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Zusammenfassung

Das Ziel dieser Arbeit ist die Erstellung eines Computerprogramms, welches Zeitserien von
hochaufgelosten Spektren spektroskopischer, bedeckungsveréinderlicher Doppelsterne analy-
siert, um deren Systemparameter und die Sternparameter der Komponenten abzuleiten sowie
die Anwendung dieses Programms auf Spektren von oEA Sternen, welche zu einer neuentdeck-
ten Gruppe pulsierender Verinderlicher gehéren. Die Mitglieder dieser Gruppe sind Masse
akkredierende Algolsterne, deren Hauptkomponenten nichtradiale Pulsationen vom ¢ Scuti
Typ zeigen. Die oEA Sterne sind von auflergewohnlicher Bedeutung fiir asteroseismologische
Studien. IThre Untersuchung kann die Grundprinzipien der Wechselwirkung zwischen dem
magnetischen Aktivitétszyklus der kithlen Sekundérkomponente (Begleiter), dem Auftreten
von Phasen starken Masseaustauschs und der Anregung verschiedener Pulsationsmoden des
Hauptsterns aufdecken. Ausserdem wirkt der Begleiter wihrend der Bedeckungsphasen als
zeitlich variabler Raumfilter und erzeugt damit, in Abhéngigkeit von der Art der beobachteten
Pulsationsmoden, charakteristische Amplituden- und Phasenmodulationen der Helligkeits-
und Linienprofilvariationen.

Fiir die asteroseismologische Modellierung eines Sterns ist neben einer eindeutigen Identi-
fizierung der Pulsationsmoden in Form ihrer Wellenzahlen auch die Kenntnis préziser Werte
der grundlegenden Sternparameter erforderlich. Aktuell gibt es aber einen Mangel an Pro-
grammen welche in der Lage sind, diese aus der Spektroskopie der Objekte abzuleiten. Aus
diesem Grund haben wir das Rechnerprogramm Shellspec07_inverse entwickelt. Es 16st das
inverse Problem der Bestimmung der System- und Sternparameter bedeckungsverénderlicher
Doppelsterne aus den beobachteten Linienprofilen, welche aus allen Bahnphasen inklusi-
ve der Bedeckungen stammen kénnen. Das Programm basiert auf einer schnellen Varian-
te des Levenberg-Marquardt Algorithmus zur nichtlinearen Optimierung, beriicksichtigt die
nichtsphérische Konfiguration des kiithlen Begleiters und nutzt verbesserte Routinen zur Be-
rechnung der Schwere- und Randverdunklungsseffekte.

Es werden Zeitserien von Spektren der zwei oEA Sterne RZ Cas und TW Dra analysiert.
Wir verwenden dabei das KOREL Programm zur Ableitung préiiziser Bahnlésungen und zur
Trennung der Kompositspektren in die Einzelspektren der Doppelsternkomponenten, das
SynthV Programm, um die chemischen H&aufigkeiten auf den Sternoberflichen aus den ge-
trennten Spektren zu bestimmen, sowie das neuentwickelte Shellspec07_inverse Programm fiir
eine Feinbestimmung der System- und Sternparameter und um in den Residuen der erhalte-
nen Losungen nach dem Einfluss Algol-typischer Effekte zu suchen. Indem wir die getrennten
Spektren von TW Dra mit Spektren aus den Bedeckungsphasen vergleichen, kénnen wir zum
ersten Mal wirklich beweisen, dass das KOREL Programm zuverlédssige Einzelspektren der
Komponenten von Mehrfachsystemen liefert.



Die mit Shellspec07_inverse erhaltenen Ergebnisse zeigen, dass es moglich ist, die Para-
meter der untersuchten Systeme mit einer Genauigkeit zu bestimmen, welche mit der aus
der Lichtkurvenanalyse erhaltenen vergleichbar ist. Die Hauptkompenten beider oEA Sterne
sind normale Hauptreihensterne vom Spektraltyp A. Die meisten der abgeleiteten Parameter
stimmen mit den bekannten photometrischen Werten iiberein. Lediglich fiir die Temperatur
des Begleiters von RZ Cas erhalten wir einen signifikant héheren Wert, bedingt durch die
ungewOhnliche Helligkeitsverteilung auf seiner Oberfliche. Aus den Ergebnissen kann auf die
Existenz eines grossen dunklen Flecks geschlossen werden, welcher in Richtung der Haupt-
komponente zeigt und wahrscheinlich durch einen Kithlungsmechanismus verursacht wird, der
durch den Enthalpietransport iiber den inneren Lagrangepunkt ausgeldst wird. Der Haupt-
stern von RZ Cas rotiert synchron zur Bahnbewegung, wihrend der Hauptstern von TW Dra
um einen Faktor 1.07 schneller als synchron rotiert.

Beide Sterne wurden in zwei unterschiedlichen Epochen beobachtet. TW Dra konnte auf-
grund der in 2007 als auch in 2008 erhaltenen Spektren sehr gut modelliert werden ohne
Algol-typische Effekte wie einen Gasstrom oder einen Akkretionsring zu beriicksichtigen. Dies
trifft auch auf die Beobachtungen von RZ Cas in 2006 zu, wiahrend die Residuen der Modell-
rechnungen fiir das Jahr 2001 komplexe Strukturen zeigen und auf eine Phase starken Mas-
seaustauschs verweisen. Diese Annahme wird durch die zwischen 2001 und 2006 beobachtete
Zunahme der Bahnperiode um 2 Sekunden unterstiitzt, welche durch einen Drehimpulsaus-
tausch zwischen der beschleunigten Rotation der dufleren Schichten der Hauptkomponente
und der Bahnbewegung erklart werden kann.

Ein erster Versuch, die Berechnung der aus den nichtradialen Pulsationen resultieren-
den Linienprofilvariationen in das Shellspec07_inverse Programm zu intergieren, ergab er-
mutigende Resultate. Wir konnten allgemeingiiltige Zusammenhénge zwischen der Neigung
der Rotationsachse der Sterne und den beobachteten Amplituden der Radialgeschwindig-
keitsvariationen in Abhéngigkeit von der Art der Pulsationsmoden ableiten und zeigen,
dass diese Amplituden wihrend der Bedeckung deutlich verstérkt werden. Die ermittelten
Verstiarkungsfaktoren kénnen in Zukunft zusammen mit der Entdeckung, dass die sektoralen
Moden wirend der Bedeckung ein spezielles Verhalten zeigen, welches sie von allen anderen
Moden unterscheidet, fiir eine Modenidentifizierung verwendet werden, basierend auf Radi-
algeschwindigkeitsbestimmungen und einer verbesserten Modellierung der Pulsationsmoden.



Abstract

The aim of this thesis is to provide a computer program that is able to analyze time series
of high-resolution spectra of double-lined spectroscopic eclipsing binaries to derive the stellar
and system parameters of their components and to apply the program to spectra of a relatively
new class of pulsating stars, the so-called oEA stars. These are mass accreting, eclipsing
binaries of Algol-type with primary components showing § Scuti-like non-radial pulsations.
The oEA stars are outstanding objects for asteroseismic investigations. Their study can reveal
basic principles of the interaction between the magnetic activity cycle of the cool secondary,
the occurrence of rapid mass transfer episodes, and the excitation of different non-radial
pulsation modes of the primary. Moreover, the secondary acts as a spatial filter during the
primary eclipse, producing specific amplitude and phase changes in the brightness and line
profile variations due to pulsation, in dependence on the observed oscillation modes.

Besides a unique mode identification in terms of wavenumbers, the precise knowledge
of basic stellar parameters is needed to establish an asteroseismic model of a star. There
is a lack of spectroscopic programs that derive these values, however. For that reason, we
established the new computer program ShellspecO7_inverse. It solves the inverse problem of
finding stellar and system parameters of eclipsing binaries from the composite line profiles
observed at all orbital phases including the eclipses. The program uses a fast version of the
Levenberg-Marquardt algorithm for the non-linear optimization, counts for the non-spherical
shape of the Roche-lobe filling secondary, and uses improved routines to calculate the limb
and gravity darkening effects.

We analyzed the spectra of the two oEA stars RZ Cas and TW Dra using the KOREL
program to derive precise orbital solutions and to decompose the spectra of the binary com-
ponents, the SynthV program to derive the elemental abundances of the components from
the mean, decomposed spectra, and finally the Shellspec0O7_inverse program for a fine-tuning
of the stellar and system parameters and to look in the residuals of our solutions for the influ-
ence of Algol-typical effects. Based on single spectra of TW Dra and its visual companion, we
could prove, maybe for the first time, that the KOREL program yields precisely decomposed
spectra of the components of multiple systems.

The results obtained with Shellspec0O7_inverse show that it is possible to derive the stellar
and system parameters of the two target stars spectroscopically with an accuracy that is
comparable to that obtained from the light curve analysis. We could show that the primaries
of both stars are normal main sequence A-type stars of about solar abundances. Most of the
deduced parameters agree with the photometrically derived ones. Only for the temperature of
the secondary of RZ Cas we obtained a significantly higher value, resulting from its unusual
surface temperature distribution. We assume that the secondary of RZ Cas shows a large



dark spot on its surface pointing toward the primary, presumably originating from a cooling
mechanism by the enthalpy transport via the inner Lagrangian point. No such effect was
observed for TW Dra. The primary of RZ Cas rotates synchronously to the orbital motion,
whereas the primary of TW Dra rotates supersynchronously by a factor of 1.07.

Both stars have been observed during two different epochs. In 2007 and 2008, the TW Dra
system can be well modeled without including any Algol-typical effects like a gas stream or an
accretion annulus into the calculations. We conclude that it was in a quiet state during both
years. The same result was obtained for RZ Cas when observed in 2006. The O—C residuals
of our solution based on the spectra from 2001 show a complex distribution of circumbinary
matter, however, pointing to the occurrence of an episode of rapid mass transfer. This
assumption is supported by the deduced change of the orbital period of RZ Cas of 2 seconds
between the two epochs of observations that can be explained in terms of angular momentum
transfer between the accelerated rotation of the outer layers of the primary and the orbit.

A first attempt to include the calculation of line profile variations due to non-radial pul-
sations into ShellspecO7_inverse gave encouraging results. We could derive some common
relationships between the inclination of the rotation axis of the oscillating primary and the
amplitudes of the induced radial velocity variations in dependence on the pulsation char-
acteristics and show that the spatial filtration effect amplifies these amplitudes during the
eclipses remarkably. The derived amplification factors and the detection that the sectoral
modes show a completely different behavior during the eclipses compared to all other modes
can be used for a future mode identification based on radial velocity measurements and on
an improved treatment of the pulsations in the Shellspec07_inverse program.
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Chapter 1

Introduction

Asteroseismology is one of the most rapidly developing fields in astrophysics. It provides
a modern tool to explore the internal structure of the stars by analyzing its oscillations.
Further progress can be expected from the actual space satellite missions like CoRoT! and
Kepler?. Whereas it is possible to determine the masses, radii and ages of the stars very
precise by asteroseismic methods (Thoul et al. 2003), asteroseismology itself needs some
basic knowledge about stellar parameters like temperature, surface gravity, spectral type,
or the projected equatorial velocity of rotation to identify the observed non-radial pulsation
modes and to model the stellar interiors. In particular the mentioned space satellite missions,
which are photometric ones and in the case of the Kepler satellite equipped with a white
light detector without the possibility to gather any color information about the observed
stars, need additional support by ground based observations. Actually, the derivation of
the required parameters is mainly based on multi-color photometry and light curve analysis
using the Wilson-Devinney program, and on spectrum analysis making use of the observed
line strengths and radial velocities. There have only been very few attempts to use the full
information provided by the stellar spectra, however.

This thesis describes the development of a computer program to analyze time series of
high-resolution composite spectra of double-lined spectroscopic binaries with the aim to derive
optimized values of the stellar and system parameters. The program is applied to a new
class of pulsating stars, the so-called oEA stars, i.e. eclipsing Algol-type stars with primary
components that show ¢ Scuti-like non-radial pulsations. In the introduction we focus on
the special role of the oEA stars within the multiple and the oscillating stars in general and
on the different approaches in photometry and spectroscopy to extract information from the
observations.

1.1 Binary stars

The majority of stars in our galaxy are members of multiple systems. The fraction of binary
stars, i.e. stellar systems consisting of two components revolving around their common center
of mass, is more than 50% in the solar neighborhood. Even the nearest star o Centauri is
a binary with a primary component similar to the Sun by its brightness, temperature and

"http://smsc.cnes.fr/COROT/
http://kepler.nasa.gov/



2 1 INTRODUCTION

mass, and a faint, cool, and less massive companion. Sirius, the brightest star in the night
sky, is a double star consisting of a main sequence primary and a white dwarf as the secondary
component. Binary stars can be classified either by the method of how they are detected or
by their physical system configurations. According to the method of detection, one speaks
about visual, astrometric, and spectroscopic binaries. A wvisual binary is a binary where the
angular separation between the stars is large enough to resolve the system by a telescope
into the two components. If one of the components is too faint so that only the other one
and its movement around the common center of mass can be observed, the star is called an
astrometric binary. If the double star cannot be resolved, its duality can still be recognized
by spectroscopic methods. This is offered by the fact that the components show periodic
Doppler shifts during their revolution around the center of mass moving their spectral lines
from blue to red and vice versa. Such binaries are called spectroscopic binaries. When the
inclination of the orbit is large enough so that the observer sees the components passing in
front of each other producing dips in the light curve, the system is called an eclipsing binary.

According to the type of the system configuration, binaries are divided into three groups:
1) detached systems, where both components do not fill their Roche lobes (the region of space
around a star within which orbiting material is gravitationally bound to that star) and evolve
separately like single stars; 2) semi-detached systems, where one of the stars fills its Roche
lobe and mass exchange between the components occurs; and 3) contact systems, where both
components fill their Roche lobes and form a common shell around the stars. In the last two
groups of binaries, the evolution of the stellar components is different from that expected for
single stars. Due to the mass transfer, stellar evolution happens on a much shorter time scale.
Also the tidal interaction between the components and the occurrence of rapid mass transfer
episodes in semi-detached binaries, leading to the formation of accretion disks, influence the
evolution of the components.

In this work we focus on eclipsing Algol-type systems with pulsating primary components.
In the subsequent paragraphs we introduce the role of this type of stars as a laboratory
for studying stellar evolution on a short time scale and the role of asteroseismology as an
important, modern tool for the investigation of such systems. And we give an overview about
the different approaches in deriving the stellar and system parameters of binary stars from
the observations and the computer programs that have been developed for this task. Finally,
we compare the capabilities of photometric and spectroscopic investigations, stressing the
importance of using both simultaneously for a complete analysis.

1.2 Algol-type stars

Algol-type systems are semi-detached, interacting, eclipsing binaries consisting of a main-
sequence star of spectral type A-B and an evolved F-K type companion of luminosity class III.
The reasons for the existence of two stars in such different evolutionary stages in one physical
system have been a great mystery for astronomers for a long time. Moreover, the less massive
star in the system is the more evolved one which completely contradicts our knowledge about
stellar evolution. This so-called Algol paradox was solved by realizing that the presently
evolved star was initially the more massive one (see e.g. Batten (1986)). During its evolution
it filled its Roche-lobe and transferred then a part of its matter to the companion. The
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Figure 1.1: Equipotential surfaces and the five Lagrangian points L1—Ls. The blue cross (CM) is the
center of mass of the two stars, it is My > M.

fraction of transferred matter can reach 30-40% of the total mass. There is some ambiguity
in the designation of the system components. Usually, the actually more massive component
is called the primary component, as we will do throughout this work. However, in some
articles the components are still defined vice versa, reflecting the point of view of stellar
evolution.

Algol-type systems are eclipsing binaries and so their stellar and system parameters can be
obtained with high accuracy from the light curve analysis combined with spectroscopic inves-
tigations. But they are also excellent laboratories for studying accretion processes. Figure 1.1
shows the equipotential surfaces of a binary system together with the points of gravitational
equilibrium which are called the Lagrangian points. As it was mentioned, the Roche-lobe
is defined as the space around a star within which the orbiting material is gravitationally
bound to that star. The equipotential surfaces passing through the inner Lagrangian point
Ly define the outer boundaries of the Roche-lobes of the stars. The underlying Roche model
assumes synchronous rotation, circular orbits, and the gravitational potential of the stars to
be that of point masses. The formation of accretion structures in Algol-type systems strongly
depends on the orbital period. In short-period Algols (orbital period P < 6d), the resulting
structures are complicated. The gas stream from the secondary component flows via the inner
Lagrangian point L; (the point of gravitational equilibrium that is located on the connecting
line between the components) and impacts on the photosphere of the primary component.
Besides the gas stream, an unstable accretion annulus is formed around the gainer and a
part of the material leaves the system via Lagrangian point Ly (Figure 1.1). In Algols with
longer periods (P > 69), "classical “ accretion disks are formed. The Coriolis force that acts
on the gas stream allows it to supply the disk with accretion material and prevents any direct
impact of the transferred mass on the primary (Albright & Richards 1996). In contrast to
the short-period systems, the accretion disks are stable and the term ”classical“ is used to
emphasize this difference.

