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Zusammenfassung

NP-schwere Probleme kommen in nahezu jedem Bereich in der Bioinformatik vor. Zudem
sind biologische Probleminstanzen meistens sehr groß. Dadurch scheitern die klassische
Ansätze zur exakten Lösung NP-schwere Probleme in der Biologie.

Fest-parametrisierte Algorithmik wurde in den neunziger Jahren als ein neuer Ansatz
entwickelt, um exakte Lösungen NP-schwerer Probleme zu berechnen. Die Hauptidee
von fest-parameterisierter Algorithmik besteht darin, die kombinatorische Explosion
des Lösungsraums eines NP-schweren Problems auf einen kleinen Eingabeparameter
anstatt der Größe der zu lösenden Probleminstanz einzuschränken. Somit bietet fest-
parametrisierte Algorithmik eine Möglichkeit, NP-schwere Probleme mit großen In-
stanzen zu lösen. In dieser Arbeit wenden wir fest-parametrisierte Algorithmen an,
um drei NP-schwere Probleme in der Bioinformatik zu lösen:

• Flip Consensus Tree Problem ist ein Spezialfall des Flip Supertree Prob-
lem, das von dem Flip-Supertree-Ansatz [38] hervorgerufen wurde. Wir unter-
suchen das Flip Consensus Tree Problem anhand einer graph-theoretischen
Formulierung dieses Problems, das sucht nach der minimalen Anzahl der Kanten-
Modifikationen, um einen bipartite Graphen M-frei zu machen. Wir präsentieren
eine Reihe von Datenreduktionsregeln und zwei Suchbaum-Algorithmen für dieses
Problem. Unsere Algorithmen sind fest-parameterisiert mit der minimalen An-
zahl der Kanten-Modifikationen. Zudem diskutieren wir verschiedene heuristis-
che Verbesserungen unserer Algorithmen. Wir berichten auch über unsere Unter-
suchungsergebnisse auf phylogenetischen Daten.

• Weighted Cluster Editing Problem ist ein graph-modifikation Problem, das
nach den minimalen Kosten der Kanten-Modifikationen sucht, um einen Graphen
in einen Cluster-Graph umzuwandeln. Dieses Problem tritt in der Bioinformatik
auf, wenn eine Aufteilung von Objekten im Bezug auf eine bestimmte Ähnlichkeit
oder Distanz erforderlich ist. Wir beschreiben einen Suchbaum-Algorithmus für
dieses Problem, der auch in [16, 18] zu finden ist. Dieser Algorithmus ist fest-
parameterisiert mit der minimalen Anzahl der Kanten-Modifikationen. Außerdem
präsentieren wir die Hauptidee unseres neuen Algorithmus, der die beste theo-
retische Laufzeit für das Weighted Cluster Editing Problem und das Un-
weighted Cluster Editing Problem hat.

• Bond Order Assignment Problem sucht nach eine Zuordnung der Bindung-
sordnungen eines Moleküls, die eine Bestrafungsfunktion minimiert. Wir zeigen,
dass das Bond Order Assignment Problem NP-schwer und und unter der
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Annahme P6=NP nicht approximierbar ist. Zudem zeigen wir die MAX SNP-
Schwierigkeit der Maximierungsversion des Bond Order Assignment Prob-
lem. Wir stellen zwei dynamische Prgrammierungsalgorithmen für dies Problem
vor, die eine optimale Zuordnung der Bindungsordnungen eines Moleküls anhand
dessen Baumzerlegung berechnen. Unsere Algorithmen sind fest-parameterisiert
mit der Baumweite des Molekülgraphen und der maximalen Atomvalenzen. Wir
haben einen unserer Algorithmen mit mehreren heuristischen Verbesserungen im-
plementiert. Die Evaluation unserer Implementierung auf eine Reihe von realen
Moleküle hat ergeben, dass unser Algorithmus sehr schnell auf diese Datensatz ist.
Insbesondere ist unser Algorithmus sogar schneller als der heuristischer Algorith-
mus aus [152] für das Bond Order Assignment Problem.



Abstract

NP-hard problems occur often in bioinformatics. The typical huge sizes of biological
problem instances often prohibit solving NP-hard problems in bioinformatics optimally
with classical approaches.

Fixed-parameterized algorithmics has been developed in 1990s as a new approach to
solve NP-hard problem optimally in a guaranteed running time. The essential idea of
fixed-parameter algorithms is to restrict the combinatorial explosion of the solution space
of an NP-hard problem to a small input parameter, instead of the size of the problem
instance. Thus, fixed-parameter algorithms offer a new opportunity to solve NP-hard
problems with large instances.

In this thesis, we apply fixed-parameter algorithms to cope with three NP-hard prob-
lems in bioinformatics:

• Flip Consensus Tree Problem is a special case of the Flip Supertree Prob-
lem, a combinatorial problem arising in computational phylogenetics. Using a
graph-theoretical formulation of the Flip Consensus Tree Problem that asks
for a minimum set of edge modifications to transform a bipartite graph into an
M-free bipartite graph, we present a set of data reduction rules and two depth-
bounded search tree algorithms for this problem that are fixed-parameter with
respect to the minimum number of edge modifications. Additionally, we discuss
several heuristic improvements to accelerate the running time of our algorithms in
practice. We also report computational results on phylogenetic data.

• Weighted Cluster Editing Problem is a graph-theoretical problem, that
asks for a set of edge modifications with minimum cost to transform a graph into a
cluster graph. This problem often arises in computational biology when clustering
objects with respect to a given similarity or distance measure is required. We
present one of our depth-bounded search tree algorithms for this problem that is
a fixed-parameter algorithm with respect to the minimum modification cost. We
also describe the main idea of our fastest algorithm [16, 18] for the Weighted
Cluster Editing Problemand Unweighted Cluster Editing Problem.

• Bond Order Assignment Problem asks for a bond order assignment of a
molecule graph that minimizes a penalty function. We show that the Bond Or-
der Assignment Problem is NP-hard and inapproximable unless P=NP. Fur-
thermore, we show that the maximization version of Bond Order Assignment
Problem is MAX SNP-hard. We then give two exact fixed-parameter algorithms
for the problem, where bond orders are computed via dynamic programming on
a tree decomposition of the molecule graph. Our algorithms are fixed-parameter
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with respect to the treewidth of the molecule graph and the maximum atom va-
lence. We implemented one of our algorithms with several heuristic improvements
and evaluate our algorithm on a set of real molecule graphs, that is known to
contain hard instances for the Bond Order Assignment Problem. It turns
out that our algorithm is very fast on this dataset. Particularly, our algorithm
even outperforms the heuristic algorithm introduced in [152] for the Bond Order
Assignment Problem.
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Preface

This thesis covers a substantial part of my research concerning fixed-parameter al-
gorithms for combinatorial problems in bioinformatics while working at the Bioinfor-
matics Group of Professor Sebastian Böcker at the Friedrich-Schiller Universität Jena.
My research was supported by the project “PABI” funded by the Deutsche Forschung
Gemeinschaft (DFG). Most of the results presented in this work have been published
in [16–18,22–24] and have been achieved in cooperation with my supervisor Professor Se-
basitian Böcker, my colleague Anke Truß, our former diploma student Sebastian Briese-
meister, and our former student assistant Patrick Seeber. Further publications [21, 49],
on which I am collaborating, are in preparation.

This thesis consists of seven chapters. The main results are presented in Chapter 4, 5
and 6.

In Chapter 4, I describe two fixed-parameter algorithms for the Flip Consensus
Tree Problem with running time O(4.83k + poly(m,n)) and O(4.42k + poly(m,n)).
The algorithm with running time O(4.83k + poly(m,n)) has been presented by me at
the 3rd International Workshop on Exact and Parameterized Computation (IWPEC
2008) [23]. Most of the data reduction rules described in Section 4.4.1 were done by
me. The algorithm with running time O(4.83k + poly(m,n)) was developed by Anke
Truss and me. The algorithm with running time O(4.42k + poly(m,n)) is accepted for
publication in Association for Computing Machinery Transactions on Algorithms [24].
This algorithm was developed by me. Implementation of the algorithm with running time
O(4.83k + poly(m,n)) was done by our student assistant Patrick Seeber and supervised
by me.

In Chapter 5, I describe an algorithm with running time O(2.42k + |V |3 log |V |) for
the Weighted Cluster Editing Problem, which was published in [16]. My main
contribution to [16] is the idea of splitting case (C1) into (C11) and (C12), as described
in Section 5.3.2.

Chapter 6 investigates the Bond Order Assignment Problem. Parts of the re-
sults introduced in this chapter have been presented by me at the 15th International
Computing and Combinatorics Conference (COCOON 2009) [22]. A further part of this
chapter is submitted to the journal of Theoretical Computer Science [25]. The main
contribution of [22] consists of an NP-hardness proof and a tree decomposition-based
dynamic programming algorithm for the Bond Order Assignment Problem with
running time O(α2ω · 3β · ω · m). The NP-hardness proof was done by me. The tree
decomposition-based dynamic programming algorithm for this problem was developed
by my supervisor and me. The first implementation of our algorithm was done by our stu-
dent assistant Patrick Seeber and supervised by me. In addition to our results in [22], we
introduced several further complexity results and an improved tree-decomposition-based
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algorithm with running time O(α3ω · ω ·m), in our manuscript submitted to the journal
of Theoretical Computer Science. Those complexity results have been done mainly by
me. The improved version of our algorithm was developed by my supervisor and me.
Computational results reported in this thesis are computed by the new implementation
of our algorithm done by our student assistant Kai Dürkop and supervised by me.



1 Introduction

Bioinformatics applies mathematical and computational approaches to deal with prob-
lems occurring in biology, such as exploring relationships among biological entities in a
large data set, locating a gene within a long DNA sequence, predicting structure and
function of proteins, clustering genes or protein sequences into families of related se-
quences, just to name a few. After formulating a biological problem as a mathematical
model, the remaining task is to develop an algorithm to solve the problem. Since biolog-
ical data are often discrete nature, mathematical models of biological problems usually
rely on discrete structures such as graphs or strings. In this work, we investigate algo-
rithms for solving biological problems that have already been formulated as mathemat-
ical models; and whenever we refer to a biological problem, we mean the mathematical
formulation of the problem.

Actually, most of biological problems require large amount of computation resource
(time and memory requirement) to be solved optimally, in particular when dealing with
practical relevant problem instances. Prominent examples include Multiple Sequence
Alignment [54, 153], Shortest Common Super Sequence [65], Motif Finding
[2, 131] and many phylogenetic tree reconstruction approaches [38, 42, 43, 60, 135]. In
fact, these problems and many other biological problems belong to the class of NP-hard
problems (see Section 2.2), for which it is widely believed that efficient algorithms, whose
running times are bounded by polynomial functions in sizes of the problem instances,
may not exist.

For a long time, algorithms with exponential running times in sizes of the problem
instances seemed to be the only way to solve NP-hard problems optimally with guar-
anteed running times. Since biological problem instances of interest are typically very
large, exponential running time algorithm usually cannot be applied to NP-hard prob-
lems arising in biology. Thus, after showing the NP-hardness of a problem, one usually
applies heuristic or approximation algorithms (see Section 2.2.2) to estimate good so-
lutions, rather than to solve the problem optimally. In many cases, biologists are also
satisfied to have a good solution of an NP-hard problem, although an optimal solution
is naturally preferable to an approximated result.

In the 1990s, Downey and Fellows introduced the concept of parameterized complex-
ity and fixed-parameter algorithms [52] as a new approach to solve NP-hard problems
optimally in provable upper bounded running times. The most valuable characteristic
of fixed-parameter algorithms is their polynomial running times in the sizes of the prob-
lem instances. However, an exponential running time seems to be unavoidable when
solving an NP-hard problem optimally, even by a fixed-parameter algorithm. In fact,
the running time of a fixed-parameter algorithm contains an exponential factor but in
a problem-specific parameter, which is usually much smaller than the sizes of problem
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4 1. Introduction

instances. Polynomial running times in the sizes of the problem instances are the main
reason for the efficiency of fixed-parameter algorithms on large problem instances. This
enables fixed-parameter algorithms to deal with the large instances of NP-hard problems
in biology.

Moreover, when analysing the running time of an algorithm, we usually investigate
its worst-case running time, which only holds for carefully designed worst-case input
examples, or its average-case running time, which only indicate the behavior of the algo-
rithm on randomly generated data. However, biological data usually possess particular
structures, that are totally different from the artificial worst-case examples and random
data. Utilizing the particular structure of biological data may help to reduce running
time in both theoretical analysis and practical application.

In fact, fixed-parameter algorithms have been successfully applied to many NP-hard
problems in bioinformatics, for example:

• Xu et al. [158–160] successfully applied fixed-parameter algorithms to solve NP-
hard problems encountered when studying protein structures.

• Blelloch et al. [15] introduced a fixed-parameter algorithm for computing maximum
parsimonious phylogenetic trees.

• Hüffner et al. [87, 88] and Bruckner et al. [32] applied fixed-parameter approaches
to solve problems encountered when studying biological networks.

• Ma and Sun [112] introduced a fixed-parameter algorithm for the Closest String
Problem, which, for example, appears in the context of finding approximate gene
clusters.

• Möhl et al. [118] proposed a parameterized algorithm for the RNA Structures
Alignment problem that aligns two RNA structures with pseudoknots in matter
of hours.

• Böcker et al. [18,20] successfully applied fixed-parameter algorithm to the Weighted
Cluster Editing Problem.

See [89] for a survey of fixed-parameter algorithms in bioinformatics.

In this thesis, we investigate three biological problems, the Flip Consensus Tree
Problem, the Weighted Cluster Editing Problem and the Bond Order As-
signment Problem, under the aspect of fixed-parameter tractability. In addition to
the development of fixed-parameter algorithms for those problems, we are also interested
in the practical application of our algorithms. Thus, we implemented our algorithms and
evaluated their performance on real biological data.

Structure of the Thesis

This thesis consists of seven Chapters. Chapter 2 introduces terminologies from graph
theory and theoretical computer science that are frequently used throughout this thesis.
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In particular, Chapter 2 also gives a brief introduction to the basic concepts of fixed
parameter algorithmics and several fixed-parameter algorithm design techniques, which
we applied to develop our algorithms. In Chapter 3, we give a short introduction to
molecular biology and computational phylogenetics.

In Chapter 4, we study the Flip Consensus Tree Problem as a special case of
the Flip Supertree Problem that is encountered when reconstructing phylogenetic
trees using the flip supertree approach introduced by Chen et al. [38]. We introduced
two fixed-parameter algorithms for the Flip Consensus Tree Problem along with
a set of data reduction rules and heuristic improvements to speed up the performance
of our algorithms in practice. We implemented one of our algorithms and evaluated its
performance on perturbed matrix representations of phylogenetic trees. Our algorithm
turned out to be significantly faster than the straightforward algorithm introduced by
Chen et al. [38] and also much faster than the worst-case running time suggests.
Actually, we wanted to solve the Flip Supertree Problem optimally with a fixed-
parameter algorithm. Unfortunately, we recently proved that the Flip Supertree
Problem is W[2]-hard [21], that means there is no hope for a fixed-parameter algorithm
for this problem. However, we discuss some approaches that may cope with the W[2]-
hardness of the Flip Supertree Problem in the end of Chapter 4.

The Weighted Cluster Editing Problem is encountered in many biological stud-
ies when classifying objects according to a similarity measure. Our group has achieved
many remarkable results with respect to fixed-parameter tractability on this problem.
Chapter 5 gives a survey of our results on the Weighted Cluster Editing Problem.
We also describe one of our algorithms in detail. However, we refer to [18] for our main
results regarding the Weighted Cluster Editing Problem.

The last problem we investigate in this thesis is the Bond Order Assignment
Problem, that asks for an assignment of bond orders to a molecule graph, where bond
order information is omitted. In Chapter 6, we prove several results on the complexity
of the Bond Order Assignment Problem. We then show that the Bond Order
Assignment Problem can be solved in polynomial time if the molecule graph is a tree.
Based on this result, we introduced two fixed-parameter algorithms for the Bond Order
Assignment Problem on molecule graphs with bounded treewidth. We implemented
one of our algorithms and evaluated its performance on the MMFF94 molecule database,
which is known to contain hard instances for the Bond Order Assignment Problem.
Despite the unimpressive theoretical running time, our algorithm turns out to be very
efficient on this database due to a special structure of molecule graphs. Furthermore,
our evaluation on more than hundred thousand molecule graphs randomly chosen from
the PubChem database also possess this special structure, which allows for the efficiency
of our algorithms.

Chapter 7 concludes this thesis by recalling our main results and summarizing some
general techniques of fixed-parameter algorithms that we used to achieve our results and
plan to apply to the open problems mentioned along this thesis.





2 Computational Background

The main purpose of this chapter is to provide the necessary knowledge about fixed-
parameter tractability to readers who are not familiar with this concept. Furthermore, we
give a short introduction to the NP-hardness of combinatorial problems as a motivation
for the fixed-parameter tractability concept. Interested readers may have a look at
[45, 65, 154] for more details on complexity theory. A detailed introduction to fixed-
parameter tractability concept can be found in [52,59,121].

2.1 Graph Theory

This section introduces the basic terminology and notation from graph theory that is
frequently used in this work.

Definition 2.1 (Graph). An undirected graph G = (V,E) consists of a finite vertex set
V and an edge set E ⊆

(
V
2

)
, where

(
V
2

)
denotes the collection of all two-element subsets

of V . An edge e = {u, v} connects vertices u and v. If the order of the vertices of every
edge in G is fixed, we say that G is a directed graph and denote an edge e connecting a
vertex u with a vertex v by an ordered pair e = (u, v). In an undirected graph, we write
e = uv instead of e = {u, v} for brevity.

In this work, we mainly deal with undirected graph. Thus, the following notation
is defined on undirected graphs. However, we will explicitly mention directed graph at
appropriate points, where it is necessary.

Vertices belonging to an edge are end vertices of the edge. Two vertices connected by
an edge are called adjacent to each other and incident to the edge.

Two adjacent vertices are neighbors of each other. We denote the neighborhood of a
vertex v by N(v) := {u ∈ V | uv ∈ E}. The degree of a vertex v is defined as the number
of its neighbors and is denoted by deg(v) := |N(v)|.

Definition 2.2 (Subgraph). A graph G′ = (V ′, E′) is a subgraph of a graph G = (V,E)
if V ′ ⊆ V ′ and E′ ⊆ E′. A subgraph G′ of a graph G is an induced subgraph of G if
E′ = E ∩

(
V ′

2

)
holds .

We denote an induced subgraph of G that consists of vertices in V ′ ⊆ V by G[V ′].
A length-l path is a sequence p := (vp1 , vp2 , . . . , vpl) of l vertices, where two subsequent

vertices are connected by an edge. A path is called simple if the vertices are pairwise
different. Vertex vp1 is the starting point of p and vpl is the end point of p.

A connected component of a graph is a subgraph of the graph, in which every pair of
two vertices are connected by a path.

7



8 2. Computational Background

A cycle is a path whose starting point and end point are identical. A graph that does
not contain any cycle as a subgraph, is an acyclic graph.

Definition 2.3 (Tree). An undirected graph is a tree if it is acyclic.

A vertex of a tree is usually referred to as a node. A node of degree one is called a
leaf. Nodes of degree at least two are inner nodes.

A tree whose inner nodes have degree tree is a binary tree.

A rooted tree is a tree in which one node is distinguished from other nodes, and
designated as the root of the tree. Edges of a rooted tree have a natural direction, either
all towards or all away from the root. In a rooted tree, the parent (node) of a node v is
a node u if (u, v) ∈ E. The node v is a child of its parent node u. A leaf does not have
child nodes and the root does not have parent. The depth of a rooted tree is the length
of the longest path from the root to a leaf of the tree.

We conclude this section with a set of several special graphs that are used in this work.

• A graph G = (V,E) is a bipartite graph if V can be partitioned into two disjoint
subsets V1 and V2 such that each edge of G connects a vertex in V1 with a vertex
in V2.

• An undirected graph G = (V,E) is complete if it holds for every two vertices
u, v ∈ V that uv ∈ E.

• A complete subgraph is called a clique.

• An undirected graph G = (V,E) is a cluster graph if every connected component
of G is a clique.

2.2 Combinatorial Problems and their Complexities

Combinatorial problems are problems that deal with discrete structures. The tasks of
combinatorial problems include counting structures of a given property, generating struc-
tures with a given property, searching for structure with a given property or searching
for a structure optimizing an objective function. In this work, we focus on combinatorial
problems on graphs that search for structures that optimize given objective functions.
Such problems are usually referred to as combinatorial optimization problems in litera-
ture [46,65,96].

To solve a combinatorial problem, we need an appropriate algorithm. The running
time of an algorithm is defined as the maximum number of operations executed by
the algorithm to solve a problem instance. However, the number of those operations
not only depends on the size of the problem instance, but also on the computational
model, on which the algorithm works. In this work, we use the Random Access Machine
(RAM) [141] as our model of computation. RAM is a theoretical computational model
that is on the one hand similar to common computational models, and on the other hand
sufficiently universal to be considered as a machine-independent model.
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Random Access Machine. RAM is a simple model of computation, it supports a set
of basis operations such as addition, multiplication, load, store, if-statements, etc. Each
of those operations can be executed in one time unit. Assuming RAM as computational
model, algorithms are described in pseudo-code. Furthermore, every algorithm on a
common computational models can be simulated by RAM. In particular, the number of
operations executed by an algorithm on a concrete computer differs from the number of
operations executed by the same algorithm on a RAM by at most a constant factor [141].

In computer science, the running time of an algorithm is often specified by a function
in the size of the problem instance, which is usually measured with the number of objects
that are contained in the problem instances, for example, the number of vertices in an
input graph or the number of elements in a countable set. However, in some cases, one
also considers the bit-length of the problem instance as its size, for example, in case of
the primality testing problem that asks if a given number is a prime number.

Since constant factors in the running time of an algorithm are usually ignored, big-O-
notation is used to upper-bound the running time of an algorithm.

Big-O-Notation. Let f and g be two functions over R+, the set of positive real numbers.
We write f = O(g) if there exist two constants x0, c > 0 such that f(x) ≤ c · g(x) for
x ≥ x0. Informally, f = O(g) can be interpreted as “f does not grow asymptotically
faster than g”. Big-O-notation is one of the Landau notations, that are widely used in
computer science to investigate running time of algorithms or complexity of problems.
See [46, 65, 96] for other Landau notation. However, in this work, we only use the big-
O-notation as described above.

The following terminologies are frequently used in this work.

• We say that the running time of an algorithm is O(f(n)) if the algorithm executes
at most O(f(n)) operations to solve the problem instance of size n. The running
time of an algorithm is also referred to as its complexity or more precisely time
complexity.

• If the running time of an algorithm is bounded by nO(1), where n is the size of the
problem instance, we say that the algorithm is a polynomial time algorithm.

• If there is a polynomial time algorithm for a combinatorial problem, we say that
the problem is solvable in polynomial time.

• The complexity of a problem is the complexity of the most efficient algorithm that
solves the problem.

In general, polynomial time algorithms run faster than superpolynomial time algo-
rithms. Therefore, given a combinatorial problem, it is preferable to have a polynomial
time algorithm for that problem. In fact, for many combinatorial problems, there are
polynomial time algorithms available. In textbooks such as [46,96,101], polynomial time
algorithms for a number of problems are described systematically in detail. However, for
many other combinatorial problems, there is no polynomial time algorithm. Moreover,
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there is a class of problems, called NP-hard problems, for which it is widely believed
that polynomial time algorithm cannot exist.

In the next section, we give an over-simplified introduction to NP-hardness concept
and techniques for showing the NP-hardness of a problem. That is a small basic part
of complexity theory, a research field in computer science, that focuses on classifying
problems according to their complexities. For more information on complexity theory,
we refer interested readers to relevant textbooks, e.g. [65, 82,85,125,154].

2.2.1 In P versus NP-hard

Actually, solving a combinatorial problem can be subdivided into two parts: finding a
solution and verifying the correctness of the solution. The class of problems for which
the second part can be done in polynomial time is referred to as NP (Nondeterministic
Polynomial time solvable), whereas the class of problems, for which both parts can be
done in polynomial time is referred to as P (Polynomial time solvable). It is obviously
that P ⊆ NP .

However, the question if P = NP is still a long-open question in the complexity
theory, since the class NP does contain some problems, for which it is not known if there
is polynomial time algorithm available. Although it is widely believed that there will be
no polynomial time algorithm for such problem, there is no proof for that conjecture.
For example, the Hamiltonian Cycle Problem, which asks if an undirected graph
contains a cycle that visits every vertex once, is in NP since we can easily verify if a
cycle visits every vertex of a graph once. However, we do not know if the Hamiltonian
Cycle Problem is in P, since we do not have an algorithm that can find such a cycle
in polynomial time.

There is a class of problems, for which no polynomial time algorithm is available and
it is proved that if there is a polynomial time algorithm for one of those problem, then
every problem in this class is solvable in polynomial time. Problems in this class are
called NP-hard problems. An NP-hard problem is said to be NP-complete, if it is in NP.
Thus, the class of NP-complete problems are the class of hardest problem in NP.

If we face a problem, for that we cannot find or develop a polynomial time algorithm,
the next step that we can do is trying to show that the problem is NP-hard. So we need
a technique to prove the NP-hardness of a problem.

Polynomial time reduction. In essence, a polynomial time reduction from a problem
A to a problem B is an algorithm that solves problem A instance in polynomial time,
assuming that there is a polynomial time algorithm for problem B. It holds, if problem
A is an NP-hard problem and there is a polynomial time reduction from problem A to
problem B, then problem B is also an NP-hard problem. Thus, to prove the NP-hardness
of a problem B, we have to show a polynomial time reduction from an NP-hard problem
to B.

The first NP-hardness proof was done by Cook in 1971 [44] as he proved the NP-
hardness of Satisfiability Problem (SAT), that asks if a logical formula in conjunc-
tive normal form is satisfiable. Afterwards, the NP-hardness of many of other combina-
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torial problems was proved by polynomial time reductions to SAT and to other NP-hard
problems. See [65] for a list of NP-hard problems.

Since it is widely believed that there is no polynomial time algorithm for NP-hard
problems, we can safely stop searching for polynomial algorithm for a problem if we can
prove that the problem is NP-hard. However, there are several approaches to cope with
the NP-hardness of combinatorial problems. In Section 2.2.2 and 2.3, we describe some
approaches that can be used to cope with the NP-hardness of combinatorial problems.

2.2.2 Classical Approaches for NP-hard Problems

NP-hard problems arise in almost every research area and applications in computer
science [65], for examples, in graph theory, set theory, network design, sequencing and
scheduling, and in bioinformatics like the problems we deal with in this work. Since
it is unlikely that there will be polynomial time algorithms for NP-hard problems, the
following approaches are usually applied to deal with the NP-hardness of combinatorial
problems:

Heuristic. The main goal of heuristic algorithms is to find a good solution of the
corresponding problem in a reasonable time, without any guarantee about the optimality
of the computed solutions. Apart from a large number of problem-specific heuristic
algorithms, there are also several general techniques to develop heuristic algorithms, the
prominent representations of those techniques are heuristic branch-and-bound [48, 105]
and metaheuristics [66,147].

Approximation. An approximation algorithm A for an NP-hard optimization problem
is a polynomial time algorithm that approximates the optimal solution of the problem
within a guaranteed range r(n), where n is the size of the problem instance. Let kopt de-
note the value of the optimal solution, and kA denote the value of the solution computed
by A. For a minimization problem, the guaranteed range of A is kopt ≤ kA ≤ r(n) · kopt.
For a maximization problem, the guaranteed range of A is kopt ≥ kA ≥ kopt

r(n) . We say

that r(n) is the approximation factor of A. Obviously, there must be an n0, such that
r(n) > 1 for every n ≥ n0, otherwise A is a polynomial time algorithm for an NP-hard
problem, which is unlikely. If r(n) is a constant function, A is a constant-factor ap-
proximation algorithm. The class of optimization problems that have constant-factor
approximation algorithms is referred to as APX.

