

concentrations from SDPRM-inv and STD-inv at selected stations : HUN (Hegyhatsal, Hungary), ALT (Alert,
Canada), CMN (Monte Cimone, Italy), and CGO (Cape Grim, Tasmania).

Correlation coefficients Relative amplitudes
Station w.r.t. observation Amplitudes (ppm) w.r.t. observation

HUN

Observation 1.00 8.84 1.00
STD-inv 0.97 5.85 0.66
SDPRM-inv A-posteriori 0.97 7.51 0.85
SDPRM-inv A-priori 0.98 8.33 0.94

ALT

Observation 1.00 4.90 1.00
STD-inv 1.00 4.85 0.99
SDPRM-inv A-posteriori 0.98 5.18 1.06
SDPRM-inv A-priori 0.85 4.27 0.87

CMN

Observation 1.00 3.66 1.00
STD-inv 0.99 3.37 0.92
SDPRM-inv A-posteriori 0.99 4.11 1.12
SDPRM-inv A-priori 0.91 2.92 0.80

CGO

Observation 1.00 0.35 1.00
STD-inv 1.00 0.38 1.08
SDPRM-inv A-posteriori 0.76 0.24 0.69
SDPRM-inv A-priori 0.08 0.57 1.63

Modeled seasonal cycles of the CO2 concentrations from SDPRM-inv for some coastal

stations, like CFA and BHD, have very low correlation and much larger variations than

observations. These sites are under oceanic control, which may explain this mismatch.

Similarly, some sites have a large response to the background fossil fuel fluxes (e.g. BAL,

HUN), and hence errors in these fluxes can explain the mismatches between the modeled

and observed concentrations. Moreover, as previously mentioned, Reco and GPP are the

only processes included in the land fluxes in SDPRM-inv system. Therefore, some of the

missing processes (e.g. biomass burning) which have some impact on the atmospheric

CO2 concentrations may also explain the differences between the modeled and observed

concentrations. Furthermore, the atmospheric transport model can produce large errors

in the modeled concentrations (Gurney et al., 2002).
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The Taylor diagrams in figure 3.10 are similar to those in figure 3.9 but for the internnual

variations of modeled and observed concentrations. In general, it can be seen that both

the a-posteriori and a-priori concentrations from SDPRM-inv have low correlations with

the observations. This is also clear in figure 3.12, which shows the time series of the

interannual variability of the simulated and observed concentrations at three stations

(ALT: Alert, Canada, CMN: Monte Cimone, Italy, and CGO:Cape Grim, Tasmania) (see

also table 3.4 for the statistics). This indicates that the minimization algorithm has

more capability to adjust the seasonal cycle compared to the interannual variability in

the SDPRM-inv. This could be for many reasons. One reason is that SDPRM does

not provide sufficient degrees of freedom (only 24 parameters to be adjusted), and hence

the minimization algorithm cannot satisfy all temporal variability in the data. Another

possibility is that the impacts of the processes that may affect the internnual variability

are not included in the model. One possibility to investigate this is to use different degrees

of freedom (to be adjusted independently) that have different effect on the seasonal cycle

and the interannual variability.

Table 3.4— Statistics from Taylor diagrams for the interannual variability of modeled and observed CO2

concentrations from SDPRM-inv and STD-inv at selected stations : HUN (Hegyhatsal, Hungary), ALT (Alert,
Canada), CMN (Monte Cimone, Italy), and CGO (Cape Grim, Tasmania).

Correlation coefficients Relative amplitudes
Station w.r.t. observation Amplitudes (ppm) w.r.t. observation

HUN

Observation 1.00 1.25 1.00
STD-inv 0.80 0.62 0.49
SDPRM-inv A-posteriori 0.28 1.02 0.82
SDPRM-inv A-priori 0.52 1.06 0.85

ALT

Observation 1.00 1.04 1.00
STD-inv 0.99 1.08 1.03
SDPRM-inv A-posteriori 0.74 1.05 1.01
SDPRM-inv A-priori 0.76 1.04 1.00

CMN

Observation 1.00 0.85 1.00
STD-inv 0.89 0.98 1.15
SDPRM-inv A-posteriori 0.67 1.14 1.34
SDPRM-inv A-priori 0.58 1.14 1.34

