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Abstract

Biology faced a revolution in the last century, in particular molecular biology.

Starting in the beginning of the 20th century from little knowledge on enzyme cata-

lyzed reactions, structure of macromolecules and information coding, the scientific

community is now able to generate thousands of terabytes of data quantifying

biological processes. The need for mathematical modelling of these processes

has grown alongside with the achievements in the experimental field leading to

the appearance and development of new fields like systems biology. Systems

biology aims at generating new knowledge through modelling and integration of

experimental data in order to develop a holistic understanding of organisms.

In the first part of my PhD thesis, I compare two different levels of abstraction

used for computing metabolic pathways, constraint-based and graph theoretical

methods. I show that the current representations of metabolism as a simple

graph correspond to wrong mathematical descriptions of metabolic pathways.

On the other hand, the use of stoichiometric information and convex analysis as

modelling framework like in elementary flux mode analysis, allows to correctly

predict metabolic pathways. However, this approach does not scale up well with

the size of the input network and therefore, graph-theory based methods have been

developed to cope with the demands of systems biology for modelling genome-scale

metabolic networks.

In the second part of the thesis, I present two of the first methods, based on

elementary flux mode analysis, that can compute metabolic pathways in such large

metabolic networks: the K-shortest EFMs method and the EFMEvolver method.
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These methods contribute to an enrichment of the mathematical tools available to

model cell biology and more precisely, metabolism. The optimization frameworks

used are important to focus particular metabolic pathways present in the solution

space, thereby allowing to deal with the combinatorial nature of elementary flux

modes.

The application of these new methods to biotechnological problems is also

explored in this part. I study the metabolic pathways involved in the production of

L-lysine in two microorganisms, Escherichia coli and Corynebacterium glutamicum.

Lysine is an essential amino acid for humans and of high commercial relevance.

The K-shortest EFMs method predicts biological relevant pathways converting

glucose into lysine with the shortest number of reactions steps. On the other hand,

the EFMEvolver method can cope with a larger set of elementary flux modes,

including also the shortest ones. All these pathways can be subdivided into four

parts carrying important functional roles, such as glucose catabolism or lysine

biosynthesis.

In the last part of my thesis, I give an overview of recent achievements in

metabolic network reconstruction and constraint-based modelling as well as open

issues. Perspectives on further extensions of constraint-based modelling to multi-

cellular organisms are given. Moreover, I discuss possible strategies for integrating

experimental data with elementary flux mode analysis. Further improvements in

elementary flux mode computation on that direction are put forward.
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Zusammenfassung

Im Laufe des letzten Jahrhunderts ereigneten sich in vielen Gebieten der Biologie

revolutionäre Umbrüche, vor allem aber in der molekularen Zellbiologie. Zu Beginn

des 20. Jahrhunderts hatte man wenig Kenntnisse über enzymatische Reaktionen,

praktisch keine Vorstellung über die Strukturen von Makromolekülen und der

Kodierung von genetischer Information. Heutzutage haben die Forscher jedoch die

Möglichkeit tausende Terabytes an Daten über biologische Prozesse zu erfassen.

Die Datenmenge, die man mit Hilfe der experimentellen Biologie gewann, machte

eine gezielte mathematische Modellierung der biologischen Prozesse unabdingbar.

In direkter Symbiose entwickelten sich beide Bereiche weiter und gingen im

Forschungsgebiet der Systembiologie auf. Das große Ziel der Systembiologie ist es,

ganzheitliches Wissen über Organismen zu erlangen. Die Forscher versuchen dies

zu erreichen, indem sie in die Modelle experimentelle Daten integrieren.

Im ersten Teil meiner Dissertation vergleiche ich zwei unterschiedliche ma-

thematische Abstraktionsstufen, die oft genutzt werden, um Stoffwechselwege zu

berechnen; die constraint-basierte und die graphen-theoretische Methoden. Ich

zeige, dass die derzeit genutzte Form Stoffwechselwege als vereinfachte Graphen

zu beschreiben, zu einer mathematisch falschen Beschreibung der Stoffwechselwege

führt. Auf der anderen Seite erlauben die stöchiometrischen Informationen und die

Konvexanalyse als Modellierungswerkzeuge, wie bei der Elementarmoden-Analyse,

eine korrekte Vorhersage der Stoffwechselwege. Dennoch kann dieser Ansatz bei

zu großen Ausgangsnetzwerken nicht angewendet werden; darum wurden graphen-

basierte Methoden entwickelt, die den Ansprüchen der Systembiologie an die
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Modellierung von metabolischen Ganzzellmodellen genügen.

Im zweiten Teil meiner Dissertation stelle ich zwei der ersten Methoden vor,

die auf der Elementarmoden-Analyse basieren und die Stoffwechselwege in solch

großen Stoffwechselnetzwerken berechnen können: die Methode der K-shortest

EFMs und die Methode der EFMEvolver. Diese Methoden leisteten einen Beitrag

zu den heute genutzten mathematischen Methoden in der molekularen Zellbiologie,

genauer gesagt, im Bereich des Stoffwechsels. Die verwendeten Optimierungswege

sind dafür sehr wichtig, da sie es erlauben, einige im Lösungsraum liegende

Teile des Stoffwechselweges genauer zu untersuchen und darüberhinaus auf die

kombinatorische Natur der Elementarmoden einzugehen.

Des Weiteren wird in diesem Teil meiner Arbeit die Anwendung dieser neu-

en Methoden auf biotechnologische Probleme vorgestellt. Ich habe die Lysin-

Stoffwechselwege der zwei Mikroorganismen Escherichia coli und Corynebacte-

rium glutamicum untersucht. Lysin ist eine für den Menschen lebensnotwendige

Aminosäure und mit größ kommerziell Wichtigkeit. Die Methode der K-shortest

EFMs zeigt biologisch relevante Wege auf, um Glukose mit der kürzesten Anzahl

an Reaktionsschritten in Lysin umzuwandeln. Außerdem kann die Methode der

EFMEvolver eine größere Anzahl an Elementarmoden bewältigen, eingeschlossen

die kürzesten. Alle diese Stoffwechselwege können in bis zu vier Teile untergliedert

werden, von denen jeder eine wichtige funktionelle Rolle ausführt, beispielsweise

den Abbau von Glukose oder die Synthese von Lysin.

Abschließend gebe ich einen Überblick über neueste Entwicklungen in der

Rekonstruktion von metabolischen Netzwerken sowie constraint-basierten Model-

lierungen und erläutere aktuelle Fragestellungen. Des Weiteren wird ein Ausblick

über Entwicklungsperspektiven der constraint-basierten Modellierungen hin zu

vielzelligen Organismen gegeben. Außerdem erörtere ich, wie die in dieser Arbeit

vorgestellten Methoden genutzt werden können, um experimentelle Daten in die

Elementarmoden-Analyse zu integrieren. Und ich präsentiere weitere Entwicklun-

gen in der Berechnung von Elementarmoden.
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Sumário

A Biologia assistiu a uma revolução durante o século passado, em particular na área

de Biologia Molecular. No ińıcio do século 20, a comunidade cient́ıfica possúıa um

conhecimento limitado sobre atividades enzimáticas, estrutura de macromoléculas

e o código genético. Hoje em dia, a comunidade cient́ıfica tem a capacidade

de gerar milhares de terabytes de dados quantificando todo o tipo de processos

biológicos. A necessidade de modelar matematicamente estes processos biológicos

tem acompanhado os desenvolvimentos no campo experimental dando origem a

novas áreas de pesquisa como a Biologia de Sistemas∗. Em Biologia de Sistemas o

grande desafio consiste em gerar conhecimento através da modelação e integração

de dados experimentais, com vista ao desenvolvimento de um conhecimento global

sobre os organismos.

Na primeira parte do meu trabalho de doutoramento eu comparo dois ńıveis

diferentes de abstração que podem ser usados para o estudo das vias metabólicas,

nomeadamente análise baseada em restrições† e a teoria de grafos. Eu mostro que

as representações matemáticas de redes metabólicas em forma de grafos simples

são inapropriadas para o cálculo de vias metabólicas. Por outro lado, o uso de

informação estequiométrica e a análise de espaços vetoriais convexos, como por

exemplo na análise de modos elementares de fluxo‡, permite prever corretamente

vias metabólicas. Contudo, esta abordagem não está preparada para o estudo de

redes metabólicas de grande dimensão, razão pela qual os métodos baseados em

∗do inglês Systems Biology
†do inglês constraint-based analysis
‡do inglês elementary flux modes
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teoria de grafos têm vindo a ser desenvolvidos de modo a preencher os requisitos

necessários na área de Biologia de Sistemas para o estudo de redes metabólicas à

escala genómica.

Na segunda parte da minha tese, eu apresento dois dos primeiros métodos,

baseados na análise de modos elementares de fluxo, que conseguem calcular vias

metabólicas em grandes redes metabólicas: o método K-shortest EFMs e o método

EFMEvolver. Estes métodos são um contributo importante para o enriquecimento

das ferramentas dispońıveis para o estudo da biologia celular, mais precisamente

do metabolismo. O uso de conceitos de otimização é extremamente importante

para poder focar determinadas soluções do espaço vetorial e desta forma, lidar

com a natureza combinatória dos modos elementares de fluxo.

Nesta parte da tese, eu exploro também a aplicabilidade destes métodos novos

no estudo de problemas da área de Biotecnologia, nomeadamente, no estudo

das vias metabólicas envolvidas na produção de L-lisina em dois microrganismos,

Escherichia coli e Corynebacterium glutamicum. Lisina é um aminoácido essencial

nos humanos e de enorme importância económica. O método K-shortest EFMs

prevê as vias metabólicas mais curtas que levam a cabo a conversão de glucose em

lisina e de relevância biológica. Por outro lado, o método EFMEvolver consegue

calcular um maior número de modos elementares de fluxo, incluindo os mais curtos.

Todas estas vias metabólicas podem ser divididas em quatro partes com diferentes

funções, tais como o catabolismo da glucose ou a śıntese de lisina.

Na última parte da minha tese, eu dou uma visão geral sobre os desenvolvi-

mentos recentes na reconstrução de redes metabólicas, na análise baseada em

restrições, assim como, alguns tópicos ainda em aberto. Perspetivas sobre futuras

extensões da análise baseada em restrições ao estudo de organismos multicelulares

são apresentadas. No final da tese, eu discuto algumas das posśıveis estratégias

para a integração de dados experimentais na análise de modos elementares de fluxo

e dou algumas ideias para futuros melhoramentos no cálculo de modos elementares

de fluxo com vista a esta integração.
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Chapter 1

Introduction

Make everything as simple as possible,

but not simpler.

-Albert Einstein

The concept of a metabolic pathway has been changing since the discovery of

the first pathways. In the second half of the 18th century, Louis Pasteur showed

that the conversion from sugars into ethanol and lactic acid is carried anaerobically

by microorganisms. Moreover, he showed that in the presence of oxygen the

growth yield on sugar was up to 20 times greater aerobically than anaerobically

(Barnett, 2005). The sequence of enzymatic reactions carrying the anaerobic

conversion of sugars into ethanol or lactic acid was only complete in the 1930s

with the establishment of glycolysis as a pathway catabolyzing carbohydrates (also

named the Embden-Meyerhof-Parnas pathway).

At that time, researchers had no access to isolated enzymes. Instead, they

used yeast juice or muscle extracts. The first crystallized enzyme, an urease, was

obtain by Sumner (1926), even though these findings were not initially accepted

by the scientific community (cf. Sumner, 1937). By 1938, already 10 enzymes were

successfully crystallized including one of the enzymes of glycolysis, the alcohol

dehydrogenase (Northrop and Herriott, 1938). Moreover, cellular processes such

as respiration and fermentation were initially quantified by measuring the rates of
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gas exchange using the Warburg manometer (Barnett, 2005; Krebs, 1979). The

manometer was later replaced by spectrophotometers, these allowing to quantify

the amount of reduced pyridine nucleotides (Krebs, 1979).

The first formulation of the main aerobic pathway for glucose catabolism, later

named the tricarboxylic acid cycle (TCA cycle; or also known as Krebs cycle), was

published in 1937 by Krebs and Johnson (reprinted in Krebs and Johnson, 1980).

This initial scheme, describing the oxidation of carbohydrates in pigeon breast

muscle, would be subsequently elaborated but the essential aspects remained. The

conclusive evidences of this cycle and its functioning were obtained some decades

later with the introduction of isotopic labeling techniques (cf. Barnett, 2005).

In the second half of the 20th century, the discovery of the structure and infor-

mation coding of DNA enabled the development of the recombinant technology.

This technology made microorganisms more amenable to manipulations laying

down the foundations of a new field known as metabolic engineering (Bailey,

1991). Moreover, as the details on the central carbon metabolism were becoming

increasingly clear and the aspects of metabolic regulation were starting to be charac-

terized, biochemists wanted to understand the dynamics of metabolic fluxes. More

precisely, their goal was to predict the rate limiting step in a metabolic pathway

and therefore, avoiding complex and time consuming genetic manipulations.

The initial steps towards the quantification of metabolism dynamics were

carried out in the 1960s by Higgins, who proposed a quantitative expression for

the influence of an enzyme on the flux, the control strength (cf. Heinrich et al.,

1977; Fell, 1992). One decade later, two groups independently developed a theory

to explain flux control, later known as Metabolic Control Analysis (MCA) (Kacser

and Burns, 1973; Heinrich and Rapoport, 1974a,b). The summation theorem and

the connectivity theorem are two of the most important outcomes of this theory.

From the first theorem, one enzyme could not be said to be rate-limiting because

there is a proportional relationship between the activity of an enzyme and the

pathway flux. The second theorem explains how the enzyme kinetic properties
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impact the flux control. For further details on MCA see Heinrich and Schuster

(1996) or Fell (2003).

The development of MCA can be associated with a primordial stage of the

systems biology field, more precisely the systems biology of metabolic networks

(Fell, 2005; Westerhoff and Hofmeyr, 2005). Indeed, the exact moment when the

field of systems biology was created cannot be precisely defined (Westerhoff and

Alberghina, 2005). The main agreement is that systems biology aims at discovering

the principles underlying the emergence of functional properties of living organisms

by investigating the interactions between the components of cellular networks and

by the integration of computational methods with experimental efforts (Westerhoff

and Alberghina, 2005; Klipp et al., 2009). With MCA, metabolism was starting to

be seen as a network of metabolites interconnected through enzymatic reactions,

from which general laws could be extracted and therefore, MCA is also part of

systems biology.

One major drawback of kinetic modelling is the lack of kinetic data for the

analysis of large metabolic networks. This limitation was not compatible with

the need to understand the impact of genetic manipulations carried in metabolic

engineering. Thus, a qualitative but systematic study of metabolic networks

was required. Seressiotis and Bailey (1986) presented the first algorithm and

database for computing metabolic pathways. The algorithm of Seressiotis and

Bailey (1986), based on the concepts of artificial intelligence, searched for sequences

of enzymes converting a source metabolite to a target metabolite that fulfill the

stoichiometric constraints of the reaction network. An initial database containing

the description of 70 enzymes and approximately 100 substances (Seressiotis and

Bailey, 1986) was later extended to 90 enzymes and 120 substances (Seressiotis

and Bailey, 1988). Around the same time, the BRENDA (BRaunschweig ENzyme

DAtabase) database was founded with the objective of collecting enzymatic and

metabolic information from the literature (Schomburg et al., 2002). BRENDA is

nowadays one of the most important databases storing kinetic data from thousands
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of enzymes under several experimental conditions.

Few years later, Mavrovouniotis et al. (1990) presented an improved algorithm

for computing metabolic pathways. The main advantage of this algorithm was

that intermediate pathways that did not necessarily deal with the source and

target compounds, were kept and extended during the search process. These

pathways would be combined, in a later stage, with other solutions and hence,

assuring that all the possible pathway combinations were explored. The network

analyzed by Mavrovouniotis et al. (1990) was much larger than the ones used by

Seressiotis and Bailey (1988), having more than the double number of reactions,

220 reactions, and around 4 times more metabolites, 400 metabolites.

The methods of Seressiotis and Bailey (1988) and Mavrovouniotis et al. (1990)

were pioneering in what regards the computation of metabolic pathways. These

methods were capable of computing genetically independent pathways fulfilling

all stoichiometric constraints of the network. In other words, the support of the

reaction set, corresponding to each pathway, is not a proper superset of the support

of any other pathway, meaning that each pathway could not be decomposed into

a smaller subset without violating the stoichiometric constraints. Nevertheless,

the mathematical background of these methods was still very weak.

In the beginning of the 1990s, the new field of metabolic pathway analysis was

created with the objective of obtaining a mathematical definition of metabolic

pathways present in large networks of enzymatic reactions. The study of the struc-

tural properties of reaction networks, namely the network invariants (Lautenbach,

1973; Reder, 1988) and extreme currents (Clarke, 1988; Schuster and Schuster,

1993), served as a basis for the development of new concepts like elementary flux

modes, extreme pathways and minimal T-invariants, see below. These theoretical

frameworks enriched the modelling of metabolism in systems biology.

Given a metabolic system delimited by fixed boundaries, the set of enzymatic

reactions that occur in it can be mathematically represented as a matrix, the

stoichiometric matrix (Figure 1.1 (a) and (b)). The negative coefficients of the
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stoichiometric matrix correspond to the amounts of substrate consumed whereas

the and positive ones to the amounts of product formed, in each enzymatic

reaction. Since the time constants associated with growth are much larger than

those associated with individual reaction kinetics, it is assumed that the metabolic

system works at steady state. Although, in some cases, this assumption is not

justified, in many other cases, it is. For example, when microorganisms are growing

in a chemostat.

Due to thermodynamic constraints some reactions are irreversible and conse-

quently, their fluxes can only have a positive value. Additional simplifications

to the systems model can be performed in order to reduce the complexity of

the problem, such as setting currency metabolites like cofactors to external (i.e.,

removing them from the stoichiometric matrix). In convex analysis, the solution

space of this linear algebraic problem can be represented as a polyhedral cone, also

know as a flux cone (Figure 1.1 (c)). If all reactions of the metabolic system are

irreversible the flux cone is pointed, whereas in the presence of reversible reactions

the cone is non-pointed only if there exists a reversible elementary flux mode

(Wagner and Urbanczik, 2005; Larhlimi and Bockmayr, 2009).

According to the definition, an elementary flux mode is a minimal set of enzy-

matic reactions for which there is a flux distribution that fulfills both constraints,

steady state and irreversibility (Schuster and Hilgetag, 1994; Schuster et al., 2002a).

The edges (or extreme rays) of the flux cone are elementary flux modes because

they cannot be further decomposed (Pfeiffer et al., 1999), for example, the EFMs

1, 3 and 5 in Figure 1.1 (c). There are, however, additional elementary flux modes

that lay in the interior of the cone as a result of the convex combination of other

elementary flux modes (Wagner and Urbanczik, 2005; Larhlimi and Bockmayr,

2009), for example, EFMs 2 and 4 in Figure 1.1 (c). The biological interpreta-

tion of an elementary flux mode is very close to the biochemical concept of a

metabolic pathway, which helps to understand the success of this approach in

the field of systems biology. The concept of elementary flux modes has been
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applied in the identification of new metabolic pathways (Poolman et al., 2003).

For example, a previously hypothesized pathway involving the glyoxylate shunt,

some anapletoric reactions and the TCA cycle (Liao et al., 1996), now known as

the phosphoenolpyruvate-glyoxylate cycle (PEP-glyoxylate cycle), was predicted

by elementary flux modes analysis (Schuster et al., 1999) and later experimentally

identified in hungry Escherichia coli (Fischer and Sauer, 2003). Moreover, it

has been applied to the study of enzyme deficiencies and regulation of metabolic

networks (Stelling et al., 2002; Cakir et al., 2004; Schuster and Kenanov, 2005) and

to access structural properties of the metabolic networks such as the robustness

and fragility (Stelling et al., 2002; Wilhelm et al., 2004; Behre et al., 2008). Yet,

elementary flux mode analysis has also an important role in metabolic engineering,

in particular, it has been used in the optimization of biotechnological relevant

strains (Trinh et al., 2008; Trinh and Srienc, 2009; Teusink et al., 2009). In the

first part of this thesis, I show how a biological question such as the conversion of

even-chain fatty acids into sugars, can be modeled using elementary flux mode

analysis. This approach together with biochemical knowledge acquired during the

last century, provides a fast and comprehensive way of explaining why certain

conversions cannot occur in metabolism, solving in a few months a question that

took more than half a century to be answered.

The initial algorithms for computing elementary flux modes were based on

the Gaussian elimination method with appropriate extensions to comply with

irreversibility and non-decomposability (Schuster and Hilgetag, 1994; Pfeiffer et al.,

1999). Later, the running time for computing elementary flux modes was decreased

with the introduction of the null space algorithm (Wagner, 2004; Urbanczik and

Wagner, 2005) followed by a decrease in the memory requirement achieved with

the representation of elementary flux modes as bit patterns (Gagneur and Klamt,

2004; Klamt et al., 2005). Currently, the most efficient algorithm to compute

elementary flux modes makes use of a new recursive enumeration strategy and

of bit pattern trees to speed up the search of subsets (Terzer and Stelling, 2006,
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Figure 1.1: Mathematical representation of a metabolic system through the convex basis. (a)
Metabolic systems delimited by boundary (dashed blue lines). Additional assumption considering
currency cofactors as external (dashed green lines). (b) Mathematical representation of reaction
equations through the stoichiometric matrix and constraints defining the flux cone. Fluxes
associated to irreversible reactions (Enz1, Enz2, Enz3 and Enz4) are constraint to the positive
orthant. (c) Visualization of mathematical representation of the metabolic system: the solution
space in the form of a flux cone; the elementary flux modes - red arrows; a flux distribution -
blue arrow. (d) A flux distribution existing in the solution space. This flux distribution is not
an elementary flux mode because it can be decomposed in two simpler solutions, elementary flux
mode (e) and (f) which cannot be simplified without violating the steady-state constraint.

2008). A list of available software tools for elementary flux mode analysis is

presented in Table 1.1. These tools also serve as computational library for other

tools in systems biology. Unfortunately, there is not thorough analysis on the
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complexity of these algorithms, in spite the recent efforts to define the complexity

class associated with the enumeration of elementary flux modes, see below.

Tool Link Reference

CellNetAnalyser
www.mpi-magdeburg.mpg.de/ pro-
jects/cna/cna.html

Klamt et al. (2007)

COPASI www.copasi.org Hoops et al. (2006)

efmtool www.csb.ethz.ch
Terzer and Stelling
(2008)

METATOOL
http://pinguin.biologie.uni-
jena.de/bioinformatik/networks/

von Kamp and
Schuster (2006)

ScrumPy
http://mudshark.brookes.ac.uk/index
.php/Software/ScrumPy

Poolman (2006)

SNA
http://www.bioinformatics.org/ pro-
ject/?group id=546

Urbanczik (2006)

YANAsquare
http://yana.bioapps.biozentrum.uni-
wuerzburg.de

Schwarz et al. (2007)

Table 1.1: Available tools for Elementary Flux Mode Analysis.

All these ’classical’ approaches, implemented in the tools listed in Table 1.1,

perform the full enumeration of elementary flux modes present in a given metabolic

system. This fact becomes problematic when larger metabolic systems are consi-

dered because the number of elementary flux modes increases exponentially with

the network size (Klamt and Stelling, 2002). Indeed, the combinatorial complexity

of metabolic pathways was well explored in the algorithm of Mavrovouniotis et al.

(1990), to assure the complete enumeration of all metabolic pathways. However,

with the increase of the network size this property of metabolic pathways represents

a major bottleneck in metabolic pathway analysis.

The concept of extreme pathways is similar to that of elementary flux modes.

In the extreme pathways approach the metabolic network is reconfigured. More

precisely, reversible reactions inside the metabolic system are decoupled into two

irreversible reactions (Schilling et al., 2000; Klamt and Stelling, 2003) whereas

reversible reactions that cross the boundary of the system, called exchange reactions,
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remain as reversible reactions, when applicable. Due to this reconfiguration,

extreme pathways correspond to the extreme rays of the reconfigured polyhedral

flux cone (Wagner and Urbanczik, 2005). The main advantage of this approach

over elementary flux modes is that the number of extreme pathways is smaller

than the number of elementary flux modes if the exchange reactions of the system

are reversible (Klamt and Stelling, 2003; Papin et al., 2004). However, when

combining extreme pathways together some reversible exchange reactions can

cancel out, limiting the full evaluation of the network properties (Klamt and

Stelling, 2003; Papin et al., 2004). For a detailed comparison between elementary

flux modes and extreme pathways see Klamt and Stelling (2003) or Wagner and

Urbanczik (2005).

Recently, Acuña et al. (2009) have shown that counting the number of elemen-

tary flux modes given an input metabolic system is #P-complete (read ’number

P-complete’), by reduction to the problem of counting perfect matchings in bipar-

tite graphs. This class is associated with enumerating problems and is designed

to reflect the additional difficulty of the enumeration (Valiant, 1979b,a; Garey

and Johnson, 2000). Indeed, there have been attempts to predict the number of

elementary flux modes (Klamt and Stelling, 2002), or of extreme pathways (Yeung

et al., 2007) given an input network, but these values remain rough estimations.

Moreover, finding the shortest elementary flux mode is NP-hard§ (Acuña et al.,

2009). Unfortunately, very few is known about the complexity of enumerating all

elementary flux modes, besides that the main hurdle is when irreversible reactions

are added to the metabolic system (Acuña et al., 2009; Larhlimi and Bockmayr,

2009).

Another way of representing a metabolic system is that of a graph. The simplest

graph one can use to describe a metabolic network is the unipartite graph in which

nodes correspond to metabolites and reactions to edges connecting two nodes each,

or vice versa. These are often called compound graphs in case metabolites are

§the initials NP stand for nondeterministic polynomial
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nodes or reaction graphs on the other case (cf. Lacroix et al., 2008). Alternative

representations are hypergraphs, where edges (reactions) connect two or more

nodes (metabolites) and bipartite graphs, where reactions and metabolites are two

different types of nodes (Klamt et al., 2009). In the latter, the edges may be seen as

the interaction between metabolites and the enzymes. A particular bipartite graph

representation of a metabolic network is done when applying the theory of Petri

nets (Petri, 1962) to the study of metabolic networks (Reddy et al., 1993; Hofestädt,

1994). In Petri net analysis, the nodes corresponding to the metabolites are called

places and the reaction nodes are the transitions (see Figure 1.2). In the Petri

net approach all reversible reactions are decoupled into two irreversible reactions,

including exchange reactions (as opposite to extreme pathway approach where only

internal reactions are decoupled) and consequently, two different transitions are

associated to them. The quantities of each metabolite existing in a given moment

correspond to tokens and the distribution of tokens over the places represents the

marking of the network. The marking of the network characterizes a certain state

of the metabolic system (Figure 1.2). In order to account for the stoichiometric

constraints, the arcs (i.e., edges of the graph) connecting a place to a transition

have given weights which equal the stoichiometric coefficients of the metabolites

in the reaction equations. Thus, the transition can only be fired when the correct

proportion of tokens in the pre-places is available and fulfills the amount of tokens

required by the arcs. When a transition is fired, the tokens from the pre-places

can flow through the transition towards the post-places.

According to the Petri net analysis, a metabolic pathway is defined as a minimal

T-invariants (also known minimal-support invariant) (Reddy et al., 1993). In

other words, the support of a T-invariant corresponds to the firing count vector of

transitions which have to fire, in order to obtain the initial marking of the Petri

net again. This support is said to be minimal if it does not contain any other

trivial support vector. The computation of the minimal T-invariant requires the

use of the incidence matrix (Lautenbach, 1973), which in constraint-based analysis
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Figure 1.2: Petri net representation of the metabolic system depicted in Figure 1.1 (a) with a
given marking. Squares correspond to the transitions, ellipses to places and the dots are the
tokens. Artificial transitions without pre-places are used in order to model the environment
(iM1,iM2 and oM8).

corresponds to the stoichiometric matrix. Indeed, it can be shown that when all

reactions are irreversible the minimal-support invariants correspond to elementary

flux modes (Koch et al., 2005).

A new revolution in biology occurred in the middle of the 1990s, giving a

big impulse to the holistic thinking of systems biology. For the first time a

genome of a free living organism, Haemophilus influenzae Rd, was completely

sequenced (Fleischmann et al., 1995) followed by several others, in particular the

genomes of the model organisms Saccharomyces cerevisiae (Goffeau et al., 1996)

and Escherichia coli (Blattner et al., 1997). Moreover, the data generated by the

sequencing technology boosted the development of metabolic databases. The aim

in building databases like the Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Goto et al., 1997; Ogata et al., 1999) and the EcoCyc (Karp and Mavrovouniotis,

1994; Karp et al., 1996) is to merge this new genetic data with the metabolic

data generated during last century and by doing so, obtain further insight in

the function of the encoded genes. An additional role of these databases is to

collect published experimental data and to structure the metabolic knowledge in a

comprehensive manner, where metabolic pathways are at the higher functional

level (Kanehisa et al., 2006; Kanehisa and Goto, 2000; Karp, 2001).
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With this increase in the amount of genomic and metabolic data available

through databases like KEGG, BRENDA and EcoCyc, the reconstruction of

larger metabolic networks modelling the entire metabolism of an organism became

possible. These networks, so called genome-scale networks, contain the entire

metabolism encoded in the genome of a given organism and therefore, can be used

to assess the metabolic capabilities of that organism (Edwards and Palsson, 1999).

The first genome-scale networks of model organisms H. influenzae (Edwards and

Palsson, 1999), E. coli (Edwards and Palsson, 2000) S. cerevisiae (Förster et al.,

2003) were published by the turn of the 20th century, following a similar progress

to that of the published sequence genomes (Figure 1.3). An important feature of

these models is the definition of the biomass equation. This equation is specific

for each microorganism and aims at simulating the requirement in precursors,

co-factors and energy for the growth of the microorganism (Feist et al., 2007, 2009).

The reconstruction process has been reviewed elsewhere (Feist et al., 2009; Ruppin

et al., 2010) and there exists also a protocol for that (Thiele and Palsson, 2010).
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Figure 1.3: Progress of the published genome sequences and reconstruction of genome-scale
networks. Data sources: www.genomesonline.org and Feist et al. (2009)
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Organism Genes React. Metabol. Ref.
Escherichia coli 1260 2077 1668 Feist et al. (2007)

Saccharomyces cerevisiae 750 1149 1061 Duarte et al. (2004)
Arabidopsis thaliana -- 1406 1253 Poolman et al. (2009)

Homo sapiens 1496 3311 2766 Duarte et al. (2007)

Table 1.2: Genome-scale networks of some model organisms and their properties in terms of
genes, reactions and metabolites.

The size and complexity of these networks (see Table 1.2) limit their analysis

using metabolic pathway analysis methods like elementary flux modes and extreme

pathways, as mentioned above. The largest model, in the sense of cell-scale

modelling, where these methods have been successfully applied is the human red

blood cell (erythrocyte) metabolic network (Wiback and Palsson, 2002; Cakir

et al., 2004; Schuster and Kenanov, 2005). However, erythrocytes have a reduced

metabolism when compared with that of E. coli or yeast. The full enumeration of

elementary flux modes in E. coli is often performed in a medium-scale network,

focusing on the central carbon metabolism (Klamt and Stelling, 2002; Trinh et al.,

2008; Terzer and Stelling, 2008). There have been attempts to perform elementary

flux mode or extreme pathway analysis in large-scale metabolic networks such as the

ones from the human pathogens Mycoplasma pneumoniae, Helicobacter pylori or

H. influenzae. In order to achieve that, the complexity of the network was reduced

using some of the following strategies: use a small set of external metabolites

to allow the computation of pathways consuming and producing only a specific

set of metabolites (Price et al., 2002; Terzer and Stelling, 2008); subdivide the

metabolic network into smaller subnetworks, analyzing each subsystem separately

(Schilling and Palsson, 2000; Schuster et al., 2002b); use simplified representations

of pathway charts from KEGG database to compute functional modes (Schwarz

et al., 2007). However, such approaches are prone to bias, leading to incorrect

predictions (Kaleta et al., 2009b). The second part of the work presented in this

thesis, deals exactly with the computation of elementary flux modes in genome-

scale metabolic networks. In particular, the methods presented here allow to

compute and sample from the solution space, elementary flux modes that are
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involved in a particular biological process.

The main method supporting the use and further development of genome-scale

models is Flux Balance Analysis (FBA) (Edwards and Palsson, 1999, 2000). The

first applications of FBA were performed in small models of bacterial and animal

metabolism (Papoutsakis and Meyer, 1985; Fell and Small, 1986; Watson, 1986;

Majewski and Domach, 1990). The fact that FBA relies on linear programming to

solve a given optimization criteria allows the scalability of this method to large-

scale networks. In FBA, the same steady state and irreversibility constraints from

methods based in convex analysis are used (see Figure 1.1 (b)). Additional con-

straints limit the reaction fluxes to a physiological admissible value and constraint

the uptake/excretion rates of some metabolites (Savinell and Palsson, 1992a). The

inclusion of these constraints changes the shape of the solution space to a bounded

cone, or polytope (Price et al., 2004). Moreover, the inclusion of uptake/excretion

rates allows the integration of experimentally measured fluxes, like the uptake of

carbon source and the secretion of by-products which usually can be measured

(Savinell and Palsson, 1992b).