If A approximates the optimal solution within any approximation factor r(n) = 1 + ε
for arbitrary given number ε > 0, A is called a polynomial time approximation scheme
(PTAS). For a fixed ε, the running time of a PTAS is polynomial in n. The class of
optimization problems that have polynomial time approximation schemes is also referred
to as PTAS. Obviously it holds PTAS ⊂ APX. However, APX does contain some
problems, for which there is no PTAS available under the assumption that P 6= NP [120].
Thus, it holds PTAS ( APX, under the assumption that P 6= NP .
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For many optimization problems, there is no approximation algorithm unless P =
NP , one of the most well-known examples for inapproximability is the Traveling
Salesperson Problem (TSP) that receives an undirected edge-weighted graphs as
input and asks for a Hamiltonian cycle of minimum weight. It is believed that there
will be no polynomial time approximation algorithm for TSP, since any polynomial
time approximation algorithm for TSP will solve the NP-hard Hamiltonian Cycle
Problem in polynomial time. In Section 6.4 of this work, we show that the minimization
Bond Order Assignment Problem is inapproximable and the maximization Bond
Order Assignment Problem is not in PTAS under the assumption that P 6= NP .

See textbooks [8,151] for more details on approximation algorithms and the complexity
of optimization problems.

Integer Linear Programming. Integer Linear Programming (ILP) is a mathematical
approach to optimize a linear objective function with respect to a set of linear constraints
on a set of integer variables. ILP itself is an NP-hard problem [95]. Many optimization
problems can be formulated as ILPs, for instance, all optimization problems considered
in this work can be formulated as ILPs: In [20], Böcker et al. reported that ILP-
approach in combination with some preprocessing procedures (called data reduction,
see Section 2.3.3) can be applied to solve Weighted Cluster Editing Problem
efficiently in practice. In [41], Chimani et al. solved the Flip Supertree Problem by
applying an ILP approach. In [50], Dehof et al. used an ILP approach to solve the Bond
Order Assignment Problem. In contrast to heuristic and approximation algorithms,
ILP approaches solve combinatorial optimization problems exactly, but without any
guarantee about the time requirement.

Exponential Running Time Algorithms. Exponential Running time algorithms are al-
gorithms that solve NP-hard problems exactly, with exponential running time in the size
of problem instance. Unless P = NP , there is no hope for polynomial time algorithms
for NP-hard problems and exponential running time algorithms seem to be unavoidable
when it is required to solve NP-hard problems optimally. There are a large number of
exponential running time algorithms for many NP-hard problems. See [157] for a survey
of exponential running time algorithms. For small problem instances, a good exponential
running time algorithm may even faster than a bad polynomial running time algorithm
in practice. However, exponential running time algorithms are usually inefficient when
coping with the NP-hardness of large problem instances, which are usually the case in
bioinformatics. In the next section, we give a brief introduction to the fixed-parameter
tractability concept, which offers an opportunity for exactly solving large problem in-
stances of combinatorial problems, despite their NP-hardness.

2.3 Fixed-Parameter Tractability

Under the assumption that P 6= NP , exponential factors in the running time of an
algorithm that solves an NP-hard problem optimally, is unavoidable. However, in many
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cases, it is possible to develop algorithm for a NP-hard problem whose running time
is exponential in a problem-specific parameter, but polynomial in the size of problem
instance. For example, in the 1980s it was independently observed by several authors
that many NP-complete problems defined on graphs turn out to be solvable in polynomial
time on graphs with bounded treewidths (see Section 2.3.2). However, the running times
of the corresponding algorithms are exponential in the treewidth of input graphs [6, 14,
26].

In [52], Downey and Fellows introduced the fixed-parameter tractability concept as a
method of algorithm design and analysis, that proposes to restrict the combinatorial
explosion of search space of an NP-hard problem to a small problem-specific parameter,
instead of to the size of the problem instance. The problem-specific parameter may be
the treewidth of an input graph as mentioned above, or the maximum vertex degree of an
input graph [93], and often an upper-bound of the optimal solution of an optimization
problem, just to name a few possible parameters that are usually chosen. The main
concept of fixed-parameter tractability can be formalized as following:

Definition 2.4 (Fixed-parameter Tractability). A parameterized problem consist of
an input pair (I, k), where I is the problem instance, and k is an input parameter.

An algorithm that solves a parameterized problem in time f(k) · |I|O(1), where f(k)
is a computable function independent of |I|, is called a fixed-parameter algorithm. A
parameterized problem is fixed-parameter tractable if there is a fixed-parameter algorithm
for the problem.

For NP-hard problem, f(k) cannot be a polynomial function, otherwise we would
have a polynomial time algorithm for an NP-hard problem. However, the parameter
k is usually much smaller than the size of problem instances, so that fixed-parameter
algorithms are usually much more efficient in practical use compared with exponential
running time algorithms. To give an example of the superiority of fixed-parameter
algorithms compared to classical exponential running time algorithm, we consider a
simple exponential running time algorithm and a simple fixed parameter algorithm for
the Vertex Cover Problem, which is defined as following:

Definition 2.5 (Vertex Cover Problem). Given an undirected graph G = (V,E), a
vertex cover Vc of G is a subset of V , such that each edge in G is incident to at least one
vertex in Vc. The Vertex Cover Problem asks for a vertex cover of G with minimum
cardinality, called minimum vertex cover.

The Vertex Cover Problem is an NP-hard problem [65]. A trivial exponential
algorithm for the Vertex Cover Problem may consider each vertex v ∈ V with
N(v) 6= ∅, recalling that N(v) denotes the neighborhood of v, and distinguishes two
cases:

1. The vertex v belongs to the minimum vertex cover. So v is inserted into the vertex
cover and removed from G, edges incident to v are also removed from G. Subse-
quently, the algorithm calls itself recursively for the subgraph G[V \ {v}].
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2. The vertex v does not belong to the minimum vertex cover. Under this assumption,
the algorithm has to include every vertex inN(v) into the vertex cover. Afterwards,
the algorithm calls itself recursively for the subgraph G[V \N(v)].

The algorithm stops if there is no vertex v ∈ V with N(v) 6= ∅. At the end of the
algorithm, each vertex of G was considered as most once and either included to a vertex
cover or removed from G. In total, up to O(2|V |) possible vertex covers are generated.
Thus, the minimum vertex cover computed by the algorithm is an optimal solution
of the Vertex Cover Problem. The running time of the algorithm is obviously
O(2|V | · |V |O(1)).

To solve the Vertex Cover Problem with fixed-parameter approach, we choose
the number of vertices in a minimum vertex cover as a parameter to investigate and
parameterize the Vertex Cover Problem as following:

• Instead of directly computing the minimum vertex cover of a given undirected
graph G, we consider its decision version, that asks if G has a vertex cover of size
at most k. This problem is a parameterized problem with respect to the parameter
k.

• To solve the original Vertex Cover Problem, we have to find the minimum
k, for which the parameterized Vertex Cover Problem is a yes-instance, i.e.,
there is a vertex cover of size k for G.

To answer if there is a vertex cover of size at most k, we slightly modified the exponential
running time algorithm above by considering parameter k as a part of the input of the
recursive algorithm described above. At the beginning of every recursion, we lower k by
the number of vertices that were included in the vertex cover by the previous recursion
and abort the recursion if k ≤ 0. By doing this, we generate all possible vertex covers
of size at most k. The running time of the modified algorithm for testing if there is
a vertex cover of size at most k is obviously bounded by O(2k · |V |O(1)). Thus, this
algorithm is a fixed-parameter algorithm with respect to the input parameter k. As
abovementioned, to find a minimum vertex cover, we start our modified algorithm for
k = 0. If there is a vertex cover of size k = 0, the algorithm will find it. If the
algorithm cannot find a vertex cover of size at most k, we call the algorithm repeatedly
with increasing k until a vertex cover of size k is found. Let kopt denote the size of
the minimum vertex cover, we have to repeat our algorithm at most kopt time until
a minimum vertex cover is found. All in all, our algorithm finds an optimal vertex
cover in total time O(kopt · 2kopt · |V |O(1)) = O(2kopt · |V |O(1)). Thus, the algorithm is
fixed-parameter tractable with respect to the minimum vertex cover of G.

Since kopt is always smaller than |V |, the fixed-parameter algorithm is more efficient in
practice in comparison with the exponential running time algorithm. The main focus of
the exponential running time algorithm and the fixed-parameterized algorithm above is
to give the readers an illustration of the advances of fixed-parameter algorithm in com-
parison with exponential running time algorithm. In fact, Vertex Cover Problem is
one of the most well-studied parameterized problems. The best known fixed-parameter
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algorithm for Vertex Cover Problem is O(1.2738k + k |V |) where k is the size of an
optimal vertex cover [39].

In general, it is preferable that an NP-hard problem is fixed-parameter tractable
with respect to a small parameter. Unfortunately, many NP-hard problems are fixed-
parameter tractable with respect to a certain parameter but intractable with respect to
other parameters. In [52], Downey and Fellows introduced the parameterized complexity
concept, that focuses on classifying parameterized problem according to their hardness,
analogously to the concept of classical complexity theory. To understand this work, it
is sufficient to know that every fixed-parameter tractable problem is said to be in the
class FPT, whereas parameterized problems that are W[i]-hard, for any integer i ≥ 1,
are unlikely to be fixed-parameter tractable.

An example for a fixed-parameter intractable problem is the Independent Set
Problem, which takes an undirected graph G = (V,E) and an integer k as input
and asks if there is an independent set VI of size at least k that is a subset of V with(
VI
2

)
∩ E = ∅. The W[1]-hardness of this problem is proved in [52]. Recently, our group

proved that the Flip Supertree Problem (see Chapter 4) is a W[2]-hard problem [21].

In the following, we give a brief introduction to the depth-bounded search tree, the tree
decomposition and data reduction techniques with all of the related terminology that
is used throughout this work. Interested readers may consider [121] for more detail on
general techniques of fixed-parameter algorithm design.

2.3.1 Depth-bounded Search Tree and Graph Modification

Search tree algorithms, also called backtracking algorithms or branching algorithms, be-
long to the most commonly used algorithmic approaches to compute exact solution for
NP-hard problems.

A search tree algorithm is a recursive algorithm that consists of a set of branching
strategies. For a certain problem instance, an appropriate branching strategy chooses
a part of the input instance and calls the algorithm recursively for each subproblem
instance, in which the chosen part is assigned one of its possible values. The expo-
nential running time algorithm described above for the Vertex Cover Problem is a
search tree algorithm with only one branching strategies and can be formalized with the
following recursion:

Let V C(G) denote the size of the minimum vertex cover of G and v be a vertex with
N(v) 6= ∅. It holds:

V C(G) = min

{
V C(G[V \ {v}]), v belongs to the minimum vertex cover.

V C(G[V \N(v)]), N(v) is a subset of the minimum vertex cover.

The execution of a search tree algorithm can be illustrated as a search tree, where each
inner node corresponds to a recursive call and each feasible solution corresponds to a
leaf of the search tree. If the depth of a search tree is upper-bounded, the corresponding
search tree algorithm is a depth-bounded search tree algorithm.
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To upper-bound the running time of a depth-bounded search tree algorithm, we need
to upper-bound the size of its corresponding search tree, that is, the number of nodes
of the search tree. In the following, we describe how to upper-bound the size of a
depth-bounded search tree.

Let A be a search tree algorithm, that calls itself recursively for subproblem instances
of size n− d1, n− d2, . . . , n− di when it is applied to solve a problem instance of size n.
The vector (d1, d2, . . . , di) is referred to as the branching vector of A. To upper-bound
the size of the search tree, we first upper-bound the number of its leaves. Let T (n) be
the number of leaves of the search tree when solving problem instance of size n. It holds
that

T (n) = T (n− d1) + T (n− d2) + · · ·+ T (n− di).

The asymptotic solution of the above recursive equation is the root of the characteristic
polynomial

zd − zd−d1 − · · · − zd−di ,

where d = max{d1, . . . , di} [102]. Let α be the positive root with maximum absolute
value of the characteristic polynomial, then T (n) = O(αn). We call α the branching
number of A.

Since each inner node of the search tree have at least two children, the number of
leaves of the search tree is larger than the number of its inner nodes. Thus, the size of
the search tree is also bounded by O(αn).

If the depth of a search tree is not upper-bounded by the input size but by a parameter
k, the size of the search tree is bounded by O(αk). If A consists of several branching
strategies, we compute the branching number of every strategy and choose α as the
largest branching number over all branching strategies.

In this work, we apply depth-bounded search trees to the Flip Consensus Tree
Problem and the Weighted Cluster Editing Problem investigated in Chapter 4
and 5. These problems belongs to the class of graph modification problems. In the follow-
ing, we recapitulate several attributes of graph modification problems, which allow for
fixed-parameter algorithms with respect to the minimum number of edge modifications.

Definition 2.6 (Graph Modification Problem). A graph modification problem consists
of a graph G = (V,E), a desired property Π, an integer k; and asks if it is possible to
modify G to fulfill property Π by at most k modifications.

A modification, also referred to as an edit operation, may be an edge deletion, edge
insertion, or vertex deletion.

Definition 2.7 (Hereditary Property and Forbidden Subgraph Characterization). A
property Π is a hereditary property if every induced subgraph of a graph fulfilling the Π
property also fulfills the Π property.

A property Π has a forbidden subgraph characterization if there is a set F of graphs,
such that a graph G fulfills property Π if and only if G does not contain any graph in F
as an induced subgraph. If F is a finite set, property Π is said to have a finite forbidden
subgraph characterization.



2.3 Fixed-Parameter Tractability 17

In [34], Cai showed the following theorem.

Theorem 1. A graph modification problem that is defined by a hereditary property with
a finite set of forbidden subgraphs is fixed-parameter tractable with respect to the number
of modifications.

In the proof of this theorem, Cai [34] applied the depth-bounded search tree algorithm
technique by first identifying a forbidden subgraph, and branching into every possibil-
ity to eliminate the forbidden subgraph, and calling the algorithm recursively on each
modified problem instance.

Since both the Flip Consensus Tree Problem and the Weighted Cluster
Editing Problem that are considered in this work admit a finite forbidden subgraph
characterization, they are fixed-parameter tractable with respect to the number of mod-
ifications, as well as the minimum modification cost in case of Weighted Cluster
Editing Problem (we require that the cost for every modification is at least one).

2.3.2 Tree Decomposition-based Dynamic Programming

Dynamic programming is also a standard technique to design algorithm for combinatorial
problems. Dynamic programming algorithm usually can be applied to problem, whose
solution can be assembled from solutions of its subproblems and minimum size problem
instances can be solved easily. Thus, a dynamic programming algorithm can be described
as a recursion, where initial values are available. As an example, let us consider a
dynamic programming algorithm for a special case of the Vertex Cover Problem,
where the input graph is a tree. Let T = (V,E) be an input tree of the Vertex Cover
Problem. We root T at an arbitrary node vr. For each node v ∈ V , let D(v) denote
the minimum vertex cover of the subtree rooted at v and C(v) denote the set of children
of v. Since every edge incident to v in the subtree rooted as v have to be incident to a
vertex in D(v), it holds:

D(v) :=

{⋃
u∈C(v) (D(u) ∪ {v}) if

∣∣∣⋃u∈C(v)D(u) ∪ {v}
∣∣∣ ≤ ∣∣∣⋃u∈C(v) (D(u) ∪ {u})

∣∣∣⋃
u∈C(v) (D(u) ∪ {u}) otherwise.

It holds D(v) := {v} if v is a leaf of T . With the initial value at the leaves of T
and the above recursion, our dynamic programming algorithm computes D(v) for each
node v ∈ V after computing D(u) for every u ∈ C(v). After the course of bottom-up
processing, D(vr) is the minimum vertex cover of T . The running time of this dynamic
programming algorithm is bounded by a polynomial function in the size of T .

Besides Vertex Cover Problem, many other NP-hard graph problems can be
solved by dynamic programming algorithms in polynomial time if the input graphs
are trees. Thus, a natural question is whether polynomial running time dynamic pro-
gramming algorithms for trees can be extended for “tree-like” input graphs. In [134],
Robertson and Seymour presented the tree decomposition concept that can reflect the
“tree-likeness” of graphs.
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Definition 2.8 (Tree decomposition). A tree decomposition of G = (V,E) is a pair
〈{Xi | i ∈ I}, T 〉 where I is an index set, and each Xi is a subset of V , called a bag, and
T is a tree containing every bag Xi as node and the following properties hold:

1.
⋃
i∈I Xi = V ;

2. for every edge {u, v} ∈ E, there is a bag Xi such that {u, v} ⊆ Xi; and

3. for all i, j, k ∈ I, if Xj lies on the path between Xi and Xk in T then Xi∩Xk ⊆ Xj .

The width of the tree decomposition 〈{Xi | i ∈ I}, T 〉 equals max{|Xi| | i ∈ I} − 1. The
treewidth ofG is the minimum number ω such thatG has a tree decomposition of width ω.
We call a tree decomposition with minimum width an optimal tree decomposition.

Figure 2.1 shows an example of tree decomposition.

Figure 2.1: A graph and its tree decomposition.

Intuitively, a tree decomposition of a graph is a mapping of the graph into a tree.
In fact, it can be easily shown that removing vertices of a graph that are contained in
an inner node of a tree decomposition of the graph, separates the graphs into disjoint
connected components. This is similar to removing an inner node of a tree. However,
in a tree we only need to remove one inner node to separate the tree into disjoint
subtrees, whereas an inner node of a tree decomposition of a graph may contain more
than one vertex, and we have to remove more than one vertices to separate the graph
into connected components.

These observations lead to an intuition that the smaller the treewidth of a graph,
the more “tree-like” the graph is. Furthermore, the treewidth of a clique of size n is
n− 1 (the corresponding tree decomposition has only one bag containing all vertices of
the clique), whereas the treewidth of a tree is one (each bag of the corresponding tree
decomposition is a two-elements vertex set corresponding to an edge of the tree).

Several dynamic programming algorithms based on tree decomposition have been
introduced for NP-hard problems on graphs. For example, in [3], Alber and Nieder-
meier introduced a tree decomposition-based dynamic programming algorithm for Inde-
pendent Set Problem and Dominating Set Problem, which are fixed-parameter
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with respect to the treewidth of input graphs, in [159] Xu et al. also applied tree
decomposition-based dynamic programming approach to solve two problems occurring
in protein structure prediction, their algorithms are fixed-parameter with respect to the
treewidth of the input graphs. In Chapter 6, we introduce two tree decomposition-based
dynamic programming algorithms for the Bond Order Assignment Problem, our
algorithms are also fixed parameter with respect to the treewidth of the input graphs.

To apply tree decomposition-based dynamic programming algorithms to a graph prob-
lem, we have to compute a tree decomposition of the input graph, ideally, an optimal
tree decomposition, since this has the smallest width. Unfortunately, computing an op-
timal tree decomposition is an NP-hard problem [5]. In [27], Bodlaender showed that
computing an optimal tree decomposition is fixed-parameter tractable, however the cor-
responding fixed-parameter algorithm has an impractical running time. Luckily, there
are several exact and running-time heuristic algorithms to compute an optimal tree
decomposition that are efficient in practice [30, 67]. In Chapter 6, we also report the
practical running time of the branch-and-bound algorithm introduced in [67] and im-
plemented by van Dijk et al. (http://www.treewidth.com), together with the running
time of our tree decomposition-based dynamic programming algorithm for the Bond
Order Assignment Problem.

To improve legibility and to simplify description and analysis of our algorithms, instead
of arbitrary tree decompositions we use nice tree decomposition, which is defined as
follow:

Definition 2.9. A tree decomposition is a nice tree decomposition if it satisfies the
following conditions:

1. Every node of the tree has at most two children.

2. If a node Xi has two children Xj and Xk, then Xi = Xj = Xk; in this case Xi is
called a join node.

3. If a node has one child Xj , then one of the following situations must hold:

a) |Xi| = |Xj |+ 1 and Xj ⊂ Xi; in this case Xi is called an introduce node.

b) |Xi| = |Xj | − 1 and Xi ⊂ Xj ; in this case Xi is called a forget node.

The following lemma holds:

Lemma 2.1. Given a tree decomposition of width ω and m bags of a graph G, a nice
tree decomposition of width ω and O(m) bags of G can be computed in linear time.

A formal proof of this lemma can be found in [97] (proof of Lemma 13.1.3 in [97]).
In the following, we sketch a straightforward algorithm that transforms a tree decom-

position of width ω into a nice tree decomposition of the same width in linear time.
Let 〈{Xi | i ∈ I}, T 〉 be a tree decomposition of width ω of a graph G. We refer to

T as a tree decomposition instead of 〈{Xi | i ∈ I}, T 〉 of legibility. To transform T into
a nice tree decomposition, we first root T at an arbitrary bag Xr. Rooting T defines a
parent-children relation on the nodes of T .

http://www.treewidth.com
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Figure 2.2: A nice tree decomposition.

First, we transform T into a binary tree. Let Xi be an inner node of T with at least
two children. We first disconnect every subtree rooted at each child of Xi and construct
a binary tree rooted at Xi with as many leaves as the number of children of Xi. Each
node of the constructed binary tree is a bag containing the same vertices of G as Xi.
Subsequently, we reconnect subtrees rooted at the children of Xi to T at the leaves of the
newly constructed binary tree. We apply this procedure to every inner node of T with
at least two children in a top-down manner. Of course, it is not necessary to execute
this procedure to an inner node with two children, if the bags at that inner node and its
children contain the same vertices of G. Afterwards, every inner node of T has at most
two children and two children of an inner node contain the same vertices as their parent
node.

Thereafter, we replace every edge {Xi, Xj}, where |(Xi \Xj) ∪ (Xj \Xi)| ≥ 2, with
a path consisting of corresponding forget and/or join nodes, such that every inner node
of T with one child is either a forget node or an introduce node.

Now, T is a nice tree decomposition and the size of T increases by a factor of at most
dmax · ω, where dmax is the maximum number of children of a node in the original tree
decomposition. Furthermore, the width of T remains unchanged and the running time
of this algorithm is O(|I| · ω).

Figure 2.2 illustrates a nice tree decomposition of the tree decomposition shown in
Figure 2.1.
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2.3.3 Data Reduction and Kernelization

In the two previous sections, we described the depth-bounded search tree and tree
decomposition-based dynamic programming as two general techniques that are used in
this work to design fixed-parameter algorithms for NP-hard problems. However, given
an instance of an NP-hard problem, there are usually some parts of the instance that
are not “really hard” and it is a waste of computational resources to directly apply a
cost-intensive algorithm to those parts. Thus, it is advisable to solve those trivial parts
with a polynomial time preprocessing, to cut down the size of the input instance before
applying a cost-intensive algorithm to solve the really hard part of the problem. The
polynomial time preprocessing that is used to downsize a problem instance, is called data
reduction. A data reduction consists of a set of data reduction rules, which are defined
as follows.

Definition 2.10 (Data Reduction Rule). Let L be a parameterized problem whose input
is a pair (I, k). A data reduction rule is a mapping that maps an instance (I, k) to a
reduced instance (I ′, k′) in polynomial time, such that

1. k′ ≤ k,

2. |I ′| ≤ |I|,

3. and the instance (I ′, k′) has a solution if and only if (I, k) also has a solution.

As an example, we consider the following trivial data reduction rules for the parame-
terized Vertex Cover Problem:

• Rule 1: Delete every vertex of degree one, insert its neighbor into the vertex cover
and lower k by one.

• Rule 2: Insert every vertex of degree at least k + 1 into the vertex cover, lower k
by one and delete the vertex from the graph.

If there is no vertex of degree one in the graph, we say that the problem instance is
reduced with respect to Rule 1. If there is no vertex of degree at least k + 1, we say
that the problem instance is reduced with respect to Rule 2. In general, we say that a
problem instance is reduced with respect to a reduction rule if the reduction rule cannot
be applied to the problem instance. Data reduction Rule 1 is parameter-independent,
since parameter k is not involved in this reduction rule, whereas data reduction Rule 2
is parameter-dependent.

The correctness of Rule 1 is obvious, since it is never worth including a vertex of
degree one into the vertex cover instead of its neighbor. The correctness of Rule 2 is also
obvious, since a vertex cover of size at most k (if it exists) has to contain every vertex
of degree at least k + 1, otherwise it cannot cover all edges adjacent with a vertex of
degree larger than k. Furthermore, the reduced problem instance has a vertex cover of
size at most k′ if and only if the original problem instance has a vertex cover of size at
most k. Moreover, this data reduction rule can be exhaustively executed in polynomial
time in the size of the input graph.
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For every problem considered in this work, we use data reduction rules to cut down
problem instances. In Section 4.4.1, we introduce several data reduction rules for the
Flip Consensus Tree Problem. Our data reduction rules for the Weighted Clus-
ter Editing Problem (see Chapter 5) are not described in this work but can be found
in [16–18]. For the Bond Order Assignment Problem, which is considered in Chap-
ter 6, we do not explicitly mention any data reduction rule. However, the fact that we
lower the valences of atoms by their degrees, can also be considered as a data reduction
rule, since the search space of our algorithms and therewith the running times of our
algorithms strongly depend on the maximum valence of an atom (see Chapter 6 for more
details).

For the Flip Consensus Tree Problem and Weighted Cluster Editing Prob-
lem, it was shown that data reduction rules introduced in [99] and [20], are in fact two
kernelizations, whereby a kernelization for a parameterized problem is defined as follows.

Definition 2.11 (Kernelization). A kernelization is a data reduction that reduces a
parameterized problem instance (I, k) to a parameterized problem instance (I ′, k′) with
k′ ≤ k and |I ′| ≤ g(k), where g(k) is a function independent of |I|. The reduced problem
instance (I ′, k′) is called a problem kernel of size |I ′|, which is bounded by g(k).

The following lemma states the relation between the fixed-parameter tractability and
the kernelizability of a parameterized problem [52].

Lemma 2.2. A parameterized problem is fixed-parameter tractable if and only if it pos-
sesses a problem kernel.

Although the result of the above lemma does not have a direct practical use, it does
suggest to look for kernelizations of parameterized problem, for which there exist fixed-
parameter algorithms. In turn, a kernelization may speed up the existing algorithm
in practice. Particularly when using kernelization in addition with a depth-bounded
search tree algorithm to solve a fixed-parameter tractable problem, Niedermeier and
Rossmanith [122] proposed to apply the kernelization at the beginning of every recursive
call. This technique is referred to as interleaving technique. The essential idea of inter-
leaving technique is: Although applying kernelization in every recursive call consumes
time near the root of the search tree, it helps saving much more time near the leaves of
the search tree. Niedermeier and Rossmanith [122] proved the following theorem:

Theorem 2. Let (I, k) denote the input instance of a parameterized problem that can be
solved by a depth-bounded search tree algorithm in addition with a kernelization in time
O(P (|I|) +R(q(k)) · αk), where O(P (|I|)) is the running time of the kernelization, q(k)
denotes problem kernel size, and O(R(q(k))) denotes the running time of the algorithm
within each node of the search tree. By applying the kernelization at the beginning of
every recursive call, this parameterized problem can be solved in time O(P (|I|) + αk).

Due to the above Theorem, we can mention in Chapter 4 and 5 that applying inter-
leaving with the kernelizations in [99] and [20] results in better running time for our
algorithms for the Flip Consensus Tree Problem and the Weighted Cluster
Editing Problem, respectively.



3 Biological Background

Although the focus of this work is on the complexity and algorithmic aspects of some
combinatorial biological problems, a minimum biological knowledge is still required to
understand the necessarily of our algorithms. In this chapter, we give a brief introduction
to the biological background, that covers all of the biological concepts mentioned in this
work. We will stay at a most abstract level and describe biological entities with their
function and interaction without going into details at a biochemical level. However,
in the next section, we will recapitulate a bit of school chemistry, since it may helpful
to understand the Bond Order Assignment Problem investigated in Chapter 6.
Section 3.2 serves as an introduction to some fundamental biological entities, like DNA,
RNA, protein, that will be mentioned throughout this work. In Section 3.3, we give
an overview of computational phylogenetics, a research field that applies algorithmic
approaches to study evolutionary relatedness among organisms. We refer interested
users to relevant textbooks, e.g. [4, 31,108] for more details.

3.1 Basic Chemistry

Atoms are the smallest part of matter that have chemical properties. An atom consists
of a dense central nucleus surrounded by a cloud of negatively charged electrons. A
nucleus contains a mix of positively charged protons and electrically neutral neutrons
(except for hydrogen, which is the only stable nucleus with no neutrons). The mass of
an atom is called its atomic mass.

The number of protons and the number of neutrons in the nucleus of an atom are two
important parameters. The number of protons, called atomic number, determines the
chemical element of an atom. The number of neutrons determines the isotopes of an
element, that are atoms with the same atomic number but differ in atomic mass.

