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A PERTURBATION APPROACH TO DIFFERENTIAL
OPERATORS WITH INDEFINITE WEIGHTS

JUSSI BEHRNDT, FRIEDRICH PHILIPP, AND CARSTEN TRUNK

Abstract. Ordinary and partial differential operators with indefinite weight
functions can be regarded as perturbations of non-negative operators in Krein
spaces. Under the additional assumption that the points 0 and ∞ are regular
critical points of the unperturbed operator it is shown that a bounded addi-

tive perturbation leads to an operator which admits a decomposition into a
direct sum of a bounded operator and an unbounded selfadjoint operator in a
Hilbert space. In particular, this leads to estimates for the non-real spectrum

in terms of the operator norm of the perturbation term and the resolvent of
the unperturbed non-negative operator. The general results are illustrated for
Sturm-Liouville operators and second order elliptic partial differential opera-
tors on unbounded domains.

1. Introduction

We consider ordinary and partial differential operators associated with

(1.1) L =
1
r

ℓ,

where r ̸= 0 is a real-valued, locally integrable weight function which changes its
sign and ℓ is a second order differential expression of the form

(1.2) ℓ = − d

dx
p

d

dx
+ q or ℓ = −

n∑
j,k=1

∂

∂xj
ajk

∂

∂xk
+ a

acting on an unbounded real interval or domain Ω ⊂ Rn, respectively. In the first
case p−1 and q are assumed to be real-valued and (locally) integrable over the
interval Ω. In the second case r, r−1 ∈ L∞(Ω) and ℓ is assumed to be formally
symmetric and uniformly elliptic on Ω ⊂ Rn with C∞-coefficients ajk and a ∈
L∞(Ω) is real-valued. Together with appropriate boundary conditions (if necessary)
the differential expression ℓ gives rise to a selfadjoint operator T in a weighted L2-
space. Multiplication with 1/r lead to the corresponding indefinite differential
operator A associated with L in (1.1).

Most of the existing literature for differential operators with indefinite weights
focuses on regular or left-definite problems. The spectral properties of the operators
associated to L in the case of a regular Sturm-Liouville expression ℓ are investigated
in a great extend. We refer only to [17], the monograph [40] and the detailed
references therein. The spectral properties of indefinite elliptic partial differential
operators in the case of a bounded domain have been investigated in, e.g., [20, 21,
22, 23, 35, 36, 37]. We mention that in the case of a bounded interval or domain
Ω the spectrum of the indefinite differential operator A associated with L in (1.1)
consists only of eigenvalues with at most finitely many non-real eigenvalues.
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Also the case of singular left-definite Sturm-Liouville problems is well studied.
Here the selfadjoint operator T associated with ℓ is uniformly positive and, hence,
the corresponding indefinite differential operator A associated with L in (1.1) has
real spectrum with a gap around zero, cf. e.g., [10, 11, 12, 33, 32] and the monograph
[40] for further references. In the case T ≥ 0 it is of particular interest whether
the operator A is similar to a selfadjoint operator. A set of necessary and sufficient
similarity criteria can be found in [27, 28, 29].

The slightly more general situation where the indefinite (Sturm-Liouville or el-
liptic) differential operator A has either a finite number of negative squares or is
quasi-uniformly positive is discussed in, e.g., [7, 9, 15, 16]. The general non-left-
definite situation is much more difficult to treat, especially the situation where the
essential spectrum of the selfadjoint operator T associated with ℓ is no longer con-
tained in R+. In this case subtle problems appear, as, e.g., accumulation of non-real
eigenvalues to the real axis, see [4, 8, 6, 30].

In the present paper a new general perturbation approach is provided which is
applicable for singular non-left-definite ordinary and partial differential operators,
and which moreover leads to quantitative estimates for the non-real spectrum. Al-
though the analysis carried out relies on sophisticated Krein space methods for
so-called locally definitizable operators, the basic idea is simple: If the selfadjoint
operator T associated with ℓ is not uniformly positive but semibounded from below,
then the operator T + γ becomes non-negative or uniformly positive for a suitably
large γ > 0. Hence the spectrum of A0 := A+γ/r = 1/r(T +γ) is real. In general, a
bounded perturbation of A0 may lead to unbounded non-real spectrum, but under
the additional assumption that 0 and ∞ are no so-called singular critical points the
influence of the perturbation on the spectrum can be controlled. In fact, our main
result Theorem 3.1 provides a bound for the non-real spectrum of A in terms of the
resolvent of A0 and the norm of the bounded perturbation.

Theorem 3.1 is applied to ordinary and partial differential operators with indef-
inite weights in Section 4. We first investigate a singular indefinite Sturm-Liouville
operator with an essentially bounded, real-valued potential and the particularly sim-
ple weight function r(x) = sgn(x). Our second example is a second order uniformly
elliptic operator defined on an unbounded domain Ω ⊂ Rn with bounded coeffi-
cients and an essentially bounded weight function r having an essentially bounded
inverse. To the best of our knowledge the estimates obtained here for the non-
real spectrum of singular indefinite differential operators are the first ones in the
mathematical literature.

2. Locally definitizable operators

Throughout this section let (H, [· , ·]) be a Krein space. For a detailed treatment
of Krein spaces and operators therein we refer to the monographs [1] and [13].
In the following all topological notions are understood with respect to some fixed
Hilbert space norm ∥·∥ on H such that [· , ·] is ∥·∥-continuous. Any two such norms
are equivalent, see e.g. [1, Ch 1, Theorem 7.19]. The Hilbert space scalar product
induced by ∥ · ∥ will be denoted by (· , ·). By the Lax-Milgram theorem there exists
a bounded linear operator G in H such that

[f, g] = (Gf, g) for all f, g ∈ H.

This operator is boundedly invertible and selfadjoint in (H, (· , ·)).
Let A be a densely defined linear operator in H. The adjoint of A in the Krein

space (H, [· , ·]) is defined by
A+ := G−1A∗G,
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where A∗ denotes the adjoint of A in the Hilbert space (H, (· , ·)). We have

[Af, g] = [f,A+g] for all f ∈ domA, g ∈ dom A+.