CGO

Observation 1.00 0.75 1.00
STD-inv 1.00 0.80 1.06
SDPRM-inv A-posteriori 0.76 0.91 1.21
SDPRM-inv A-priori 0.75 0.77 1.02
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Figure 3.11— The mean seasonal cycle of the observed and simulated CO2 concentrations for three
observation sites (ALT: Alert, Canada, CMN: Monte Cimone, Italy, and CGO:Cape Grim, Tasmania) used in
this study. The time series are plotted for two years for the demonstration. Orange: Observation, Blue and
Magenta: a-posteriori and a-priori, respectively, from SDPRM-inv, and Black: a-posteriori from STD-inv. The
data have been de-seasonalized and de-trended and filtered to remove the short-term variations (less than
3 months).
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Figure 3.12— As figure 3.11 but for the interannual variability (IAV). The data has been de-seasonalized,
de-trended and filtered to remove the short-term variations (less than 1 year).
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3.2.4.3 Optimized parameters

Table 3.5 shows the a-priori and a-posteriori values as well as their uncertainties for all

the adjustable parameters. Also, it shows the reduction of the uncertainty (RU) for all

parameters, which is calculated based on the following formula:

RU = 1− σpost
σpri

(3.38)

where, σpri and σpost are the a-priori and a-posteriori uncertainty of the parameter. As

mentioned in section 3.2.3, three parameters are adjusted globally (RLAI, E, and K),

while the other parameters (R0PFT , εPFT, and VPD0PFT) are adjusted for each PFT.

In table 3.5, it is clear that many of the adjustable parameters are given quite low a-

priori uncertainties. This is because when we applied higher uncertainty values for the

parameters, the minimization algorithm produced optimized parameters with negative

values. This could be because the number of the adjustable parameters (24) is smaller

than the number of the data points, and the minimization algorithm cannot satisfy all

data. This problem has been explained by Rayner et al. (2005), who found that the

optimization algorithm would sometimes search unphysical regions in parameter space.

Another explanation could be that by using large uncertainties, the linearization is not a

good approximation of the full parameter-dependence any more (as explained for figure

3.3) and hence the uncertainty should be reduced.

In principle, it is expected that the uncertainty of the global parameters should be reduced

more compared to the other parameters, which are optimized for each PFT, because they

are observed by a larger dataset. In our case, all parameters show a significant reduction

of the uncertainties (more than 88%, see table 3.5), indicating that these parameters are

well constrained by the data, even though they have relatively small a-priori uncertainties

which make it difficult for the data to add more information.

For Reco parameters, several things are apparent from this table. First, all the param-

eters are shifted from their a-priori values. Second, some parameters are increased, like

R0ENF
,R0SHR

, which mainly represent high latitude biomes (see table 2.2 for the descrip-

tive abbreviations used for each PFT and figure 2.1 for their locations). This is consistent

with what is shown in figure 3.7-B where the amplitude of the seasonal cycle of the op-

timized Reco increased in the northern hemisphere. This indicates that these parameters

have been increased to match the seasonal cycle of the CO2 concentrations. This also may

be the case for RLAI which consider with R0 as a scaling factor for the amplitude of the

seasonal cycle of Reco according to the governing equation 3.14. The other parameters of
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Reco decreased, but they mainly represent regions where the seasonal cycle of Reco is small

(in the tropics), and hence their impact is relatively small. Similarly, K, which decreased,

may have only a small impact on the seasonal cycle of Reco. This is because it represents

the precipitation dependence, which is a limiting factor of Reco for water-limited regions

in the tropics and the southern hemisphere. The activation energy parameter E decreased

while Reco increased and this is also consistent with the equation 3.25.

The controlling parameters of GPP are also shifted from their a-priori values. In general,

VPD0 increased for most of the biomes except for EBF and DxF in which VPD0 de-

creased compared to their a-priori values. The same is true for ε, which decreased for ENF,

EBF, DxF, and GRS while increasing for SHR, SAV and CRO. Again, as the amplitude

of the seasonal cycle of GPP in the northern hemisphere has been increased (shown in

figure 3.7 (A)), we would expect that the ε values should increase for the biomes in the

northern hemisphere (i.e. ENF), but actually they decreased. On the other hand, VPD0

has been increased, suggesting that the VPD is the main limiting factor of the seasonal

cycle of GPP rather than ε.