The electrons surrounding the nucleus of an atom are arranged in electron shells,
which are gravitationally curved paths around the nucleus. An electron shell must be
completely filled, before electrons can be added to an outer shell. An atom always
tends to fully complete its outermost shell by attracting more electrons or giving up all
electrons from its incomplete outermost shell, so that the new outermost shell is full. If
the outermost shell is almost full, the atom has a strong tendency to attract electrons.
If the outermost shell is almost empty, the atom tends to give up the electrons in the
outermost shell. In some cases, atom is also “satisfied” with an almost full outermost
shell.

If an atom contains an equal number of protons and electrons, it is electrically neutral,
otherwise it has a positive or negative charge. Due to electromagnetic force, atoms with
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opposing charges attract each other. An attraction caused by electromagnetic force
between atoms is referred to as a chemical bond.

In a chemical bond, one of the attending atoms gains electrons, the other one loses
electrons or both atoms share electrons to fill their outermost electron shell. In case both
atoms share electrons, the chemical bond is referred to as a covalent bond. In general,
the number of electron pairs involved in a covalent bond, is referred to as its bond order.
There are three common bond orders: single bond, double bond and triple bond. In some
advance context, bonds with fractional or higher orders than three, such as quadruple
bond, quintuple bond, and sextuple bond are also possible. However, we do not go into
details of those cases, since they are out of the scope of this work. An electrically neutral
group of two or more atoms joined together by chemical bonds is a molecule.

Valence of a chemical element is defined as the sum of bond orders of chemical bonds
adjacent an atom of the element in a molecule. Many chemical elements usually have one
valence in natural chemical compounds, for example, carbon has valence four, oxygen
has valence two, hydrogen has valence one. Some other chemical elements may have
more than one possible valences. For example, nitrogen and phosphorous have valence
three in some molecules, but in some other molecules their valences are five. However,
knowing the bond orders of every bond in a molecule, we can easily induce the valence
of each atom in that molecule. Unfortunately, bond order information can be omitted
in many database formats. In Chapter 6, we present two fixed-parameter algorithms to
compute optimal bond order assignments of molecule graphs.

3.2 Fundamental Molecular Biology

The smallest functional unit of life that can be considered as a living object is a cell.
The reasons why a cell is considered as a living object, are its abilities to reproduce by
dividing itself into two or more daughter cells; to absorb nutrients and transfer them in
energy to use in other activities; and to synthesize proteins, which is the most essential
building blocks of life. Every living organism is composed of a single or multiple cells
(unicellular or multicellular). Most bacteria are unicellular, whereas other organisms,
such as human, animals and plants are multicellular.

In general, one distinguishes two types of cells: eukaryotic cells and prokaryotic cells.
Eukaryotic cells are mostly observed in plants or animals, they have a membrane-enclosed
nucleus containing their genetic materials, which are encoded as deoxyribonucleic acid
molecules (DNA) in most organisms or ribonucleic acid molecules (RNA) in some bac-
teria. Prokaryotic cells do not have a nucleus and they are mostly unicellular organisms.

During its life cycle, a cell caries out numerous cellular activities. All of cellular activ-
ities are, in fact, chemical reactions, that work through the interaction of mainly three
types of biomolecules: DNA, RNA and proteins. Actually, there are other biomolecules,
that are also important in maintaining structures of cells, like lipids. However, DNA,
RNA and proteins play the most important roles in a cell. In the next section, we briefly
describe the functional roles of those biomolecules.
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3.2.1 Biomolecules

Proteins are biomolecules consisting of 20 different types of amino acids arranged in
a linear chain. Almost every protein molecule fold into a unique three-dimensional
structure, which highly impact on their biochemical functions. Proteins participate in
almost every cellular function, for example, catalyzing biochemical reactions, sending
signal to other cells, acting as antibodies in the immune system, transporting other
molecules.

A DNA molecule consists of two linear strands winding together in a double-helical
structure. Each strand is a long chain built from four types of nucleotide bases: adenine
(A), cytosine (C), guanine (G) and thymine (T). Two strands of a DNA are held together
by hydrogen bonds (a type of chemical bond) between opposing nucleotide bases, that
are A-T and G-C. With their double-helical structure of two complementary strands,
DNA molecules are mostly chemically inactive and serve as libraries of hereditary infor-
mation and instructions for cellular activities. The smallest unit of a DNA molecule that
encodes information is a gene. In prokaryotic organisms, genes are continuous strings.
In eukaryotic organisms, genes are broken into pieces, called exons and introns. While
exons encode information, that are used by gene expression process to synthesize pro-
teins, the functionality of introns are not yet explored. The complete DNA molecule of
an organism is called its genome. Since two strands of a DNA are fully complement to
each other, a DNA molecule can be described with the nucleotide sequence of one of its
two strands.

The chemical structure of RNA is similar to a single DNA strand, the main difference
between RNA and a single DNA strand is that RNA molecules contain uracil nucleotide
(U) instead of thymine (T). Because of their single-strand structure (versus double-
strand structure of DNA), RNA are more chemically active than DNA. They participate
in many important cellular activities, particularly in gene expression, a process that
uses information from protein-encoding genes to synthesize proteins needed by cells or
organism to react to internal or environmental conditions.

In the next section, we describe gene expression, that is one of the most important
process where DNA, RNA, and proteins play the central role. We also point out a
combinatorial problem arising in gene expression analysis, which can be formalized with
the Weighted Cluster Editing Problem investigated in Chapter 5.

3.2.2 Gene Expression

Gene expression is the process, in which proteins or functional genetic products are
synthesized. In an over-simplified view, gene expression consists of the following steps:

1. Transcription. Transcription is the process that copies a DNA sequence into an
equivalent RNA sequence. At the beginning of a transcription, an enzyme, called
RNA polymerase, binds to the DNA sequence at a position that is a few bases before
a gene and transcripts (copies) the information of the gene into a complementary
RNA sequence, called messenger RNA (mRNA).



26 3. Biological Background

2. RNA splicing. RNA splicing is a process that only occurs in eukaryotic organisms.
It removes non-coding sections in the transcripted mRNA, that was translated
from the introns of the respective gene, and joins coding sections together.

3. Translation. Translation is a process that uses information encoded in the mRNA
to synthesize protein. In this process, a particular type of RNA, called transfer
RNA (tRNA), binds to a nucleotide triplet on the mRNA, that encodes a type of
amino acid, and transfer the corresponding amino acid to the so far created protein
sequence. A nucleotide triplet of an mRNA, that encodes a type of amino acids,
is called a codon.

4. Folding and post-translation modification. The newly created protein folds into the
desired three-dimensional structure to function. Usually, the newly created protein
also undergoes several chemical modifications that may attach further biochemical
functional groups to the protein or modify some amino acids on the protein.

5. Targeting. Targeting is a process that transports the newly created protein to the
cellular location, where it is needed.

Gene expression is the most important process of a cell to react to internal and envi-
ronmental condition. Thus, depending on which protein are needed, the expression of
one or more corresponding genes may up- or down-regulated. The expression level of
a gene are usually quantified by the amount of the corresponding mRNA transcripted
in the transcription. The amount of mRNA can be measured with aid of a microarray,
which is an array with thousands of DNA spots assembled on a rectangle slide, and each
DNA spot contains a huge number of short identical nucleotide sequences [111,115,132].
To quantify gene expression levels of genes in a cell, the cell extract is washed over a
microarray, mRNA fragments in the cell extract are sticked to spots with complementary
nucleotide sequences on the microarray. Afterwards, the types and amount of mRNAs
is detected to infer the gene expression levels of corresponding genes. See [111] for more
details about applications of microarray.

In a gene expression analysis, expression levels of genes are measured under different
conditions (including time of measurements, physical and chemical agents). The mea-
sured expression levels of a gene are stored in a vector, called the characteristic vector
of the gene or the expression pattern of the gene. Information obtained by monitoring
gene expression level of particular genes are useful in many biological and medical appli-
cations. For example, those information may help to detect viral infection, susceptibility
to cancer of an individual, resistant of a bacterium to antibiotics, or reactions of cell to
medical treatments.

One of the most important tasks in gene expression analysis is to classify genes into
clusters of genes with similar expression patterns. In turn, genes with similar expression
patterns indicate genes that are tightly co-expressed. Moreover, gene expression clusters
also help to infer functional roles of unknown genes.

The problem is now, how to classify genes according to their expression patterns. In
Chapter 5, we describe the Cluster Editing approach, that can be used to classified
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biological entities with respect to any given similarity measures. In particular, we inves-
tigate a combinatorial problem arising with this approach, called Weighted Cluster
Editing Problem, and present one of our fixed-parameter algorithms for that problem.

3.3 Computational Phylogenetics

Already in the early ancient time, philosophers from many cultures assumed that
species may change over time and stem from a single common ancestor. In the 18th.
and 19th. centuries, several fundamental scientific works have been published in this
research area. In 1809, Jean-Baptiste Lamarck came up with the idea that altering of
one species into another results from the inheritance of adjustments, which are acquired
by the parents to adapt to living environment. In 1859, Charles Darwin published
On the Origin of Species, one of the most important book in this field. In this book,
Darwin explained the natural selection as a process, by which traits become more or less
common in a population, depending on the survival and reproduction of their bearers.
Moreover, Darwin also presented various evidences of evolution, a process by which the
inherited traits of a population change through successive generations. In 1900, Gregor
Mendel discovered that traits were inherited in a predictable manner. However, this
appeared to be a contradiction to the natural selection concept of Darwin. In 1930,
Ronald Fisher resolved this contradiction in his publication Genetical Theory of Natural
Selection and set the foundations for the establishment of population genetics. In the
1940s, Oswald Avery and colleagues identified DNA as the genetic material. In 1953,
James Watson and Francis Crick published the structure of DNA, which provides the
physical basis for inheritance. Since then, population genetics and molecular biology are
parts of evolutionary biology. Subsequently, phylogenetics was developed as a research
field in evolutionary biology, that investigates the evolutionary relationship of species,
also called taxa (singular taxon).

In phylogenetics, evolutionary relations of taxa are usually represented as phylogenetic
trees, also called phylogenies, that are trees (an undirected graph without cycle, in term
of graph-theory) where each leaf corresponds to a taxon.

One distinguishes between rooted phylogeny and unrooted phylogeny. In a rooted
phylogeny, an inner node represents a hypothetical last common ancestor of taxa located
at leaves of the subtree rooted at the inner node. Furthermore, in a rooted phylogeny,
an inner node also represent the cluster of taxa located at the leaves of its subtree. In
an unrooted phylogeny, inner nodes can be considered as speciation events occurring in
the past, since unrooted phylogenetic trees only represent the relationship of the taxa
without any assumption about their ancestry.

In general, phylogenetic trees are binary trees, because speciation events usually occur
when an ancestral lineage splitted in two new independent lineages. However, there are
some phenomena in nature that might be best modeled by a mutifurcating tree, where
inner nodes may have more than two children [109, 124]. Furthermore, evolutionary
relations are also represented as directed acyclic graphs, called phylogenetic networks, if
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input data support more than one phylogenies equally well or horizontal gene transfer
occurred [33, 78, 90–92]. However, we only focus on rooted binary phylogenetic trees in
this work.

Phylogenetic Reconstruction

Apart from their historical evolutionary meaning, phylogenies also find applications in
biological and medical research, where historical or hierarchical structures of the evolu-
tion of taxa are of interest [145]. Therefore, reconstructing phylogenies is an important
task in biology. Traditionally, phylogenies are reconstructed from morphological data,
that are outward appearances of species such as body size, length or size of particular
bones, pattern of their movements, and many other physical features of species. Nowa-
days, biomolecular data such as nucleotide sequences, amino acid sequences and other
data types like gene frequencies, quantitative traits, restriction sites, microsatellites,
DNA hybridization are used, in addition to morphological data, to reconstruct phyloge-
nies. In general, it is not certain whether morphological data or biomolecular data are
preferable for inferring phylogenies. For extinct species, it is difficult or even impossible
to obtain biomolecular data, thus using morphological data of mummies or fossil record
is the only way to estimate their relationships, whereas phylogeny of viruses can only
be inferred from their biomolecular data. Moreover, phylogenies are also usually recon-
structed without information about the extinct species, since many organisms, such as
viruses, does not leaves fossil records. In this case, the only way to infer phylogenies is
to use genetic information of existing species.

Given a set of taxa, the task of phylogenetic reconstruction is to estimate a phylogeny,
that contains the taxa at its leaves, and represents a hypothesis about the evolutionary
ancestry of the taxa. Since it is in general unknown how the evolution of the taxa
happened, phylogenetic reconstruction methods usually infer phylogenies optimizing a
certain criteria, that is believed to lead to a good phylogeny. Even so, there is no
guarantee that the resulting tree represents the true evolutionary process of the input
taxa. In fact, there is no uniquely correct methods for inferring phylogeny. A biologist
has to choose a method that best fits his demand. Given a set of taxa with a criteria to
optimize, the näıve algorithm chooses a tree-topology among all possible tree-topologies
that optimizes the given criteria. Unfortunately, the number of tree-topologies, and
thus the running time of the algorithm, grows super-exponentially in the number of
taxa. Many phylogenetic reconstruction methods with different optimization criteria
have been introduced to deal with the super-exponentially large search space. See [57] for
an overview. Most of these methods can be classified in two broad categories: distance-
based methods and character-based methods.

Distance-based method. Distance-based methods reconstruct phylogenies with re-
spect to the evolutionary distances involved in the input data such as edit-distance
of biological sequences, melting temperature of DNA hybridization, the strength of an-
tibody cross reaction, etc. Phylogenies reconstructed by distance-based methods are
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weighted trees, where pairwise distances between species reflect the evolutionary dis-
tance involved in the input data. Representations of distance-based methods include
neighbor-joining [72, 136], agglomerative clustering [113] or least-squares [58]. See rele-
vant textbooks [57,137] for more details about distance-based methods.

Character-based method. Character-based methods reconstruct phylogenies directly
from the characters of taxa, that are features, which can have different states. From the
algorithmical point of view, one distinguishes two kinds of character according to the
number of their states: Binary character and numerical character. Numerical characters
have more than two states, such as nucleotide at each position in DNA or RNA sequences,
amino acid at each position of protein sequences. Binary characters have exactly two
states 0 or 1, and thus can be used to represent features with exactly two different states,
such as “taxon is mammal”, “taxon is vertebrate”, “taxon has swings”.

In character-based method, each taxon is characterized by a character vector, where
the jth component of the vector represents the status of the jth character. The goal of
character-based methods is to construct a rooted tree with the following attributes:

• Each leaf corresponds to a taxon given in the input.

• Each inner node is marked with the character vector of the hypothetical common
ancestor of taxa located at the subtree rooted at the inner node.

• Each edge corresponds to a character mutation and every taxon in the subtree
below an edge undergoes the corresponding character mutation.

Most of the character-based methods follow the Maximum Parsimony or the Maximum
Likelihood criteria.

Maximum Likelihood-based methods take biomolecular sequences, such as DNA
sequences or protein sequences, as input and computes a phylogeny with the highest
likelihood for the input data, under a given evolutionary model. Recently, Maximum
Likelihood was proven to be NP-hard [42, 43, 135]. We refer interested readers to
relevant textbooks e.g. [57, 137] for more details.

Maximum Parsimony criteria requires the constructed phylogenies to contain the
minimum number of mutations for a given taxa set [57]. An advantage of Maximum
Parsimony criteria is that it agrees with the common assumption that unnecessary mu-
tations are not likely to occur often in nature. Unfortunately, reconstructing maximum
parsimonious phylogenies is also an NP-hard problem, even for input data with binary
characters [60]. See [57,137] for more details about Maximum Parsimony.

To cope with the NP-hardness of computing maximum parsimonious phylogeny, Blel-
loch et al. [144] introduced a fixed-parameter algorithm that computes a most parsimo-
nious tree of length at most m + q in time O(21q + 8q ·m2n) if there is one, where the
length of a phylogeny is defined as the number of its edges, n is the number of taxa, m
is the number of binary characters and q is an input parameter.

As an alternative to maximum parsimony, Chen et al. [38] introduced an approach that
takes a set of n taxa characterized by m binary characters and constructs a phylogeny
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with at most m edges. To guarantee the lengths of constructed phylogenies, Chen
et al. proposed to “correct” the input data with a minimum number of edit operations.
Unfortunately, it is NP-hard to find a minimum number of edit operations [38]. In the
following Chapter, we introduce two fixed-parameter algorithms for this problem.



4 Flip Consensus Tree

In this Chapter, we investigate the Flip Consensus Tree Problem, a special case of
the Flip Supertree Problem that is encountered when using the approach introduced
by Chen et al. [38] to reconstruct phylogeny. After giving a biological motivation in
Section 4.1, we formalize the Flip Consensus Tree Problem problem as a graph
modification problem in Section 4.3. In Section 4.4.1, we describe a set of data reduction
rules to downsize problem instances. In Section 4.4.2 and 4.4.3, we introduce two fixed-
parameter algorithms for the Flip Consensus Tree Problem based on the depth-
bounded search tree technique. Section 4.5 discuses several heuristic improvements to
speed up our algorithms in practice. We implemented one of our algorithms in Java and
report our computational results in Section 4.6. Section 4.1 recapitulates our results
introduced in this chapter and points out several future research directions regarding
the Flip Supertree Problem.

4.1 Motivation

Besides inferring phylogenies directly from a taxa set as described in Section 3.3, phy-
logeny can also be inferred from smaller phylogenies over overlapping taxa sets. The
resulting phylogeny, called the supertree of the input phylogenies, contains all or most
taxa of the input trees. In ideal case, the input trees allow for a single supertree that
simultaneously displays all input trees, that means, each input tree can be obtained from
the supertree by removing all taxa that the input tree does not contain. In practice,
input trees almost never allow for a single supertree due to the incompatibilities among
the input trees. The main goal of all supertree methods is to construct supertrees that
preserve the maximum of phylogenetic information in the input trees.

Most of supertree methods can be classified into two broad categories: The MRP
(Matrix Representation with Parsimony) approaches [10, 11, 129] and Build-like ap-
proaches [1, 123,139].

Given a set of input trees, an MRP approach encodes the input trees in a matrix M
as following: The matrix M contains a row for each input taxon and a column for each
inner node of every input tree. A matrix item Mij is set to ‘?’ if the input tree with the
inner node corresponding to column j does not contain the taxon corresponding to row i;
or 1 if the input tree with the inner vertex corresponding to column j contains the taxon
corresponding to row i at a leaf of the subtree rooted at the inner vertex corresponding
to column j; otherwise ‘0’. The matrix M is called the matrix representation of the input
trees. If M contains ‘?’, it is said to be incomplete. See Figure 4.1 for an illustration.

After constructing the matrix representation of the input trees, MRP supertree method
compute a maximum parsimonious phylogeny for the resulting matrix.
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Figure 4.1: Matrix M1 and M2 represent phylogenies T1 and T2. Matrix M represents
both phylogenies T1 and T2.

MRP approaches are known to compute better solution on simulated data than Build-
like approaches [56]. Unfortunately, MRP approaches suffer from the same computa-
tional hardness of computing maximum parsimonious phylogeny [60]. However, if the
matrix representation of M shows a particular property, called perfect phylogeny, a max-
imum parsimonious phylogeny of M can be computed in polynomial time [77, 127]. On
a complete binary matrix representation M , the perfect phylogeny concept is stated as
following:

Definition 4.1 (Perfect Phylogeny). Let M be an n×m binary matrix representation
of n taxa. A perfect phylogeny of M , if it exists, is a rooted tree T with the following
properties:

• Each leaf is labeled by a row of M , and corresponds with the taxon characterized
by that row.

• Each column of M labels at most one edge.

• The characters associated with the edges along the unique path from the root
to a leaf exactly specify the character vector of the corresponding taxon, i.e.,
the character vector of the taxon has ‘1’ entries in all columns corresponding to
characters associated to the edges of the path and a ‘0’ entry otherwise.

See Fig. 4.2 for an illustration. The definition of perfect phylogeny implies that the
root of the perfect phylogeny is labeled by the null vector and each character changes
from state ‘0’ to state ‘1’ at most once and never changes back from state ‘1’ to state
‘0’. Thus, a perfect phylogeny is a phylogeny with maximum parsimony.

Gusfield [77] proved the following theorem.

Theorem 3. Let M be a complete binary matrix representation of n taxa characterized
by m characters, and Oi denote the set of taxa with a ‘1’ in column i. M admits a
perfect phylogeny if and only if every two characters i and j are compatible, that means,
it holds



4.1 Motivation 33

c1 c2 c3 c4 c5
t1 1 0 0 0 0
t2 1 1 0 0 0
t3 1 1 1 0 0
t4 0 0 0 1 0
t5 0 0 0 1 1

Figure 4.2: Perfect Phylogeny

• Oi ⊆ Oj, or

• Oj ⊆ Oi, or

• Oi ∩Oj = ∅.

In [77], Gusfield also introduced an algorithm with running time O(mn) to test if a
binary matrix M admits perfect phylogeny, and construct a perfect phylogeny of M , if
it exists.

For incomplete binary matrix representation, that contains at least one ‘?’ as an item
instead of ‘1’ or ‘0’, Pe’er et al. [127] introduced a near-linear running time (in the size
of the matrix) algorithm to replace each ‘?’ with ‘0’ or ‘1’ in a way admitting a perfect
phylogeny, if it is possible.

The main problem is: The matrix representation of input trees almost never admits
perfect phylogeny in practice. In [38], Chen et al. proposed to edit the matrix repre-
sentation by flipping the minimum number of items from ‘1’ to ‘0’ or from ‘0’ to ‘1’, to
make the resulting matrix admitting perfect phylogeny. This approach is called the flip
supertree approach. In [56], Eulenstein et al. showed that on simulated data, the flip
supertree approach computes better supertrees than Build-like methods and, at least,
as good as MRP approaches, regarding various distance and similarity measures . How-
ever, the problem is now, how to find the minimum set of flippings that make a matrix
admitting perfect phylogeny. This problem is known as Flip Supertree Problem
that can be formalized as following:

Definition 4.2 (Flip Supertree Problem). Given an n×m matrix M , where Mij ∈
{0, 1, ?}, the Flip Supertree Problem asks for the minimum number of entries of M
to be flipped from ‘0’ to ‘1’ or from ‘1’ to ‘0’ to make M admitting perfect phylogeny,
i.e., there exist a replacement of every ‘?’ with ‘1’ or ‘0’, that make M admitting perfect
phylogeny.

In this work, we investigate a special case of the flip supertree approach, the flip
consensus tree approach, where the input trees contain the same set of taxa. This
implies that the matrix representation of the input trees does not contain ‘?’. In this
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case, the underlying problem, called Flip Consensus Tree Problem, is formally
defined as following:

Definition 4.3 (Flip Consensus Tree Problem). Given an n×m binary matrix M ,
the Flip Consensus Tree Problem asks for the minimum number of entries of M to
be flipped from ‘0’ to ‘1’ or from ‘1’ to ‘0’ that makes M admitting perfect phylogeny.

4.2 Previous Work

In the following, we recapitulate previous results for the Flip Supertree Problem
and the Flip Consensus Tree Problem.

In [37, 38], Chen et al. showed that the Flip Consensus Tree Problem is NP-
hard. Therefore, the Flip Supertree Problem is also NP-hard. A branch-and-bound
algorithm was introduced for the Flip Consensus Tree Problem in [35], but this
algorithm can only solve problem instances with very limited number of taxa.

Based on a graph-theoretical interpretation of the Flip Consensus Tree Prob-
lem, Chen et al. [38] introduced a simple fixed-parameter algorithm with running time
O(6kmn), where k is the minimum number of flips. Furthermore, they introduced an
approximation algorithm with approximation ratio 2d where d is the maximum number
of ‘1’s in a column for this problem [38]. In [99], Komusiewicz et al. proved a problem
kernel of size O(k3) vertices for this problem.

All of the abovementioned results refer to the Flip Consensus Tree Problem. For
the Flip Supertree Problem several heuristic algorithms exist [36, 56,68]. Recently,
our group proved that the Flip Supertree Problem is W[2]-hard [21] with respect to
the number of flips. This result prohibits the hope for a fixed-parameter tractable algo-
rithm with respect to the minimum number of flips for the Flip Supertree Problem.
However, Chimani et al. [41] recently introduced an integer linear programming (ILP)
formulation and a set of data reductions for the Flip Supertree Problem as well
as the Flip Consensus Tree Problem that can solve Flip Supertree Problem
instances with up to 100 taxa in reasonable time.

4.3 Graph-theoretical Model

In this work, we use a graph-theoretical model of the binary matrix representation to
analyze the Flip Consensus Tree Problem. This model was first used by Chen
et al. [37] and can be defined as following:

Definition 4.4 (Character graph). The character graph G = (Vt ∪ Vc, E) of an n ×m
binary matrix M is an undirected and unweighted bipartite graph with n + m vertices
t1, . . . , tn, c1, . . . , cm where {ci, tj} ∈ E if and only if M [i, j] = 1. The vertices in Vc
represent characters and those in Vt represent taxa. We call the vertices c- or t-vertices,
respectively.

See Figure 4.3 for an illustration of a character graph.
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c1 c2 c3 c4
t1 1 0 0 0
t2 1 1 0 1
t3 1 1 1 1
t4 0 0 1 1

Figure 4.3: A binary matrix and its character graph

From the set-theoretical point of view, the neighborhood of a character vertex ci corre-
sponds to the taxa set, that have state ‘1’ for the character associated with ci. Therefore,
the neighborhood of a character vertex ci corresponds to the set Oi defined in Theorem 3.
Hence, two characters are compatible if the neighborhoods of their corresponding char-
acter vertices contain each other or do not intersect.

Therefore, two incompatible characters corresponds to two c-vertices with overlap-
ping neighborhoods. An M-graph, which is defined as following, is the minimal graph
structure describing two character vertices with overlapping neighborhoods.

Definition 4.5 (M-graph). An M-graph is an induced subgraph of a character graph
that is a path of length four starting and ending at t-vertices.

Fig. 4.4 illustrates an M-graph and its corresponding submatrix.

Figure 4.4: M-graph

Using this graph theoretical model, Chen et al. [38] restated Theorem 3 as following:

Theorem 4. An n×m binary matrix M admits perfect phylogeny if and only if it does
not contain an M-graph as induced subgraph.

We call a character graph M-free if it does not contain an M-graph as an induced
subgraph.

From the definition of character graph, it is obvious that flipping a matrix item from
‘1’ to ‘0’ corresponds to the deletion of the corresponding edge in the character graph
and flipping a matrix item from ‘0’ to ‘1’ corresponds to the insertion of the correspond-
ing absence edge in the character graph. In particular, the number of flips needed to
make a binary matrix admitting perfect phylogeny equals the number of edge modifi-
cations needed to make the corresponding character graph M-free. Therefore, the Flip
Consensus Tree Problem is equivalent to the following graph modification problem:
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Definition 4.6 (Graph-theoretical Model of Flip Consensus Tree Problem). Given
an undirected bipartite graph G = (Vt ∪ Vc, E), the graph-theoretical model of Flip
Consensus Tree Problem asks for the minimum number of edge modifications, that
is, edge deletions and edge insertions that transform the character graph into an M-free
bipartite graph.

In this work, we investigate the Flip Consensus Tree Problem on the basis of its
graph-theoretical model as described in the above definition. The following notations
are frequently used throughout this chapter:

For two c-vertices ci, cj ∈ Vc, we denote

• X(ci, cj) := N(ci) \N(cj)

• Y (ci, cj) := N(ci) ∩N(cj)

• Z(ci, cj) := N(cj) \N(ci)

recalling that N(v) denotes the neighborhood of a vertex v. See Fig. 4.6 for a illustration.
Actually, Z(ci, cj) can be written as X(cj , ci), but we use both notations for the sake of
clarity.

We call ci and cj c-neighbors if and only if Y (ci, cj) is not empty. An edge modification
is said to be associated with a vertex v (v can be a c-vertex or a t-vertex), if it inserts
or deletes an edge incident to v. Furthermore, we denote m := |Vc| and n := |Vt|.

4.4 Algorithms

In this Section, we investigate the parameterized version of the Flip Consensus Tree
Problem, which is defined as following:

Definition 4.7. The parameterized Flip Consensus Tree Problem takes a character
graph G = (Vt ∪ Vc, E) and an integer k as input, and asks if it is possible to transform
G into an M-free character graph with at most k edge modifications.