The secondary components of Algol-type systems are known to be magnetically active.
Evidence of such activity can be seen from the formation of starspots or flares on the surfaces
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Table 1.1: Algol-type systems with oscillating primary components.

object my P, Pyuis reference

(days) (min.)
Y Cam 106 3.3055 9574  Kim et al. (2002)
AB Cas 10.3 1.3669 83.93 Rodriguez et al. (2004a)
RZ Cas 6.3 1.1953 22.43 Lehmann & Mkrtichian (2004)
IV Cas 11.0 0.9985 38.22 Kim et al. (2005c¢)
R CMa 5.7 1.1359 68.5 Mkrtichian & Gamarova (2000)
V346 Cyg 11.8 2.7433 72.3 Kim et al. (2005a)
V469 Cyg 12.8 1.3125 40 Caton (2004)
AS Eri 8.3 2.6642 24.39 Mkrtichian et al. (2004)
TZ Eri 0.7  2.6061 76 Mkrtichian et al. (2006)
TZ Dra 9.3 0.8660 29 Mkrtichian et al. (2006)
TW Dra 7.4 2.8069 80 Kusakin et al. (2001)
CT Her 11.3 1.7863 27 Kim et al. (2004a)
EF Her 114 4.7291 145 Kim et al. (2004a)
TU Her 11.2 2.2671 80 Lampens et al. (2004)
RX Hya 9.6 2.2816 74.26 Kim et al. (2003)
AB Per 9.7 7.1603 282.0 Kim et al. (2003)
IU Per 10.5 0.8570 34.3 Kim et al. (2005b)
AO Ser 114 0.8793 70 Kim et al. (2004b)
QU Sge 15.2 3.7908 40.1 Jeon et al. (2006)

VV Uma 13.0 0.6874 28.1 Lazaro et al. (2002)

of these cool stars. The starspots can be detected from the timely variations in the shape
and depth of the light curves that they produce. The magnetic activity is more difficult
to investigate because the secondary component contributes with only about 10% to the
total light of the system at optical wavelengths. Here, the eclipse phases play an important
role when the variations in both the light curves and the spectral line profiles become more
pronounced and can be analyzed much easier (Richards & Albright 1993).

1.3 Algol-type stars with oscillating components (oEA stars)

The new class of oEA stars was introduced by Mkrtichian et al. (2002, 2004) and refers
to mass accreting, eclipsing Algol-type systems consisting of an oscillating, main-sequence
primary and a Roche-lobe filling, evolved secondary. The pulsation characteristics of the
primary components are similar to those of the §-Scuti stars, showing oscillation periods in
the range of hours. Their evolution is speeded up due to the occurrence of rapid mass transfer
episodes, however. Table 1.1 lists the 20 oEA stars known up to now, mainly discovered in
the result of collaborative efforts (Mkrtichian et al. 2002b; Kim et al. 2003). Figure 1.2 shows
the discovery rate of oEA stars. As can be seen, only few objects were detected before the
mentioned surveys have been organized. The first detection of & Scuti-like oscillations in an
eclipsing binary star has been reported by Tempesti (1971). The author found short-term
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Figure 1.2: The number of discovered oEA stars versus the date of their discovery (figure taken from
Mkrtichian et al. (2007)).

variability in the light curve of AB Cas with a period of 84 minutes and an amplitude of 07*05.
That time the star was classified as a detached system consisting of a primary of spectral
type A3 and an early K-type main sequence secondary, however. Another early discovery of
a variable star of § Scuti type in an eclipsing binary system was reported by Broglia (1973).
The author observed the short-term variability of the A7V primary component of Y Cam
with a period of 02063 and an amplitude of 0704.

Algol-type systems are known to show long-term variations of their orbital periods, which
can be detected from the O—-C (observed minus calculated) diagram. In the case of eclipsing
binaries, this diagram shows the difference between the observed and the calculated times of
minima, plotted versus the time that is usually given in Julian Dates. Any deviation from
a straight line in this diagram indicates a change of the orbital period. A sinusoidal curve,
e.g., can be caused by the light time effect and points to the existence of a third body in the
system (Hoffman et al. 2006). Another mechanism that produces cyclic period changes of the
oEA stars can be the magnetic activity of the late-type secondary that periodically changes
its oblateness and quadrupole moment which is reflected by a corresponding change in the
orbital period (Applegate 1992; Lanza & Rodono 1999).

Besides the orbital period variations, the oEA stars exhibit changes in their pulsation
patterns as well as in the amplitudes of their oscillation modes. Lehmann & Mkrtichian
(2004) investigated the well-known oEA star RZ Cas based on high-resolution spectra taken
in 2001 during an episode of rapid mass transfer. The authors found two pulsation frequencies
in the data which means that the primary component of the system changed its oscillation
behavior from the previously, photometrically observed mono-periodic pulsation to multi-
periodic pulsations. In 2006, when the star was back in a quiet phase, a new pulsation pattern
was detected, now showing three modes of different amplitudes (Lehmann & Mkrtichian
2008a).

Mkrtichian et al. (2007) state that the pulsation characteristics of the oEA stars can be
affected by the mass transfer episodes in two different ways: by a direct influence, when the
accreted mass changes the physical properties of the gainer by changing its mean density and
the structure of its outer layers, and by an attenuation effect, when the accretion annulus
around the oscillating primary, formed in the result of mass transfer, alters the observed
amplitudes of the oscillation modes. The second effect has been described by Lehmann &
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Mkrtichian (2008a) for RZ Cas. They observed that the amplitudes of the oscillation modes
were damped in 2001 due to the presence of optically thin circumprimary matter, whereas in
2006, when the star was in a quiet phase, the intrinsic amplitudes could be observed.

More details about our two target stars RZ Cas and TW Dra are given in Section 1.7.
The role of the oEA stars in asteroseismic investigations is described in § 1.4.2.

1.4 Asteroseismic modeling

Asteroseismology is a powerful tool in modern astrophysics that allows to study the interiors
of the stars by the interpretation of the frequencies, amplitudes and phases of their non-radial
oscillation modes. These modes are excited inside the star in zones where, in dependence on
the mass and temperature of the star, hydrogen, helium, or iron peak elements are partially
ionized and propagate through the star as acoustic (p-modes) or gravity (g-modes) waves of
different frequencies. The modes are described in terms of n, [, and m wavenumbers that
describe the number of nodes in radial and horizontal directions. n is called the radial degree.
The degree | gives the number of surface nodal lines, while the azimuthal wavenumber m
gives the number of surface nodal lines that pass through the rotation axis of the star.

1.4.1 Asteroseismic methods

One goal of asteroseismology is to measure the sound speed throughout the star. Since the
local sound speed depends on the temperature and molecular weight of the gas (it is higher
for gases of higher temperature and lower weight), and since different modes penetrate into
different optical depths, it is possible to get information about the temperature distribution
inside the star. Based on the obtained temperature distribution, one can evaluate for a given
chemical composition the density and pressure from the equations of state. Moreover, due
to the coexistence of stellar rotation and pulsation, there is the possibility to estimate the
internal rotation rates of the stars based on the rotational splitting (Ledoux 1951) of the
oscillation modes. Rotation lifts the degeneracy with respect to the azimuthal wavenumber
m, and for a certain degree 1 we observe a multiplet of 2[ + 1 frequencies corresponding to
the possible number of different values of m. So, if oscillation modes of different degree [
that penetrate the star into different depths are observed and identified, one can map the
interior rotation rates. This analysis is hampered by the fact not all possible modes in such a
multiplet are excited or have large amplitudes, however. A general problem is that actually
a unique identification of pulsation modes is available only for a very small number of stars.
Future advance will come both from new observational methods, in particular from the high-
accuracy, timely continuous data from space satellites like the CoRoT and Kepler missions
and from the further development in mode identification techniques. One of the most recent
computer programs established for frequency search and mode identification in oscillating
stars is the FAMIAS program package developed by W. Zima. The program considers both
photometric and spectroscopic data sets. For the mode identification, the color-amplitude
method in the case of light curves, or either the pixel-by-pixel or the moments method in the
case of time series of spectra can be used. For a detailed description of the program and the
mentioned methods see Zima (2008).
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Besides a unique mode identification, the precise knowledge of stellar parameters like
mass, radius, effective temperature, gravity, and metalicity is needed for a subsequent con-
struction of an asteroseismic model of a star. Double-star systems, and in particular eclipsing
binaries, provide an unique opportunity for measuring most of these parameters, as we will
show in Section 1.6.

1.4.2 Application to the oEA stars

The oEA stars, introduced in Section 1.3, are outstanding targets for asteroseismic investi-
gations. Due to the occurrence of mass transfer episodes, most probably triggered by the
magnetic activity cycle of the cool secondary, stellar evolution can be studied on short time
scales. During or immediately after such phases of rapid mass transfer we observe a change
in the excited oscillation modes. Thus, the changing structure of the outer layers of the pri-
mary can be investigated by asteroseismic methods. The observations can also reveal basic
principles of the interaction between the magnetic activity cycle of the cool secondary, the
occurrence of rapid mass transfer episodes, and the excitation of different non-radial pulsa-
tion modes of the primary. Due to the strong tidal interaction, the rotation axes of the stars
will not be inclined to the normal of the orbital plane. Thus, since the orbital inclination is
close to 90°, we see the pulsating primary component nearly equator-on. Mkrtichian et al.
(2004) showed that in this case all oscillation modes with | + |m| = odd are almost smeared
out in the disk integrated light which restricts the number of pulsation modes that can be
observed. Moreover, the secondary acts as a spatial filter during the primary eclipse phases
and produces specific amplitude and phase changes in brightness and line profiles, depending
on the observed oscillation modes. By modeling the amplitude modulation at these phases
and comparing it with the observed one, one can restrict the range in [ and m wavenumbers
even more. The method of spatial filtering has been applied photometrically to the oEA stars
RZ Cas (Gamarova et al. 2003) and AB Cas (Rodriguez et al. 2004a) with the aim of the
identification of low degree modes. It was found that the pulsation amplitude modulation of
RZ Cas observed during the primary eclipse can be modeled by an (I, m) = (2, £2) oscillation
mode, while the AB Cas system most probably pulsates in a radial mode. Reed et al. (2005)
published an extended photometric work related to mode identification making use of the
spatial filtration effect. The authors investigated oscillating subdwarf B star binaries and
simulated the behavior of the pulsation amplitudes during the eclipse phases. They found in
particular that oscillation modes with [ > 2 become visible during the eclipse of the pulsating
component but disappear outside the eclipse. There was only one spectroscopic detection of
the spatial filtration effect so far, however. Based on the analysis of the radial velocities (RVs
hereafter) of the oEA star RZ Cas, Lehmann & Mkrtichian (2008a) found a strong amplifica-
tion of the detected oscillation modes during primary eclipse, exactly as suspected from the
screening effect. In the present work, we will try to model the spatial filtration effect spectro-
scopically (Chapter 6) by using the modified Shellspec07_inverse program (§ 2.2). Based on
these simulations, we look for systematic relationships between different stellar system and
pulsation parameters and the amplitudes of the oscillation modes (Chapter 6).
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1.5 Photometric modeling

Here we describe the historical background of the different approaches to the light curve
analysis and give a short description of the Wilson-Devinney program, nowadays commonly
used for the modeling of the light curves of binaries.

1.5.1 Historical background

The history of light curve modeling most probably starts with the Russell-Merrill model
(Russell 1912; Russell & Merrill 1952). This model was restricted to spherical stars revolving
around their common center of mass in a circular orbit. A linear limb-darkening law, gravity
brightening and a simple treatment of the reflection effect were taken into account. The
obtained solutions appeared to be accurate enough for well-separated eclipsing binaries but
not for semi-detached or contact systems. A significant step forward in the modeling of the
light curves of eclipsing binaries was done by Kopal (1959) who used a more physical approach
with respect to the configuration of the stars, based on a quantitative discussion of their
equipotential surfaces. The first attempt of a direct computation of synthetic light curves for
the W Ursae Majoris-type stars was done by Lucy (1968). These stars are overcontact main-
sequence binaries with convective outer layers. Their light curves are strongly affected by the
deviations of the stellar shapes from sphericity and the Russell-Merrill model completely fails.
Lucy’s approach is limited to overcontact systems and assumes the surfaces of such systems
to be equipotential surfaces computed from the Roche model. For the calculation of the
limb darkening effect the Eddington-Barbier relation is used. The model considers the effect
of gravity brightening, while the reflection effect is neglected. Later on, different methods
have been developed for the analysis of binaries’ light curves based on equipotential surfaces
and Roche geometry and successfully applied to various types of double-star systems (Hill
& Hutchings 1970; Mochnacki & Doughty 1972; Hill & Rucinski 1993; Wilson & Devinney
1971).

The progress in the light curve modeling was very important for different fields in as-
tronomy because it allowed to solve many problems which could not be explained before,
among them for instance the Algol paradox or the structure of the W UMa-type systems.
The solution of the Algol paradox was already described in § 1.2. The W UMa stars problem
came from the fact that both the solutions based on spherical stars and on stars of ellipsoidal
shapes gave detached configurations. On the other hand, the results showed that both stars
have almost equal surface temperatures but different masses, which cannot be explained in
the case of detached main-sequence stars. Then Kuiper (1948) suggested that W UMa stars
are overcontact binaries forming a common envelope that allows for an energy exchange be-
tween the stars. In this case the total energy output would correspond to the mass of the
primary and the paradox observed before would be solved. This suggestion was later on
confirmed by Lucy (1968) who successfully modeled the light curves of the W Ursae Majoris
stars based on the Roche model of overcontact binaries.
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1.5.2 The Wilson-Devinney model

One of the first attempts of deriving stellar and system parameters from binaries’ light curves
based on the solution of a least-squares problem was done by Wilson & Devinney (1971).
Presently, the Wilson-Devinney code (WD, hereafter) is one of the most commonly used
programs for the analysis of binary systems based on their observed light and RV curves. Here
we give a brief description of the Wilson-Devinney model that underlies the corresponding
WD program and has been used by many different authors as the basis for their own programs,
including many useful extensions. The model supports circular as well as eccentric orbits and
the distance between the binary’s components can be set as a phase-dependent value. Non-
synchronous rotation of the components meaning that the ratio of the rotational angular
velocity to the mean orbital velocity differs from unity, is considered as well. The surfaces
of the components are computed based on the Roche model assuming a complete central
condensation for both stars. The flux irradiated by each point on the stellar surface is
computed by scaling the polar intensity by different factors, counting e.g. for the gravity
and limb darkening or the reflection effect. Von Zeipel’s law (von Zeipel 1924) is used for
computing the gravity darkening while the limb darkening is taken into account using one of
the analytical (linear, quadratic, logarithmic etc.) laws. The program considers single and
multiple reflections (Wilson 1990).

The WD program is divided into the two main parts LC and DC. LC is designed for the
calculation of either light and velocity curves or spectral line profiles. The DC program is used
for an optimization of the stellar and system parameters of the binaries based on the light
and RV curves separately or on both simultaneously. There is no possibility to use spectral
line profiles for the parameter optimization, however. The WD program uses the Simplex
algorithm for the initial parameter search. Either the method of differential corrections or a
damped Levenberg-Marquardt algorithm (Levenberg (1944), Marquardt (1963), see Kallrath
et al. (1998) for more details and some test results) can be used for the optimization of the
parameters.

According to different binary system configurations, the WD program can be used in
different modes like for detached, semi-detached, double-contact and overcontact systems, or
X-ray binaries. We refer to the paper by Wilson (1993) for more details.

1.6 Spectroscopic modeling

In the previous section we described the WD program that can use both light curves and RVs
as an input for the modeling of binary systems. RVs, on the other hand, are not well-defined
quantities in the case of stars that show line profile variations because different methods
of its determination like the computation of the first order moments of line profiles, the
fit of special functions to the line profiles like Gaussians, or the shifts obtained from cross-
correlation techniques will give different results. In this case, it will be much better to use the
line profiles itself instead of integral quantities, or, in other words, the full information content
of the obtained spectra. The probably first attempt in this direction was done by Mukherjee
et al. (1996) who introduced the computation of spectral line profiles into the WD code with
the aim to measure the rotational velocities of the binaries’ components. It was done by
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fitting the computed line profiles to the observed ones by means of the method of differential
corrections and using the Simplex algorithm. The authors measured in this way the rotational
and micro-turbulent velocities of 13 Algol-type systems (Mukherjee et al. (1996)).

One important difference between photometry and spectroscopy is the difference in the
spectral resolution defined as R=\/A\, where A\ represents the bandpass of the instrument
or the smallest resolution element in wavelength. The typical resolution of narrow-band
photometry is of about 500. For broad- and intermediate-band photometry the resolution
is even lower. On the other hand, stellar spectroscopy provides a spectral resolution up
to 100000. Many physical quantities and effects in stellar physics can be determined only
from high-resolution spectroscopy, like the chemical abundances in stellar atmospheres, the
magnetic fields observed from the Zeeman splitting of spectral lines, or the detection and
confirmation of extra-solar planets from the Doppler shifts observed for planet hosting stars
in the order of meters or even centimeters per second.

Both the analysis of light- and of radial velocity curves allows to determine the orbital
period, eccentricity and orientation of the orbit. The shape of the light curve’s minima
indicates whether the corresponding eclipse is a partial or a total one. This shape also
provides information about th radii of the stars relative to the size of the orbit, about the
orbital inclination, and, together with the depths of the minima, about the luminosity ratio
between the stars.

Concerning eclipsing binary stars, high-resolution spectroscopy also provides us with im-
portant information. So, the Rossiter-McLaughlin effect (Rossiter 1924; McLaughlin 1924)
can be observed. This is a pure spectroscopic effect that occurs during the eclipse phases
due to the stellar rotation. During both eclipses, the component which passes in front of
the disk of the eclipsed star blocks the light coming from the receding or approaching part
of the eclipsed disk, producing variations in the observed line profiles. Consequently, the
RVs measured from these highly asymmetric line profiles show an anomalous behavior. The
strength of the Rossiter effect depends on the rotation velocity of the eclipsed star and on
the brightness ratio between the components. If one component is much brighter than the
other one, as it is the case in all Algol-type stars, then the Rossiter effect will be much more
pronounced during the primary eclipse than during the eclipse of the fainter secondary.