Figure 3.13 gives an overview of the a-posterior covariance structure of the errors of the

optimized parameters. The diagonal elements necessarily have the value 1. Negative val-

ues mean anti-correlation between the errors of the optimized parameters. The better

situations are those with small correlation coefficients, indicating that the pair of param-

eters is constrained independently from one another by the data. A positive value of

the correlation between two parameters means that both parameters depend on the same

signals in the data and it is hard to distinguish between them.

Based on that, it can be seen in figure 3.13 that RLAI is anti-correlated to the R0 pa-

rameters for different biomes, indicating that the atmospheric data cannot distinguish

between them. This is not surprising since R0 and RLAI have a similar impact on Reco

according to the governing equation 3.14. Similarly, the parameters ε of DxF and ENF

are anti-correlated, also for SHR and ENF and for SAV and EBF. This can be explained

by looking at figure 2.1 where these biomes are presented either to the same or to adjacent

locations. This suggests that more atmospheric data are needed at these locations in order

to distinguish between different sources of CO2 fluxes.

Also, from figure 3.13, the parameters RLAI and εPFT are anti-correlated but with rel-

atively small correlation values. This might indicate that there is a chance that the at-

mospheric data can differentiate between them. Finally, the VPD0 parameters correlate

positively with ε, indicating that information distinguishing them is missing. In general,

this correlation matrix helps us to identify new structure of the model that can improve
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the estimated fluxes that match the atmospheric signal.

Table 3.5— Controling parameters of GPP and Reco and their initial and optmized values and uncer-
tainities. The uncertainity reduction (%) calculated using equation 3.38 is also shown.

A-priori A-priori Optimized Optimized Uncertainty
Process Parameter (unit) Value Uncertainty Value Uncertainty Reduction (%)

R0ENF 1.28 0.10 1.47 0.009 0.91
R0EBF 1.28 0.10 1.14 0.011 0.89
R0DxF 1.28 0.10 1.29 0.010 0.90
R0SHR (gC/m2/day) 1.28 0.10 1.19 0.005 0.95
R0SAV 1.28 0.10 0.98 0.011 0.89

Reco R0GRS 1.28 0.10 1.04 0.007 0.93
R0CRO 1.28 0.10 1.17 0.007 0.93

RLAI (gC/m2/day) 2.5 0.12 2.54 0.007 0.94
E (K) 135.00 3.75 107.39 0.150 0.96
K (mm/month) 2.15 0.13 2.30 0.0088 0.93

εENF 1.0 0.08 0.93 0.0015 0.98
εEBF 1.0 0.08 0.91 0.00075 0.99
εDxF 1.2 0.09 1.12 0.0018 0.98
εSHR (gC/MJ) 0.8 0.06 0.83 0.0006 0.99
εSAV 0.8 0.06 0.81 0.0018 0.97
εGRS 0.6 0.05 0.37 0.0018 0.96
εCRO 1.1 0.08 1.12 0.0008 0.99

GPP
VPD0ENF 650 45.6 739.93 2.28 0.95
VPD0EBF 1100 45.6 1042.93 2.28 0.95
VPD0DxF 935 45.6 927.01 2.74 0.94
VPD0SHR (Pa) 970 45.6 1095.97 2.28 0.95
VPD0SAV 1100 45.6 1132.29 4.56 0.90
VPD0GRS 1000 45.6 1140.33 5.01 0.89
VPD0CRO 930 45.6 987.39 2.28 0.95
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Figure 3.13— Matrix of the error correlation coefficients of the optimized parameters. The left legend
shows the individual parameter assigned with an index which is presented in the row and column indices.
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3.2.4.4 Total land fluxes

When considering the above results of the optimized parameters, we should take into

account the relative biological importance of each biome. A measure of this importance

is the total GPP associated with each biome. Figure 3.14 shows the a-priori and a-

posteriori estimates of mean annual GPP for each PFT. The total of the optimized GPP

has been increased from 74.5 PgC/year to 120 PgC/year, which is consistent with the

earlier estimates in the IPCC AR4 (2007)(120 PgC/year).