Since M-free is a hereditary property with a finite set of forbidden subgraph, the pa-
rameterized Flip Consensus Tree Problem is fixed-parameter tractable with respect
to parameter k (see Theorem 1). In fact, Chen et al. [38] introduced a straightforward
depth-bounded search tree algorithm for the parameterized Flip Consensus Tree
Problem. This algorithm simply identifies an M-graph in G and branches into six cases
(four cases of deleting one existing edge and two cases of inserting one absence edge) to
eliminate the M-graph. Thus, the size of the corresponding search tree is bounded by
O(6k). Chen et al. adapted the Gusfield’s algorithm in [77] to identify M-graph in time
O(mn). All in all the running time of this algorithm is bounded by O(6kmn). Figure 4.5
illustrates the branching strategy of Chen et al. [38].

To compute the minimum number of edge modifications, we follow the depth-bounded
search tree paradigm and first solve the parameterized Flip Consensus Tree Prob-
lem for k = 1. If there is no solution with at most k edge modifications, we solve the
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Figure 4.5: The initial branching strategy. Dashed edges denote deleted edges. Bold
edges denote inserted edges.

parameterized Flip Consensus Tree Problem with increasing k repeatedly, until
finding the first k for that the character graph can be transformed into a M-free charac-
ter graph by k edge modifications. If kopt is the minimum number of edge modifications
to transform G into an M-free character graph, we have to call the algorithm for the
parameterized Flip Consensus Tree Problem kopt times to find the optimal solution
for the Flip Consensus Tree Problem. Thus, the Flip Consensus Tree Problem
can be solved in O(kopt(6

kopt mn)) = O(6kopt mn) using the straightforward algorithm of
Chen et al. described above. All in all, the straightforward algorithm of Chen et al. is
a fixed-parameter algorithm for the Flip Consensus Tree Problem with respect to
the minimum number of edge modifications.

In the following, we describe two improved fixed-parameter algorithms for the pa-
rameterized version of the Flip Consensus Tree Problem. The main idea of our
algorithms bases on the following observation:

• As long as there is a c-vertex of degree at least three, a special structure of inter-
secting M-graphs occurs in G, that allows for a branching strategy with branching
number 4.83 as shown in Section 4.4.2.1. If every c-vertex of the character graph
G has degree at most two, the Flip Consensus Tree Problem problem can be
solved in polynomial time as shown in Section 4.4.2.2.

• Besides the case, where every c-vertex has degree at most two, there are further
special cases, where the Flip Consensus Tree Problem can be solved in poly-
nomial time. Thus, we improve our branching strategy by pruning certain subtrees
of the search tree, for which the corresponding subproblem can be solved in poly-
nomial time. This improves the branching number of our branching strategy to
4.42.
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Based on those branching strategies, we present two fixed parameter algorithms with
running times O(4.83k (m + n) + mn + n2 log n) and O(4.42k (m + n) + mn + n2 log n)
for the parameterized Flip Consensus Tree Problem, and thus, also for the Flip
Consensus Tree Problem if the minimum number of edge modification is denoted
by k. The theoretical running times of our algorithms can be further improved to
O(4.83k+poly(m,n)) and O(4.42k+poly(m,n)) by using the interleaving technique (see
Section 2.3.3) with the kernelization of Komusiewicz et al. [99], where poly(m,n) denotes
a polynomial function in n and m. However, this polynomial function is not specified
in [99] and can be rather large.

In the following, we assume that G is a connected graph. If G is not connected
or decomposes during the execution of the algorithms, we compute the solutions for
each connected components separately, because it is never worth to connect different
connected components.

4.4.1 Data Reductions

Given a character graph G as input, we use the data reduction rules introduced in this
section to cut down the size of G. In our search tree algorithms, these data reduction
rules are also executed in the beginning of each recursive call. Reduction Rules 1 and 2
are fairly simple:

Rule 1: Delete all c-vertices v ∈ Vc of degree |Vt| from the graph.

Lemma 4.1. Rule 1 is correct.

Proof. Let c be a c-vertex of degree |Vt| in the input graph G. Then, c is connected
to all t-vertices in G and there cannot be an M-graph containing c. Furthermore, it is
not possible to insert any new edge incident to c. Assume there is an optimal solution
for G that deletes edges incident to c in G. If we execute all edge modifications of the
optimal solution except deletions of edges incident to c, we also obtain an M-free graph,
since every M-graph that does not contain c is destroyed by edge modifications of the
optimal solution and there is no M-graph containing c. This is a contradiction to the
assumption that the solution is optimal, so edges incident to c-vertices of degree |Vt| are
never deleted in an optimal solution. Thus, the corresponding c-vertices need not be
observed and can be removed safely.

Rule 2: Delete all c-vertices v ∈ Vc of degree one from the graph.

The correctness of Rule 2 is obvious.

After computing and saving the degree of every vertex in G in time O(mn), Rules 1
and 2 of the data reduction can be exhaustively applied in time O(m+n). Furthermore,
after applying Rule 1 is exhaustively, the c-vertex with maximum degree is contained in
at least one M-graph. In the proof of Theorem 5, we show that identifying this M-graph
takes time O(m+ n).

Rule 3 of our data reduction bases on the following lemma.
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Lemma 4.2. Let V ′c ⊆ Vc be a set of c-vertices with the same neighborhood. If there
is an optimal solution that executes edge modifications associated with a c-vertex in V ′c ,
there is an optimal solution that executes the same edge modifications on all c-vertices
in V ′c .

Proof. Let c1, c2 be two arbitrary c-vertices in V ′c . Since c1 and c2 share the same
neighborhood, there is no M-graph containing only c1 and c2. Assume that the length-
four path (t1, c1, t2, c, t) with t1, t2 ∈ N(c1), c ∈ Vc \ V ′c and t ∈ Vt \ N(c1) forms an
M-graph. The length-four path (t1, c2, t2, c, t) is also an M-graph. To eliminate these
M-graphs, we have to execute suitable edge modifications.

Case 1: If the optimal solution comprises edge modifications that are associated with
c, then no edge modifications associated with c1 or c2 are necessary to eliminate M-graphs
(t1, c1, t2, c, t) and (t1, c2, t2, c, t).

Case 2: Assume that the optimal solution comprises different edge modifications
associated with c1 and c2 to eliminate the M-graphs (t1, c1, t2, c, t) and (t1, c2, t2, c, t) .
Without loss of generality, the optimal solution inserts an edge connecting c1 with t and
deletes at least an edge incident to c2. The edge deletions associated with c2 can be
replaced by inserting the edge {c2, t} without creating a new M-graph containing c1 and
c2, because c1 and c2 have the same neighborhood. This modification does not increase
the cost of the optimal solution in this step.

Thus, there is an optimal solution that executes analogous edge modifications for all
vertices in Vc.

As a consequence of the above lemma, whenever we execute an edge modification
associated with a c-vertex in a set of c-vertices with the same neighborhood, we execute
the analogous edge modification on all other c-vertices in this set. To make use of this
observation, we introduce the following merge operation.

Merge operation. Let V ′c ( Vc be a set of c-vertices that have the same neighborhood.
The merge operation joins every c-vertex in V ′c into a new c-vertex c and connects c with
all t-vertices in the neighborhood of V ′c and sets the cost of deleting or inserting an edge
incident to c to |V ′c |.

The merge operation ensures that every edge modification associated with a c-vertex
in a set of c-vertices with the same neighborhood will be executed to all c-vertices in
this set, and the corresponding edit costs are correctly estimated.

Rule 3: Merge c-vertices with the same neighborhood.

The correctness of Rule 3 can be derived directly from Lemma 4.2.

Now, we describe how to identify all sets of c-vertices with the same neighborhoods
efficiently. Since each set of c-vertices with the same neighborhood is a critical inde-
pendent set, that is a set of vertices with the same neighborhood and there is no edge
incident to two vertices of the set, the algorithm of Hsu et al. [86] can be applied to
compute all sets of c-vertices with the same neighborhoods in time O(n + m). Thus,
Rule 3 can be exhaustively executed in time O(n+m).
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Note that applying merge operation causes the character graph to contain edges with
different edit cost, but the edge modifications associated with a c-vertex always have
the same cost. Furthermore, neither algorithm introduced in this work can be used
to solve arbitrary weighted Flip Consensus Tree Problem instances, where edit
costs are different even if they are associated with the same c-vertex. However, these
algorithms can be used to solve instances, where weights are assigned to characters, i.e.,
edge modifications associated with one c-vertex must have identical weight.

Rule 4: For every c-vertex c of degree two, set {c, t} as forbidden for all t ∈ Vt \N(c),
i.e., in later stages of our algorithms, we will not insert any edge incident to c.

Lemma 4.3. Rule 4 is correct.

Proof. Let G be a character graph and c be a c-vertex of degree two in G. Let G′ be the
graph resulting from an optimal set of edge modifications on G. Assume that G′ owns
an edge (c, t) not contained in G.

We will now show that there is another optimal solution for G without inserting (c, t).
Let ti, tj be the t-vertices connected with c in G. Since all M-graphs eliminated by
inserting {c, t} into G contain edges {c, ti} and {c, tj}, we can delete {c, ti} or {c, tj}
from G to eliminate these M-graphs instead of adding {c, t} to G. Deleting an edge can
only cause new M-graphs containing the c-vertex incident to this edge. But after the
removal of one of the edges {c, ti} or {c, tj}, c has degree one and cannot be contained
in any M-graph. Therefore, the resulting graph is still M-free and the number of edge
modifications does not increase since an insertion is replaced with only one deletion
associated with the same c-vertex. Hence, we can prohibit inserting edges incident to
degree-two c-vertices without changing the cost of the optimal solution.

After computing and saving the degree of every vertex in G, Rule 4 can be easily done
in time O(m).

Corollary 4.4. If every c-vertex in a character graph has degree two, there is an optimal
solution for the Flip Consensus Tree Problem without inserting any edge into the
character graph.

With the following lemma, we summarize the running time of our data reduction.

Lemma 4.5. All data reduction rules introduced above can be exhaustively applied in
time O(n+m), after computing and storing the degree of every vertex in G. Computing
the degrees of all vertices of G can be done in time O(mn).

The correctness of Lemma 4.5 is obvious.

In [99], Komusiewicz et al. generalized our data reduction Rule 1 and 2 by allowing
to remove c-vertices that are not occurring in an M-graph. This generalized reduction
Rule can be exhaustively applied in time O(m2n). Furthermore, they used a more
sophisticated reduction rule to show that Flip Consensus Tree Problem admits an
O(k3)-vertex problem kernel. However, the practical use of that reduction rule is in
question, since it seems to be highly time-consuming and rarely applicable in practice.
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Figure 4.6: The big M-graph FM and its special cases F1 and F2.

4.4.2 The O(4.83k + poly(m,n))-Algorithm

In this algorithm we distinguish two cases: (i) the character graph G contains c-vertices
of degree at least three, and (ii) every c-vertex of G has degree two. Note that every c-
vertex of degree one is removed by our data reduction. In Case (i), we use the branching
strategy described in Section 4.4.2.1. In Section 4.4.2.2, we show that in Case (ii) the
Flip Consensus Tree Problem can be solved in polynomial time.

4.4.2.1 Solving instances with c-vertices of degree at least three

Before describing the branching strategy that is applied as long as there are c-vertices
of degree three or higher, we consider the following structure of intersecting M-graphs,
called big M-graph: A big M-graph is a subgraph of the character graph and consists
of two c-vertices ci, cj and t-vertices in the nonempty sets X(ci, cj), Y (ci, cj), Z(ci, cj),
where at least one of these sets has to contain two or more t-vertices. Figure 4.6 illustrates
a big M-graph FM and its two special cases F1 and F2.

The following lemma states the existence of big M-graphs in a character graph con-
taining c-vertices of degree at least three.

Lemma 4.6. A character graph G that is reduced with respect to our data reduction
rules, has a c-vertex of degree at least three if and only if G contains big M-graph (see
Fig. 4.6) as an induced subgraph.

Proof. Assume that there are c-vertices in G with degree at least three. Let ci be a
c-vertex with maximum degree in G. Then, ci must have a c-neighbor cj , which has at
least one neighbor tj outside N(ci) because otherwise ci would be removed from G by
the data reduction. Let tk be a common neighbor of ci and cj that has to exist since
ci and cj are c-neighbors. There also exists a neighbor ti of ci that is not a neighbor
of cj . If ti is the only t-vertex that is a neighbor of ci but not of cj , then ci and cj must
share another common neighbor t′k besides tk (since ti has degree at least three) and the
M-graph ticitkcjtj and edges {ci, t′k}, {cj , t′k} form an F2 graph. Otherwise let t′i be an
other t-vertex, which is a neighbor of ci but not of cj , the M-graph ticitkcjtj and the
edge {t′i, ci} form an F1 graph. We conclude that if G has t-vertices with degree at least
three, then G contains F1 or F2 as induced subgraph.

If G contains F1 or F2 as induced subgraph, it is obvious that G has c-vertices of
degree at least three.
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Since the graphs F1 and F2 are special cases of big M-graph, a character graph G that
is reduced with respect to the abovementioned data reduction rules contains big M-graph
as induced subgraph if and only if it contains c-vertices of degree at least three.

In view of Lemma 4.6, after exhaustively executing the reduction rules, any character
graph with at least one c-vertex of degree three or higher has to contain big M-graphs as
induced subgraphs. Furthermore, it should be clear that a big M-graph contains many
M-graphs as induced subgraphs. Therefore, if there are big M-graphs in the character
graph, our algorithm first branches into subcases to eliminate all M-graphs contained in
those big M-graphs. The branching strategy to eliminate all M-graphs contained in a
big M-graph is based on the following lemma:

Lemma 4.7. If a character graph G is M-free, then for every two distinct c-vertices ci,
cj of G it holds that at least one of the sets X(ci, cj), Y (ci, cj), Z(ci, cj) must be empty.

Since there is at least one M-graph containing ci and cj if X(ci, cj), Y (ci, cj), Z(ci, cj)
are simultaneously non-empty, the correctness of Lemma 4.7 is obvious.

Lemma 4.7 leads to the following branching strategy for big M-graphs. Given a char-
acter graph G with at least one c-vertex of degree three or higher, our algorithm chooses
a big M-graph FM in G and branches into subcases to eliminate all M-graphs in FM.
Let ci, cj be the c-vertices of FM. According to Lemma 4.7, one of the sets X(ci, cj),
Y (ci, cj), Z(ci, cj) must be “emptied” in each subcase. Let x, y, z denote the cardinal-
ities of sets X(ci, cj), Y (ci, cj) and Z(ci, cj). We now describe how to empty X(ci, cj),
Y (ci, cj), and Z(ci, cj).

For each t-vertex t in X(ci, cj), there are two possibilities to remove it from X(ci, cj)
by one edge modification: we either disconnect t from the big M-graph by deleting the
edge {ci, t}, or move t to Y (ci, cj) by inserting the edge {cj , t}. Therefore, the algorithm
has to branch into 2x subcases to empty X(ci, cj) and in each subcase, it executes x
edge modifications. The set Z(ci, cj) is emptied analogously.

To empty the set Y (ci, cj), there are also two possibilities for each t-vertex t in Y (ci, cj),
namely moving it to X(ci, cj) by deleting the edge {cj , t} or moving it to Z(ci, cj) by
deleting the edge {ci, t}. This also leads to 2y subcases and in each subcase, y edge
modifications are executed.

Figure 4.7 illustrates our branching strategies on an F1 induced subgraph.

Altogether, the algorithm branches into 2x+ 2y + 2z subcases when dealing with a big
M-graph FM. In view of Lemma 4.7, at least min{x, y, z} edge modifications must be
executed to eliminate all M-graphs in FM. In the worst case, each edge modification has
weight 1 and our branching strategy has branching vector

(x, . . . , x︸ ︷︷ ︸
2x

, y, . . . , y︸ ︷︷ ︸
2y

, z, . . . , z︸ ︷︷ ︸
2z

).

This leads to a branching number of 4.83 as shown in the following lemma.

Lemma 4.8. The worst-case branching number of the above branching strategy is 4.83.
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Figure 4.7: Branching strategy on an F1 forbidden subgraph. Bold edges denote inserted
edges and dash edges denote deleted edges.

Proof. The branching number b of the above branching strategy is the single positive
root of the equation

2x
1

bx
+ 2y

1

by
+ 2z

1

bz
= 1 ⇐⇒ 1

(b/2)x
+

1

(b/2)y
+

1

(b/2)z
= 1.

If we consider b
2 as a variable, the single positive root of the second equation is the

branching number corresponding to the branching vector (x, y, z). The smaller values x,
y, z take, the higher b

2 and, hence, b. Due to the definition of a big M-graph, x, y, and
z cannot equal one simultaneously, so b is maximal if one of the variables x, y, z equals
two and the other two equal one.

However, if either x or z is one and y is two (see the big M-graph F2 in Figure 4.6 for an
illustration), one of the two c-vertices has degree two. According to data reduction Rule
4, we do not insert edges to c-vertex of degree two. In this case, our branching strategy
has a branching number of (1, 1, 2, 2, 2, 2) and the corresponding branching number is
3.24.

Thus, to upper-bound the worst-case branching number of our branching strategy,
we assume that x = z = 1 and y = 2. See the big M-graph F1 in Figure 4.6 for an
illustration. In this case, the single positive root of the equation (2b )

2 + 2
b + 2

b = 1 is
b
2 = 2.414214. Therefore, b is at most 4.83.

From Lemma 4.7, we infer an interesting property.

Corollary 4.9. There is no solution with at most k flips if there exist two c-vertices
ci, cj ∈ Vc satisfying min{|X(ci, cj)|, |Y (ci, cj)|, |Z(ci, cj)|} > k.

We use this property for pruning the search tree in the implementation of our algo-
rithm, see Section 4.5.

Corollary 4.9 implies that we can abort a program call whenever we find a big M-
graph where x, y, z simultaneously exceed k. Furthermore, if one or two of the values
x, y, z are greater than k, we do not branch into subcases deleting the respective sets.
Anyway, the number of subroutine calls in this step of the algorithm is fairly large, up
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Figure 4.8: Left: When all c-vertices (gray) have degree two, we can regard each c-vertex
with its incident edges as a single edge in a multigraph whose vertex set is
the set of t-vertices (white). Right: We merge all those “edges” between
two t-vertices into a single weighted edge whose weight equals the number
of c-vertices adjacent to the t-vertices, and we obtain a simplified model of
our graph.

to 3 · 2k. But large numbers of program calls at this point are a result of large numbers
of simultaneous edge modifications, which lower k to a greater extent. For simplicity,
assume that x = y = z = k, we see that our algorithm branches in 3 ·2k subcases, but at
the same time, it consumes all available flips. Therefore, the depth of the corresponding
search tree is 1 and its size is 3 · 2k. Thus, the branching number of our branching
strategy goes to 2 for large x, y, z and this is confirmed by the growth of running times
in our computational experiments (see Section 4.6).

4.4.2.2 Solving instances with c-vertices of degree at most two in polynomial time

In this section, we assume that the character graph G is reduced with respect to our
data reduction and every c-vertex in G has degree at most two. Since every c-vertex of
degree one is removed by our data reduction, every c-vertex in G has degree two, and
there is a optimal solution for the Flip Consensus Tree Problem without inserting
new edge into G.

In the following, we build a weighted undirected graph Gw from the character graph
G and prove that with aid of Gw, the Flip Consensus Tree Problem can be solved
in polynomial time. The weighted graph Gw is constructed as following:

We adopt the set Vt of t-vertices in G as vertex set for Gw. Two vertices t1, t2 are
connected if and only if they possess a common neighbor in G. The weight of an edge
{t1, t2} is the total weight of the edges connecting t1 (or t2) with the common neighbors
of t1 and t2 in the bipartite graph G, see Fig. 4.8. Furthermore, one can easily recognize
that the number of edges in Gw is bounded by m, the number of character vertices.
Thus, Gw contains at most n vertices and m edges.

One can easily see that there is an M-graph in G if and only if there is a path of length
two in Gw.

According to Corollary 4.4, we never have to insert edges into the character graph G.
Since deleting a weighted edge in Gw corresponds to deleting one of the edges incident
to each of the respective c-vertices in G, the Flip Consensus Tree Problem turns
out to be the problem of deleting a set of edges with minimum total weight such that
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there are no paths of length two in Gw. Thus, the remaining graph is a matching, that is
a set of edges without common vertices. Moreover, one can easily see that the larger the
weight of the remaining edges, the smaller the weight of the deleted edges. Therefore, the
Flip Consensus Tree Problem becomes the problem of finding a maximum weighted
matching. In [63], Gabow introduced an algorithm to compute the maximum weighted
matching of a graph (V,E) in time O(|V ||E|+ |V |2 log(|V |)). Since the number of edges
in Gw is bounded by m, using Gabow’s algorithm [63], we can solve the Flip Consensus
Tree Problem in time O(nm+ n2 log n) if every c-vertex is of degree at most two.

Theorem 5. The above algorithm solves the Flip Consensus Tree Problem in time
O(4.83k (m+ n) +mn+ n2 log n)).

Proof. At the beginning of the algorithm, the execution of the data reduction takes
O(mn) time. By saving the degree of each vertex in G, the algorithm needs O(m + n)
time to execute the data reduction in each recursion call. After exhaustively executing
our data reduction, we consider the following cases:

• If there is a c-vertex of degree at least three, G contains a big M-graph as induced
subgraph, as shown in Lemma 4.6. After identifying a big M-graph in G, we use
the branching strategy with branching number 4.83 described in Section 4.4.2.1 to
branch into subcases eliminating the big M-graph. In the following, we describe
how to identify a big M-graph efficiently.

Let cmax denote the c-vertex with maximum degree in G. It holds that cmax
has degree at least three and it has a c-neighbor, whose neighborhood contains
t-vertices outside N(cmax). Therefore, cmax forms together with this c-neighbor
and their neighborhoods a big M-graph. To find a big M-graph, we have to identify
cmax and this c-neighbor of cmax.

At the beginning of the algorithm, when computing the degree of every c-vertex,
we notice the c-vertex cmax and its neighborhood N(cmax). When computing the
degree of every t-vertex in N(cmax), we also identify the c-neighborhood of cmax.
Afterwards, when computing the degree of every t-vertex, that is not contained in
N(cmax), we can identify a c-neighbor c of cmax with N(c) 6= N(cmax). It holds
that cmax forms together with c and their neighborhoods a big M-graph. All in
all, a big M-graph can be found time O(mn) during computing the degree of every
vertex of G.

During the course of the depth-bounded search tree algorithm, we update the
information about cmax, N(cmax) and the c-neighborhood of cmax after every edge
modification. Note that this can be done in linear time. To identify a big M-graph
during the course of the depth-bounded search tree algorithm, we test for each
t-vertex outside N(cmax), if a c-vertex in its neighborhood is a c-neighbor of cmax.
We consider every c-vertex at most once in this test. Thus, this can be done in
time O(m+ n).

• If very c-vertex has degree at most two, we construct the weighted graph Gw as
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described above in time O(m + n) and apply the Gabow’s algorithm in [63] to
compute the weighted maximum matching in Gw in time O(nm+ n2 log n).

All in all, the running time of this algorithm is O(4.83k (m+ n) +mn+ n2 log n).

In [24], instead of using Gabow’s algorithm when every c-vertex has degree two, we
used a branching strategy with branching number 1.62. This improved the theoretical
running time of our algorithm to O(4.83k (m+n) +mn). However, it is advisable to use
the Gabow’s algorithm in practice. Moreover, we can use the interleaving technique [122]
with the kernelization in [99], to improve the theoretical running time of our algorithm
to O(4.83k + poly(m,n)) as claimed.

4.4.3 The O(4.42k + poly(m,n))-Algorithm

In this Section, we present an improved version of the algorithm introduced in the
previous section. The main idea of the improvement bases on the observation that besides
the case, where every c-vertex has degree two, there are other cases where the Flip
Consensus Tree Problem can be solved in polynomial time. In this new algorithm,
we use the branching strategy for big M-graph introduced in Section 4.4.2.1 as long as
there is a c-vertex of degree at least three in G and none of the polynomial-time-solvable
cases occurs. By an involved case analysis, we show in the following theorem that our
new algorithm has running time O(4.42k (m+ n) +mn+ n2 log n).

Theorem 6. The Flip Consensus Tree Problem can be solved in time O(4.42k (m+
n) +mn+ n2 log n).

Proof. We now give an overview of the case differentiation of our new algorithm and
show that it generates a search tree of size at most 4.42k.

If there are c-vertices of degree at least four in G, our branching strategy for big M-
graphs introduced in Section 4.4.2.1 has a branching number of at most 4.42 as shown
in Lemma 4.10.

If every c-vertex in G is of degree at most three, we distinguish the following cases:
Case 1: Every c-vertex in G has degree two. The Flip Consensus Tree Problem

can be solved in time O(nm+ n2 log n), as shown in Section 4.4.2.2.
Case 2: There is a c-vertex of degree two occurring in an M-graph. We show in

Section 4.4.3.2 that our branching strategy for big M-graphs has a branching number of
at most 4.24 for this case.

Case 3: Every c-vertex occurring in M-graph has degree three. We observe the follow-
ing subcases:

• There are two c-vertices with one common neighbor. Our branching strategy for
big M-graphs has a branching number of at most 4, see Section 4.4.3.2.

• Every two c-vertices have two common neighbors. The character graph G has to
be a graph similar to the graph shown in Fig. 4.11 and the Flip Consensus Tree
Problem for G can be solved in polynomial time, as shown in Lemma 4.11, or



4.4 Algorithms 47

G contains four t-vertices and at most four c-vertices as shown in Figure 4.12 and
the problem can even be solved in constant time.

Thus, our algorithm generates a search tree of size at most O(4.42k). As mentioned in
Section 4.4.2, the execution of data reduction takes O(mn) time. By saving the degree
of every vertex in G, our new algorithm also needs O(m+n) time for execution the data
reduction and the case differentiations described above in every recursion call. Thus,
the running time of our algorithm is O(4.42k (m+ n) +mn+ n2 log n).

We again can improve the theoretical running time of our algorithm by applying the
interleaving technique [122] with the kernelization from [99]. This results in the running
time O(4.42k + poly(m,n)) as claimed.

In the remaining part of this section, we will prove the running time of our algorithm
in detail.

4.4.3.1 Solving instances with c-vertices of degree at least four

We now assume that G contains a c-vertex of degree at least four. The following lemma
holds.

Lemma 4.10. If there is a c-vertex of degree at least four in G, the branching strategy
for big M-graphs described in Section 4.4.2.1 has branching number 4.42 when branching
into subcases eliminating a big M-graph containing the c-vertex with the maximum degree.

Proof. Assume that G contains a c-vertex of degree at least four. Let c be a c-vertex
with maximum degree in G. It holds that c has degree at least four, and there must
exist a c-vertex c′ in the c-neighborhood of c with N(c′) 6⊆ N(c), otherwise c is removed
from G by data reduction Rule 1. In the following, we make a case analysis by means
of the degree of c′, and show that our branching strategy for big M-graphs described
in Section 4.4.2.1 has branching number at most 4.42 when branching into subcases
eliminating the big M-graph containing c and c′. Assume that c has degree four, so c′

can have degree two, three, or four.

Case 1: c′ has degree two. G contains the subgraph shown in Figure 4.9(a) as an
induced subgraph. Since every pair {c′, t} for t 6∈ N(c′) is set to forbidden by the data
reduction, our branching leads to the branching vector (3, 1, 1, 1, 1), which corresponds
to the branching number 4.07.

Case 2: c′ has degree three. We distinguish two subcases: c and c′ have one common
neighbor, or c and c′ have two common neighbors, see Figure 4.9(c). Branching on the
big M-graph induced by c and c′, our branching strategy results in branching vector
(3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 2, 2) with branching number 3.68, see Figure 4.9(c) left; or
branching vector (2, 2, 2, 2, 2, 2, 2, 2, 1, 1) with branching numbers 4, see Figure 4.9(c)
right.

Case 3: c′ has degree four. For the cases that c and c′ have one or two common neighbors,
the branching number of our branching strategy is dominated by the corresponding cases
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(a) Dashed edges denote
forbidden edges.

(b) c′ has degree four, c
and c′ have three common
neighbors.

(c) Left: c and c′ have one common neighbor. Right: c and c′ have two
common neighbors.

Figure 4.9: c-vertex of degree at least four in G

where c′ has degree three. If c and c′ have three common neighbors, G contains the
subgraph shown in Figure 4.9(b) as induced subgraph and our branching strategy has a
branching number of 4.42.

If c has degree five or more, c′ can have degree larger than four, but the big M-graph
induced by c, c′ and their neighborhood contains one of the big M-graphs analyzed above
as induced subgraph. This leads to the branching number of 4.42.