Another important aspect of FBA is the objective function because it can

be used to explore the metabolic capabilities of the network by focusing on a

given physiological state of the cell, such as the optimal biomass production, or

maximization of adenosine triphosphate (ATP) production. The definition of the

objective function is one of the bottlenecks in FBA because microorganisms can

have complex objectives requiring the optimization of more than one function

or, in some cases, the physiological state of the cell is better characterized by

suboptimal solutions (Schuster et al., 2008; Schuetz et al., 2007; Teusink et al.,

2009). These issues are reviewed in more detail in Chapter 5. On the other hand,

the solution obtained with FBA corresponds to an optimal flux distribution and

not exactly to a metabolic pathway. Indeed, the optimal flux distribution can be

a combination of several elementary flux modes or extreme pathways (Wiback

et al., 2003). Moreover, there are, in general, several alternative optimal flux
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distributions for a given objective function (Lee et al., 2000; Mahadevan and

Schilling, 2003). The methods presented in this thesis can be extended in order

to cope with the alternative optimal flux distributions or with the suboptimal

solutions. They can be used to predict which elementary flux modes are likely to

take part in them or which are responsible for the suboptimal states.

Nevertheless, FBA has a broad range of applications in metabolic engineering,

like strain optimization and growth medium design, in medicine, such as drug

target identification or development of tissue specific metabolic networks, as

well as in systems biology, like genome annotation refinement and analysis of

high-throughput data (cf. Feist and Palsson, 2008; Raman and Chandra, 2009;

Gianchandani et al., 2010). Furthermore, FBA is a central framework to many

other methods of constraint-based analysis enabling the study of genome-scale

metabolic networks in terms of their topologies, the use of these networks for strain

optimization or for integration of regulatory data (cf. Price et al., 2004; Feist and

Palsson, 2008; Gianchandani et al., 2010). Indeed, these methods together with

genome-scale networks are a paradigm in systems biology (Westerhoff and Palsson,

2004).

Recently, more graph theoretical approaches have been developed to derive

properties from metabolic networks through the study of its topology. Jeong et al.

(2000) have shown that metabolic networks have similar topological features to

the real-world networks, such as friendship networks or electrical power grids,

being quite distinct from random networks. The topology of these networks was

named scale-free and the connectivity of metabolites in these networks follows a

power-law distribution, meaning that any two nodes in the system can be con-

nected by relatively short paths along existing links. This structural property

would help to explain the robustness and error-tolerance of metabolic networks

and support the hypothesis that these networks evolved towards the minimization

of transition time between metabolic states (Wagner and Fell, 2001). Moreover,

the metabolic networks show a hierarchical structure with an embedded modu-
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larity (Ravasz et al., 2002). The modularity of metabolic networks could have

emerged through copying and reusing existing modules and motifs, generating the

scale-free topology where highly connected metabolites, also known as network

hubs (Table 1.3), play an important role. This hierarchical view of metabolism

corroborates with the hypothesis that intermediate metabolism recapitulates the

evolution of biochemistry suggested by Morowitz (1992) in which some of these

metabolic hubs were present in early life forms.

E. coli S. cerevisiae A. thaliana H. sapiens
Metab. C [%] Metab. C [%] Metab. C [%] Metab. C [%]

H+
[c] 43.65 H+

[c] 37.65 O2 13.73 H+
[c] 18.76

H2O[c] 25.36 H2O[c] 19.22 NADPH 13.02 H2O[c] 12.2

ATP[c] 16.31 ATP[c] 12.35 NADP+ 13.02 ATP[c] 6.86

H+
[p] 13.72 H+

[m] 9.13 ATP 10.53 H+
[g] 6.83

Pi[c] 13.04 ADP[c] 8.78 CO2 10.31 H+
[m] 6.28

ADP[c] 12.56 Pi[c] 8.26 PPi 8.61 H2O[l] 5.59

H2O[p] 8.13 H+
[e] 6.7 ADP 8.32 Pi[c] 5.44

PPi[c] 6.26 PPi[c] 6.17 Pi 8.25 ADP[c] 5.01

NAD+
[c] 5.58 NADP+

[c] 6 NAD+ 7.33 Na+
[c] 4.17

NADH[c] 5.25 NADPH[c] 5.83 NADH 7.11 Na+
[e] 4.08

Table 1.3: Top 10 of the highly connected metabolites in four genome-scale networks presented
in Table 1.2. The first columns corresponds to metabolite abbreviations and column C to the
metabolite relative connectivity in percentage (i.e., the percentage of reactions in the genome-
scale network where a given metabolite takes part as substrate or product). The metabolite
name abbreviation is followed by the compartment information, for compartmentalized models.
Compartment nomenclature: [c] - cytoplasm, [e] - extra cellular compartment, [p] - periplasm,
[m] - mitochondrion, [g] - golgi apparatus, [l] - lysosome.

The central question of my PhD work is, How to predict metabolic pathways in

large-scale metabolic networks? We have seen throughout this Introduction that

the definition of a metabolic pathway has been changing during the last century.

Looking at this definition in biochemistry textbooks we find:
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Metabolic pathways are series of consecutive enzymatic reactions

that produce specific products.

Voet and Voet, Biochemistry, 3rd edition, 2004

Metabolism is essentially a linked series of chemical reac-

tions that begins with a particular molecule and converts it into

some other molecule or molecules in a carefully defined [pathway].

Berg, Tymoczko and Stryer, Biochemistry, 6th edition, 2007

The thousands of enzyme-catalyzed chemical reactions in cells

are functionally organized into many different sequences of

consecutive reactions called pathways, in which the product of

one reaction becomes the reactant in the next.

Nelson and Cox, Lehninger: Principles of Biochemistry, 3rd edition, 2003

We have also seen that in systems biology there are three different mathematical

frameworks for defining metabolic pathways (Figure 1.4), namely: graph theoretical

methods, constraint-based analysis and kinetic modelling. Note that this division

is not straightforward, at least concerning the division between graph-theoretical

methods and constraint-based analysis. More precisely, in the Petri net approach

the metabolic network is treated as bipartite graph but, the methodology to

compute the minimal T-invariants is similar to the one used in constraint-based

modeling, requiring also the stoichiometric information in form of an incidence

matrix. The ideal method to predict metabolic pathways would be by means of

kinetic modelling. However, the lack of data has slowed down the development of

large-scale kinetic models. Thus, in this work I will focus mainly on constraint-

based analysis, more precisely, elementary flux mode analysis, and a comparison

between that and graph theoretical approaches will be carried.

In Chapter 2, I will show how to formulate a metabolic model for studying a

specific biochemical problem. Moreover, I will compare the elementary flux mode
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Figure 1.4: Schematic positioning of three different approaches for metabolic pathway prediction
according to data requirement/computational demands and the quality of the results obtained.

approach with two recently developed methods for metabolic pathway prediction

based on graph theory, PathFinding (Croes et al., 2005, 2006) and Pathway

Hunter Tool (Rahman et al., 2005). Two benchmark problems illustrating well

known biochemical problems were used in this comparison. One of the problems

corresponds to an old question in biochemistry dealing with the conversion of

fatty acids into sugars, which was answered by Weinman et al. (1957). Even

though these benchmark problems put in evidence some of the issues associated

with graph theoretical methods, also pointed out by Arita (2004), the controversy

around their use in the prediction of metabolic pathways remained (Faust et al.,

2009a). Thus, a third benchmark problem with applications in medicine and that

can be studied at the cell scale by elementary flux modes analysis is presented in

the second part of Chapter 2. This benchmark problem shows the role of adenine

supply to human erythrocytes and will be analyzed more in detail throughout the

Discussion.

In Chapter 3, the K-shortest EFM method is presented. This method allows

for the first time the computation of elementary flux modes directly from a genome-

scale network. Taking into account the problems mentioned above relative to

the full enumeration of elementary flux modes in large-scale networks and to the

issues associated with complexity-reduction strategies, this new method marks
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a milestone in the development of algorithms for the computation of elementary

flux modes. The integer linear programming formulation plays an important

role in the K-shortest EFM method, allowing to focus only on the solutions of

interest avoiding the computation of all elementary flux modes. We first test the

K-shortest EFM in a small metabolic network in order to evaluate its capabilities

in enumerating all elementary flux modes, or simply a subset of elementary flux

modes of interest given an input metabolic system. Then, we explore the potential

application of this method in the fields of biotechnology and metabolic engineering,

in particular, in the analysis of the pathways leading to the synthesis of the amino

acid L-lysine. Lysine is an essential amino acid for humans and is acquired in

the diet. Moreover, the industrial production of lysine is around 750.000 tons per

year (Wittmann and Becker, 2007).We analyze the lysine biosynthesis pathways

in two genome-scale metabolic networks, the curated network of E. coli (Feist

et al., 2007) and the initial draft of the genome-scale network of Corynebacterium

glutamicum (Kjeldsen and Nielsen, 2008). The computed elementary flux modes

address very well the pathways already described in literature. Moreover, the

set of reactions in these elementary flux modes can be subdivided into functional

subsets carrying out the catabolism of glucose, the biosynthesis of lysine, the

assimilation of ammonium and the balancing of cofactors.

The K-shortest EFM method leads to a paradigm shift in the algorithms

computing elementary flux modes. After this major breakthrough, my attention

focused on improving the running time of the enumeration process and the sampling

of elementary flux modes. This effort resulted in the development of a new and

more efficient method, the EFMEvolver, that is presented in Chapter 4. This

method combines the genetic algorithm framework with linear programming.

Genetic algorithms are often used in optimization problems, in particular for multi-

objective optimizations, and their main feature is the efficiency in exploring the

solution space (Eiben and Smith, 2003). Furthermore, they have been successfully

applied in many areas of biology, for example in protein design (Voigt et al.,
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2002), strain optimization (Patil et al., 2005), RNA structure prediction (Kashtan

et al., 2007) and also for pathway analysis (Boghigian et al., 2010). The linear

program formulation allows to efficiently compute a single elementary flux mode

given an input network. Consequently, we extend the already broad spectrum of

applications of linear optimization in systems biology.

The efficiency of the EFMEvolver is initially tested in a medium-sized metabolic

network developed by Behre et al. (2008) where all the elementary flux modes can

be enumerated. Again, the genome-scale models of E. coli and C. glutamicum,

used in Chapter 3, are important to access the computational power of this new

method. The degree of completion of both genome-scale networks is evident from

this analysis. While for the network of C. glutamicum the typical saturation curve

of genetic algorithms is apparent in all simulations, for E. coli we are far from

computing all the elementary flux modes.

In Chapter 5, a review on the reconstruction of genome-scale metabolic models

and on the use of constraint-based analysis to study metabolic network properties

is carried. The issues associated with constraint-based analysis are discussed

more in detail. Alternative modelling frameworks based in game theory are

put forward highlighting the positive contribution of this approach in the study

of metabolic robustness of microorganisms. New prospects in constraint-base

analysis are delineated, in particular, the application of this modelling tool to

study multi-cellular organisms.



21

Chapter 2

Benchmarking metabolic

pathway analysis tools

Recently, graph theoretical methods have been developed to study the topology

of large-scale metabolic networks, avoiding the issue of enumerating all possible

pathways using convex analysis. In de Figueiredo et al. (2008), two recently

developed tools for metabolic pathway prediction, PathFinding (Croes et al.,

2005, 2006) and Pathway Hunter Tool (Rahman et al., 2005), are compared with

METATOOL (von Kamp and Schuster, 2006). Relevant problems in biology

are used as benchmarks to access the quality of the solutions produced by these

methods. In this work, I developed the metabolic models representing the biological

problems and formulated the same problems in terms of a search query given as

input to the graph based tools. I performed all the simulation and analysis of the

results. Moreover, I was involved in the production of the manuscript.

Due to a mistake by the production office of Bioinformatics, the Figure 3

in de Figueiredo et al. (2008) was incorrectly published. Bioinformatics published

the complete article again as erratum in the Bioinformatics’ first issue of 2009

(de Figueiredo et al., 2009b). Here, I decided to present the original article

published in 2008 and an erratum of Figure 3.

In (de Figueiredo et al., 2009c), we express our main concern regarding the use
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of PathFinding for the prediction of metabolic pathways, given the controversy

around the comparison performed in de Figueiredo et al. (2008) (Faust et al.,

2009a). Additionally, we show that there are other biological problems that can be

used as benchmark and we clarify the limitations of elementary-flux mode analysis

and of PathFinding. We also give some suggestions for improving the comparison

of new pathway prediction methods (de Figueiredo et al., 2009c).

The Supplementary material of de Figueiredo et al. (2008) can be found on

pages 109 ff.
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ABSTRACT

Motivation: In recent years, several methods have been proposed
for determining metabolic pathways in an automated way based
on network topology. The aim of this work is to analyse these
methods by tackling a concrete example relevant in biochemistry.
It concerns the question whether even-chain fatty acids, being the
most important constituents of lipids, can be converted into sugars
at steady state. It was proved five decades ago that this conversion
using the Krebs cycle is impossible unless the enzymes of the
glyoxylate shunt (or alternative bypasses) are present in the system.
Using this example, we can compare the various methods in pathway
analysis.
Results: Elementary modes analysis (EMA) of a set of enzymes
corresponding to the Krebs cycle, glycolysis and gluconeogenesis
supports the scientific evidence showing that there is no pathway
capable of converting acetyl-CoA to glucose at steady state. This
conversion is possible after the addition of isocitrate lyase and malate
synthase (forming the glyoxylate shunt) to the system. Dealing with
the same example, we compare EMA with two tools based on graph
theory available online, PathFinding and Pathway Hunter Tool. These
automated network generating tools do not succeed in predicting
the conversions known from experiment. They sometimes generate
unbalanced paths and reveal problems identifying side metabolites
that are not responsible for the carbon net flux. This shows that, for
metabolic pathway analysis, it is important to consider the topology
(including bimolecular reactions) and stoichiometry of metabolic
systems, as is done in EMA.
Contact: ldpf@minet.uni-jena.de; schuster@minet.uni-jena.de
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
While the conversion of carbohydrates into fatty acids is
experimentally well established, the existence of the converse
transformation has long been discussed in biochemistry. This
question was posed around the turn of the 19th century by Chaveau.
While Pflüger stated that fat was the main source of sugar in diabetes,
Lusk wrote that this was a figment of imagination (cf. Weinman

∗To whom correspondence should be addressed.

et al., 1957). This controversy intensified in 1922 with the discovery
of insulin and the extended work on diabetes.

In the 1950s, experiments using a new method involving
isotopically labelled compounds started to reveal the mechanism
by which carbons of fatty acids are incorporated in carbohydrates.
Experiments showed that labelled carbons arrived at glucose when
the system was supplied with 14C-labelled fatty acids. The Krebs
cycle (tricarboxylic acid cycle) seemed to play a key role in this
process (Weinman et al., 1957). Nevertheless, these experiments
were not conclusive because the Krebs cycle, as other metabolic
pathways, does not operate alone and the net synthesis was yet to
be proved.

In 1957, the question around the net synthesis of carbohydrates
from fatty acids being the most important constituents of lipids
started being answered by Weinman et al., who formulated an
algebraical treatment of the problem and proved that fatty acids
cannot give rise to a net gain of carbohydrate running along the
Krebs cycle. The main conclusions from their work was that fatty
acids can enter in the metabolite pool of the Krebs cycle but the
net synthesis of glucose is due to an influx of other intermediates in
the Krebs cycle, such as amino acids or lactic acid (Weinman et al.,
1957).

Since fatty acids in living organisms usually contain an even
number of carbon atoms with the most common numbers being
16 and 18 (cf. Stryer, 1995), Weinman only analysed that case.
Here, we will do the same, by considering acetyl-CoA (AcCoA)
as the initial substrate. AcCoA results from the degradation of even-
chain fatty acids and ketogenic amino acids (cf. Stryer, 1995). In the
case where odd-chain fatty acids occur, such as in some plants and
marine organisms (cf. Voet and Voet, 2004), a minor fraction of the
products of β-oxidation of these acids is propionyl-CoA, which can,
via succinyl-CoA, be converted to pyruvate and, thus, to glucose.
Moreover, for both chain lengths, glucose can be produced from
glycerol, which is part of phospholipids and triglycerides.

Also in 1957, Kornberg and Madsen (1957) published a paper
describing the discovery of the ‘glyoxylate bypass’, an alternative
route from isocitrate to malate. The key enzymes in this pathway
are isocitrate lyase (formerly called isocitritase), which cleaves
isocitrate, and malate synthase (formerly called malate synthetase),
which catalyzes the condensation of AcCoA and glyoxylate to
malate. This new route enables the conversion of acetate—and
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therefore fatty acids—to carbohydrates with a stoichiometry of 1 mol
of oxaloacetate (OAA) per 2 mol of AcCoA.

This discovery reopened the question about the possibility of
transforming fatty acids into sugars, though in another perspective. It
was connected to the new question of whether the glyoxylate cycle
is present in humans. The first experiments showed the presence
of the glyoxylate cycle in microbes and plants (Kornberg and
Beevers, 1957; Kornberg and Madsen, 1957). Madsen was the
first to report that the glyoxylate cycle is not present in animal
tissue even under conditions in which one might expect it to
occur like hibernating mammals and chick embryos because these
must use their fat reservoirs (Madsen, 1958). The only clade of
animals where the glyoxylate shunt was detected is that of the
nematodes, where a bifunctional malate synthase/isocitrate lyase
enzyme occurs (Liu et al., 1995). The question around the presence
of the glyoxylate cycle in animal tissues remains open since
some authors claim the presence of isocitrate lyase and malate
synthase (Davis and Goodman, 1992; Ganguli and Chakraverty,
1961; Goodman et al., 1980; Jones, 1980; Morgunov et al., 2005;
Popov et al., 2005) although the coding sequence of these enzymes
in humans remains unknown and there is no homology with
known sequences. Kondrashov et al. (2006) found the sequence of
malate synthase, but not isocitrate lyase, in some animals besides
nematodes.

Today, there is increased knowledge of biochemical networks,
and genome-scale metabolic models have been established. But are
we able to really handle such networks? Researchers pay special
attention to topological properties of the metabolic model in order
to redefine what metabolic pathways are. Recently, several methods
have been proposed for determining metabolic pathways in an
automated way based on network topology (Beasley and Planes,
2007; Croes et al., 2005, 2006; Rahman et al., 2005; Schuster et al.,
1999, 2000). It is of interest to see whether these methods can
help answering the question posed in the title of this article and,
in particular for didactic purposes in biochemistry, to revisit the
study by Weinman et al. (1957).

The term ‘elementary flux mode’ refers to a minimal group of
enzymes that can operate at steady state with all the irreversible
reactions used in the right direction (Schuster et al., 1999, 2000).
If only the enzymes belonging to one elementary mode (EM)
are operative and, thereafter, one of the enzymes is inhibited,
then the remaining enzymes can no longer be operational because
the system cannot any longer maintain a steady state. Several
software tools were established for computing EMs, for example,
METATOOL 5.0 (von Kamp and Schuster, 2006). Elementary
modes analysis (EMA) has been applied to various systems (Cakir
et al., 2004; Carlson and Srienc, 2004; Poolman et al., 2003;
Schwartz et al., 2007; Stelling et al., 2002; Wilhelm et al., 2004).
Also the Krebs cycle, glyoxylate shunt and adjacent reactions have
been analysed by that method earlier, though not with the objective
of the present article (Schuster et al., 1999). A concept related to
that of EMs is that of extreme pathways (Schilling et al., 2000).
A comparison of the two concepts was made by Klamt and Stelling
(2003).

Any stationary flux distribution in the living cell is a linear
combination of EMs (Schuster et al., 1999). Therefore, if there is no
EM consuming a given substrate or synthesizing a desired product,
then we can conclude that there is no stationary flux distribution that
would be able to consume that substrate or leading to that product.

Graph theory is another approach to studying metabolic networks
based on the concept that these networks can be described as a
simple graph (where nodes and edges represent metabolites and
reactions, respectively) or as a bipartite graph (where two or more
nodes, metabolites, connect to a common node of a second type,
representing a reaction/enzyme). While EMA and graph-theoretical
analyses of metabolic networks use the same input information, they
usually produce different, complementary outputs (which should be
consistent, though). A general comparison between the two methods
can be found in Planes and Beasley (2008).

Based on graph-theoretical approaches, several computer
programs have been presented. Pathway Hunter Tool (PHT; Rahman
et al., 2005) and PathFinding (Croes et al., 2005, 2006) are freely
available web tools, which can be used to reconstruct and analyse
the shortest path connecting two metabolites. PHT uses a fingerprint
algorithm to calculate the similarity between two molecules and
in this way automatically assigns side metabolites (like ATP, ADP,
water). Then a breadth-first-search algorithm calculates the shortest
path between the seed and sink metabolites.

The approach underlying PathFinding (Croes et al., 2005, 2006)
is based on the connectivity of metabolites which is used to calculate
the weight of paths between two metabolites or two reactions.
Metabolites with a high connectivity will reduce the score of
the path. The reason is that cofactors such as ATP are usually
highly connected and should not be considered as intermediates on
metabolic paths.

Here, we compare different tools for pathway finding, Metatool,
PHT and PathFinding, by applying them to carbon metabolism
in view of the question whether sugars can be produced from
even-chain fatty acids. In Section 2, the reaction scheme to be
analysed will be outlined. In Section 3, the results of the various
tools will be presented and compared. The EMA of the lipid–
sugar system considerably extends a preliminary analysis presented
recently (Schuster and Fell, 2007). A final conclusion will be given
in Section 4.

2 METHODS
The system under study is composed of reactions present in the Krebs
cycle, which is the pathway for the oxidation of AcCoA and, thus, even-
chain fatty acids, and the reactions in glycolysis and gluconeogenesis,
responsible for the catabolism and anabolism, respectively, of glucose. The
initial model draft was reconstructed on the basis of the human model
present in the KEGG database (Aoki-Kinoshita, 2006). The model was
refined and completed with some anaplerotic reactions using biochemistry
textbooks (Michal, 1999; Nelson and Cox, 2000; Voet and Voet, 2004).
The hypothesis of a carbon net flux using amino acids was also tested
and external reactions were added to the first model enabling the influx
of glutamate, aspartate and alanine. Using the first model as a template, a
second model was generated by adding reactions catalyzed by isocitrate lyase
and malate synthase to test the hypothesis that the glyoxylate cycle enables
a net flux of carbons from AcCoA to α-D-glucose-6-phosphate (G6P), see
Figure 1.

For the methods of EMs, the reader is referred to Schuster et al.
(1999, 2000) and Gagneur and Klamt (2004). For computing EMs, we
used the program METATOOL 5.0 (von Kamp and Schuster, 2006), which
implements an algorithm proposed by Urbanczik and Wagner (2005). The
reaction list of the complete model containing the glyoxylate cycle is
represented in the Supplementary Material.

In order to study automated pathway generating tools, we queried
PathFinding (Croes et al., 2005, 2006) and PHT (Rahman et al., 2005)
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Fig. 1. Complete model of human glycolysis/gluconeogenesis and Krebs
cycle, containing reactions of the glyoxylate cycle. For abbreviations
of metabolites, see Supplementary Material. Enzyme abbreviations are
according to the database ExPASy. When separated by commas or slashes,
they correspond to isoenzymes or multi-enzyme complexes, respectively.
The external metabolites, that is, the source and sink metabolites are
represented in bold-face or are omitted (e.g. the cofactors such as ATP, ADP
and NAD). Reactions between PEP and G3P are lumped into one reaction.

for a possible connection between AcCoA (KEGG entry C00024) and G6P
(KEGG entry C00668).

3 RESULTS AND DISCUSSION

3.1 EMs analysis
The first model containing no glyoxylate cycle, and with no influx
of amino acids, resulted in six EMs. None of these produces G6P.
Two of these consume AcCoA, go along the Krebs cycle, produce
GTP, NADH and CO2 (Fig. 2). The absence of EMs producing G6P
and, thus, of an enzyme set able to synthesize G6P from AcCoA at
steady state supports the hypothesis that it is impossible to synthesize
glucose from fatty acids using the Krebs cycle and the gluconeogenic
reactions only. This can be understood by inspecting Figure 2. To
consume 1 mol of AcCoA, 1 mol of OAA is needed. Going around
the Krebs cycle, this produces 1 mol of OAA. To produce G6P
via PEP, one more mole of OAA would be needed. This cannot
be formed at steady state, though. Another explanation is that two
carbons enter the Krebs cycle by AcCoA and two leave it in the form
of CO2 (not shown in the Figures). Therefore, no carbon net flux
can go to glucose. Nevertheless, if AcCoA is radioactively labeled,
some of the labeled carbons flow to G6P because there is a connected
route linking AcCoA with G6P and because some carbon atoms are
actually transferred along the entire route. For example, if carbon 1
in acetate is labelled, then tracer is detected at carbons 3 and 4 in
glucose (Weinman et al., 1957).

Then, we allowed for a carbon influx into the Krebs cycle from
an additional source, for example, amino acids because this had also
been analysed in Weinman et al. (1957). To simulate this, we added
external reactions that enable the influx of the glucogenic amino
acids glutamate, aspartate or alanine into the system (extended first
model). This increased the number of EMs to 18. Among these,

Fig. 2. Two EMs of the model without glyoxylate cycle and no entry of
external amino acids, where AcCoA is consumed (empty and full dashed
arrows). The mode shown in full dashed arrows is the usual Krebs cycle.

Fig. 3. Two EMs of the model with glyoxylate cycle and no external reaction
of amino acids, where AcCoA is consumed (empty and full dashed arrows)
and G6P produced. The mode shown in full dashed arrows is the usual
glyoxylate cycle.

five modes connect one of the amino acids each to G6P using
at least OAA or 2-oxoglutarate as intermediaries (Supplementary
Material). Thus, glucogenic amino acids can really generate a carbon
flux towards G6P synthesis. The number of modes using an influx
of AcCoA remained the same and none of those modes could
synthesize G6P.

The second model contains the glyoxylate cycle, yet no influx
from amino acids. This model gives rise to 11 EMs, two of which
convert AcCoA to G6P, using isocitrate lyase and malate synthase
in the glyoxylate shunt. Moreover, these two modes use part of
the Krebs cycle (Fig. 3). The two modes differ in the use of the
malic enzyme (ME1) and pyruvate carboxylase (PC) versus malate
dehydrogenase (MDH). These results reinforce the hypothesis that
the synthesis of glucose from fatty acids through the Krebs cycle is
possible in the presence of enzymes from the glyoxylate cycle.
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Fig. 4. Best scored path obtained from PathFinding with query 1. It involves
part of the phosphotransferase system (PTS) present in bacteria only and is,
thus, not relevant for humans. Moreover, no atom is transferred from AcCoA
to G6P on that route. Weight = 178.0.

3.2 Graph-theoretical analysis
PathFinding at first glance has one major disadvantage when
compared with PHT because it does not have an option to choose
between different organisms. Therefore, we filtered the results by
choosing, from the output, those enzymes that are present in humans.
That information can easily be obtained from KEGG.

We queried PathFinding (April, 2008) to indicate 50 paths leading
from AcCoA to G6P, and PathFinding is indeed able to detect that
many. Figure 4 shows the path with the best score. However, from the
molecular point of view, this path is not valid because it consumes
D-glucose to produce G6P and, in the second and third reactions,
only orthophosphate is transferred. In fact, not a single atom from
AcCoA is transferred to G6P on that route. All of the paths generated
for the first query are not present in humans, as results from a check
with KEGG data.

Now we tried to find paths present in humans by splitting the path
into two, choosing an intermediary metabolite that would connect
both paths. The first metabolite chosen was (s)-malate (KEGG
entry C00149) which takes part in the Krebs cycle and in the
malate–aspartate shuttle as a precursor of OAA. Other metabolites
chosen were phosphoenolpyruvate (PEP, KEGG entry C00074) and
pyruvate (KEGG entry C00022) which are central metabolites in
glycolysis and gluconeogenesis (Table 1). The only query that did
not output any result was query 6 (data not shown). The number of
the paths (within the output list) present in human is represented in
Table 1. The only paths connecting AcCoA to G6P were obtained
combining query 4 with query 5, using PEP as intermediary.

Regarding the weight range of the paths, the lower the weight
is, the more significant should be the path. For the paths shown
in Table 1, the weight range seems to be in an acceptable range
because the weights of the two paths resulting from query 7, which
correspond to gluconeogenesis, are 210 and 211.

In the results of PathFinding, the connection between different
reactions is established by cofactors, such as ITP, IDP, dATP and
dADP. However, these compounds are not responsible for the carbon
net flux. Figure 5 represents one of the possible connections between
AcCoAto G6P when PEP is predefined as an obligatory intermediate.
All the other possible paths are combinations between paths of
queries 4 and 5. Additionally, it can be noted in Figure 5 that neither
of the depicted paths is balanced at steady state.

PHT is easier to handle due to the organism selection option
which enables one to choose only paths present in humans. Two
other features of this algorithm are ‘Atom Mapper’ (molecular
local similarity) and ‘Atom Tracer’ (molecular global similarity),
which can be used to improve the results quality though they

Table 1. Queries of PathFinding and retrieved paths present in humans

Paths present in humans

Query Start Stop Number Weight Range

1 AcCoA G6P — (178–203)

2 AcCoA Mal — (85–204)
3 Mal G6P 43 101

4 AcCoA PEP 2; 16; 17 199–206
5 PEP G6P 6; 16; 17; 35 78–87

6 AcCoA Pyr — —
7 Pyr G6P 44; 47 210–211

Weight ranges of paths not present in humans are given in parentheses. Tool options:
Maximum weight = 2500; Maximum metabolic steps = 50; Mode = Weighted; Number
of pathways = 50.

(a) (b)

Fig. 5. (a) Path 2 from the results of PathFinding query 4; (b) Path 16
from the results of PathFinding query 5. Grey ellipses, external metabolites;
white ellipses, internal metabolites; grey diamonds, irreversible reactions;
white diamonds, reversible reactions. External reactions ex_AcCoA, ex_PEP,
ex_G6P added a posteriori for EMA.

may not work properly when metabolites do not have a defined
structure, like macromolecules. In our analysis, activating both
features simultaneously did not produce any paths. For this reason,
we tested different combinations of these molecular similarity
options (Supplementary Material). In Figure 6, the results obtained
with PHT (April, 2008) by switching the ‘Atom Mapper’ on and
leaving ‘Atom Tracer’ switched off and by switching both options
off are shown.

The results from PHT are better regarding side metabolites
because the chemical structure information is used to identify them
(Fig. 6). The results of this algorithm were analysed by EMs.
However, no such mode could be found, that is, there is no enzyme
set capable of converting AcCoA to G6P. The path in Figure 6a
resembles gluconeogenesis but is not balanced at steady state. This
can clearly be seen in the figure because glycerone phosphate (GP)
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(a) (b)

(c)

Fig. 6. (a) First result obtained by PHT for the conversion of AcCoA to G6P,
with the features ‘Atom Mapper’ and ‘Atom Tracer’ switched off. (b) Result
for the same query with the features ‘Atom Mapper’ and ‘Atom Tracer’
switched on and off, respectively. Grey ellipses, external metabolites; white
ellipses, internal metabolites; grey diamonds, irreversible reactions, white
diamonds, reversible reactions. External reactions ex_AcCoA and ex_G6P
added a posteriori for EMA. (c) Scheme of part of the path shown in (b).
There is no steady-state conversion of AcCoA to GlcN6P. For simplicity, the
external metabolites were removed and reactions R00227 and R00235 were
combined into one.

would be consumed in that path but not replenished. This imbalance
can be resolved by including triose-phosphate isomerase, which
interconverts G3P and GP. However, EMA shows that even in that
case, transforming AcCoA to G6P is impossible at steady state
because OAA is not balanced.

The path in Figure 6b can be shortened if we take into
account the different levels of specificity at which substances are
indicated in the KEGG database. In reaction R01067, generic
D-fructose 6-phosphate (F6P) is indicated, while in reactions R01830
and R02740, β-D-fructose 6-phosphate (bF6P) is given. Even if
reaction R01067 uses both the α and β forms of F6P, the detour via
reactions R01067 and R01830 (both of which refer to transketolase,

EC 2.2.1.1) is unnecessary, since bF6P spontaneously anomerises to
a mixture of α and β F6P (cf. Stryer, 1995). That means, F6P could
be converted directly to G6P by phosphogluco-isomerase (R02740).
Moreover, from the structure of the path in Figure 6b, it is possible
to identify the cycle schematically represented in Figure 6c . Equal
amounts of D-glucosamine 6-phosphate (GlcN6P) are produced and
consumed in the cycle, so that no drain to synthesize F6P is possible.
Therefore, it cannot function as a pathway at steady state because
GlcN6P cannot be balanced.

Looking carefully at the metabolite chemical structure in the cycle
shown in Figures 6b and c, it can be seen that the atoms from the
acetyl group transferred from AcCoA are not present in GlcN6P,
which is connected to the rest of the path linking to G6P.

To demonstrate the generality of our results, we have
checked another example, which concerns the question whether
a pathway connecting G6P with pyruvate in bacteria lacking
phosphofructokinase and G6P dehydrogenase exists. Pollack et al.
(1997) proposed that such a pathway would exist in Mycoplasma
hominis. Since M.hominis is not completely sequenced, its
metabolism is not available from KEGG or similar databases.
However, the completely sequenced Bordetella pertussis is
comparable because in its genome, genes for phosphofructokinase
and for the enzymes of the oxidative pentose pathway were not found
(Armstrong and Gross, 2007). For (whatever) bacteria lacking the
above-mentioned enzymes, an EMA had been performed in Schuster
et al. (1999). It shows that G6P cannot then be converted to G3P
at steady state by the glycolysis/pentose phosphate pathway system
and, thus, neither to pyruvate, although there is a connected route
between them via the non-oxidative pentose phosphate pathway.
Interestingly, both PHT and PathFinding output such a route (results
given in the Supplementary Material).