Unfortunately, there is no direct way to validate these numbers. Recently, with a novel

combination of observations and modeling, Beer et al. (2010) estimated GPP values for

different biomes which can be compared with the estimates from SDPRM-inv. In the

study of Beer et al. (2010), the global field (0.5◦ × 0.5◦) of the median annual GPP

(gC/m2/year) was estimated based on several diagnostic models. For the comparison, the

global field of GPP from Beer et al. (2010) (personal communication) has been mapped to

the spatial resolution of SDPRM-inv (4◦ latitude × 5◦ longitude). Then, the annual GPP

values have been calculated for the seven PFTs used in this thesis. In figure 3.14, the

a-priori and a-posteriori GPP from SDPRM-inv are compared to GPP values from Beer

et al. (2010) for seven biomes. It can be seen that the largest changes in GPP, compared

to the a-priori values, occur for GRS (from 5.7 PgC/year to 24.9 PgC/year) and for EBF

(from 16.7 PgC/year to 27.7 PgC/year) followed by ENF (from 8.0 PgC/year to 14.2

PgC/year) and DxF (from 11.5 PgC/year to 17.3 PgC/year). For SHR, SAV and CRO,

the changes are small. Looking back to the optimized parameters, it can be seen that ε

decreased for GRS and ENF while VPD0 increased, indicating that changes in VPD have

more impact on GPP than changes in ε do for these biomes. For EBF, both ε and VPD0

decreased while GPP value increased, suggesting that either the effect of these parameters

is negligible for EBF or the parameters are biased. The comparison, in figure 3.14, also

shows that the a-priori estimates of GPP for ENF, DxF, SHR, and GRS from SDPRM are

in good agreement with the estimates from Beer et al. (2010) compared to the a-posteriori

estimates, in particular for GRS. This could be an indication that: (1) the inverse model

tries to compensate for the contribution of the missing processes by increasing GPP for

these biomes, (2) the global field of Reco could be wrong for these biomes, which could lead

to incorrect estimates of the total GPP (the long-term mean of Reco is not adjustable, see

section 3.2.3), or (3) the diagnostic biosphere models underestimate the long-term mean of

GPP compared to what the atmospheric signal can produce. More investigation is needed

to determine which explanation is correct. On the other hand, from 3.14, we can see that

the a-posteriori GPP for EBF and CRO became closer to the estimates from Beer et al.
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(2010). The global spatial pattern of the annual GPP from SDPRM-inv and from Beer

et al. (2010) are shown in figure 3.15. Also, the difference between the two estimates is

shown. The largest difference can be seen for GRS (see the land cover map in figure 2.4)

and for EBF regions.

In this comparison, there are several sources of uncertainty which can explain some of the

difference in the estimates of GPP. For example, the global field of GPP from Beer et al.

(2010) is based on a land cover classification different from the one used in this thesis,

leading to different biome areas. Also, the spatial distribution (location, size) of each PFT

in both classifications is different (e.g. grassland), producing different GPP values. For

example, in Beer et al. (2010), savannas represent both tropical savannas and grasslands,

while savannas (SAV) and grasslands (GRS) are separated in SDPRM. In general, we can

conclude that the atmospheric data have the potential to infer estimates of the terrestrial

GPP for different biomes comparable to other studies.

Finally, table 3.6 shows the breakup of the a-priori and a-posteriori estimates of the mean

annual values of Reco, GPP and NEE for different regions as estimated by SDPRM-inv.

For comparison, we also show the mean annual value of land fluxes as estimated by STD-

inv. We should mention here that the fossil fuel emissions are considered to be known

much better a-priori. Therefore, the fossil fuel deviations are neglected in the flux model

(no adjustable term), and hence any errors of the a-priori fossil fuel flux will appear as

corrections to the total GPP since long-term Reco is fixed. Furthermore, the impact of

processes that may affect the seasonality/total of the land fluxes but are not included

in the underlying biosphere model (SDPRM) will most probably be compensated by the

GPP and Reco terms. Therefore, any conclusions should be drawn with caution from the

optimized values here.

In table 3.6, for large spatial scale (3 latitudinal bands), our a-posteriori NEE is quite

close to that inferred by STD-inv with a larger source over tropical land and a larger sink

over northern hemisphere land (NH). This is not surprising since the estimates of the total

fluxes for larger regions are well constrained by the data compared to smaller regions. This

is clear when we look at the smaller regions where the differences between the estimates

from STD-inv and SDPRM-inv become larger. Overall, more investigation is needed to

figure out which processes can be added to account for these differences, which is not an

easy task. For example, SDPRM has no treatment of land-use or fires and so they need

to be specified as an external flux. However, it is not perfectly clear which quantity can

be added to the model since this kind of data is highly uncertain which can result in the

propagation of more errors into the model.
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Figure 3.14— The a-priori (green) and a-posteriori (black) estimates of the mean annual GPP values
(PgC/year) from SDPRM-inv and the annual GPP values from Beer et al. (2010) mapped to the seven PFTs
used in this thesis.