Figure 1.3 shows in its upper panel the RVs of the primary component of the oEA star
RZ Cas observed in 2006. The Rossiter effect is well pronounced and can be seen as the
S-shaped distortion at phase 1.0 where the primary minimum occurs. The lower panel shows
the RV residuals after subtracting the orbital RV curve. Figure 1.4 shows the Rossiter effect
in the spectral line profiles, computed at orbital phases of ¢ = 0.95 and ¢ = 1.05. At these
phases the faint component passes in front of the primary, blocking the light first from the
approaching and then from the receding parts of the surface of the primary. This results in
highly distorted line profiles with shifted centers of gravity.

The shape of the Rossiter effect is sensitive to various system parameters. It can be used,
e.g., to determine the orbital inclination of the binary independently of photometry. Another
parameter that strongly influences the shape of the Rossiter effect and that can be determined
only from spectroscopy is the inclination angle of the rotation axis of the eclipsed star in the
observers plane on the sky (the plane perpendicular to that where vsini is measured). A
change of this angle by a few degrees results in obvious changes of the shape of the Rossiter
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Figure 1.3: RVs of the primary of RZ Cas observed in 2006 (upper panel) and the residuals after
subtracting the orbital motion (lower panel). The vertical dashed line indicates the primary minimum

while the horizontal line gives the systemic vy-velocity (figure taken from Lehmann & Mkrtichian
(2008a)).
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Figure 1.4: Synthetic line profiles computed with Shellspec07_inverse (see Section 2.2) for
the eclipse phases ¢=—0.05 and ¢=40.05 and for different inclinations of the rotation axis.
Red: The axis is aligned with the normal to the orbital plane. Blue: The axis is inclined
to the normal by an angle of 15° in the observers plane. Black: The axis is inclined to the
normal by an angle of 15° towards the line of sight. The line profile at out-of eclipse phases
is shown by dashes.
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effect, as can be seen from Figure 1.4.

The most important parameter of a star is its mass that determines most of its properties
and its evolution. It is not possible to determine absolute masses directly from photometry.
There is a possibility of an indirect determination of the mass ratio of semi-detached and
overcontact binary systems from photometry, however. This method uses the fact that one
or both stars fill their Roche lobes. In this case one can estimate the mass ratio from the
radii of the stars. The radii give the size of the Roche lobes and, if the Roche model is valid,
the mass ratio follows from the size of the Roche lobes (Wilson 1994). From the spectroscopy
of single lined binaries in an orbit of eccentricity e one only gets the so-called mass function

(MLQ sin Z)3

TOR2) = 00 a2

=1.036- 107" K3, P(1 — ¢%)*/?, (1.1)
where the masses are in solar units, the RV semi-amplitudes K are in kms™!, and the orbital
period P is in days. In the case of double-lined binaries, the mass ratio follows directly from
the ratio of the RV amplitudes, it is My/M; = K /K. For the absolute masses one obtains
a lower limit, it is

K,

M sin® i = <1 + Kl>2f(M,-) (1.2)

Only in the case that the orbital inclination ¢ is known one obtains absolute masses. This is
the case for double-lined eclipsing binaries, where 7 can be determined either from photometry
or from a spectroscopic analysis of the Rossiter effect as shown before. That one of the reasons
why stars of this special type play an outstanding role in astrophysical research.

The best way to get as much information as possible and to be able to compare the
results obtained from two independent methods is to combine spectroscopic and photometric
observations. For that reasons and with the aim to establish a computer program based on
spectroscopic line profiles that is comparable to the WD code in photometry we developed
the program Shellspec07_inverse that served as the central engine in deriving the results on
oscillating Algol-type stars presented in this work.

1.7 The target stars

In this section we introduce the targets of our investigation, the oscillating Algol-type stars
RZ Cassiopeia and TW Draconis and summarize the results obtained by different authors so
far.

1.7.1 RZ Cassiopeia

RZ Cassiopeia (HD17138, HIP 13133) belongs to the class of oEA stars. It is a short-period
(P=1%.1953) Algol-type system and one of the best studied oEA stars. The primary compo-
nent is classified as A3 V while the secondary component is of spectral type KO IV. During
primary minimum, a partial eclipse is observed (Narusawa et al. 1994). Olson (1982) and
Varricatt et al. (1998) found evidence of circumstellar matter surrounding the primary. Single-
peaked emission originating from a structure located between the two stars was detected by
Richards & Albright (1999). The spectra and applied Doppler tomography (Richards 2004)
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Figure 1.5: Amplitudes of RV variations folded with the orbital period. Curves: observations from
2006. Solid: f;. Dotted: fo. Dashed: f3. Error bars: from left to right for f; to f3. Squares: obser-
vations from 2001. Filled squares: f;. Open squares: fo (figure taken from Lehmann & Mkrtichian
(2008a)).

indicate that a gas stream was visible during the observations in 1994. The presence of a gas
stream is also assumed by Rodriguez et al. (2004b). Based on extended photometric obser-
vations in 1999, the authors proposed a hot spot located at the position where this stream
impacts the surface of the primary. The discovery that RZ Cas is both an X-ray source (Mc-
Cluskey & Kondo 1984) and a variable radio source (Drake et al. 1986) was explained by
Umana et al. (1999) by the strong coronal activity of the cool secondary.

RZ Cas was found by Ohshima et al. (1998, 2001) to exhibit short-period light variability.
They detected a dominant oscillation mode of the primary with a frequency of 64.2 cd~!.
This was later confirmed by both Mkrtichian et al. (2003) and Rodriguez et al. (2004b), based
on the results of dedicated photometric campaigns. An apparently mono-periodic behavior
with a dominant frequency of 64.2 cd™!' was observed from the photometric observations
acquired until 2000. Lehmann & Mkrtichian (2004) found multi-periodic oscillations from
the spectra taken in 2001, with two dominant frequencies of f;=64.189 and f»=56.600 cd~!.
Both are in agreement with the photometric results by Mkrtichian et al. (2003), who also
found that the photometric amplitude of the principal mode was lower than in 1997-2000. A
detailed investigation of the photometric variability showed an increase in the amplitude of
f1 between the years 2001 and 2006. (Mkrtichian et al. 2007).

In 2006, the star changed its pulsation pattern again. Lehmann & Mkrtichian (2008a)
found at least three pulsation frequencies of fi, fa, and f3=62.406 cd~!, where the third one
was observed for the first time. By comparing the spectra taken in 2001 and 2006, the authors
observed a changing asymmetry in the Rossiter-McLaughlin effect, a much stronger amplitude
modulation of the non-radial pulsation modes due to the spatial filtration effect in 2006
compared to 2001 (Figure 1.5), and an increase of the orbital period. The authors concluded
that RZ Cas has undergone a transient phase of rapid mass transfer in 2001, whereas it was
in a quiet state in 2006.

Stellar and system parameters of RZ Cas were derived by Maxted et al. (1994) from com-
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bined spectroscopy and UBV photometry taken from Chambliss et al. (1976), by Varricatt
et al. (1998) from UBV (Chambliss et al. 1976) and J and K band photometry, by Rodriguez
et al. (2004b) from Stroemgren photometry, by Soydugan et al. (2006) from combined spec-
troscopy and B and V band photometry, and by (Lehmann & Mkrtichian 2004, 2008a) from
spectroscopy. An effective temperature of the primary of 8 600 K was derived by Rodriguez
et al. (2004b) from the color indices, in agreement with Maxted et al. (1994), whereas Var-
ricatt et al. (1998) adopted a higher temperature of 8 720 K. Maxted et al. (1994) derived a
mass ratio of ¢=0.331. Soydugan et al. (2006) analyzed both the light and radial velocity
curves based on photometric observations in 2002 and spectral data from 2003/2004 by using
the Wilson-Devinney program (Wilson & Devinney 1971; van Hamme & Wilson 2003). For
a fixed surface temperature of the primary of 8600 K, the authors derived the temperature
of the secondary to 4480 K, the mass ratio to 0.338, the orbital separation to 6.87 R®, and
the orbital inclination to 81°.98. Varricatt et al. (1998) mentioned that the best-fit model of
the J band light curve is obtained by assuming a dark spot on the surface of the secondary.

In this work we apply the Shellspec07_inverse program (see Section 2.2) to the RZ Cas sys-
tem to derive precise stellar and system parameters. We use the KOREL program (Hadrava
1995, 2004a) to compute the decomposed spectra of the components and an orbital solu-
tion that includes both stars (§ 2.3.1). Ihe individual spectra of the components are then
analyzed with the SynthV code (Tsymbal 1996) based on computed atmosphere models
(§ 2.3.2). The derived stellar and system parameters are then used as starting values in
the Shellspec07_inverse program which does a fine-tuning based on the observed composite
spectra of the binary system. Results of the analysis will be discussed in Chapter 4.

1.7.2 TW Draconis

TW Dra (HD 139319, HIP 76196) is a bright Algol-type system of spectral type A5 V-+KO0 ITI
with an orbital period of 2¢.807. It is in turn the bright component of the visual binary
ADS9706. The primary eclipse is a total one (Popper 1989). A first photoelectric study
of the light variation was made by Baglow (1952). Kopal & Shapley (1956) estimated the
masses of the components to M1=1.9 My and Ms=0.82 Mg, corresponding to a mass ratio
of ¢=0.43. Giuricin et al. (1980) analyzed the photoelectric data obtained by Baglow (1952)
and by Walter (1978) and favored the results based on the later data set. They found ¢=0.47
in good agreement with the value given by Popper (1989) based on the radial velocities.
Al-Naimiy & Al-Sikab (1984) analyzed the star’s light curve and determined the radius of
the primary and the separation of the components to 2.5 Rg and 12 R, respectively. Their
findings were in good agreement with those by Kopal & Shapley (1956) and Giuricin et al.
(1980). The most comprehensive study so far was that by Zejda et al. (2010). The authors
derived the stelar and system parameters based on the RVs using the FOTEL program
by Hadrava (2004b) and on the light curve analysis using the PHOEBE program (Prsa &
Zwitter 2005). The results of this study are presented in Chapter 5 (Table 5.3) and used for
a comparison with our findings.

Kusakin et al. (2001) discovered the short-term light variability with a semi-amplitude of
2 mmag in the primary component of TW Dra, detecting one frequency peak at 17.99 cd~! in
the periodogram. Kim et al. (2003) again investigated the system photometrically and found
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a variability of 5 mmag semi-amplitude at orbital phases close to the secondary minimum.
The derived oscillation frequency of 18.95 cd~! is assumed to be the 1 cd™! alias of the value
given by Kusakin et al. (2001). The authors also found a second frequency close to 27 cd~!,
suggesting that TW Dra is a multi-periodic pulsator. The first, dominating pulsation mode
was also found by Zejda et al. (2006) in the vicinity of the primary minimum. Lehmann et al.
(2008b, 2009) detected three oscillation modes of 22.90, 14.06, and 24.72 cd~! from the line
profile variations having semi-amplitudes of 0.3 kms~'. They could not find the 17.99 ¢d*
mode detected by Kusakin et al. (2001), however. The authors tried to identify the modes
and could limit the range in [ and m to 7 to 12. They suggested that these high-degree modes
are most likely sectoral modes but no unique identification could be derived.

TW Dra has long been known to show orbital period variations. A historical summary
is given in Zejda et al. (2008). Qian & Boonrucksar (2002) found a secular increase of the
orbital period by 4.43x107% dy~! that they attributed to the dynamical mass transfer from
the secondary to the primary with a rate of 6.8x10~7 Moy~ '. Besides on this secular change,
the authors report on two irregular period jumps (increases with successive decreases) which
they explain by structure variations of the secondary, possibly related to the magnetic activity
cycle of this cool giant star. Zejda et al. (2008) inspected the system for orbital period changes
again. They found that TW Dra showed an almost constant orbital period during the first
observations in 1858-1905 whereas in 1905-1942 the period increased, corresponding to a
mass exchange rate of 3.9x1077 Muyr~!. After that period of mass transfer, the star showed
alternating cycles of increasing and decreasing orbital period that could be related to the
magnetic activity cycle of the evolved secondary. These period changes are overlaid by other
cyclic variations of much smaller amplitude caused by the light time effect of a third body
with a period of 6.5 years.

In this work, we investigate the TW Dra system using several methods. We use the
KOREL program (Hadrava 1995, 2004a) (see § 2.3.1) to compute the orbital solution and
the decomposed spectra of the components of the Algol-type system. The derived orbital
period and time of primary minimum are used to build the orbital phase binned spectra
needed by Shellspec07_inverse (see Section 2.2) for further analysis. The extracted spectra
are analyzed with the SynthV program (Tsymbal 1996) (see § 2.3.2) based on atmosphere
models calculated with the LLmodels code (Shulyak et al. 2004) (see § 2.3.3). Finally, we
apply the Shellspec07_inverse program for the fine-tuning of the stellar and system parameters
of TW Dra based on the observed composite spectra. The results are presented in Chapter 5.



Chapter 2

Methods

Besides the already mentioned inclusion of synthetic line profiles into the WD program by
Mukherjee et al. (1996), there have also been attempts to use the full information provided by
the observed line profiles in computer programs designed for pure spectroscopic investigations.
Vincent et al. (1993) and Piskunov (1996) extended existing Doppler imaging programs for
the analysis of single stars to eclipsing binaries and were able to reproduce the stellar surface
structures its components. Also Shellspec07 (Budaj & Richards 2004; Budaj et al. 2005)
is one of the few modern computer programs that uses extended spectroscopic information
beyond the RVs for the modeling of eclipsing binary stars. We developed our new program
Shellspec07_inverse on the basis of this program and describe it in this chapter in more detail.

For the spectroscopic analysis of our target stars RZ Cas and TW Dra, we additionally use
the KOREL (Hadrava 1995, 2004a), SynthV (Tsymbal 1996) and LLmodels (Shulyak et al.
2004) computer programs. The KOREL program allows to decompose the spectra of the
individual components of multiple systems, simultaneously determining the corresponding
RVs and the orbital elements. The obtained, decomposed spectra are then analyzed to deter-
mine the stellar parameters and elemental abundances based on stellar atmosphere models.
Synthetic spectra are computed with the SynthV code based on the stellar atmosphere mod-
els, which are calculated with the LLmodels program. In the final step, the derived stellar
parameters and orbital elements are provided as an initial guess to the ShellspecO7_inverse
program, which does the fine-tuning based on the observed composite spectra of the binary
system.

2.1 The Shellspec07 program

The Fortran 77 code Shellspec07 was designed by Budaj & Richards (2004) for the compu-
tation of composite synthetic line profiles of interacting binaries. Structures originating from
mass transfer like an accretion disk around the gainer or a gas stream between the stars can
be taken into account. The synthetic spectra are computed based on a priori known input
parameters, i.e. the program does not solve the inverse problem of deriving the stellar and
system parameters from the observations. First, the model of the binary is calculated in the
so-called "body frozen“ system, centered at the primary component . The Cartesian, body
frozen coordinates are x”, 3", 2", where the x-axis points from the primary to the secondary
component, the z”-axis is aligned with the normal to the orbital plane, and the 3”-axis lies,

16
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Figure 2.1: Orientation of the axes in the body frozen (z”,y”,z") and the line-of-sight (x,y,z) Carte-
sian coordinate systems. The (z',3’,2’) coordinates correspond to an intermediate system used during
the coordinate transformation (figure taken from Budaj & Richards (2004)).

like the z”-axis, in the orbital plane (Figure 2.1).

The program supports the following configurations of binary stars: detached systems,
where both stars are considered as spherical objects; semi-detached systems, where one of
the components fills its Roche lobe; and contact binaries where both components fill their
Roche lobes forming a common shell. Let us consider the semi-detached systems in more
detail. In this case, the surface of the evolved secondary is defined by the equipotential
surface that passes through the so-called inner substellar point. This is the point located
on the surface of the evolved star on the connecting line between the two components. Its
location is related to the input parameter Fj, called the fill-in factor, via

F; = R/L,. (2.1)

R is the stellar radius at the inner substellar point. It is measured in units of the distance
from the center of the star to the inner Lagrangian point L (see also Figure 1.1). In the case
of Algol-type systems, the fill-in factor of the secondary component is usually assumed to be
equal to unity while the deviation of the shape of the primary from sphericity is neglected.
The equipotential surfaces are computed from the dimensionless Roche potential defined by

noonon 2 1 q ’ 2 /

ey, = 1+4+4¢ <\/$//2 +y2 4 "7 + \/(x// —1)2 4y + Z”2> +<x/ o 1+q> +y",

(2.2)
where ¢ is the mass ratio between the secondary and the primary components. After deter-
mining the boundaries in x”, the program defines the surface of the star in y” and z” using
the Newton-Raphson method (Press et al. 1992). The method works very fast, and normally
only few iterations are needed to achieve convergence. After the outer boundaries of the
stars are determined, the program computes temperature, density, velocity fields etc. in each
point of the body frozen frame. The stars themselves are considered to be non-transparent
objects. This is marked by assigning special density values (that have no physical meaning)
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to all points inside the stars to distinguish them from all transparent objects. The calculated
surface velocity field includes stellar rotation and orbital motion. Synchronized rotation is
assumed in the case that the star has a non-spherical configuration. The surface temperature
distribution is given by von Zeipel’s law (von Zeipel 1924). It is usually called the gravity
darkening law and gives the variation of the effective temperature with the local gravity

T, and g, are the temperature and the gravity at the pole, and [ is the gravity darkening

according to

exponent. The theory predicts values of 5=0.08 for stars with convective envelopes (Lucy
1967), and 5=0.25 for stars in hydrostatic and radiative equilibrium (von Zeipel 1924).