Since the degrees of all vertices in G are known, the c-vertex with maximum degree
and the big M-graph containing this c-vertex can be found in O(m+ n) time, as shown
in the proof of Theorem 5.

4.4.3.2 Solving instances with c-vertices of degree at most three

In the following, we describe how to solve problem instances where all c-vertices have
degree at most three. If every c-vertex is of degree at most two, the problem can be
solved in polynomial time as described in Section 4.4.2.2. We now assume that there are
c-vertices of degree three in G.

Assume that there exists a c-vertex c of degree two that occurs in an M-graph. Let c′

be the other c-vertex in this M-graph. Vertex c′ can have degree two or degree three. In
any case, we do not have to insert edges incident to c, since c is of degree two. We can
infer the following: If c′ has degree two, we do not have to insert edges, so the branching
strategy for big M-graphs has branching vector (1, 1, 1, 1) with branching number 4, see
Figure 4.10 left. If c′ has degree three, this branching strategy has branching vector
(1, 1, 1, 1, 2) that leads to a branching number of 4.24, see Figure 4.10 right.
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Figure 4.10: Every c-vertex has degree at most three and a c-vertex of degree two occurs
in an M-graph. Dashed edges will not be inserted by the branching strategy.

Figure 4.11: t-vertices t′, t′′ are the two common neighbors of all c-vertices.

In the following, we assume that every c-vertex that occurs in an M-graph has degree
three. It follows that every c-vertex of degree two must have either zero or two common
neighbors with other c-vertex. If there are two c-vertices c, c′ with one common neigh-
bor, it holds that |X(c, c′)| = 2, |Y (c, c′)| = 1 and |Z(c, c′)| = 2. When branching into
subcases that eliminate the big M-graph containing c and c′, the branching strategy in-
troduced in Section 4.4.2.1 results in the branching vector (2, 2, 2, 2, 1, 1, 2, 2, 2, 2), which
corresponds to a branching number of 4.

We consider the last case where every pair of c-vertices in G must have two or three
common neighbors. Since each c-vertex has three neighbors, all c-vertices with three
common neighbors have the same neighborhood and are thus merged into a single c-
vertex by our data reduction. This implies that every pair of c-vertices have two common
neighbors. This case can again be divided into two subcases:

Case 1: There are two t-vertices that are connected to all c-vertices in G. Let t′, t′′

be these two t-vertices. An arbitrary c-vertex ci must have t′, t′′ and a t-vertex ti in his
neighborhood and the neighborhood of ti contains only ci, since c-vertices with the same
neighborhood are merged into a single one. See Figure 4.11. According to the following
lemma, the Flip Consensus Tree Problem can be solved in polynomial time in this
case.

Lemma 4.11. If every c-vertex in G has degree at most three and the neighborhood of
every c-vertex ci with degree three shares two common t-vertices t′ and t′′, i.e. N(ci) =
{ti, t′, t′′} (see Fig. 4.11), then there is an optimal solution that deletes all edges {ci, ti}
except for one edge {cmax, tmax} with w(cmax, tmax) = maxi{w(ci, ti)}.

Proof. Any c-vertex of degree two can only have t′ and t′′ in his neighborhood and never
occurs in an M-graph even if we delete any edge (ci, ti). Recall that all edge modifications
associated with the same c-vertex must have an identical cost. Let wi denote the cost
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Figure 4.12: Every c-vertex has degree three, and every two c-vertices have two common
neighbors, and there are no two t-vertices that are neighbors of all c-vertices.

of edge modifications associated with c-vertex ci. Without loss of generality, we assume
that wi ≤ wj if i < j. We prove this lemma by induction.

If there are only two c-vertices cm−1 and cm in G, deleting {cm−1, tm−1} is clearly an
optimal solution for the minimum-flip consensus trees in G.

Let G′ be the subgraph of G without c1. Assume that the optimal solution for G′

deletes all edges {ci, ti} for 2 ≤ i ≤ m − 1. The cost of the optimal solution for G′ is
kopt(G

′) =
∑m−1

i=2 wi.

Assume that there is an optimal solution with cost kopt(G) < kopt(G
′) +w1 for G. Let

Gopt be the output graph of this optimal solution for G. In the following we show that
there is a solution for G′ with cost smaller than kopt(G

′), which is a contradiction to the
assumption that the cost of the optimal solution for G′ is kopt(G

′).

A solution for G′ can be derived from Gopt by undoing edge modifications associated
with c1, if some is executed, and then removing c1 from Gopt. Clearly, the resulting
graph is a solution for G′.

If the optimal solution for G did execute some edge modifications associated with
c1, undoing these edge modifications reduces kopt(G) to at most kopt(G) − w1, which is
smaller than kopt(G

′). This is a contradiction to the assumption that the cost of the
optimal solution for G′ is kopt(G

′).

If no edge modification associated with c1 was executed by the optimal solution for
G, at least one modification associated with each ci, for 2 ≤ i ≤ m, had to be executed
to eliminate all (big) M-graphs containing c1 and ci. Therefore, the cost kopt(G) of the
optimal solution for G can be lower-bounded by

∑m
i=2wi, whereby deleting all edges

{ci, ti} for 1 ≤ i ≤ m − 1 results in a solution for G with cost
∑m−1

i=1 wi ≤
∑m

i=2wi ≤
kopt(G). Since the equality holds if and only if wi = wj for 1 ≤ i, j ≤ m, there is no
solution for G with cost smaller than

∑m−1
i=2 wi + w1 = kopt(G

′) + w1, and since our
algorithm computes a solution for G with this cost, it computes the optimal solution for
G.

Case 2: There are no two t-vertices that are common neighbors of all c-vertices.

In the following, we show that in this remaining case, the graph G consists of four
t-vertices and at most four c-vertices as shown in Fig. 4.12.

Since we merge c-vertices with the same neighborhood, there are no c-vertices with
three common neighbors in G. If G contains at least two c-vertices, then G must also



4.4 Algorithms 51

contain at least four t-vertices, otherwise the two c-vertices are merged by our data
reduction. Suppose G contains at least five t-vertices. Let {t1, t2, t3, t4, t5} be five t-
vertices in G. Since every c-vertex in G is of degree three and every two c-vertices in G
have two common neighbors, there must be at least three c-vertices in the neighborhoods
of these five t-vertices. Let c1, c2, c3 be these three c-vertices, where N(c1) = {t1, t2, t3}
and N(c2) = {t2, t3, t4}. Obviously, t5 has to belong to N(c3). Since every two c-vertices
in G must have two common neighbors, the others two neighbors of c3 must be t2, t3.
If G does contain further c-vertices, t2, t3 must be common neighbors of every c-vertex
in G by the same argumentation. This implies that t2, t3 are common neighbors of
every c-vertex and we are done. Therefore, we may assume that, G contains only four
t-vertices. Since every c-vertex in G is of degree three, there are at most

(
4
3

)
c-vertices in

G after merging c-vertices with the same neighborhood. See Fig.4.12 for an illustration
of this case. Thus, G contains only four t-vertices and at most four c-vertices and the
Flip Consensus Tree Problem in G is solvable in constant time. This finishes the
tedious case analysis of the proof that our algorithm solves the Flip Consensus Tree
Problem in time O(4.42k (m+ n) +mn+ n2 log n).

In the following, we discuss an idea that may improve the theoretical running time of
our algorithm, but has not been tested yet.

Improving the 4.42k algorithm. One of the most obvious ideas to improve the 4.42k al-
gorithm is to improve our branching strategy for the case, where it has the worst-case
branching number of 4.42. As shown in the proof of Lemma 4.10, our branching strategy
has branching number 4.42 when branching on a big M-graph containing the c-vertex
c with maximum degree and the c-neighborhood c′ of c, where c and c′ simultaneously
have degree four (see Figure 4.9(b)) and three common neighbors. If there is an other c-
neighbor of c or c′ that forms one of the big M-graphs shown in Figures 4.9(a) and 4.9(c)
with c or c′, our branching strategy has a branching number of at most 4.07 when branch-
ing on this big M-graph. Assume that such c-neighbor of c or c′ does not exist, it holds
that every c-neighbor of c and c′ has degree four and three common neighbors with c
as well as with c′. We believe that in this case, the Flip Consensus Tree Problem
can again be solved in polynomial time, analogously to the cases shown in Figures 4.11
and 4.12. Thus, our branching strategy has worst-case branching number 4.24, and this
happens when branching on the big M-graph shown in Figure 4.10(left).

Conjecture 1. The Flip Consensus Tree Problem can be solved in time O(4.24k+
poly(m,n)).

Furthermore, we believe that using the technique introduced by Gramm et al [69]
that generates search trees automatically, might lead to a search tree algorithm with
better theoretical running time. However, algorithms that are generated automatically,
are mostly complicated and do not have practical applicability.
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4.5 Algorithm Engineering

In the course of algorithm design, we found some improvements that do not affect the
theoretical worst-case running time or even increase the polynomial factor but as they
manage to prune the search tree, they are highly advisable in practice. These are a few
heuristic improvements we included in our implementation.

Treat connected components separately. As we already mention in the previous part
of this chapter, if a given character graph is not connected or decomposes during the
execution of the algorithm, we compute the solutions for each of its connected compo-
nents separately because connecting different connected components never deletes an
M-graph.

Avoid futile program calls. If there are two c-vertices ci, cj such that

min{|X(ci, cj)|, |Y (ci, cj)|, |Z(ci, cj |)} > k

holds, we know that it is impossible to solve the current instance (see Corollary 4.9).
Therefore, whenever we find such a big M-graph we abort the current search tree branch
and call the algorithm with an appropriately increased parameter, thus skipping program
runs that are doomed to failure. Furthermore, as mentioned in Section 4.4.2, if one or
two of the values x, y, z are greater than k, we do not branch into subcases deleting the
respective sets.

Try promising search tree branches first. In the first part of our branching strategy,
branching on a big M-graph FM with c-vertices ci, cj leads to 2|X(ci,cj)| + 2|Y (ci,cj)| +
2|Z(ci,cj)| branches. It is likely that a minimum-size solution destroys the big M-graph
with as few edge modifications as possible. As we use depth-first search and stop when
we find a solution, we branch on the edges incident to the smallest of sets X, Y , Z first.

Calculate branching numbers in advance. When dealing with big M-graphs, for each
pair of c-vertices, we save the branching number corresponding to a branching at the big
M-graph associated with these vertices in a matrix. The minima of each row are saved
in an extra column to allow faster searching for the overall minimum. We use a similar
technique to deal with the weighted graph in the second part of the algorithm.

Since initializing the matrix used to calculate the branching numbers takes time
O(m2n) and updating this matrix needs time O(mn) in each recursive call, the poly-
nomial factor in the running time proved in Theorem 5 and Theorem 6 cannot hold
when applying the abovementioned heuristic improvements. While initializing or updat-
ing this matrix, we also check if the data reduction rules can be applied. Testing for
futile program calls and redundant search tree branches can be executed in the same
time. Altogether, the running time of our algorithms with the abovementioned heuristic
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improvements are O(4.83kmn+m2n+ n2 log n) and O(4.42kmn+m2n+ n2 log n), re-
spectively. Despite that, the heuristic improvements lead to drastically reduced running
times in practice.

Due to the expense of development as well as a hidden large polynomial factor of the
kernelization in [99], we did not implement this kernelization.

4.6 Computational Results

In this chapter, we have presented two fixed-parameter algorithms with running time
O(4.83k (m + n) + mn + n2 log n) and O(4.42k (m + n) + mn + n2 log n) for the Flip
Consensus Tree Problem. The only difference between the 4.83k algorithm and the
4.42k algorithm consists of dealing with the special cases of G shown in Figures 4.11 and
4.12, the 4.42k algorithm uses the corresponding polynomial running time procedures
instead of using the branching strategy for big M-graph. Since these special cases do
not often occur in practice, we do not believe that the 4.42k algorithm is faster than
the 4.83k algorithm in practice. Therefore, we implemented our 4.83k algorithm, and
compared it against Chen et al.’s 6k algorithm [38]. Both algorithms were implemented
in Java. Computations were done on an AMD Opteron-275 2.2 GHz with 6 GB of
memory running Solaris 10.

Each program receives a binary matrix as input and returns a minimum set of flips
needed to solve the instance. We start the program repeatedly and increase k by one
until a solution is found. As soon as we find a solution with at most k flips, the program
is aborted instantly and the solution is returned without searching further branches.
All data reduction rules and heuristic improvements described in Section 4.4.1 and Sec-
tion 4.5 were implemented and, where applicable, also used in the 6k algorithm. For
our experiments, we used matrix representations of real phylogenetic trees, namely two
phylogenetic trees of marsupials with 21 and 51 taxa (data provided by Olaf Bininda-
Emonds) and one tree of 97 bacteria computed using Tex protein sequences (data pro-
vided by Lydia Gramzow). Naturally, these matrices admit perfect phylogenies.

We perturbed each matrix by randomly flipping different numbers of entries, thus
creating instances where the number of flips needed for resolving all M-graphs in the
corresponding character graph is at most the number of perturbations. For each matrix
representation and each number of perturbations, we created ten different instances and
compared the running times of both algorithms on all instances. In many datasets we
created, it was possible to solve the instance with a smaller number of flips.

Each instance was allowed ten hours of computation. For the largest instances with
only ten flips, we ignored these running time constraints to show the performance of
the 6k algorithm. The results of the computations are shown in Table 4.1. When the
average running time was below ten hours, all instances were finished in less than ten
hours. When the average was more than ten hours, all ten instances took more than
ten hours, except for the small Marsupial datasets with k = 12 for the 6k algorithm and
the Tex datasets with k = 20 for our algorithm. In both cases, six of ten instances were
solved.
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Dataset |Vt| |Vc| # flips avg. k time 4.83k time 6k

Marsupials 21 20 10 9.6 9.5 s 2 h
12 10.7 25.5 s > 10 h∗

14 13.2 3 min > 10 h
16 15.4 12 min > 10 h
18 17 47 min > 10 h
20 18.9 3.3 h > 10 h

Marsupials 51 50 10 10 17 s 19 h
12 10.5 30 s > 10 h
14 12.5 2.3 min > 10 h
16 15.5 50 min > 10 h
18 17.5 3 h > 10 h
20 19 8 h > 10 h

Tex (Bacteria) 97 96 10 9.7 17 s 59.3 h
12 11.9 12.5 min > 10 h
14 13.9 18 min > 10 h
16 15.4 1.1 h > 10 h
18 17.3 4 h > 10 h
20 19.7 10.3 h∗ > 10 h

Table 4.1: Comparison of average running times of our 4.83k algorithm and the 6k al-
gorithm. |Vt| and |Vc| denote the number of t- and c-vertices, respectively.
# flips is the number of perturbations in the matrix, whereas k is the true
number of flips needed to solve the instance. Each row corresponds to ten
datasets. ∗Six out of ten computations were finished in less than ten hours.

Our experiments show that our method is significantly faster than Chen et al.’s al-
gorithm for all instances. We observed that, on average, increasing k by one resulted
in about 2.2-fold running time for a program call of our algorithm and 5-fold running
time for the 6k algorithm. We believe that the reason for the factor of 2.2 is that big
M-graphs can be fairly large in practice, so that the real branching number is close to
two as analyzed in Section 4.4.2.1.

4.7 Summary and Outlook

In this section, we summarize our results for the Flip Consensus Tree Problem
presented in this work and sketch some ideas for future research regarding the Flip
Consensus Tree Problem and particularly the Flip Supertree Problem, which
is a generalization of the Flip Consensus Tree Problem and more important from
the biological point of view.

In Section 4.4.1, we introduced a set of data reduction rules, which do not yield
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a problem kernel, but can be executed efficiently. Furthermore, our data reduction
rules grant an important property of character graph, that allows for better branching
strategy: When a character graph G is reduced with respect to our data reduction rules,
we can make sure that G contains at least one big M-graph as induced subgraph if there
is a c-vertex of degree at least three in G (see Lemma 4.6). Due to this property, we
can use the branching strategy for big M-graphs, when G contains a c-vertex of degree
at least three and apply a maximum matching algorithm to solve the Flip Consensus
Tree Problem when every c-vertex in G is of degree two.

In Sections 4.4.2 and 4.4.3, we presented two depth-bounded search tree algorithms
for the Flip Consensus Tree Problem with running time O(4.83kmn+n2 log n) and
O(4.42kmn + n2 log n), which are our main results in this chapter. In Section 4.5, we
discussed some heuristic improvements to reduce the running time of our algorithms in
practice. To evaluate the performance of our algorithm, we implemented our 4.83k al-
gorithm and compared it against the 6k algorithm of Chen et al. [38]. As reported
in Section 4.6, our 4.83k algorithm turns out to be significantly faster than the 6k al-
gorithm. In particular, the implementation of our algorithm is also much faster than
the worst case running time suggests. Furthermore, the practical running time of the
4.83k algorithm also empirically supports our conjecture in Section 4.4.2.1, that the real
branching number of our branching strategy for big M-graph is close to two.

Future Research

Although our algorithm for the Flip Consensus Tree Problem is much faster than
the straightforward 6k-algorithm and far better than one would expect from the worst-
case analysis, it is still too slow for practical use. To address this issue, we want to develop
more efficient data reduction rules to further downsize problem instances. Furthermore,
we also want to improve our branching strategy, particularly the branching strategy for
big M-graphs. While this branching strategy executes many edit operations in each
recursive call, which appear to positively affect the running times, it also generates
exponentially many branching cases, which in turn increase the running time of our
algorithm drastically.

However, our main focus in future research is to cope with the Flip Supertree
Problem. In contrast to Flip Consensus Tree Problem instances, the input matrix
of an Flip Supertree Problem instance contains large blocks of ‘?’-entries, which can
be set to ‘1’ or ‘0’ without paying edit cost. Because of the ‘?’-entries, the concept of
character graphs does not work for the Flip Supertree Problem. In fact, we recently
showed that the Flip Supertree Problem is W[2]-hard with respect to the number
of flips [21]. Therefore, one cannot hope for a fixed-parameter algorithm with respect to
the number of flips. In the following, we list some approaches that may be used to cope
with the W[2]-hardness of the Flip Supertree Problem:

• First we would like to improve our algorithm for the Flip Consensus Tree
Problem such that it is capable to solve problem instances of larger sizes that
requires more flips. Then, we can use a heuristic algorithm, such as the heuristic
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algorithm in [56], to replace the ‘?’s in the input matrix of the Flip Supertree
Problem with ‘1’s or ‘0’s and apply our algorithm to the resulting Flip Su-
pertree Problem instance. We hope that this would lead to a better solution
than only using the heuristic algorithm.

• To solve the Flip Supertree Problem exactly, we would like to develop further
data reduction rules to cut down the size of the input and use the integer linear
programming model of the Flip Supertree Problem introduced in [41] to solve
the Flip Supertree Problem exactly.

• From the fixed-parameter tractability point of view, we want to investigate if the
Flip Supertree Problem is fixed-parameter tractable with respect to another
meaningful parameter, for example, the maximum number of ‘?’ in a column or
a row. Furthermore, it is also an interesting question if the Flip Supertree
Problem is fixed-parameter tractable with respect to the number of flips but
under another meaningful restriction than forbidding ‘?’s in the input matrix.

To conclude this chapter, we would like to emphasize that although the Flip Consen-
sus Tree Problem is not as biologically relevant as the Flip Supertree Problem,
it is an interesting problem from the theoretical point of view, and definitely worthwhile
to be investigated. Furthermore, some of our observations when studying the Flip Con-
sensus Tree Problem might be conducive to investigating the more difficult but also
biologically more meaningful Flip Supertree Problem.



5 Weighted Cluster Editing

In this chapter, we investigate the Weighted Cluster Editing Problem, which asks
for a set of edge modifications with minimum cost to transform a graph into a cluster
graph, which is a union of disjoint cliques. Weighted Cluster Editing Problem is
a graph modification problem with many biological applications. We list some of those
applications in Section 5.1. In theoretical computer science, the unweighted counter part
of this problem has been well-studied, in particular with respect to its fixed-parameter
tractability. In Section 5.2, we recapitulate previous results for the Weighted Cluster
Editing Problem and Unweighted Cluster Editing Problem. In Section 5.3, we
describe a fixed parameter tractable algorithm with running time O(2.42k + |V |3 log |V |)
for the Weighted Cluster Editing Problem. Section 5.4 serves as a survey of
further results achieved by our group. For more details, we referred interested readers
to our original articles [16,18].

5.1 Motivation

In the past, biologists used to consider each individual biological entity one-by-one to
understand its properties and functions. Although this approach allows for high accuracy
and, in fact, has led to many remarkable results, it cannot be applied to the huge amount
of biological data available nowadays. Fortunately, in many cases, it is not necessary
to consider each individual object in a large dataset. Thus, we can subdivide a large
dataset into smaller number of categories containing similar objects, and analyse these
categories instead of analysing each individual object in the large dataset. Each of such
categories is called a cluster. Usually, it is required that objects in the same cluster
must be of high similarity (homogeneity) and objects from different clusters have low
similarity to each other (separation).

In fact, the task of clustering biological entities according to some similarity or dis-
tance measures has been often addressed. In [100, 130, 155, 156] clustering was used to
reconstruct families of orthologous proteins. In gene expression data analysis, clustering
is an important step to classify genes according to their co-expressions [12, 119, 140].
Furthermore, clustering also finds many applications in medicine [74,79,110].

There are lots of clustering approaches, such as k-means [113], hierarchical cluster-
ing [94], Markov clustering [55], affinity propagation [61, 107] etc. The choice of a clus-
tering approach and an adequate similarity measure depends on the aim of the clustering
and the kind of objects to be clustered. For examples, a pairwise sequence similarity
score can be used as similarity measure, when clustering biological sequences; correla-
tion coefficient of genes expression patterns is usually used as similarity measure when
clustering gene expression data. As examples for clustering methods, k-means, Markov
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clustering, affinity propagation and cluster editing are usually preferable to hierarchical
clustering when hierarchical structure is not desired in resulting clustering.

In this work, we investigate the cluster editing approach. Given set of objects and
their pairwise similarities, the cluster editing approach builds a graph G = (V,E), where
each vertex v ∈ V represents an object and two vertices u, v are connected by an edge
uv if the corresponding objects are highly similar, i.e., the similarity of corresponding
objects must exceed a user-defined affinity threshold.

If G is a cluster graph, each connected component of G corresponds to a cluster
containing objects of high pairwise similarity and G corresponds to a possible clustering
of the given objects. Unfortunately, the resulting graph G is usually not a cluster
graph. Thus, the cluster editing approach asks for a set of edge modifications, that are
edge deletions and edge insertions, with minimum cost to transforms G into a cluster
graph. The cost of an edge modification is usually calculated from the similarity of
the corresponding objects and the affinity threshold, for example the distance different
between these two values.

In [12], Ben-Dor et al. applied the cluster editing approach to clustering gene expres-
sion data. They reported several advantages of cluster editing approach:

1. The clustering result does not have a hierarchical structure. This implies that the
resulting clusters are unrelated, and the cluster boundaries are determined by the
applied algorithm, without human intervention.

2. The number of clusters does not have to be specified.

3. The affinity threshold is the only parameter that has to be determined by the user.

Wittkop et al. [156] used the cluster editing to reconstruct families of orthologous
proteins, and reported that cluster editing outperforms other common clustering ap-
proaches such as Markov clustering [55], affinity propagation [61, 107] and hierarchical
clustering [94] in this task.

5.2 Previous Work

In contrast to the Weighted Cluster Editing Problem, the Unweighted Clus-
ter Editing Problem is well-studied in the theoretical computer science. The Un-
weighted Cluster Editing Problem asks for the minimum number of edge mod-
ifications to transform a graph into a cluster graph. The NP-completeness of Un-
weighted Cluster Editing Problem was shown by Křivánek and Morávek [103].
Since the Weighted Cluster Editing Problem generalizes its unweighted counter-
part, it is also NP-hard, thus obviously NP-complete. In [150], van Zuylen et al. showed
that the Unweighted Cluster Editing Problem is APX-hard and has a constant
approximation factor of 2.5.

From the graph-theoretical point of view, Cluster Editing Problem (weighted as
well as unweighted) belongs to the class of graph modification problems with a hereditary
property characterized by a finite set of forbidden subgraph. Thus, the Unweighted
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Cluster Editing Problem is fixed-parameter tractable with respect to the number of
edge modifications (see Theorem 1): By a straightforward depth-bounded search tree al-
gorithm, the Unweighted Cluster Editing Problem is solvable in time O(3k |V |3),
where k is the minimum number of edge modifications. In [70], Gramm et al. introduced
a refined search tree algorithm for the Unweighted Cluster Editing Problem with
running time O(2.27k + |V |3). In [69], Gramm et al. used an automated branching
rule generator to find a set of branching rules that lead to a depth-bounded search tree
algorithm with running time O(1.92k + |V |3) for the Unweighted Cluster Edit-
ing Problem. However, this result is only interesting from the theoretical point of
view, since the branching rule with 137 initial cases make it difficult to implement and
inefficient in practice.

In [70], Gramm et al. showed that the Unweighted Cluster Editing Problem
has a problem kernel with at most 2(k2 + k) vertices and 2

(
k+1
2

)
k edges. In [76], Guo

et al. proved a 4k-vertex kernel for the Unweighted Cluster Editing Problem.
Recently, Chen and Meng [40] improved the kernelization of Guo et al. and proved a
problem kernel with 2k vertices for the Unweighted Cluster Editing Problem.

For the Weighted Cluster Editing Problem, besides an integer linear program in
[73], several heuristic algorithms have been introduced. In [140], Shamir et al. considered
several clustering approaches including the highly connected subgraphs HCS method. The
underlying combinatorial problem of this method can be considered as a relaxation of the
Weighted Cluster Editing Problem. Shamir et al. also introduced a probabilistic
version of the HCS approach, named (CLICK), and a polynomial time algorithm for this
problem.

In [155], Wittkop et al. considered the Weighted Cluster Editing Problem and
proposed to cluster the vertices by arranging them in a two-dimensional plane, such that
vertices with high similarity are arranged close to each other and far away from other
vertices.

Since the weighted and unweighted version of the Cluster Editing Problem are
closely related, some of the fixed-parameter tractability results for Unweighted Clus-
ter Editing Problem can be easily adapted to Weighted Cluster Editing Prob-
lem, for example the straightforward 3k branching strategy and the trivial data reduc-
tion rules in [70]. However, the data reduction rules in [70] only results in a problem
kernel for the Unweighted Cluster Editing Problem, but not for the Weighted
Cluster Editing Problem.

To the best of our knowledge, the fixed-parameter tractability of Weighted Cluster
Editing Problem was first intensively investigated by us in [18]. In [18], we presented
several theoretical and practical results for the Weighted Cluster Editing Prob-
lem, which can also be applied to the Unweighted Cluster Editing Problem. In
particular, it is advisable to apply our algorithm to the Unweighted Cluster Edit-
ing Problem, since it has the best theoretical as well as practical running time for both
problems (at the time of preparing this work). In the remaining part of this chapter,
we subsume our results presented in [18]. In particular, we describe our depth-bounded
search tree algorithm with running time O(2.42k+|V |3 log |V |) in detail. For more details
on our other results regarding the Weighted Cluster Editing Problem, interested
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readers may take a look at [18].

5.3 Algorithms

In the following, we investigate the Weighted Cluster Editing Problem. We first
formalize this problem and state a simple property of cluster graphs.

Definition 5.1 (Weighted Cluster Editing Problem). Given an undirected graph
G = (V,E) in form of a weight function s :

(
V
2

)
→ R: For s(uv) > 0, an edge uv is present

in G and has deletion cost s(uv), whereas for s(uv) ≤ 0 the edge uv is absent from G
and has insertion cost −s(uv). The Weighted Cluster Editing Problem asks for
a set of edge modifications that are edge deletions and edge insertions, with minimum
total cost, to transform G into a cluster graph.

To achieve a provable running time, we require the modification cost of every vertex
pair to be at least one, i.e., |s(uv)| ≥ 1 for every vertex pair u, v.

Since every connected component of a cluster graph is a clique, the following lemma
is obvious.

Lemma 5.1. A graph G is a cluster graph if and only if G does not contain an induced
path of length two, i.e., there are no three vertices v, u, w where uv and uw are edges in
G but vw is not.

We call a tuple vuw a conflict triple if uv and uw are edges and vw is absent in G. To
transform a graph G = (V,E) into a cluster graph, we have to eliminate every conflict
triple in G.