4 CONCLUSIONS
It has long been considered that given an input of AcCoA
from the breakdown of fatty acids or ketogenic amino acids,
it is impossible for animals (except nematodes) to achieve net
synthesis of glucose from this precursor by the Krebs cycle
and gluconeogenesis. Although 14C-labelled isotopes can pass
along this apparent pathway, animals cannot make glucose from
two-carbon precursors in substantial amounts at a sustained
steady state.

By applying the method of EMs, we have here substantiated this
fact and that, when the set of enzymes involved in the glyoxylate
shunt are added, the system can synthesize glucose out of AcCoA.
Green plants, many bacteria (cf. Stryer, 1995) and fungi (cf. Deacon,
2006) harbour that shunt and are indeed capable of converting
AcCoA into glucose at steady state.

We have elaborated on an earlier sketch of a pathway analysis of
the lipid-to-sugar transformation (Schuster and Fell, 2007). Among
other extensions, we have here studied the possibility of amino acid
consumption, have compared several path finding methods and have
given a historical review of the subject. It should be noted that we
have restricted our analysis to the Krebs cycle (optionally allowing
the influx of amino acids), glyoxylate shunt and gluconeogenesis.
It cannot be excluded that a conversion of fatty acids into sugars
is found when larger (perhaps genome-scale) metabolic networks
in animals are studied. Indeed, already Weinman et al. (1957)
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mentioned the possibility of a conversion via acetone or acetoacetyl-
CoA (see below), and this has been supported by subsequent studies
(Hetenyi and Ferrarotto, 1985; Reichard et al., 1979).

Moreover, there appear to be various pathways alternative to
the glyoxylate shunt or even the Krebs cycle in some bacteria (cf.
Ensign, 2006). For example, in Rhodobacter sphaeroides, 2 mol of
AcCoA can be condensed to acetoacetyl-CoA and converted further
to malate and succinate in a series of condensation, rearrangement
and carboxylation reactions (cf. Ensign, 2006). In some Archaeans,
such as Ignicoccus hospitalis, AcCoA can be carboxylated by
pyruvate synthase to give pyruvate (Jahn et al., 2007).

The stoichiometry plays an important role in the question under
study putting in evidence a molecular constraint. The acetyl group,
which is a two-carbon group, enters the Krebs cycle as AcCoA and
in two successive reactions, catalyzed by isocitrate dehydrogenase
and α-ketoglutarate dehydrogenase, two carbons are converted into
carbon dioxide and leave the cycle, although these are not the same
atoms (Weinman et al., 1957). Thus, the net carbon balance of an
entire turn of the Krebs cycle is zero and the only way to synthesize
glucose is to circumvent these decarboxylations or add a carbon
source other than AcCoA. Another explanation of the role of the
glyoxylate shunt is that it balances synthesis and use of OAA (see
Section 3.1). In the absence of the glyoxylate shunt, a net flux of
carbons from other carbon sources, like glucogenic amino acids, to
G6P via the Krebs cycle is possible, in agreement with the work by
Weinman et al. (1957).

The results presented above also indicate that automated pathway
analysis is difficult. This is due to errors in metabolic databases
(Poolman et al., 2006), to ontological problems such as pointed
out in Section 3.2 for the α and β forms of F6P, and to
combinatorial explosion in large networks (Klamt and Stelling,
2002). Therefore, we advocate that, at the present stage, metabolic
networks constructed by extraction from databases should be
checked carefully.

The information about network properties obtained by EMA is
complementary to that derived from graph theory-based methods
because of the high frequency of reactions with more than one
substrate or product (e.g. bimolecular reactions) in metabolic
networks. Due to the presence of such reactions, connectedness of
a network does not necessarily imply a steady-state flow. Metabolic
networks are more complicated than graphs in the sense of graph
theory. Mathematically, they are hypergraphs.

Several authors have used graph-theoretical concepts to define
metabolic pathways (Croes et al., 2005, 2006; Jeong et al., 2000;
Ma and Zeng, 2003; Ma et al., 2004; Rahman et al., 2005; Seo et al.,
2001). In large-scale networks, these methods are indeed easier to
apply than stoichiometric methods. However, paths traced on graphs
may not be competent metabolic pathways. This is illustrated by
the example of conversion of fatty acids into sugars. To make a
distinction between (a) connected routes in the sense of graph theory
and (b) pathways that are able to carry a net flux at steady state, a
distinction in terminology appears to be necessary and helpful. The
terms path and pathway could be used for (a) and (b), respectively
(cf. Beasley and Planes, 2007; Planes and Beasley, 2008). Routes
detected by graph theory are of interest, for example, for the flow
of radioactive tracer.

We here critically examined two tools for finding paths,
PathFinding and PHT. They did succeed in finding paths connecting
AcCoA to glucose. However, none of them is a biochemically

relevant pathway. Though the paths generated by these algorithms
are connected they cannot, at steady state, synthesize G6P out of
AcCoA and some do not even realize an overall transfer of carbon
atoms. This example illustrates that if only the connectedness of the
graph is considered and the stoichiometric constraints are neglected,
then it is likely that non-functional pathways will be postulated.
Another example is monosaccharide metabolism in M. hominis
and B. pertussis, for which graph-theoretical methods again predict
invalid pathways from G6P to pyruvate.

Another drawback of the graph-theoretical approaches mentioned
above (methods using bipartite graphs excepted) is that cycles cannot
be easily obtained because they search for linear paths that connect
metabolite A to metabolite B not taking into account metabolites that
are not synthesized by the path. Nevertheless, as the paths found in
the results of PathFinding and PHT (see Section 3.2) show, certain
types of cycles can be obtained. One type can occur where there is
more than one reaction synthesizing the same product using the same
substrate (like the reaction converting 3PGP into G3P in Fig. 6a).
Another type can be obtained when one of the substrates in a path
(such as GlcNAc6P in Fig. 6b) occurs as a product of a reaction
further down in the path. As observed in the above results of the
programs PHT and PathFinding, it is not possible to obtain a non-
trivial cycle or cyclic pathways like the Krebs cycle using these
algorithms, probably also due to the fact that they search for the
shortest pathway or the pathway with the lowest weight. It is a well-
known biochemical fact that complex metabolisms involve cyclic
pathways, such as the Krebs cycle or the urea cycle. Therefore,
algorithms for detecting them are useful.

One option for using graph-theoretical methods also for detecting
pathways is to use the theory of Petri nets, which are bipartite graphs.
Metabolites and reactions are then represented by two different
types of nodes (cf. Koch et al., 2005; Zevedei-Oancea and Schuster,
2003). Another option (used here) is to choose an algebraic treatment
such as in EMA, which properly takes into account stoichiometry.
The problem of combinatorial explosion in large networks could
be solved by using linear programming approaches, by which only
specific pathways are computed (Beasley and Planes, 2007; Feist and
Palsson, 2008; Fell and Small, 1986). However, a fully automated
solution cannot easily be achieved by such approaches either because
the proper definition of side metabolites is context dependent.
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Erratum for Figure 3
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The main points of criticism by Faust et al. (2009) concerning the
work in de Figueiredo et al. (2009a) are the following: the cases
presented are biased; different tools should be supplied with the same
input networks; the number of study cases should be representative;
and tools should be evaluated by neutral assessors.

We think that the models in de Figueiredo et al. (2009a) illustrate
concrete biological problems that are very well documented. In
particular, the conversion of fatty acids into sugars was not so trivial
to be answered and is historically relevant (cf. Weinman et al.,
1957). Today, many biochemistry textbooks dedicate at least one
paragraph explaining why there is no net conversion of acetyl-CoA
to glucose via the tricarboxylic acid cycle in vertebrates (cf. Nelson
and Cox, 2000; Stryer, 1995; Voet and Voet, 2004). Thus, new tools
for metabolic pathway prediction have to be able to answer these
problems correctly.

Analysing the same network used in (de Figueiredo et al., 2009a)
by Path Finding (Croes et al., 2006), paths converting acetyl-CoA
into glucose are computed, even though this is impossible for
humans in the network studied. Thus, the critique of Faust et al.
(2009) does not bring anything new to what was discussed in de
Figueiredo et al. (2009a).

It is often said that the size of the input network limits the
computation of elementary flux modes (EFMs; Faust et al., 2009;
Papin et al., 2003, 2004). Indeed, the enumeration of all EFMs in
genome-scale models with the existing methods is difficult (Klamt
et al., 2007; Schwarz et al., 2005; Terzer and Stelling, 2008;
von Kamp and Schuster, 2006). However, there are approaches to
compute at least a subset of EFMs in such models (Acuña et al.,
2009; de Figueiredo et al., 2009b; Kaleta et al., 2009), for example,
the shortest EFMs (de Figueiredo et al., 2009b).

Regarding the number of test cases presented in (de Figueiredo
et al., 2009a), we are sure they are representative of the issue
that is discussed in that article. More cases exist, for example, the
conversion of hypoxanthine into ATP in human erythrocytes, for
which EFM analysis can be performed at the cell level (Schuster
and Kenanov, 2005).

Of course, a comparison between tools is preferably made by
neutral assessors. However, it is usual in bioinformatics that authors

∗To whom correspondence should be addressed.

who have established a new tool compare their method with others
(Klamt et al., 2007; Urbanczik and Wagner, 2005; Wagner and
Urbanczik, 2005). In addition, one co-author (C.K.) has written
an article where EFMs are compared with chemical organizations
(Kaleta et al., 2006).

In the letter by Faust et al. (2009), it is argued that an incorrect
definition of internal metabolites in EFM analysis, can generate
wrong pathway predictions. The study of any biochemical system
requires the definition of the system’s boundary (see, e.g. Schilling
and Palsson, 1998). Thus, the definition of internal and external
metabolites in EFM analysis is nothing more than the definition of
the boundary conditions found in many other modelling methods.

Faust et al. (2009) say that the steady-state constraint is not
always an appropriate assumption. Although, in some cases, this
assumption is not justified, in many other cases, it is. Accordingly,
it is used in many approaches such as Metabolic Control and Flux
Balance Analyses. Faust et al. (2009) cite the work of Teusink et al.
(2000) to support their statement. However, that work shows that
the experimental system does reach a steady state. Additionally, we
do not think that the study summarized in Table 1 of Faust et al.
(2009) is exhaustive enough with respect to EFMs (cf. Trinh et al.,
2009, for a review).

Nevertheless, the communication from Faust et al. (2009) raises
an important point concerning the comparison of tools for metabolic
pathway prediction. It is suggested to follow a CASP-like protocol
to evaluate the methods for metabolic pathway prediction and that
this task should be performed by an independent committee.

The validation process of some of the new tools for metabolic
pathway prediction has been performed using the pathway
information present in metabolic pathway databases (Blum and
Kohlbacher, 2008; Croes et al., 2006). A CASP-like protocol, to
be developed, has to take into account the fact that these databases
contain errors (Likić, 2006; Poolman et al., 2006). On the other hand,
only very well-documented pathways are stored in these databases.
Many pathways are missing due to the lack of information or
simply due to the fact that this classification is performed manually.
Furthermore, these databases do not contain all the functional
modes of a pathway within a metabolic network, e.g. all the five
functional modes of the pentose phosphate pathway in conjunction
with glycolysis (Schuster et al., 2000; Stryer, 1995). Moreover,
EFM analysis has been successful in predicting relevant, hitherto
unknown pathways, for example, the catabolic PEP-glyoxylate cycle
in Escherichia coli (Schuster et al., 1999), which was later found in
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experiment (Fischer and Sauer, 2003) and that, to our knowledge,
is not present in KEGG nor in MetaCyc (Caspi et al., 2008;
Kanehisa et al., 2008). In conclusion, it is a challenge to represent
the combinatorial multitude of biochemical pathways in metabolic
databases (Sauer, 2006).
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Chapter 3

First approach to genome-scale

metabolic networks

In the previous chapter we have seen that stoichiometry is important in the predic-

tion of metabolic pathways but on the other hand, there is no algorithm capable

of computing elementary flux modes in genome-scale networks. In de Figueiredo

et al. (2009a), we present an integer linear program that computes the K-shortest

elementary flux modes in genome-scale metabolic networks. This mathematical

model enables to focus on a subset of elementary flux modes of interest, producing

or consuming a given metabolite, avoiding the full enumeration of all the elemen-

tary flux modes. Taking advantage of this feature, we analyze the 10-shortest

elementary flux modes producing a biotechnological relevant amino acid, lysine, in

two genome-scale metabolic networks. In this work, I implemented the mathemat-

ical model, performed all the simulations and supported the improvement of the

model. I was also involved in the production of the manuscript, more precisely,

the presentation and discussion of the results.

The Supplementary material of de Figueiredo et al. (2009a) can be found on

pages 124 ff. Furthermore, the source code for a tool computing elementary flux

modes using the K-shortest EFM method is in the Supplementary material, on

page 144.



[16:23 4/11/2009 Bioinformatics-btp564.tex] Page: 3158 3158–3165

BIOINFORMATICS ORIGINAL PAPER Vol. 25 no. 23 2009, pages 3158–3165
doi:10.1093/bioinformatics/btp564

Systems biology

Computing the shortest elementary flux modes in genome-scale
metabolic networks
Luis F. de Figueiredo1,2, Adam Podhorski3, Angel Rubio3, Christoph Kaleta1,
John E. Beasley4, Stefan Schuster1 and Francisco J. Planes3,∗
1Friedrich-Schiller-University Jena, 07743 Jena, Germany, 2PhD Program in Computational Biology,
Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal, 3CEIT and TECNUN, University of Navarra,
20016 San Sebastián, Spain and 4Brunel University, Uxbridge, UB8 3PH, UK

Received on May 11, 2009; revised on September 10, 2009; accepted on September 25, 2009

Advance Access publication September 30, 2009

Associate Editor: Thomas Lengauer

ABSTRACT

Motivation: Elementary flux modes (EFMs) represent a key concept
to analyze metabolic networks from a pathway-oriented perspective.
In spite of considerable work in this field, the computation of the full
set of elementary flux modes in large-scale metabolic networks still
constitutes a challenging issue due to its underlying combinatorial
complexity.
Results: In this article, we illustrate that the full set of EFMs
can be enumerated in increasing order of number of reactions
via integer linear programming. In this light, we present a novel
procedure to efficiently determine the K-shortest EFMs in large-
scale metabolic networks. Our method was applied to find the
K-shortest EFMs that produce lysine in the genome-scale metabolic
networks of Escherichia coli and Corynebacterium glutamicum.
A detailed analysis of the biological significance of the K-shortest
EFMs was conducted, finding that glucose catabolism, ammonium
assimilation, lysine anabolism and cofactor balancing were correctly
predicted. The work presented here represents an important step
forward in the analysis and computation of EFMs for large-scale
metabolic networks, where traditional methods fail for networks of
even moderate size.
Contact: fplanes@tecnun.es
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
In recent years, different approaches have been proposed to
investigate the structure of complex metabolic networks (Price et al.,
2004). In particular, elementary flux modes (EFMs) have attracted
increasing interest. An EFM is defined as a minimal set of enzymes
that operates at steady state with all irreversible reactions used in
the appropriate direction (Schuster and Hilgetag, 1994; Schuster
et al., 2000). An analogous concept in Petri net theory is provided
by the minimal T -invariants (Koch et al., 2005). The relevance
of EFMs for various applications has been recently reviewed
(Trinh et al., 2009). EFM analysis has proved useful in elucidating
novel metabolic pathways in addition to textbook knowledge,

∗To whom correspondence should be addressed.

e.g. a new catabolic pathway that degrades glucose via the glyoxylate
shunt (Fischer and Sauer, 2003; Liao et al., 1996; Schuster et al.,
1999). Several software packages for computing EFMs have been
developed, e.g. METATOOL (von Kamp and Schuster, 2006),
CellNetAnalyzer (Klamt et al., 2007), YANAsquare (Schwarz et al.,
2007) and efmtool (Terzer and Stelling, 2008). However, EFM
analysis suffers from an important drawback: the number of EFMs
grows exponentially with network size (Klamt and Stelling, 2002).
For instance, more than two million EFMs have been reported
for the metabolic network describing the central metabolism in
Escherichia coli, which contains 110 reactions (Gagneur and Klamt,
2004). Despite a number of attempts to cope with such complexity
(Dandekar et al., 2003; Klamt et al., 2005; Schuster et al., 2002;
Terzer and Stelling, 2008; Teusink et al., 2006), computing the
full set of EFMs in large metabolic networks still constitutes a
challenging issue.

Based on the work of Beasley and Planes (2007), we show
here that the full set of EFMs can be enumerated via integer
linear programming. Technically, our approach produces EFMs in
increasing order of number of reactions by solving a sequence of
discrete optimization problems. Thus, it is promising to start with the
shortest, second shortest, etc., overall called K-shortest EFMs. The
‘K-shortest’concept has been previously used in the context of graph
theory and paths (see, for illustration, Planes and Beasley, 2009),
but not in the context of EFMs. Acuña et al. (2009) have recently
suggested that finding short EFMs should become interesting if size
is considered a relevant criterion.Also, in Mavrouniotis et al. (1990),
biochemical pathways (not EFMs) are obtained in increasing length
order.

Detection of K-shortest EFMs is of interest for several biological
applications. Experimentally, it is expensive and laborious to
overexpress a large number of enzymes. On the other hand, since the
highest increase in pathway flux is achieved if all enzymes (Kacser
and Acerenza, 1993) or (at least) a considerable number of enzymes
in a pathway (Fell and Thomas, 1995; Niederberger et al., 1992)
are overexpressed, shorter pathways are better suited as a target for
genetic manipulation. Moreover, shorter pathways can carry higher
fluxes (Meléndez-Hevia et al., 1994; Pfeiffer and Bonhoeffer, 2004).

The use of integer linear optimization makes our procedure
more flexible than previous approaches found in the literature
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(Schilling et al., 2000; Schuster et al., 2000), which require the
computation of the full set of EFMs before any further analysis
can be performed. Instead, our method allows us to directly explore
the K-shortest EFMs related to a particular problem of interest, e.g.
the K-shortest EFMs that consume/produce a particular metabolite.

In order to illustrate the applicability of our approach, we here
analyse the K-shortest EFMs producing lysine in two different
genome-scale metabolic networks, E.coli K-12 MG1655 (Feist et al.,
2007) and Corynebacterium glutamicum ATCC 13032 (Kjeldsen
and Nielsen, 2009). Lysine is one of the essential amino acids
in humans and is also used as supplement in animal feeds. The
industrial production of lysine has a long history in biotechnology
(Tosaka et al., 1983; Wendisch et al., 2006). Studying the production
of lysine has been essential for the rational design of optimized
strains. Nowadays, C.glutamicum is the organism of choice for
lysine overproduction due to the higher yields obtained with it. The
capability for producing lysine has been previously examined from
a pathway oriented perspective (de Graaf, 2000; Mavrovouniotis
et al., 1990; Schuster et al., 2007). However, these studies were not
conducted at the genome-scale. Therefore, the results presented here
extend these studies to a larger scale.

2 METHODS
The mathematical model proposed below formulates the task of finding
EFMs as a sequence of optimization problems. Our method starts from the
basis that the flux mode involving the minimum number of reactions must
be elementary. We here refer to it as the shortest EFM. Accordingly, we first
define the constraints and the function (objective) to be optimized that allows
us the calculation of the shortest EFM. Based on this optimization model,
we then show how to calculate the K-shortest EFMs. Finally, extensions of
the K-shortest to other problems of interest are presented.

We mean here by 1-shortest EFM, the EFM containing the minimum
number of reactions; 2-shortest EFM, the EFM containing the second
minimum number of reactions, etc. We may have multiple EFMs containing
the same minimum number of reactions. If this occurs, they are counted
separately with different K values. The enumeration order of equally long
EFMs depends on the actual implementation of the mathematical model and
the solving procedure.

As noted above, EFMs are defined as minimal sets of enzymes in steady
state (Schuster et al., 2000). The meaning of ‘minimal’ in the definition of
EFMs refers to the non-decomposability condition, i.e. the addition of an
enzyme would turn the EFM into non-elementary. In contrast, we here refer
the 1-shortest EFM as to the EFM that contains the (global) minimum number
of enzymes.

2.1 Shortest EFM
Assume we have a metabolic network that comprises R reactions and C
compounds. Here we decompose reversible reactions into two opposing
reaction steps. Thus, we can regard all fluxes as taking positive values. Let scr

be the stoichiometric coefficient associated with compound c (c = 1, … , C)
in reaction r (r = 1, … , R). As usual in the literature (Schilling et al., 2000;
Schuster and Hilgetag, 1994), substrates and products have negative and
positive stoichiometric coefficients, respectively. The matrix containing all
these coefficients is called the stoichiometric matrix.

A zero-one (binary integer) variable is assigned to each reaction, namely
zr = 1 if reaction r (r = 1, … , R) is active in the EFM, 0 otherwise. In addition,
each reaction has an associated non-negative (integer) flux tr . As we are
studying structural properties of metabolic networks, it is appropriate to
use integer fluxes. If the coefficients of the stoichiometric matrix (scr ) take
integer values, as it is assumed here and in many other approaches such as
Petri net theory (Koch et al., 2005), then the relative fluxes carried by EFMs

can also be described using integer values. In addition, our computational
experience reveals that the K-shortest method is more expensive when fluxes
are allowed to be non-integer.

For the optimization model we need constraints relating the reaction
variables zr and tr :

tr ≤Mzr r =1,...,R (1)

zr ≤ tr r =1,...,R (2)

Equation (1) ensures that no flux traverses a reaction r if zr = 0. Equation (2)
guarantees that tr is non-zero if zr = 1. Note here that in the case a reaction r
is active (zr = 1), its associated (integer) flux value tr can take any value from
the interval [1, M], M being a large constant value. This does not constitute
an issue if M is a sufficiently large value.

In our model, reversible reactions are decomposed into two irreversible
reactions, and therefore, we define the set B={(α,β)| reaction α and reaction
β are the reverse of each other, α < β}.

zα +zβ ≤ 1 ∀ (α,β )∈B (3)

Equation (3) ensures that a reaction and its reverse do not appear in an
EFM.

The steady-state condition is critical for the definition of EFMs and it is
formulated as

R∑
r=1

scr tr =0 ∀c∈ I (4)

where I is the set of internal compounds. As opposed to internal compounds,
external compounds are excluded from being balanced, because they are
exchange metabolites between the outside and the system under study or they
belong to metabolic pools whose concentration is assumed constant. They
typically represent consumed substrates, excreted products and cofactors.
We denote the set of external compounds by E.

In order to avoid the trivial solution (zr = tr = 0, r=1, … , R), we require
that at least one reaction is active:

R∑
r=1

zr ≥ 1 (5)

Equations (1–5) define the flux modes solution space for a particular
metabolic network. In order to calculate the shortest EFM, we minimize
the number of reactions:

minimize
R∑

r=1

zr (6)

As noted above, EFMs cannot be decomposed into smaller entities without
violating the steady-state assumption, Equation (4). This is referred as to the
non-decomposability (elementary) condition (Schuster and Hilgetag, 1994).
In essence, this condition implies that no subset of reactions of an EFM can
perform at steady state. We ensure that the non-decomposability condition
is satisfied by minimizing the number of active reactions involved in the
solution flux mode. Clearly, the flux mode involving the minimum number
of reactions will be non-decomposable.

2.2 K-shortest EFMs
The mathematical optimization model given above [objective function (6)
subject to Equations (1)–(5)], once solved, allows us to obtain the shortest
EFM. In order to find the K-shortest EFM, we need to add further constraints
to eliminate the (K −1)-shortest EFMs from the set of solutions. To illustrate
this, suppose we are interested in finding the 2-shortest EFM. Let Z1

r be the
binary solution associated with the shortest EFM, where Z1

r equals to 1 if
reaction r is active, 0 otherwise. We need to eliminate the shortest EFM
from the set of solutions. To do this we add the following constraint to our
previous formulation:

R∑
r=1

Z1
r zr ≤

(
R∑

r=1

Z1
r

)
−1 (7)
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The left-hand side of Equation (7) determines the number of reaction
variables in the current solution that were active in the 1-shortest EFM
solution. The right-hand side is the number of reactions that were active
in the 1-shortest EFM less one. The inequality states that the number of
active reactions repeating from the 1-shortest EFM should be less by at least
one than the total number of active reactions in that EFM. This ensures
that, once we solve our model, the new solution found does not contain
the shortest EFM. This also guarantees that the shortest EFM can never
occur as a part of any other flux mode. In essence, we remove the shortest
EFM from the solution space. In the general case, the K −1 shortest EFM
solution is eliminated before the K-th solution is computed and clearly the
optimization problem for the K-th shortest EFM accumulates constraints
from all (1, … , K −1) previous solutions, i.e. in order to find the K-shortest
EFM, we need to include EFM elimination constraints related to the first
(K −1) shortest EFMs:

R∑
r=1

Zk
r zr ≤

(
R∑

r=1

Zk
r

)
−1 k =1, ... ,K −1 (8)

where Zk
r is the binary solution for the k-shortest EFM.

Note here that the K-shortest EFMs described above are also elementary.
For an indirect proof, suppose that the K-shortest EFM (once solved) is not
elementary, i.e. it contains a subset of reactions satisfying Equations (1–5)
and (8). Since we are constructing EFMs in increasing order of the number
of reactions they contain, we must have encountered the EFM corresponding
to this subset before. However, then we would have added a constraint, as
described in Equation (8), preventing it from ever appearing as a subset in
future EFMs. So it cannot in that case ever be found as part of the K-shortest
EFM, which contradicts the original assumption. Thus, every EFM we find
must be elementary.

2.3 Extensions to K-shortest EFMs
Our procedure can be applied to enumerate all EFMs, namely by constructing
them one by one. This is not particularly efficient for small-scale metabolic
networks when compared with existing methods. The main advantage of our
mathematical optimization model is that, by adding new constraints, special
subsets of EFMs (of particular biomedical or biotechnological interest) can
be found without having to first compute all EFMs as is the case in existing
methods (Klamt et al., 2005; Schilling et al., 2000; Schuster et al., 2000;
Terzer and Stelling, 2008). Below, we present some of these constraints that
can be easily added to our formulation.

Genome-scale metabolic networks are typically compartmentalized
models, in the simplest case containing the extracellular compartment and
cytosol. We assume that metabolites in the extracellular compartment can be
taken up or secreted as by-products, therefore these metabolites can be set
to be external. We denote U the set of extracellular metabolites defining the
growth medium. In the case an extracellular metabolite c is not included in
the medium set, we need to avoid this compound to be consumed. Equation
(9) describes how this constraint is incorporated into our model.

R∑
r=1

scr tr ≥ 0 ∀c∈E,c /∈U (9)

We may also need to find the K-shortest EFMs that produce a particular
external compound, µ. To do so, we need to add the following constraint:

R∑
r=1

sµr tr ≥ 1 (10)

This can be easily reformulated if we want an external compound µ to be
used as substrate, as observed in Equation (11).

R∑
r=1

sµr tr ≤ −1 (11)

Note here that Equation (5) can be dropped from the formulation if we
include Equations (10) or (11), as both already require at least one compound
to be produced or consumed, respectively, hence at least one reaction must
be active. In addition, the non-decomposability condition is not guaranteed
when more than one constraint based on Equations (10) or (11) is included in
the formulation. For example, if we apply constraint (10) for metabolites µ1

and µ2, i.e. finding solutions to our model that produces µ1 and µ2, then we
might obtain solutions containing two EFMs, namely one producing µ1 and
another producing µ2. For this reason, in this article, we restrict our analysis
to EFMs forced to produce/consume one metabolite. Equation (9) does not
alter the non-decomposability condition.

2.4 Integer programming
Our mathematical optimization model given above for computing the K-
shortest EFMs [objective function (6) subject to Equations (1–5) plus
elimination constraints (8) and perhaps constraints (9–11)] is an integer linear
program. Algorithmically such programs are solved by linear programming
based tree search (Pardalos and Resende, 2002). Various free and commercial
software tools are available to perform this task. We used ILOG CPLEX�.

3 RESULTS
We applied our method to three different metabolic networks.
Firstly, we examined a well-known metabolic network that contains
the tricarboxylic acid (TCA) cycle and some adjacent reactions
(Schuster et al., 1999). Since this metabolic network is of moderate
size, the full set of EFMs can be obtained using classic methods
(Schuster et al., 1999). We used it as a benchmark to validate
the capabilities of our method. Then, we applied our method
to study the production of lysine in two different genome-scale
metabolic networks, E.coli K-12 MG1655 (Feist et al., 2007) and
C.glutamicum ATCC 13032 (Kjeldsen and Nielsen, 2009). Details
of the three metabolic networks can be found in the Supplementary
Material.

3.1 TCA cycle network
For the TCA cycle network, our method correctly enumerated, in
increasing order of number of reactions, all 16 EFMs previously
determined in Schuster et al. (1999). Details on the 16 EFMs are
shown in Table 1. The shortest EFM contains two reactions, which
are catalyzed by enzymes Pck and Ppc. The 2-shortest EFM also has
two reactions. The 16-shortest EFM involves 13 reactions. These
results confirm the applicability of our method.

We compared the computation time of our method with
METATOOL (version 5.1) for this particular small network. Our
method turned out to be less efficient than METATOOL, though
both methods take <1 s (data not shown). However, as will be shown
below, our method is particularly suitable for large-scale metabolic
networks, where classical methods for EFMs computation are not
applicable.

In addition, we extended the analysis by calculating the subset
of EFMs that produces succinyl-CoA (SucCoAxt). This is done by
incorporating a constraint based on Equation (10) for SucCoAxt
into the K-shortest EFMs formulation. Our method directly
enumerated the six EFMs producing SucCoAxt without having to
first compute the full set of EFMs, as typically done by METATOOL
and classic methods (Table 1).
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Table 1. Full set of EFMs in the TCA cycle metabolic network

K L Enzyme set SCA

1 2 Pck; Ppc –
2 2 Pps; Pyk –
3 5 AlaCon; Eno; Gdh; IlvE_AvtA; Pyk –
4 5 AspC; AspCon; Eno; Gdh; Ppc –
5 5 AspA; AspC; Fum; Gdh; Mdh –
6 7 Eno; Ppc; SucCoAcon; -Fum; -Mdh; -Sdh; -SucCD 1
7 8 AspA; AspC; Eno; Gdh; Ppc; SucCoAcon; -Sdh;

-SucCD
2

8 9 AceEF; Acn; 2 Eno; GltA; Icd; Ppc; Pyk; SucAB;
SucCoAcon

3

9 9 AceEF; Acn; 2 Eno; Gdh; GltA; GluCon; Icd; Ppc; Pyk –
10 10 2 AceEF; Acn; 2 Eno; GltA; Icl; Mas; Mdh; 2 Pyk;

SucCoAcon; -SucCD
4

11 11 AceEF; Acn; Eno; Fum; GltA; Icd; Mdh; Pyk; Sdh;
SucAB; SucCD

–

12 11 2 AceEF; Acn; Eno; Fum; GltA; Icl; Mas; 2 Mdh; Pck;
2 Pyk; Sdh

–

13 12 2 AceEF; Acn; 3 Eno; GltA; Icl; Mas; Ppc; 2 Pyk; 2
SucCoAcon; -Fum; -Sdh; -2 SucCD

5

14 13 3 AceEF; 2 Acn; 3 Eno; Fum; 2 GltA; Icd; Icl; Mas; 2
Mdh; 3 Pyk; Sdh; SucAB; SucCoAcon

6

15 13 3 AceEF; 2 Acn; 3 Eno; Fum; Gdh; 2 GltA; GluCon;
Icd; Icl; Mas; 2 Mdh; 3 Pyk; Sdh

–

16 13 2 AceEF; Acn; AspC; AspCon; 2 Eno; Fum; Gdh;
GltA; Icl; Mas; 2 Mdh; 2 Pyk; Sdh

–

K : the order by which EFMs are computed; L: the number of reactions in each EFM;
SCA—order by which EFMs producing SucCoAxt are computed. Reversible reactions
active in the opposite direction have a minus sign before the flux value.

3.2 Genome-scale metabolic networks
We calculated the K-shortest EFMs that produce lysine in the
genome-scale metabolic networks of E.coli and C.glutamicum with
K = 10. These metabolic networks differ in the number of reactions
and metabolites, as well as in the level of accuracy. During the
computation of 10-shortest EFMs some errors in the C.glutamicum
network were identified. In particular, an error in reaction dapB was
responsible for a null lysine net synthesis. More details as to errors
can be found in the Supplementary Material.

The E.coli network is larger than the C.glutamicum network.
For this reason, the E.coli metabolic network represents a
greater challenge in the computation of 10-shortest EFMs. Our
method successfully computed them, though the difference in the
computation time is significant (see Supplementary Material). We
used glucose and ammonium as carbon and nitrogen sources,
respectively, for both metabolic networks. See Supplementary
Material for exact definition of the medium set, U. A sufficiently
large M value is needed to ensure that no EFM information is
lost. We conducted experimentation for different M values (see
Supplementary Material) and selected M = 10 000, since no change
in the K-shortest EFMs solution was found with respect to smaller
M values. This selected value is similar to that proposed in previous
studies (Kjeldsen and Nielsen, 2009; Vallino and Stephanopoulos,
1993).

