53. IWK

Internationales Wissenschaftliches Kolloquium International Scientific Colloquium

Faculty of Mechanical Engineering

PROSPECTS IN MECHANICAL ENGINEERING

8 - 12 September 2008

www.tu-ilmenau.de

Home / Index:

http://www.db-thueringen.de/servlets/DocumentServlet?id=17534

Published by Impressum

Publisher Der Rektor der Technischen Universität Ilmenau

Herausgeber Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff

Editor Referat Marketing und Studentische Angelegenheiten

Redaktion Andrea Schneider

Fakultät für Maschinenbau

Univ.-Prof. Dr.-Ing. habil. Peter Kurz, Univ.-Prof. Dr.-Ing. habil. Rainer Grünwald,

Univ.-Prof. Dr.-Ing. habil. Prof. h. c. Dr. h. c. mult. Gerd Jäger,

Dr.-Ing Beate Schlütter, Dipl.-Ing. Silke Stauche

Editorial Deadline Redaktionsschluss

17. August 2008

Publishing House

Verlag

Verlag ISLE, Betriebsstätte des ISLE e.V. Werner-von-Siemens-Str. 16, 98693 Ilmenau

CD-ROM-Version:

Implementation Technische Universität Ilmenau Realisierung Christian Weigel, Helge Drumm

Production Herstellung CDA Datenträger Albrechts GmbH, 98529 Suhl/Albrechts

ISBN: 978-3-938843-40-6 (CD-ROM-Version)

Online-Version:

Implementation Universitätsbibliothek Ilmenau

Realisierung ilmedia

Postfach 10 05 65 98684 Ilmenau

© Technische Universität Ilmenau (Thür.) 2008

The content of the CD-ROM and online-documents are copyright protected by law. Der Inhalt der CD-ROM und die Online-Dokumente sind urheberrechtlich geschützt.

Home / Index:

http://www.db-thueringen.de/servlets/DocumentServlet?id=17534

Prof. Dr.-Ing. Stephan Kühne / Dipl.-Ing. (FH) Egmont Schreiter

Contactless sensor measures torque or force

Inductive energy transmission and short range data interface

The goal is to achieve a contactless system for measuring torque or, more common, forces. Currently approaches and practical devices with friction rings are known and used to connect strain gauge sensors and measurement devices. Usually four rings are used to connect ground, power and the two signals of the bridge between the resistance strain gauge and the amplifier. Abrasion and changing resistance due to movement between conducting parts requires maintenance or may even lead to unacceptable electrical properties. To avoid wear on the electrical contacts supplying energy and transporting signals, we have sought to develop a system without these disadvantages.

Parts used in the measurement process are: (1) a strain gauge sensor, (2) an amplifier with filter and (3) interface to further signal processing, often with an AD converter. When using friction rings, they are between (1) and (2). For contactless measurement, energy is required to transmit the signal from the moving to the fixed part. The amplifier (2) and parts of the interface (3) can be combined and mounted on the rotating, or moving, part.

The approach in this research project was applied to inductive power supply combined with a proper signal path.

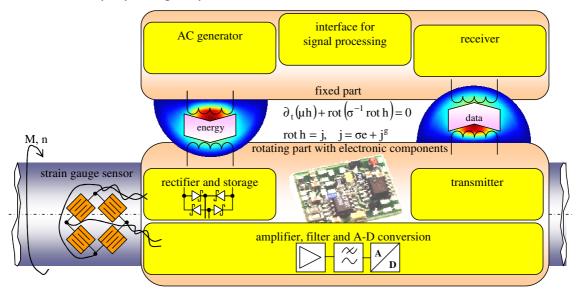


Figure 1 – structure of inductive energy and data transmission

Two inductors are used to supply electrical power to the moving part. They are mounted in such a way as to reach a high coupling of the magnetic flux. The underlying principle is a transformer with loose coupled coils. In comparison to close coupled transformers they have a very high flux leakage. Unfortunately only 10 to 30 per cent of the inducted field reach the secondary coil to induce power. This decreases the efficiency of the whole system. On the other hand, only little power is required to energize the moving or rotating part.

There are several ways of transmitting the measured signal to the fixed part. Table 1 shows some selected options. The most suitable option in any given case depends on details such as bandwidth or data rate, energy consumption and components needed.

Name	Description	Key advantages/dis- advantages, requirements
Radio frequency transmission	 an electromagnetic field has to be generated, modulated and transmitted using an antenna on the fixed side a suitable receiver demodulates the signal 	high data rates possible Interference with other devices possible
RFID	- modulated load on the secondary coil - the receiver recognizes the varying load and demodulates data	data rate only low percent of operating frequency only a few additional parts needed
Optical transmission	- serialized data is encoded as infrared pulses - receiver regenerates pulses to digital signal	- no interference if assembled in housing - no electrical emission

Table 1 – various wireless data transmission options

A working system with the opportunity for further research can be demonstrated. Integrated in a motor-driven test station, dynamic properties can be analysed to achieve a practical solution for measurement tasks in test, research, production and real-life applications.

References:

- [1] A new approach to calculate the torque of AC induction motor drives 8th European Conference on Power Electronics and Applications, Lausanne (Switzerland), 7-9 Sept. 1999
- [2] Das Drehmoment elektrischer Antriebe Messen oder Berechnen etz Elektrotechnik+Automation Heft 12/1998, pp. 6-9

Authors:

Prof. Dr.-Ing. Stephan Kühne Dipl.-Ing. (FH) Egmont Schreiter

Hochschule Zittau/Görlitz (FH) - University of Applied Sciences Zittau/Goerlitz

Theodor-Körner-Allee 16, 02763 Zittau, Germany

Phone: +49(0)3583 61 1382 Fax: +49(0)3583 61 1330 E-mail: ESchreiter@hs-zigr.de