The operator A is called selfadjoint (in the Krein space (H, [· , ·])) if A = A+. A
selfadjoint operator A in (H, [· , ·]) is called non-negative if ρ(A) ̸= ∅ and [Af, f ] ≥ 0
for all f ∈ domA. In the sequel, if not otherwise stated, properties like ”selfadjoint”
or ”non-negative” of an operator always refer to the corresponding property of the
operator with respect to the Krein space inner product [· , ·].

Let T be a closed and densely defined linear operator in H. Recall that the
approximate point spectrum of T consists of those λ ∈ C for which there exists a
sequence (fn) ⊂ dom T with ∥fn∥ = 1 for n ∈ N and (T − λ)fn → 0 as n → ∞.
Evidently, σap(T ) is a subset of σ(T ). If T is selfadjoint, it is not difficult to see that
σ(T ) ∩ R ⊂ σap(T ). The extended spectrum σ̃(T ) of T is defined by σ̃(T ) := σ(T )
if T is bounded and σ̃(T ) := σ(T ) ∪ {∞} if T is unbounded.

Let us recall the notions of spectral points of positive and negative type of a self-
adjoint operator. The following definition was given in [34] for bounded selfadjoint
operators.

Definition 2.1. Let A be a selfadjoint operator in the Krein space (H, [· , ·]). A
point λ ∈ σap(A) is called a spectral point of positive (negative) type of A if for
every sequence (fn) ⊂ dom A with ∥fn∥ = 1 and (A−λ)fn → 0 as n → ∞ we have

lim inf
n→∞

[fn, fn] > 0
(

lim sup
n→∞

[fn, fn] < 0, respectively
)
.

The point ∞ is called a spectral point of positive (negative) type if A is unbounded
and if for every sequence (fn) ⊂ dom A with ∥Afn∥ = 1 and fn → 0 as n → ∞ we
have

lim inf
n→∞

[Afn, Afn] > 0
(

lim sup
n→∞

[Afn, Afn] < 0, respectively
)
.

The set of all spectral points of positive (negative) type of A will be denoted by
σ+(A) (σ−(A), respectively). A set ∆ ⊂ C is said to be of positive (negative) type
with respect to A if

∆ ∩ σ̃(A) ⊂ σ+(A)
(
∆ ∩ σ̃(A) ⊂ σ−(A), respectively

)
.

The set ∆ is said to be of definite type with respect to A if it is either of positive
or of negative type with respect to A.

It is easily seen that the sets σ+(A) and σ−(A) are contained in R. Moreover,
they are open in σap(A), see [2]. This implies in particular that the non-real spec-
trum of A cannot accumulate to σ+(A) ∪ σ−(A). In [34] it was proved that a
bounded selfadjoint operator A possesses a local spectral function E on intervals
which are of positive type with respect to A. The spectral subspaces defined by E
are then Hilbert spaces with respect to the inner product [· , ·]. A similar statement
holds for intervals which are of negative type. An extension of these statements to
unbounded operators can be found in in [26]. Due to these properties, the spectrum
of positive and negative type is of particular interest in the analysis of selfadjoint
operators in Krein spaces.

In the next definition we recall the notion of locally definitizable operators, see
e.g. [25, Definition 2.3], see also [26]. As usual we denote the open half planes by
C± := {z ∈ C : ± Im z > 0} and the one-point compactifications of C and R by C
and R, respectively. Moreover, for a set ∆ ⊂ C we define ∆∗ := {z : z ∈ ∆}, where
∞ := ∞.
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Definition 2.2. Let Ω = Ω∗ be a domain in C with Ω∩R ̸= ∅, such that Ω∩C+ and
Ω ∩ C− are simply connected. A selfadjoint operator A in K is called definitizable
over Ω, if the following conditions are satisfied.

(i) The set σ(A) ∩ (Ω \ R) does not have any accumulation point in Ω and
consists of poles of the resolvent of A.

(ii) For every closed subset ∆ of Ω ∩ R there exist an open neighborhood U of
∆ in C and numbers m ≥ 1, M > 0, such that

(2.1) ∥(A − λ)−1∥ ≤ M
(1 + |λ|)2m−2

|Im λ|m

holds for all λ ∈ U \ R.
(iii) For every point λ ∈ Ω ∩ R there exist an open neighborhood Iλ in R of λ,

such that both components of Iλ \ {λ} are of definite type with respect to
A.

The points in σ̃(A) ∩ Ω ∩ R which are not spectral points of definite type of A are
called the critical points of A (in Ω).

We emphasize that a selfadjoint operator A is definitizable over C if and only if
it is definitizable, cf. [26], i.e. ρ(A) ̸= ∅ and there exists a polynomial p ̸= 0 with
real coefficients such that p(A) is non-negative. Moreover, a selfadjoint operator
A which is definitizable over a domain Ω (as in Definition 2.2) has a local spectral
function E on Ω∩R, see [26]. The projection E(∆) is defined for all Borel subsets
∆ of Ω ∩ R with ∆ ⊂ Ω the boundary points of which are not critical points of A.
We denote this system of sets by B(A; Ω). A critical point λ of A in Ω∩R is called
regular if there exists δ > 0 such that

sup{∥E(∆)∥ : ∆ ∈ B(A; Ω), ∆ ⊂ (λ − δ, λ + δ)} < ∞.

If the critical point λ of A in Ω∩R is not regular, it is called singular. The following
proposition is a generalization of a result of Ćurgus. For r > 0 and λ ∈ C we set
Br(λ) := {z ∈ C : |z − λ| < r}.

Proposition 2.3. Let the selfadjoint operator A in the Krein space (H, [· , ·]) be
definitizable over a domain Ω ⊂ C with ∞ ∈ Ω. Then ∞ is not a singular critical
point of A if and only if there exists a bounded and boundedly invertible non-negative
operator W in H such that W dom A ⊂ domA.

Proof. It follows directly from Definition 2.2 that there exists r > 0 such that the
following statements hold:

(a) A is definitizable over C \ Br(0).
(b) σ(A) \ R ⊂ Br(0).
(c) (r,∞) is of definite type with respect to A.
(d) (−∞,−r) is of definite type with respect to A.

Choose some r1 > r, set ∆ := R \ (−r1, r1) and denote by E the local spectral
function of A on R \ [−r, r]. Define the operators

B := A¹E(∆)H and C := A¹(I − E(∆))H.