Table 3.6— The a-priori and a-posteriori estimates of the mean annual values (PgC/year) of Reco (re-
lease of carbon), GPP (uptake of carbon) and NEE (Reco-GPP) for the period (1982-2006) estimated by
SDPRM-inv. The long term mean of Reco was fixed (see section 3.2.3). The last column represents the
mean annual value of land fluxes as estimated by the STD-inv. For NEE, positive values denote a net source
of non-fossil-fuel fluxes into the atmosphere. For a map of regions see figure 2.4.

Land region
SDPRM-STDinv STD-inv

Recopri GPPpri GPPpost NEEpri NEEpost NEEpost

LAND TOTAL 119.3 77.7 120.8 41.6 -1.5 -1.6
NH Land 49.7 34.5 53.4 15.1 -3.7 -2.4
Tropical Land 52.7 32.6 50.5 20.1 2.2 0.1
SH Land 16.9 10.6 17.0 6.4 -0.1 0.6

North American Boreal 6.0 4.5 6.2 1.6 -0.2 0.1
North American Temperate 10.9 7.8 13.8 3.1 -2.9 -0.2
South American Tropical 16.7 11.2 18.8 5.5 -2.1 -0.1
South American Temperate 10.7 7.9 11.8 2.9 -1.1 0.7
Northern Africa 14.2 6.4 9.8 7.8 4.4 0.2
Southern Africa 13.3 9.2 14.6 4.2 -1.3 0.1
Eurasian Boreal 10.0 7.7 11.2 2.3 -1.2 -0.4
Eurasian Temperate 14.2 7.6 13.2 6.6 1.0 -1.1
Tropical Asia 6.3 4.2 6.1 2.1 0.2 -0.3
Australia 7.9 3.9 5.9 4.0 2.0 0.0
Europe 9.1 7.3 9.5 1.8 -0.4 -0.7
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(A): The a-posteriori annual GPP (gC/m2/year) from SDPRM-inv

(B): Annual GPP (gC/m2/year) from Beer et al. (2010)

(C): A (minus) B (gC/m2/year)

Figure 3.15— The global spatial pattern of the annual GPP (gC/m2/year) estimated from SDPRM-inv
(A), and from Beer et al. (2010) (B), and the difference between them (C).
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3.2.4.5 Conclusion

In this chapter, SDPRM was coupled to the atmospheric inversion. This was done for

two reasons: first, to provide reasonable a-priori CO2 fluxes with high spatio-temporal

resolution to STD-inv, second, to optimize some internal (physiological and interpretable)

parameters of SDPRM in order to fit the atmospheric measurements of CO2.

We attempted to use the coupled system (SDPRM-inv) to build process understanding

into atmospheric inversions. In order to do that, 24 parameters controlling GPP and

Reco were optimized in the model using the information of the atmospheric concentrations

measured at 40 stations.

The results are promising as they demonstrate that the method works and is capable of

fitting the CO2 concentration data with a set of 24 parameters, in particular the sea-

sonal cycle. The optimization algorithm in the system substantially reduced the a priori

uncertainties of most of parameters (more than 88%). In addition to the estimation of

uncertainties, the calculation in the coupled system also provides the correlation matrix

between the error of the optimized parameters, which allows one to identify which param-

eters are well constrained by the data and which are not (as discussed in section 3.2.4.3).

This can help to establish a new structure of the model in order to improve the estimated

fluxes that match the atmospheric signal.

The time series of the fluxes, integrated over different regions, show that the optimized

NEE has been shifted from its a-priori pattern. This indicates that the atmospheric signals

added more information to Reco and GPP by adjusting their controlling parameters in

order to match the variability in the atmospheric data, in particular the seasonal cycle.

Also, the time series of the optimized fluxes show that respiration is a major driver of the

IAV of NEE, in particular over the tropics. This is encouraging because it indicates that

both processes (GPP and Reco) can be constrained by the atmospheric signals using the

current system. This is also clear from the high reduction of uncertainty of the parameters.