In the next step, the program rotates the body frozen system according to the considered
orbital phase and orbital inclination. First, the line-of-sight (or observer’s) Cartesian coordi-
nate system (z, y, z) is defined. The z-axis points along the line-of-sight toward the observer,
the y-axis coincides with the normal to the orbital plane, while the x-axis lies in the orbital
plane (Figure 2.1). The transformation between the body frozen and the line-of-sight coor-
dinates is done in two steps. First, by a rotation around the x-axis by the orbital inclination
i, and then by a rotation around the z’-axis by an angle « corresponding to the considered
orbital phase:

x,::r Z”:Z/

/I . .. no__ ! ..

y =ycosi— zsini y' =y cosa—x'sina (2.4)
/ . o " / ! o

Z = ZC0S?+ ysin? r = cosa+ Yy sina.

For the back transformation, the sign of the corresponding angle has to be changed.

Physical values are computed in the body frozen system. For the final integration over
the visible disks (and possibly present circumbinary structures) in the observers frame, all
the grid points in the observers frame are transformed to the body frozen system, and the
physical values are interpolated to the corresponding coordinates. The interpolated values
are then back-transformed to the observers frame. In a next step, the last non-transparent
point is searched in the x-y plane of the observer’s frame along the line-of-sight. This is the
point on one of the stellar surfaces (depending on the orbital phase) that is nearest to the
observer. For instance, if one looks onto the system from an aspect angle corresponding to
the orbital phase of the primary eclipse, the last non-transparent point along the line-of-sight
will be a point on the surface of the secondary. If no accretion structures are included, only
contributions from the surface points of the non-transparent objects are taken into account
when integrating over the x-y plane.

All non-transparent objects may radiate either as black bodies or show pre-calculated
intrinsic spectra. The center-to-limb variation of the intensity, also called the limb darkening
effect, is taken into account using a linear law given by

I'0,0) =1(0,¢)(1 — u+ucosb), (2.5)

where u is the limb darkening coefficient, 6 is the angle between the line-of-sight and the
normal to the stellar surface, and (6, ¢) is the intrinsic intensity distribution on the stellar
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surface. The gravity darkening effect is taken into account by scaling the obtained intensity
I'(8, ) by a factor that is defined as the ratio of the Planck functions valid for the temperature
T at a certain surface point and the temperature T}, at the stellar pole:

Fg = B,(T)/B,(T). (2.6)

If any accretion structures like an accretion disk or gas streams are included into the
model, the program solves the radiative transfer along the line-of-sight assuming that the
non-transparent objects are embedded in an optically thin environment. The equation of

radiative transfer reads
dl,

ds

where I, is the specific intensity at frequency v, a, the opacity, j, the emissivity and ds

= -y, + Ju, (2.7)

the distance along the beam extension. Since the light radiated by the star may not only
be absorbed but also scattered, there are two sources of opacity included: true absorption
(line opacity, HI bound-free and HI free-free continuum opacities) and scattering (Thomson
and Rayleigh scattering). For the emissivity, contributions from the thermal and from the
scattering emissivity are considered (see Budaj & Richards (2004) and Mihalas (1978) for a
more detailed description). Once the radiative transfer is solved and the intensity in each
point in the x-y plane of the observer’s frame is computed, the integration over this plane takes
place. Finally, the obtained synthetic composite spectrum is normalized to the continuum
which is defined as a straight line between the outermost points of the considered part of the
spectrum.

In the next paragraph, we introduce the new computer program Shellspec07_inverse that
we established for solving the inverse problem of finding stellar and system parameters of
eclipsing binaries from the observed spectra. It uses the core of ShellspecO7 as the central
subroutine. Besides the non-linear optimization algorithm, significant improvements related
to the calculation of the limb- and gravity darkening effects as well as to the normalization
of the computed spectra have been implemented.

2.2 The Shellspec07_inverse program

Shellspec07_inverse is a Fortran 90 code that uses the core of the Shellspec07 program (Budaj
& Richards 2004). The calculation of the Roche geometry of the stars in the body frozen
system, the necessary coordinate transformations according to different orbital phases and
the inclination of the binary’s orbit, and the integration of the fluxes from the visible stellar
surfaces are taken from the ShellspecO7 program. In the following, we describe the new
features of the Shellspec07_inverse program.

2.2.1 Input and output routines

Shellspec07_inverse is designed for solving the inverse problem of finding stellar and system
parameters of binary stars from the observed data. According to this task, new input and
output routines have been implemented in the program. The input data consist of time-
series of high-resolution spectra together with a list of the corresponding file names and the
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Figure 2.2: Two-dimensional representations of time-series of the observed (left) and calculated
(right) FeI4957 A line profiles of RZ Cas taken in 2006, folded with the orbital period. The spectra
have been averaged into 100 orbital phase bins. Each mean spectrum (vertical direction) consists of
the strong absorption line of the bright primary and the weak line of the faint secondary.

barycentric corrected Julian dates of observations. The spectra are provided in two-column
ASCII format with the columns wavelength and normalized intensity. The orbital phase is
calculated from the Julian date and the known ephemeris. The program can work in two
different modes, optimizing the stellar and system parameters either based on the original
spectra or on spectra that have been averaged into a certain number of orbital phase bins.
The averaging is done by the program based on the bin size provided by the user. Synthetic
spectra are computed for exactly the same orbital phases as given by the input spectra or
computed for the averaged spectra.

The output consists of the values of the optimized stellar and system parameters as well
as of graphical representations of the observed and computed spectra and the goodness of
fit. Figure 2.2 (left panel) shows an example of the graphical output of the new program and
illustrates how the input and output data have been organized. It shows in the left panel the
composite FeI4957 A line profiles of the RZ Cas system observed in 2006, averaged into 100
orbital phase bins and folded with the orbital period. The right panel shows the synthetic
line profiles computed for both components of the oEA star RZ Cas based on the derived,
optimized parameters for the RZ Cas system. For a better visualization, the orbital phase
was shifted so that the primary minimum occurs at phase 0.25. The S-shaped distortion that
can be seen at this phase is due to the Rossiter effect as described in § 1.6. The faint vertical
stripe seen in Figure 2.2 at primary minimum originates from the strong enhancement by
the Rossiter effect of the line depths of very faint lines that cannot be detected outside the
primary minimum.

Figure 2.3 shows an example taken from the program’s final output. It gives in the left
panel the O-C residuals (observed minus computed line intensities) obtained for the RZ Cas
system and in the right panel the corresponding x?-distribution. The latter one represents the
O-C values normalized to the individual errors of measurement (see § 2.2.5 for a definition).
Whereas the scatter in the O-C values strongly depends on the signal-to-noise of the input
data that varies due to the different numbers of spectra that fall into one orbital phase bin or
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Figure 2.3: O-C residuals line intensity (left) and they?-distribution of the fit (right) computed for
the finally derived parameters of the RZ Cas system.

due to the varying brightness of the objects (see the noisy region around primary minimum
in), the y2-distribution is independent of such effects and is used as a measure of the goodness
of fit.

2.2.2 The limb darkening effect

As described in Section 2.1, Shellspec07 assumes constant intrinsic stellar line profiles and
calculates the center-to-limb variation by using a linear limb darkening law (see Eq. 2.5).
This is a rough approximation because it assumes that the variation over the stellar disk can
be described by a constant value of the limb darkening coefficient u that is independent of line
depth. In reality, u varies strongly with line depth and can even reach negative values at the
line center, as it was shown by Townsend (1997) for the Balmer line cores. Instead of using a
fixed law, we used the SynthV program (Tsymbal 1996) (see § 2.3.2) to calculate the profiles
for nine different values of the angle 6 between the line-of-sight and the normal to the stellar
surface and interpolate between them according to the desired position on the stellar disk.
When we compute the limb darkening coefficient as defined by Eq. 2.5 from our procedure, we
clearly see that it strongly varies with line depths. Figure 2.4 shows an example calculated
from the Fe I 4957 A doublet and the atmospheric parameters as derived for the primary
component of the RZ Cas system (see Chapter 4). Figure 2.5 shows the difference between
the two approaches for the Hg profile. It is obvious that the profile computed from the linear
limb darkening law (solid curve) is significantly broader and stronger than that calculated
from the wavelength-dependent law (dotted curve) used in the Shellspec07_inverse program.
Since we want to model the spectra of our targets with high accuracy, the implementation
of the new procedure is important. The second advantage is that we are not restricted to
spherical disks but can also calculate the intensity variations produced by different optical
depths along the line-of-sight in the case of a non-spherical star.
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Figure 2.4: The limb darkening effect for the Fe I 4957 A doublet. Left: Intrinsic line profiles
calculated with the SynthV program at the center of the stellar disk (solid) and at the limb (dashed).
The intensity is given in erg cm~2 s~! Hz~! rad~!. Right: Limb darkening coefficient for different
line depths, derived from the blue (solid curve) and from the red (dotted curve) components of the
doublet shown to the left.
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Figure 2.5: Hg profiles computed with the linear limb darkening law (solid), and with the wavelength-

dependent law (dotted) as used in the Shellspec07_inverse program.
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Figure 2.6: Normalized synthetic spectral line profiles computed with the Shellspec07_inverse pro-
gram. The chosen line is Fe T 4957 A line which appears in the red wing of Hpg line profile. Left: T,y
= 8900 K, logg = 4.35. Right: T,y = 4800 K, logg = 3.50.

2.2.3 The gravity darkening effect

Besides the limb darkening of both components, we have to take the gravity darkening of
the Roche-lobe filling secondary into account. It results from the variation of the effective
temperature with the local gravity on the surface of the non-spherical star according to
Eq. 2.3. As described in Section 2.1, the Shellspec07 program takes this effect into account
by applying a gravity darkening factor to the surface intensity that is valid for the pole of
the star. The calculation of this factor from the ratio of the corresponding Planck functions
is also a rough approximation, comparable to those that was made in the case of the limb
darkening calculation. Again, we use the SynthV code to calculate the intrinsic line profiles
for each point on the stellar surface for exactly the required temperature as given by Eq. 2.3,
computing the local gravity from the Roche geometry of the stars.

2.2.4 Normalization of the computed and observed spectra

The Shellspec07 code uses a very simple procedure to normalize the computed spectra, as-
suming the continuum to be a straight line between the outermost points of the considered
spectral range. This a rough approximation for two reasons. First, one cannot be sure that
the outermost points will be part of the local continuum, the considered spectral range can
also end up in the wings of a line. And second, the shape of the continuum may deviate
significantly from a straight line, especially for the broad Balmer lines. Instead of this ap-
proximation, we calculate both the line and continuum fluxes with SynthV which makes the
normalization of the synthetic spectrum a trivial task. Figure 2.6 illustrates the problem.
It shows an example of normalized intensities in the Fe I 4957 A line region computed with
the Shellspec07_inverse program based on two different atmosphere models. In both cases,
the profile does not reach unity in the continuum which is explained by the location of the
line in the red wing of Hg. Moreover, in the case of the cool atmosphere (right panel), the
additional contribution of molecules to the spectrum displaces the apparent continuum level
even more from the true one and the approximation of the local continuum by a straight line
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between the outermost points of the computed spectrum would never give a correct result.

Figure 2.6 also shows that the normalization of the observed spectra is not a trivial task
at all. A wrong normalization of the observed spectra must be taken into account but its
influence on the calculated model should be minimized. For that reason we introduce a
scaling factor « for the observations which is defined by means of a least-squares fit in the
sense of

(Rgps — Re)* — min. (2.8)

Here, R, is the observed spectrum, R, is the spectrum computed with the Shellspec07_inverse
program.

2.2.5 Non-linear optimization of stellar parameters

In the previous paragraphs we described necessary modifications and additions to the existing
Shellspec07 program and the building of a user friendly environment. The task to solve the
inverse problem, i.e., the optimization of stellar and system parameters based on the observed
spectra, requires a larger effort and changes the program into a new one. For the non-linear
optimization we use the Levenberg- Marquardt algorithm (Levenberg 1944; Marquardt 1963).
It determines a set of parameters a of a function y = y(x,a) by minimizing the y? merit
function

N 2

Pa)=3 (yj - y(fﬂjﬂ)) ’ (2.9)

=1 73
where o; represents the error of the measurement of y;. In our case, we sum up over all wave-
length points of the considered spectral interval and over all observed spectra corresponding
to different orbital phases. Thus, the x? which is used in our program as a criterion for the
goodness of fit, represents the sum over all single elements in Figure 2.3 (right panel). In
each step of the iterative procedure, increments da; are found by solving the system of linear
equations

M
> ayba; = B (2.10)
=1

Here, a;d represents a Hessian matrix with modified main diagonal a;j = a;j;(1 4+ A) which
is also called the curvature matrix, while §; is proportional to the Jacobian matrix of the
first partial derivatives. The damping parameter A\ influences both the direction and the
size of the increments da;. If A is high, the Levenberg-Marquardt algorithm operates in a
similar way as the steepest descent method and approaches the Gauss-Newton method if
its value is small. We use a modified, fast version of the Levenberg-Marquardt algorithm
developed by Piskunov & Kochukhov (2002) that additionally adjusts the value of A within
each iteration step to speed up the calculations, keeping the right-hand side of Eq. 2.10 and
the Hessian matrix ax; unchanged.

We used the described algorithm to optimize basic stellar and orbital parameters. These
are the effective temperatures 77 and 75 and the RV semi-amplitudes K7 and Ko of the
primary and secondary, the radius Ry and the vy sin¢ of the primary, the orbital inclination
i, and the y-velocity of the system.
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2.2.6 Non-radial pulsations

Besides the derivation of stellar and system parameters, we want to investigate the influence
of the pulsations of the primary components of the oEA stars on the observations, in par-
ticular during the eclipse phases. For that purpose we use the ShellspecO7_inverse program
to model the spatial filtration effect on the observed RVs for different combinations of [ and
m wavenumbers. This paragraph describes the mathematical background. Our actual model
is limited to the surface velocity perturbations caused by the non-radial pulsations and does
not include the temperature and surface area perturbations.

Non-radial pulsations cause both radial and horizontal motions of the mass elements. If
a star oscillates only in radial direction, i.e. expands and contracts radially with time, it
is said to show radial pulsations. In this case, the stellar oscillations are characterized by
frequency, amplitude and phase, and by the number n of radial nodal lines located between
the center and the surface of the star. A nodal line, or simply node, represents the line where
the mass elements do not move during the oscillation cycle. In the case that also horizontal
motions occur, one says that non-radial oscillations are observed. This type of oscillations is
characterized by two additional wavenumbers [ and m which represent the total number of
surface nodes and the number of nodes passing through the poles of the star, respectively.

The perturbations are described in terms of spherical harmonics Y;™ (6, ¢) of degree I and
azimuthal wavenumber m. @ is the stellar latitude and ¢ the longitude. The displacement of
a mass element from its equilibrium position is described by the vector ff, it is

—

A= (Are; + Agép + Aey) exp (—iwt) , (2.11)

where the frequency w=wpgr+iwy is complex. Its imaginary part describes an excitation or
damping of the oscillation mode. A, is the radial and Ay and A, are the horizontal compo-
nents, defined as

Ay = gr(T)Y}m
ay;”m
Ag = &(r) dé (2.12)
fh(T) dY

2~ Sing dp

& and &, are the radial and horizontal displacement amplitudes. For a spherically symmetric
star, ¥;""(6, ¢) gives the dependence of the perturbations on 6 and ¢. It is defined by
Y™ (cos b, ) = ClmPl‘m‘ (cos @) exp (imyp) , (2.13)

where Pl‘m‘ is the associated Legendre polynomial, and Cy,, is a normalization constant. The
associated Legendre polynomial is related to the Legendre polynomial P; via

m/2 d™P(x)

daem

P (@) = (=)™ (1 — 2?) (2.14)

where

P(x) = TR T (2.15)
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The normalization constant is

In practice, recursive relations are used to calculate the associated Legendre polynomials.

Starting with a sectoral mode (I=m)

2m)!
s

P (z) = (—1)" — 2™, (2.17)

one computes the associated Legendre polynomial of degree [ from

Fv(@) = O (o) -

(+m) om

m =1 (), (2.18)

with P/™, (x)=0 if I=m. For the calculation of the derivatives one can use

m

(1 — :cz) dd% =lzP"(z) — (Il +m) " (x). (2.19)
Alternatively, Eq. 2.11 and 2.12 can be written as
A=Cy, (A;e? + A;e}} + A:Oe:,> exp (—wrt) (2.20)
with
A, = £,(r) cos (myp — wnt) A"
Ay = &4(r) cos (myp — wrt) = (P") (2.21)

do
/ P™ d
A, = fh(r)@%[cos (mp — wrt)].
From Eq. 2.19 and 2.21 we obtain

A = & cos(mp — wpt) pm

Ay= Encos (mp — wnt) o [(14+m) Bty — Leos0F}" (2.22)
’ . m m
A, = —&psin (my — wrt) SIWPI .

The velocity field calculates from ¢ :d/T/ dt, and finally we get
U = Cl, (Ur€r + v9€g + vop€),) expwrt (2.23)
with the velocity components
vy = &wprsin (my — wgt) P™

vg = Epwp sin (my — wrt) Sno [(l +m) Py — lcos 0P } (2.24)

m
vy = Epwr cos (M — wrt) sinﬁplm'
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Figure 2.7: The RV surface field of a non-rotating star caused by the sectoral pulsation mode

(I,m) = (4,4). Yellow and blue regions indicate positive and negative RVs, respectively. Red regions
have close to zero velocity, indicating the nodal lines. In the left panel, the star is seen pole-on, and

equator-on in the right panel.