Then the space H admits the decomposition H = E(∆)H [u] (I−E(∆))H and with
respect to this decomposition the operator A is decomposed as A = B [u] C. Here,
[u] denotes the direct [· , ·]-orthogonal sum. As the operator B is definitizable over
C, it is definitizable. Evidently, the point ∞ is a critical point of A if and only if it
is a critical point of B. Moreover, it is easily seen that in this case ∞ is a regular
critical point of A if and only if it is a regular critical point of B.

Assume that ∞ is not a singular critical point of A. Then the same is true for
the definitizable operator B. Hence, by [14, Theorem 3.2] there exists a bounded
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and boundedly invertible non-negative operator V in E(∆)H such that V dom B ⊂
dom B. With an arbitrary fundamental symmetry Jb in (I −E(∆))H the operator
W := V [u] Jb is a bounded and boundedly invertible non-negative operator in H.
Moreover, since domA = dom B [u] (I − E(∆))H, we have W dom A ⊂ dom A.
Conversely, assume that such an operator W exists. Then there exists some δ > 0
such that [Wf, f ] ≥ δ∥f∥2 holds for all f ∈ H. Define the bounded operator V in
E(∆)H by

V := E(∆)(W¹E(∆)H).
Then for f ∈ E(∆)H we have

[V f, f ] = [E(∆)Wf, f ] = [Wf,E(∆)f ] = [Wf, f ] ≥ δ∥f∥2,

which shows that V is non-negative and boundedly invertible. If f ∈ dom B, then
also f ∈ dom A and thus Wf ∈ dom A which implies

V f = E(∆)Wf ∈ E(∆) dom A = dom B.

This and [14, Theorem 3.2] imply that ∞ is not a singular critical point of B. ¤

3. The main result

Let (H, [· , ·]) be a Krein space. Recall that for any Hilbert space scalar product
(· , ·) on H such that [· , ·] is continuous with respect to ∥ · ∥ := (· , ·)1/2 there exists
a bounded and selfadjoint operator G in (H, (· , ·)) such that

[f, g] = (Gf, g) for all f, g ∈ H.

The operator G is called the Gram operator of [· , ·] with respect to (· , ·). The
following theorem is the main result of this paper.

Theorem 3.1. Let A0 be a non-negative selfadjoint operator in the Krein space
(H, [· , ·]) and let (· , ·), ∥ · ∥ and G be as above. Furthermore, assume that 0 and ∞
are not singular critical points of A0 and 0 /∈ σp(A0). Set

τ0 :=
1
π

lim sup
N→∞

∥∥∥∥∥
∫ N

1
N

(
(A0 + it)−1 + (A0 − it)−1

)
dt

∥∥∥∥∥ < ∞ .

Then for every bounded selfadjoint operator V in (H, [· , ·]) and

δ :=
3
2

(1 + τ0)max{1, ∥V ∥}

the following statements hold:
(i) The operator A0 + V is definitizable over C \ Bδ(0).
(ii) ∞ is not a singular critical point of A0 + V .
(iii) (δ,∞) is of positive type with respect to A0 + V .
(iv) (−∞,−δ) is of negative type with respect to A0 + V .
(v) σ(A0 + V ) \ R ⊂ Bδ(0).

If GA0 ⊂ A0G or A0G ⊂ GA0, then τ0 = 1 and hence δ = 3max{1, ∥V ∥}.

Proof. The proof is divided into three steps. In the first step we prove that indeed
τ0 < ∞. In the second step it is shown that (i)–(v) hold with some r > 0 instead
of δ. The proof is completed by showing δ ≥ r in step 3.

1. By E denote the spectral function of the non-negative operator A0. By
assumption, 0 and ∞ are not singular critical points of A0. Therefore, the spectral
projections E(R+) and E(R−) exist, where R+ := (0,∞) and R− := (−∞, 0). Let
us define the operator

J̃ := E(R+) − E(R−).
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Since zero is not an eigenvalue of A0, the space H decomposes as

(3.1) H = E(R+)H [u] E(R−)H,

and with respect to this decomposition of H the operators A0 and J̃ admit the
following matrix representations:

A0 =
(

A+
0 0
0 A−

0

)
and J̃ :=

(
I 0
0 −I

)
,

where A±
0 := A0¹E(R±)H. Note that the operator A±

0 is selfadjoint in the Hilbert
space (E(R±)H,±[· , ·]) and that σ(A±

0 ) ⊂ R±
0 := R± ∪ {0}.

In the following we shall prove that

(3.2)
1
π

s– lim
N→∞

∫ N

1
N

(
(A+

0 + it)−1 + (A+
0 − it)−1

)
dt = I.

To this end we first of all observe that

(A+
0 + it)−1 + (A+

0 − it)−1 = 2A+
0 ((A+

0 )2 + t2)−1.

Clearly, the spectral measure of A+
0 is given by E+(∆)f = E(∆ ∩ R+)f , f ∈

E(R+)H and ∆ ⊂ R Borel-measurable. Therefore,

2
∫ N

1
N

A+
0 ((A+

0 )2 + t2)−1 dt = 2
∫ N

1
N

∫
R+

s

s2 + t2
dE(s) dt

= 2
∫

R+

∫ N

1
N

s

s2 + t2
dt dE(s)

= 2
∫

R+

(
arctan(N/s) − arctan(1/Ns)

)
dE(s)

= 2 arctan(N(A+
0 )−1) − 2 arctan(N−1(A+

0 )−1).

Fubini’s theorem can be applied here since the integrand is bounded on R+ ×
[1/N,N ]. On R+, the functions

x 7→ 2 arctan(Nx) and x 7→ 2 arctan(N−1x)

tend pointwise to π and 0 as N → ∞, respectively. Therefore, the operator sequence
2 arctan(N(A+

0 )−1) tends strongly to πI and 2 arctan(N−1(A+
0 )−1) tends strongly

to the zero operator as N → ∞, cf. [38, Theorem VIII.5]. This proves (3.2).
Similarly, one shows that

1
π

s– lim
N→∞

∫ N

1
N

(
(A−

0 + it)−1 + (A−
0 − it)−1

)
dt = −IE(R−)H.

Hence, we have

1
π

s– lim
N→∞

∫ N

1
N

(
(A0 + it)−1 + (A0 − it)−1

)
dt = J̃ .