The optimized mean annual values of GPP shows some similarities to recent results by

Beer et al. (2010). That means the atmospheric data have the potential to infer estimates

of GPP for different biomes. However, any conclusions should be drawn with caution from

the optimized values here.
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Chapter 4

Summary and Outlook

4.1 General summary and Conclusion

Serious concerns about increasing CO2 concentration and its potential impact on the

Earth’s climate have triggered a vast amount of research worldwide. Therefore, many

studies have been conducted in order to understand the processes that control the ex-

change of CO2 between the atmosphere, oceans and land ecosystems to decrease the un-

certainties of the future climate. It has been found that land biosphere plays a substantial

role in the global carbon cycle. However, the most uncertain aspect of the anthropogenic

global carbon budget is the breakdown of the terrestrial biosphere sources and sinks of

carbon. Therefore, within this thesis, we aimed to quantify the carbon sources and sinks

of the terrestrial biosphere using different data constraints (atmospheric CO2 concentra-

tions, satellite-driven data, and meteorological fields) and different modeling approaches

that have been coupled: the bottom-up approach, represented by a Simple Diagnostic

Photosynthesis and Respiration Model (SDPRM) based on pre-existing models, and top-

down approach, represented by the standard inversion algorithm (STD-inv) introduced by

Rödenbeck (2005).

In the first part of this thesis (Chapter 1), an overview about the global carbon cycle

has been given, with a focus on the processes that lead the land biosphere to be an

important sink of carbon. Then, we have briefly summarized the current state of the art

of the main methods that are used to determine the terrestrial carbon budget. Also, the

advantages and disadvantages of each method have been discussed, leading to the objective

of this thesis. Along with the objective, we highlighted a set of research questions. The

conclusions given at the end of each chapter are here summarized in order to answer these

questions. An outlook on the possible future development of the results will be discussed.
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Simple Diagnostic Photosynthesis and Respiration Model (SDPRM)

In Chapter 2, the implementation details of the Simple Diagnostic Photosynthesis and Res-

piration Model (SDPRM) have been presented. The ecosystem respiration (Reco) model

is based on the formulations introduced by Lloyd and Taylor (1994) and modified by Re-

ichstein et al. (2003), while the photosynthesis model is based on the light use efficiency

logic suggested by Monteith (1977) for calculating the Gross Primary Production (GPP).

SDPRM was driven by satellite-based and climate data.

To test the performance of the model, we compared simulated carbon flux components

with two different approaches for estimating land fluxes. One approach is the process

understanding approach presented by the BIOME-BGCv1 model. The second approach

is the atmospheric CO2 inversion in which land fluxes are inferred from the atmospheric

data. The updated results of the inverse model of Rödenbeck (2005) are used for the

comparison. The comparison showed that SDPRM is capable of producing realistic flux

patterns comparable to the ones inferred from the atmospheric inversion or inferred from

the process-based model. This is promising since the model is much simpler and easier to

apply than sophisticated process-based models.

What is the role of the climatic drivers (e.g. precipitation, temperature, radiation) on the

interannual variability of the estimated fluxes?

Different analyses were carried out to test the sensitivity of estimated fluxes of GPP, Reco

and NEE to their driving forces (fAPAR and climate data). These analyses suggested

that using the mean seasonal cycle of fAPAR with varying climate data to simulate the

interannual variability of NEE produces a reasonable match to the results of the atmo-

spheric CO2 inversion as well as to the process-understanding estimates. Furthermore,

the relative contribution of individual climate variables to the interannual variability of

GPP and Reco has been evaluated. The results show that temperature is a limiting factor

for the interannual variability of GPP and Reco over the northern hemisphere regions, in

particular in the cold boreal forest. Vapor pressure deficit (VPD) is the main limiting

factor of the interannual variability of GPP over the water-limited regions (e.g. temperate

forest in North America, Australia, and India), while radiation is the main limiting factor

in the tropical regions. Also, the analyses show that precipitation controls the interannual

variability of Reco over large area of the globe but mainly over the tropics and the southern

hemisphere. These results are consistent with the findings of Nemani et al. (2003).
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Atmospheric CO2 Inversion

In Chapter 3, we briefly described the mathematical algorithm of STD-inv, in particular

the construction of the statistical linear flux model. Also, in this chapter, SDPRM has

been coupled to STD-inv in different steps. First, SDPRM was linearized around the

controlling parameters of GPP and Reco. Then, the linearized model replaced the simple

statistical linear flux model of STD-inv. This is in order to, first, provide reliable a-

priori CO2 fluxes with high tempo-spatial resolution to STD-inv, and second, optimize

some internal interpretable parameters of SDPRM that fit the atmospheric measurements

of CO2. Based on that, our inversion framework has drawn on certain techniques from

previous inversions while including some new features. The novel feature of this inversion

is the independent estimation of GPP and Reco instead of just NEE as in STD-inv, which

to our knowledge has not previously been performed on the global scale.