So far, the pulsations have been described in spherical coordinates. Its implementation
into Shellspec07_inverse requires the transformation from spherical to Cartesian coordinates
and vice versa. We start on a grid of Cartesian coordinates in the line-of-sight system. For
the calculation of the non-spherical shape of the secondary and the surface flux distributions,
the coordinates of the grid points are transformed into the body frozen system and the
desired values are interpolated from the values calculated in the body frozen grid. For the
implementation of pulsations, the line-of-sight coordinate system is tilted for the inclination
angle ¢ so that the pulsation axis is aligned with the normal to the orbital plane and the
velocity field due to the oscillations is computed in the corresponding spherical coordinates.
At this point, there is no need for further coordinate transformations as long as we consider
synchronous rotation and that the rotation axis of the primary is aligned to the normal of
the orbital plane, as we will assume in this simple approach. The components of the velocity
field in the Cartesian coordinates are then obtained from

Uz = Uy sin 6 cos ¢ + vy cos B cos ¢ — v, sin O sin
vy = vy sin 0sin ¢ + vy cos Osin ¢ + v, sin 0 cos ¢ (2.25)
v, = U, cos b — vgsinf.
and the final values in the line-of-sight system follow from the back-rotation by the angle 4
according to Eq. 2.4. The y is then simply the z-component of the velocity field.
Figure 2.7 shows an example of the RV field on the stellar surface caused by a sectoral
oscillation mode of degree [=4. It was computed with the ShellspecO7_inverse program for

two different inclination angles i of the rotation axis to the line-of-sight, showing the star
pole-on (i=0) and equator-on (i=90°).

2.3 Additional software used for the spectral analysis

This section gives a short description of additional computer programs that have been used
in the present work, including the KOREL program (Hadrava 1995, 2004a) used for the
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decomposition of the spectra of the single components and the determination of the orbital
elements, the SynthV program (Tsymbal 1996) for the calculation of synthetic spectra and
to build libraries of intrinsic line profiles needed by Shellspec07_inverse, and the LLmodels
program (Shulyak et al. 2004) used for the calculation of atmosphere models of the early-type
primary components.

2.3.1 The KOREL program

The KOREL program (Hadrava 1995, 2004a) is a Fourier transform based computer code
that works with time series of spectra of multiple systems. It allows for the simultaneous
decomposition of the composite spectra into the spectra of the components, the determination
of the RVs from the shifts that are applied to the single input spectra to build the decomposed
spectra, and for the determination of the orbital elements for up to five stars in up to 4
hierarchical orbits. If necessary, it also determines the timely variation of the line strengths
of the components. The last capability is in particular useful for the investigation of eclipsing
stars, where the line strengths of the components vary strongly during the eclipses. It can
be used as well to remove the timely varying contributions of telluric lines from the stellar
spectra. After applying the heliocentric RV correction to the observed spectra, the telluric
lines that originate in the earth atmosphere are included into the model as the lines of an
additional star of negligible mass, moving in the apparent orbit of the sun.

KOREL is not able to yield the individual continua of the decomposed spectra which
are normalized to the common continuum of the multiple system. Thus, it is necessary to
renormalize the output spectra using additional information, e.g., from the photometry of
the stars. A renormalization method is described in Hadrava (2004a) and will be discussed
in Chapters 4 and 5 in the context of the application to the target stars.

2.3.2 The SynthV program

SynthV is a Fortran 90 code developed by Tsymbal (1996) for the calculation of synthetic
spectra of stars of all spectral types and arbitrary wavelength ranges. The calculation is based
on pre-computed atmosphere models that describe the distribution of physical quantities
like temperature, pressure, etc. with optical depth. The program assumes a plane-parallel
structure of the atmosphere and local thermodynamic equilibrium (LTE). LTE means that
at each point of the stellar atmosphere and for all frequencies v a local temperature T can
be defined such that the emission E, is given by Kirchhoff’s law E, = A, B,(T), where A,
is the absorption and B, is the Planck function. A system is not in LTE if the local kinetic
temperature is not equal to the Planckian temperature.

The parameters of atomic lines used by SynthV are usually taken from the VALD database
(Kupka et al. 2000). Synthetic spectra are computed with constant steps in wavelength and
all line profiles are approximated by Voigt functions. SynthV allows for the computation
of synthetic spectra based on individual elemental abundances. Temperature, pressure, and
electron number density distributions with optical depth are taken from a pre-computed
atmosphere model which in turn depends on the chosen elemental abundances. Thus, in
practice, the atmosphere model and the synthetic spectrum are determined in an iterative
procedure. Its application to our target stars is described in Chapter 5.
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In its original version, the SynthV program computes specific intensities for seven dif-
ferent angles 6 between the line-of-sight and the normal to the visible stellar disk. These
intensities are then convolved with rotation, macro-turbulence and the instrumental profile.
We extended the number of points on the stellar disk from seven to nine. This is sufficient
for using our new procedure to compute the limb darkening as described in Section 2.2.

2.3.3 The LLmodels program

The LLmodels program (Shulyak et al. 2004) was established for the calculation of LTE
plane-parallel atmosphere models of early and intermediate spectral type stars. It is based
on the so-called ”line-by-line*“ method which provides a direct calculation of the line opacity
on a fine wavelength grid taking the contributions from neighboring lines into account. A
fine grid means a grid of about 0.1 A step width. Shulyak et al. (2004) showed that there
is almost no difference between temperature distributions of models computed with smaller
step sizes but that the difference rapidly increases for wider grids reaching a value of up to
100 K in the upper atmospheric layers. The continuum absorption coefficient, on the other
hand, can be computed with sufficient accuracy using a step size of 1 A. Most of the spectral
lines cover only a small wavelength range, thus the total opacity at the considered wavelength
point is computed by summarizing the opacities from all lines within a range of only +2.5 A.
Wide spectral lines like the hydrogen or Call H and K lines are treated in a different way
where the central regions around the line cores are computed on a fine grid, whereas for the
outer wings a step width of 1 A is used like in the case of the continuum. The list of atomic
lines is provided by the VALD database (Kupka et al. 2000).

The two criteria used for the convergence of the model are the constancy of the total flux
and the conservation of the radiative equilibrium. Both criteria are checked in each iteration
for each atmospheric layer, and the model is assumed to converge if both are fulfilled. The
reason to use two criteria is that the total flux constancy alone is not very sensitive to
temperature changes in optically thin layers (Shulyak et al. 2004).

The ”line-by-line“ technique does not rely on any statistical methods, like e.g. in the case
of the Opacity Distribution Function (ODF) by Gustafsson et al. (1975) or Kurucz (1979),
and is free of approximations with respect to the line opacity calculations. It allows for the
calculation of atmosphere models using individual abundances with a vertical stratification
of the chemical elements in a reasonable time. The ODF technique, for instance, uses pre-
tabulated line opacities and requires in the case of elemental stratification the calculation for
each atmospheric layer based on the given abundances. It is obvious that such a procedure
is much more time consuming.



Chapter 3

Observations and data reduction

3.1 Observations

396 spectra of TW Dra were obtained in April/May 2007 and 479 spectra in March/April
2008. The spectra were taken with the Coude Echelle spectrograph at the 2-m telescope
of the Thiiringer Landessternwarte Tautenburg (TLS) and with the BOES spectrograph at
the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory (BOAO). RZ Cas was
observed at TLS during 2001 and 2006, the data sets contain 951 and 512 spectra, respectively.

The Tautenburg spectrograph is a classical high-resolution Echelle spectrograph working
in the Coude focus. Its spectral resolution depends on the chosen width of the entrance
slit. A description of the instrument can be found at http://www.tls-tautenburg.de. BOES
(BOhyunsan Echelle Spectrograph) is a fiber-fed high-resolution Echelle spectrograph using
five fibers of different diameters and corresponding spectral resolutions. A description of the
instrument can be found at http://arcsec.sejong.ac.kr.

The TLS spectra have a spectral resolution of 33 000 and cover the wavelength range from
4700 to 7400 A. The BOES spectra have a spectral resolution of 50000 and cover a larger
wavelength range down to 3600 A. The typical exposure time was 10 min., the spectra have a
typical signal-to-noise ratio of 100. Table 3.1 gives the journal of observations for both stars.
The most extended period of continuous observations without gaps comprises 15 consecutive
nights in 2007 for TW Dra, and 6 nights in 2001 for RZ Cas.

3.2 Spectrum reduction

The spectrum reduction was completed using standard ESO-MIDAS packages and some spe-
cial programs developed at TLS. First, the bias and the stray-light was subtracted from the
spectra using bias frames taken with zero exposure time as well as the information from the
inter-order space in the spectra of the stars. Cosmic rays have been removed by applying
a special filter that was adjusted to the given gain and readout-noise of the used CCD. For
the flat fielding, i.e. the elimination of the pixel-to-pixel sensitivity variation of the CCD by
dividing the stars spectra by the so-called flat field spectra, we used the continuum spectra
of halogen lamps placed in front of the telescope. After the positions of the Echelle orders
had been determined from the flat field spectra, the Echelle orders have been extracted from
the stellar spectra using an optimized procedure with variable extraction slit width that was
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Table 3.1: Journal of observations. IV is the number of spectra obtained in single nights.

date N  source date N  source date N  source
TW Dra
2007/04/24 17 TLS 2007/05/07 42 BOAO 2008/03/28 15 TLS
2007/04/25 20 TLS 2007/05/08 19 BOAO 2008/03/29 42 TLS
2007/04/26 32 TLS 2007/05/10 BOAO 2008/03/30 12 TLS
2007/04/27 20 TLS 2008/03/17 TLS 2008/04/16 43 TLS
2007/04/28 14 TLS 2008/03/18 TLS 2008/04/17 24 TLS
2007,/04/29 11 TLS 2008/03/21 TLS 2008/04/18 3 TLS
2007,/04/30 13 TLS 2008/03/23 TLS 2008/04/20 28 TLS
2007,/05/01 33 TLS 2008/03/24 40 BOAO 2008/04/22 1 TLS
2007/05/02 49 TLS 2008/03/24 1 TLS 2008/04/23 40 TLS
2007/05/03 40 TLS 2008/03/25 2 TLS 2008/04/24 17 TLS
2007/05/04 30 TLS 2008/03/26 69 BOAO 2008/04/25 24 TLS
2007/05/05 29 TLS 2008/03/27 19 BOAO 2008/04/26 40 TLS
2007/05/06 18 TLS 2008/03/27 12 TLS 2008/04/27 37 TLS
RZ Cas

2001/09/30 112 TLS 2001/10/10 85 TLS

2001/10/03 9 TLS 2001/10/11 32 TLS

2001/10/04 103 TLS 2001/10/12 142 TLS 2006/01/09 123 TLS
2001/10/05 85 TLS 2001/10/13 153 TLS 2006/01/10 128 TLS
2001/10/06 27 TLS 2001/10/14 125 TLS 2006,/05/08 36 TLS
2001/10/07 82 TLS 2005/12/13 21 TLS 2006,/05/09 37 TLS
2001/10/09 7 TLS 2006/01/08 101 TLS 2006/05/10 52 TLS

W W NN N o

adjusted to the signal-to-noise in the different orders. The normalization to the continuum
was done by a special procedure working in the pixel-order plane. This procedure has the
advantage that it fits the local continuum to the observed absorption spectra in two dimen-
sions using also the cross-order information. In this way, the broad Balmer lines extending
over more than one Echelle order can be fitted as well. For the wavelength calibration we
used a Th-Ar lamp. The wavelengths of its emission lines were taken from a standard list
that was optimized for a resolution of 30000 and kindly supplied by Herman Hensberge from
the Royal Observatory of Belgium in Brussels. All spectra were corrected in wavelength for
nightly instrumental shifts by comparing the positions of a large number of telluric O3 lines
with the corresponding laboratory wavelengths. The accuracy in the radial velocity deter-
mination achieved in this way is of about 70 ms~! for a single spectrum for both target
stars.



Chapter 4

Spectroscopic analysis of RZ Cas

The analysis of the RZ Cas system is based on time-series of high-resolution spectra taken in
two different epochs of observations. We start with the KOREL program (Hadrava 2004a)
to compute the decomposed spectra of the components and to derive an orbital solution that
includes both stars (§ 4.1). A detailed analysis of the disentangled spectra using synthetic
spectra calculated with the SynthV program (Tsymbal 1996) yields the chemical abundances
of the components. The abundances and the derived stellar and system parameters (§ 4.2)
are used as the starting values for a fine-tuning with the Shellspec07_inverse program based
on our assumed model (§ 4.3). A discussion of the obtained results will be given in § 4.4.

4.1 Determination of basic parameters using KOREL

We used KOREL (Hadrava 2004a), a Fourier transform based program that calculates the
optimum orbital elements and the mean decomposed spectra of the components of multiple
systems from a time series of spectra as described in § 2.3.1. From both data sets obtained
in 2001 and 2006, we selected all spectra of S/N>60. The analysis based on the wavelength
range 4950-5680 A. The conversion from the wavelength to the RV scale resulted in 8192
bins of 5 kms™! each, corresponding to a spectral two-pixel resolution of 30 000.

4.1.1 Orbital solutions

We started by analyzing the two data sets from 2001 and 2006 separately, assuming circular
orbits and allowing for variable line strengths in the solution. The upper two panels in
Figure 4.1 show the RVs of the primary (black) and the secondary (red) derived from the
spectra taken in 2001 and 2006 and folded with the corresponding orbital periods. The
solid curves show the calculated orbital solutions, the zero phase corresponds to the phase
of maximum separation. The Rossiter effect in the RVs of the primary at the primary
eclipse is clearly evident. In both 2001 and 2006, a stronger deviation in the RVs from those
expected on the basis of Keplerian motion can also be seen in a broad region around the
secondary minimum. These regions are too extended to be caused by the Rossiter effect
during secondary eclipse. We discuss the underlying effect in more detail in § 4.3. Besides
this large-scale deviation, the RVs obtained from the spectra taken in 2001 show variations
over short ranges in orbital phase that cannot be found in the data from 2006. The bottom
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Figure 4.1: RVs of RZ Cas determined with KOREL, shown for the observations in 2001 and 2006
and folded with the corresponding orbital periods, and for the combined solution folded with the
orbital solution derived from the spectra taken in from 2006.
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Figure 4.2: Line strength variations of the primary (black) and the secondary (red) of RZCas
calculated with KOREL for the spectra taken in 2001 and 2006.
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Table 4.1: Orbital elements of RZ Cas derived with KOREL and by Lehmann & Mkrtichian
(2008a).

2001 2006 combined L&M (2008)
P 1.19501(15) 1. 195232(20) 1.195243(19)  1.1952410(77) d
K 71.55(26) 1.72(25) 72.01(25) 71.311(78) kms~!
Ky 200.50(69) 201 91(60) 199.03(59) — kms™!
q 0.3569(25)  0.3552(23) 0.3618(23) —
T 2193.39011(59) 3866.746(75) 2193.38931(57) 2193.38482(20)
P — — 0.66(39) 0.37(16) sy~
K — — —0.104(87 —0.135(27) kms'y~!

panel of Figure 4.1 shows the RVs of both components for the data obtained in 2001 (black)
and 2006 (red) folded with the period observed in 2006. The observed shift in orbital phase
between the two data sets can be explained by a shift in the orbital period, as we will show
below.

Figure 4.2 shows the variations in relative line strengths during both epochs of observation.
Whereas the increase in the line strength of the secondary during the primary eclipse is
expected from the obscuration of the light of the primary, its decrease during the secondary
eclipse covers a region in orbital phase that is much broader than the duration of the eclipse
and resembles the region of the RV deviations as discussed before.

Table 4.1 lists the derived orbital elements. T refers to the time of primary minimum
(2450 000+). The results obtained by Lehmann & Mkrtichian (2008a) are given for compari-
son. The KOREL program does not allow to determine the errors in the deduced parameters.
For that reason, we applied a separate program based on the method of differential correc-
tions to the RVs derived with KOREL to estimate the errors in the orbital elements. They
are given in Table 4.1 in parentheses, in units of the last digits.

The derived values of the orbital period in the two epochs of observation differ significantly,
as already reported by Lehmann & Mkrtichian (2008a), where the authors determined the RVs
of only the primary from the cross-correlation with a template spectrum. For an additional
check, we computed the orbital solution with KOREL from the combined 2001 and 2006 data
allowing for a linear trend in orbital period and RV semi-amplitudes. We obtained a rate of
period change of P=(0.66+0.39)sy ' and K=(0.104%87)kms~" y~! for the change in RV
semi-amplitudes (Table 4.1). We assume that the large error of P results from the short time
base of 7 days of the observations in 2001 (see also the large error in P obtained from the
2001 data) and, in contrast to the results obtained in Lehmann & Mkrtichian (2008a), that
the variation in the K-values is non-significant. From the difference of 1583 d between the
two epochs of observations we calculate that the orbital period changed by (2.9£1.7) s during
the total period of 5 years.

Alternatively, the period change can also be determined by using the phase shift infor-
mation. In this case, the accuracy does not depend on the duration of the observing periods
but on the time span At between the two epochs. In our case, the period change can be



4.1 Determination of basic parameters using KOREL 35

much more precisely determined in this way. If we observe an orbital period of P in 2001
and of P+AP in 2006 and fold the RVs measured from both epochs with P+AP, we obtain

a phase shift of

2w AP

between the RVs from 2006 and 2001. It follows that

P2 A
AP = 86400-— == 4.2
86400 (4.2)

where AP is in seconds and both the period and epoch difference are in days. In the bottom
panel of Figure 4.1, we folded all RVs in this way using the period from 2006. We observe a
phase shift of A¢/27m = 0.026. Assuming an error in the derived phase shift of 0.001 and an
error in the epoch difference of 10% of the longer period of observations (29 d in 2006), we
deduce an orbital period change of (2.04+0.1)s.