We first applied our mathematical model to the metabolic
network of E.coli. Figure 1 shows a merged representation of
the 10-shortest EFMs producing lysine in E.coli. The shortest

Fig. 1. Merged representation of the 10-shortest EFMs producing lysine
in E.coli when cofactors are set as internal metabolites. Ellipses represent
metabolites and arrows reactions. Stoichiometric coefficients higher than
one are represented next to the edge linking the respective metabolite.
Dashed ellipses are duplicated metabolite nodes, light grey ellipses are
medium metabolites and the black ellipse is the target metabolite. Numbers
in brackets after enzyme abbreviations correspond to the number of EFMs
where these are present. Thickness of the arrows is proportional to this
number. Boxed enzyme abbreviations represent the lysine biosynthetic
pathway (Cohen and Saint-Girons 1987, Wittmann and Becker, 2007),
enzyme abbreviations in light grey, in dark grey and black correspond to
glycolysis, the Entner–Doudoroff pathway and the methylglyoxal bypass,
respectively. The following metabolite nodes in the cytosolic compartment
were removed from the representation for better visualization: atp, adp, amp,
nad, nadh, nadp, nadph, h, coa, h2o, pi, co2. Note here that abbreviations are
the same as in the original network (see Feist et al., 2007). Thus, reactions
involving only these removed metabolites may seem disconnected from the
sub-network when they are actually connected, e.g. NADTRHD.

EFMs are mainly fermentation modes and therefore, they require
higher fluxes on glucose catabolism (see Supplementary Material
for more information about the fluxes and the reaction sets). The
combinatorial effect seen in EFM analysis can be immediately
observed. This is particularly apparent for transport reactions.
For example, there are two different reactions for the uptake of
glucose (glc-d) from the extracellular compartment to the periplasm,
specifically GLCtex and GLCtexi. Thus, there will be at least two
EFMs among the 10-shortest EFMs that differ only in the use of one
of these two reactions while the rest of the enzyme set remains the
same. Such combinatorial features can also be found in the other
K-shortest EFMs.

A detailed analysis of Figure 1 reveals that there are three major
pathways for glucose catabolism: glycolysis, the Entner–Doudoroff
(ED) pathway and the methylglyoxal bypass. Glycolysis provides
higher quantities of ATP but does not produce any NADPH and
therefore the periplasmic NAD(P) transhydrogenase, THD2pp,
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is required to reduce NADP by oxidizing NADH. The ED
pathway can use two different precursors of 6-phospho-d-gluconate
(6pgc), namely, 6-phospho-d-glucono-1,5-lactone (6pgl) and
d-gluconate (glcn). In case 6pgl is used as precursor the oxidative
part of the pentose phosphate (PP) pathway produces NADPH and
therefore, the THD2pp is not required in this mode, in contrast with
the rest of EFMs. When the methylglyoxal bypass is used there is
a very low ATP yield from glucose catabolism and therefore, the
ATP synthase, ATPS4rpp, has a higher flux when compared with the
other modes. It should be noted that this pathway, though possible,
is very unlikely to be the main catabolic route of glucose due to the
toxicity of methylglyoxal (Subedi et al., 2008).

In E.coli, ammonium assimilation can be carried out via the
glutamine synthetase/glutamate synthase (GLNS/GLUSy) cycle
or exclusively using glutamate dehydrogenase (GLUDy). The
GLNS/GLUSy cycle constitutes the main ammonium assimilation
route even for growth conditions with high extracellular ammonium
content (Yuan et al., 2006). In the 10-shortest EFMs, the assimilation
of ammonium is however conducted by GLUDy, which involves
fewer steps and consumes less ATP. The other route would appear
for EFMs containing 40 reactions.

In addition, it is well-known that E.coli has only one pathway
for lysine biosynthesis using aspartate and pyruvate as precursors
(Cohen and Saint-Girons, 1987; Wittmann and Becker, 2007). This
is also observed in the left upper corner in Figure 1, where the
thickness of the involved arrows is maximal, i.e. they appear in all
10-shortest EFMs.

On the right-hand side of Figure 1, there are many reactions
around the periplasmatic proton node, h[p]. These reactions are
mainly involved in the establishment of a proton gradient so that
ATP and NADPH can be produced. We assumed that cofactors
are buffered in the metabolic network and set them as external
metabolites. We repeated our K-shortest procedure (K = 10) and
found that the shortest EFM involves 27 reactions, as opposed to
the case described above where the shortest EFMs involved 38
reactions.

In Figure 2, there are no EFMs producing by-products such
as lactate or pyruvate. The main reason is that there is no need
of fermentative modes or other modes producing cofactors in
small reaction steps and with high fluxes, since cofactors are now
external metabolites. The catabolism of glucose in Figure 2 is
again accomplished by the same three pathways: glycolysis, the
ED pathway and the methylglyoxal bypass. Combinations of these
three pathways are also found in the 10-shortest EFMs, e.g. in
the 7-shortest EFM, the ED pathway is combined with the triose
phosphate part of glycolysis, while in the 10-shortest EFM the
ED pathway is combined with the methylglyoxal bypass. There
is a detour to the classical glycolysis described in textbooks, via
dihydroxyacetone (dha). This detour has been recently hypothesized
by van Winden et al. (2003). However, the use of dha as intermediate
is questionable due to its toxicity and possible conversion to
methylglyoxal (Molin et al., 2003; Subedi et al., 2008).

The results also show that, with glycolysis as single catabolic
pathway, it is possible to produce one mole of lysine per mole
of glucose consumed, consuming four moles of NADPH and one
mole of ATP and producing two moles of NADH. Thus, from a
molecule containing six carbon atoms, glucose, it is possible to
produce another six-carbon molecule, lysine, requiring two NADPH
for ammonium assimilation, plus two NADPH and one ATP for

Fig. 2. Merged representation of the 10-shortest EFMs producing lysine in
E.coli when cofactors are set as external metabolites. Enzyme abbreviations
in light grey and dark grey represent the methylglyoxal bypass and a detour
of the classical glycolysis over dha, respectively. The following metabolite
nodes in the cytosolic compartment were removed from the representation
for better visualization: atp, adp, amp, nad, nadh, nadp, nadph, h, coa, h2o,
pi, co2. Note here that abbreviations are the same as in the original network
(see Feist et al., 2007).

the intermediate metabolites inter-conversion. However, due to the
carboxylation and decarboxylation reactions, this 1:1 conversion
cannot be deduced directly from the number of carbons.

A similar analysis was conducted for C.glutamicum. We found
that the shortest EFM contains 33 reactions when cofactors are set to
internal. The shortest EFMs for C.glutamicum are not fermentative
(Fig. 3) in contrast to E.coli (Fig. 1) and the main route for glucose
catabolism is the PP pathway. A reasonable question that can be
posed is why there is no fermentative mode in the shortest EFMs
for C.glutamicum. This is due to the fact that the reaction catalyzed
by lactate dehydrogenase, which reduces pyruvate to lactate, is not
present in the metabolic network, nor any other pathway linking
pyruvate to lactate. Note, however, that such reaction is present in
the genome annotation of this organism and there is experimental
data on lactate dehydrogenase mutants (Inui et al., 2004).

In Figure 3, it is also apparent that the main variability in the
10-shortest EFMs is in the balancing of cofactors and there are no
alternative pathways for glucose catabolism in comparison to the
10-shortest EFMs of E.coli (Fig. 1). This fact can be attributed to the
differences in the metabolic networks caused by evolution. While in
E.coli the ED pathway and the methylglyoxal bypass are present, to
date they have not been identified in C.glutamicum (Eggeling and
Bott, 2005). Moreover, there are differences in some anaplerotic
reactions. Nevertheless, there is also an evident difference in the
accuracy of both networks, since the number of reactions in the
metabolic network of E.coli is almost 5-fold higher while the size of
the genome and the number of predicted proteins for both organisms
is of the same order of magnitude (Blattner et al., 1997; Kalinowski
et al., 2003).

As mentioned above, the PP pathway is the only glucose catabolic
pathway present in the EFMs, which is due to the requirement of
redox anabolic power. An alternative pathway would have been the
TCA cycle or anaplerotic reactions between oxaloacetate, malate,
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Fig. 3. Merged representation of the 10-shortest EFMs in C.glutamicum
producing lysine and with cofactors as internal metabolites. Boxed enzyme
abbreviation is characteristic for C.glutamicum (Eggeling, 1994; Wittmann
and Becker, 2007), enzyme abbreviations in light grey, dark grey and
black represent the PP pathway, the longest and the shortest pathways for
ammonium assimilation, respectively. The following metabolite nodes, in
the cytosolic compartment, were removed from the representation for better
visualization: ATP, ADP, NAD, NADH, NADP, NADPH, H-transport, COA,
PI, CO2.

phosphoenolpyruvate and pyruvate. However, the presence of the
complete TCA cycle requires more enzymes to reduce NADP using
glucose. Experimentally, the PP pathway also has a more important
role in NADPH synthesis than the TCA cycle. Indeed, metabolic flux
analyses have shown that ∼70% of the NADPH is generated by the
PP pathway and the remaining 30% by isocitrate dehydrogenase of
the TCA cycle (Eggeling and Bott, 2005).

Possible NADPH regenerating cycles, involving anaplerotic
reactions, which are often mentioned in the literature (cf. Wittmann
and Becker, 2007), are not found with this function. Instead, they
can only convert NADPH into NADH because in the genome-
scale network the reactions mdh and mqo are set to irreversible
forcing these cycles to be irreversible. The existence of two
glyceraldehyde-3-phosphate dehydrogenases, gapA and gapB, also
allows the conversion of NADPH into NADH, but not the reverse.
If the reaction catalysed by lactate dehydrogenase is included in
the metabolic network, the fermentative pathways are still not the
shortest because there is no alternative to the PP pathway for
NADPH synthesis, and therefore, the EFMs with this pathway are
the shortest (data not shown).

Regarding the ammonium assimilation, it can be seen that a
larger number of EFMs uses glutamate dehydrogenase (gdh) and
only two EFMs use the glutamine synthase/glutamate synthase
(glnA/gltBD) pathway. The appearance of a longer route is due
to the fact that the 10-shortest EFMs in C.glutamicum have more

Fig. 4. Merged representation of the 10-shortest EFMs producing lysine
in C.glutamicum and with cofactors as external metabolites. Enzymes with
abbreviations in light grey represent glycolysis. The following metabolite
nodes, in the cytosolic compartment, were removed from the representation
for better visualization: ATP, ADP, NAD, NADH, NADP, NADPH,
H-transport, COA, PI, CO2.

widely distributed lengths than the 10-shortest EFMs in E.coli.
Nevertheless, for C.glutamicum, the shorter pathway is more
relevant at high ammonium concentrations (Eggeling and Bott,
2005).

If cofactors are set external, the PP pathway, the cycles converting
NADPH to NADH and enzymes from the respiratory chain do not
appear in the 10-shortest EFMs. Instead, glycolysis is the main
route for glucose catabolism (Fig. 4). This pathway is indeed the
shortest catabolic pathway in this network, as the ED pathway and
the glyoxylate bypass are not present. The main variability in these
EFMs is found in the synthesis of by-products such as glycerate
and glycine and in the interconnection of the catabolic and anabolic
part of the EFMs. The latter is evident by the detour made through
malate (Fig. 4).

From Figures 3 and 4, it can be observed that the 10-shortest
EFMs involve the shortest lysine biosynthetic pathway described
in the literature (Wittmann and Becker, 2007). An alternative longer
route does exist in C.glutamicum, which differs in three reactions and
requires one additional reaction to balance succinate and succinyl-
CoA, as shown in the 10-shortest EFMs of E.coli (Figs 1 and 2).
This means that EFMs with higher length are needed so as to obtain
the alternative pathway for lysine synthesis.

4 CONCLUSION
The computation of EFMs in genome-scale metabolic networks has
been very difficult if not impossible so far. In order to explore
the metabolic capabilities of a given organism via EFMs, often
smaller sub-networks are delimited. However, the analysis of small
sub-networks can be misleading (Kaleta et al. 2009; Terzer and
Stelling, 2008) and therefore, the computation of EFMs in genome-
scale networks is essential for a more comprehensive analysis of
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the metabolic capabilities of an organism. In such large networks,
detecting short EFMs is of interest from the biological viewpoint.
Experimentally, it is expensive to overexpress a large number of
enzymes, so that shorter pathways are better suited for genetic
manipulation. Moreover, shorter pathways usually carry higher
fluxes.

In this article we showed that the full set of EFMs can
be theoretically enumerated via discrete optimization. This is a
promising development in EFM computation and it might serve
as a basis for building new methods to explore the structure of
large metabolic networks. We presented an effective method to
compute the shortest EFMs even in genome-scale networks, as
opposed to classic approaches, where EFM analysis cannot be
accomplished. A clear advantage of our method in comparison to the
classic approaches for EFMs computation is its inherent flexibility.
Certainly, the use of optimization enables one to directly search
for EFMs that produce/consume a certain metabolite or involve
a particular reaction. For this reason the K-shortest EFMs is a
suitable concept when exploration of a specific subset of EFMs is
of interest.

It is beyond the scope of this article to analyse the run-time
complexity of the algorithm. Interesting results in that direction
have been presented by Acuña et al. (2009). Here we have shown
by numerical examples that even for genome-scale networks, the
K-shortest EFMs can be computed in reasonable time.

Our procedure was applied to find the 10-shortest EFMs that
produce lysine in the genome-scale metabolic networks of E.coli
and C.glutamicum. The computation of the 10-shortest EFMs in
C.glutamicum was faster than in E.coli, mainly due to the difference
in network complexity. The sets of reactions in the computed EFMs
can be divided into four parts: catabolism of glucose; anabolism
of lysine; ammonium assimilation and a subset responsible for
cofactor balancing, when cofactors are set internal metabolites.
This classification is in agreement with the presentation in many
biochemical textbooks.

The catabolic subset converts glucose into aspartate and pyruvate,
precursors of lysine, and plays an important role in cofactor supply,
in particular of NADPH. In the genome-scale network of E.coli,
a variety of pathway combinations exists for glucose catabolism
because NADPH can be obtained via a NAD(P) transhydrogenase,
whereas in the network of C.glutamicum the PP pathway is
preponderant for NADPH supply. The cofactor balancing subset is
more influenced by the catabolic subset than by the anabolic subset.
The latter partially overlaps in the solutions of both organisms and
does not change in the 10-shortest EFMs. Shorter routes are clearly
favored by the K-shortest EFMs method and this fact is evident
in the anabolic subset and ammonium assimilation subsets. When
cofactors are removed from the balancing constraints, pathways with
100% yield are obtained, hence highlighting the impact of cofactors
consumption/supply in lysine synthesis.

Finally, contrary to the widely held belief that the computation
of EFMs in large-scale metabolic networks is impossible, the work
presented here represents an important step forward.
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Chapter 4

Exploring elementary flux modes

in genome-scale networks

While developing the K-shortest EFM method presented in the previous chapter,

I examined the characteristics of the optimization framework and identified the

key points of this methodology. I found that the iterative nature of the K-shortest

EFM method was not required as long as we have a genetic algorithm to control

the set of available reactions and an optimization problem to compute a single

elementary flux mode given an input network. This idea leads to the development

of the EFMEvolver presented in Kaleta et al. (2009a). Another improvement in this

method is the optimization problem used for determining elementary flux modes,

now expressed as a linear program that, given an input network, computes a single

elementary flux mode. This simplification reduces the time required for computing

an elementary flux mode. On the other hand, the genetic algorithm is used for

exploring the space of elementary flux modes by constraining the set of available

reactions. With this method we can compute larger sets of phenotypically distinct

elementary flux modes. My contributions in this work, besides the “catalytic

activity”for producing this new method, were the implementation of part of the

genetic algorithm, the achievement of a number of the initial simulations and the

preparation of the manuscript.



EFMEvolver: Computing elementary flux modes in
genome-scale metabolic networks

Christoph Kaleta∗ , Luı́s Filipe de Figueiredo∗, Jörn Behre, and Stefan Schuster†

Department of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany

Abstract: Elementary flux mode analysis (EFM analysis) is an important method in
the study of biochemical pathways. However, the computation of EFMs is limited to
small and medium size metabolic networks due to a combinatorial explosion in their
number in larger networks. Additionally, the existing tools to compute EFMs require
to enumerate all EFMs before selecting those of interest. The method presented here
extends EFM analysis to genome-scale models. Instead of computing the entire set
of EFMs an optimization problem is used to determine a single EFM. Coupled with a
genetic algorithm (GA) this allows to explore the solution space and determine specific
EFMs of interest. Applied to a network in which the set of EFMs is known our method
was able to find all EFMs in two cases and in another case almost the entire set before
aborted. Furthermore, we determined the parts of three metabolic networks that can
be used to produce particular amino acids and found that these parts correspond to
significant portions of the entire networks.
Availability: Source code and an executable are available upon request.

1 Introduction

In the post-genomic era, the analysis of metabolic networks is essential for molecular
biology. These networks are complex and the subdivision of a network into pathways
makes the analysis more comprehensive. However, the focus only on specific classically
known pathways can conceal the view on the actual metabolic capabilities of an organ-
ism [KdFS09]. Thus, the construction of genome-scale metabolic networks that model the
entire metabolism of organisms has come to importance [FP08].

A method that has been used to comprehensively studying pathways in metabolic networks
is elementary flux mode analysis [SDF99]. Elementary flux modes (EFMs) are a system-
atic definition of the biological concept of a pathway. They correspond to minimal sets of
reactions that can perform at steady state [SDF99]. EFM analysis has already been used to
study biochemical relevant metabolic pathways [CS04, dFSKF09], to study metabolic net-
work properties such as fragility and robustness [SKB+02, BWvK+08], and to optimize
microorganisms with respect to the production of a certain metabolite [TUS08]. However,
EFM analysis has been limited to small and medium scale networks because the number
of EFMs grows exponentially with the size of the network [KS02]. For instance, Yeung et

∗Both authors contributed equally
†Corresponding author (stefan.schu@uni-jena.de)
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al. [YTP07] estimated that the number of extreme pathways [SLP00], a subset of EFMs,
is at the order of 1029 for a genome-scale model of human.

Due to this problem, alternative approaches for the identification of pathways based on
graph theory have been proposed [RAS+05, CCWvH06, BK08]. These methods abstract
from the metabolic network by converting it into a graph and consider only connected
paths. While they operate efficiently in genome-scale metabolic networks, they bear the
problem that a detected pathway does not automatically imply that a net-conversion of the
source metabolite into a specific target metabolite is possible [PB08, dFSKF09].

Here we want to present a method that allows the enumeration of EFMs in genome-scale
metabolic models. Starting from an initial pathway, the space of EFMs is explored using a
genetic algorithm (GA). GAs have already been used in the analysis of metabolic networks
to find combinations of gene knockouts that improve the production of a given metabo-
lite [PRFN05]. We used benchmark models for EFM analysis to validate our new method
and applied it to a study of amino-acid synthesis in genome-scale metabolic models.

2 Methods

The aim of our algorithm is, given a metabolic network and an input medium, to find all
EFMs producing a certain metabolite. The employed strategy is based on the observation
that gene knockouts can force an organism to use pathways alternative to those found
under standard conditions. Thus, we are detecting EFMs by evolving a population in
which each individual corresponds to a set of knockouts. However, instead of considering
the knockouts of genes we here focus on the “knockout” of reactions. By searching for a
specific EFM avoiding reactions that are knocked out and iterating over different sets of
knockouts we are able to determine different EFMs.

2.1 Detecting a single EFM

A metabolic network comprising m metabolites and n reactions is defined by the mxn sto-
ichiometric matrix N. Each metabolite can be defined to be either internal or external.
External metabolites differ to internal metabolites in that their concentration is assumed
to be buffered by the system. Examples for such external metabolites are energy currency
metabolites like ATP, NADH and FADH. Since their concentration is assumed to be con-
stant they are not required to be balanced by an EFM.

To be an EFM, a flux v ∈ Rn through a reaction network has to fulfill the following
conditions: (1) steady-state condition, i.e., all internal metabolites are balanced; (2) irre-
versible reactions have positive fluxes; (3) non-decomposability of the enzyme set, i.e., the
non-zero indices of one EFM cannot be a subset of the non-zero indices of another EFM.
In our approach reversible reactions are decomposed into two irreversible reactions with
opposite directions. Therefore, all fluxes have to be positive.
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Given a set K of reactions to be knocked out and an index µ corresponding to a target reac-
tion which produces a certain metabolite of interest, the optimization problem to compute

an EFM can be formulated as a linear program by minimizing
n∑

r=1

vr subject to

Nv = 0 (1)
v ≥ 0 (2)

vµ ≥ 1 (3)
∀i ∈ K : vi = 0 (4)

Using eqs. 1 and 2 we only allow for a strictly positive flux v that obeys the steady-
state condition. Eq. 3 forces the solution to have a positive flux through a given reaction
which can be the outflow of the product of interest, i.e., if a solution exists, v produces
the metabolite of interest. Eq. 4 guarantees that we only find a flux that does not use the
reactions in K that are knocked out. By minimizing the overall flux and solving the linear
program using the simplex algorithm [Sch98] we achieve that v corresponds to an EFM.
This property of v will be shown in the following.

The solution space of the steady-state and the irreversibility condition (eqs. 1 and 2) in the
space of possible fluxes Rn corresponds to a convex polyhedral cone P [GK04]. Since,
we split reversible reactions, the extreme rays or spanning vectors of P correspond to the
EFMs of the system. Furthermore, a knockout of a reaction only leads to the disappearance
of some EFMs [SDF99]. Thus, for every K chosen, the cone is still spanned by EFMs and
eq. 4 does not impact the property of the spanning vectors of P of being EFMs. Further-
more, eq. 3 cuts P with a hyperplane at vµ = 1 (Figure 1C). Since P is unbounded the
edges of the solution space of eqs. 1 - 3 correspond to the intersection points between the
EFMs defined by eqs. 1 as well as 2 and the hyperplane defined by vµ = 1. These points
can each be written as the corresponding EFM multiplied with a scaling-factor. From
linear programming it is known that the simplex algorithm used to solve such problems
always returns a solution that can be found at the edges of the solution space [Sch98].
Thus, using the simplex algorithm and minimizing the objective function subject to eqs. 1
- 4 will always return an EFM.

In principle, the described linear program can find all EFMs by testing every possible set
of knocked out reactions K. However, this is computationally inefficient and thus we will
next outline an algorithm that allows to explore the space of EFMs more efficiently.

2.2 Genetic Algorithm

The aim of the GA is to test different sets of reactions to be knocked out in order to find
all EFMs. Each such set of reactions corresponds to an individual. Each individual is
represented by a binary genome G of length n, i.e., the number of reactions in the system.
Gi = 1 indicates that reaction i can be used by that organism and Gi = 0 that this
reaction is knocked out. From each genome an EFM can be derived by mapping G to the
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Figure 1: Scheme of the computation of EFMs. A Viable individuals. The target reaction µ = r1 is
shaded in gray. In the upper row the genome of each individual is given. The second row indicates
the reactions knocked out in the model and the third row the EFM obtained from the linear program.
Even though the EFM of the third individual is also a valid EFM satisfying eqs. 1 - 4 for the second
individual it is not minimal since the sum of fluxes is higher. The fourth row gives the fitness of each
individual for a population containing the three depicted genomes. B Individual for which no EFM
can be found. C Three-dimensional solution space of eqs. 1 - 3 for 3 reactions (not shown). The
solution space is defined by the intersection of the solution space of eqs. 1 and 2, spanned by the
EFMs e1 to e4, and the half-space defined by eq. 2. Optimal solutions of the linear program can
always be found in the edges of the solution space (black circles).

set of knocked out reactions K and solving the linear program described in the previous
section. Thus, we can obtain an EFM associated to an individual (Figure 1A and 1B).
Solving the linear program described in the last section we can only find a single EFM. In
consequence, by specifying different sets of reactions that should not be used by an EFM,
that is, by knocking them out, we can sample EFMs.

Central for each GA is the definition of a fitness function that returns a numerical value
indicating the quality of an individual. In contrast to other approaches the aim of the GA
described here is not to find an individual that is optimal in some sense, but to detect all
possible EFMs in a metabolic network. Thus, we attribute higher fitness to individuals
whose associated EFMs use reactions which are not frequent in the EFMs of the popula-
tion. Given a population G1, ..., Gs of individuals and the associated EFMs e1, ..., es the
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to this set if it has not already been detected. If two individuals are recombined, they
are first cloned and then the genomes are interchanged starting from a random position.
Subsequently it is tested for both if they are viable, and, if this is the case, they are re-
inserted replacing two randomly chosen individuals of the population. Thus, EFMs are
detected as a side product of checking the viability of new individuals.

An important advantage of GAs is that they can be easily parallelized by the use of separate
threads that mutate, recombine, and test individuals. Thus, the multi-processor architecture
of modern desktop PCs is fully exploited.

3 Results

We applied our method to compute EFMs producing lysine, threonine, and arginine in two
metabolic networks of Escherichia coli and one metabolic network of Corynebacterium
glutamicum. Especially for the industrial production of lysine C. glutamicum is of im-
portance [WBE06]. The first network of E. coli has been presented in [BWvK+08]. It
comprises 220 reactions and models amino acid metabolism. This network has the advan-
tage that we can compute EFMs using Metatool [vKS06]. The second network represents
a genome-scale model of E. coli metabolism and comprises 3558 reactions [FHR+07].
The model of C. glutamicum contains 641 reactions and has been presented in [KN09].
In order to avoid side-pathways used for the balancing of co-factors and to provide an in-
put medium we set the metabolites ammonium, AMP, ATP, CO2, coenzyme A, glucose,
NAD+, NADH, NADP+, NADPH, oxygen, protons, and inorganic ions to external status.
As parameters for the computation we used a population size of s = 100 individuals, a
mutation rate of pmut = 0.01 per reaction and a probability of prec = 0.3 for recombina-
tion events. Computations were performed on an Intel R© CoreTM2 Quad Q9300 machine
with 4096 MB RAM running Linux Kernel 2.6.25 and Java Hotspot VM version 1.6.0.
Clp version 1.0.6 from the COIN-OR project [LH03] has been used to solve the linear
programs. An overview on the results is given in Table 1 and Figure 3.

As a first benchmark we tested to what extend our method can recover EFMs in a system in
which they are already known. The model of [BWvK+08] contains 3436 EFMs producing
lysine, 444 EFMs producing threonine and 27450 EFMs producing arginine. We found all
EFMs producing threonine and lysine after 491 s and 4821 s, respectively. For arginine we
recovered 95.6% of all EFMs after a running time of 7200 s. In comparison, Metatool 5.1
took only 61 s to find all 65840 EFMs. However, a direct run-time comparison even to the
currently fastest algorithm for the enumeration of EFMs presented in [TS08] does not bear
much meaning since these methods in general only return the entire set of EFMs. This is
not practicable in genome-scale networks since the number of EFMs exceeds by far current
limitations in memory and processing power [YTP07]. An interesting behavior of the GA
can be observed from these experiments. First, the time-course shows a kind of saturation
when having found most of the EFMs. Furthermore, we observe phases in which only few
new EFMs are found and sudden jumps in which the number increases rapidly as in the
case of threonine in the model of amino acid metabolism at t = 320 s. While this particular
behavior is also observable in the case of lysine in the model of C. glutamicum, a saturation
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Figure 3: Time-course of the determination of EFMs for the three test-models: E. coli AA,
[BWvK+08]; E. coli, [FHR+07]; C. glutamicum, [KN09]. The X-axis gives the running time in
seconds and the Y-axis the number of EFMs found.

can be observed for the two other amino acids. In conjunction with the limited size of this
model these results indicate that our method has already discovered a significant portion
of all EFMs producing the three amino acids. In contrast, in the genome-scale system of
E. coli we observe an almost linear increase in the number of EFMs without any saturation
indicating that the number of EFMs existing in this model is much larger than the number
already sampled.

Furthermore we tested the time required for the computation of 2000 EFMs in all models.
We found the influence of network size on the running time much smaller than expected.
Thus, it took on average 26.3 s to find 2000 EFMs in the model of C. glutamicum and 43 s
in the genome-scale model of E. coli although both models differ more than five-fold in
the number of reactions. This behaviour might be attributed to the simplex algorithm used
to solve the linear programing problem described in Section 2.1. Since we are iteratively
solving very similar problems and the simplex algorithm can start from a previous solu-
tion after changing some constraints, new solutions can be found very fast without need
to consider the entire problem, but only a specific sub-part for which constraints were
changed.

Another interesting aspect of the detected EFMs arises from the part of the network that
can be used for the production of particular amino acids. For this analysis we combined
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Model # Rea. AA # EFMs # Min. CS 2000 EFMs
E. coli 220 Lysine 3436 16 94 95 s

AA metabolism Threonine∗ 444 11 67 839 s
[BWvK+08] Arginine 26276 18 95 8 s

E. coli 3558 Lysine 118598 29 1826 49 s
Genome-scale Threonine 126491 26 2084 38 s

[FHR+07] Arginine 127988 37 1895 42 s
C. glutamicum 641 Lysine 43115 23 240 28 s
Genome-scale Threonine 131346 24 245 22 s

[KN09] Arginine 65236 35 246 29 s

Table 1: Overview on computed EFMs. For each of the three test-models (number of reactions in
the second column) the GA has been used to determine EFMs for the production of lysine, threonine
and arginine (third column). The fourth column gives the number of EFMs detected after a running
time of 7200 s. The fifth and sixth column indicate the minimal length of a detected EFM for the
production of the given amino acid and the total number of different reactions used by all EFMs.
The last column indicates the time required for the computation of 2000 EFMs averaged over 10
runs. In the case marked with ∗, the system only contained 444 EFMs.

all the computed EFMs for each test-case and determined the number of reactions used
(Table 1). Furthermore, we determined the minimal number of reactions used by an EFM
for the production of a given amino acid (Table 1). Combining all EFMs, the part of
the metabolic network that can be used for the production of each amino acid varies in
between 31% to 59% of the total network size. In consequence, there seems to be a
great versatility in potential pathways. However, this versatility can be mostly attributed
to the side-products of amino acid biosynthesis. For instance, in the production of ly-
sine succinyl-CoA is converted to succinate. There are two ways of balancing succinyl-
CoA and succinate. Either succinyl-CoA is additionally produced from the input medium
and succinate is disposed through some other pathway, or succinate is reconverted into
succinyl-CoA. Hence, we see a combinatorial explosion since the basic route producing
lysine can be combined, on the one hand, with every pathway producing succinyl-CoA and
consuming succinate. On the other hand this route can be combined with every possible
pathway converting succinate into succinyl-CoA. This is also apparent from an analysis of
the 64699 EFMs producing amino acids in the model of [BWvK+08]. Here we found that
35% of the EFMs do not only produce a single, but several amino acids. These additional
amino acids can serve as sinks for side-metabolites.

4 Discussion

In this work we have outlined a new approach based on a genetic algorithm (GA) that
allows to determine EFMs using a specific reaction in genome-scale metabolic networks.
Previous methods that are based on searching paths in a graph representation of a metabolic
network only guarantee to find connected routes while EFMs correspond to routes of actual
metabolic conversions [dFSKF09]. Computing EFMs in a network in which they also
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can be enumerated using deterministic algorithms we demonstrated that even large sets
of EFMs can be recovered almost entirely. Comparing the time-course of the number of
EFMs enumerated between a small and two large networks we concluded that we had
already found a significant portion of all EFMs in a genome-scale model of C. glutamicum
but only a small portion in a much larger model of E. coli. Analyzing the parts of the
metabolic network which can be used by EFMs we found that they corresponded to 31%
to 59% of the entire network even though individual pathways are usually much shorter.
We attributed this result to the large variability of pathways that can be used to balance
side-metabolites of amino acid biosynthetic pathways.

There exist several alternative approaches that allow a similar analysis of pathways in
genome-scale networks. They either decompose a large network into smaller subnetworks
or consider the entire network. The former approaches bear the problem that they only
consider a small network on the local scale and thus they can contain artificial pathways
that do not appear on the scale of the entire system [KdFS09]. Among the latter approaches
especially constrained based methods are of importance. Methods from this field that al-
low to perform a similar analysis are flux balance analysis (FBA, [VP94]), flux variability
analysis (FVA, [MS03]), and stochastic sampling of the solution space of eqs. 1 - 3 with
additional upper bounds on reaction fluxes [WFGP04]. However, FBA only returns a spe-
cific pathway optimizing a certain objective function [VP94] and flux variability analysis
only determines the set of reactions that can take part in alternative optimal pathways,
without allowing to identify these pathways [MS03]. Stochastic sampling in contrast is
very similar to our approach, but returns solutions that lie within the solution space of
eqs. 1 - 3. Thus, rather than EFMs fluxes that correspond to combinations of EFMs are
returned.

Our method represents an important step towards the analysis of EFMs, and thus of path-
ways, in genome-scale metabolic networks. While we used a fitness function that selects
for diversity one can think of other functions that can be used. Thus, it is of interest to
analyze suboptimal EFMs for the production of some metabolite which are in a specific
range of yield per mole of an input metabolite or fulfill additional criteria like the pro-
duction of a certain side-metabolite. Furthermore, since EFMs correspond to the concept
of minimal transition invariants (MTIs) in petri-nets [SPM+00, KH08], our approach can
also be useful to find MTIs in large petri-nets.
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Chapter 5

Prospects of constraint-based

analysis

The methods presented in the previous two chapters, namely the K-shortest EFMs

and the EFMEvolver, are at the cutting edge of elementary flux mode analysis.