Can we improve CO2 flux estimates by such a coupling?

The results of the coupled system are promising as they demonstrate that the method

works and is capable of correcting carbon fluxes from SDPRM over annual and seasonal

time scales, as well as over the different GPP and Reco components. This indicates that

the atmospheric signals could add more information to GPP and Reco by adjusting their

controlling parameters in order to match the variability in the atmospheric data, in par-

ticular the seasonal cycle. The optimization algorithm in the system substantially reduced

the a-priori uncertainties for most of the parameters (more than 88%). Additionally, the

optimized mean annual values of GPP show some similarities to the results of the recent

study by Beer et al. (2010). That means the atmospheric data has the potential to infer

estimates of GPP for different biomes.

What is the role of different land processes (e.g. respiration, photosynthesis, fire) on the

interannual variability of the estimated fluxes?

The optimized model produced a moderate fit to the interannual variability of atmospheric

CO2 concentrations and a good fit to its seasonal cycle. Also based on the optimized

results, the interannual variability of NEE is dominated by the tropics which is in turn

dominated by the interannual variability of Reco. That implies that respiration is a major

driver of the interannual variability of NEE in the tropics.

Furthermore, from such a system, we have learned that some of the missing processes

in SDPRM (for example biomass burning) can explain some of the differences between

the flux variability simulated by the coupled system and STD-inv as has been shown for
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Tropical Asia in 1998.

However, we should keep in mind that the underlying biosphere model is very simple and

certainly imperfect. Therefore, flaws in the model will manifest themselves as errors in

the model parameters that may produce unreasonable results. Moreover, biases in the

meteorological data used to drive SDPRM will certainly produce errors in the a-priori

field of GPP and Reco. The impact can be unrealistic optimized results as the inversion

tries to resolve an impossible situation. Another consequence of the simplicity of SDPRM

is that only 24 parameters are optimized using the atmospheric information, although in

a more realistic world, more parameters would have to be specified.

There are other error sources that can produce incorrect flux patterns. For example, the

choice of the observation network can affect the flux estimates in a systematic way. The

remaining systematic errors in the concentration data after the calibration procedures are

one of the error sources. The transport model is considered to be the main contributor to

the inversion uncertainty. Unfortunately, the errors from the transport model cannot be

assessed within the scope of this thesis. One way is to perform inversions with different

transport models (e.g. Gurney et al. (2003)). More details about the error sources in the

inversion can be found in Rödenbeck et al. (2003) and Gurney et al. (2003).
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4.2 Outlook

There is a range of possible results to explore from the coupled system that can improve

our understanding of the terrestrial carbon cycle. In addition, the coupled system is

flexible enough to be modified and refined in order to include more sources of information.

Eventually this system will of course be further developed. Related to that and based on

the results from Chapters 2 and 3, new optimization strategies can be defined as follows:

• Different parameter configurations can be tested to determine which parameters are

globally valid and which have to be spatially explicit. Also, some of the constraints

can be changed. For example the assumption of perfectly known ocean fluxes can be

removed allowing the ocean fluxes to be optimized. Similarly, the long-term mean

of Reco can be optimized by keeping the long-term component of GPP fixed.

• Fires contribute significantly to the budget of several trace gases and aerosols (An-

dreae and Merlet, 2001) and are one of the primary causes of interannual variability

in the growth rate of several trace gases, including CO2 (Langenfelds et al., 2002).

Hence, large fluxes of carbon into the atmosphere from wildfires can have an im-

pact on the global carbon cycle. Therefore, it is important to understand the role

of fire emissions on the global carbon budget. In this study, fire emission was not

included as a-priori fluxes to the model, and hence this can lead to unrealistic op-

timized fluxes. Therefore, fire emissions can be added as an additional process to

the coupled system (SDPRM-inv). However, this should be done with great care, as

a-priori knowledge on location and timing of fire emissions are associated with high

uncertainty, which can propagate more errors into the model.