5.3.1 A Straightforward Algorithm

In the following, we apply the depth-bounded search tree technique to solve Weighted
Cluster Editing Problem. For that purpose, we consider the parameterized version
of the Weighted Cluster Editing Problem that is defined as following.

Definition 5.2. Given an undirected graph G = (V,E) described in Definition 5.1 and
an integer k as input, the parameterized Weighted Cluster Editing Problem asks
if it is possible to transform G into a cluster graph with total modification cost of at
most k.

In the following, we describe a simple search tree algorithm for the parameterized
Weighted Cluster Editing Problem. To compute optimal solutions for the orig-
inal problem, we use this algorithm to solve the parameterized Weighted Cluster
Editing Problem with k = 1. If the algorithm cannot find a solution with k = 1, we
increase k by 1 and call the algorithm again, until arriving at the smallest k, for that it
is possible to transform G into a cluster graph with modification cost of at most k.

Since a conflict triple vuw in G can be eliminated by inserting the absent edge vw or
deleting uv or deleting uw, our search tree algorithm simply branches into those cases to
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Figure 5.1: The initial branching strategy. Bold edges are permanent edges and dashed
edges are forbidden edges.

eliminate the conflict triple vuw. To make sure that edge modifications are not undone
later in the search tree, we fix the outcome of each edge modification, that is, whenever
we insert an edge, this edge is set to “permanent” and when we delete an edge, it is set
to “forbidden”. In the course of the search tree algorithm, we never delete permanent
edges or insert forbidden edges. Furthermore, we also set certain edges to forbidden or
permanent, if we know that the corresponding edge modification does not lead to an
optimal solution.

In summary, our simple search tree algorithm first identifies a conflict triple vuw and
branches into three cases to eliminate the conflict triple vuw:

1. Insert vw, set uv, uw, vw to permanent.

2. Delete uv, set uw to permanent and uv and vw to forbidden.

3. Delete uw, set uw to forbidden.

In each branch, we lower k by the corresponding modification cost. Afterwards, if
k > 0 and the resulting graph is not a cluster graph, we call our algorithm recursively
with the new value of k. If k ≤ 0 and the resulting graph is not a cluster graph, we cannot
find a solution in the corresponding branch, thus we stop this branch. If the resulting
graph is a cluster graph, we report the solution and stop our algorithm. Figure 5.1
illustrates this straightforward branching strategy.

This algorithm generates a search tree of size O(3k). Since identifying a conflict triple
takes O(|V |3) time, the running time of this algorithm is bounded by O(3k |V |3). To
find the optimal solution of the Weighted Cluster Editing Problem, we call the
above algorithm at most k times, if k is the cost of the optimal solution. Thus, the
optimal solution of the Weighted Cluster Editing Problem can be computed in
time O(3k |V |3).

In [18], we introduced a set of data reduction rules that can be exhaustively executed
in time O(|V |3 log |V |) and results in a problem kernel with at most k2 + 3k+ 2 vertices
and 1

2k
3 + 5

2k
2 + 2 edges. See [18] for more details. Here, we would like to mention

that the most efficient data reduction rule in [18] is the merge operation: As soon as
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we set an edge uv ∈ V to permanent, we replace vertices u, v by a new vertex, say u′,
and set s(wu′) := s(wu) + s(wv) for every w ∈ V \ {u, v}. Thus, merging two vertices
forces certain edge modifications associated the merged vertices, which in turn cause
some extra modification cost (called induced cost icp(uv) in [18]). For example, if one of
the edges wu or wv exists in G and s(wu′) ≤ 0, merging u and v actually implies that
the existing edge is deleted. So k is lowered by the corresponding induced costs.

Using interleaving technique (see Theorem 2) with the data reduction rules in [18] to-
gether with the simple depth-bounded search tree algorithm described above, we achieve
the following theorem:

Theorem 7. Weighted Cluster Editing Problem can be solved in time O(3k +
|V |3 log |V |), where O(|V |3 log |V |) is the running time of the data reduction introduced
in [18].

5.3.2 Refined Branching Strategy

In the following, we present a branching strategy with branching number 2.42 for the
Weighted Cluster Editing Problem, that bases on the branching strategy with
branching number 2.27 of Gramm et al. [70] for the Unweighted Cluster Editing
Problem. To show why the branching strategy in [70] cannot be directly applied to the
Weighted Cluster Editing Problem, we first recapitulate the branching strategy
for Unweighted Cluster Editing Problem.

Let vuw be a conflict triple in G. The branching strategy of Gramm et al. [70]
distinguishes the following cases:

(C1) Vertices v und w do not share a common neighbor except for u.

(C2) Vertices v und w have a common neighbor x 6= u and ux ∈ E.

(C3) Vertices v und w have a common neighbor x 6= u and ux 6∈ E.

If case (C2) or (C3) holds, the respective branching strategy shown in Figure 5.2 or 5.3
is applied to eliminate every conflict triple consisting of v, u, w and x. In each recursion
call, k is lowered by the number of edge modifications executed. The branching vector
of branching strategy for case (C2) is (1, 2, 3, 2, 3) corresponding to branching number
2.27, and the branching vector of branching strategy for case (C3) is (1, 2, 3, 3, 2) with
branching number 2.27.

Obviously, Gramm et al.’s branching strategies for cases (C2) and (C3) also work on
Weighted Cluster Editing Problem. We only have to lower k by the correspond-
ing modification cost in each branch, instead of by the number of edge modifications.
Since we require the modification cost of each vertex pair to be at least one, the above
mentioned branching vectors and branching numbers also hold for Weighted Cluster
Editing Problem.

For case (C1), where v and w have no common neighbor except for u, Gramm et al.
showed in Lemma 5 of [70] that the minimum number of edge modifications does not
increase if vw is set to forbidden. Thus, their algorithm only branches into two subcases:
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Figure 5.2: Branching strategy for case (C2): v und w have a common neighbor x 6= u
and ux ∈ E. Bold edges are permanent edges and dashed edges are forbidden
edges. (Figure 2 in [70])

Figure 5.3: Branching strategy for case (C3): v und w have a common neighbor x 6= u
and ux 6∈ E. Bold edges are permanent edges and dashed edges are forbidden
edges. (Figure 3 in [70])

deleting uv or deleting uw. This lead to a branching number 2 for case (C1) for the
Unweighted Cluster Editing Problem. However, Lemma 5 of [70] does not hold
for Weighted Cluster Editing Problem. As an example, we assume that the graph
G has only three vertices v, u, w that form a conflict triple vuw with s(uv) = s(uw) = 2
and s(vw) = −1. The cost of the solution that inserts vw is one, whereas the cost of the
solutions that delete uv or uw is two. Thus, we cannot use the branching strategies of
Gramm et al. [70] for case (C1) on the Weighted Cluster Editing Problem.

In the following, we describe our own branching strategy for case (C1). First, we
subdivide case (C1) into the following subcases:

(C1.1) Vertices v, w do not share common neighbors except for u, but there exits a vertex
x, such that, say, vx ∈ E. We distinguish two subcases: (C1.1a) ux ∈ E and
(C1.1b) ux 6∈ E.
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Figure 5.4: Branching strategy for case (C1.1a): v, w do not share common neighbor
except for u and vx, ux ∈ E. Bold edges are permanent edges and dashed
edges are forbidden edges.

(C1.2) Vertices v, w have no neighbor except for u, that is, N(v) = N(w) = u.

If (C1.1a) holds, we branch into the following cases to eliminate all conflict triples
consisting of u, v, w, x:

1. Delete uw, set uw to forbidden.

2. Delete uv, ux, set uv, ux, vx, wx to forbidden and uw to permanent.

3. Delete uv, vx, insert wx, set uv, vw, vx to forbidden and uw, ux, wx to perma-
nent.

4. Delete ux, vx, insert vw, set ux, vx, wx to forbidden and uv, uw, vw to perma-
nent.

5. Insert vw, wx, set uv, ux, uw, vw, vx, wx to permanent.

Figure 5.4 illustrates our branching strategy for case (C1.1a). The branching vector
of this branching strategy is (1, 2, 3, 3, 2) corresponding to branching number 2.27.

Branching strategy for case (C1.1b) can be easily derived from Figure 5.5. This
branching strategy has branching number 2.42.

If G is not a cluster graph, but none of the cases (C1a), (C1b), (C2) or (C3) holds for
any conflict triple in G, the remaining case (C1.2) must hold for every conflict triple in
G. In this case, every connected component of G that contains conflict triple, is a star
graph, which is a tree where all vertices but one are leaves. In particular, the connected
component of G that contains the conflict triple vuw is also a star graph. If |N(u)| = 2,
we try all three possibilities to transform the connected component containing vuw into
a cluster graph in constant time. In the following, we assume that |N(u)| ≥ 3. Our
branching strategy chooses three arbitrary neighbors of u, say v1, v2, v3, and branches
into the following subcases:
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Figure 5.5: Branching strategy for case (C1.1b): v, w do not share common neighbor
except for u and ux 6∈ E. Bold edges are permanent edges and dashed edges
are forbidden edges.

1. Delete uv1, set uv1 to forbidden.

2. Delete uv2, insert v1v3, set uv2 to forbidden and uv1, uv3, v1v3 to permanent.

3. Delete uv2, uv3, set uv2, uv3 to forbidden and uv1 to permanent.

4. Delete uv3, insert v1v2, set uv3 to forbidden and uv1, uv2, v1v2 to permanent.

5. Insert v1v2, v1v3, v2v3, set uv1, uv2, uv3, v1v2, v1v3, v2v3 to permanent.

Figure 5.6 illustrates our branching strategy for case (C1.2). This branching strategy
has branching vector (1, 2, 2, 2, 3) and branching number 2.42.

All in all, given a weighted graph G = (V,E), our algorithm identifies a conflict triple
vuw. If case (C2) or (C3) holds, we apply the Gramm et al.’s branching strategy shown
in Figure 5.2 or in Figure 5.3, respectively. If case (C1) holds, we further distinguish if
it is case (C1.1a) or (C1.1b) and apply the corresponding branching strategies shown in
Figure 5.4 and 5.5. If G is not a cluster graph and none of the above cases holds, every
connected component of G is a star graph (case (C1.2)), we apply the branching strategy
shown in Figure 5.6. The worst case branching number of our branching strategy is
2.42. Using interleaving technique with our kernelization in [18] together with the above
branching strategy, we achieve the following theorem.

Theorem 8. If the modification cost of each vertex pair of a graph G = (V,E) is
at least one, the running time of our algorithm with the refined branching strategy is
O(2.42k + |V |3 log |V |).

To evaluate the performance of our algorithms, we implemented the 3k and the
2.42k algorithm in C++ and evaluated their running time on artificial data, provided by
Rahmann et al. [130], and biological data from the protein sequences dataset COG [148].
The computational results surprisingly indicate that our 3k algorithm almost always out-
performs our 2.42k algorithm. The reason for this is the efficiency of the merge operation,
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Figure 5.6: Branching strategy for case (C1.2): The conflict triple occurs in a star graph.
Bold edges are permanent edges and dashed edges are forbidden edges.

which overrides advantages of the complicated branching strategy. See [16] for more de-
tails of our computational results.

5.4 Further Results

In the following, we subsume our further results on the Weighted Cluster Editing
Problem published in Böcker et al. [18].

The main contribution of [18] consists of a novel branching strategy, called edge branch-
ing. This branching strategy is very simple: We just choose an arbitrary edge uv ∈ E
and branch into two subcases:

1. uv exists in a clique of the optimal solution, so we set uv to permanent, which
implies that vertices u, v are merged;

2. or uv does not exists in the optimal solution, so we delete uv.

Deleting uv causes a modification cost of at least 1. As described in the previous part
of this chapter, merging two vertices also forces certain edge modifications, which in
turn causes modification costs (called icp(uv) in [18]). By an amortized running time
analysis, we showed that the running time of our new algorithm is O(2k+ |V |3 log |V |) on
problem instances with positive integer cost. In [18], we showed that choosing a “good”
edge to apply our edge-branching strategy results in a branching number of 1.82 and
the running time of our algorithm on the basis of this branching strategy is bounded
by O(1.82k + n3). With this running time, our algorithm has the best running time for
the Unweighted Cluster Editing Problem as well as the Weighted Cluster
Editing Problem at time of preparing this work.
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To evaluate the performance of our new algorithm, we again applied our algorithm
to the artificial data provided by Rahmann et al. [130] and biological data from the
protein sequences dataset COG [148]. Together with further data reduction rules of
Böcker et al. [19], our 1.82k algorithm was able to solve Weighted Cluster Editing
Problem instances with several hundred of edge modifications in matter of seconds.

5.5 Summary and Outlook

In this chapter, we investigated the Weighted Cluster Editing Problem and gave
a biological motivation for this problem. We then described our 2.42 branching strategy
in detail. Furthermore, we mentioned our edge branching strategy, that does not only
yield the best theoretical running for the Weighted Cluster Editing Problem and
the Unweighted Cluster Editing Problem, but is also surprisingly simple and very
efficient in our experiment. Interested readers are referred to the original articles [16–19]
for more detail.

As the next step of our research regarding Weighted Cluster Editing Problem,
we want to further improve the practical running time of our algorithm by applying more
efficient algorithm engineering. We believe that biological instances still possess proper-
ties that are not utilized by the current implementation of our algorithm, for example,
most of similarity measures are metric, but this property has not been considered in our
algorithm.

From the theoretical point of view, we want to investigate closely related problems of
the Weighted Cluster Editing Problem, for example, the Biclique Clustering
Problem [75], which asks to transform a bipartite graph into a graph, where every
connected component is a bi-clique, by a minimum number of edge modifications; or the
Clique Cover Problem [71], which asks if there are at most k cliques in a graph,
such that each edge of the graph belongs to at least one clique. In particular, we want
to know if our merge operation can be adapted to those problems.

Similar to the situation of Flip Consensus Tree Problem and Flip Supertree
Problem, there is a variant of the Unweighted Cluster Editing Problem, where it
is undecided whether or not there is an edge between some vertex pair of the input graph,
and the modification cost of those vertex pairs is zero. Whereas we recently proved that
the Flip Supertree Problem is W[2]-hard [21], it is still a longstanding open question
if this variant of the Unweighted Cluster Editing Problem is fixed-parameter
tractable with respect to the number of edge modifications [29]. Since this problem is also
biologically relevant, we want to develop an exact algorithm for this problem. However,
we believe that an alternative approach, like integer linear programming with efficient
data reduction rules, is more promising to solve this problem optimally in practice.





6 Bond Order Assignment

In this chapter, we investigate the Bond Order Assignment Problem that requires
to assign bond orders to a given molecule graph minimizing a penalty score. In Sec-
tion 6.3, we define this problem formally and show several complexity results in Sec-
tion 6.4. In Section 6.5, we introduce a polynomial time algorithm for this problem
when the molecule graph is a tree. Based on the tree decomposition of the molecule
graph, we introduced two tree decomposition-based dynamic programming algorithm
for this problem in Section 6.6.1 and 6.6.2. In Section 6.7, we discuss some heuristic
improvements to speed up the practical running time of our algorithms. In Section 6.8,
we report the computational results of one of our algorithms on a molecule database.

6.1 Motivation

The structural formula of a chemical compound is a representation of the molecular
structure, illustrating the chemical bonds between pairs of atoms and sometimes also
showing how atoms are arranged. Bond orders and atom valences are important infor-
mation of a molecular structure. Knowledge of correct bond order is essential for many
applications in chemistry and structural-oriented bioinformatics such as computing the
molecular mechanics force field, querying structural-oriented databases, and accurate
analysis of receptor-ligand interactions, which in turn play an important role in drug de-
sign [9,51,53,83,84,142,152]. Unfortunately, bond orders can be omitted in many data
formats that represent molecular structure, such as Gaussian file formats and Mopac file
formats, and even by the widely used Protein Data Bank format PDB. So, many entries
in public databases omit bond order information, whereas other entries have erroneous
such information. Moreover, in combinatorial chemistry, the backbone of a molecule
(skeletal formula) may be drawn either manually or automatically, again omitting bond
orders.

In the following, we consider the problem of (re-)assigning correct bond orders to
molecular structures. We call this problem the Bond Order Assignment Problem.

6.2 Previous Work

In the last decades, many approaches have been introduced for the Bond Order As-
signment Problem. Early approaches largely base on atomic coordinates. Meng and
Lewis [116] used bond lengths and valence angles to derive the correct atom valence,
but cannot determine bond orders. A similar approach of Baber and Hodgkin [9] can
determine both atom valence as well as bond orders, but as they reported in [9], their
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program errs often when dealing with conjugated ring systems. Some other geometry-
based approaches [84,104,106,149,161] apply chemical function group pattern matching
or use further molecular information like hybridization states and charges to achieve
higher accuracy. However, the main drawback of geometry-based approaches is their
strong dependence on the correctness of atomic coordinates.

Froeyen and Herdewijn [62] used an integer linear program to compute a valid Lewis
structure minimizing the formal charge on each atom. In contrast to geometry-based
approaches, this approach only needs bond connectivity and atom symbols as input to
compute bond orders.

In [152], Wang et al. introduced a new approach for the Bond Order Assignment
Problem, that also takes bond connectivity and atom symbols as input and computes
a bond order assignment minimizing a score function that penalizes rare atom valences.
The authors also provide a chemically motivated penalty score table for almost every
common atom type in biomolecules. Furthermore, they introduce a heuristic algorithm
to search for bond order assignment with minimum total penalty score.

Using the optimization criteria of Wang et al. [152], Dehof et al. [50] presented a
branch-and-bound algorithm and an integer linear program to solve the Bond Order
Assignment Problem. The authors also reported their computational results on the
MMFF94 dataset [81] to confirm the practical use of their approaches.

In the following, we also investigate the Bond Order Assignment Problem using
the optimization criteria of Wang et al. [152].

6.3 The Bond Order Assignment Problem

In this section, we formally define the Bond Order Assignment Problem using the
optimization criteria of Wang et al. [152]. Let us start with the formal definition of a
molecule graph.

Definition 6.1. A molecule graph G = (V,E) is a graph, where each vertex v ∈ V
corresponds to an atom and each edge e ∈ E corresponds to a chemical bond connecting
the respective atoms. The vertices in G are labeled with the type of the corresponding
atoms and the edges are labeled with the bond order of the corresponding bonds.

See Fig. 6.1 for the molecule graph of phenylalanine, an amino acid. Since each vertex
corresponds to an atom, and each edge corresponds to a chemical bond, we use “atom”
and “vertex”, as well as “bond” and “edge” interchangeably in this chapter.

For each atom v ∈ V , let Av denote the set of feasible valences of v. However, the real
valence of an atom v in a specific molecule is determined by the sum of the bond orders
of all bonds adjacent with that atom, and this valence is feasible if it is an element of Av.
Wang et al. [152] define, for each atom v ∈ V , a penalty score function Sv : Av → N0

to penalize rare valences of v, and propose to assign each edge in E a bond order that
minimizes the total penalty score over all atom in V . Thereby, the bond order of a bond
can be a single bond or a double bond or a triple bond.
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Figure 6.1: Molecule graph of phenylalanine.

Since the running time of our algorithms strongly depends on the maximum atom
valence, we reduce the original valences of every atom in the input molecule graph
by the number of its neighbors achieve the admissible open valences, that still can be
consumed by the bonds adjacent to the atom.

Let Av := {a − deg(v) : a ∈ Av, a − deg(v) ≥ 0} be the set of open valences of
every v ∈ V . Let A∗v := maxAv be the maximum open valence of an atom v and
α := 1 + maxv{A∗v}.

Relating to the open valence sets, we replace the score function Sv : Av → N0 with
the score function sv : Av → N0, where sv(a) := Sv(a+ deg(v)), for every v ∈ V .

Since using the open valences instead of the original valences already assigns every
bond of G the minimum bond order of one, we define a bond order assignment as a
function b : E → {0, 1, 2}. For every bond uv ∈ E, setting b(uv) = 0 assigns uv a single
bond; setting b(uv) = 1 assigns uv a double bond; setting b(uv) = 2 assigns uv a triple
bond. Actually, b(uv) can be considered as the number of additional chemical bonds
added to the exiting bond at the edge uv.

Obviously, a bond order assignment b consumes xb(v) :=
∑

u∈N(v) b(uv) open valences
of every atom v ∈ V and determines a valence state xb(v) + deg(uv) for every atom
v ∈ V . Moreover, a bond order assignment b is feasible if it holds for every v ∈ V that
xb(v) ∈ Av, i.e. xb(v) + deg(v) ∈ Av.

The score S(b) of a bond order assignment b is defined as:

S(b) :=
∑
v∈V

sv(xb(v)).

To penalize infeasible bond order assignments, we set sv(a) :=∞ for a 6∈ Av, v ∈ V .
In terms of open valences, the Bond Order Assignment Problem according to

Wang et al. is restated as follows:

Definition 6.2 (Bond Order Assignment Problem). Given a molecule graph G =
(V,E) with open valence sets Av ⊆ {0, . . . , α − 1} and scoring functions sv for every
v ∈ V . Find a feasible assignment b for G with minimum score S(b).

From now on, we solely work with “open valence”, thus “open valence” is referred to
as “valence” for simplicity.
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6.4 Hardness of the Bond Order Assignment Problem

To investigate the computational complexity of the Bond Order Assignment Prob-
lem, we consider the Bond Order Assignment Decision Problem that is defined
as follows.

Definition 6.3. Given an input for the Bond Order Assignment Problem, the
corresponding Bond Order Assignment Decision Problem asks if there is a feasible
assignment b for the input graph.

In the following, we first show that this problem is NP-hard, even on molecule graph
with bounded vertex degree and maximum atom valence, and so is the Bond Order
Assignment Problem.

Theorem 9. The Bond Order Assignment Decision Problem is NP-complete,
even on input graphs where every vertex has degree at most three and atom valences are
at most four.

From this theorem, we can quite easily infer that the Bond Order Assignment
Problem cannot be approximated:

Lemma 6.1. The Bond Order Assignment Problem cannot be approximated in
polynomial time, unless P = NP, even on input graphs where every vertex has degree at
most three and atom valences are at most four, and sv is binary.

The previous lemma might be regarded as an artifact, as asking for a solution of
minimum score is somewhat arbitrary, and Wang et al. [152] could have formulated the
Bond Order Assignment Problem as a maximization problem. This is similar to
MAX-3SAT, where we do not minimize the number of unsatisfied clauses, but maximize
the number of satisfied clauses. Consequently, we can use a positive score instead of
a penalty score, and ask for a bond order assignment with maximum score. By the
following theorem, finding an assignment with maximum score is a MAX SNP-hard
problem, which implies the non-existence of a polynomial time approximation scheme
(PTAS) unless P = NP [7].

Theorem 10. Computing a bond order assignment with maximum score is a MAX
SNP-hard problem, even on input graphs where every vertex has degree at most three
and atom valences are at most four, and sv is binary.

We first focus on the NP-hardness of the decision problem. In the proof of Theorem 9,
we will use a reduction from a variant of the 3-SAT problem:

Definition 6.4 (3-SAT). Given a set X of n boolean variables {x1, . . . , xn} and a set
C of m clauses {c1, . . . , cm}. Each clause is a disjunction of at most three literals over
X, for example (x1 ∨ x2 ∨ x3). Is there an assignment X → {true, false} that satisfies
all clauses in C, i.e., at least one literal in every clause is true?
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Definition 6.5 (3-SAT*). The variant of 3-SAT where every variable occurs at most
three times, is called the 3-SAT* problem.

In Theorem 3 of [13], Bermann et al. proved that 3-SAT* is NP-hard by a polynomial
reduction to the NP-hard 3-SAT problem. In the following, we prove that the Bond
Order Assignment Decision Problem is NP-complete by a polynomial reduction
to 3-SAT*.

Proof of Theorem 9. Given a bond order assignment of a molecule graph, we can easily
verify in polynomial time, if the bond order assignment is feasible. Thus, the problem is
in NP. By a polynomial reduction from 3-SAT* to the Bond Order Assignment
Decision Problem, we will show that the Bond Order Assignment Decision
Problem is NP-hard, even if every vertex is of degree at most three and valence at
most four.

Given a 3-SAT* formula, we can safely discard all clauses containing variables that
only occur in either positive or negative literals. Afterwards, every variable occurs at
least twice and at most three times in at least one positive and one negative literal. We
then construct the sat-graph G = (V,E) as a Bond Order Assignment Decision
Problem instance as follows:

The vertex set V consists of four subsets Vvar, Vlit, Vcla and Vaux. For each variable xi
of the 3-SAT* instance, the vertex set Vvar contains a variable vertex vi and the vertex
set Vlit contains two literal vertices ui and u′i corresponding to the literals xi and xi.
The set Vcla contains, for every clause cj of the 3-SAT* instance, a clause vertex wj .
Finally, we need a couple of auxiliary vertices subsumed in Vaux as shown in Fig. 6.2.

The valence set of each variable vertex is {1}, of each literal vertex {0, 3}, and of a
clause vertex {1, . . . , d}, where d ≤ 3 is the number of literals contained in the corre-
sponding clause. The valence sets of auxiliary vertices are set as shown in Fig. 6.2. We
use the trees shown in Fig. 6.2 as building blocks to connect the vertices of G.

If both literals of a variable occur once, we connect each of the literal vertices to the
clause vertex that corresponds to the clause containing this literal via an auxiliary vertex
with valence set {0, 3}, see Fig. 6.2 (left).

If one literal of a variable occurs once and the other twice, we connect the literal vertex
that corresponds to the literal occurring in only one clause to the corresponding clause
vertex via an auxiliary vertex with valence set {0, 3}. The literal vertex corresponding
to the literal occurring in two clauses is connected to each of the corresponding clause
vertices via a chain of three auxiliary vertices with valence sets {0, 3}, {0, 4}, {0, 3}. See
Fig. 6.2 (right).

Before proving that the constructed Bond Order Assignment Decision Problem
instance has a feasible assignment if and only if 3-SAT* instance is satisfiable, we consider
the two building blocks of G shown in Fig. 6.2. Let a1, a2, b1, b2, c1, c2, c3, d1, d2 denote
the bond order of the corresponding edges as shown in Fig. 6.2. In a feasible assignment
of G, the following facts can be easily observed:

As all variable vertices have valence set {1}, the bond orders a1, b1, c1, and d1 can
either be zero or one. Bond order one can only be assigned to either a1 or b1, and to
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Figure 6.2: The building blocks of G. Vertices outside Vvar, Vlit, and Vcla are auxiliary
vertices. Valence sets of clause vertices are omitted.

either c1 or d1. The corresponding literal vertex has valence three, the other one has
valence zero. Furthermore, we infer a1 = a2, b1 = b2, c1 = c2 = c3 and d1 = d2. The fact
that exactly one of two edges incident to a variable vertex has bond order one, models
that exactly one of the literals xi, xi of a variable xi is satisfied. The valence of a clause
vertex takes a value of at least one if and only if the corresponding clause contains literals
whose literal vertices have valence three. This implies that a clause is satisfied if and
only if it contains a true literal. Furthermore, the valence set {1, . . . , d(w)} of a clause
vertex w forces any algorithm for the Bond Order Assignment Decision Problem
to assign bond order one to at least one of the edges incident to w. This implies that at
least one of the literals contained in each clause has to be true.

Therefore, there is a feasible solution for the constructed Bond Order Assignment
Decision Problem instance if and only if the 3-SAT* instance is satisfiable. Since
the reduction can be done in polynomial time and the 3-SAT* problem is NP-hard, the
Bond Order Assignment Decision Problem is also NP-hard.

Since the Bond Order Assignment Decision Problem is NP-hard, so is the Bond
Order Assignment Problem. Next, we prove that the Bond Order Assignment
Problem is even not approximable in polynomial time, unless P = NP.

Proof of Lemma 6.1. We modify the reduction described in the proof of Theorem 9 by
allowing clause vertices to take valence zero, so that the valence set of a clause vertex is
{0, 1, . . . , d} where d ≤ 3 is the length of the clause. Valence zero at each clause vertex
is penalized with score one, whereas the scores of all other valences of all vertices are
set to zero. Doing so, we ensure that the score of an assignment is the number of clause
vertices with valence zero and, hence, the number of unsatisfied clauses in the 3-SAT*
problem instance. Thus, the 3-SAT* problem instance is satisfiable if and only if there
is a bond order assignment for the sat-graph with score zero.
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Figure 6.3: The variable vertices represents variables x1, x2, x3 from left to right. The
literal vertices represent literals x1, x1, x2, x2, x3, x3, from left to right. The
clause vertices represent clauses (x1 ∨x2 ∨x3), (x1 ∨x2 ∨x3), (x2 ∨x3), from
left to right.