An overview of the current achievements of metabolic network reconstruction,

constraint-based analysis is given in this chapter. Moreover, Ruppin et al. (2010)

show the increasing importance of game theory as a modelling framework in

systems biology and how it can be used to study some of the issues associated

with constraint-based analysis. Finally, future applications of these modelling

approaches in the study of the metabolism of multi-cellular organisms are pointed

out.
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difficult due to a lack of kinetic data and to computational
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Introduction
The study of metabolism has changed drastically during

the last century. The concept of metabolic pathways was

molded by the experimental methods available in the

beginning of the 20th century resulting in a stepwise

elucidation of metabolism (cf. [1�]). In the second half of

the 20th century, the discovery of the structure and

information coding of DNA laid the foundations for

recombinant technology, making microorganisms more

amenable to metabolic engineering [2].

The mathematical modeling and computer simulation of

metabolic systems started with dynamic modeling [3�].
This is useful, for example, to simulate the occasional

metabolic oscillations in bioreactors. Later, it was realized

that the knowledge of kinetic parameters was insufficient

in many cases and that a detailed dynamic simulation is

often unnecessary [4,5]. Many specific questions such as

the effect of the activation or overexpression of an

enzyme can be tackled by specially tailored techniques

such as Metabolic Control Analysis (MCA) (cf. [2,3�,4]).

Moreover, the search for methods to analyze invariants of

intracellular networks led to the development of the

constraint-based modeling (CBM) approach, also called

structural analysis or network analysis [4,5]. This requires

even less input data than MCA. A subfield is called

Metabolic Pathway Analysis [6,7,8��], in which the struc-

ture of pathways (routes) going through the system is

detected and/or optimal flux distributions are calculated

based on the stoichiometry of the network and the direc-

tionality of reactions, the knowledge of which is often

available. Elementary flux modes (EFMs) [9��,10��] and

extreme pathways [11��] were established as unbiased

mathematical representations of metabolic pathways.

CBM comprises metabolic flux analysis (MFA) (cf. [2]) by

which flux distributions can be predicted using flux

measurements in addition to network stoichiometry.

The limitations in measurements led to the inclusion of

additional constraints coming from the Darwinian theory of

optimization in evolution. Notably, optimality principles

such as maximizing growth rate or given reaction fluxes at

normalized input rate are widely used, thus enabling one to

predict fluxes by linear programming [12��,13��]. This is

the essence of Flux Balance Analysis (FBA), by which

phenotypically relevant flux distributions in metabolic

networks can be predicted (cf. [14,15]).

At the end of the 20th century, the development of new

experimental technologies such as sequencing and chip

technologies triggered the explosion of omics data. In

metabolomics, several hundreds of metabolite concen-

trations can be measured simultaneously [16��,17]. In fluxo-

mics, in contrast, it is difficult to measure more than a

dozenfluxessimultaneously [18��].After DNA microarrays,

transcriptomics has recently reached ahigher level by RNA-

Seq technologies [19]. A secondary source is bibliomics

(text mining). High amounts of data enabled one to recon-

struct more complex metabolic networks reaching a gen-

ome scale for a rapidly increasing number of species (cf.

[20��,21��]). In addition, recent efforts to integrate gene

expression data [22,23��,24], sequencing data [25��], pro-

teomics [17], and other omics data have enabled the gener-

ation of reconstructions unique to particular life-cycle

stages, environments, and genetic backgrounds.

These large models together with CBM methods represent

a key foundational advance in Systems Biology [5,14] and
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are essential for seeking comprehension of biological func-

tioning throughout the integration of data with mathemat-

ical models. The modeling and computer simulation of

metabolism in the genome and post-genome eras have

been the subject of a number of reviews [6,7,20��,21��]. In

this paper we will review recent advancements in the

methods for metabolic network reconstruction, the tools

available for their analysis and several applications. A

special focus will be on game-theoretical methods (cf.

[26]). Finally, perspectives on further developments in

Systems Biology will be outlined.

Reconstruction of metabolic networks
The process of metabolic network reconstruction begins

with the annotation data of the relevant genes (cf.

[20��,27]). This annotation provides the ‘parts list’ for

the network. The metabolic reactions that the associated

gene products catalyze are delineated by incorporating

data on the metabolites and stoichiometry from databases

(e.g. ExPasy and KEGG) and the literature. The stoichio-

metric coefficients of the metabolites or compounds in

the associated reactions are typically represented in a

stoichiometric matrix, N (sometimes denoted S) with

its rows corresponding to the metabolites and the columns

representing the chemical transformations that the gene

products (enzymes) catalyze. The usefulness of CBM in

the reconstruction process is outlined in Box 1. Two key

challenges are firstly, the integration of disparate high-

throughput data and secondly, the inclusion of additional

constraints to improve the predictive power. Recently,

methods for the iterative refinement of the networks

using high-throughput transcript data have been devel-

oped and used to significantly improve the reconstruction

of Chlamydomonas reinhardtii and to identify key genes

associated with biofuel production [25��].

For a reconstructed network to be realistic, there must be

a flux vector n fulfilling Eqn (1) in Box 1 and covering

practically all reactions. While there may be a few reac-

tions that always subsist at thermodynamic equilibrium,

the vast majority must be able to operate at non-equi-

librium, that is, they must not be blocked due to missing

reactions [28�] and have to fulfill mass conservation [29].

The coverage of a network by a flux distribution can be

tested by a method called flux coupling analysis, which is

based on linear programming [30��].

Genome-scale reconstructions have been assembled for

organisms from all kingdoms: archaea, eukaryota, and

bacteria (Figure 1), and include single-cell and multi-cell

organisms (for references to specific reconstructions, see

[21��]). Here, we mention only a few: Escherichia coli
[31��], Saccharomyces cerevisiae [32��], C. reinhardtii
[25��,33], Arabidopsis thaliana [34,35], mouse [36,37],

and human [38��,39��]. The goal is to account for all

the enzymes encoded in the entire genome. However,

the term ‘genome-scale’ is to express the dimension in

which this is done, which does not necessarily imply that

this difficult task would be accomplished with 100%

completeness. Questions such as whether substrate A

can be transformed into product B can only be tackled

exhaustively in a whole-cell model, which provides a

further motivation for their reconstruction [40��].

Some recent efforts are focused on automating the re-

construction process (cf. [20��,41]), aided by the devel-

opment of computational platforms to manage the data

associated with gene–enzyme-reaction associations and

reaction stoichiometry. This has had some success,

although there is typically a recognized need for manual

curation efforts [28�,29,42]. A significant remaining chal-

lenge is the visualization of these networks, in spite of

some recent efforts in this area [43].

Biotechnological applications of metabolic
modeling
With the reconstructions that have been generated, the

next important step is the development of analysis tools

and frameworks to study functional properties of these

networks [30��,40��,44�,45�]. Various tools for metabolic

modeling have been established and refined. These in-

clude dynamic modeling, optimization, game-theoretical

methods, FBA, Metabolic Pathway Analysis and others

(cf. Introduction).

FBA is based on optimality principles (Box 1). It is a

matter of debate whether FBA always gives sufficiently

correct results [46,47], see below. Various objective func-

tions have been compared by [48�]. However, more
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Box 1 Most metabolic systems subsist at stationary states. Even if

they oscillate (only very few do), the average reaction rates (on a

sufficiently long time scale), n, must fulfill the steady-state condition

N � n ¼ 0 (1)

because, otherwise, the concentrations of metabolic intermediates

would accumulate or be depleted in the long run. In addition, for

some or all fluxes, inequality constraints can be written:

ni;inf � ni � ni;sup: (2)

For example, ni,inf is zero for all irreversible reactions. For all

reactions, ni,sup can be given by the respective maximal velocity if it is

known.

Central to FBA is an optimization principle

maximize Scini (3)

subject to relations (1) and (2) [12��,13��,15]. The coefficients ci

denote the weights of the particular fluxes in the objective function,

for example, the production of biomass. Typically, relation (2)

includes one constraint that fixes or limits a relevant input flux, for

example, glucose uptake.

The non-decomposability of elementary flux modes can be expressed

by a constraint saying that the support of the flux vector is not a proper

superset of the support of any other steady-state flux vector, n0:

SðnÞ ¼ fi : ni 6¼ 0g not proper superset of Sðn0Þ (4)
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sophisticated methods usually require kinetic data, with

the above-mentioned problem of incomplete data avail-

ability. Some current approaches attempt to guess flux

values from thermodynamics [49], purely structural prop-

erties [45�] or RNA transcript data [23��].

A useful tool in Metabolic Pathway Analysis is based on

the concept of EFMs [9��,10��]. An EFM is a minimal set

of enzymes that can operate at steady-state such that all

irreversible reactions involved proceed in the thermody-

namically favored direction (Box 1). The related concept

of minimal T-invariants had been established earlier in

Petri net theory (cf. [50]).

Maximal yields can be computed by EFMs or by FBA. The

latter methodology is particularly suitable in large-scale

networks, in which EFM analysis meets the problem

of combinatorial explosion. In small-sized and moderate-

sized networks, in contrast, the set of EFMs provides

a more comprehensive overview of the network’s

metabolic capabilities because it also comprises subopti-

mal pathways and pathways optimal with respect to other

504 Systems biology

Figure 1

Phylogenetic relationship between the organisms for which metabolic network reconstructions exist, generated with iTOL [84].

Current Opinion in Biotechnology 2010, 21:502–510 www.sciencedirect.com

E Ruppin, JA Papin, LF de Figueiredo and S Schuster. Curr Opin Biotechnol,
21(4):502-510, Aug 2010.

57



substrate-product pairs. Moreover, knockouts can easily by

assessed by considering the remaining subset of EFMs.

This sometimes leads to the counter-intuitive result that

the average yield increases, as has been confirmed exper-

imentally after the in silico analysis [8��].

By EFM analysis, previously unrecognized pathways can

be detected (cf. [10��,55�], see also Box 2). Recently, we

proposed two methods for pathway prediction in large-

scale networks [40��,53��]. We computed the 10 shortest

EFMs producing lysine in the genome-scale networks of

E. coli and Corynebacterium glutamicum [53��] (Figure 2).

Moreover, EFM analysis allows the quantification of

robustness (see below).

There is a growing effort to use network models to identify

drug targets and characterize mechanisms of disease. A

recent study reconstructed and analyzed the metabolic

networks of multiple strains of Staphylococcus aureus to

identify novel drug targets [56]. A network-based pipeline
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Figure 2

The shortest EFM producing lysine from glucose in Escherichia coli [53��]. The calculation was performed in the genome-scale network from [31��].

Violet nodes belong to the in silico growth medium, red nodes denote external metabolites. Duplicate nodes are dashed. Values in parentheses

indicate reaction fluxes. For abbreviations, see [31��].

Box 2 The EFM method has manifold applications in biotechnology.

First, it allows one to compute maximal molar yields (product-to-

substrate ratios). For example, a previously undescribed pathway of

efficient conversion of carbohydrate to oil in developing green plant

seeds was detected [51��]. That pathway involves the pentose-

phosphate pathway and the RUBISCO enzyme and provides 20%

more acetyl-CoA for fatty acid synthesis than glycolysis. Trinh et al.

[52�] designed, initially in silico, an E. coli strain with eight gene KO

mutations. By EFM analysis, four pathways with non-growth-

associated conversion of pentoses and hexoses into ethanol

(important for biofuel production) at maximum theoretical yields and

two pathways with tight coupling of growth with ethanol formation

at high yields were obtained. Thereafter, they verified in experiment

that the ethanol yields of the engineered strains closely matched the

theoretical predictions. A third example is the EFM analysis of the

synthesis of the commercially important amino acid, lysine (Figure 2)

[7,53��,54�]. Depending on the bacterial species and on whether

ATP was assumed to be sufficiently available, different maximum

lysine-over-glucose yield values have been computed, for example

9:11 in Corynebacterium glutamicum when ATP must be

regenerated by part of the glucose resource [54�]. There are many

more studies in which EFMs were used, see [8��] for a recent review.
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for identifying potential antimicrobials is being developed

[57]. The human metabolic network reconstruction was

analyzed to identify alternative enzyme targets for treating

hyperlipidemia [39��]. It has also been recently used to

predict biomarker changes characterizing a large set of

different genetically inherited metabolic disorders [58].

Using metabolic models to study basic
biological questions

Metabolic games

As has been seen above with FBA and EFMs, the concept

of optimality has turned out to be extremely useful in

understanding biological systems. Traditional optimiz-

ation is, however, often insufficient for a deeper under-

standing of evolution. It usually neglects that the

properties of the environment can change, and this in

turn can change the optimal strategy. This is particularly

important if the environment includes coevolving com-

petitors that optimize their own metabolic capabilities. A

mathematical framework to describe coevolution is pro-

vided by game theory (cf. [59]).

An illustrative example of the importance of competition

in pathway evolution is the interplay between fermenta-

tion and respiration in ATP production [60��]. Several

organisms and cell types such as S. cerevisiae and E. coli use

respiro-fermentation at high glucose levels for degrading

glucose to produce ATP, that is, respiration at maximum

rate and fermentation in addition (Figure 3a), while many

wild yeasts such as Kluyveromyces marxianus do fully

respire glucose under aerobic conditions [61]. Respiration

has a higher ATP-over-glucose yield but a relatively low

rate in comparison to fermentation. When two species or

strains compete for the same substrate, a typical game-

theoretical situation arises (Figure 3b). The fitness of

either organism depends not only on its own strategy

(pathway usage in this case) but also on that of the other

because both strategies affect the common nutrient pool.

To apply game theory requires little kinetic information.

Not much more than the constraints (1) and (2) in Box 1

are necessary. In the example of fermentation and respir-

ation, the upper limits given by relation (2) have to be

chosen appropriately. In addition, the different yields of

the pathways must be considered.

In order to use external glucose as economically as

possible, it would be best if all organisms in a given

habitat opted for respiration. The evolutionary reason

for the profligate utilization of glucose by baker’s yeast

is that it thus out-competes organisms that operate more

economically. In the terminology of game theory (cf.

[59]), yeast cells are trapped in a Nash equilibrium (stable

solution of a game) of a Prisoner’s Dilemma (cf. [62�]). In

the light of these results, FBA should be critically

re-visited [46,47] although it was very successful in many

cases [14,15,63��]. If maximum yield were the relevant

criterion for the choice of pathway, respiration would

always be chosen by S. cerevisiae. Fermentation was pre-

dicted only by FBA when additional constraints or

specially tailored optimization principles were used

[64]. Game-theoretical approaches can help predict flux

distributions without additional corrections.

Several other metabolic systems have been analyzed by

game theory, such as distinct regimes of glycolysis [65] and

metabolic strategies in biofilms [66]. S. cerevisiae is involved

in yet another interesting game. It concerns the extracellu-

lar enzyme, invertase, which generates glucose [67�]. A

cheating strategy is to take up glucose while saving the

metabolic costs of production and secretion of invertase.

Gore et al. [68��] showed by experiments and a mathemat-

ical model that a stable coexistence between invertase-

secreting and non-secreting yeast cells can be established

(for an alternative mathematical model and the biotech-

nological relevance, see [69]). When the metabolic effort

for exoenzyme production is low, all cells cooperate (har-

mony game); at intermediate costs, cooperators and chea-

ters coexist (hawk–dove game), while at high costs, all cells

use the cheating strategy (Prisoner’s Dilemma) [68��,69].
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Figure 3

Game played by S. cerevisiae when growing at high glucose level under

aerobic conditions. (a) The strains face the decision as to whether they

use respiration (red arrow) or respiro-fermentation (red and yellow

arrows). The higher rate of fermentation is indicated by a thicker arrow.

(b) Schematic picture of the payoff matrix for this game. The best

solution is to use respiration in order to have a higher yield. However, the

respiro-fermenters would grow faster.
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Several other biochemical examples including photosyn-

thesis have been reviewed in [62�]. Moreover, the concept

of Shapley value from game theory has been used in

quantifying metabolic robustness [70], see below.

Robustness and its evolution

A general feature of living cells is their robustness to

varying environmental conditions and genetic mutations.

As metabolic network models provide an exciting oppor-

tunity to study genotype–phenotype relations on a gen-

ome scale, CBM models (and metabolic models in

general) have been successfully used to study many facets

of this fundamental relationship [71�,72��,73,74]. These

studies have mainly asked two basic questions: Firstly,

how did genetic robustness evolve? Does it have a direct

adaptive value, or is it a consequence of environmental

robustness, or perhaps just a side effect of other network

properties? Secondly, what network mechanisms underlie

the observed robustness — is it primarily due to gene

duplications, to alternative metabolic pathways, or related

to untested environmental conditions?

Since employing FBA in an exhaustive search of all gene

knockout combinations cannot proceed beyond combi-

nations of four knocked out (KO) genes, Deutscher

et al. [75��] used a probabilistic approach. Thus, gene sets

providing mutual functional backup until the depth of

eight could be cataloged for S. cerevisiae. This has enabled

them to characterize the ‘k-robustness’ (the depth of

backup interactions) of each gene, revealing that almost

three quarters of yeast metabolic genes do participate in

processes that are essential to growth in a standard labora-

tory environment, compared with only 13% previously

found to be essential using single KOs. Optimization-

based procedures for the exhaustive identification of

multi-gene backup sets in genome-scale metabolic models

have been recently developed [76], revealing new avenues

available for redirecting metabolism, and uncovering com-

plex patterns of gene interdependence. On the reverse

side, genetic robustness may markedly hamper classical

genetic studies using KOs to identify gene functionality,

due to backups. Using the concept of Shapley value,

Deutscher et al. [70] have shown that when assigning gene

contributions for individual metabolic functions (such as

the production of a given amino acid), the picture arising

from single-perturbations is severely lacking and a

multiple-perturbations approach turns out to be essential.

Metabolic robustness under multiple KOs has also been

studied in CBMs of several cell types by developing a

robustness measure [73]. That measure is based on the

ratio of the number of remaining EFMs after KO and the

number of EFMs in the unperturbed situation.

Genetic interactions and network organization

By systematically generating double KOs of nonessential

genes and assessing the resulting growth rate (fitness) of

the organism, geneticists have traditionally identified

both positive (alleviating) and negative (aggravating)

genetic interactions, which has been a traditional tool

for discovering functional relationships between genes. A

comprehensive experimental screening for this in a whole

organism is currently underway for yeast [77��]. Naturally,

CBM models offer an opportunity to carry out such

screens in silico. Segrè et al. [78] computed growth phe-

notypes of all single and double KOs of metabolic genes

in S. cerevisiae, using FBA. The ensuing genetic inter-

action network could be clustered into modules composed

of genes interacting with each other ‘monochromatically’

(i.e. with purely aggravating or purely alleviating inter-

actions), emphasizing interactions between, rather than

within, functional modules. Harrison et al. [79��] investi-

gated the extent to which the functional impact of single

and double KOs in yeast changes across different environ-

ments, employing FBA across 53 different conditions. The

synthetic lethal (SL) predictions of the model were then

validated by an in vivo double gene KO experiment and by

literature search. The strong context dependency of the

pattern of SL interactions observed suggests that the

environment plays an important role in shaping genetic

robustness.

From unicellular to multi-cellular organisms
The vast majority of the work on metabolic CBM per-

formed up until now has focused on unicellular organisms.

Naturally, in recent years, there have been attempts at

extending these methods to study the metabolism of multi-

cellular and multi-tissue organisms, a considerably greater

challenge. CBM reconstructions of human metabolic net-

works were performed up to 2007 only for cell types and

organelles with a very limited scope of metabolism

[80,81�,82��]. A fundamental step forward has been pre-

sented in recent reconstructions of the global, generic

human metabolic network based on an extensive evalu-

ation of genomic and bibliomic data [38��,39��]. These

networks include�3000 reactions,�2000 metabolites, and

�1500 genes mapped to the different reactions over 7

organelles. The generic model of [39��] helped identify

a set of functionally related reactions involving glutathione

metabolism that were causally related to hemolytic ane-

mia, and another set of functionally related enzymes con-

taining HMG-CoA reductase, a common target for the

cholesterol lowering statins. This model, however, is not

tissue or cell specific. More recent efforts have presented

methods for inferring context-specific networks [23��,24],

which can be utilized to infer large-scale descriptions of the

human tissues’ metabolism. Accordingly, Shlomi et al.
[23��] have integrated tissue-specific gene and protein

expression data to predict and validate versus publicly

available data for the tissue-specific metabolic activity

for 10 human tissues, identifying that post-transcriptional

regulation plays a central role in shaping tissue-specific

metabolic activity. Very recently, an extended approach of

the latter has been used to build and study the first large-

scale model of liver metabolism [83��].
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Concluding remarks and future directions/
challenges
CBM methods are very useful for understanding the

complex architecture of metabolism and for manifold

biotechnological and medical applications. Even if

kinetic parameters were to become available, an analysis

of the network properties using tools of FBA and Meta-

bolic Pathway Analysis often provides valuable insight

before performing a dynamic simulation. As outlined

above, the integration of omics data of different types

into metabolic models has had much success. Neverthe-

less, its refinement and scaling-up certainly remains a

challenge. Cell-specific and tissue-specific studies can

now be performed for those multi-cellular organisms

for which metabolic reconstructions are available, as is

already being done for humans. Whole-cell modeling has

also raised philosophical issues on what level of comple-

teness can be reached in modeling.

More work in this field is also needed to study emergent

properties, which is at the heart of Systems Biology, after

the necessary assembly of the network constituents has

been done. Another direction is Synthetic Biology.

Specific goals are the design of minimal metabolisms

(depending very much on the given set of nutrients)

and minimal genomes. This could help design efficient

microbes for biosyntheses. Game-theoretical methods, in

particular, are helpful in assessing the impact of ‘cheater’

mutants in bioreactors, which may impair productivity.

Overall, one can safely maintain that the field of genome-

scale metabolic modeling has undergone a tremendous

development and growth in the last decade, in terms of

the organisms spanned, the methodologies developed,

and the themes covered. Certainly, if there is one specific

field in systems biology where we have made significant

strides towards the holy grail of generating a working cell

in silico, this is the one.
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Chapter 6

Discussion

This thesis presents a collection of four papers dedicated to metabolic pathway

analysis using the network stoichiometries to predict metabolic pathways. An

additional review paper outlines the recent developments in metabolic network

reconstruction, constraint-based modelling and game theory, and gives a perspec-

tive for further achievements. In the first part of the work, I evaluated some of

the recently published methods for metabolic pathway prediction based on graph

theory with elementary flux mode analysis. This analysis gave me a clear overview

of the advantages and limitations of both modelling frameworks.

From the comparison performed in Chapter 2 it is evident that the tested

tools based on graph theory can tackle the computational complexity of pathway

prediction in large-scale metabolic networks and even at the database level but

they are not able to correctly answer relevant biochemical questions. Some

of these questions are part of the history of biochemistry. Thus, topological

properties alone, without chemical constraints, are not enough to predict metabolic

pathways. This was pointed out already by Arita (2004) and it is becoming more

apparent in the literature with the application of these tools to biotechnological

problems (Ranganathan and Maranas, 2010). Graph-theoretical methods give

sometimes incorrect results. In addition to the examples shown in Chapter 2

and discussed below, there is a recently publihsed example: in the thiobutanoate
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pathway predicted by (Ranganathan and Maranas, 2010) there is no single carbon

atom from pyruvate reaching the end product, 1-butanol. Nevertheless, these issues

involving the use of graph-theoretical methods for pathway prediction remain a

matter of debate (Faust et al., 2009a; de Figueiredo et al., 2009c).

In order to improve the quality of the predicted paths, one has to add more

information to the graph representation, like the similarity between the chemical

structure of metabolites connected by a given reaction. Indeed, this has been the

strategy adopted in the improved version of PathFinding (Faust et al., 2009b) and

in the recently published MetaRoute (Blum and Kohlbacher, 2008a,b). In general

the algorithms for computing chemical structure similarity are NP-hard, albeit

the existence of heuristics to solve this problem in polynomial time (Raymond

et al., 2002; Hattori et al., 2003; Akutsu, 2004). However, the mapping rules for

a given reaction are not unique (Akutsu, 2004). This could be one explanation

for the incorrect pathways predicted by Pathway Hunter Tool (Rahman et al.,

2005). Additionally, it is confirmed that there were some issues relative to the

software used for the representation of chemical structures (Dr. Rahman, personal

communication). Blum and Kohlbacher (2008b) overcome the issue relative to

the non-uniqueness of the mapping rules by clustering reactions according to the

Enzyme Commission (EC) number. The EC number is a nomenclature developed

by the Nomenclature Committee of the International Union of Biochemistry and

Molecular Biology (IUBMB) and it corresponds to a hierarchical classification of

enzymatic reactions according to the reaction mechanism (Webb, 1992). Reactions

with the same first three EC digits have to have the same reaction mechanism and

therefore, the mapping rules should be the same. In the long-term, the approach of

Blum and Kohlbacher (2008b) will face a major drawback because the assignment

of new EC numbers is hampered by the requirement of experimental validation.

Thus, many of the recently discovered enzymes will not have an assigned EC

number (cf. Kotera et al., 2004; Egelhofer et al., 2010). Moreover, the assignment

of incomplete EC numbers generates incorrect annotations (Green and Karp, 2005;
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Egelhofer et al., 2010). More details on the EC number nomenclature limitations

can be found in Babbitt (2003).

Faced with these limitations, the developers of the KEGG database found a

different approach to characterize reaction mechanisms. The recently developed

RPAIR database consists of chemical structure alignments between pairs of re-

actants, substrate - product, and of chemical structure transformation patterns

occurring in all enzyme-catalyzed reactions present in KEGG (Oh et al., 2007). The

chemical structure alignments are computationally generated and subsequently,

manually curated. Recently, Faust et al. (2009b) have shown that the predictions

from PathFinding can be improved when a graph generated from these reaction

pairs stored in RPAIR database is used as input network. In this graph, shortcuts

through cofactors, such as ATP and NADH, are avoided and consequently, the

prediction of metabolic paths in the core of the metabolic network is improved.

Similarly to what was said for MetaRoute, also the coverage of RPAIR is limited

which imposes constraints in the size of system under study (Faust et al., 2009b).

Another important point concerning the tools based on graph theoretical

methods should be discussed, more precisely the evaluation of the predicted paths.

This evaluation has been made so far, using the pathway information from KEGG

or EcoCyc databases (Faust et al., 2009b; Blum and Kohlbacher, 2008b). As

mentioned in the Introduction, the higher functional level in these databases

corresponds to metabolic pathways. This information has been acquired during the

last century and corresponds to well characterized pathways. Thus, new metabolic

pathways are not depicted in these databases. Moreover, the pathways depicted in

KEGG or EcoCyc do not always contain information about the functional modes

of metabolic networks. For example, the pentose phosphate pathway described

in Stryer (1995) has four functional modes and in other textbooks has even less

modes (Michal, 1999; Voet and Voet, 2004). In KEGG, this pathway is depicted

as a single map and in EcoCyc as three maps, being one of them an integrated

view of the non-oxidative and the oxidative branches. The theoretical predictions
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carried out with convex analysis show that the pentose phosphate pathway, when

integrated with glycolysis and fructose-1,6-bisphosphatase (EC 3.1.3.11) has five

functional modes (Schuster et al., 2000). It is, therefore, important to know

whether the efficiency of tools for metabolic pathways prediction can be accessed

using only the description made in these databases or, on the other hand, a

collection of biological questions can be used to address the efficiency of such tools,

as we performed in Chapter 2.

The three benchmark problems presented in Chapter 2 correspond to biologi-

cal questions that were intensively discussed and for which there are abundant

literature and experimental evidence to support their answer. The conversion of

fatty acids to carbohydrates was discussed during the first half of the 20th century,

precisely at the time where pathways like glycolysis and the tricarboxylic acid

cycle (TCA cycle) had been discovered (see Introduction). To correctly answer this

question researchers brought together experimental results and algebra (Weinman

et al., 1957; Exton and Park, 1967; Heath, 1968). Another benchmark problem

deals with the conversion of glucose to pyruvate in the absence of phosphofruc-

tokinase (EC 2.7.1.11), from glycolysis, and glucose 6-phosphate dehydrogenase

(EC 1.1.1.49), from the pentose phosphate pathway. A route converting glucose

to pyruvate in such a system was hypothesized by Pollack et al. (1997). However,

we have shown that such pathway is not possible at steady state although there

is a connected route between glucose and pyruvate (de Figueiredo et al., 2009b).

Moreover, this problem shows how relevant are constraint-based methods in the

analysis of incomplete or recently sequenced genomes, helping in the annotation

process.

The last benchmark problem deals with the metabolism of human erythrocytes

for which elementary-flux mode analysis can be carried at the cell scale. In spite

of the reduced metabolism of human erythrocytes, interesting questions can be

formulated. For example, in erythrocytes the adenosine monophosphate (AMP)

is irreversibly converted to hypoxantine leading to a decrease in the adenylate
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pool (AMP/ADP/ATP). In order to maintain this pool at a physiological required

level, an inflow of adenine from the medium is required. Saying that, we can

raise the following question, Is it possible to convert hypoxantine back to the

adenylate form? This question underlies several experimental works (Salerno and

Giacomello, 1985; Heptinstall et al., 2005). Using elementary-flux mode analysis

to study the system depicted in Figure 6.1 (a) we can confirm that it is impossible

to convert hypoxanthine to adenosine diphosphate (ADP) (Figure 6.1 (d)-(f)).

However, even the most recent version of PathFinding fails to answer such a

question (Figure 6.1 (b)). The reason for this failure relies in the fact that the

atom mapping information (i.e., the RPAIR information), is only used to establish

the edges between metabolites and consequently the system does not have any

memory recalling which metabolite provides the carbon backbone. For example, in

the query for paths linking hypoxanthine to ADP (Figure 6.1 (b)), inosine shares a

carbon backbone with hypoxantine but all the carbon atoms of ribose 1-phosphate

(R1P) and present in inosine come from 5-phospho-α-D-ribose-1-diphosphate

(PRPP). Thus, even the last version of PathFinding cannot be used for atom

tracing. From elementary flux mode 2 (Figure 6.1 (e)) it is evident that the path

predicted by PathFinding would only convert ATP to ADP, corresponding to a

futile cycle. Additionally, the analysis of this subsystem shows that the oxypurine

cycle is important for the salvage of hypoxanthine to inosine monophosphate

(IMP) and that the PRPP pool controls this cycle (Berman and Human, 1990)

(Figure 6.1 (e)).

An alternative method, also based in graph theory, is the recently introduced

ReTrace tool (Pitkänen et al., 2009). The results obtained with this tool (Fig-

ure 6.1 (c)) are very similar to the ones of elementary flux mode analysis. First,

there is no path found from hypoxanthine to ADP. By querying this tool with

other metabolites as source compounds, it is clear that adenine is required for

ADP synthesis using a ribose ring, either from PRPP and consequently reduc-

ing the PRPP pool, or from ribose 5-phosphate (R5P), which can be obtained
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from central carbon metabolism. For more details about these simulations, see

the Supplementary material (pages 139 ff). The success of this method relies in the

atom-level representation of the metabolic network and in the recursive method

to find branching pathways. Contrary to Pathway Hunter Tool and PathFind-

ing approaches, ReTrace searches for pathways at the atom-level instead of the

conventional reaction-metabolite graph. In this representation, nodes correspond

to the atoms in a metabolite and the edges link the atoms between metabolites.

Then, the search algorithm finds branching pathways transferring as many atoms

as possible from the source to the target metabolite. Nevertheless, it would be

interesting to test this tool with problems where indeed there is a carbon route

from the source to the target metabolite but no net flux, such as the benchmark

problem dealing with the conversion of even-chain fatty acids into carbohydrates.

The work presented here supports the recent paradigm shift in the under-

standing of the topology of metabolic networks. The representation of metabolic

networks as graphs, without any further chemical constraints, may lead to incorrect

interpretation of their structural properties. The initial studies on the topology

of metabolic networks, have pointed out that these networks are scale-free and

can be seen as a small-world (see Introduction). However, a careful look on the

paths computed in such analysis, shows that some of the paths are not biologi-

cally relevant because they correspond to shortcuts through cofactors (Küffner

et al., 2000; Arita, 2004; Rahman et al., 2005; de Figueiredo et al., 2009b), or to

paths where no carbon flux from the source to the target takes place (Arita, 2004;

de Figueiredo et al., 2009b). The small-world hypothesis is weakened when the

chemical information embedded in metabolic networks is included in the path

prediction method (Arita, 2004; Lima-Mendez and van Helden, 2009; Montañez

et al., 2010).