The Banach-Steinhaus theorem now yields τ0 < ∞ and

(3.3) ∥J̃∥ ≤ τ0.

2. Let A := A0 + V . With respect to the decomposition (3.1) of H we have

dom A = dom A0 =
(
dom A0 ∩ E(R+)K

)
[u]

(
dom A0 ∩ E(R−)K

)
.

As (E(R±)H,±[· , ·]) are Hilbert spaces, the operator J̃ is a fundamental symmetry
of the Krein space (H, [· , ·]), so that the norm ∥ · ∥∼, induced by the scalar product

(f, g)∼ := [J̃f, g] = (GJ̃f, g), f, g ∈ H,
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is equivalent to the fixed norm ∥ · ∥, cf. [1]. Therefore, the operator V is also
bounded in the Hilbert space (H, (· , ·)∼) and thus admits a representation

V =
(

V11 V12

V21 V22

)
with bounded entries Vij , i, j = 1, 2.

Let λ ∈ C with Reλ ≥ 0 and

|λ| > τ+ := ∥V22∥∼ + 2max{1, ∥V21∥∼}.

From dist(λ, σ(A−
0 )) > τ+ and the selfadjointness of A−

0 in the Hilbert space
(E(R−)H, (· , ·)∼) we conclude

∥(A−
0 − λ)−1∥∼ =

1
dist(λ, σ(A−

0 ))
<

1
τ+

.

This, in particular, implies

∥V22(A−
0 − λ)−1∥∼ <

∥V22∥∼
τ+

< 1.

Therefore the operator I + V22(A−
0 −λ)−1 is boundedly invertible in E(R−)H, and

it follows that∥∥∥(
I + V22(A−

0 − λ)−1
)−1

∥∥∥
∼

≤ 1
1 − ∥V22(A−

0 − λ)−1∥∼
≤ 1

1 − ∥V22∥∼
τ+

.

Hence, also the operator

A−
0 + V22 − λ =

(
I + V22(A−

0 − λ)−1
)
(A−

0 − λ)

is boundedly invertible in E(R−)H. The definition of τ+ yields

(3.4)
∥∥(A−

0 + V22 − λ)−1
∥∥
∼ ≤ 1

τ +
· 1

1 − ∥V22∥∼
τ+

=
1

τ+ − ∥V22∥∼
≤ 1

2

and

(3.5)
∥∥(A−

0 + V22 − λ)−1V21

∥∥
∼ ≤ ∥V21∥∼

τ+ − ∥V22∥∼
≤ 1

2
.

Let f ∈ dom A be arbitrary. We set g := (A − λ)f = (A0 + V − λ)f as well as
f± := E(R±)f ∈ dom A, g± := E(R±)g. Then g− = V21f+ +(A−

0 +V22 −λ)f−, or,
equivalently,

f− = (A−
0 + V22 − λ)−1(g− − V21f+).

By (3.4) and (3.5) and due to ∥v∥2
∼ = ∥E(R+)v∥2

∼ + ∥E(R−)v∥2
∼ for v ∈ H this

implies

∥f−∥∼ ≤ 1
2
∥g−∥∼ +

1
2
∥f+∥∼ ≤ 1

2
∥(A − λ)f∥∼ +

1
2
∥f∥∼ .

Squaring this gives

∥f−∥2
∼ ≤ 1

4
∥(A − λ)f∥2

∼ +
1
2
∥(A − λ)f∥∼∥f∥∼ +

1
4
∥f∥2

∼ ,

and thus
[f, f ] = ∥f+∥2

∼ − ∥f−∥2
∼ = ∥f∥2

∼ − 2∥f−∥2
∼

≥ 1
2
∥f∥2

∼ − 1
2
∥(A − λ)f∥2

∼ − ∥(A − λ)f∥∼∥f∥∼ .
(3.6)

Now, we set ε :=
√

5−2. It is then easily seen with the help of the above inequality
that for all λ ∈ C with Re λ ≥ 0 and |λ| > τ+ the following implication holds:

f ∈ dom A, ∥(A − λ)f∥∼ ≤ ε∥f∥∼ =⇒ [f, f ] ≥ ε∥f∥2
∼.
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By definition of σ+(A) we obtain

{λ ∈ C : |λ| > τ+, Re λ ≥ 0} ∩ σap(A) ⊂ σ+(A).

Analogously, one shows that for λ ∈ C with Re λ ≤ 0,

|λ| > τ− := ∥V11∥∼ + 2max{1, ∥V12∥∼}
and f ∈ dom A we have

(3.7) [f, f ] ≤ −1
2
∥f∥2

∼ +
1
2
∥(A − λ)f∥2

∼ + ∥(A − λ)f∥∼∥f∥∼ ,

and thus
∥(A − λ)f∥∼ ≤ ε∥f∥∼ =⇒ [f, f ] ≤ −ε∥f∥2

∼.

Consequently,

{λ ∈ C : |λ| > τ−, Re λ ≤ 0} ∩ σap(A) ⊂ σ−(A).

We set
r := max{τ+, τ−}

and conclude from σ+(A0) ∪ σ−(A0) ⊂ R that the operator A has the following
spectral properties

(iii’) (r,∞) is of positive type with respect to A.
(iv’) (−∞,−r) is of negative type with respect to A.
(v’) σ(A) \ R ⊂ Br(0).

We will now show that A is definitizable over C \ Br(0). To this end it remains
to prove that the resolvent of A has finite order growth near R \ [−r, r]. Let
λ ∈ (C \ R) \ Br(0) and f ∈ dom A. Then (see (3.6) and (3.7))∣∣[f, f ]

∣∣ ≥ 1
2
∥f∥2

∼ − 1
2
∥(A − λ)f∥2

∼ − ∥(A − λ)f∥∼∥f∥∼ .

On the other hand, we also have∣∣(Imλ)[f, f ]
∣∣ =

∣∣ Im [λf, f ]
∣∣ =

∣∣ Im [(λ − A)f, f ]
∣∣ ≤ ∥(A − λ)f∥∼∥f∥∼ ,

and it follows that

∥(A − λ)f∥2
∼ + 2

(
1 +

1
| Im λ|

)
∥(A − λ)f∥∼∥f∥∼ − ∥f∥2

∼ ≥ 0.