4.1.2 Decomposing of spectra

We used all spectra obtained outside the primary minimum in 2006 to compute the mean
spectrum of the primary, and all spectra outside the secondary eclipse for the mean spectrum
of the secondary. We preferred to use only the spectra from 2006 because the RVs obtained
in 2001 show distortions, presumably related to accretion structures that appeared during or
shortly after a phase of rapid mass transfer. For the secondary, we also rejected all spectra
with a deviation of the individual RVs from the orbital curve larger than 7 kms™! to exclude
the spectra in a larger range around the secondary eclipse where we observed a deviation
of the RV curve from a Keplerian one. Finally, we had 470 spectra of the primary and 247
spectra of the secondary at our disposal to build the decomposed spectra with KOREL.
The composed KOREL output spectra are normalized to the common continuum of both
stars, as it is the case for the composite input spectra. The normalization to the individual
continua was completed by using the wvby luminosities derived from the Stroemgren pho-
tometry of RZ Cas by Mkrtichian et al. (2010). From an interpolation of the uvby luminosity
ratios (the WD solution with hot spot in Mkrtichian et al. (2010)), we derived
Co 51
o= G = ~0.1456+ 4.100 x 10774 X (4.3)
for the wavelength dependence of the continuum flux ratio of the two stars in the considered
spectral range. The decomposed spectra R; have been normalized according to

Rizl—(l—i—ai)(I—R;+Ai>,i:1,2 (4.4)

where aj=a for the primary and ap=a~! for the secondary. A; are the a priori unknown
shifts of the KOREL output spectra (see Hadrava (2004a)). They were first adapted to
provide the best (most reliable) local continua of the normalized spectra and fine-tuned in a
later step of the analysis.
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Figure 4.3: Observed (black) and calculated (red) spectra of the primary (left) and the secondary
(right) of the RZ Cas system.

4.2 Spectrum analysis with SynthV

The synthetic spectra were calculated with the SynthV program (Tsymbal 1996) (see § 2.3.2).
The atomic line list was taken from the VALD database (Kupka et al. 2000). The model
atmosphere for the hot primary was calculated with the LLmodels program (Shulyak et al.
2004) (see § 2.3.3), whereas we used MARCS atmosphere models (Gustafsson et al. 2008)
and included an additional molecular line list taken from the Kurucz CDs (Kurucz 1995) for
the cool secondary. For both the primary and the secondary, we fixed the log g to the values
of 4.35 for the primary and 3.7 for the secondary obtained from the photometry (Lehmann &
Mkrtichian 2008a). We used Tug, v, vsini, and the elemental abundances as free parameters
in general. In the case of the primary, we also iterated the value of the micro-turbulent velocity
Eurb, Whereas it was impossible to disentangle vsini and &b for the late-type secondary
with its non-spherical configuration and not so well determined continuum. We therefore

fixed its micro-turbulent velocity to 2kms™!.

To correct for the unknown shifts A; of the
continua of the decomposed spectra in a more accurate way than described in the previous
section, we used corrections to the already applied shifts as additional free parameters in
the least-squares fit of the observed by the synthetic spectra. The resulting corrections have
always been very small, so in principle they could be neglected.

Figure 4.3 shows the observed and calculated spectra. It shows that the spectrum ob-
served for the primary is almost perfectly fitted. The fit is not as good in the case of the
secondary, mainly because of the larger uncertainties in determining the observed local con-
tinuum of this late-type star. Also the stellar parameters obtained from the best fit of the
spectrum of the secondary are not as well constrained. This comes from the fact that the
spectrum of the cool secondary is dominated by the Fel lines which have a low sensitiv-
ity to temperature changes in the range of 4500 to 5000 K. For the primary, we obtained
vsini=(66.040.5) kms™!, &up=(3.040.2) kms~!, and T.g=(8850425) K, with logg fixed
to 4.35. Table 4.2 lists the deviations of the derived abundances from solar, the mean er-
ror of measurement is 0.03dex. The Si abundance of the primary is depleted by a factor
of 2.5, all other abundances are close to the solar values. For the secondary, we found
vsini=(8142) kms~! and T,g=(48004100) K, with log g fixed to 3.7. Fe is underabundant
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Table 4.2: Derived surface abundances of RZ Cas relative to standard solar values in dex.
Positive values mean enhancement.

primary
C -0.03 O -0.13 Mg +0.14 Si -0.39 Ca -0.13
Sc +0.09 Ti -0.09 Cr -0.08 Fe -0.16 Ni -0.11
secondary
Na +0.2 Mg +0.0 Ca +0.0 Ti +0.1
Cr -0.6 Mn +0.1 Fe -0.4 Ni -0.2

by a factor of about 3 and Cr by a factor of 4, all other abundances are close to the solar
values (Table 4.2). The mean error of measurement is 0.1 dex.

4.3 Spectroscopic modeling of RZ Cas

Lehmann & Mkrtichian (2008a) did a first attempt to model the composite spectrum of
RZ Cas, based on simple approximations like spherical configurations of both stars and Gaus-
sian intrinsic line profiles. In the present work, we use the ShellspecO7_inverse program de-
scribed in Section 2.2 for modeling the spectral line profiles of RZ Cas at arbitrary orbital
phases including the eclipses by taking the non-spherical shape and the gravity darkening of
the secondary component into account. Since the program is based on the Shellspec07 code
that can handle an optical thin accretion disk and a gas stream, we used this possibility to
include circumstellar matter formed in the active phase of the system in 2001 into our model
and to study its effects on the observed line profiles.

4.3.1 Application to the spectra from 2006

According to the conclusion drawn in Lehmann & Mkrtichian (2008a) that the star was in a
quiet state in 2006, we started with the analysis of the mainly undisturbed spectra taken in
2006 by including only the two stars into the model, without considering any effects coming
from the circumbinary matter. We neglect the deviation of the primary from spherical shape
and assume that the secondary fills its Roche lobe and rotates synchronously to its motion
in a circular orbit.

For the analysis, we averaged the 512 spectra of RZ Cas into 100 orbital phase bins
based on the derived orbital period and focused onto the four most unblended, stronger
metal lines, which are Fe I 4957, 5056, 5616, and 5625 A. We already showed the phase-
binned observed profiles of one of these lines folded with the orbital period and the computed
synthetic lines in Figure 2.2. The Rossiter effect is clearly evident in both panels of this
figure as the S-shaped distortion of the line profiles at the phase of the primary eclipse.
Figure 4.4 shows the results obtained by using different gravity darkening exponents for the
cool secondary. We give the surface intensity distribution in the left row of panels. The
intensity is in ergem™2s ! Hz !'rad~! on a logarithmic scale, distances are in units of the
separation of the components. The center row shows the O-C line intensity residuals for the



38 4 SPECTROSCOPIC ANALYSIS OF RZ CAS

Fe T 4957 A profiles obtained in 2006, and the right row those for 2001. For the gravity
darkening exponent of the Roche lobe filling secondary, we first assumed the value of 3=0.08
as predicted by the theory in the case of a star with a convective envelope (Lucy 1967). This
model results in a smooth solution for all orbital phases except for a larger region around
secondary minimum, that appears to be brighter (which means that the calculated line of
the secondary is stronger than the observed one). This brightening, covering about one fifth
of the orbit, corresponds to an attenuation of the light of the secondary, as already found for
the same region by Lehmann & Mkrtichian (2008a) and that can also be seen in form of a
deviation of the RVs from the Keplerian orbital curve in our KOREL solution (Figure 4.1).
The x? of the Levenberg-Marquardt solution including all orbital phases is 2.21.

In the next step, we tried to model the observed deviations in the region around secondary
minimum assuming that they are caused by some intrinsic property of the secondary itself.
The most reliable explanation may be that the star shows a different temperature distribution
on its surface than we assumed in our first model. We therefore examined whether an
adjustment of the gravity darkening exponent would improve the y? of our spectroscopic
solution. Figure 4.4d shows the residuals in the case of 5=0.5 (for a discussion of such an
ultra-high value see Section 4.4). The model fits the observed line profiles in the region
around secondary minimum well but completely fails at phases close to the primary eclipse,
where the calculated line profiles are much too weak and a dark region in the O-C frame
appears. The resulting x? of 2.56 is higher than the value derived for 3 = 0.08.

Finally, we divided the stellar surface of the secondary into two regions by using 3=0.5 for
the hemisphere pointing towards the primary and the normal value of =0.08 for the opposite
side (Figure 4.4¢). The previously bright region around secondary minimum is now almost
perfectly fitted and no difference with respect to the first solution (8=0.08 for the entire
surface) can be seen in the O-C distribution around primary minimum (Figure 4.4f). The
resulting x? is 1.93. The remaining, faint structures in the O-C distribution are caused by the
outermost parts of the wings of the lines of the primary where the observations show a slightly
smoother transition than the calculated profiles, i.e. the sharp edges of the ellipse-shaped
rotation profiles are smeared out in the observed profiles.
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Table 4.3: Parameters of the RZ Cas system derived with Shellspec07_inverse.

Ty Ty loggi logga Ri Ro> M, Mo q a 7
(K) (K) (Ro)  (Ro) (Mo)  (Mo) (Ro)  (deg)
8907(15) 4797(20) [4.35] [3.7] 1.61(1) 1.93 2.01(2) 0.69(1) 0.342(2) 6.59(3) 82.0(3)
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Figure 4.5: Comparison between the observed (black) and the calculated (red) Fe I 4957 A line
profiles. The orbital phase is marked to the right. Primary minimum occurs at phase 0.0.

To each of the solutions shown in Figure 4.4 belongs a set of optimized stellar and system
parameters calculated with ShellspecO7_inverse. Table 4.3 lists the parameters obtained from
the final solution, assuming the two-hemispheres model. The errors of measurement are given
in parentheses, in units of the last digit. The radius of the secondary is derived from the
orbital period obtained from the KOREL analysis and the vsin¢ and represents some mean
value of the radius of the non-spherical secondary. All the obtained values are compared
in Section 4.4 with previously obtained values from the literature. Figure 4.5 shows, for a
certain number of selected phase bins, a comparison between the observed and calculated
line profiles based on the final solution (the line profiles are shifted by a constant value for a
better visualization).

4.3.2 Application to the spectra from 2001

We applied the derived model to the spectra taken in 2001, first without changing any of
the parameter values. Figure 4.41 shows the resulting O-C distribution. We see that the line
profile of the primary observed in 2001 is weaker than in 2006, there is a strong attenuation
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along the full orbit.

We tried to model this attenuation by adding optical thin circumprimary matter of disk-
like structure and constant temperature and density to the model. The density of this disk
of 3.0x107? g cm™3 and the disk temperature of 1050 K were taken from an unpublished
3D-hydrodynamic simulation of the mass-transfer in the RZ Cas system (Mkrtichian et al.
2010), computed with a program written by Nazarenko (Nazarenko et al. 2001). The radial
extension and thickness of the disk were adjusted manually. Finally, we assumed a disk with
a thickness of 3 R (comparable to the diameter of the primary) and a radial extension from
1.6 R (close to the surface of the primary) to 3 Rg. This model allows us to adjust the mean
line strength of the primary for all orbital phases and gives a much better solution of lower
x?2, although many structures remain, as can be seen from Figure 4.4ii. Most obvious is the
difference in line strength of the primary between the two half-orbits around first and second
quadrature. Finally, Figure 4.4iii shows the solution obtained by assuming two different
values of the density of the circumprimary disk of 6.5x107° g cm™3 for the ”bright* line
profiles of the primary and 3.0x107% g cm™3 for the ”dark® part. The large-scale differences
in line strength have been reduced in this way.

4.4 Discussion

By combining several methods based on the KOREL, SynthV, and ShellspecO7_inverse pro-
grams, we have reinvestigated the RZ Cas system based on time series of spectroscopic
observations taken in 2001 and 2006. The new spectroscopic orbits obtained with KO-
REL are based on a different method than those applied in Lehmann & Mkrtichian (2004)
and Lehmann & Mkrtichian (2008a). It combines the measurement of the RVs of both com-
ponents with the use of a wider spectral range, considering all orbital phases. And KOREL
allows to compute the timely variation of line strengths and weights the data accordingly.
Our new solution does not reach the formal accuracy of the orbital elements derived from the
cross-correlation of the lines of the primary with a template as it was done by (Lehmann &
Mkrtichian 2004). On the other hand, the full information from the composite lines formed
in all orbital phases is used. The analysis includes for the first time the secondary based on
the spectra from 2006, and allows for a comparison of the orbital elements derived from the
data from 2001 and 2006.

Based on the observed phase shift between the two epochs of observation, we can de-
termine the difference in orbital period very precisely to (2.04+0.1) seconds. In Lehmann
& Mkrtichian (2008a), the authors also discussed a decrease in the RV semi-amplitudes by
0.6 km s~! between the years 2001 and 2006. They showed that a decrease by such an amount
cannot be explained by mass transfer effects and suggested that the decrease is feigned by dis-
tortions in the RVs measured in the active phase of RZ Cas in 2001. We have confirmed this
assumption. The results of the KOREL analysis show that there is no significant difference
between the K-values obtained from the solutions for the spectra from 2001 and 2006.

We investigate two possible scenarios to explain the observed period change. The first
is based on the mass transfer occuring between the two epochs of observations in 2001 and
2006, the second on the transfer of angular momentum that was stored during the rapid mass
transfer episode in the outer layers of RZ Cas and brought back into the orbit afterward (B-H
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model by Biermann & Hall (1973)). In the following estimations we will use the equations
taken from Biermann & Hall (1973), these equations can also be derived from a paper by
Kruszewski (1966). The first effect, the change of the orbital angular momentum by the mass
transfer, results in an increase dP of the orbital period P by

O\ M

P (M aryam, ws
P M

where d M7 is the mass transferred to the primary and M is the total mass of both components.
Inserting the values for RZ Cas taken from Table 4.3, we obtain dM; = 6.8 - 1076 M. This
is a lower limit of the mass transfer rate assuming conservative mass transfer, i.e. that all
the mass transferred from the secondary will reach the primary and no mass outflow from
the system occurs. If we assume that we observed RZ Cas in 2001 shortly after a phase of
rapid mass transfer and that it was in a quit state until 2006, the mass transfer rate of about
1.4-107% My y~! derived in this way seems to be too high to explain the observed increase in
the orbital period. The second scenario is based on the B-H model and assumes that during
the phase of rapid mass transfer shortly before 2001 a large amount of angular momentum,
transported by the mass flow, was stored in the outer layers of the primary, speeding up
their rotation so that the outer layers rotated supersynchronously with respect to the orbital
angular velocity. The angular momentum J7, that is stored in these outer layers, compared
to the total angular momentum J of the system is

JL_MLM<RL>2“’L (4.6)

)
a w

J MM,

where M7, is the mass of the faster rotating surface layers at a radius Ry, a is the separation
of the components, and wy /w is the synchronisation factor in angular velocity. When the
system goes back to the quiet state, a part dJ of the angular momentum is transferred back
from the rotation of the primary to the orbit and the orbital period increases by

dP dJ

5 = 3 A (4.7)
Narusawa et al. (1994) derived an orbital period of RZ Cas of 1.1952572(6) d, based on the
observations by Nakamura et al. (1991) in 1990. This value precisely agrees with the value
that we obtained from the observations in 2006. So we assume that RZ Cas showed in 1990,
before the phase of mass rapid transfer occured, the same orbital period as after this phase in
2006, whereas in 2001 the period was by 2 seconds shorter. If our scenario as sketched above
is valid, it means that the total amount of angular momentum that was transferred during
the rapid mass transfer episode to the primary was put back into the orbit afterward. Then
we can use Equations 4.6 and 4.7 and set J;, = dJ to derive

1M1M2 a 2 w dP
A= L oy wd? 48
L7383 ™M (RL> wy P (48)

For an estimation of Mp, by order, we set Ry, to the radius of the primary and wr/w =1
and obtain for the mass that was involved in the accelerated outer layers of the primary
My, ~ 6-107° M. This value is about 3 times higher than obtained by Biermann & Hall



4.4 Discussion 43

(1973) from a similar investigation of the Algol-type star U Cep. Both results are of the same
order and, with regard to the different objects and the applied approximations, in a good
agreement.

The analysis of the decomposed spectra of the components of RZ Cas using the SynthV
program resulted in an almost perfect fit of the observed spectrum of the primary by the
computed synthetic spectrum, whereas the spectrum of the secondary could be modeled with
less accuracy. Reasons for this are the lower S/N and the less clearly defined continuum of
the fainter, late-type star, and the fact that the SynthV analysis assumes a spherical star.
We did not find any strong metal underabundance of iron peak elements or A Boo signatures
of the primary component as reported by Narusawa et al. (2006), who found Cr, Ti, Mg
and Fe underabundances of -0.95, -0.45, -0.55 and -0.63 dex, respectively. Both Cr and Ti
have solar abundance within the errors of measurement. The abundances of Mg (4+0.14 dex)
and Fe (-0.16 dex) can also be considered to be close to solar values. The only remarkable
deficiency of -0.39 dex was found for Si (-0.59 dex by Narusawa). We conclude that the
primary component of RZ Cas is a normal A-type star of close to solar abundance.

The application of Shellspec07_inverse to derive stellar and system parameters of RZ Cas
from a non-linear optimization using time series of line profiles was successful in the case
of the relatively undistorted spectra obtained in the quiet phase of RZ Cas in 2006. In the
following, we compare the results obtained from different methods. The spectra decomposed
with KOREL represent the mean spectra of the components from all out-of-eclipse phases.
Its analysis using SynthV is based on the assumption of spherical configurations of both
stars. Shellspec07_inverse includes the composite spectra from all orbital phases and considers
Roche geometry and gravity darkening of the secondary. And it is able to derive the orbital
inclination and the radius of the primary directly from the observed spectra. Since it considers
synchronized rotation and a Roche-lobe filling secondary, it will not give values for the radius
of the secondary or its vsini, however. These values are implicitly given, depending on the
derived mass ratio, orbital separation, and inclination. The effective temperatures of the
two stars were derived by Shellspec0O7_inverse from the analysis of only four Fe I lines. In a
narrow sense, they represent only mean line strength scaling factors for these special lines.
Effective temperatures of the same physical meaning as derived from the decomposed spectra
can be obtained with ShellspecO7_inverse only if we investigate a wider spectral region. This
much more computer time consuming application can be explored in the future by using, for
instance, the least-squares deconvolution (LSD, Donati et al. (1997)) technique to compute
mean line profiles from a wide spectral range.