Tanaka (2005) suggested that metabolic networks are rather scale-rich instead

of scale-free, based on the stoichiometric analysis of metabolic networks. The

representation of metabolism through its stoichiometry is indeed an important
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Figure 6.1: Benchmark problem concerning the conversion of hypoxanthine to ADP in human
erythrocytes as briefly outlined in de Figueiredo et al. (2009c) (a). Duplicated nodes are dashed
and red nodes correspond to external metabolites. In the graph based approaches it is not
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Discussion 71

alternative. This representation has been used by several tools in the field of

systems biology (cf. Price et al., 2004; Feist and Palsson, 2008). The major

advantage of this approach is that the stoichiometry of a reaction network is

easily accessible, whereas the similarity between chemical structures or atom

maps have to be computed a priori. The stoichiometry together with the law

of mass conservation form the core of constraint-based methods, making them

powerful tools to query the metabolic capabilities and to assess the functional

modes of biological systems. Therefore, it is not surprising that elementary-flux

mode analysis can correctly answer questions such as whether the conversion of

metabolite A into metabolite B is possible (de Figueiredo et al., 2009b; Kaleta et al.,

2009b). Moreover, we expect that other methods for convex analysis like extreme

pathways and methods based on Petri nets theory like the minimal T-invariants

are also capable of answering these questions correctly.

Nevertheless, the main disadvantage of methods based on convex analysis

is the impossibility of enumerating all the metabolic pathways present in large

networks, as explained in the Introduction and in Chapter 2. The question that we

addressed in Chapter 3 is: Can we compute a subset of elementary flux modes in a

genome-scale network? Indeed, the K-shortest EFMs effectively computes a subset

of elementary flux modes in such large networks (de Figueiredo et al., 2009a).

With this new method we show, once more, the potential of optimization problems

in the study of metabolism. Other methods that use optimization frameworks, like

FBA, Flux Coupling Analysis (Burgard et al., 2004), Minimization Of Metabolic

Adjustment (MOMA) (Segrè et al., 2002) or OptKnock (Burgard et al., 2003), just

to cite some, are important for the study and rational design of microorganisms,

and have been playing an important role in systems biology. The K-shortest EFM

method is a milestone in metabolic pathway analysis because it allows the scale-up

of elementary-flux modes analysis to genome-scale networks.

The key point in the K-shortest EFM method is to avoid full enumeration of

elementary flux modes by focusing on solutions that produce/consume a given
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metabolite or contain a specific reaction. This is achieved by the inclusion of

additional constraints forcing certain flux(es) to be non-null. Moreover, the

enumeration starts with the shortest elementary flux mode (i.e., the solution

containing less reactions) and proceeds toward longer elementary flux modes. This

ranking of the solutions has a practical outcome. Starting from the elementary flux

mode containing less reactions allows to evaluate the solution faster and eventually

spot any modelling inconsistency faster.

There are also methodological reasons for starting with the shortest elementary

flux mode. First, the minimization of the number of active reactions assures that

the computed solution is an elementary flux mode. Second, in order to enumerate

a new elementary flux mode it is required to exclude the possibility that previous

solutions are computed again in combination with other reaction sets. Thus,

starting from the shortest solution is a good strategy for enumerating elementary

flux modes in genome-scale networks.

The biological arguments for computing shorter metabolic pathways focus on

two main points, one concerning experimental issues and the other one, a theoretical

aspect of metabolism. First, genetic manipulation of metabolic pathways is a

laborious work and it is convenient to perform few changes as possible. Moreover,

it was experimentally shown that higher pathway fluxes can be obtained when

all the enzymes or (at least) a considerable number of enzymes in the pathway

are simultaneously and coordinately over-expressed (Niederberger et al., 1992).

Later, this experimental evidence was explained in the light of MCA (Kacser

and Acerenza, 1993; Fell and Thomas, 1995). Thus, shorter pathways are more

suitable for genetic manipulations towards the production improvement of target

metabolites. Second, the theoretical work by Meléndez-Hevia et al. (1994) shows

that when the kinetic constants are the same, shorter pathways can carry higher

fluxes. For example, a comparison of lactic acid fermentation and respiration

shows that the former is the shorter pathway and carries a higher flux.

Each of the 10-shortest elementary flux modes producing lysine can be subdi-
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vided into four subsystems: glucose catabolism, cofactor balancing, lysine biosyn-

thesis and ammonium assimilation. The definition of these subsystems, in particular

their limits, is sometimes fuzzy, but it is very helpful for reasoning on the pathways

they represent. In E. coli, the shortest elementary flux mode producing lysine

(Figure 6.2 (a)) contains the fermentation of glucose to pyruvate and lactate as the

catabolic subsystem. Indeed, fermentation is not very efficient in the synthesis of

ATP but can have very high rates. Moreover, fermentation is the major catabolic

route when E. coli is growing anaerobically (Tempest and Neijssel, 1987; Clark,

1989). In these growing conditions, the end products of glucose catabolism are

acetate, ethanol, lactate and formate. However, acetate is usually the major

end product of fermentation but its synthesis requires more reactions steps. In

order to obtain solutions excreting acetate, one has to increase K in order to

enumerate longer solutions. Nevertheless, studies on the metabolic response of E.

coli to changes in glucose supply show that pyruvate and lactate, together with

methylglyxoal, are indeed excreted in the first place followed, with some delay,

by acetate (Weber et al., 2005). Thus, the catabolic subsystem of the shortest

elementary flux mode corresponds to a physiological state of the cell.

Fermentation generates the precursors of lysine, pyruvate and oxaloacetate,

and produces ATP required for lysine synthesis. The lysine biosynthesis subsystem

contains all the essential reactions for lysine synthesis. In E. coli there is only one

pathway for lysine biosynthesis (Schrumpf et al., 1991) and it could be shown, using

also the K-shortest EFM method, that all reactions except the one catalyzed by

succinyl-CoA synthetase (SUCOAS; EC 6.2.1.5) are essential for lysine synthesis.

Thus, it is expected that the lysine biosynthesis subsystem does not change in all

the elementary flux modes producing lysine, with exception of the conversion of

succinate to succinyl-CoA.

The cofactor balancing subsystem, is responsible for balancing cofactor demand

and supply from all the other three subsystems. This subsystem, like the lysine

biosynthesis subsystem, interfaces three other subsystems, showing a central
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role in lysine synthesis. There are two points worth mentioning in the cofactor

balancing subsystem. First, the ATP synthase (ATPS4rpp; EC 3.6.3.14) has a

negative flux meaning that it is pumping protons to the periplasm. Usually, ATP

synthase performs ATP phosphorylation using the proton gradient as driving

force. The inverse flux of ATP synthase corresponds to a mechanism of energy

spilling (Russell and Cook, 1995; Trchounian, 2004) and, it shows that there is an

imbalance between the catabolism and the anabolism subsystems. Second, the

membrane transhydrogenase present in E. coli plays an important role converting

NADH produced in the catabolism of glucose to reduced NADPH which is required

for lysine synthesis.

The ammonium assimilation, responsible for the incorporation of nitrogen atoms

in the carbon backbone, is only connected to the lysine biosynthesis subsystem and

the cofactor balancing subsystem. In E. coli there are two routes for ammonium

assimilation (Reitzer and Magasanik, 1987). The K-shortest method clearly favors
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the shortest one.

The main difference between the shortest elementary flux mode and the 10th

shortest elementary flux mode producing lysine in E. coli is in the glucose catabo-

lism and cofactor balancing subsystems. In the former, the methylglyoxylate bypass

plays an important role, decoupling the ATP synthesis from the glucose catabolism

(Figure 6.3). Experimentally, the methylglyoxylate bypass was also identified as

a spilling mechanism used by E. coli when growing in glucose excess (Tempest

and Neijssel, 1987; Weber et al., 2005). The cofactor balancing subsystem, is

responsible for converting the NADH produced during glucose catabolism into the

periplasmatic proton gradient which is then used for ATP and NADPH production.
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Figure 6.3: The 10th shortest elementary flux mode producing lysine from glucose in the genome-
scale network of E. coli (a). Schematic representation of the metabolite interchange between
the observed subsystems in the 10th shortest elementary flux mode (b).

In C. glutamicum, each elementary flux mode can also be subdivided into the

same four subsystems. The main difference here is that the pentose phosphate

pathway is now central to glucose catabolism because it is the main route for

NADPH production (Figure 6.4). It is worth mentioning that C. glutamicum does

not have a transhydrogenase like E. coli but, some reactions in the central carbon
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metabolism can be coupled together to function as transhydrogenase (Wittmann

and Becker, 2007). Interestingly, in the genome-scale model of C. glutamicum

there is a coupled reaction functioning as transhydrogenase that actually is only

converting NADPH to NADH, increasing the amount of NADH produced. This

coupling between the reactions catalyzed by GapA and GapB, is responsible for

the balancing between catabolism and anabolism in C. glutamicum. Note again

that a clear subdivision into subsystems is not always exact, in particular between

the catabolic and the cofactor balancing subsystems, but the objective of this

exercise will be explained later.
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Few words on the computational complexity of K-shortest EFM method follow.

The integer linear program used for computing the K-shortest EFMs, like any other

optimization problem is not a decision (or recognition) problem and therefore, it is

outside NP (Papadimitriou and Steiglitz, 1998; Garey and Johnson, 2000; Cormen

et al., 2001). However, decision problems can be polynomial-time transformed into

optimization problems and consequently, the corresponding optimization problem
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is at least as hard as the corresponding decision problem (Papadimitriou and

Steiglitz, 1998; Garey and Johnson, 2000; Cormen et al., 2001). Thus, from the

polynomial-time transformation of the satisfiability problem to an integer linear

program, it follows that solving a integer linear program is NP-hard (Papadimitriou

and Steiglitz, 1998). Moreover, as mentioned in the Introduction, Acuña et al.

(2009) showed that computing the shortest elementary flux mode is also NP-hard.

More recently, Liu et al. (2009) have proved that finding the shortest elementary

flux mode with fixed parameter algorithms is W[1]-hard. The W[1] is a complexity

class for parameterized algorithms that captures the property of fixed parameter

intractability, being the W[1]-hard class analogous to the NP-hard in classical

NP-completeness framework (Niedermeier, 2006). Nevertheless, these results from

complexity analysis do not preclude algorithms able to compute the shortest

elementary flux mode in a reasonable computation time for specific problem

instances.

Indeed, the K-shortest EFM method was able to enumerate a subset of the

shortest elementary flux modes producing lysine in one of the largest genome-scale

networks (cf. Table 1.2). In de Figueiredo et al. (2009a), it is evident that the

size of the network influences the computation time. Thus, the enumeration of

the 10-shortest elementary flux modes for the E. coli network require in general

more time than for the C. glutamicum network. Also the length of the target

elementary flux modes plays a role in the computation time. In Figure 6.5, it

is shown how the running time for the K-shortest EFM varies for two different

biological problems, such as the 100-shortest elementary flux modes producing

lysine from glucose and the 100-shortest futile cycles. These results cannot be

used to deduce the computational complexity of finding the shortest elementary

flux mode because this can only be done by mathematical proof as performed by

Acuña et al. (2009) and by Liu et al. (2009). Nevertheless, given the existence of

such a proof, it is always challenging to search problem formulations for which

the K-shortest EFM method cannot compute a solution.
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Figure 6.5: Running time and elementary flux mode length for two different biological problems,
using the genome-scale network of E. coli from Feist et al. (2007). (a) The computation of
the 100-shortest elementary flux mode producing lysine from glucose. (b) The computation of
100-shortest futile cycles involving the ATP synthase (ATPS4rpp).

In Chapter 3, we show that optimization problems can be used to compute

elementary flux modes. In order to develop the method presented in Chapter 4, I

analyzed the limitations of the K-shortest EFM method and consequently, pushed

the capabilities of the optimization framework to an extreme. What are the main

limitations of the K-shortest EFM method? First, this method is an iterative

process that in each iteration adds a new constraint to the previous integer linear

program. Thus, for larger values of K the optimization problem will become more

complex which will increase the time required to solve each new iteration step (see

Figure 6.5). Moreover, it is impossible to perform the enumeration of elementary

flux modes with the K-shortest EFM method using parallel computing because

of the iterative nature of this method. Second, the computed elementary flux

modes tend to be very similar to each other, sometimes differing only in one single

reaction.

What properties of the model can we use to solve these two initial limitations?

One possibility is to set more restrictive removal constraints after each iteration.

Thus, Eq. (8) from de Figueiredo et al. (2009a) can be re-written as:
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R∑
r=1

Zk
r zr ≤

(
R∑

r=1

Zk
j

)
− d k = 1, ..., K − 1 (6.1)

where d is a positive natural number such that d ≥ 1. The bigger d is, the

higher is the number of reactions that have to differ between each elementary

flux mode. For example, in the case of lysine synthesis in C. glutamicum, the

10-shortest elementary flux modes when d = 12, reach now the reactions from

the TCA cycle and can capture the two alternative pathways for lysine synthesis

existing in this organism (Figure 6.6). The inclusion of more restrictive elimination

constraints is a systematic way of enumerating distinct elementary flux modes.

However, taking into account that the number of elementary flux modes is very

high and that the K-shortest EFM method is bias towards shorter solutions, we

may not have a good overview of all the elementary flux modes in the solution

space.

Nevertheless, the previous approach enables us to see a very important property

of elementary flux mode computation with optimization methods, which is the

following. By blocking a reaction in a network, either by setting a specific reaction

flux to zero or by adding a constraint applied to a set of reactions, such as in the

Eq. 6.1, we can limit the access to a subset of elementary flux modes containing

that reaction. Thus, we just have to block at least one reaction from the metabolic

network, for example, a reaction that is present in an initial elementary flux mode

and recompute the optimization problem again, to go from that initial elementary

flux mode to a new one. This way, not only the constraints that are added to the

new optimization problem are limited by the number of reactions in the metabolic

network but they also simplify the computation by removing columns to the

stoichiometric matrix. Moreover, this process can be reverted by removing the

flux constraint of a blocked reaction, which enables to access again the elementary

flux modes containing that reaction.

In the EFMEvolver we used a genetic algorithm for exploring this property.
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Figure 6.6: Merged representation of the 10-shortest elementary flux modes producing lysine
from glucose in the genome-scale network of C. glutamicum using a more restrictive removal
constraint (d=12). For metabolite and reaction abbreviations, and directionality of reaction
see Kjeldsen and Nielsen (2008). Duplicated nodes are dashed, numbers in brackets after the
reaction abbreviation correspond to the number of elementary flux modes in which the reaction
takes place (arrow thickness is also proportional to this number). Glycolysis is in red, the TCA
cycle is in blue, the glyoxylate shunt in violet, the active ammonium assimilation pathway is
in green, the shared part between E. coli and C. glutamicum of the lysine biosynthesis is in
orange and the part specific to C. glutamicum is in brown. The nodes corresponding to ATP,
ADP, AMP, NAD, NADH, NADP, NADPH, PI, PII and CO2 were removed to simplify the
visualization.

Genetic algorithms are a type of evolutionary algorithms that combine Darwin’s

theory of evolution with molecular genetics in order to solve combinatiorial prob-

lems. These algorithms aim at exploiting the historical information of previous

solutions to speculate on new search points (Goldberg, 1989). There are distinct

phases of search that can be categorized in terms of exploration (i.e., the generation
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of new individuals in unexplored regions of the search space) and exploitation (i.e.,

the concentration of individual in a specific part of the search space that is known

to have good solutions) (Eiben and Smith, 2003).

Another limitation of the K-shortest EFMs method is the time required to

compute a single elementary flux mode. Following what was said about the

computational complexity of an integer linear program, we complement this

information by saying that the simplex algorithm, in spite exponential in the

worst case, on average solves linear programs in polynomial-time (Schrijver, 2000;

Papadimitriou and Steiglitz, 1998). Consequently, a linear program formulation

for computing elementary flux modes is expected to run faster than an integer

linear program formulation.

The two key points of the linear program formulation present in the EFMEvolver

method are the decoupling of reversible reactions into two irreversible reactions

and the fact that the sum of fluxes is minimized. The former point will change the

geometry of the solution space so that all the extreme rays of the polyhedral cone

are elementary flux modes. The second key point is that the objective function,

contrary to what happens often in FBA, does not maximize any reaction flux.

Instead, the minimization of the sum of the fluxes is a reasonable objective function.

With such an objective function one can compute a single extreme ray of the

solution space and consequently an elementary flux mode. Note that, the same

cannot be assured when maximizing the sum of the fluxes. First, there is no upper

bound on the fluxes, which could imply some numerical issues, and second, by

maximizing reaction fluxes the optimal solution can correspond to a combination

of extreme rays, similarly to what happens in FBA. Another alternative, is to

perform only a feasibility check without using any objective function.

The EFMEvolver, presented in Chapter 4, takes advantage of the fact that

genetic algorithms are very good exploring the search space rather than fine tuning

the solutions and of the computational efficiency of the algorithms used for solving

linear programs. Additionally, the integration of these two frameworks allows to
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run the process on several processors simultaneously and benefit from multi-core

CPU architectures. The computational power and capability of exploring the

solution space from the EFMEvolver are clearly distinguishable from that of the

K-shortest EFM, even though the latter allows a systematic ranking of elementary

flux modes in increasing order of number of reactions.

These two methods, the K-shortest EFMs and the EFMEvolver, allow us

to compute elementary flux modes in genome-scale networks, which was so far

impossible with the current methods, like efmtool or METATOOL (see Table 1.1),

at least in their conventional mode of use. Moreover, almost simultaneously, the

method of elementary flux patterns was suggested to study metabolic subsytems

in the context of flux distributions at genome scale (Kaleta et al., 2009b). We

have, for the first time, the possibility of studying the properties of these large-

scale metabolic networks and of the embedded pathways. We are now prepared

to answer questions such as the one posed in Chapter 2 even for genome-scale

networks. Can humans convert fatty acids into sugars? Well, the elementary-flux

mode analysis performed with the K-shortest EFM method on the human genome-

scale metabolic network shows that this conversion is stoichiometrically possible

(see Figure 6.7). This answer complements what was said in Chapter 2, that the

TCA cycle is not involved in such conversion. In fact, this is just an initial answer.

Indeed, elementary-flux mode analysis allows us to compute a metabolic pathway

given the information that is stored in the organisms genome. This does not

mean that all the solutions obtained with this method are feasible or active in a

given condition. There are other constraints of thermodynamic or regulatory type

limiting the number of feasible metabolic pathways. Consequently, the elementary

flux modes can be used in the iterative process of hypothesis formulation and

further validation through experiment or by doing a more detailed modelling in

terms of kinetics.

The challenge of high-throughput data integration in reconstruction and analy-

sis of metabolic networks is discussed in Chapter 5. The integration of this data,
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Figure 6.7: The shortest elementary flux mode converting acetyl-CoA to glucose 6-phosphate
in the genome-scale network of Homo sapiens. The route through acetoacetone is used for the
conversion to pyruvate and there is no enzyme from the TCA cycle involved in this pathway.
Red nodes correspond to external metabolites and the blue node is the target metabolite. For
reaction and metabolite abbreviations see Duarte et al. (2007)

also known as omics data, can also take place at the modelling level. For example,

in the computation of genome-scale elementary flux modes that are associated

with a given physiological state of an organism. In the K-shortest EFM approach,

this integration cannot be done directly in the mathematical formulation of the

method. The network has to be preprocessed to remove reactions that may not be

active under certain conditions and the computed elementary flux modes have to

be evaluated a posteriori. As discussed in Chapter 3, one cannot force the presence

of more than one reaction otherwise, the non-decomposability condition cannot

be assured. Thus, changing the mathematical model to cope with the integration

of experimental data cannot be accomplished. On the other hand, the genetic

algorithm from the EFMEvolver brings an extra flexibility to the elementary

flux mode computation. A new fitness function can be defined, to evaluate the
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elementary flux modes that better describe the experimental data. The genetic

algorithm can then explore this information keeping the elementary flux modes

with better fitness in the population.

Nevertheless, one can also think about other alternatives to these two methods

that in the future could be explored. Faced with the difficulty of performing

convex analysis in large metabolic networks, some groups have chosen to reduce

the complexity of these networks by dividing them into smaller subsystems (see In-

troduction). The approach by Schuster et al. (2002b) is particularly interesting in

light of the work presented in this thesis. Schuster et al. (2002b) have defined a

threshold in the metabolite connectivity, setting a given metabolite to external

whenever its connectivity is higher than that threshold. The definition of this

threshold was based on the topological study of metabolic networks showing

that these metabolic hubs have important functions (Jeong et al., 2000; Wagner

and Fell, 2001), for example, as currency compounds or as precursors of other

metabolites in the network (see also Table 1.3). The consequence of setting these

hubs to external is the fragmentation of the metabolic network into subsystems in

which the elementary-flux mode analysis can be carried out. Moreover, taking the

list of hubs presented in Schuster et al. (2002b) and comparing with the schemes

in Figures 6.2 to 6.4 (b) we can see that they often match the interfaces between

the puzzle pieces. This means that an elementary flux mode of a subsystem would

correspond to a part of a bigger puzzle (Figure 6.8) that, at the end, we would

like to put together in order to have a clearer view of the metabolic capabilities of

an organism.

Being a puzzle enthusiast, I have to remember the reader the kind of exercise

that usually one has to do when solving puzzles. The brute force approach is, of

course, to test if each and every piece fit together. This is clearly a very difficult

approach and will not bring us anywhere. The often used approach is to classify

the pieces according to colors and shapes. At this point, we are not sure if the

piece will fit exactly in the place where we thought it should fit, specially if there
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Figure 6.8: Schematic representation of some of the pieces of the puzzle that can be used to study
lysine biosynthesis (c.f. with Figures 6.2 to 6.4 (b)). These pieces can be sorted according to
their color and shape. For example red pieces play a role in central carbon metabolism, whereas
blue in the energy production.

are several other pieces that seem to have the same color. But, we will for sure

be able to put some of the trivial pieces together. Then, we start to increase the

effort in testing more often whether the pieces fit in a specific place and making

more assumptions where exactly the pieces will be placed. We reach then the

point where we can start to see parts of the portrait in the puzzle and bigger parts

of the puzzle can be now put together.

We can see each single reaction in a metabolic network as piece of this big

puzzle. We know that the pieces have to fit at some place in the puzzle. We can

try to see if every two pieces pass together in a brute force approach, similar to

what was done in the beginning of the 20th century. At the end of the 20th century

we were able already to put some of the trivial parts of the puzzle together and

compute metabolic pathways at the subsystem level. Nowadays, we have access

to even more pieces allowing us to put larger parts of the puzzle together using

the methods present in this thesis and compute a subset of elementary flux modes
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at the scale of the genome.

Nevertheless, it may be wise to first characterize these parts of the puzzle in

other words, to analyze the subsystems in the first place and then, assemble them

to reach a larger scale. Schwartz et al. (2007) have shown the potential of this

approach by integrating transcriptional data with elementary flux modes computed

from the KEGG pathway maps and then searching for pairs of elementary flux

modes from different maps that could be connected by boundary metabolites.

Consequently, we can compute these smaller parts of the puzzle by removing

the metabolic hubs of genome-scale networks from the balancing constraints and

consequently, decomposing the network into subsystems (Zhao et al., 2006). Then,

we can put some effort in characterizing the pathways in these subsystems with

the experimental data and select the ones that we want to further extend to

genome-scale pathways. Later, the assembly of the larger parts of the puzzle, or

more clearly speaking, the recovery of the genome-scale elementary flux modes,

can be done by merging the most relevant solutions of each of the subsystems into

a larger one, set the metabolic hubs back to internal metabolites and recompute

the elementary flux modes. In the work presented in this thesis, it is evident that

setting some metabolites to external can be used as a modelling simplification

reducing the computational time required for elementary flux mode enumeration

(de Figueiredo et al., 2009a). This modelling simplification is reversible and

consequently, by combining these simplified solutions with the cofactor subsystem

and setting currency metabolites to internal, more complete solutions are reached.

This method is a good example of an alternative way of computing elementary

flux modes in genome-scale networks, that combines graph theoretical with convex

analysis methods. Moreover, the integration of omics data can be done in a

preliminary stage and consequently, reduce the number of subsystem solutions

that are used to generate genome-scale elementary flux modes. Of course, the

main difference between building puzzles and studying biology is the fact that in

the former we often know the picture a priori, whereas in the study of biology we
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only are able to understand the picture at the end, when we have already acquired

enough knowledge to fit the reaming pieces.
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Chapter 7

Conclusion and prospects

In this thesis, I show that the chemical information encoded in the stoichiometry

of metabolic networks is a valuable resource for the prediction of metabolic

pathways. In general, methods based in graph theory do not use this information

and therefore, they fail in the prediction of relevant metabolic pathways. These

incorrect predictions are now becoming evident in the field of metabolic engineering.

Moreover, this issue is also very important when studying the topology of metabolic

networks and has consequences in the conclusions made on the evolution of these

networks.

Atom mapping rules are an alternative to the stoichiometry of metabolic

networks. Approaches based on atom mapping and graph theory have been

recently developed in order to improve pathway prediction. In particular, ReTrace

is capable of solving some of the benchmark problems presented in this thesis.

However, the presence of atoms in the target metabolite originated from the

source metabolite do not assure that there is a net flux between these metabolites.

Additional benchmark problems can be designed and used to assert the accuracy

of metabolic pathway analysis tools.

On the other hand, the new methods presented in Chapters 3 and 4 are

milestones in the field of metabolic pathway analysis. They allow us, for the first

time, to compute a subset of elementary flux modes in genome-scale networks
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using only stoichiometric information. The scaling up of elementary flux mode

analysis to larger networks is possible due to the use of optimization frameworks.

These methods are a great asset to systems biology as they increase the spectrum

of analysis that can be carried on genome-scale networks.

The current challenge in systems biology is the integration of disparate high-

throughput data in the reconstruction of metabolic networks and in the modelling

frameworks. The new methods presented here can be improved to fulfill this

challenge. EFMEvolver is more suitable for this purpose due to the additional

flexibility associated with the genetic algorithm. Nevertheless, other kinds of

metaheuristics can be explored in the future. In particular, the decomposition of a

genome-scale metabolic network into smaller subsystems where the full enumeration

of elementary flux modes can be performed, is of special interest. Some initial

work in this direction has been already performed by Schuster et al. (2002b). Such

an approach would allow the characterization of elementary flux modes at the

subsystem level using experimental data (Schwartz et al., 2007). The elementary

flux modes of interest at the subsystem level, can be used to build elementary flux

modes at the genome-scale level.

In the long term, it will also be very exciting to follow the developments

in genetic engineering or its extension to synthetic biology. In particular, the

integration of heterologous pathways in new host organisms allowing us to evaluate

in vivo the consequences of metabolism rewiring as well as the study of pathway

evolution, in addition of course to all the biotechnological applications that are

made possible. Thus, modelling techniques provide an excellent basis for guiding

the experimental work and the iterative process between experiment and model

improvement gives an important contribute to the emergence of new knowledge.
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meets topology: Reconciling metabolite and reaction networks. BioEssays, 32(3):

246--256, 2010.

H. J. Morowitz. Beginnings of cellular life: Metabolism recapitulates biogenesis. Yale

University Press, London, 1992.

P. Niederberger, R. Prasad, G. Miozzari, and H. Kacser. A strategy for increasing an in

vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J, 287

( Pt 2):473--479, 1992.

R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford Univ. Press, Oxford,

2006.

J. H. Northrop and R. M. Herriott. Chemistry of the crystalline enzymes. Annual

Review of Biochemistry, 7:37--50, 1938.



Bibliography 100

H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. KEGG: Kyoto

Encyclopedia of Genes and Genomes. Nucleic Acids Res, 27(1):29--34, 1999.

M. Oh, T. Yamada, M. Hattori, S. Goto, and M. Kanehisa. Systematic analysis

of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation

pathways. J Chem Inf Model, 47(4):1702 -- 1712, 2007.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: algorithms and

complexity. Dover Publications, Mineola, 1998.

J. A. Papin, J. Stelling, N. D. Price, S. Klamt, S. Schuster, and B. Ø. Palsson. Comparison

of network-based pathway analysis methods. Trends Biotechnol, 22(8):400--405, 2004.

E. T. Papoutsakis and C. L. Meyer. Equations and calculations of product yields and

preferred pathways for butanediol and mixed-acid fermentations. Biotechnol Bioeng,

27(1):50--66, 1985.

K. R. Patil, I. Rocha, J. Frster, and J. Nielsen. Evolutionary programming as a platform

for in silico metabolic engineering. BMC Bioinformatics, 6:308, 2005.

C. A. Petri. Kommunikation mit Automaten. PhD thesis, Universität Bonn, Bonn, 1962.

T. Pfeiffer, I. Sánchez-Valdenebro, J. C. Nuño, F. Montero, and S. Schuster.

METATOOL: for studying metabolic networks. Bioinformatics, 15(3):251--257, 1999.

E. Pitkänen, P. Jouhten, and J. Rousu. Inferring branching pathways in genome-scale

metabolic networks. BMC Syst Biol, 3(1):103, 2009.

J. D. Pollack, M. V. Williams, and R. N. McElhaney. The comparative metabolism

of the mollicutes (Mycoplasmas): the utility for taxonomic classification and the

relationship of putative gene annotation and phylogeny to enzymatic function in the

smallest free-living cells. Crit Rev Microbiol, 23(4):269--354, 1997.

M. Poolman. ScrumPy: metabolic modelling with Python. IEE Proceedings Systems

Biology, 153(5):375--378, 2006.



Bibliography 101

M. G. Poolman, D. A. Fell, and C. A. Raines. Elementary modes analysis of photo-

synthate metabolism in the chloroplast stroma. Eur J Biochem, 270(3):430--439,

2003.

M. G. Poolman, L. Miguet, L. J. Sweetlove, and D. A. Fell. A genome-scale metabolic

model of Arabidopsis thaliana and some of its properties. Plant Physiol, 151:1570--1581,

2009.

N. D. Price, J. A. Papin, and B. Ø. Palsson. Determination of redundancy and systems

properties of the metabolic network of Helicobacter pylori using genome-scale extreme

pathway analysis. Genome Res, 12(5):760--769, 2002.

N. D. Price, J. L. Reed, and B. Ø. Palsson. Genome-scale models of microbial cells:

evaluating the consequences of constraints. Nat Rev Microbiol, 2(11):886--897, 2004.

S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. Metabolic

pathway analysis web service (Pathway Hunter Tool at CUBIC). Bioinformatics, 21

(7):1189--1193, 2005.

K. Raman and N. Chandra. Flux balance analysis of biological systems: applications

and challenges. Brief Bioinform, 10(4):435--449, 2009.

S. Ranganathan and C. D. Maranas. Microbial 1-butanol production: Identification of

non-native production routes and in silico engineering interventions. Biotechnol J, 5

(7):716 -- 725, 2010.

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A. L. Barabási. Hierarchical

organization of modularity in metabolic networks. Science, 297(5586):1551--1555,

2002.

J. W. Raymond, E. J. Gardiner, and P. Willett. Heuristics for similarity searching of

chemical graphs using a maximum common edge subgraph algorithm. J Chem Inf

Comput Sci, 42(2):305--316, 2002.

V. N. Reddy, M. L. Mavrovouniotis, and M. N. Liebman. Petri net representations

in metabolic pathways. Proceedings of the International Conference on Intelligent

Systems for Molecular Biology, 1:328--336, 1993.



Bibliography 102

C. Reder. Metabolic control theory: a structural approach. J theor Biol, 135(2):175--201,

1988.

L. J. Reitzer and B. Magasanik. Ammonia assimilation and the biosynthesis of glutamine,

glutamate, aspartate, asparagine, L-alanine, and D-alanine. In F. C. Neidhardt (editor),

Escherichia coli and Salmonella typhimurium: cellular and molecular biology, pages

302--320, Washington D. C., 1987. ASM.

E. Ruppin, J. A. Papin, L. F. de Figueiredo, and S. Schuster. Metabolic reconstruction,

constraint-based analysis and game theory to probe genome-scale metabolic networks.

Curr Opin Biotechnol, 21(4):502--510, 2010.

J. B. Russell and G. M. Cook. Energetics of bacterial growth: balance of anabolic and

catabolic reactions. Microbiol Rev, 59(1):48--62, 1995.

C. Salerno and A. Giacomello. Hypoxanthine-guanine exchange by intact human

erythrocytes. Biochemistry, 24(6):1306--1309, 1985.

J. M. Savinell and B. Ø. Palsson. Network analysis of intermediary metabolism using

linear optimization. I. development of mathematical formalism. J theor Biol, 154(4):

421--454, 1992a.

J. M. Savinell and B. Ø. Palsson. Network analysis of intermediary metabolism using

linear optimization. II. interpretation of hybridoma cell metabolism. J. theor. Biol.,

154(4):455--473, 1992b.

C. H. Schilling and B. Ø. Palsson. Assessment of the metabolic capabilities of Haemophilus

influenzae Rd through a genome-scale pathway analysis. J theor Biol, 203(3):249--283,

2000.

C. H. Schilling, D. Letscher, and B. Ø. Palsson. Theory for the systemic definition of

metabolic pathways and their use in interpreting metabolic function from a pathway-

oriented perspective. J theor Biol, 203(3):229--248, 2000.

I. Schomburg, A. Chang, O. Hofmann, C. Ebeling, F. Ehrentreich, and D. Schomburg.

BRENDA: a resource for enzyme data and metabolic information. Trends Biochem

Sci, 27(1):54--56, 2002.



Bibliography 103

A. Schrijver. Theory of linear and integer programming. Wiley, Chichester, 3rd edition,

2000.

B. Schrumpf, A. Schwarzer, J. Kalinowski, A. Pühler, L. Eggeling, and H. Sahm. A

functionally split pathway for lysine synthesis in Corynebacterium glutamicium. J

Bacteriol, 173(14):4510--4516, 1991.

R. Schuetz, L. Kuepfer, and U. Sauer. Systematic evaluation of objective functions for

predicting intracellular fluxes in Escherichia coli. Mol Syst Biol, 3:119, 2007.