We set t := 1 + 1
| Im λ| and observe that the quadratic equation

x2 + 2t∥f∥∼x − ∥f∥2
∼ = 0

has a negative root and the positive root x+ = c(λ)∥f∥∼, where c(λ) :=
√

1 + t2−t.
Hence, ∥(A − λ)f∥∼ ≥ c(λ)∥f∥∼ holds for all f ∈ dom A. Thus,

∥(A − λ)−1∥∼ ≤ 1
c(λ)

.

And since
1

c(λ)
=

1√
1 + t2 − t

=
| Im λ|(

√
1 + t2 + t)

| Im λ|

=

√
| Im λ|2 + (1 + | Im λ|)2 + | Im λ| + 1

| Im λ|

≤ | Im λ| + (1 + | Im λ|) + | Im λ| + 1
| Im λ|

≤ 3
1 + |λ|
| Im λ|

≤ 3
(1 + |λ|)2

| Im λ|2
,
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we have proved that (2.1) is satisfied with M = 3 and m = 2. Since dom A =
dom A0, it follows from Proposition 2.3 that ∞ is not a singular critical point of A.

3. In this step we show δ ≥ r. Set H1 := E(R+)H and H2 := E(R−)H. By
T ∗̃ we denote the adjoint of T ∈ L(Hi,Hj), i, j ∈ {1, 2}, with respect to the scalar
product (· , ·)∼. We have

V ∗̃
11 = V11, V ∗̃

22 = V22 and V ∗̃
12 = −V21.

This is a direct consequence of the selfadjointness of V in (H, [· , ·]). By W(· ,·)(T )
denote the numerical range of T ∈ L(Hj), j ∈ {1, 2}, with respect to the scalar
product (· , ·), i.e.

W(· ,·)(T ) = {(Tf, f) : f ∈ Hj , ∥f∥ = 1}.

Recall that σ(T ) is always a subset of W(· ,·)(T ). Therefore,

∥V11∥∼ = sup {|λ| : λ ∈ σ(V11)}
≤ sup {|λ| : λ ∈ W(· ,·)(V11)} ≤ ∥V11∥.

Furthermore, we have

∥V12∥2
∼ = ∥V ∗̃

12V12∥∼ = sup {|λ| : λ ∈ σ(V ∗̃
12V12)}

≤ sup{|λ| : λ ∈ W(· ,·)(V ∗̃
12V12)}.

Hence, from

|(V ∗̃
12V12f2, f2)| = |(V21V12f2, f2)| ≤ ∥V12∥ ∥V21∥ ∥f2∥2

for f2 ∈ H2 we conclude ∥V12∥∼ ≤ ∥V12∥1/2∥V21∥1/2. This gives

τ− = ∥V11∥∼ + 2max{1, ∥V12∥∼}

≤ ∥V11∥ + 2max{1, ∥V12∥1/2∥V21∥1/2}.

From the identities V11 = E(R+)(V ¹ H1), V12 = E(R+)(V ¹ H2) and V21 =
E(R−)(V ¹H1) we obtain

τ− ≤ ∥E(R+)∥∥V ∥ + 2max{1, ∥E(R+)∥1/2∥E(R−)∥1/2∥V ∥}.

Hence, with c := max{∥E(R+)∥, ∥E(R−)∥} ≥ 1 it holds

τ− ≤ c∥V ∥ + 2max{1, c∥V ∥} ≤ c
(
∥V ∥ + 2max{1, ∥V ∥}

)
= 3cmax{1, ∥V ∥}.

A similar reasoning shows that τ+ ≤ 3cmax{1, ∥V ∥} and hence

r ≤ 3cmax{1, ∥V ∥}.

Note now that
2E(R+) = I + J̃ and 2E(R−) = I − J̃ .

This yields

r ≤ 3
2

(1 + ∥J̃∥) max{1, ∥V ∥},

and hence r ≤ δ, see (3.3).
Assume GA0 ⊂ A0G. Then A∗

0 = G(A0)+G−1 = GA0G
−1 ⊂ A0. Thus, A∗

0

is symmetric. As ±i ∈ ρ(A0), we have ∓i ∈ ρ(A∗
0) and thus A0 = A∗

0. Hence,
A0 is selfadjoint in the Hilbert space (H, (· , ·)). Therefore, the same holds for the
operator J̃ = E(R+) − E(R−). And as J̃2 = I, it follows that J̃ is also unitary in
(H, (· , ·)). Thus, τ0 = ∥J̃∥ = 1. A similar reasoning applies to the case A0G ⊂ GA0.
The theorem is proved. ¤
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Remark 3.2. In step 1 of the proof of Theorem 3.1 it is proved that τ0 < ∞ if both
0 and ∞ are not singular critical points of A0. For the case that A0 is boundedly
invertible this was shown in [24, Lemma 1] (see also [39]). There, also the converse
of this statement was proved.

Remark 3.3. In the proof of Theorem 3.1 it turns out that under the assumptions
of Theorem 3.1 the limit

J̃ =
1
π

s– lim
N→∞

∫ N

1/N

(
(A0 + it)−1 + (A0 − it)−1

)
dt

exists and that τ0 = ∥J̃∥ can be chosen in the formulation of the theorem.

Remark 3.4. Clearly, the number δ in Theorem 3.1 is not optimal for (i)–(v) to
hold. For example, δ = 0 can be chosen if V is non-negative in the Krein space
(H, [· , ·]).

Let T be a selfadjoint operator in the Hilbert space (K, ⟨·, ·⟩) and let B be a
bounded, but maybe non-selfadjoint operator in K. Then it is easy to see that the
spectrum of T + B is contained in the strip {x + iy : x ∈ R, |y| ≤ ∥B∥}. But
the non-real spectrum of T + B might be unbounded, e.g. if B = i. The following
corollary of Theorem 3.8 shows that the non-real spectrum of T + B is bounded
if B is connected to T in a certain way. By B⟨∗⟩ we denote the adjoint of B with
respect to the scalar product ⟨·, ·⟩.

Corollary 3.5. Let T be a selfadjoint operator in the Hilbert space (K, ⟨·, ·⟩) and
let φ ∈ L∞(R) be real-valued. Assume that there exist r, ε > 0 such that

|φ(x)| ≥ ε for a.e. x ∈ R and

±φ(x) > 0 for a.e. x ∈ R± \ (−r, r).