Assume that there is a polynomial-time approximation algorithm for the Bond Or-
der Assignment Problem with an arbitrary (but finite) approximation factor. This
algorithm computes a bond order assignment with score zero for a Bond Order As-
signment Problem instance if and only if an optimal assignment has score zero. In
particular, for Bond Order Assignment Problem instances constructed from a 3-
SAT* problem instance, this polynomial-time approximation algorithm computes an
assignment with score zero if and only if the 3-SAT* problem instance is satisfiable.
So, we can use this approximation algorithm to solve the NP-hard 3-SAT* problem in
polynomial time. Thus, there is no polynomial-time approximation algorithm for the
Bond Order Assignment Problem, unless P = NP.

Finally, we focus on the MAX SNP-hardness of the maximization version of the Bond
Order Assignment Problem. The MAX SNP-hardness concept was introduced by
Papadimitriou et al. [126], who also defined the L-reduction to show MAX SNP-hardness
of an optimization problem. The L-reduction is defined as follows:

Definition 6.6 (L-reduction). Let Π and Π′ be two optimization (maximization or
minimization) problems. We say that Π L-reduces to Π′ if there are two polynomial-
time algorithm f , g and constants δ, γ > 0 such that for each instance I of Π:

1. Algorithm f produces an instance I ′ = f(I) of Π′, such that the optima of I and
I ′, OPT (I) and OPT (I ′), respectively, satisfy OPT (I ′) ≤ δOPT (I).

2. Given any solution of I ′ with cost c′, algorithm g produces a solution of I with
cost c such that |c−OPT (I)| ≤ γ|c′ −OPT (I ′)|.
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To prove MAX SNP-hardness of computing a bond order assignment with maximum
score, we introduce an L-reduction from the MAX-3SAT* problem, which is a MAX
SNP-hard problem [126]. Our proof is straightforward, as we will set δ = γ = 1.

Definition 6.7 (MAX-3SAT*). Given a set of length three clauses over a set of boolean
variables, where each variable occurs at most three times in the clause set, the MAX-
3SAT* problem asks for an assignment of the variables that satisfies as many clauses as
possible.

Proof of Theorem 10. We reduce MAX-3SAT* to the maximization version of Bond
Order Assignment Problem via an L-reduction. Given a MAX-3SAT* problem
instance, we construct a sat-graph as described in the proof of Theorem 9 and use the
valence sets and scoring functions defined in the proof of Lemma 6.1, but we swap the
scoring functions at clause vertices, namely we assign score zero to valence zero and score
one to non-zero valences. By doing this we can ensure that there is always a feasible
solution for the constructed Bond Order Assignment Problem instance, and the
score of a bond order assignment is the number of clause vertices that have non-zero
valences.

Since a clause vertex has non-zero valence if and only if the corresponding clause is
satisfied, from a solution of the MAX-3SAT* problem instance that satisfied k clauses we
can construct a solution of the Bond Order Assignment Problem problem instance
with score k, and vice versa. This can be done in polynomial time as described in the
proof of Theorem 9. In the following, we use k to denote the number of satisfied clauses
of the MAX-3SAT* problem instance, as well as the score of the corresponding Bond
Order Assignment Problem instance.

Let OPT (BOA) denote the score of the optimal solution of the constructed Bond
Order Assignment Problem problem instance, and OPT (M3S ) denote the number
of satisfied clauses in the optimal solution of the MAX-3SAT* problem instance. We
infer that OPT (BOA) = OPT (M3S ).

To prove that our reduction from MAX-3SAT* problem to the maximization ver-
sion of the Bond Order Assignment Problem is an L-reduction, we have to show
that OPT (BOA) ≤ δ · OPT (M3S ) and |k −OPT (M3S )| ≤ γ · |k −OPT (BOA)| hold
for some constant δ and γ. Since OPT (BOA) = OPT (M3S ), both conditions hold for
δ = γ = 1.

All in all, our reduction from MAX-3SAT* to the maximization version of the Bond
Order Assignment Problem is an L-reduction. Since MAX-3SAT* is MAX SNP-
hard, computing a bond order assignment with maximum score is also MAX SNP-hard,
even on input graphs where every vertex has degree at most three and atom valences
are at most four, and sv is binary.

6.5 Polynomial Algorithm on Trees

In this section, we introduce a polynomial time algorithm for a special case of the
Bond Order Assignment Problem, where the input graph is a tree. Although this



6.5 Polynomial Algorithm on Trees 77

case can be solved in polynomial time by the more sophisticated algorithms introduced
Section 6.6.1 and 6.6.2, the algorithm introduced in this section is easier to understand
and provides the basic idea of our tree decomposition-based algorithms in Section 6.6.1
and 6.6.2.

Given a tree T as input graph, we root T at an arbitrary node r and set the direction
of every edge to point away from r. Let the ordered pair uv denote the edge connecting
u and v, where v is a child of u.

In the following, we assume that T is a binary tree. Actually, our algorithm can be
extended to solve the Bond Order Assignment Problem on a non-binary tree, but
the main focus of this section is to provide the basic idea of our tree decomposition-based
algorithm in Section 6.6.1 and 6.6.2, we omit the technical details of the extension of
our algorithm on non-binary tree.

With the assumption that T is a binary tree, we introduce a polynomial time algorithm
that solves Bond Order Assignment Problem bottom-up. Let uv be an edge in T
and w1, w2 be the two children of v. Let Dv[av, b(uv)] denote the score of the optimal
solution for the subtree rooted at v under the condition that valence av is assigned to v
and bond order b(uv) is assigned to edge uv. If all values Dw1 [·, ·] and Dw2 [·, ·] are known
for both children w1, w2 of a node v, then we can compute Dv[·, ·] using the recurrence

Dv[av, b(uv)] = sv(av) + min
b1+b2

+b(uv)=av

{
Dw1 [a1, b1] +Dw2 [a2, b2]

}
where the minimum is taken over all a1 ∈ Aw1 , a2 ∈ Aw2 and all b1, b2 ∈ {0, 1, 2}. Note
that for inner nodes with only one child, we can simplify the recurrence Dv[av, b(uv)] by
setting the missing summand to zero.

At every leaf w with parent v, we initialize the recurrence Dw[aw, b(vw)] as following:

Dw[aw, b(vw)] =

{
sw(aw) if aw = b(vw),

∞ otherwise.

After the bottom-up traversal, the value minar∈Ar Dr[ar, 0] is returned as the score of
the optimal bond order assignment for T .

The correctness of our algorithm at the leaves of the input tree is obvious. Since each
inner node v has two out-going edges and one in-coming edge, given a fixed valence of the
atom at an inner node and a fixed bond order of the in-coming edge, it is obvious that
the above recurrence computes the bond orders of the out-going edges such that bond
order assignment of the subtree rooted at that inner node is optimal. Since the root of T
has no in-coming edge, it holds that minar∈Ar Dr[ar, 0] is the score of the optimal bond
order assignment for T .

To the running time of the algorithm, it is obvious that the size of each score matrix
Dv is bounded by O(|Av|) and computing each entry of a matrix takes constant time
(since there are only three possible bond orders for each bond). Since our algorithm
visits each vertex of the tree only once, the running time of our algorithm is bounded
by O(maxv∈V |Av| · n), where n is the number of vertices.
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6.6 Algorithms for Molecule Graphs of Bounded Treewidth

In the previous section, we proved that the Bond Order Assignment Problem can be
solved in polynomial time if the input graph is a tree. Therefore, it is natural to extend
this algorithm to molecule graphs that are “tree-like”. Following this idea, we apply
the tree decomposition-based dynamic programming approach (see Section 2.3.2) to the
Bond Order Assignment Problem and achieve two fixed-parameter algorithms with
respect to the treewidth of the molecule graph and the maximum atom valence.

Assume that an optimal tree decomposition of the molecule graph G is given. Let ω−1
be the width and m be the number of bags of the optimal tree decomposition of G. This
tree decomposition is then transformed into a nice tree decomposition 〈{Xi | i ∈ I}, T 〉
of the same width with O(m) bags. Above the root of T , we add additional forget nodes,
such that the new root contains a single vertex. Let Xr denote the new root of the tree
decomposition and vr denote the single vertex contained in Xr. Analogously, we add
additional introduce nodes below each leaf of T , such that the new leaf also contains a
single vertex.

Without loss of generality, let v1, v2, . . . , vk denote the atoms inside a bag Xi, where
k ≤ ω. For simplicity of presentation, we assume that all bonds v1v2, v1v3, . . . , vk−1vk
are present in each bag. Furthermore, let Yi denote the atoms in G that are contained
in the bags of the subtree rooted at bag Xi.

In our algorithms, we assign each bag Xi a score matrix Di. In Section 6.6.1, we will
specify the contents of those score matrices and describe a tree decomposition-based
dynamic programming algorithm for the Bond Order Assignment Problem with
running time O(α2ω ·3β ·ω ·m), where m is the number of nodes in the tree decomposition
of the molecule graph, α−1 is the maximum open valence of an atom, d is the maximum
degree of an atom in the molecule, ω − 1 is the treewidth of the molecule graph, and
β := min{

(
ω
2

)
, ω d}.

In Section 6.6.2, we introduce an improved version of the algorithm in Section 6.6.1.
The running time of this improved algorithm is bounded by O(α3ω · ω ·m).

6.6.1 The O(α2ω · 3β · ω ·m) Algorithm

In the following, we describe the algorithm with running time O(α2ω · 3β · ω ·m) for the
Bond Order Assignment Problem.

In the following, let Di[a1, . . . , ak; e1,2, . . . , ek−1,k] be the minimum score over all va-
lence assignments to the atoms in Yi \Xi if for every l = 1, . . . , k, exactly al valences of
atom vl have been consumed by the bonds between vl and atoms in Yi \Xi, and bond
orders e1,2, . . . , ek−1,k are assigned to bonds v1v2, v1v3, . . . , vk−1vk.

Using this definition, we delay the scoring of any atom to the forget node where it is
removed from a bag. This is advantageous since every atom, except for the atom vr at
the root of the tree decomposition, is forgotten exactly once, and since the exact valence
of a vertex is not known until it is forgotten in the tree decomposition. Finally, we can
compute the minimum score among all assignments using the root bag Xr = {vr} as
mina1

{
svr(a1) +Dr[a1]

}
.
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Our algorithm begins at the leaves of the tree decomposition and computes the score
matrix Di for every node Xi when score matrices of its children nodes have been com-
puted. We initialize the matrix Dj of each leaf Xj = {v1} with

Dj [a1; ·] =

{
0 if a1 = 0,

∞ otherwise.

During the bottom-up travel, the algorithm distinguishes if Xi is a forget node, an
introduce node, or a join node, and computes Di as follows:

Introduce nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk−1} and
Xi = {v1, . . . , vk}. Then,

Di[a1, . . . , ak; e1,2, . . . , ek−1,k] =

{
Dj [a1, . . . , ak−1; e1,2, . . . , ek−2,k−1] if ak = 0,

∞ otherwise.

Forget nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk} and
Xi = {v1, . . . , vk−1}. Then,

Di[a1, . . . , ak−1; e1,2, . . . , ek−2,k−1] = min
e1,k,...,ek−1,k∈{0,1,2}

ak∈{0,...,A∗vk}

{
svk

(
ak +

∑k−1

l=1
el,k

)

+Dj [a1 − e1,k, . . . , ak−1 − ek−1,k, ak; e1,2, . . . , ek−1,k]
}

(6.1)

Join nodes. Let Xi be the parent node of Xj and Xh such that Xi = Xj = Xh. Then,

Di[a1, . . . , ak; e1,2, . . . , ek−1,k] =

min
a′l=0,...,al
for l=1,...,k

{
Dj [a

′
1, . . . , a

′
k; e1,2, . . . , ek−1,k] +Dh[a1 − a′1, . . . , ak − a′k; e1,2, . . . , ek−1,k]

}
(6.2)

For simplicity of the presentation of our algorithm, we assumed above that every two
atoms in each bag of the tree decomposition are connected by a bond, but in reality, the
number of bond in a bag is upper-bounded by ωd, where d is the maximum degree of an
atom in the molecule graph.

Lemma 6.2. Given a nice tree decomposition of a molecule graph G, the algorithm
described above computes an optimal assignment for the Bond Order Assignment
Problem on G in time O(α2ω ·3β ·ω ·m), where α = 1+maxv A

∗
v is the maximum (open)

valence of an atom plus one, m and ω − 1 are size and width of the tree decomposition,
d is the maximum degree in the molecule graph, and β := min{

(
ω
2

)
, ω d}.
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Proof. We first analyse the running time of the algorithm. Since the maximum valences
of an atom is α− 1, there are at most αω possibilities to assign consumed valences to ω
atoms in each bag of T . According to the definition of β, the number of bonds in each
bag of T is bounded by β, and there are at most 3β possibilities to assign bond orders
b ∈ {0, 1, 2} to β bonds. This implies that the table Di of a node Xi contains at most
αω · 3β entries.

We now consider the running time of computing each entry in the matrix Di, assuming
that the corresponding matrix of every child of Xi has already been calculated. We
distinguish the following cases:

If Xi is a leaf of T , computing matrices Di takes constant time, since entries with
score infinity do not have to be considered, and there is only one entry with score zero.
If Xi is an introduce node, calculating each entry of Di takes constant time. Again,
we do not have to consider entries with score infinity. Thus, computing the table of an
introduce node take time O(αω3β).

Assuming that Xi is a forget node and Xj is the child node of Xi. We compute the
score matrix Di on-the-fly when computing Dj : For each fixed value of a1, . . . , ak−1, after
computing each Dj [a1− e1,k, . . . , ak−1− ek−1,k, ak; e1,2, . . . , ek−1,k], we also compute the

minimum score svk(ak +
∑k

l=1 el,k) +Dj [a1 − e1,k, . . . , ak−1 − ek−1,k, ak; e1,2, . . . , ek−1,k]
over all possible values of ak and e1,k, . . . ek−1,k. This minimum score is the score needed
to be computed and stored in Di[a1, . . . , ak−1; e1,2, . . . , ek−2,k−1]. By doing this, we can
compute each entry of a forget node in constant time. Moreover, this only increases the
running time at the child node of a forget node by a constant factor. Thus, score matrix
at a forget node can be computed in time O(αω3β).

Let Xi be a join node and Xj and Xh its children. To calculate an entry of Di, the
algorithm has to find a “partner entry” in Dh for every entry of Dj , such that the number
of consumed valences of an atom in Xi is the sum of the consumed valences of the same
atoms in Xj and Xh, and calculate the minimum score of all such pairs, as shown in
Equation (6.2). Therefore, computing an entry of the matrix Di can be done in time
O(αω · ω).

Now, the tree decomposition contains O(m) nodes, the matrix of every node contains
at most αω · 3β entries. Computing each matrix entry takes time O(αω · ω). Moreover,
initializing the matrices of all leaves of the tree decomposition takes O(m) time. In total,
the running time of the algorithm is O(α2ω · 3β · ω ·m).

In the following, we prove the correctness of the algorithm. As additional forget nodes
above the root of the tree decomposition are introduced until the new root contains
a single atom, and every atom except the atom in the new root has to be “forgotten”
once. Note that because of the third property of tree decompositions, an atom cannot be
forgotten more than once. Whenever an atom is “forgotten”, it gets the valence state that
equals the sum of valences it used up in the subtree below the child of the forget node,
plus the bond orders of its adjacent bonds inside the child node. Our algorithm chooses
a valence state for the forgotten atom that minimizes the sum between scores of the
chosen valence state and the corresponding entry in Dj , as described in Equation (6.1).
This confirms that our algorithm correctly computes score matrices at forget nodes.
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Considering every leaf of T as an introduce node, we can see that a newly introduced
atom has not used up any of its valences yet. Therefore, it is correct to set the score
of entries, where the newly introduced atom already uses valences, to infinity. The
correctness of the algorithm at introduce nodes is also obvious.

An atom can be introduced more than once, but because of the third property of
tree decompositions, there must be one join node that joins all occurrences of an atom.
At each join node, only two occurrences of an atom are joined. Let v be an atom of
the molecule graph that is introduced twice. On the two paths from the corresponding
introduce nodes to the join node, where two occurrences of v are joined, each occurrence
of v may consume different amounts of valences. Note that this can only happen if
different atoms are forgotten on the two paths. Therefore, the total amount of consumed
valences of v in the subtree below the join node is the sum of consumed valences in
the subtrees below the children of the join node. Since we are interested only in the
optimal solution, we only take the minimum score as shown in Equation (6.2). Thus,
our algorithm computes score matrices at join node correctly.

When the algorithm arrives at the root r of the tree decomposition, it holds that every
atom of the molecule graph has been considered, and the scores that correspond to the
valence state assigned to each atom have been summed up in the corresponding entry
in Dr. Except for the only atom vr in the root r, every atom has been forgotten on
some path in the tree, and it gets a feasible valence state. This means that the validity
of the assignment for the subgraph G \ vr of G is assured. Furthermore, because of the
definition of score matrix D and the correctness of our algorithm when computing score
matrix, mina svr(a) + Dr[a] is the score of an optimal solution for the Bond Order
Assignment Problem on G.

All in all, our algorithm computes an optimal bond order assignment of G using a nice
tree decomposition of G in time O(α2ω · 3β · ω ·m).

During the bottom-up processing, we can store where the minimum is obtained in
Equation (6.1) and (6.2), afterwards we traverse the tree decomposition top-down to
obtain all bond orders of the molecule. This can be done in time O(m).

6.6.2 The O(α3ω · ω ·m) Algorithm

The idea for this version of the algorithm bases on the observation that the information
about the bond order assigned to each bond in a bag of the tree decomposition is not
really necessary, but the number of valences of an atom used up by bonds within a bag
of the tree decomposition is more important. To make use of this observation, we modify
our algorithm described in Section 6.6.1 as follows:

Let v1, . . . , vk denote the atoms in a bag Xi, and Di[a1, . . . , ak; b1, . . . , bk] be the min-
imum score over all valence assignments to the atoms in Yi \Xi if, for every l = 1, . . . , k,
exactly al valences of atom vl have been consumed by bonds between vl and atoms in
Yi \Xi , and bl valences of atom vl are consumed by bonds within the bag Xi. Recall
that Yi is the set of atoms occurring in the subtree rooted at Xi. Again, our algorithm
starts at the leaves of the tree decomposition and computes the score matrix Di for every
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node Xi when score matrices of all its child nodes have been computed. The score of the
optimal bond order assignment is mina1{svr(a1) +Dr[a1]}, where vr is the only atom in
the root bag Xr of the tree decomposition.

We initialize the matrix Dj of each leaf Xj = {v1} with

Dj [a1; b1] =

{
0 if a1 = b1 = 0,

∞ otherwise.

We distinguish if a bag Xi is an introduce node, a forget node, or a join node and use
the corresponding recurrence to calculate Di:

Introduce nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk−1} and
Xi = {v1, . . . , vk}. Then,

Di[a1, . . . , ak; b1, . . . , bk]

= min
e1,...,ek−1∈{0,1,2}∑

l el=bk

{
Dj [a1, . . . , ak−1; b1 − e1, . . . , bk−1 − ek−1] if ak = 0,

∞ otherwise.
(6.3)

State that e1, . . . , ek−1 are in fact the bond orders of edges adjacent to the newly intro-
duced atom ak

Forget nodes. Let Xi be the parent node of Xj such that Xj = {v1, . . . , vk} and
Xi = {v1, . . . , vk−1}. Then,

Di[a1, . . . , ak−1; b1, . . . , bk−1] = min
{
svk(ak + bk)

+Dj [a1 − e1, . . . , ak−1 − ek−1, ak; b1 + e1, . . . , bk−1 + ek−1, bk]
}

(6.4)

where the minimum runs over all e1, . . . , ek−1 ∈ {0, 1, 2} such that
∑k−1

l=1 el = bk, and all
ak = 0, . . . , A∗vk . In this case, e1, . . . , ek−1 denote the bond orders of edges incident to
the forgotten atom ak.

Join nodes. Let Xi be the parent node of Xj and Xh such that Xi = Xj = Xh. Then,

Di[a1, . . . , ak; b1, . . . , bk] =

min
a′l=0,...,al
for l=1,...,k

{
Dj [a

′
1, . . . , a

′
k; b1, . . . , bk] +Dh[a1 − a′1, . . . , ak − a′k; b1, . . . , bk]

}
. (6.5)

Lemma 6.3. Given a nice tree decomposition of a molecule graph G, the algorithm
described above computes an optimal assignment for the Bond Order Assignment
Problem on G in time O(α3ω · ω ·m), where α = 1 + maxv A

∗
v is the maximum (open)

valence of an atom plus one, and m and ω−1 are size and width of the tree decomposition.
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Proof. We first analyze the running time of our algorithm. Since each bag that is a leaf
of the tree decomposition contains only one atom, initializing the table of a leaf takes
constant time, and initializing all leaves of the tree decomposition takes time O(m).
We now consider the running time of the algorithm at each inner node Xi of the tree
decomposition. Obviously, the table Di of each bag Xi contains at most α2ω entries.
Let Xj denote the child node of Xi, if Xi is an introduce node or a forget node, and Xj

and Xh denote the children node of Xi if Xi is a join node.

At an introduce node Xi, let vk be the newly introduced atom and el ∈ {0, 1, 2}
denote the bond order of a bond vlvk. To calculate an entry Di[a1, . . . , ak; b1, . . . , bk],
the algorithm has to consider every entry Dj [a1, . . . , ak−1; b

′
1, . . . , b

′
k−1] with fixed indices

a1, . . . , ak−1 and b′l = bl − el, for 1 ≤ l ≤ k − 1 and
∑

1≤l≤k−1 el = bk. Since there are

at most αω−1 such entries in Dj and testing if b′l = bl − el, for 1 ≤ l ≤ k − 1, takes
time O(ω), calculating an entry of Di takes time O(αω · ω). Therefore, the table of an
introduce node can be calculated in time O(α3ω · ω).

Let Xi be a forget node where atom vk is forgotten. Again, let el ∈ {0, 1, 2} de-
note the bond order of a bond vlvk. To analyze the running time of the algorithm at
a forget node, we describe the execution of our algorithm at a forget node in detail.
To calculate an entry Di[a1, . . . , ak−1; b1, . . . , bk−1], the algorithm tests for all possi-
ble valences a′1, . . . , a

′
k−1, a

′
k if el = al − a′l ∈ {0, 1, 2} holds, for 1 ≤ l ≤ k − 1. If this

is true, the algorithm sets bk :=
∑

1≤l≤k−1 el and computes the score svk(a′k + bk) +
Dj [a

′
1, . . . , a

′
k−1, a

′
k; b1 + e1, . . . , bk−1 + ek−1, bk] . This can be done in time O(ω). The

minimum score over all such scores is assigned to Di[a1, . . . , ak−1; b1, . . . , bk−1]. Since
there are at most αω possibilities of indices a′1, . . . , a

′
k−1, a

′
k, calculating an entry of a

forget node can be done in time O(αω ·ω). Therefore, the running time of our algorithm
at a forget node is bounded by O(α3ω · ω).

When calculating an entry Di[a1, . . . , ak; b1, . . . , bk] of a join node, the algorithm has
to test for each entry Dj [a

′
1, . . . , a

′
k; b1, . . . , bk] in Dj , if this entry and its partner Dh[a1−

a′1, . . . , ak − a′k; b1, . . . , bk] in Dh minimize score at Di[a1, . . . , ak; b1, . . . , bk]. Since there
are at most αω entries in Dj with fixed indices b1, . . . , bk, calculating an entry of the
table of a join node takes O(αω · ω), and thus the running time for calculating the table
of a join node is bounded by O(α3ω · ω). In total, since the tree decomposition contains
m nodes, the running time of our modified algorithm is bounded by O(α3ω · ω ·m).

Next, we prove the correctness of our algorithm. The initialization at the leaves of the
tree decomposition is obviously correct, since no valence of any atom is used up at this
stage. At an introduce node, no valence of the newly introduced atom vk is used up in
the subtree rooted at this introduce node. Furthermore, each bond order el between vk
and an atom vl in the introduce node increases the number of consumed valences of vl
from bl − el to bl, and the bond orders of all edges between vk and other vertices in this
node sum up to bk valences of vk, that are consumed within this node. This intuition
confirms the correctness of our algorithm at introduce nodes.

Let Xi be a forget node and vk be the vertex that is forgotten at Xi. Since vk is
forgotten, we increase the number of used up valences of each vertex vl ∈ Xi from al−el
to al. Since vk does not occur in Xi, we reduce the valences of vertices in Xi, which are
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consumed by bonds within Xi, by the bond order of bonds between these vertices and
vk. Furthermore, the algorithm also assigns vk the valence minimizing the corresponding
entry in Di. Therefore, our algorithm is correct at forget node.

At a join node Xi, the total number of valences consumed outside Xi of an atom
results from the number of its valences that are consumed in the subtree rooted at Xj

and the subtree rooted at Xh. Recall that Yj \Xj and Yh\Xh are disjoint. This confirms
the correctness of our algorithm at join nodes.

The correctness of this algorithm at the root of the tree decomposition is analogous
to the correctness of our previous algorithm introduced in Section 6.6.1.

All in all, our algorithm compute the optimal solution of the Bond Order Assign-
ment Problem in time O(α3ω · ω ·m).

To compute not only the optimal score but also the optimal assignment, we again store
where the minimum is obtained for forget nodes and join nodes during the bottom-up
processing. Afterwards, the optimal bond order assignment can be obtained by a top-
down traversal in time O(m).

From theoretical point of view, this algorithm drastically outperforms the algorithm
in Section 6.6.1, since its running time only exponentially depends on ω, whereas the
running time of the algorithm in Section 6.6.1 exponentially depends on β, which, in
turn, can be as large as O(ω2). Thus, this algorithm could be more efficient in practice
if subgraphs induced by vertices in a bag of the tree decomposition are dense and the
maximum valence of atom in the molecule graph is small. But this usually does not occur
in practice, therefore we only implemented the algorithm with running time O(α2ω · 3β ·
ω ·m) introduced in Section 6.6.1.

6.7 Algorithm Engineering

In this section, we describe some heuristic improvements included in our implementation
to reduce both running time and memory usage of our approach in applications.

Search Space Reduction Since our algorithm works with open valences, and bond
orders are bounded by two, open valences of every atom v that exceed 2 · deg(v) cannot
be fully consumed. Thus, given a Bond Order Assignment Problem instance, we
first remove open valences of every vertex v ∈ V that are larger than 2 ·deg(v) to reduce
the search space of the problem.

Avoid futile matrix entries During the course of the dynamic programming algorithm,
we do not have to compute or store entries Di[a1, . . . , ak; e1,2, . . . , ek−1,k] with al +∑

j el,j > A∗vl for some l, because such entries will never lead to a feasible bond order
assignment. Analogously, if the algorithm introduced in Section 6.6.2 is implemented,
matrix entries Di[a1, . . . , ak; b1, . . . , bk] with al + bl > A∗vl can be ignored.
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Decision versus Optimization When using the score function provided Wang et al. [152],
score matrices D often contain many entries with scores much larger than the optimal
score. Those entries never lead to the optimal solution, but make the score matrices
unnecessary large. To avoid those entries, we imitate the idea of depth-bounded search
tree algorithm: Instead of directly compute the optimal solution, we initialize an integer
k = 0 and use our tree decomposition-based dynamic programming algorithm to answer
the question if there is solution with score at most k. During the bottom-up traversal,
we do not store matrix entries with score exceeding k. If the score of an optimal solution
is at most k, an optimal solution will be found. Otherwise, we call our algorithm repeat-
edly with increasing k, until an optimal solution is found. Furthermore, we also remove
all atom valences with scores larger than k before executing our dynamic programming
algorithm. This artifice accelerates our algorithm drastically in practice.

6.8 Computational Results

To evaluate the performance of our algorithm, we implemented the algorithm introduced
in Section 6.6.1 in Java and compared its running time with the heuristic algorithm of
Wang et al. [152] on a set of real molecule graphs. All evaluations were done on an Intel
Core Duo 1.83 GHz with 1 GB of memory running Linux 2.6.34.

6.8.1 Implementation and Dataset

In our implementation, we use hash maps instead of arrays to implement score matrices
D to avoid allocating memory for unused entries.