• Climate variability is an important factor causing spatial and temporal variations

in the terrestrial carbon uptake by affecting the balance between the photosynthesis

and ecosystem respiration (Bousquet et al., 2000), although the exact mechanisms

remain unclear. Different regions have quite distinct responses to climate variations

(DeFries et al., 1998). Hence, a better understanding of the response of the ter-

restrial carbon flux to the climate perturbation is required in order to understand

how climate change will affect the future behavior of the terrestrial carbon sink.

Therefore, the relationships between the spatial/temporal patterns of the optimized

terrestrial carbon flux and the anomalies of the climate variables (e.g. temperature,

precipitation, radiation) can be analyzed for different biomes/regions. This is in

order to assess the impacts of the climate variability on the terrestrial carbon flux

on individual biomes/regions as well as for different time variability (e.g. seasonal,
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year-to-year). Understanding the responses of terrestrial ecosystem carbon fluxes

to the climate variations should provide invaluable insights into the spatio-temporal

patterns and the causes of the terrestrial carbon sink (Cao et al., 2002).

• Measured changes in the magnitude and the timing of seasonal fluctuations in at-

mospheric CO2 concentrations imply an imbalance between terrestrial ecosystem

photosynthesis and respiration (Keeling et al., 1995, 1996). However, changes in

the atmospheric CO2 measurements alone cannot differentiate between these two

processes. Since photosynthesis and respiration have very different effects on the

stable isotope ratio of atmospheric CO2, measurements of the stable isotope ratio

of atmospheric CO2 in conjunction with atmospheric CO2 measurements can be

used for understanding the components of NEE (Baldocchi et al., 1996; Flanagan

and Ehleringer, 1998). Thus, as a further possibility, the isotopic composition of

atmospheric CO2 (such as 13CO2,
14CO2) can be used as constraints in the coupled

system (SDPRM-inv) to discriminate between the signals from different processes

(GPP, Reco, and fossil fuel burning). However, isotopic measurements are susceptible

to systematic bias. Furtheremore, there are discrepancies between CO2 isotope mea-

surement laboratories that could lead to incompatible CO2 carbon isotope dataset

(Masarie et al., 2001; Levin et al., 2003). Therefore, different/conflicting biogeo-

chemical interpretation can be obtained, depending on the source of carbon isotope

data (Le Quéré et al., 2003).
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Aubinet, M., A. Grelle, A. Ibrom, Ü. Rannik, and J. Moncrieff (1999), “Estimates of the
annual net carbon and water exchange of forests: the euroflux methodology.” Advances in
Ecological Research, 30, 113–175.

Baker, D. F., S. C. Doney, and D. S. Schimel (2006), “Variational data assimilation for
atmospheric CO2.” Tellus Series B-Chemical and Physical Meteorology, 58, 359–365.

Baldocchi, D., R. Valentini, S. Running, OECD, and R. Dahlman (1996), “Strategies for
measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosys-
tems.” Global Change Biology, 2, 159–168.

Baldocchi, D. D. and K. B. Wilson (2001), “Modeling CO2 and water vapor exchange of a
temperate broadleaved forest across hourly to decadal time scales.” Ecological Modelling,
142, 155–184.

Barr, A. G., T. A. Black, E. H. Hogg, N. Kljun, K. Morgenstern, and Z. Nesic (2004), “Inter-
annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net
ecosystem production.” Agricultural and Forest Meteorology, 126, 237–255.

Battle, M., M. L. Bender, P. P. Tans, J. W. C. White, J. T. Ellis, T. Conway, and R. J.
Francey (2000), “Global carbon sinks and their variability inferred from atmospheric O2

and δ13C.” Science, 287, 2467–2470.

Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N. Carvalhais, C. Roedenbeck,
and et. al. (2010), “Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and
Covariation with Climate.” Science, 329, 834.



122 BIBLIOGRAPHY

Bellamy, P. H., P. J. Loveland, R. I. Bradley, R. M. Lark, and G. J. D. Kirk (2005), “Carbon
losses from all soils across England and Wales 1978-2003.” Nature, 437, 245–248.

Bolin, B. and C. D. Keeling (1963), “Large-scale atmospheric mixing as deduced from the
seasonal and meridional variations of carbon dioxide.” Journal of Geophysical Research,
68, 3899–3920.

Bousquet, P., P. Peylin, P. Ciais, C. Le Quéré, P. Friedlingstein, and P. P. Tans (2000),
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