Then for every B ∈ L(K) satisfying B⟨∗⟩φ(T ) = φ(T )B the non-real spectrum of
T + B is bounded. More precisely, we have σ(T + B) \ R ⊂ Bδ(0), where

δ := 3(1 + r + ∥B∥).

Proof. Set G := φ(T ). From the properties of φ it follows that G is selfadjoint in
the Hilbert space (K, ⟨·, ·⟩), bounded and boundedly invertible. Hence, the inner
product space (K, [· , ·]), where

[f, g] := ⟨Gf, g⟩, f, g ∈ K,

is a Krein space. For f, g ∈ dom T we have

[Tf, g] = ⟨φ(T )Tf, g⟩ = ⟨Tφ(T )f, g⟩ = ⟨φ(T )f, Tg⟩ = [f, Tg].

Together with ±i ∈ ρ(T ) this shows that T is selfadjoint in the Krein space (K, [· , ·]).
The same holds for the operator B:

B+ = G−1B⟨∗⟩G = B.

Now, define the function ψ : R → R by

ψ(x) :=

{
sgn(φ(x)) for |x| ≤ r

x for |x| > r.

From

(φψ)(x) =

{
|φ(x)| for |x| ≤ r

xφ(x) for |x| > r
≥

{
ε for |x| ≤ r

rε for |x| > r
≥ εmin{1, r}

we obtain for f ∈ dom ψ(T ) = dom T :

[ψ(T )f, f ] = ((φψ)(T )f, f) ≥ ε min{1, r}∥f∥2.
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Hence, ψ(T ) is boundedly invertible and non-negative in the Krein space (K, [· , ·]).
With the function ϕ(x) := x − ψ(x) we have T = ψ(T ) + ϕ(T ). And as ψ(T )G =
Gψ(T ), by Theorem 3.1 the non-real spectrum of T + B = ψ(T ) + (ϕ(T ) + B) is
contained in Bδ1(0), where δ1 = 3max{1, ∥ϕ(T ) + B∥}. The assertion now follows
from ∥ϕ(T )∥ = ∥ϕ∥∞ ≤ 1 + r. ¤
Corollary 3.6. Let (H, [· , ·]) be a Krein space and let (· , ·), ∥ · ∥ and G be fixed as
in Theorem 3.1. Let A be a selfadjoint operator in (H, [· , ·]) and assume that there
exists some γ > 0 such that

[Af, f ] ≥ −γ∥f∥2 for all f ∈ dom A.

Assume furthermore that for some (and hence for all ) ν > γ

τν :=
1
π

lim sup
η↑∞

∥∥∥∥∫ η

−η

(A + νG−1 − it)−1 dt

∥∥∥∥ < ∞

and set
δ :=

3
2

(1 + τν)max{1, ν∥G−1∥}.
Then the following holds:

(i) The operator A is definitizable over C \ Bδ(0).
(ii) ∞ is not a singular critical point of A.
(iii) (δ,∞) is of positive type with respect to A.
(iv) (−∞,−δ) is of negative type with respect to A.
(v) σ(A) \ R ⊂ Bδ(0).

If GA ⊂ AG or AG ⊂ GA, then τν = 1 for each ν > γ and hence (i)–(v) hold with
δ = 3max{1, ν∥G−1∥}.
Proof. The operator Aν := A + νG−1 is boundedly invertible and non-negative:

[Aνf, f ] = [Af, f ] + ν[G−1f, f ] ≥ −γ∥f∥2 + ν∥f∥2 = (ν − γ)∥f∥2.

Moreover, τν < ∞ implies that ∞ is not a singular critical point of Aν , see Remark
3.2. With V := −νG−1 we have A = Aν + V , and all statements follow from
Theorem 3.1. ¤
Remark 3.7. If, in addition to the assumptions in Corollary 3.6, zero is neither an
eigenvalue nor a singular critical point of the non-negative operator Aγ := A+γG−1,
the assertions of Corollary 3.6 hold with

δ :=
3
2

(1 + τγ)max{1, γ∥G−1∥},

where

τγ :=
1
π

lim sup
N→∞

∥∥∥∥∥
∫ N

1
N

(
(Aγ + it)−1 + (Aγ − it)−1

)
dt

∥∥∥∥∥ .

Indeed, the assumptions of Corollary 3.6 imply that ∞ is not a singular critical
point of Aγ , see also Proposition 2.3. Therefore, the operator Aγ satisfies the
conditions in Theorem 3.1.

A selfadjoint operator A in the Krein space (H, [· , ·]) is called non-negative in a
neighborhood of ∞ if it is definitizable over a domain Ω as in Definition 2.2, ∞ ∈ Ω,
such that Ω∩R+ is of positive type and Ω∩R− is of negative type with respect to
A. The following theorem shows that a subclass of these operators is stable under
bounded perturbations.

Theorem 3.8. Let the selfadjoint operator A in the Krein space H be non-negative
in a neighborhood of ∞ such that ∞ is not a singular critical point of A. Then for
every bounded selfadjoint operator B in H the operator A + B is non-negative in a
neighborhood of ∞, and ∞ is not a singular critical point of A + B.
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Proof. Let r > 0 such that [r,∞) is of positive type and (−∞,−r] is of negative
type with respect to A. By E denote the local spectral function of A on R\ (−r, r).
Set ∆ := R \ [−r, r]. Since ∞ is not a singular critical point of A, the projections
E((−∞,−r)) and E((r,∞)) are defined, and with

K− := E((−∞,−r))H, Kb := (I − E(∆))H and K+ := E((r,∞))H

we have
H = K− [u]Kb [u]K+.

Corresponding to this decomposition of H the operator A decomposes as

A = A− [u] Ab [u] A+,

where the operators ±A± are uniformly positive selfadjoint operators in the Hilbert
spaces (K±,±[· , ·]) and Ab is a bounded operator in Kb. With some fundamental
symmetry Jb in the Krein space (Kb, [· , ·]) define the operator

Ã := A− [u] Jb [u] A+.

Then Ã is easily seen to be boundedly invertible and non-negative. From dom Ã =
dom A and Proposition 2.3 we conclude that ∞ is not a singular critical point of Ã.
As every bounded perturbation of A is at the same time a bounded perturbation
of Ã, the assertion follows from Theorem 3.1. ¤

4. Applications to differential operators with indefinite
weights

In this section we apply our main theorem from the previous section to ordinary
and partial differential operators.