R. Schuster and S. Schuster. Refined algorithm and computer program for calculating

all non-negative fluxes admissible in steady states of biochemical reaction systems

with or without some flux rates fixed. Comput Appl Biosci, 9(1):79--85, 1993.

S. Schuster and C. Hilgetag. On elementary flux modes in biochemical reaction systems

at steady state. Journal of Biological Systems, 2(2):165--182, 1994.

S. Schuster and D. Kenanov. Adenine and adenosine salvage pathways in erythrocytes

and the role of S-adenosylhomocysteine hydrolase. a theoretical study using elementary

flux modes. FEBS J, 272(20):5278--5290, 2005.

S. Schuster, T. Dandekar, and D. A. Fell. Detection of elementary flux modes in

biochemical networks: a promising tool for pathway analysis and metabolic engineering.

Trends Biotechnol, 17(2):53--60, 1999.

S. Schuster, D. A. Fell, and T. Dandekar. A general definition of metabolic pathways

useful for systematic organization and analysis of complex metabolic networks. Nat

Biotechnol, 18(3):326--332, 2000.

S. Schuster, C. Hilgetag, J. H. Woods, and D. A. Fell. Reaction routes in biochemical

reaction systems: algebraic properties, validated calculation procedure and example

from nucleotide metabolism. J Math Biol, 45(2):153--181, 2002a.

S. Schuster, T. Pfeiffer, F. Moldenhauer, I. Koch, and T. Dandekar. Exploring the

pathway structure of metabolism: decomposition into subnetworks and application to

Mycoplasma pneumoniae. Bioinformatics, 18(2):351--361, 2002b.



Bibliography 104

S. Schuster, T. Pfeiffer, and D. A. Fell. Is maximization of molar yield in metabolic

networks favoured by evolution? J theor Biol, 252(3):497--504, 2008.

J.-M. Schwartz, C. Gaugain, J. Nacher, A. de Daruvar, and M. Kanehisa. Observing

metabolic functions at the genome scale. Genome Biol, 8(6):R123, 2007.

R. Schwarz, C. Liang, C. Kaleta, M. Khnel, E. Hoffmann, S. Kuznetsov, M. Hecker,

G. Griffiths, S. Schuster, and T. Dandekar. Integrated network reconstruction,

visualization and analysis using yanasquare. BMC Bioinformatics, 8:313, 2007.
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Supplementary Material

1 List of Abbreviations

Table 1 contains the list of abbreviations used in the article and in the networks.

Table 1: List of Abbreviations∗

Abbreviation Name

2PG 2-Phospho-D-glycerate

3PG 3-Phospho-D-glycerate

3PGP 3-Phospho-D-glyceroyl phosphate

AcCoA Acetyl coenzyme A

Acet Acetate

Ala L-Alanine

Asp L-Aspartate

bF6P β-D-Fructose 6-phosphate

Cit Citrate

CO2 Carbon dioxide

CoA Coenzyme A

dATP 2’-Deoxyadenosine 5’-triphosphate

dADP 2’-Deoxyadenosine 5’-diphosphate

Dihydroxyethyl-TPP alpha,beta-Dihydroxyethyl-TPP

EM Elementary mode

EMA Elementary mode analysis

Ery4P D-Erythrose 4-phosphate

F1,6PP β-D-Fructose 1,6-bisphosphate

F6P D-Fructose 6-phosphate

Fum Fumarate

G3P D-Glyceraldehyde 3-phosphate

G6P α-D-Glucose-6-phosphate

bG6P β-D-Glucose-6-phosphate

GlcN D-Glucosamine

1
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GlcN6P D-Glucosamine 6-phosphate

GlcNAc6P N-Acetyl-D-glucosamine 6-phosphate

Gln L-Glutamine

Glu L-Glutamate

Gly Glyoxylate

GP Glycerone phosphate

HCO3- Bicarbonate

IDP Inosine 5’-diphosphate

ITP Inosine 5’-triphosphate

Isocit Isocitrate

Mal (S)-Malate

Man D-Mannose

Man6P D-Mannose 6-phosphate

NH3 Ammonia

OAA Oxaloacetate

OG 2-Oxoglutarate

PHT Pathway Hunter Tool

PEP Phosphoenolpyruvate

Pi Orthophosphate

PPi Pyrophosphate

Protein N-P-histidine Protein N(pi)-phospho-L-histidine

Pyr Pyruvate

R5P D-Ribose 5-phosphate

Ru5P D-Ribulose 5-phosphate

Sed7P Sedoheptulose 7-phosphate

DSed7P D-Sedoheptulose 7-phosphate

Succ Succinate

SucCoA Succinyl coenzyme A

ThPP Thiamin diphosphate

Xyl5P D-Xylulose 5-phosphate

∗ External metabolites in external reactions are indicated with the suffix ”ex”. Well known abbrevia-

tions in biochemistry, such as ATP, are not included in the list.

2
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2 Reaction list of the reconstructed models

2.1 Human metabolism

Table 2 contains the list of reactions from the model used to study the human metabolism.

Note that the Gene symbols are written according to the official symbols present in NCBI

gene database, in capital letters.

Table 2: Reaction list containing all the reactions present in the model of human metabolism

studied by EMA.

Gene Symbol Reaction KEGG Reaction Ref.

PGI bF6P ↔ G6P R02740 [1, 2]

FBP1 F1,6PP + H2O → bF6P + Pi R04780 [1, 2]

PFKL ATP + bF6P → ADP + F1,6PP R04779 [1, 2]

ALDOA, ALDOB G3P + GP ↔ F1,6PP R01070 [1, 2]

TPI1 G3P ↔ GP R01015 [1, 2]

GAPDH, PGK1, PGAM1, ENO1 † G3P + Pi + NAD + ADP ↔ PEP + ATP + NADH + H R01061, R01512,

R01518, R00658

[1, 2]

PKLR ATP + Pyr ← ADP + PEP R00200 [1, 2]

PDC ‡ Pyr + CoA + NAD → NADH + H + AcCoA + CO2 — [1, 2]

PC ATP + Pyr + HCO3- → ADP + Pi + OAA R00344 [1, 2]

PCK1 OAA + GTP → PEP + GDP + CO2 R00431 [1, 2]

ME1 Mal + NADP ↔ Pyr + CO2 + NADPH + H R00216 [1, 2]

CS AcCoA + OAA + H2O → Cit + CoA R00351 [1, 2]

ACO1, ACO2 Cit ↔ Isocit R01324 [1, 2]

IDH3A, IDH3B, IDH3G Isocit + NAD → OG + CO2 + NADH + H R00709 [1, 2]

OGDH/ DLST/ DLD ⋆ OG + NAD + CoA → SucCoA + CO2 + NADH + H — [1, 2]

SUCLG2/ SUCLG1, SUCLA2 ◦ GTP/ATP + Succ + CoA ↔ GDP/ADP + Pi + SucCoA R00432, R00405 [1, 2]

MDH1, MDH2 Mal + NAD ↔ OAA + NADH + H R00342 [1, 2]

GLUD1 • OG + NH3 + NAD(P)H + H ↔ Glu + NAD(P) R00243, R00248 [1, 2]

GOT1 OAA + Glu ↔ Asp + OG R00355 [1, 2]

GPT Ala + OG ↔ Pyr + Glu R00258 [1, 2]

ICL Isocit + H2O → Succ + Gly R00479 [1, 2]

MAS Mal + CoA ← AcCoA + H2O + Gly R00472 [1, 2]

ex AcCoA ♮ AcCoAex → AcCoA — —

ex G6P ♮ G6P → G6Pex — —

ex Glu ♮ Gluex → Glu — —

ex Asp ♮ Aspex → Asp — —

ex Ala ♮ Alaex → Ala — —

† The reactions catalyzed by these enzymes were lumped.

‡ Multi-enzyme complex pyruvate dehydrogenase (lipoamide).

⋆ Multi-enzyme complex 2-oxoglutarate dehydrogenase.

◦ The reactions catalyzed by the complex SUCLG2/SUCLG1 and SUCLA2 were lumped in order to reduce the number of EMs and, the

nomenclature GTP/ATP is used because the complex SUCLG2/SUCLG1 is GTP specific and the enzyme SUCLA2 is ATP specific.

• The enzyme GLUD1 can use both NADH and NADPH and, therefore, the two reactions (R00243, R00248) were lumped and the

nomenclature NAD(P)H is used.

♮ External reactions used to control the influx and outflux of metabolites in the system.
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2.2 Bordetella metabolism

Table 3 contains the additional reactions from the pentose phosphate pathway that to-

gether with reactions from glycolysis/gluconeogenesis pathways make the model of Bordetella

metabolism.

Table 3: Additional reactions from the pentose phosphate pathway present in Bordetella

pertussis present in the model of Bordetella metabolism studied by EMA.

Gene Symbol Reaction KEGG Reaction Ref.

talB Sed7P + G3P ↔ Ery4P + F6P R07378 KEGG, BioCyc, [3]

tktA Sed7P + G3P ↔ R5P + Xyl5P R07246 KEGG, BioCyc, [3]

tktA† F6P + G3P ↔ Ery4P + Xyl5P R01067 KEGG, BioCyc, [3]

rpe Ru5P ↔ Xyl5P R01529 KEGG, BioCyc, [3]

rpiA R5P ↔ Ru5P R01056 KEGG, BioCyc, [3]

ppsA ATP + Pyr + H2O → AMP + PEP + Pi R00199 KEGG, BioCyc, [3]

ex Pyr ‡ Pyr → Pyrex — —

ex G6P ‡ G6Pex → G6P — —

† The name is represented with an additional ” b” in the graphical representation of the network, Figure 2.

‡ External reactions used to control the influx and outflux of metabolites in the system.

3 Elementary modes

3.1 Human metabolism

The elementary modes of the model without glyoxylate cycle enabling the input of glutamate,

aspartate and alanine and with the synthesis of G6P are represented in Figure 1.

4
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Figure 1: Schematic representation of the EMs with influx of glutamate, aspartate or ala-
nine and synthesis of G6P. The common part of the modes, connection of PEP to G6P, is
represented in orange, the different parts are represented with different colors. The two EMs
requiring influx of glutamate are complemented, in addition to the parts shown in orange,
with the paths in red and green. The two EMs requiring influx of alanine are complemented
with the paths in magenta and cyan. The EM requiring influx of aspartate is complemented
with the path in blue.

3.2 Bordetella metabolism

The model used to calculate the EMs of B. pertussis, consisting of gluconeogenesis and the

non-oxidative part of the pentose-phosphate pathway is represented in Figure 2. In the figure,

gene symbols from reactions that are present in Table 2 and belong also to this model, were

rewritten in the official nomenclature for B. pertussis. The reactions from glycolysis are not

lumped in this network.

The network was automatically generated and the red ellipses are the external metabolites,

white ellipses are internal metabolites, yellow diamonds are irreversible reactions and green

diamonds are reversible reactions. This symbolism is applied to the following networks as well.

5
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Figure 2: Schematic representation of the model used to study the assumption of steady-state
synthesis of pyruvate from G6P in B. pertussis.

The network represented in Figure 2 does not have any EM consuming G6P and producing

pyruvate, therefore there is no steady-state synthesis of pyruvate from G6P, in agreement with

experimental observations.
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4 Paths automatically generated by PathFinding and Path-

way Hunter Tool algorithms

4.1 Human metabolism

In this subsection, the paths generated by graph-theory based tools for the study of G6P

synthesis from AcCoA are shown.

4.1.1 Paths from PathFinding

Figures 3 and 4 contain the paths that connect AcCoA to PEP in humans.

Figure 3: Path with rank 16. Weight=206.0
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Figure 4: Path with rank 17. Weight=206.0

Figures 5 to 7 contain the paths that connect PEP to G6P in humans.

Figure 5: Path with rank 6. Weight=78.0
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Figure 6: Path with rank 17. Weight=85.0
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Figure 7: Path with rank 35. Weight=87.0
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4.1.2 Pathway Hunter Tool

The PHT was queried using AcCoA as source and G6P as sink. Different combinations of

molecular similarity options were used.

Figure 8: Result from PHT. Program options in PHT: Select one or more organisms as
model=Homo sapiens (human); Atom Mapper=Off; Atom Tracer=On; Source Metabo-
lite=C00024; Destination Metabolite=C00668
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Figure 9: Paths 2 and 3 from the results of PHT. Options: Select one or more organisms
as model=Homo sapiens (human); Atom Mapper=Off; Atom Tracer=Off; Source Metabo-
lite=C00024; Destination Metabolite=C00668
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4.2 Bordetella Metabolism

In this subsection the paths generated by graph-theory based tools for the study of pyruvate

synthesis from G6P in B. pertussis are shown.

4.2.1 Paths from PathFinding

Figure 10 shows the network generated from merging all the paths in the output of PathFind-

ing when queried for consumption of G6P and synthesis of G3P. The link from G3P to pyru-

vate was omitted to avoid more complex networks and due to the trivial path linking G3P to

pyruvate.

Figure 10: 16 paths found from G6P to G3P, all merged in a single network. Weight range
between 60.0 and 74.0

The EMs for the network in Figure 10 were computed. No EM enabling the steady state

synthesis of G3P from G6P was obtained.

4.2.2 Pathway Hunter Tool

For PHT a different query was used because the query where G6P and G3P were a source

and sink, respectively, did not result in any path. Therefore, we did a query using pyruvate

as a sink, instead of G3P. The output of this query is shown in Figure 11. As the query with

13
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molecular similarity features on was successful we did not perform any further query testing

different molecular similarity options. Strangely, G3P is an intermediary metabolite.

Figure 11: Path from the results of PHT. Options: Select one or more organisms as
model=Bordetella pertussis Tohama I; Atom Mapper=On; Atom Tracer=On; Source Metabo-
lite=C00668; Destination Metabolite=C00022

The calculation of EMs in the network presented in Figure 11 revealed that no steady-state

flux was possible between G6P and pyruvate.
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Supplementary material  

Computing the shortest elementary flux modes in genome-scale 
metabolic networks 

Luis F. de Figueiredo, Adam Podhorski, Angel Rubio, Christoph Kaleta,  John E. 
Beasley, Stefan Schuster and Francisco J. Planes  
 

Simulation details 
The mathematical model was implemented in a Intel Core® Duo Processor T2400 
machine with 2GB RAM . We used CPLEX® 11.0 to solve the model in single thread. 
The computation of the EFMs in the small model was carried in the same machine using 
METATOOL 5.1 running on Matlab® R2008b. The visual representation of the EFMs 
was done using yEd® 3.1.2.  

The metabolic model in Schuster et al. 1999 was used to enumerate all EFMs. We also 
tested further modeling strategies. Results are shown below. 

The metabolic models of Escherichia coli K-12 MG1655 (Feist et al. 2007) and 
Corynebacterium glutamicum ATCC 13032 (Kjeldsen and Nielsen, 2009) were used as 
input network to compute the 10-shortest EFMs. Details as to EFMs are presented below. 
We also describe minor changes done in the metabolic models in the application of our 
procedure.  
 

Testing K-shortest EFMs in small scale model 
We used the metabolic network from Schuster et al., 1999, to test our mathematical 
model. Reactions and metabolites names are the same. In Schuster et al., 1999, cofactors 
were considered as external and consequently they did not figure in the stoichiometric 
matrix. We simplified the metabolic model by not considering cofactors at all. We 
derived our network from Figure 2 of the above mentioned work. Details as to the 
biochemical reactions used here are shown in Table 1. Note that reversible reactions have 
the sign == separating both sides of the reaction equation, while irreversible reactions 
have the sign =>. In the computation of the EFMs, the following metabolites were 
considered external: PG, Alaxt, Gluxt, Aspxt and SucCoAxt. Once the full set of EFMs 
was enumerated, we computed the K-shortest EFMs producing SucCoAxt. Results are 
shown in Table 2. 
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Table 1: Metabolic model derived from Schuster et al. (1999). 
Enzyme abbreviation Simplified reaction equation 

Eno PG == PEP 
Pyk PEP => Pyr 
Pps Pyr => PEP 
AceEF Pyr => AcCoA 
GltA AcCoA + OAA => Cit 
Acn Cit == IsoCit 
Icd IsoCit => OG 
SucAB OG => SucCoA 
SucCD SucCoA == Succ 
Sdh Succ == Fum 
Fum Fum == Mal 
Mdh Mal == OAA 
Icl IsoCit => Gly + Succ 
Mas Gly + AcCoA => Mal 
Ppc PEP => OAA 
Pck OAA => PEP 
AspC Glu + OAA == Asp + OG  
AspA Asp => Fum 
Gdh OG == Glu 
IlvE_AvtA Pyr + Glu == Ala + OG 
GluCon Glu => Gluxt 
AlaCon Ala => Alaxt 
AspCon Asp => Aspxt 
SucCoAcon SucCoA => SucCoAxt 

 
Table 2. Enumeration of all the EFMs with respective overall equations and enzyme sets and K-shortest 
EFMs producing SucCoAxt 

K L Overall Equation Enzyme Set 

Order of the EFMs 
in the Schuster et al. 

(1999) 

K-shortest EFMs 
producing SucCoAxt 

1* 2 --> Pck; Ppc 1 -- 
2* 2 --> Pps; Pyk 2 -- 
3 5 PG --> Alaxt AlaCon; Eno; Gdh; IlvE_AvtA; Pyk 4 -- 
4 5 PG --> Aspxt AspC; AspCon; Eno; Gdh; Ppc 3 -- 
5* 5 --> AspA; AspC; Fum; Gdh; Mdh 5 -- 
6 7 PG --> SucCoAxt Eno; Ppc; SucCoAcon; - Fum; - Mdh; - Sdh; - 

SucCD 
10 1 

7 8 PG --> SucCoAxt AspA; AspC; Eno; Gdh; Ppc; SucCoAcon; - Sdh; - 
SucCD 

8 2 

8 9 2 PG --> SucCoAxt AceEF; Acn; 2 Eno; GltA; Icd; Ppc; Pyk; SucAB; 
SucCoAcon 

13 3 

9 9 2 PG --> Gluxt AceEF; Acn; 2 Eno; Gdh; GltA; GluCon; Icd; Ppc; 
Pyk 

12 -- 

10 10 2 PG --> SucCoAxt 2 AceEF; Acn; 2 Eno; GltA; Icl; Mas; Mdh; 2 Pyk; 
SucCoAcon; - SucCD 

9 4 

11* 11 PG --> AceEF; Acn; Eno; Fum; GltA; Icd; Mdh; Pyk; 
Sdh; SucAB; SucCD 

15 -- 

12* 11 PG --> 2 AceEF; Acn; Eno; Fum; GltA; Icl; Mas; 2 Mdh; 
Pck; 2 Pyk; Sdh 

6 -- 

13 12 3 PG --> 2 SucCoAxt 2 AceEF; Acn; 3 Eno; GltA; Icl; Mas; Ppc; 2 Pyk; 
2 SucCoAcon; - Fum; - Sdh; -2 SucCD 

11 5 

14 13 3 PG --> SucCoAxt 3 AceEF; 2 Acn; 3 Eno; Fum; 2 GltA; Icd; Icl; 
Mas; 2 Mdh; 3 Pyk; Sdh; SucAB; SucCoAcon 

16 6 

15 13 3 PG --> Gluxt 3 AceEF; 2 Acn; 3 Eno; Fum; Gdh; 2 GltA; 
GluCon; Icd; Icl; Mas; 2 Mdh; 3 Pyk; Sdh 

14 -- 

16 13 2 PG --> Aspxt 2 AceEF; Acn; AspC; AspCon; 2 Eno; Fum; Gdh; 
GltA; Icl; Mas; 2 Mdh; 2 Pyk; Sdh 

7 -- 

* these EFMs have overall equations with one or both sides missing because in our derived 
model cofactors were discarded. These EFMs represent futile cycles or the conversion of PG in 
cofactors. More details can be found in Schuster et al. 1999. 
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Computing EFMs in Escherichia coli in genome-scale model 
The Escherichia coli iAF1260 genome-scale model was used for the computation of 
EFMs. This can be obtained from BIGG database (Feist et al., 2007). The abbreviations 
were kept. This model contains three main compartments, cytosol, periplasm and extra-
cellular compartment. In the extra-cellular there are several reactions carrying the in/out 
flux of metabolites from the system. In cytosol there are five reactions called sink which 
are similar to the previous, namely: DM_4HBA, DM_5DRIB, DM_AACALD, 
DM_HMFURN and DM_OXAM. All these reactions were removed from the model 
because they are not required for calculation of EFMs and they do not have biological 
meaning. 

The mathematical model to compute the K-shortest EFMS uses Integer Linear 
Programming, ILP. For this reason, biomass reaction was removed from the model. In 
Flux Balance Analysis (FBA), the biomass equation plays an important role since it 
represents the conversion of macromolecules precursors into biomass, which is one of the 
experimental variables that can be measured. To some extent, the biomass reaction 
represents the phenotype of the in silico organism. In this work we are interested in the 
computation of pathways synthesizing a given metabolite starting from a set of 
precursors. Therefore, we are not interested in computing cell growth so that the biomass 
equation does not have the same relevance as in FBA. The other reactions containing 
non-integer stoichiometric coefficients were multiplied by a factor of two so as to obtain 
integer stoichiometric coefficients. These reactions are associated with the respiratory 
chain, where stoichiometric coefficients associated with oxygen are usually fractional. 
Biologically, this would mean that the flux calculated should also be multiplied by two in 
the original reaction form. The reactions multiplied by a factor are the following: 
CYTBD2pp, CYTBDpp, CYTBO3_4pp, OMMBLHX, OMPHHX, OPHHX and PPPGO.  

Table 3 shows the metabolite sets used in the the computation of 10-shortest EFMs 
producing L-Lysine. The letter in brackets refers the compartment: [e] extra-cellular; [p] 
periplasm; [c] cytosol. 
 

Table 3. Sets of metabolites used in the 10-shortest EFM 
modes producing L-lysine  

Metabolites 

Medium External 

k[e] nadp[c] 

h2o[e] co2[c] 

glc-D[e] adp[c] 

so4[e] nadph[c] 

na1[e] h[p] 

fe2[e] h2o[c] 

nh4[e] coa[c] 

pi[e] atp[c] 

o2[e] amp[c] 

 nad[c] 

 h[c] 

 nadh[c] 

  pi[c] 
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The 10-shortest EFMs were computed for M= 10, 100, 1000 and 10000 when cofactors were considered internal and external 
metabolites, respectively. Results are shown in Table 4 and Table 5. In brackets, correspondent compartment for metabolites are 
shown, namely [e] - extra-cellular; [p] - periplasm; nothing or [c] - cytosol. Reactions abbreviations are preceded by the stoichiometric 
coefficient when  higher than 1. The minus sign, whick is only present in reversible reactions, means that the reaction runs in the 
opposite direction. K represents the enumeration order, whilst L is the number of reactions involved in the EFMs. 

 
 
Table 4. 10-shortest EFMs producing lysine with cofactors set internal and values of M ranging from 10 to 10000. 

K 
L Overall reaction Reaction set 

M= 10 100 1000 10000 
 4 1 1 38 9 glc-D[e] + 4 nh4[e] --> 8 h2o[e] + 16 h[e] + 10 lac-D[e] + 2 lys-L[e] + 4 pyr[e] 2 ASPK; 2 DAPDC; 2 DAPE; 2 DHDPRy; 2 DHDPS; 18 ENO; 9 FBA; 18 

GAPD; 9 GLCptspp; 9 GLCtexi; 2 LYSt3pp; 4 NH4tex; 4 NH4tpp; 7 OAADC; 
9 PFK; 9 PGI; 9 PPC; 2 SDPDS; 2 SUCOAS; 8 THD2pp; 2 THDPS; 9 TPI; -2 
ASAD; -2 ASPTA; -5 ATPS4rpp; -10 D_LACt2pp; -10 D_LACtex; -4 GLUDy; 
-8 H2Otex; -8 H2Otpp; -16 Htex; -10 LDH_D; -2 LYStex; -18 PGK; -18 PGM; -
4 PYRt2rpp; -4 PYRtex; -2 SDPTA 

 2 2 2 38 11 glc-D[e] + 8 nh4[e] --> 16 h2o[e] + 18 h[e] + 6 lac-D[e] + 4 lys-L[e] + 8 pyr[e] 4 ASPK; 4 DAPDC; 4 DAPE; 4 DHDPRy; 4 DHDPS; 22 ENO; 11 FBA; 22 
GAPD; 11 GLCptspp; 11 GLCtexi; 4 LYSt3pp; 8 NH4tex; 8 NH4tpp; 11 PFK; 
11 PGI; 4 PPC; 7 PYK; 4 SDPDS; 4 SUCOAS; 16 THD2pp; 4 THDPS; 11 TPI; 
-4 ASAD; -4 ASPTA; -10 ATPS4rpp; -6 D_LACt2pp; -6 D_LACtex; -8 
GLUDy; -16 H2Otex; -16 H2Otpp; -18 Htex; -6 LDH_D; -4 LYStex; -22 PGK; -
22 PGM; -8 PYRt2rpp; -8 PYRtex; -4 SDPTA 

 1 3 3 38 11 glc-D[e] + 8 nh4[e] --> 16 h2o[e] + 18 h[e] + 6 lac-D[e] + 4 lys-L[e] + 8 pyr[e] 4 ASPK; 4 DAPDC; 4 DAPE; 4 DHDPRy; 4 DHDPS; 22 ENO; 11 FBA; 22 
GAPD; 11 GLCptspp; 11 GLCtex; 4 LYSt3pp; 8 NH4tex; 8 NH4tpp; 11 PFK; 
11 PGI; 4 PPC; 7 PYK; 4 SDPDS; 4 SUCOAS; 16 THD2pp; 4 THDPS; 11 TPI; 
-4 ASAD; -4 ASPTA; -10 ATPS4rpp; -6 D_LACt2pp; -6 D_LACtex; -8 
GLUDy; -16 H2Otex; -16 H2Otpp; -18 Htex; -6 LDH_D; -4 LYStex; -22 PGK; -
22 PGM; -8 PYRt2rpp; -8 PYRtex; -4 SDPTA 

 3 4 4 38 9 glc-D[e] + 4 nh4[e] --> 8 h2o[e] + 16 h[e] + 10 lac-D[e] + 2 lys-L[e] + 4 pyr[e] 2 ASPK; 2 DAPDC; 2 DAPE; 2 DHDPRy; 2 DHDPS; 18 ENO; 9 FBA; 18 
GAPD; 9 GLCptspp; 9 GLCtex; 2 LYSt3pp; 4 NH4tex; 4 NH4tpp; 7 OAADC; 9 
PFK; 9 PGI; 9 PPC; 2 SDPDS; 2 SUCOAS; 8 THD2pp; 2 THDPS; 9 TPI; -2 
ASAD; -2 ASPTA; -5 ATPS4rpp; -10 D_LACt2pp; -10 D_LACtex; -4 GLUDy; 
-8 H2Otex; -8 H2Otpp; -16 Htex; -10 LDH_D; -2 LYStex; -18 PGK; -18 PGM; -
4 PYRt2rpp; -4 PYRtex; -2 SDPTA 
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 5 5 5 39 27 glc-D[e] + 2 nh4[e] + 25 o2[e] --> 54 h2o[e] + 53 h[e] + lys-L[e] + 52 pyr[e] 28 ADK1; ASPK; 85 ATPS4rpp; 25 CYTBO3_4pp; DAPDC; DAPE; DHDPRy; 
DHDPS; 27 FBA; 27 GLCptspp; 27 GLCtex; 54 GLYOX3; 54 LDH_D; 
LYSt3pp; 54 MGSA; 50 NADH16pp; 2 NH4tex; 2 NH4tpp; 25 O2tex; 25 
O2tpp; 27 PFK; 27 PGI; PPC; 28 PPS; SDPDS; SUCOAS; 4 THD2pp; THDPS; 
- ASAD; - ASPTA; -2 GLUDy; -54 H2Otex; -54 H2Otpp; -53 Htex; - LYStex; -
52 PYRt2rpp; -52 PYRtex; - SDPTA; -27 TPI 

  6 6 39 27 glc-D[e] + 2 nh4[e] + 25 o2[e] --> 54 h2o[e] + 53 h[e] + lys-L[e] + 52 pyr[e] 28 ADK1; ASPK; 85 ATPS4rpp; 25 CYTBO3_4pp; DAPDC; DAPE; DHDPRy; 
DHDPS; 27 FBA; 27 GLCptspp; 27 GLCtexi; 54 GLYOX3; 54 LDH_D; 
LYSt3pp; 54 MGSA; 50 NADH16pp; 2 NH4tex; 2 NH4tpp; 25 O2tex; 25 
O2tpp; 27 PFK; 27 PGI; PPC; 28 PPS; SDPDS; SUCOAS; 4 THD2pp; THDPS; 
- ASAD; - ASPTA; -2 GLUDy; -54 H2Otex; -54 H2Otpp; -53 Htex; - LYStex; -
52 PYRt2rpp; -52 PYRtex; - SDPTA; -27 TPI 

  7 7 39 6 glc-D[e] + 2 nh4[e] --> 4 h2o[e] + 11 h[e] + 8 lac-D[e] + lys-L[e] + 2 pyr[e] ASPK; DAPDC; DAPE; 6 DHAPT; DHDPRy; DHDPS; 12 ENO; 6 F6PA; 12 
GAPD; 6 GLCt2pp; 6 GLCtex; 6 HEX7; LYSt3pp; 2 NH4tex; 2 NH4tpp; 5 
OAADC; 6 PPC; SDPDS; SUCOAS; 4 THD2pp; THDPS; 6 TPI; 6 XYLI2; - 
ASAD; - ASPTA; -4 ATPS4rpp; -8 D_LACt2pp; -8 D_LACtex; -2 GLUDy; -4 
H2Otex; -4 H2Otpp; -11 Htex; -8 LDH_D; - LYStex; -12 PGK; -12 PGM; -2 
PYRt2rpp; -2 PYRtex; - SDPTA 

  8 8 39 6 glc-D[e] + 2 nh4[e] --> 4 h2o[e] + 11 h[e] + 8 lac-D[e] + lys-L[e] + 2 pyr[e] ASPK; DAPDC; DAPE; 6 DHAPT; DHDPRy; DHDPS; 12 ENO; 6 F6PA; 12 
GAPD; 6 GLCt2pp; 6 GLCtexi; 6 HEX1; LYSt3pp; 2 NH4tex; 2 NH4tpp; 5 
OAADC; 6 PGI; 6 PPC; SDPDS; SUCOAS; 4 THD2pp; THDPS; 6 TPI; - 
ASAD; - ASPTA; -4 ATPS4rpp; -8 D_LACt2pp; -8 D_LACtex; -2 GLUDy; -4 
H2Otex; -4 H2Otpp; -11 Htex; -8 LDH_D; - LYStex; -12 PGK; -12 PGM; -2 
PYRt2rpp; -2 PYRtex; - SDPTA 

  9 9 39 3 glc-D[e] + 2 nh4[e] + o2[e] --> 6 h2o[e] + 5 h[e] + lys-L[e] + 4 pyr[e] ASPK; CYTBD2pp; DAPDC; DAPE; DHDPRy; DHDPS; 6 ENO; 3 FBA; 6 
GAPD; 3 GLCptspp; 3 GLCtex; LYSt3pp; 2 NADH17pp; 2 NH4tex; 2 NH4tpp; 
O2tex; O2tpp; 3 PFK; 3 PGI; 4 PPC; 3 PPCK; 2 PYK; SDPDS; SUCOAS; 4 
THD2pp; THDPS; 3 TPI; - ASAD; - ASPTA; -2 GLUDy; -6 H2Otex; -6 
H2Otpp; -5 Htex; - LYStex; -6 PGK; -6 PGM; -4 PYRt2rpp; -4 PYRtex; - 
SDPTA 

7 8 10 10 39 4 glc-D[e] + 2 nh4[e] + 2 o2[e] --> 3 5dglcn[e] + 5 h2o[e] + 4 h[e] + lys-L[e] ASPK; 3 ATPS4rpp; 2 CYTBO3_4pp; DAPDC; DAPE; DHDPRy; DHDPS; 
EDA; EDD; ENO; GAPD; 4 GLCDpp; 4 GLCNt2rpp; 4 GLCtex; GNK; 
LYSt3pp; 2 NH4tex; 2 NH4tpp; 2 O2tex; 2 O2tpp; 2 PPC; PPCK; SDPDS; 
SUCOAS; THD2pp; THDPS; -3 5DGLCNR; -3 5DGLCNt2rpp; -3 
5DGLCNtex; - ASAD; - ASPTA; -2 GLUDy; -5 H2Otex; -9 H2Otpp; -4 Htex; - 
LYStex; - PGK; - PGM; - SDPTA 