The following comparison of system parameters is based on Table 4.4. It lists the values
derived from the spectra taken in 2006 and compares them with the results from literature.
Values that were assumed by the authors but not derived are in brackets. Errors in units
of the last digit are given in parentheses. Our value of Teg for the primary of 8907 K is
only slightly higher than those derived from the analysis of the disentangled spectrum but
more than 300 K higher than the value of 8600 K derived by both Maxted et al. (1994)
and Rodriguez et al. (2004b), and also higher than the 8 720 K found byVarricatt et al.
(1998). Based on both the Shellspec07_inverse results and on the analysis of the decomposed
spectrum, we can exclude these lower temperatures. The spectral type that we derive for the
primary using the tables by de Jager & Nieuwenhuijzen (1987) is A2 V. For the secondary, we



44 4 SPECTROSCOPIC ANALYSIS OF RZ CAS

Table 4.4: Parameters of the RZ Cas system from literature and obtained with Shellspec07_inverse.

ref Ty Ts loggi logga Ri Ro M, Mo q a 7
(K) (K) (Ro)  (Ro) (Mo) (M) (Ro) (deg)
A) 8600(100) 4700(200) 4.34(2) 3.73(2) 1.67(3) 1.94(3) 2. 21(8) 0.73(2) 0.331(8) 6 77(1) 83.01(1)
B) [8720] 4257(26) 4.33(2) 3.72(1) 1.69(6) 1.95(6) 2.2(3) 0.73(7) [0.331] 6.8(3) 83.20(3)
C) 8600 4370(60) 4.33(3) 3.72(3) 1.67(2) 1.95(3) 2. 18(7) 0.72(2) [0.331] 6.76(9) 83.1(2)
D) [8600] 4480(13) 4.38(2) 3.73(3) 1.62(2) 1.99(3) 2.28(9) 0.77(3) 0.338(2) 6.87(8) 81.98(5)
E) 8907(15) 4797(20) [4.35] [3.7] 1.61(1) 1.93 2.01(2) 0.69(1) 0.342(2) 6.59(3) 82.0(3)
)

The sources are A) Maxted et al. (1994), B) Varricatt et al. (1998), C) Rodriguez et al. (2004b), D) Soydugan
et al. (2006), and E) the present work

obtain Teg=4 800 K. This value is significantly higher than in all previous findings, except for
the temperature given by Maxted et al. (1994), and would correspond to spectral type G8. We
note, however, that the temperature derived with Shellspec07_inverse represents the effective
temperature of the non-spherical secondary at the pole. The temperature in most parts of
its surface will be lower due to the gravity darkening (see the discussion below). Moreover,
the observed effective temperature in terms of some average value across the surface will
change with orbital phase, as we see from the changing line depths of the secondary around
secondary minimum in Figure 4.4, and so will do the “spectral type”.

The RV semi-amplitudes derived from RVs measured from the line centroids are based
on a model that does not include any non-sphericity effects or effects that occur during the
eclipses (Rossiter effect). KOREL derives the orbital solution from RVs weighted by the
derived line strengths and suppresses in this way the influence of the Rossiter effect on the
orbital solution, but does not consider non-sphericity effects. Shellspec07_inverse derives the
RV semi-amplitudes by considering the effects of non-sphericity on the line shapes as well as
the line asymmetries during the eclipses (eclipse mapping). Thus, it should provide the most
reliable mass ratio of the stars that we determined to 0.342+0.002. This value is clearly higher
than the values between 0.331 and 0.338 determined by previous authors. The derived mass
of the secondary agrees within the errors of measurement with the values derived by other
authors, except for Soydugan et al. (2006). Thus, the higher value of the mass ratio is caused
by the lower value of the mass of the primary of (2.01+£0.02) Mg, that we obtained, and the
smaller separation of (6.59+0.03) Rs. The derived radius of the primary of (1.61+0.01) Rg
and the orbital inclination of (82.0+0.3)° agree well with the values derived by Soydugan
et al. (2006).

Comparing the rotational period of the primary of (1.190£0.013) d derived from the
radius and v sin 4 with the orbital period, we find, within the errors of measurement, that the
primary rotates synchronously.

If we assume that the surface intensity distribution of the secondary is only influenced
by limb and gravity darkening, the most accurate solution is found by applying a gravity
darkening exponent of 0.5 to the hemisphere of the secondary pointing towards the primary,
and the usual value of 0.08 to the opposite hemisphere. We are aware, of course, that
we derived such an exotic value of §=0.5 because we tried to model some inhomogeneous
surface intensity distribution that may arise e.g., from the presence of spots by applying
a law that describes a completely different physical effect. This assumption is supported
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by previous photometric results. Kitamura & Nakamura (1987) found, from a quantitative
analysis of the observed ellipticity effect in nine semi-detached binary systems, that the
gravity darkening coefficient o deduced for the secondaries is significantly larger than unity
(or, with our definition of the gravity darkening exponent f=a/4, that 8 > 0.25). For RZ Cas,
they obtained the unusually large value of the gravity darkening exponent of 0.56+0.04.
Authors wrote that such large values “could not be reconciled by any adjustment of the
physical elements used as the input parameters within the extent of reduction errors”. Unno
et al. (1994) explain the anomalous high correlation of the surface brightness to the surface
gravity on the secondaries of semi-detached systems by the enthalpy transport associated
with the mass outflow from the secondary. Their calculations show that in the consequence
of the mass outflow via the Lagrangian point L; dark spots are formed at low gravity regions
on the front and back sides of the secondary toward the primary. Our improved modeling
of the observations provided by the high value of 3 partly confirms this assumption and
suggests the presence of a large dark spot that dominates the surface region pointing toward
the primary and that may have a smooth transition to the other parts of the surface. If
the reflection effect is taken into account, we expect to measure an even higher value of the
gravity darkening exponent since this effect would brighten in particular the surface covered
by the dark spot. However, we found no evidence of such a cool dark spot on the back side
of the secondary, in agreement with the results by Varricatt et al. (1998) obtained from an
analysis of the J and K band infrared light curves.

The application of the model derived from the spectra taken in 2006 to those from 2001
shows a strong attenuation of the line of the primary, inferring that there is dense circum-
primary matter and that a transient phase of rapid mass-transfer occurred shortly before
the observing period in 2001 as already suggested by Lehmann & Mkrtichian (2008a). The
attempt to model this attenuation by introducing optically thin circumprimary matter of
disk-like structure in ShellspecO7_inverse provided a significantly improved solution of lower
x2. The x? decreases even more if we assume different densities of the disk in two different
regions of the orbit. Our results confirm the suggestion by Lehmann & Mkrtichian (2008a)
that RZ Cas has undergone a transient phase of rapid mass-transfer and that an accretion
annulus around the primary was formed at this epoch. The small-scale, regional structures
of high contrast that remain in the residuals (Figure 4.41iii) point to complex hydrodynamic
structures of the circumprimary matter during the stage of rapid mass transfer that cannot be
modeled with ShellspecO7_inverse without additional input from hydrodynamic simulations.

The results presented in this chapter have been published in Tkachenko et al. (2009).



Chapter 5

Spectral analysis of TW Dra

We investigate the time series of high-resolution spectra of TW Dra taken in 2007 and 2008
using all of the methods that we applied to RZ Cas. The analysis was complicated due to the
presence of a third star in the TW Dra system, however, leading to a necessary adaption of
some of the methods.

5.1 Light from the third component

TW Dra is the bright component of the visual binary ADS 9706. It consists of the unresolved
Algol-type system (components A and B) and a third component in a distance of 3 arcsec.
The observed spectra of TW Dra include an unpredictable amount of light from the third
component, in dependence on the slit orientation of the spectrograph (the field of view of
the Coude spectrograph rotates with the hour angle) and on the seeing conditions during
the observations (the typical seeing was 2 arcsec). Figure 5.1 (left) shows the time series
of line profiles obtained in 2007 folded with the orbital period. The horizontal axis spans
+300 km s~!, the vertical axis gives the orbital phase from -0.25 (bottom) to 40.75 (top).
Line profiles were built by co-adding the 9 most unblended stronger metal lines, which are
Fe I 4958 (narrow doublet), 5456 (narrow doublet), 5616, 5625, 6065, and 6192 A, Ca 16122 A,
and Si I 6371, 6347 A and by averaging the resulting mean line profiles into 50 equidistant
orbital phase bins. From Figure 5.1 we clearly see the varying contribution of the third
component in form of the straight and sharp vertical lines that show no visible RV variation
with the orbital phase. The Rossiter-McLaughlin effect can be seen as the S-shaped dark
feature during primary eclipse (phase zero), and less pronounced during secondary eclipse.
The horizontal gray lines are due to the incomplete phase coverage.

The unpredictable contribution of the third component causes serious complications in
the line profile analysis. Figure 5.1 (right) shows one of the profiles. Here, the contribution
of the third component can be seen as the distortion in the blue wing of the deep line of the
primary. A fit by three Gaussians, e.g., gives only a rough approximation and works only at
orbital phases of largest RV-separation.

46
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Figure 5.1: Left: Time-series of co-added line profiles folded with the orbital period. The horizontal
axis spans +300 km s~!, the vertical axis gives the orbital phase from -0.25 (bottom) to +0.75 (top).

Right: Fit of one composite line profile by three Gaussians (example)

5.2 Determination of basic parameters using KOREL

The KOREL program (Hadrava 2004a) provides a unique possibility to disentangle the un-
predictable contributions of the third component from the observed composite spectra by
calculating the timely varying line strengths in the third component’s spectra. We used KO-
REL to obtain the orbital solution and the extracted spectra of the three components by
using a model that includes the two components of the Algol-type system in its close orbit
and the third component in a wide orbit of practically infinite orbital period. The analysis is
based on the wavelength range 4895-5670 A that is almost free of telluric lines. The separate
KOREL solutions for the years 2007 and 2008 showed that the obtained periods and epochs of
minimum light do not differ significantly from each other. Assuming that the values derived
from the times of minima will be more precise than those attainable from the time sampling
of our spectra, we fixed the epoch of Min I and the orbital period to the values computed
from Zejda’s ephemeris (Zejda et al. 2008) for the middle of all our observations, obtaining
Minl = 2454400.97997, P = 2.8068491 d.

Table 5.1: Orbital elements of TW Dra derived with KOREL.

element primary secondary third
P (d) 2.8068491 (fixed)
T 2454 400.97997 (fixed)
K (km s~1) 64.05(34) 150(2.3)
v (km s71) 0.68(71) 0.7(1.1) 1.93(41)

q 0.427(11)
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Figure 5.2: RVs of the primary and the secondary of TW Dra obtained with KOREL, folded with
the orbital period.
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Figure 5.3: As Figure 5.2 but for the deviation of KOREL-RVs from the calculated orbital solutions,
shown for the primary (top) and the secondary (bottom), for the data from 2007 (circles) and from
2008 (crosses).

5.2.1 Orbital solution

The orbital elements derived with KOREL from the combined data set including the spectra
from 2007 and 2008 are listed in Table 5.1 where T gives the time of Min I. Errors in units
of the last digits are given in parentheses. The computed RVs are shown in Figure 5.2.
For a better visualization, phase zero corresponds in Figures 5.2 to 5.4 to the orbital phase
of largest RV-separation. Figure 5.3 shows the deviations of the obtained RVs from the
calculated orbital solution. Note that this deviation is identical to zero for the majority
of data points which means that in most cases KOREL shifted the corresponding spectra
by exactly the value of the calculated orbital RV to build the decomposed spectra of the
components. For this reason it is not possible to use the RVs computed by KOREL for an
error estimation of the calculated elements. The errors of K; and g as listed in Table 5.1
have been estimated from the y2-distribution obtained from running KOREL with fixed input
parameters on a two dimensional grid in K; and g. Absolute values of the y-velocity have
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Figure 5.4: As Figure 5.2 but for the calculated line strengths, from top to bottom for the primary,

secondary, and third component.

been measured from the decomposed spectra by comparing the positions of a large number
of metal lines with the corresponding laboratory wavelengths.

From Figure 5.3 it can be seen that there is no systematic difference between the data
from 2007 and 2008. We see a pronounced Rossiter effect in the RVs of both stars during the
corresponding eclipses.

Zejda et al. (2010) derived photometric solutions using the two programs FOTEL (Hadrava
2004b) and PHOEBE (Prsa & Zwitter 2005) and obtained the orbital inclinations of 86.°74 +
0.°03 and 87.°10 £ 0.°08, respectively. Using the weighted mean of i = 86.°8 4+ 0.°3 and
inserting the derived elements into

_ PK}(1+q)?

M, - 1.035793- 10 "M,
q° sin” 1
My = gM; (5.1)
PK; (1
gsinzi

we get for the absolute masses and the separation of the TW Dra system M;=(2.01+0.22) Mg,
M5=(0.89+0.07) M, and a=(12.104+0.47) Re.

Figure 5.4 shows the variation of the line strengths with orbital phase computed with
KOREL. The line strengths of the primary have a minimum during primary eclipse and a
maximum during secondary eclipse. As expected, the line strengths of the secondary behave
in the opposite way. The bottom panel of Figure 5.4 shows the more or less random variation
of the line strength of the third component, in dependence on nightly seeing conditions and
orientation of the entrance slit of the spectrograph. Only during primary eclipse where the
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light of the primary is dimmed by more then two magnitudes a pronounced maximum can be
seen. From the line strengths of the primary and secondary of TW Dra we see no systematic
differences between the years 2007 and 2008 but variations on a short-term scale between
different orbital revolutions. We cannot directly decide, however, if the short-term variations
are intrinsic or feigned by the varying influence of the third component.

5.2.2 Normalization of the decomposed spectra

Whereas the orbital elements have been determined using the full data set, it was not possible
to separate the spectra of the three components in this way. The reason is that, due to the
inconvenient time sampling, we always observed a strong ripple (wavelike structure) in the
continua of the decomposed spectra. Only by restricting the calculation to the data obtained
in 2007, the resulting extracted spectra showed sufficiently straight and smooth continua.

Since the individual continua of the KOREL-extracted spectra are a priori unknown, we
have to renormalize the spectra. Let r; be the KOREL output spectra and R; the spectra
normalized to the individual continua, and I; = 1 — r;, L; = 1 — R; the corresponding line
depths. The decomposed spectra are normalized to the common continuum C' of all three
stars, it is

Li=oli, Y =1, i=1.3, (5.2)

where o; = C;/C is the ratio between the continuum flux of component i and the total
continuum C' =) C;.

We want to compute the intensities R; that are normalized to the individual continua Cj.
This nontrivial task that is usually solved by assuming some flux ratio values between the
components approximated from photometry is complicated here by the fact that the third
component’s light contributes in a more or less random way to the spectra. We could solve
the problem by using two advantageous facts. First, we have one spectrum at our disposal
that contains only the light from the third component. It was taken during primary eclipse
under good seeing conditions by guiding the telescope on the third component. We will call
the line intensities of this spectrum R5 . And second, the primary eclipse of TW Dra is a
total one and the spectra taken during Min I do not contain any light from the primary.

In the following we will assume that the wavelength dependence of the continuum flux
ratio along our wavelength region of interest can be neglected. The results will show that
this approximation is justified. From the single spectrum of the third component we find

ag = (l3/L3) (5.3)

where the brackets mean the averaged mean. Concerning the uncertainty in the continuum
levels in the KOREL and in the measured spectra, a more convenient way to normalize the
KOREL spectra is to use a linear regression and o-clipping according to

L§ =a-+ blg (5.4)

where b = 1/a3 and a corresponds to some continuum shift. From the regression, we obtain
«3=0.0840. Figure 5.5 shows a comparison between the single observed spectrum of the third
component and its normalized, extracted KOREL spectrum. The fit is almost perfect.
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Figure 5.5: Comparison of the single, sharp-lined spectrum of the third component (black) with the

renormalized decomposed spectrum (red). The wavelength is given in A.
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Now we know the normalized spectrum of the third component, i.e. Rg and L3. Spectra
observed during the total primary eclipses do not contain any contribution from the primary

and we have ,
Ming _ B2 Co + Ry G5

- 5.5
Cy + Céwm[ ( )

Introducing the ratio ag = Yl /Oy of the continuum fluxes between the third component
in the spectra during primary minimum (note that this contribution varies in a random way)
and the continuum flux of the secondary, we get

Ry = (1 + aé) M Ry (5.6)
This can be transformed by using Eq. 5.2 to

. l , .
(Mind — 0722 +ag (Lg — 1M (5.7)

We used Eq. 5.7 to obtain the continuum flux ratios oo and 04;3 by a least squares fit between
the spectrum ™™ observed during primary minimum, the KOREL-extracted spectrum of
the secondary Iy, and the already renormalized spectrum of the third component L3 and yield
a2=0.100, c3=0.283.
Figure 5.6 compares the spectrum observed during primary minimum (black) and the fit
obtained from
JMint _ 1 azRy — (1 —r) Jag

7 5.8
o (5.8)

(black) that counts for the influence of the third component according to the derived flux
ratios. To visualize the influence of the third component during primary eclipse, we addi-
tionally computed the spectrum shown in Figure 5.6 in red color by setting R3 to unity. The
influence of the third component on the line profiles can be clearly seen from the difference
between the almost perfect fit by the spectrum shown in green and the fit by the spectrum
shown in red color. From the goodness of fit we conclude that it is not necessary to account
for the wavelength dependence of the flux ratios within the given wavelength interval. The
fact that the fit of the spectrum observed during primary minimum as well as those of the
single spectrum of the third component is almost perfect proves that KOREL performs the
separation of spectra very well and that our approach to the problem of renormalization gives
reliable results.