4.1. Indefinite Sturm-Liouville operators

In this subsection we consider Sturm-Liouville differential expressions of the form

L(f)(x) = sgn(x)
(
− f ′′(x) + q(x)f(x)

)
, x ∈ R,

with an essentially bounded and real-valued potential q ∈ L∞(R). The correspond-
ing differential operator in L2(R) is defined by

Af := ℓ(f), f ∈ dom A := H2(R).

By (· , ·) and ∥ · ∥ we denote the usual scalar product and norm in L2(R). Let R be
the operator of multiplication with the function sgn(x). This operator is obviously
selfadjoint and unitary in L2(R). Since the operator T , defined by

Tf := RAf = −f ′′ + qf, f ∈ dom T := H2(R),

is selfadjoint in L2(R), it immediately follows that the operator A is selfadjoint in
the Krein space (L2(R), [· , ·]), where

[f, g] := (Rf, g) =
∫

R
f(x)g(x) sgn(x) dx, f, g ∈ L2(R).

In the following for real numbers a and b we set

[a, b] := {x ∈ R : a ≤ x ≤ b},

which might be a singleton or the empty set. The following proposition is in essence
well-known, see [8, Theorem 4.2]. For the convenience of the reader we give a short
proof here.
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Proposition 4.1. The operator A is definitizable over C \ [m+,m−], where

m+ := inf
x∈R+

q(x) and m− := − inf
x∈R−

q(x).

Moreover, A is non-negative in a neighborhood of ∞.

Proof. Define the selfadjoint operators T± in L2(R±) by

T±f± := −f ′′
± + qf±, f ∈ dom T± := {f± ∈ H2(R±) : f±(0) = 0}

and the operator Ap := T+ ⊕ (−T−), where the orthogonal sum is to be seen with
respect to the decomposition L2(R) = L2(R+)⊕L2(R−) of L2(R). We have RAp =
T+ ⊕ T−. Hence, the operator Ap is selfadjoint in the Krein space (L2(R), [· , ·]).
The operator T+ is bounded from below by m+ and −T− is bounded from above by
m−. From this it is easily seen that (m−,∞) is of positive type and (−∞,m+) is
of negative type with respect to Ap. And since Ap is also selfadjoint in the Hilbert
space (L2(R), (· , ·)), it follows that Ap is definitizable over C \ [m+,m−]. Note
that the operators A and Ap coincide on {f ∈ H2(R) : f(0) = 0}. Therefore, the
difference of their resolvents is one-dimensional. And since the reolvent set of the
operator A is non-empty (see, e.g., [30, Proposition 2.4]) all assertions follow from
[3, Theorem 2.2]. ¤

Proposition 4.1 in particular implies that the non-real spectrum of the operator
A is discrete and can only accumulate to [m+, m−]. Moreover, it is bounded by
Definition 2.2(i). But a bound for the non-real spectrum has not been given, yet.
By means of numerical examples (see, e.g., [6]) one might conjecture that there is
a close relationship between the maximal magnitude of the non-real eigenvalues of
A and the lower bound of the selfadjoint operator T = RA in L2(R) (see also [40,
Remark and Example 11.4.1]). As −∥q∥∞ is the smallest possible value of inf σ(T ),
the following theorem confirms this conjecture to some extent.

Theorem 4.2. The non-real spectrum of A is contained in Bδ(0), where

δ :=
3
2

(1 + τ0)max{1, ∥q∥∞},

τ0 :=
1
π

lim sup
N→∞

∥∥∥∥∥
∫ N

1
N

(
(A0 + it)−1 + (A0 − it)−1

)
dt

∥∥∥∥∥ ,

and A0 is the differential operator defined by

(A0f)(x) := − sgn(x)f ′′(x), f ∈ dom A0 := H2(R), x ∈ R.

Moreover, (δ,∞) is of positive type and (−∞,−δ) is of negative type with respect
to A.

Proof. Define the operator V by

(V f)(x) := sgn(x)q(x)f(x), f ∈ L2(R), x ∈ R.

Then we have A = A0 + V . The operator V is obviously bounded in L2(R) with
∥V ∥ = ∥q∥∞, and A0 is non-negative in the Krein space (L2(R), [· , ·]). Its spectrum
covers the entire real axis, i.e. σ(A0) = R. Moreover, 0 /∈ σp(A0). Owing to [18]
the operator A0 is similar to a selfadjoint operator in a Hilbert space. Equivalently,
the points 0 and ∞ are regular critical points of A0. Hence, all assertions follow
from Theorem 3.1. ¤
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4.2. Second order elliptic operators

Let Ω ⊂ Rn be a domain and let ℓ be the ”formally symmetric” uniformly elliptic
second order differential expression

(4.1) (ℓf)(x) := −
n∑

j,k=1

(
∂

∂xj
ajk

∂f

∂xk

)
(x) + a(x)f(x), x ∈ Ω,

with bounded coefficients ajk ∈ C∞(Ω) satisfying ajk(x) = akj(x) for all x ∈ Ω and
j, k = 1, . . . , n, the function a ∈ L∞(Ω) is real valued and

n∑
j,k=1

ajk(x)ξjξk ≥ C
n∑

k=1

ξ2
k

holds for some C > 0, all ξ = (ξ1, . . . , ξn)⊤ ∈ Rn and x ∈ Ω. To the differential
expression ℓ we associate the elliptic differential operator

(4.2) Tf := ℓ(f), dom T =
{
f ∈ H1

0 (Ω) : ℓ(f) ∈ L2(Ω)
}
,

where H1
0 (Ω) stands for the closure of C∞

0 (Ω) in the Sobolev space H1(Ω). It
is well known that T is an unbounded selfadjoint operator in the Hilbert space
(L2(Ω), (·, ·)) with spectrum semibounded from below by essinf a; cf. [19].

Let r be a real valued function such that r, r−1 ∈ L∞(Ω) and each of the sets

(4.3) Ω+ :=
{
x ∈ Ω : r(x) > 0

}
and Ω− :=

{
x ∈ Ω : r(x) < 0

}
has positive Lebesgue measure. We define a second order elliptic differential ex-
pression L with the indefinite weight r by

(Lf)(x) :=
1

r(x)
(ℓf)(x), x ∈ Ω.