To compute optimal tree decompositions of molecule graphs, we use the method
QuickBB in the library LibTW implemented by van Dijk et al. (http://www.treewidth.
com). The QuikBB method is an implementation of the branch-and-bound algorithm of
Gogate et al. [67] to compute optimal tree decomposition. The computed optimal tree
decomposition is transformed into nice tree decompositions as described in Section 2.3.2.

For our evaluation, we used the molecule graphs in the MMFF94 dataset1 by Halgren
et al. [81], which consists of 761 molecule graphs predominantly derived from the Cam-
bridge Structural Database. This dataset has been suggested to us by experts, as it is
considered to contain “hard” instances of the problem, where atoms have non-standard
valences. Bond orders are given in the dataset but we ignored this information and
reassigned the bond orders to all molecule graphs. We removed four molecule graphs
that contain elements such as iron not covered in our scoring table (see below), or that
have atom bindings such as chlorine atoms connected to four other atoms, which is also
not covered in our scoring. The largest molecule graphs contains 59 atoms, the smallest
3 atoms, the average 23 atoms. We find that 20.21 % of the remaining 757 molecule
graphs have treewidth one, 96.69 % have treewidth ≤ 2, and all molecule graphs have
treewidth at most three. The average treewidth is 1.83.

1http://www.ccl.net/cca/data/MMFF94/, source file MMFF94 dative.mol2, of Feb. 5, 2009

http://www.treewidth.com
http://www.treewidth.com
http://www.ccl.net/cca/data/MMFF94/
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As score function, we use the scoring table from Wang et al. [152]. This scoring allows
atoms to have rather “exotic” valences, but gives an atomic penalty score (aps) to these
rare valence states. As an example, carbon is allowed to take valence two (with aps 64),
three (aps 32), four (aps 0), five (aps 32), or six (aps 64). In addition, different scores
can be applied for the same element, depending on the local neighborhood: For example,
carbon in a carboxylate group COO – can take valence four (aps 32), five (aps 0), or six
(aps 32). See Table 2 in [152] for details.

Thus, to assign a score function to an atom of a molecule graph using Wang et al.’s
scoring table, it is necessary to identify, which molecular pattern listed in the Wang et al.’s
scoring table is formed by the atom and its neighborhood. In general, this problem cor-
responds to the NP-hard Subgraph Isomorphism Problem [65], that asks for an
occurrence of a pattern graph in a host graph. Fortunately, the molecular patterns
listed in the Wang et al.’s scoring table are very small and simple. Thus, occurrences
of those molecular patterns can be detected efficiently. However, to make our imple-
mentation work with any scoring table, which may contain larger and more complicated
molecular patterns, we use the SMARTSQueryTool in the Chemistry Development Kit
(CDK)2 [146] to detect occurrences of molecular patterns in a molecule graph, instead of
implementing a specific procedure to detect small and simple molecular patterns listed
in the Wang et al.’s scoring table.

6.8.2 Comparison with other approaches

In Table 6.1, we report the running times of our algorithm and the heuristic algorithm
of Wang et al. [152] in milliseconds. Thereby, we rounded the running times up to two
significant digits. In this evaluation, we used the implementation of the Wang et al.’
heuristic algorithm found in the Version 1.27 of the Antechamber program3.

Total running times of our algorithm are always below one second, and 5.78 ms on
average. The average running time for assigning a score function for each atom in a
molecule graph using the SMARTSQueryTool is 5.22 ms. The average running times for
computing optimal tree decomposition of a molecule graph and transforming the optimal
tree decomposition into a nice tree decomposition is 0.14 ms. The average running times
of our tree decomposition-based dynamic programming algorithm is 0.41 ms. Assigning
score function to every atom of a molecule graph is the most time-consuming task, when
optimal bond order assignment is computed using Wang et al.’s scoring table.

The average running time of the heuristic algorithm of Wang et al. [152] is 11.40 ms.
This heuristic algorithm is slower than our exact algorithm on almost every group of
molecule graphs listed in Table 6.1, except for the group of molecule graphs with 51 to
59 vertices. In this group, our algorithm is slightly slower than the heuristic algorithm.
This is due to the time-consuming task of assigning score functions to atoms using the
SMARTSQueryTool. The practical running time of our algorithm can be improved, if
necessary, by using a better algorithm to detect the small and simple molecular patterns

2http://cdk.sourceforge.net/
3http://ambermd.org/

http://cdk.sourceforge.net/
http://ambermd.org/
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instance size number of average running time comparison
|V | |E| instances tw tw SA TD DP

∑
AA

3–10 2–11 73 1–2 1.15 1.12 1.06 2.11 4.29 4.88
11–20 10–22 214 1–3 1.77 3.95 0.01 0.08 4.04 7.49
21–30 20–33 333 1–3 1.97 5.89 0.06 0.74 6.69 13.81
31–40 30–43 129 1–3 1.95 7.37 0.62 0.38 8.37 13.51
41–50 40–53 5 1–2 1.8 9.8 1 0.4 11.2 57.6
51–59 53–61 3 2 2.0 12.34 1.34 0.67 14.35 13.67

Table 6.1: Overview on the data used in our experiment. “tw” gives the range of
treewidths in this group. “SA’ is average running time for a assigning score
function to every atom of a molecule graph. “TD” is average running time
for computing optimal tree decomposition and transforming it into a nice
tree decomposition. “DP” is average running time of our dynamic program-
ming algorithm. “

∑
” is total running time of our algorithm on average, and∑

=SA + TD + DP. “AA” is average running time of Wang et al.’s heuristic
algorithm.

listed in Wang et al.’s scoring table, instead of using the SMARTSQueryTool, which is
more general for any type of molecular patterns.

Recently, Dehof et al. [49] evaluated a previous implementation of our algorithm to-
gether with other Bond Order Assignment Problem solvers [50], an integer linear
programming-based algorithm, a runtime-heuristic algorithm, and the heuristic algo-
rithm of Wang et al. [152]. All three exact solvers were able to recover over 78% reference
solutions in the MMFF94 dataset, whereas the heuristic algorithm of Wang et al. [152]
was able to recover about only 37% reference solutions. Concerning the running time of
the algorithms, Dehof et al. reported that our tree decomposition-based algorithm out-
performs two other exact Bond Order Assignment Problem solvers and almost as
fast as the heuristic algorithm of Wang et al. [152]. However, as we showed in Table 6.1,
the current implementation of our algorithm outperforms the Wang et al.’s heuristic
algorithm [152] on almost every molecule graph in the MMFF94 dataset.

Although our algorithm is the fastest algorithm from all algorithms evaluated by Dehof
et al., we would like to mention that the running time of our algorithms grow exponen-
tially with the tree width of molecule graphs. Therefore, it is recommended to use
other solver for input graphs with large treewidth, like spherical fullerenes (buckyball)
or carbon nanotube (buckytubes).

Still, we can claim that our algorithms are efficient on biomolecule graphs, despite
their (super-)exponential running times in the treewidth of biomolecule graphs. We
justify our claim by the following observations:

Definition 6.8. A graph is outerplanar if it admits a crossing-free embedding in the
plane such that all vertices are on the same face. A graph is 1-outerplanar if it is



88 6. Bond Order Assignment

outerplanar; and it is r-outerplanar for r > 1 if, after removing all vertices of the
boundary face, the remaining graph is (r − 1)-outerplanar.

Bodlaender et al. [28] showed the following important property of r-outerplanar graphs.

Theorem 11. Every r-outerplanar graph has treewidth at most 3r − 1

From this theorem, it holds that the Bond Order Assignment Problem is actually
fixed-parameter tractable with respect to the maximum valence and the value r in an r-
outerplanar molecule graph. Furthermore, we find that molecule graphs of biomolecules
are usually r-outerplanar for some small integer r, such as r = 2 for proteins and DNA.

To empirically confirm our claim, we tested it on molecules from the PubChem
database at http://pubchem.ncbi.nlm.nih.gov/ [138], which contains more than 60
million entries in Jan 2010. We computed the treewidths of all molecule graphs in eight
files randomly chosen from 1 782 files found at ftp://ftp.ncbi.nlm.nih.gov/pubchem/
Compound/CURRENT-Full/XML. For all 135 607 connected molecule graphs in these files,
we computed the exact treewidth using the QuickBB method of the LibTW library. We
found that 12 004 (8.85%) molecule graphs have treewidth one, 121 267 (89.43%) have
treewidth two, 2 192 (1.62%) have treewidth three, and for seven (0.01%) molecules, the
QuickBB method cannot determine the treewidth after ten minutes of computation. Ac-
cording to the upper bound computed by the QuickBB method, the treewidth of these
seven molecule graphs is at most four. The database also contains 137 (0.1%) molecules
consisting of a single ion, for which the Bond Order Assignment Problem is trivial.
There are no molecule graphs in the eight files with treewidth exceeding four. This con-
firms our claim that our algorithms can be efficiently applied to solve the Bond Order
Assignment Problem on biomolecule graphs.

6.9 Summary and Outlook

In this chapter, we investigated the Bond Order Assignment Problem that requires
to (re)assign bond orders to molecule graphs minimizing a given score function, and
achieved the following results:

• Bond Order Assignment Problem is NP-hard even on molecule graph with
vertex degree bounded by three and valence state of atoms bounded by four. How-
ever, this problem can be solved in polynomial time if the input molecule graph is
a tree.

• Bond Order Assignment Problem is inapproximable even on molecule graph
with vertex degree bounded by three and valence state of atoms bounded by four,
unless P=NP.

• The maximization variant of Bond Order Assignment Problem is MAX SNP-
hard. This result prohibits the hope for a polynomial-time approximation scheme
(PTAS) for the maximization variant of Bond Order Assignment Problem.

http://pubchem.ncbi.nlm.nih.gov/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/XML
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/XML
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• We introduced two tree decomposition-based dynamic programming algorithms for
the Bond Order Assignment Problem, which are fixed-parameter tractable
with respect to the treewidths of molecule graphs and the maximum atom valence
in the molecule graph. We also discuss some heuristic improvements to accelerate
our algorithm in practical use.

• We implemented and evaluated one of our algorithms on the molecule graphs of
the MMFF94 dataset. It turns out that our algorithm is very efficient on this
dataset.

Since the running times of our algorithms grow exponentially in the tree width of an
input molecule graph, we wanted to verify if the treewidths of biomolecule graphs are
small in general. Therefore, we computed the treewidth of 135 607 biomolecule graphs
randomly chosen from the PubChem database, and found that most of these molecule
graphs have treewidths two and none of these molecule graphs has treewidth exceeding
four. This fact also points out that tree decomposition-based dynamic programming
technique is a very promising approach to develop algorithms for combinatorial problems
on molecule graphs.

Future Research

Regarding the Bond Order Assignment Problem, we want to reduce the depen-
dencies of our algorithms on treewidth, which may allow us to solve more compli-
cated structures. We also plan to do algorithm engineering towards efficient mem-
ory usage. At the moment, the Java implementation of our algorithm is available at
http://bio.informatik.uni-jena.de/software, but we plan to re-implement our al-
gorithm in C++ and integrate it in the Biochemical Algorithms Library (BALL) [98],
which already contains the implementations of the Bond Order Assignment Prob-
lem exact solvers by Dehof et al. [50].

Since treewidths of biomolecule graphs are usually very small, we want to apply tree
decomposition-based dynamic programming algorithm to further combinatorial prob-
lems on biomolecule graphs that are relevant in applications. As an example, we plan
to investigate the Subgraph Isomorphism Problem on molecule graphs that asks for
occurrences of a molecular pattern in a molecule graph.

As mentioned above, this Subgraph Isomorphism Problem is also encountered
when computing bond orders assignment problem using a scoring table that assigns
penalty function to an atom according to the neighborhood of the atom, for example
the Wang et al.’s scoring table. A faster algorithm for the Subgraph Isomorphism
Problem on molecule graph also accelerates our algorithm for the Bond Order As-
signment Problem in practice.

A further application of Subgraph Isomorphism Problem on molecule graph is
encountered when computing the bond order information of biopolymers. For example,
to compute the bond order information of a protein molecule, we can determine the
amino acids on the protein, and assign every bond of each amino acid its corresponding
bond order.

http://bio.informatik.uni-jena.de/software
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In general, Subgraph Isomorphism Problem appears in many important applica-
tions in bioinformatics [114,128] and there are several tree decomposition-based dynamic
programming algorithm for the Subgraph Isomorphism Problem [80,117,143]. How-
ever, we would like to investigate this problem particularly on molecule graphs, since
besides small treewidths, molecule graphs also have certain properties that can be used
to achieve efficient algorithm for practical use. For example, an atom on the pattern
graph can be only matched with another atom of the same type in the host graph.
Making use of such properties may help to shrink the search space of the Subgraph
Isomorphism Problem.

Moreover, we also want to investigate a generalization of the Subgraph Isomorphism
Problem, the Maximum Common Subgraph that asks for the maximum common
subgraph of two input graphs. This problem also has many applications on molecule
graphs and has been investigated in several publications [47, 64, 133]. We hope that
tree decomposition-based dynamic programming can be applied to solve this problems
optimally in practical use.



7 Conclusion

In this thesis, we investigated three NP-hard problems arising in bioinformatics: the
Flip Consensus Tree Problem, the Weighted Cluster Editing Problem and
the Bond Order Assignment Problem. In contrast to heuristic approaches, that
are usually used in bioinformatics to estimate good solutions for NP-hard problems, we
developed fixed-parameter algorithms to compute exact solutions for those problems. In
the following, we briefly recapitulate our results presented in this work.

Based on the graph-theoretical model of the Flip Consensus Tree Problem, we
presented two fixed-parameter algorithms with running times O(4.83k +poly(m,n)) and
O(4.42k + poly(m,n)), that improved the previous fixed-parameter algorithm from [152]
with running time O(6kmn). Besides the two new algorithms, we also introduced a set
of data reduction rules and discussed several heuristic improvement to speed up our
algorithms in practice. We implemented and evaluated one of our algorithms on real
biological data. Computational results show that our algorithm outperforms the previous
6k algorithm and much faster than one would expect from the theoretical running time.
However, the Flip Supertree Problem, the main problem we wanted to solve with
fixed-parameter algorithmic approach, turns out to be W[2]-hard with respect to the
number of flips [21]. Solving the Flip Supertree Problem optimally in practice
remains a challenge for future research.

From the computational point of view, the Flip Consensus Tree Problem is very
similar to the Weighted Cluster Editing Problem. Whereas the Flip Consensus
Tree Problem asks for a minimum set of edge modifications to transform a bipartite
graph into an M-free graph, the Weighted Cluster Editing Problem asks for set
of edge modifications of minimum cost to transform a graph into a cluster graph. Since
the Weighted Cluster Editing Problem generalizes the Unweighted Cluster
Editing Problem, algorithmic results for the Weighted Cluster Editing Prob-
lem can be easily applied to the Unweighted Cluster Editing Problem, but the
other direction does not always hold. In this work, we modified the depth-bounded
search tree algorithm of Gramm et al. [70] for the Unweighted Cluster Editing
Problem and introduced an algorithm with running time O(2.42k+ |V |3 log |V |) for the
Weighted Cluster Editing Problem. We mentioned a novel branching strategy
developed by our group, that leads to an algorithm with running time O(1.82k + |V |3)
for the Weighted Cluster Editing Problem. To the best of our knowledge, this is
the fastest fixed-parameter algorithm for the Weighted, as well as the Unweighted
Cluster Editing Problem, at time of preparing this work. Computational results
in [18] showed that this algorithm can solve Weighted Cluster Editing Problem
instances with several hundred edge modifications.

For the Bond Order Assignment Problem, we presented an NP-hardness proof
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by a polynomial reduction from the 3-SAT* problem, from which we also infer the in-
approximability of the Bond Order Assignment Problem. We then proved that
the maximization variant of the Bond Order Assignment Problem is MAX SNP-
hard. Thus, there is no hope for a PTAS for the maximization Bond Order Assign-
ment Problem. However, we showed that the Bond Order Assignment Prob-
lem on trees can be solved in polynomial time by a dynamic programming algorithm.
Based on the idea of this dynamic programming algorithm on trees, we applied the tree
decomposition-based dynamic programming to the Bond Order Assignment Prob-
lem and presented two algorithms for the Bond Order Assignment Problem with
running time O(α2ω · 3β · ω ·m) and O(α3ω · ω ·m). Those algorithms are in fact fixed-
parameter algorithms with respect to the maximum atom valence and the treewidth of
molecule graphs. We implemented one of our algorithms and evaluated the performance
of our algorithm on a molecule dataset. Due to the small treewidth of molecule graphs,
our algorithm turn out to be very efficient on this dataset. In particular, our algorithm
also outperforms the previous heuristic algorithm of Wang et al. [152] for the Bond Or-
der Assignment Problem. To further confirm the practical use of our algorithm, we
measured the treewidths of over hundred thousands molecule graphs randomly chosen
from the Pubchem database, and found that the treewidths of those molecule graphs
are mostly two and never exceed four. As a direction of our future research regarding
tree-decomposition based dynamic programming, we plan to investigate the Subgraph
Isomorphism Problem and the Largest Common Subgraph Problem on molecule
graphs.

In the following, we conclude this work by recapitulating some general techniques of
fixed-parameter algorithmics that are applied to achieve the results presented in this
work, and can be applied to the open problems discussed along this work.

Parameterizing. The first task to develop fixed-parameter algorithm is to find an ap-
propriate parameter to investigate. The choice of a parameter depends on whether the
chosen parameter will be small in practical problem instances, and whether the problem
is fixed-parameter tractable with respect to that parameter.

Data Reduction. Data reduction helps to cut down the size of problem instance without
changing the solution of the original problem instance. Thus data reduction is highly
recommended in combination with any type of algorithmic approach, no matter if it
is a fixed-parameter algorithm, an approximation algorithm, a heuristic algorithm, or
an integer linear programming algorithm. Furthermore, data reduction can lead to a
problem kernel of a parameterized problem, that in turn confirms the fixed-parameter
tractability of the problem.

Algorithm Design. Although there is no recipe of designing algorithms, some general
algorithm design techniques do exist and have been successfully applied in many cases.
One of the most frequently used technique to design fixed-parameter algorithms is the
depth-bounded search tree approach. While an initial branching strategy is obvious in
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many cases, a good branching strategy requires a careful design and mostly goes hand
in hand with complicated case analysis. However, the careful designing of a branching
strategy often leads to a smaller search tree. For example, the trivial branching strat-
egy for the Flip Consensus Tree Problem generates a search tree of size O(6k),
whereas our carefully designed branching strategies lead to search trees of size bounded
by O(4.83k) and O(4.42k). The 4.83k algorithm is also much faster than the 6k algo-
rithm, as shown by our computational results. Unfortunately, in some cases, a compli-
cated branching strategy also increases the practical running time of a depth-bounded
search tree algorithm. For example our 2.42k-algorithm for the Weighted Cluster
Editing Problem is less efficient than the trivial 3k algorithm in practice (see [18] for
more details).

Dynamic programming is also a classical algorithmic approach for combinatorial prob-
lems, where solutions of a problem instance can be computed from solutions of its sub-
problem instances. For combinatorial problems on graphs that can be solved efficiently
with dynamic programming on trees, it is worthwhile to consider tree decomposition-
based dynamic programming algorithm for input graph with bounded treewidths. In
many cases, tree decomposition-based dynamic programming algorithms are very effi-
cient in practice, despite their unimpressive theoretical running time, especially when
the treewidths of the input graphs are small.

Besides depth-bounded search tree and dynamic programming, several other advanced
techniques such as color-coding, iterative compression, greedy localization are also fre-
quently applied to design fixed-parameter algorithms. See [121] for a detailed introduc-
tion to those techniques.

Implementation and Algorithm Engineering. An algorithm should be implemented
and evaluated on real problem instances to confirm its practical use. Although algorithm-
engineering may worsen the theoretical running of an algorithm in some cases, it usually
improves the practical running time of the algorithm. In general, algorithm engineering
is an important part of algorithm development.

Besides fixed-parameter algorithmic approach, integer linear programming is a classi-
cal approach, that is usually used in practice to solve NP-hard problem exactly. Thus,
if a parameterized problem is proven to be fixed-parameter intractable, integer linear
programming algorithm in combination with efficient data reduction should be consid-
ered as an alternative approach. Although integer linear programming algorithms may
not be so efficient as fixed-parameter algorithms for certain problems, their appeal is
due to the inexpense in development compared to the development of a fixed-parameter
algorithm.
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[75] J. Guo, F. Hüffner, C. Komusiewicz, and Y. Zhang. Improved algorithms for
bicluster editing. In Proc. of Conference on Theory and Applications of Models
of Computation (TAMC 2008), volume 4978 of Lect. Notes Comput. Sc., pages
445–456. Springer, 2008. 67



Bibliography 101

[76] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. A more relaxed model
for graph-based data clustering: s-plex editing. In International Conference on
Algorithmic Aspects in Information and Management (AAIM 2009), 2009. 59

[77] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks, 21:19–
28, 1991. 32, 33, 36

[78] D. Gusfield and V. Bansal. A Fundamental Decomposition Theory for Phylogenetic
Networks and Incompatible Characters, volume 3500. Jan. 2005. 28

[79] P. Haiwei, J. Li, and Z. Wei. Medical image clustering for intelligent decision
support. Conf. Proc. IEEE Eng. Med. Biol. Soc., 3:3308–3311, 2005. 57

[80] M. T. Hajiaghayi and N. Nishimura. Subgraph isomorphism, log-bounded frag-
mentation, and graphs of (locally) bounded treewidth. J. Comput. Syst. Sci.,
73(5):755–768, 2007. 90

[81] T. A. Halgren. MMFF VI. MMFF94s option for energy minimization studies. J.
Comp. Chem., 17(5-6):490–519, 1996. 70, 85

[82] L. Hemaspaandra and M. Ogihara. The Complexity Theory Companion. Springer,
2002. 10

[83] K. Hemm, K. Aberer, and M. Hendlich. Constituting a receptor-ligand information
base from quality-enriched data. Proc. Int. Conf. Intell. Syst. Mol. Biol., 3:170–
178, 1995. 69

[84] M. Hendlich, F. Rippmann, and G. Barnickel. BALI: automatic assignment of
bond and atom types for protein ligands in the brookhaven protein databank. J.
Chem. Inf. Model., 37:774–778, 1997. 69, 70

[85] J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley Longman, 2001. 10

[86] W.-L. Hsu and T.-H. Ma. Substitution decomposition on chordal graphs and
applications. In Proc. of International Symposium on Algorithms (ISA 1991),
volume 557 of Lect. Notes Comput. Sc., pages 52–60. Springer, 1991. 39
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and heuristic algorithms for weighted cluster editing. In Proc. of Computational
Systems Bioinformatics (CSB 2007), volume 6, pages 391–401, 2007. 57, 65, 67

[131] S. Rajasekaran, S. Balla, C.-H. Huang, V. Thapar, M. Gryk, M. Maciejewski, and
M. Schiller. High-performance exact algorithms for motif search. J. Clin. Monit.
Comput., 19(4-5):319–328, Oct 2005. 3

[132] G. Ramsay. DNA chips: state-of-the art. Nat Biotechnol, 16(1):40–44, Jan 1998.
26

[133] J. W. Raymond and P. Willett. Maximum common subgraph isomorphism al-
gorithms for the matching of chemical structures. J. Comput. Aided Mol. Des.,
16(7):521–533, Jul 2002. 90

[134] N. Robertson and P. Seymour. Graph minors: algorithmic aspects of tree-width.
J. Algorithms, 7:309–322, 1986. 17



Bibliography 105

[135] S. Roch. A short proof that phylogenetic tree reconstruction by maximum likeli-
hood is hard. IEEE/ACM Trans. Comput. Biol. Bioinform., 3(1):92–94, 2006. 3,
29

[136] N. Saitou and M. Nei. The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4(4):406–425, 1987. 29

[137] M. Salemi and A.-M. Vandamme. The Phylogenetic Handbook. Cambridge Uni-
versity Press, 2003. 29

[138] E. W. Sayers, T. Barrett, D. A. Benson, E. Bolton, S. H. Bryant, K. Canese,
V. Chetvernin, D. M. Church, M. Dicuccio, S. Federhen, M. Feolo, L. Y. Geer,
W. Helmberg, Y. Kapustin, D. Landsman, D. J. Lipman, Z. Lu, T. L. Madden,
T. Madej, D. R. Maglott, A. Marchler-Bauer, V. Miller, I. Mizrachi, J. Ostell,
A. Panchenko, K. D. Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, M. Shumway,
K. Sirotkin, D. Slotta, A. Souvorov, G. Starchenko, T. A. Tatusova, L. Wagner,
Y. Wang, W. J. Wilbur, E. Yaschenko, and J. Ye. Database resources of the
national center for biotechnology information. Nucleic Acids Res., 38(Database
issue):D5–16, 2010. 88

[139] C. Semple and M. Steel. A supertree method for rooted trees. Discrete Appl.
Math., 105(1-3):147–158, 2000. 31

[140] R. Shamir and R. Sharan. Algorithmic approaches to clustering gene expression
data. In T. Jiang, T. Smith, Y. Xu, and M. Q. Zhang, editors, Current Topics in
Computational Molecular Biology, pages 269–300. MIT Press, 2002. 57, 59

[141] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. J.
ACM, 10:217–255, 1963. 8, 9

[142] R. P. Sheridan, A. Rusinko, R. Nilakantan, and R. Venkataraghavan. Searching for
pharmacophores in large coordinate data bases and its use in drug design. Proc.
Natl. Acad. Sci. U S A, 86(20):8165–8169, Oct 1989. 69

[143] Y. Song, C. Liu, X. Huang, R. L. Malmberg, Y. Xu, and L. Cai. Efficient pa-
rameterized algorithms for biopolymer structure-sequence alignment. IEEE/ACM
Trans. Comput. Biol. Bioinform., 3(4):423–432, 2006. 90

[144] S. Sridhar, K. Dhamdhere, G. Blelloch, E. Halperin, R. Ravi, and R. Schwartz.
Algorithms for efficient near-perfect phylogenetic tree reconstruction in theory and
practice. IEEE/ACM Trans. Comput. Biol. Bioinform., 4(4):561–571, 2007. 29

[145] S. C. Stearns and J. C. Koella. Evolution in Health and Disease. Oxford University
Press, 2008. 28

[146] C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen.
The Chemistry Development Kit (CDK): An open-source java library for chemo-
and bioinformatics. J. Chem. Inf. Comp. Sci., 43:493–500, 2003. 86



106 Bibliography

[147] E.-G. Talbi. Metaheuristics: from design to implementation. Wiley, 2009. 11

[148] R. L. Tatusov, N. D. Fedorova, J. D. Jackson, A. R. Jacobs, B. Kiryutin, E. V.
Koonin, D. M. Krylov, R. Mazumder, S. L. Mekhedov, A. N. Nikolskaya, B. S. Rao,
S. Smirnov, A. V. Sverdlov, S. Vasudevan, Y. I. Wolf, J. J. Yin, and D. A. Natale.
The COG database: an updated version includes eukaryotes. BMC Bioinformatics,
4:41, 2003. 65, 67

[149] D. M. van Aalten, R. Bywater, J. B. Findlay, M. Hendlich, R. W. Hooft, and
G. Vriend. PRODRG, a program for generating molecular topologies and unique
molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol.
Des., 10(3):255–262, Jun 1996. 70

[150] A. van Zuylen and D. P. Williamson. Deterministic algorithms for rank aggregation
and other ranking and clustering problems. In Proc. of Workshop on Approxima-
tion and Online Algorithms (WAOA 2007), volume 4927 of Lect. Notes Comput.
Sc., pages 260–273. Springer, 2008. 58

[151] V. V. Vazirani. Approximation Algorithms. Springer, 2001. 12

[152] J. Wang, W. Wang, P. A. Kollmann, and D. A. Case. Automatic atom type and
bond type perception in molecular mechanical calculations. J. Mol. Graph. Model.,
25:247–260, 2006. iv, vi, 69, 70, 72, 85, 86, 87, 91, 92

[153] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J.
Comput. Biol., 1(4):337–348, 1994. 3

[154] I. Wegener. Complexity Theory: Exploring the Limits of Efficient Algorithms.
Springer, 2004. 7, 10

[155] T. Wittkop, J. Baumbach, F. Lobo, and S. Rahmann. Large scale clustering of
protein sequences with FORCE – a layout based heuristic for weighted cluster
editing. BMC Bioinformatics, 8(1):396, 2007. 57, 59

[156] T. Wittkop, D. Emig, S. Lange, S. Rahmann, M. Albrecht, J. H. Morris, S. Böcker,
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