3 6   39 4 glc-D[e] + 2 nh4[e] + 2 o2[e] --> 3 5dglcn[e] + 5 h2o[e] + 4 h[e] + lys-L[e] ASPK; 2 ATPS4rpp; 2 CYTBO3_4pp; DAPDC; DAPE; DHDPRy; DHDPS; 
EDA; EDD; ENO; GAPD; 4 GLCDpp; 4 GLCNt2rpp; 4 GLCtexi; GNK; 
LYSt3pp; 2 NADTRHD; 2 NH4tex; 2 NH4tpp; 2 O2tex; 2 O2tpp; PPC; SDPDS; 
SUCOAS; 3 THD2pp; THDPS; -3 5DGLCNR; -3 5DGLCNt2rpp; -3 
5DGLCNtex; - ASAD; - ASPTA; -2 GLUDy; -5 H2Otex; -9 H2Otpp; -4 Htex; - 
LYStex; - PGK; - PGM; - SDPTA 
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1 7   39 4 glc-D[e] + 2 nh4[e] + 2 o2[e] --> 3 5dglcn[e] + 5 h2o[e] + 4 h[e] + lys-L[e] ASPK; 2 ATPS4rpp; 2 CYTBO3_4pp; DAPDC; DAPE; DHDPRy; DHDPS; 
EDA; EDD; ENO; GAPD; 4 GLCDpp; 4 GLCNt2rpp; 4 GLCtex; GNK; 
LYSt3pp; 2 NADTRHD; 2 NH4tex; 2 NH4tpp; 2 O2tex; 2 O2tpp; PPC; SDPDS; 
SUCOAS; 3 THD2pp; THDPS; -3 5DGLCNR; -3 5DGLCNt2rpp; -3 
5DGLCNtex; - ASAD; - ASPTA; -2 GLUDy; -5 H2Otex; -9 H2Otpp; -4 Htex; - 
LYStex; - PGK; - PGM; - SDPTA 

5 9   39 4 glc-D[e] + 2 nh4[e] --> 4 h2o[e] + 7 h[e] + 4 lac-D[e] + lys-L[e] + 2 pyr[e] ASPK; DAPDC; DAPE; DHDPRy; DHDPS; 4 EDA; 4 EDD; 4 ENO; 4 
G6PDH2r; 4 GAPD; 2 GLCptspp; 2 GLCt2pp; 4 GLCtex; 2 HEX1; LYSt3pp; 2 
NH4tex; 2 NH4tpp; 4 PGL; PPC; PYK; SDPDS; SUCOAS; THDPS; - ASAD; - 
ASPTA; - ATPS4rpp; -4 D_LACt2pp; -4 D_LACtex; -2 GLUDy; -4 H2Otex; -4 
H2Otpp; -7 Htex; -4 LDH_D; - LYStex; -4 PGK; -4 PGM; -2 PYRt2rpp; -2 
PYRtex; - SDPTA 

2 10   39 4 glc-D[e] + 2 nh4[e] --> 4 h2o[e] + 7 h[e] + 4 lac-D[e] + lys-L[e] + 2 pyr[e] ASPK; DAPDC; DAPE; DHDPRy; DHDPS; 4 EDA; 4 EDD; 4 ENO; 4 
G6PDH2r; 4 GAPD; 2 GLCptspp; 2 GLCt2pp; 4 GLCtexi; 2 HEX1; LYSt3pp; 2 
NH4tex; 2 NH4tpp; 4 PGL; PPC; PYK; SDPDS; SUCOAS; THDPS; - ASAD; - 
ASPTA; - ATPS4rpp; -4 D_LACt2pp; -4 D_LACtex; -2 GLUDy; -4 H2Otex; -4 
H2Otpp; -7 Htex; -4 LDH_D; - LYStex; -4 PGK; -4 PGM; -2 PYRt2rpp; -2 
PYRtex; - SDPTA 

4    39 4 glc-D[e] + 2 nh4[e] + 2 o2[e] --> 3 5dglcn[e] + 5 h2o[e] + 4 h[e] + lys-L[e] ASPK; 3 ATPS4rpp; 2 CYTBO3_4pp; DAPDC; DAPE; DHDPRy; DHDPS; 
EDA; EDD; ENO; GAPD; 4 GLCDpp; 4 GLCNt2rpp; 4 GLCtexi; GNK; 
LYSt3pp; 2 NH4tex; 2 NH4tpp; 2 O2tex; 2 O2tpp; 2 PPC; PPCK; SDPDS; 
SUCOAS; THD2pp; THDPS; -3 5DGLCNR; -3 5DGLCNt2rpp; -3 
5DGLCNtex; - ASAD; - ASPTA; -2 GLUDy; -5 H2Otex; -9 H2Otpp; -4 Htex; - 
LYStex; - PGK; - PGM; - SDPTA 

6    39 3 glc-D[e] + 2 nh4[e] + o2[e] --> 6 h2o[e] + 5 h[e] + lys-L[e] + 4 pyr[e] ASPK; CYTBD2pp; DAPDC; DAPE; 3 DHAPT; DHDPRy; DHDPS; 6 ENO; 3 
F6PA; 6 GAPD; 3 GLCabcpp; 3 GLCtex; 3 HEX1; LYSt3pp; 2 NADH17pp; 2 
NH4tex; 2 NH4tpp; O2tex; O2tpp; 3 PGI; PPC; 2 PYK; SDPDS; SUCOAS; 4 
THD2pp; THDPS; 3 TPI; - ASAD; - ASPTA; -2 GLUDy; -6 H2Otex; -6 
H2Otpp; -5 Htex; - LYStex; -6 PGK; -6 PGM; -4 PYRt2rpp; -4 PYRtex; - 
SDPTA 

8    39 3 glc-D[e] + 2 nh4[e] + o2[e] --> 6 h2o[e] + 5 h[e] + lys-L[e] + 4 pyr[e] ASPK; CYTBD2pp; DAPDC; DAPE; 3 DHAPT; DHDPRy; DHDPS; 6 ENO; 3 
F6PA; 6 GAPD; 3 GLCabcpp; 3 GLCtexi; 3 HEX1; LYSt3pp; 2 NADH17pp; 2 
NH4tex; 2 NH4tpp; O2tex; O2tpp; 3 PGI; PPC; 2 PYK; SDPDS; SUCOAS; 4 
THD2pp; THDPS; 3 TPI; - ASAD; - ASPTA; -2 GLUDy; -6 H2Otex; -6 
H2Otpp; -5 Htex; - LYStex; -6 PGK; -6 PGM; -4 PYRt2rpp; -4 PYRtex; - 
SDPTA 

9    39 3 glc-D[e] + 2 nh4[e] + o2[e] --> 6 h2o[e] + 5 h[e] + lys-L[e] + 4 pyr[e] ASPK; CYTBD2pp; DAPDC; DAPE; 3 DHAPT; DHDPRy; DHDPS; 6 ENO; 3 
F6PA; 6 GAPD; 3 GLCabcpp; 3 GLCtex; 3 HEX7; LYSt3pp; 2 NADH17pp; 2 
NH4tex; 2 NH4tpp; O2tex; O2tpp; PPC; 2 PYK; SDPDS; SUCOAS; 4 THD2pp; 
THDPS; 3 TPI; 3 XYLI2; - ASAD; - ASPTA; -2 GLUDy; -6 H2Otex; -6 
H2Otpp; -5 Htex; - LYStex; -6 PGK; -6 PGM; -4 PYRt2rpp; -4 PYRtex; - 
SDPTA 
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10    39 3 glc-D[e] + 2 nh4[e] + o2[e] --> 6 h2o[e] + 5 h[e] + lys-L[e] + 4 pyr[e] ASPK; CYTBD2pp; DAPDC; DAPE; DHDPRy; DHDPS; 6 ENO; 3 FBA; 6 
GAPD; 3 GLCabcpp; 3 GLCtexi; 3 HEX1; LYSt3pp; 2 NADH17pp; 2 NH4tex; 
2 NH4tpp; O2tex; O2tpp; 3 PFK; 3 PGI; PPC; 5 PYK; SDPDS; SUCOAS; 4 
THD2pp; THDPS; 3 TPI; - ASAD; - ASPTA; -2 GLUDy; -6 H2Otex; -6 
H2Otpp; -5 Htex; - LYStex; -6 PGK; -6 PGM; -4 PYRt2rpp; -4 PYRtex; - 
SDPTA 

 

LF de Figueiredo, A Podhorski, A Rubio, C Kaleta, JE Beasley, S Schuster and FJ Planes.
Bioinformatics, 25(23):3158-3165, Dec 2009.

-Supplemental Material-

130



 8

Table 5. 10-shortest EFMs producing lysine with cofactors set external and values of M ranging from 10 to 10000. 
K 

L Overall reaction Reaction set 
M=10 100 1000 10000 

6 5 2 1 27 5 atp + 1 glc-D[e] + 3 h2o + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]   
  --> 3 adp + 2 amp + 7 h + 1 lys-L[e] + 2 nadh + 4 nadp + 7 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 FBA; 1 GLCptspp; 1 GLCtex; 2 
GLYOX3; 2 LDH_D; 1 LYSt3pp; 2 MGSA; 2 NH4tex; 2 NH4tpp; 1 PFK; 1 PGI; 1 PPC; 
2 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 LYStex; 
-1 SDPTA; -1 TPI 

4 2 5 2 27 1 atp + 1 glc-D[e] + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]  
   --> 1 adp + 3 h2o + 1 h + 1 lys-L[e] + 2 nadh + 4 nadp + 1 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 2 ENO; 1 FBA; 2 GAPD; 1 
GLCptspp; 1 GLCtex; 1 LYSt3pp; 2 NH4tex; 2 NH4tpp; 1 PFK; 1 PGI; 1 PPC; 1 
SDPDS; 1 SUCOAS; 1 THDPS; 1 TPI; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 LYStex; -2 
PGK; -2 PGM; -1 SDPTA 

5 4 1 3 27 5 atp + 1 glc-D[e] + 3 h2o + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]   
  --> 3 adp + 2 amp + 7 h + 1 lys-L[e] + 2 nadh + 4 nadp + 7 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 FBA; 1 GLCptspp; 1 GLCtexi; 
2 GLYOX3; 2 LDH_D; 1 LYSt3pp; 2 MGSA; 2 NH4tex; 2 NH4tpp; 1 PFK; 1 PGI; 1 
PPC; 2 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 
LYStex; -1 SDPTA; -1 TPI 

2 6 6 4 27 1 atp + 1 glc-D[e] + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]   
  --> 1 adp + 3 h2o + 1 h + 1 lys-L[e] + 2 nadh + 4 nadp + 1 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 2 ENO; 1 FBA; 2 GAPD; 1 
GLCptspp; 1 GLCtexi; 1 LYSt3pp; 2 NH4tex; 2 NH4tpp; 1 PFK; 1 PGI; 1 PPC; 1 
SDPDS; 1 SUCOAS; 1 THDPS; 1 TPI; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 LYStex; -2 
PGK; -2 PGM; -1 SDPTA 

3 1 3 5 27 5 atp + 1 glc-D[e] + 4 h2o + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]  
   --> 2 adp + 3 amp + 8 h + 1 lys-L[e] + 2 nadh + 4 nadp + 8 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHAPT; 1 DHDPRy; 1 DHDPS; 1 F6PA; 1 GLCptspp; 
1 GLCtex; 2 GLYOX3; 2 LDH_D; 1 LYSt3pp; 2 MGSA; 2 NH4tex; 2 NH4tpp; 1 PGI; 1 
PPC; 3 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 
LYStex; -1 SDPTA; -1 TPI 

1 3 4 6 27 5 atp + 1 glc-D[e] + 4 h2o + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]   
  --> 2 adp + 3 amp + 8 h + 1 lys-L[e] + 2 nadh + 4 nadp + 8 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHAPT; 1 DHDPRy; 1 DHDPS; 1 F6PA; 1 GLCptspp; 
1 GLCtexi; 2 GLYOX3; 2 LDH_D; 1 LYSt3pp; 2 MGSA; 2 NH4tex; 2 NH4tpp; 1 PGI; 
1 PPC; 3 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 
LYStex; -1 SDPTA; -1 TPI 

9 10 7 7 28 2 atp + 1 glc-D[e] + 1 h-p + 1 nad + 3 nadph + 2 nh4[e]   
  --> 1 adp + 1 amp + 1 h2o + 3 h + 1 lys-L[e] + 1 nadh + 3 nadp + 
3 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 EDA; 1 EDD; 1 ENO; 1 
G6PDH2r; 1 GAPD; 1 GLCptspp; 1 GLCtex; 1 LYSt3pp; 2 NH4tex; 2 NH4tpp; 1 PGL; 
1 PPC; 1 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 
LYStex; -1 PGK; -1 PGM; -1 SDPTA 

7 9 9 8 28 2 atp + 1 glc-D[e] + 1 h-p + 1 nad + 3 nadph + 2 nh4[e]   
  --> 1 adp + 1 amp + 1 h2o + 3 h + 1 lys-L[e] + 1 nadh + 3 nadp + 
3 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 EDA; 1 EDD; 1 ENO; 1 
G6PDH2r; 1 GAPD; 1 GLCptspp; 1 GLCtexi; 1 LYSt3pp; 2 NH4tex; 2 NH4tpp; 1 PGL; 
1 PPC; 1 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 GLUDy; -1 
LYStex; -1 PGK; -1 PGM; -1 SDPTA 

10   9 28 3 atp + 1 glc-D[e] + 1 h-p + 1 nad + 3 nadph + 2 nh4[e]  
   --> 3 adp + 1 h2o + 3 h + 1 lys-L[e] + 1 nadh + 3 nadp + 3 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 EDA; 1 EDD; 1 ENO; 1 
G6PDH2r; 1 GAPD; 1 GLCabcpp; 1 GLCtexi; 1 HEX1; 1 LYSt3pp; 2 NH4tex; 2 
NH4tpp; 1 PGL; 1 PPC; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; -2 
GLUDy; -1 LYStex; -1 PGK; -1 PGM; -1 SDPTA 
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 7  10 28 4 atp + 1 glc-D[e] + 2 h2o + 1 h-p + 1 nad + 3 nadph + 2 nh4[e]   
  --> 2 adp + 2 amp + 6 h + 1 lys-L[e] + 1 nadh + 3 nadp + 6 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 EDA; 1 EDD; 1 G6PDH2r; 1 
GLCptspp; 1 GLCtex; 1 GLYOX3; 1 LDH_D; 1 LYSt3pp; 1 MGSA; 2 NH4tex; 2 
NH4tpp; 1 PGL; 1 PPC; 2 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; 
-2 GLUDy; -1 LYStex; -1 SDPTA; -1 TPI 

 8 8  28 7 atp + 1 glc-D[e] + 6 h2o + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]   
  --> 4 adp + 3 amp + 10 h + 1 lys-L[e] + 2 nadh + 4 nadp + 10 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHAPT; 1 DHDPRy; 1 DHDPS; 1 F6PA; 1 GLCptspp; 
1 GLCtexi; 2 GLNS; 2 GLUSy; 2 GLYOX3; 2 LDH_D; 1 LYSt3pp; 2 MGSA; 2 
NH4tex; 2 NH4tpp; 1 PGI; 1 PPC; 3 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -
1 ASPTA; -1 LYStex; -1 SDPTA; -1 TPI 

  10  28 7 atp + 1 glc-D[e] + 6 h2o + 1 h-p + 2 nad + 4 nadph + 2 nh4[e]   
  --> 4 adp + 3 amp + 10 h + 1 lys-L[e] + 2 nadh + 4 nadp + 10 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHAPT; 1 DHDPRy; 1 DHDPS; 1 F6PA; 1 GLCptspp; 
1 GLCtex; 2 GLNS; 2 GLUSy; 2 GLYOX3; 2 LDH_D; 1 LYSt3pp; 2 MGSA; 2 NH4tex; 
2 NH4tpp; 1 PGI; 1 PPC; 3 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 
ASPTA; -1 LYStex; -1 SDPTA; -1 TPI 

8    28 4 atp + 1 glc-D[e] + 2 h2o + 1 h-p + 1 nad + 3 nadph + 2 nh4[e]   
  --> 2 adp + 2 amp + 6 h + 1 lys-L[e] + 1 nadh + 3 nadp + 6 pi 

1 ASPK; 1 DAPDC; 1 DAPE; 1 DHDPRy; 1 DHDPS; 1 EDA; 1 EDD; 1 G6PDH2r; 1 
GLCptspp; 1 GLCtexi; 1 GLYOX3; 1 LDH_D; 1 LYSt3pp; 1 MGSA; 2 NH4tex; 2 
NH4tpp; 1 PGL; 1 PPC; 2 PPS; 1 SDPDS; 1 SUCOAS; 1 THDPS; -1 ASAD; -1 ASPTA; 
-2 GLUDy; -1 LYStex; -1 SDPTA; -1 TPI 
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Computing EFMs in Corynebacterium glutamicumin genome-scale 
model 
We also used the Corynebacterium glutamicum ATCC 13032 genome-scale model 
(Kjeldsen and Nielsen (2009)) to test our K-shortest EFMs procedure. The abbreviations 
were kept, aside from the exception of some special characters which were removed due 
to the use of sbml file format. This model contains only two compartments, cytosol and 
extra-cellular compartment. The metabolites belonging to the extra-cellular compartment 
are represented by a suffix “xt” in the name abbreviation. 

Similarly to the E. coli model, some reactions containing non-integer stoichiometric 
coefficients were removed from the model and others adjusted. As opposed to the E. coli 
model, where the macromolecules assembly is represented by the biomass equation, the 
C. glutamicum model contains many reactions representing it. The following reactions 
were removed from the initial model: fas-IA_MA, Phospholipid-step, plsC, 
PROTEIN_Ass, DNA_Ass, RNA_Ass, ARABINOGALACTAN_Ass, 
PEPTIDOGLYCAN_Ass, FREEMYCOLICACID_Ass, MYCOLICACID_Ass, 
PHOSPHOLIPID_Ass and biomass_Ass. 

Some reactions were multiplied by a factor of 2 in order to have integer stoichiometric 
coefficient: cyto-bd-complex, bc1-aa3-complex and FASC150.  

In C. glutamicum the uptake of fructose can be done by a fructose and a mannose PTS 
system, which results in the conversion of fructose into fructose 1-phosphate and fructose 
6-phosphate, respectively, Dominguez et al.,1998. The former was not present in the 
model and therefore a reaction was added to the model to better represent the uptake of 
fructose from the medium. Some reactions had typos. In particular, a mistake in reaction 
dapB caused a null synthesis of lysine. Table 6 shows the correct version of such 
reactions. 
 

Table 6. Reactions added or changed in the model due to incorrectness. 
Operation Reaction name Equation 
Added FRU_PTS FRUxt + PEP => PYR + F1P 
Changed r3.1.5.1  DGTP => DEOXYGUANOSINE + 3 PI 
 dapB DEHYDRODIPICOLINAT + NADPH => PIPER26DC + NADP 
 asd AP + NADPH => ASPSA + PI + NADP 
 mez MAL + NADP == CO2 + NADPH + PYR 
 NO3_H NO3xt + H_transport_xt => NO3 + H_transport 
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Table 7 shows the medium and external metabolites defined for C. Glutamicum. 
Metabolites in extra-cellular compartment have the suffix “xt”.  

 
Table 7. Medium and external metabolites used in the 
10-shortest EFM modes producing L-lysine 

Metabolites 

Medium External 

GLCxt H-POxt 
NH4xt PI 
PIxt NADH 
O2xt NAD 
Naxt ADP 
SLFxt CO2 
 AMP 
 H-PO 
 ATP 
 NADP 
 COA 
 NADPH 
 H-transport-xt 
  H-transport 

 

The 10-shortest EFMs were computed for M= 10, 100, 1000 and 10000 when cofactors 
were considered internal and external metabolites, respectively. Results are shown in 
Table 8 and Table 9. Note that in Table 8 and Table 9 metabolites in extra-cellular 
compartment have the suffix “xt”.  
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Table 8. 10-shortest EFMs producing lysine with cofactors set to internal metabolites and the value of M ranging from 10 to 10000 
K 

L Overall reaction Reaction set 
M=10 100 1000 10000 

1 1 1 1 33 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 1 Odx; 2 amt_ATP; 1 asd; 
1 aspB; 5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 6 gnd; 
1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 2 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

 3 2 2 33 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 15 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 11 Odx; 2 amt_ATP; 1 
asd; 1 aspB; 5 bc1aa3complex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 6 
gnd; 1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 12 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

2 6 6 3 33 2 GLCxt + 3 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt + 1 NH3xt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 3 amt_ATP; 1 asd; 1 aspB; 
5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 6 gnd; 1 lysA; 
1 lysC; 10 ndh; 2 pgk; 2 pgm; 1 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 zwfopcA; -6 
CO2_diffusion; -3 NH3NH4eq; -1 NH3_diffusion; -2 Proton_ATP; -4 pgi 

 5 3 4 33 2 GLCxt + 13 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt + 11 NH3xt 15 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 13 amt_ATP; 1 asd; 1 
aspB; 5 bc1aa3complex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 6 gnd; 
1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 1 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -13 NH3NH4eq; -11 NH3_diffusion; -2 Proton_ATP; -4 
pgi 

3 2 4 5 33 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 2 amt_ATP; 1 asd; 1 aspB; 
5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 glnA; 1 gltBD; 6 
gnd; 1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 1 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

4 4 5 6 33 2 GLCxt + 2 NH4xt + 5 O2xt + 1 PIxt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 2 amt_ATP; 1 asd; 1 aspB; 
5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 6 gnd; 1 lysA; 
1 lysC; 10 ndh; 2 pgk; 2 pgm; 1 pstB_ATP; 1 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

 7 7 7 33 2 GLCxt + 2 NH4xt + 5 O2xt + 11 PIxt --> 6 CO2xt + 1 LYSxt 15 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 2 amt_ATP; 1 asd; 1 
aspB; 5 bc1aa3complex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 6 gnd; 
1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 11 pstB_ATP; 1 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 
tkt_2; 6 zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

7 8 9 8 34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 9 Odx; 2 amt_ATP; 1 asd; 
1 aspB; 5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 2 gapA; 1 gdh; 6 gnd; 1 lysA; 1 
lysC; 8 mqo; 2 ndh; 2 pgk; 2 pgm; 2 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 zwfopcA; 
-6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -8 mez; -4 pgi 
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 9 10 9 34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 15 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 19 Odx; 2 amt_ATP; 1 
asd; 1 aspB; 5 bc1aa3complex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 2 gapA; 1 gdh; 6 gnd; 1 
lysA; 1 lysC; 8 mqo; 2 ndh; 2 pgk; 2 pgm; 12 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -8 mez; -4 pgi 

8   10 34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 3 Odx; 2 UREA_diffusion; 
2 amt_ATP; 1 asd; 1 aspB; 5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 
gapB; 1 gdh; 6 gnd; 1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 4 pyc; 4 rpe; 2 rpi; 2 tal; 2 
tkt_1; 2 tkt_2; 6 zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 UREA_H; -4 pgi 

  8  34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 15 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 19 Odx; 2 amt_ATP; 1 
asd; 1 aspB; 5 bc1aa3complex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 2 gapA; 1 gdh; 6 gnd; 1 
lysA; 1 lysC; 8 mdh; 10 ndh; 2 pgk; 2 pgm; 12 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -8 mez; -4 pgi 

9 10   34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 9 Odx; 2 amt_ATP; 1 asd; 
1 aspB; 5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 2 gapA; 1 gdh; 6 gnd; 1 lysA; 1 
lysC; 8 mdh; 10 ndh; 2 pgk; 2 pgm; 2 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -8 mez; -4 pgi 

5    34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 1 Odx; 2 amt_ATP; 1 asd; 
1 aspB; 5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 2 gapA; 1 gdh; 6 gnd; 1 lysA; 1 
lysC; 2 ndh; 2 pgk; 2 pgm; 8 proC; 8 putA; 2 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 tkt_2; 6 
zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

6    34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 2 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 2 amt_ATP; 1 asd; 1 aspB; 
5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 2 gapA; 1 glnA; 1 gltBD; 6 gnd; 1 
lysA; 1 lysC; 2 ndh; 2 pgk; 2 pgm; 8 proC; 8 putA; 1 pyc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 
tkt_2; 6 zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 

10    34 2 GLCxt + 2 NH4xt + 5 O2xt --> 6 CO2xt + 1 LYSxt 5 ATPasecomplex; 1 GLC_in; 1 GLC_in_PEP; 1 LysE; 5 O2_diffusion; 2 amt_ATP; 1 
asd; 1 aspB; 5 cytobdcomplex; 1 dapA; 1 dapB; 1 ddh; 2 eno; 10 gapA; 8 gapB; 1 gdh; 1 
glk; 6 gnd; 1 lysA; 1 lysC; 10 ndh; 2 pgk; 2 pgm; 1 ppc; 4 rpe; 2 rpi; 2 tal; 2 tkt_1; 2 
tkt_2; 6 zwfopcA; -6 CO2_diffusion; -2 NH3NH4eq; -2 Proton_ATP; -4 pgi 
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Table 9. 10-shortest EFMs producing lysine with cofactors set to external metabolites and the value of M ranging from 10 to 10000. 
K 

L Overall reaction Reaction set 
M=10 100 1000 10000 

1 1 1 1 21 2 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 2 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 2 PI 

1 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 gdh; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 2 pgk; 2 
pgm; 1 ppc; -2 NH3NH4eq; -1 tpiA; ;  

2 2 2 2 22 2 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 2 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 2 PI 

1 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 gdh; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 2 pgk; 2 
pgm; 1 pyc; 1 pyk; -2 NH3NH4eq; -1 tpiA 

3 3 3 3 22 3 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 3 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 3 PI 

1 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 glnA; 1 gltBD; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 
2 pgk; 2 pgm; 1 ppc; -2 NH3NH4eq; -1 tpiA 

6 4 6 4 23 2 ATP + 2 GLCxt + 2 H-transport-xt + 4 NADPH + 2 NH4xt  
  --> 2 ADP + 2 GLxt + 2 H-transport + 1 LYSxt + 4 NADP + 2 PI 

2 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 2 fda; 2 gapA; 1 gdh; 2 gpsA; 1 lysA; 1 lysC; 2 pfkA; 2 pgi; 2 
pgk; 2 pgm; 1 pyc; -2 GL_in_out; -2 NH3NH4eq; -2 glpK 

4 8 4 5 23 4 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 4 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 4 PI 

1 GLC_in; 1 LysE; 1 Odx; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 gdh; 1 glk; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 2 
pgk; 2 pgm; 2 ppc; -2 NH3NH4eq; -1 tpiA 

9  10 6 23 3 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 3 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 3 PI 

1 GLC_in; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 ddh; 2 
eno; 1 fda; 2 gapA; 1 gdh; 1 glk; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 2 pgk; 2 
pgm; 1 pyc; 2 pyk; -2 NH3NH4eq; -1 tpiA 

10 6  7 23 3 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 3 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 3 PI 

1 GLC_in; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 ddh; 2 
eno; 1 fda; 2 gapA; 1 gdh; 1 glk; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 2 pgk; 2 
pgm; 1 ppc; 1 pyk; -2 NH3NH4eq; -1 tpiA 

 10 8 8 23 2 GLCxt + 2 H-transport-xt + 4 NAD + 4 NADPH + 2 NH4xt  
  --> 2 GLYRxt + 2 H-transport + 1 LYSxt + 4 NADH + 4 NADP 

2 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 2 fda; 4 gapA; 1 gdh; 1 lysA; 1 lysC; 2 pfkA; 2 pgi; 4 pgk; 2 
pgm; 1 pyc; -2 GLYR_in_out; -2 NH3NH4eq; -2 glxK; -2 tpiA 

5 5 7 9 23 3 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 3 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 3 PI 

1 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 glnA; 1 gltBD; 1 lysA; 1 lysC; 1 pfkA; 1 pgi; 
2 pgk; 2 pgm; 1 pyc; 1 pyk; -2 NH3NH4eq; -1 tpiA 

8 9 5 10 23 1 ATP + 1 GLCxt + 2 H-transport-xt + 2 NAD + 4 NADPH + 2 NH4xt  
  --> 1 ADP + 2 H-transport + 1 LYSxt + 2 NADH + 4 NADP + 1 PI 

1 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 gdh; 1 lysA; 1 lysC; 1 mdh2; 1 pfkA; 1 pgi; 
2 pgk; 2 pgm; 1 pyk; -2 NH3NH4eq; -1 mez; -1 tpiA 

7 7 9  23 1 ATP + 1 GLCxt + 2 H-transport-xt + 3 NAD + 5 NADPH + 2 NH4xt  
  --> 1 ADP + 2 H-transport + 1 LYSxt + 3 NADH + 5 NADP + 1 PI 

1 GLC_in_PEP; 1 LysE; 2 amt_ATP; 1 asd; 1 aspB; 1 dapA; 1 dapB; 1 
ddh; 2 eno; 1 fda; 2 gapA; 1 gdh; 1 lysA; 1 lysC; 1 mdh; 1 pfkA; 1 pgi; 2 
pgk; 2 pgm; 1 pyk; -2 NH3NH4eq; -1 mez; -1 tpiA 
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Overview of the genome-scale simulations 
Table 10 is a summary of the simulations performed in this work given special attention 
to the computation time required for each different M value. 
 
Table 10. Metabolic network size and computation time of the 10-shortest EFMs. Abbreviations: Met – 
metabolites; Reac. – reactions; internal – cofactors internal; external – cofactors external; time – time required to 
compute the 10-shortest EFMs; short. – size of the shortest EFMs. 

 Number of  Cofactors 

Model 
Met. Reac. 

M 
internal external 

time short. time short. 
E

. c
ol

i 

1668 2077 10 36 min 39 4 min 27 

  100 483 min 38 7 min 27 

  1000 323 min 38 11 min 27 

  10000 744 min 38 11 min 27 

C
. 

gl
ut

am
ic

um
 388 437 10 24 s 33 5 s 21 

  100 113 s 33 8 s 21 

  1000 85 s 33 7 s 21 

  10000 88 s 33 3 s 21 
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Reassessment of recently released tools for path-

way prediction: The erythrocyte benchmark prob-

lem

During the last year of the PhD, several improvements on graph theory approaches

for metabolic pathway prediction were published. Here we tested two of these tools.

The new version of the tool PathFinding was released right after the publication

by de Figueiredo et al. (2009b). This one uses the information on RPAIR to

improve the quality of the paths (Faust et al., 2009b). A different approach

is used in the recently published ReTrace, which relies in the atom mapping

of metabolites (Pitkänen et al., 2009). The results presented here are intended

to extend the benchmark problem introduced in de Figueiredo et al. (2009c).

This benchmark problem can be described by the subsystem in Figure 1 which

represents the nucleotide metabolism of human erythrocytes. This subsystem is an

adaptation of the network published by Schuster and Kenanov (2005) including

almost all reaction and metabolite abbreviations. The analysis presented here

could be carried at the cell scale (see Introduction). Nevertheless, the reduced

metabolism of human erythrocytes allow us to simplify the network and therefore,

focus on the specific question we want to answer without loss of generality.

In order to test the new version of PathFinding, we build a directed graph

corresponding to the subsystem in Figure 1 using the RPAIR database and the

instructions an examples found in the website of NeAT (Brohée et al., 2008). The

file can be found in the digital supplemental material of this thesis (see pages 144).

The result present in Table 1 show that PathFinding predicts paths between

hypoxanthine to ADP. From the first shortest pathway we can say that the

PahtFinding tool does not handle correctly directed RPAIR graphs because two

reaction pairs, RP00175> and RP01809>, associated to the same reaction, R01863,

appear consecutively in the same path. In a private communication with the

developers of PathFinding, the main reason for this behavior is that for RPAIR
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Figure 1: Benchmark problem concerning the conversion of hypoxanthine to ADP in human
erythrocytes (de Figueiredo et al., 2009c).

graphs the exclusion group are not directed and therefore, there is no way to avoid

that two reaction pairs belonging to the same reaction can appear in the same

path when analyzing directed RPAIR graphs.
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In order to use ReTrace, this software tool was downloaded and installed

locally. We remove many of the entries from LIGAND database in order to reduce

the search problem to the subsystem in Figure 1. However, while running ReTrace

there were some complications while generating the output. The reason for this

behavior is that ReTrace tries to access some reactions that were not present in the

reduced LIGAND database. The information about these entries was removed in

order to comprise only the reactions, metabolites and reaction pairs present in the

subsystem understudy. The input data as well as other data used in this analysis

can be found in the digital supplemental material of this thesis (see pages 144).

One additional file was created to force ReTrace to follow the directionality

of reactions. A bug in the file retrace.py from ReTrace version 1.20 was found

between lines 575 and 581 that did not allow to use the information of reaction

directionality. A suggestion to the developers of ReTrace was made for replacing

the Python source code between these lines with the one in Listing 1.

1 if reactionDirConstraints[r]:
2 if sub in re.substrates and pro in re.products:
3 dir = ">"
4 elif sub in re.products and pro in re.substrates:
5 dir = "<"
6 if dir != None:
7 constrained.add(dir)
8 else:
9 if sub in re.substrates and pro in re.products:

10 dir = "<"
11 elif sub in re.products and pro in re.substrates:
12 dir = ">"
13 if dir != None:
14 constrained.add(dir)

Listing 1: Suggested source code to correct the bug found in ReTrace version 1.20.

ReTrace did not find any route linking hypoxantine to ADP. Instead, two

routes linking PRPP to ribose 5-phosphate were computed Figures 2 (a) and (b).

Moreover, when computing routes from PRPP to ADP the program only found

one incomplete route. When setting Adenine also as source metabolite the status
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(a) (b)

Figure 2: Routes calculated with ReTrace, converting PRPP to ribose 5-phosphate.

of that route changed to complete (Figure 3).

Figure 3: Routes calculated with ReTrace, converting PRPP and Adenine to ADP.

The subsystem in Figure 1 was used to compute the elementary flux modes.

The nodes in red correspond to the external metabolites and duplicated nodes

are dashed. The three elementary flux modes are depicted in the Discussion,

Figures 6.1 (d) to (f).
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