The multiplication operator Rf = rf , f ∈ L2(Ω), is an isomorphism in L2(Ω) with
inverse R−1f = r−1f , f ∈ L2(Ω), and gives rise to the Krein space inner product

[f, g] := (Rf, g) =
∫

Ω

f(x)g(x) r(x) dx, f, g ∈ L2(Ω).

As in the previous subsection the Gram operator is denoted by R instead of G. The
differential operator associated with L is defined as

(4.4) Af = L(f), dom A =
{
f ∈ H1

0 (Ω) : L(f) ∈ L2(Ω)
}
.

Since for f ∈ H1
0 (Ω) we have ℓ(f) ∈ L2(Ω) if and only if L(f) ∈ L2(Ω) it follows

that dom A = dom T and A = R−1T hold. Hence A is a selfadjoint operator in the
Krein space (L2(Ω), [·, ·]).

In order to illustrate Theorem 3.1 for the indefinite elliptic operator A we assume
from now on that

min σess(T ) ≤ 0
holds. This also implies that the domain Ω is necessarily unbounded as otherwise
σess(T ) = ∅. A discussion of the cases σess(T ) = ∅ and min σess(T ) > 0 is contained
in [5], see also [21, 22, 35]. Fix some γ > 0 such that −γ < minσ(T ) and define the
spaces Hs, s ∈ [0, 2], as the domains of the s

2 -th powers of the uniformly positive
operator T + γ in L2(Ω),

Hs := dom
(
(T + γ)

s
2
)
, s ∈ [0, 2].

Note that H = H0, dom T = H2 and the form domain of T is H1. The spaces Hs

become Hilbert spaces when they are equipped with the usual inner products, the
induced topologies do not depend on the particular choice of γ; cf. [31].

The following theorem is a consequence of Theorem 3.1 and the considerations
in [15], see also [5].
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Theorem 4.3. Let A be the indefinite elliptic operator in (4.4) and assume that
there exists a bounded uniformly positive operator W in (L2(Ω), [·, ·]) such that
WHs ⊂ Hs holds for some s ∈ (0, 2]. Then A0 = A + γR−1 is uniformly positive
in (L2(Ω), [·, ·]),

τ0 :=
1
π

lim sup
N→∞

∥∥∥∥∥
∫ N

1
N

(
(A0 + it)−1 + (A0 − it)−1

)
dt

∥∥∥∥∥ < ∞ ,

and with δ := 3
2 (1 + τ0)max{1, γ∥r−1∥∞} the following statements hold:

(i) The operator A is definitizable over C \ Bδ(0).
(ii) (δ,∞) is of positive type with respect to A.
(iii) (−∞,−δ) is of negative type with respect to A.
(iv) σ(A) \ R ⊂ Bδ(0).

Moreover, ∞ is not a singular critical point of A and A0.

Proof. Observe that first that γ < minσ(T ) implies that the operator

A0 = A + γR−1 = R−1T + γR−1 = R−1(T + γ)

is uniformly positive in (L2(Ω), [·, ·]), and, in particular, 0 is not a singular critical
point of A0. The assumption WHs ⊂ Hs for some s ∈ (0, 2] together with [15,
Theorem 2.1 (iii)] (see also [14]) implies that also ∞ is not a singular critical point
of A0. Hence Theorem 3.1 can be applied to the operator A0 and V = −γR, that
is,

A = A0 + V.

As ∥V ∥ = γ∥r−1∥∞ the assertions in Theorem 4.3 follow. ¤
As in [5] we consider the special case Ω = Rn, where Ω± = {x ∈ Rn : ±r(x) > 0}

consist of finitely many connected components with compact smooth boundaries.
Hence one of the sets Ω± is bounded and one is unbounded. Since the weight
function satisfies r, r−1 ∈ L∞(Rn) the restrictions r±, r−1

± belong to L∞(Ω±) and
hence the multiplication operators R±f± = r±f± are isomorphisms in L2(Ω±) with
inverses R−1

± f± = r−1
± f±, f± ∈ L2(Ω±).

Let us now assume that the coefficients ajk ∈ C∞(Rn) in (4.1) and their deriva-
tives are uniformly continuous and bounded, and that (as before) a ∈ L∞(Rn) is
real valued. Then by elliptic regularity and interpolation

dom A = dom T = H2(Rn) and Hs = Hs(Rn), s ∈ [0, 2],

holds; cf. [5] for more details. Here Hs(Rn) is the Sobolev space or order s. The
spaces consisting of restrictions of functions from Hs(Rn) onto Ω± are denoted by
Hs(Ω±). The following corollary is a consequence of [5, Lemma 5.1] and Theo-
rem 4.3; cf. [5, Theorem 5.4].

Corollary 4.4. Assume that for some s ∈ (0, 1
2 ) the spaces Hs(Ω+) and Hs(Ω−)

are invariant subspaces of the multiplication operators R+ and R−, respectively.
Then the assertions in Theorem 4.3 are true.
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[14] B. Ćurgus, On the regularity of the critical point infinity of definitizable operators, Integral

Equations Operator Theory 8 (1985), 462–488.

[15] B. Ćurgus and B. Najman, A Krein space approach to elliptic eigenvalue problems with
indefinite weights, Differential Integral Equations 7 (1994), 1241–1252.
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[39] K. Veselić, On spectral properties of a class of J-selfadjoint operators I, Glas. Math., III. Ser.
7 (1972), 229–248.

[40] A. Zettl, Sturm-Liouville theory, AMS, Providence, RI, 2005.

Jussi Behrndt, Institut für numerische Mathematik, Technische Universität Graz,
Steyrergasse 30, 8010 Graz, Austria

E-mail address: behrndt@tugraz.at

Friedrich Philipp, Institut für Mathematik, MA 6-4, Technische Universität Berlin,
Straße des 17. Juni 136, 10623 Berlin, Germany

E-mail address: philipp@math.tu-berlin.de

Carsten Trunk, Institut für Mathematik, Technische Universität Ilmenau, Postfach
10 05 65, 98684 Ilmenau, Germany

E-mail address: carsten.trunk@tu-ilmenau.de