Now we know as and ag, from which we get a;=0.816. The continuum flux ratios with
regard to the primary follow to Cy/C1=0.123 and C3/C1=0.103. Whereas the first value gives
the flux ratio in the observed passband between the secondary and the primary, the second
value is the mean ratio during the observations on/off the slit and does not correspond to

the real flux ratio between the third component and the primary.

5.3 Spectrum analysis with SynthV

We used the normalized, decomposed spectrum of the primary to determine its atmospheric
parameters and elemental abundances. For the calculation of model atmospheres we used the
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Figure 5.6: Fit of the observed spectrum during Min I (black) by the decomposed spectrum of the

secondary (red) and by adding the third component’s contribution (green). The wavelength is given

in A.

program LLmodels (Shulyak et al. 2004) (see § 2.3.3) and for the computation of synthetic
spectra the SynthV code (Tsymbal 1996) (see § 2.3.2). The parameters were derived in an
iterative procedure. We started with the computation of model atmospheres on a grid in Teg
(7500 - 8500 K, steps of 100 K) and log g (3.6 - 4.1, steps of 0.1), based on solar abundances
and a micro-turbulent velocity of é=2 kms™!. From each model atmosphere we computed
synthetic spectra with the SynthV code in the range from 4890 to 5670 A for different v sin i
and compared them with the observed spectrum applying the 2 criterion. In this way
we obtained first optimized values of Ty and logg. In the next step we varied the micro-
turbulence and the abundances of all chemical elements for which we found a contribution in
the observed spectral range, using SynthV to derive the optimum values. These have been
given as new input parameters to LLmodels to compute new model atmospheres, again on a

grid in Ty and logg.

The described procedure was repeated four times, refining the grid in each step and
using AT.g = 25 K, Alogg = 0.02 in the last step. No further changes in x? could be
detected after the third iteration. In this way we finally obtained the best parameters based
on a consistent model atmosphere. Realistic errors of the parameters can only be obtained
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Table 5.2: Elemental abundances of the primary of TW Dra. Values in parentheses give the
deviation from standard solar abundance.

C (@) Mg Si
-3.56 (+0.09) -3.56 (-0.14) -4.16 (+0.35) -4.66 (-0.13)
Ca Sc Ti Cr
-5.63 (+0.10) -8.73 (4+0.26) -7.07 (4+0.07) -6.20 (40.20)
Fe Ni Y
-4.43 (+0.16) -5.61 (40.20) -9.74 (4+0.09)

by computing synthetic spectra on a multidimensional grid of all parameters including the
elemental abundances. Since we had not the computer power to do this, we computed the
error of each single parameter from the x? statistics based on a one-dimensional grid centered
at minimum x? by fixing all other parameters to their optimum values. The errors obtained
in this way are only lower limits.

We obtained Tog=(8150+£20)K, logg=3.8840.02, wvsini=(47.14£0.5)kms~!, and
€=(2.940.3) kms~!. Table 5.2 lists the derived abundances, the error was estimated to
40.03 dex for Fe and £0.05 dex for the other elements. The abundances are close to solar
ones. Slight overabundances have been found for Mg, Sc, Cr, Fe and Ni with 0.35, 0.26, 0.20,
0.16 and 0.20 dex, respectively, while O (-0.14 dex) and Si (-0.13 dex) are slightly under-
abundant. Figure 5.7 shows the best fit of the renormalized, decomposed spectrum of the
primary based on the derived abundances and atmospheric parameters. We conclude that
the primary of the Algol-type system is a normal A-type star.

5.4 Spectroscopic modeling of TW Dra

We used the ShellspecO7_inverse program for the computation of the synthetic, composite
spectra of TW Dra at arbitrary orbital phases. The existence of the third, visual compo-
nent complicates the modeling of the close binary system, as can be strikingly seen from
Figure 5.6. To count for the third light, we implemented an additional subroutine into the
Shellspec07_inverse program. It solves for the problem by means of a least-squares fit in the
sense of

(Robs —o1Re — a2R3)2 — min (5.9)

where Rgps is the observed composite spectrum that includes some random amount of light
from the third component, R, is the spectrum computed by Shellspec07_inverse at the corre-
sponding orbital phase, and Rj3 is the normalized observed spectrum of the third component.
The free parameters a; and s represent two physical parameters: the ratio of the contin-
uum flux from the third component in the spectrum to the continuum flux of the Algol-type
system C3/ (Cy + C2) = ag/aj, and a correction factor for a possibly inaccurate continuum
normalization of the observed spectra 3 = (o + ag) .

We used the LLmodels code (Shulyak et al. 2004) for the calculation of atmosphere models
for the more massive hot primary component and MARCS models (Gustafsson et al. 2008)
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Figure 5.7: Best fit (red) of the decomposed spectrum of the primary (black). The wavelength is

given in A.

for the cool secondary. In the case of the secondary, the molecular line list by Kurucz (Kurucz
1995) was used, additionally to the list of atomic lines taken from the VALD database (Kupka
et al. 2000). Intrinsic line profiles have been calculated with the SynthV program (Tsymbal
1996) on a grid of different temperatures and nine different angles 6 between the line of sight
and the normal of the stellar surface and provided to Shellspec07_inverse.

In the ShellspecO7_inverse calculations we used the elemental abundances and log g of both
stars as derived from the analysis of the extracted spectra to determine the following free
parameters: effective temperatures Tog, , and RV semi-amplitudes K 2 of both components,
vysint and radius R; of the primary, systemic v-velocity, and orbital inclination ¢. For
the cool secondary we assumed synchronous rotation and Roche-lobe filling geometry; the
deviation of the shape of the primary from sphericity was neglected. For the analysis we used
mean profiles built from the four Fe T lines at 4958, 5056, 5616, and 5625 A and averaged
them into 100 orbital phase bins calculated with P=2.8068491 d and Min 1=2454400.97997
as given in Section 5.2.

Figure 5.8 shows in its upper part the observed and synthetic line profiles for the spectra
from 2007. Each column corresponds to one orbital phase binned, composite line profile. The
vertical dark stripes indicate gaps in the phase coverage. The phase of primary minimum
was shifted to 0.25 for better visualization. At this phase, strong distortions of the line of
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Figure 5.8: Top: Fel 4957 A line profiles of TW Dra observed in 2007 (left) and calculated with
Shellspec07_inverse (right), folded with the orbital period. Bottom: O-C line intensity residuals of
the fit of the spectra taken in 2008 (left) and the corresponding y>2-distribution (right).

the primary due to the Rossiter effect can be seen. The lower part compares the O-C line
intensity residuals of the fit with the corresponding y2-distribution that is independent of the
S/N of the data and used, like in the case of RZ Cas, as the measure of the goodness of fit.

The finally derived stellar and system parameters are listed in the last row of Table 5.3
that will be used in the next section for a comparison with previous determinations. Figure 5.9
compares selected calculated line profiles with the observed ones. Each profile is shifted by
a constant value for a better visualization, the orbital phases are given to the right. As
can be seen from Figures 5.8 and 5.9, our model matches the observations very well and
there are no obvious differences between the results obtained from the data from 2007 and
from 2008. The resulting mean value of x? is 1.47 for the spectra from 2007 and 1.77 for
those from 2008. Only during primary eclipse a small bright region can be seen in the O-C
distributions, the computed line strengths are stronger than the observed ones in this case.
Figure 5.10 allows for a closer look at this problem. It shows, for a single profile observed
during primary eclipse, that the line core of the computed fit is clearly too strong compared
to the observed one, whereas all other parts of the line are well fitted. When we compare the
observed spectrum with the spectrum computed by Shellspec07_inverse without including the
third component, we see a large offset in the continua. This offset comes mainly from the
fact that TW Dra is by 2 mag fainter during the total eclipse so that the light contributions
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Table 5.3: Compilation of parameters of the RZ Cas system from literature and the values obtained
with ShellspecO7_inverse (see text for a detailed explanation).

ref T} T loggr loggs R M, M, q a i

(X) (X) (Ro) (M)  (Mo) (Ro) (deg)
A) 2.4 1.9 0.82 0.43 12.0
B) 1.7 0.80 0.47
C) 8060 4450 2.4 0.47 86.1(2)
D) 2.5 12.0
E) 8180 4407 396 3.23 253(3) 2.11(5) 0.85(2) 0.403(2) 12.0124(3) 87.13(3)
F) 8160(15) 4538(11) 3.88 3.25 2.58(2) 2.2(1) 0.90(5) 0.411(4) 12.2(2) 86.8(3)

The sources are A) Kopal & Shapley 1956, B) Popper 1978, C) Giuricin et al. 1980, D) Al-Naimiy &
Al-Sikab 1984, E) Zejda et al. 2010, and F) this work.

from the secondary and the third component become of the same order, and possibly from
an inaccurate normalization of the observed late-type spectrum at this phase. Normally,
both problems should have been solved by including the observed spectrum of the third
component into the calculations by means of the least-squares fit described before. Since the
structure of the overestimated part of the computed profile resembles the line core of the
third component, we assume that our fitting procedure overestimates the light contribution
from the third component in this special case, but do not have an explanation why.

5.5 Discussion

We derived the orbital solution by means of the KOREL program based on all spectra of
TW Dra taken in 2007 and 2008. It was not possible to separate the spectra of the individual
components using the full data set, however, wavelike structures appeared in the computed
continua of the extracted spectra in this case. We assume that this behaviour is caused by the
time sampling of the spectra that includes a large gap between the two epochs of observations.
Only by restricting the calculations to the data from 2007 were we able to obtain the straight
and smooth continua shown in Section 5.2.

The almost perfect fit achieved for the observed spectrum of the third (visual) compo-
nent of TW Dra shows first that the KOREL program delivers reliable results with respect
of the separation of the observed, composite spectrum into the individual spectra even in
our very special case of three components, where the contribution of one component shows
unpredictable changes. And second, that our approach to renormalize the spectra works well.

In the framework of this renormalization we obtained the specific flux ratio between sec-
ondary and primary of 0.123, valid for a central wavelength of 5300 A. Zejda et al. (2010)
derived the wavelength dependent flux ratio between the components from UBVRI photom-
etry using different methods like FOTEL (Hadrava 2004b) and PHOEBE (Prsa & Zwitter
2005), with the detached system and the Algol-type option in the second program. In Fig-
ure 5.11 we show the flux ratios resulting for the different passbands versus wavelength,
together with our spectroscopically derived value. It can be seen that our value fits well into
the diagram.
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Figure 5.11: Flux ratios between secondary and primary of TW Dra obtained by Zejda et al. (2010)
from UBVRI photometry using FOTEL (circles) and PHOEBE (squares for detached systems, trian-

gles for Algol-type systems), and our value (asterisk).

The Shellspec07_inverse program has been used to optimize the stellar and system pa-
rameters of the TW Dra system. The existence of the third component in the system strongly
complicated the modeling of the close binary, however. Table 5.3 collects all the parameters
derived in the present work, together with the values that can be found in the literature.
The errors of measurement (if known) are given in units of the last digit in parentheses. The
effective temperature of the primary of 8 160 K derived with Shellspec07_inverse is consistent,
within the errors of measurement, with that obtained from the analysis of the decomposed
spectrum. It is also in good agreement with the value of 8 180 K found by Zejda et al. (2010).
Since the SynthV program used to compute the synthetic spectra does not consider the effects
of non-sphericity and gravity darkening of the cool secondary, we did not estimate its temper-
ature from its decomposed spectrum but determined it only with Shellspec0O7_inverse. The
resulting Tog of 4540 K is about 100 K higher than given by Zejda et al. (2010) and Giuricin
et al. (1980). The radius of the primary of 2.58 Ry is in good agreement with the values
of 2.53 Re and 2.50 Rg found by Zejda et al. (2010) and Al-Naimiy & Al-Sikab (1984),
respectively. For the orbital inclination we derive 86°8, a value lying in between the values
given by Zejda et al. (2010) and Giuricin et al. (1980).

Whereas the scatter in the separation of the components derived by different authors is
small, there is a large scatter in the mass ratios. The values of the absolute masses and
of the mass ratio determined in the two most recent investigations (Zejda et al. (2010) and
this work), on the other hand, agree well within the errors of measurement. The RV semi-
amplitudes of K7=(64.040.02) kms~!, Ky=156+1 kms~!, the projected rotational velocity
of the primary vsini=(49.940.2) kms~! and the systemic velocity y=(—0.84:0.1) kms™!
derived with Shellspec07_inverse are consistent with those obtained from the KOREL orbital
solution and from the analysis of the decomposed spectrum of the primary. From the derived
radius of the primary and its vsini we obtain a rotation period of P,o=(2.62+0.03) d.
Thus, the primary rotates supersynchronous, its rotational angular velocity is by a factor of
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(1.07£0.01) faster than the orbital one. For the secondary, we assumed synchronized rotation
and a Roche-lobe filling configuration. We determined in the equatorial plane the three radii
Rpoint=5.00 R, Rpack=4.02Re, and Rgq.=3.62 Ry so that the local vsini varies between
65 and 90 kms™!. Ryole is of 3.47 Ry, and for the effective radius of the secondary that
approximates the spherical case we estimate 3.7 Rg.

We compared the obtained stellar parameters with standard values given by Schmidt-
Kaler (1982) and used the tables by de Jager & Nieuwenhuijzen (1987) for the temperature
calibration to deduce spectral types and evolutionary states. The derived temperature of the
primary corresponds to spectral type A5 for a mean sequence or slightly evolved star. The
derived mass is in agreement with this assumption. According to the obtained radius and
log g the primary is slightly evolved. From the mass, radius, and log g of the secondary we
conclude that it is a subgiant, and the derived temperature gives spectral type K1.

The line profile fit shown in Figure 5.9 and the O-C value distributions shown in Figure 5.8
are based on the parameters as listed in the last row of Table 5.3. From both Figures it can
be seen that our model matches the observations very well. Only during primary eclipse
we observe a discrepancy between the model and the observations (Figure 5.10), as already
discussed in the previous paragraph. We checked for two possible explanations of the observed
effect: first, the problem could be solved if there would exist some additional light source
acting only during primary eclipse. But any hot spot of arbitrary size on the surface of the
secondary pointing towards the observer (away from the primary) or other source of such
additional light could be seen from a large range in orbital phase around primary minimum.
And we can fit the observed profiles perfectly without such an assumption in all orbital phases
except for the primary minimum. Second, some of the derived system parameters could be
wrong. There are three parameters that influence the line shape in particular during primary
minimum: the radius of the primary R;, the orbital inclination i, and the inclination ¢ of the
rotation axis in the tangential plane of the observer (¢ is measured in a plane perpendicular
to those of 7). It is possible to reproduce the line profiles observed during primary eclipse by
adjusting R; or ¢ accordingly. But in both cases we end up with a partial eclipse instead of
a total one. And in case of a changed orbital inclination, the fit is worse in the out-of-eclipse
phases, due to the fact that it changes the mass of the primary and the separation between
the components. The third parameter is also out of question because any deviation of the
rotation axis from 90° causes asymmetric line profiles (see Section 1.6). Actually, we cannot
give an explanation for the overfitting of the line profiles during the primary eclipse.

There are no obvious differences between the results obtained from the spectra taken in
2007 and in 2008. The resulting mean value of x? is 1.47 for the spectra from 2007 and 1.77
for those from 2008. We assume that TW Dra was in both epochs in a quiet state without
showing any signs of rapid mass transfer.

The results presented in this chapter have been published in Tkachenko et al. (2010).



Chapter 6

The spatial filtration effect

One of the reasons that the oEA stars are outstanding objects for asteroseismic investigations
(see § 1.4.2) is the occurrence of the spatial filtration effect observed during the eclipse of
the oscillating primary component. The secondary component acts then as a spatial filter
and produces characteristic amplitude and phase changes in the brightness and line profile
variations, in dependence on the observed oscillation modes. Unno et al. (1989) were the
first who suggested to use the spatial filtration effect for a mode identification in oscillating
eclipsing binaries. As described in Chapter 1, this method was photometrically applied to the
oEA stars AB Cas (Rodriguez et al. 2004a) and RZ Cas (Gamarova et al. 2003) to identify low-
degree modes. An extended work describing the photometric investigation of the screening
effect was published by Reed et al. (2005). The first who detected the spatial filtration effect
spectroscopically were Lehmann & Mkrtichian (2008a), investigating the RZ Cas system.
Our spectroscopic investigation of the spatial filtration effect is based on numerical sim-
ulations. It is included into the thesis to give an outlook on what can be achieved by a
future implementation of non-radial pulsations into the Shellspec07_inverse program and by
its application to oscillating eclipsing binary stars when the program will run as a parallelized
code on a cluster PC. Our actually available computer power does not allow to include the
non-radial pulsations with all of their physical implications into the already computing time
consuming Shellspec07_inverse program to derive pulsation parameters from the observed
time series of spectra. That is why we had to restrict our calculations by using a simple
approach and by applying it to integral values obtained from the spectra like the RVs.

6.1 Numerical simulations

Our calculations cover half of the orbit, including the two phases of largest RV separation and
the primary eclipse. We compute synthetic line profiles based on the parameters determined
for RZ Cas as listed in Table 4.3. In this first, simple approach we consider only the surface
velocity field perturbations introduced by the non-radial pulsations and neglect the influence
of the temperature and projected surface area perturbations on the line profiles. This is a
relatively rough approximation with respect to the temperature, whereas the surface area
perturbations are a third order effect, as it is shown by Townsend (1997). With regard to the
strong tidal interaction in semi-detached systems, we assume that the pulsation (or rotation)
axis of the primary is aligned with the normal to the orbital plane. The light contribution of

61
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Figure 6.1: The radial velocity field on the surface of the primary for a sectoral (=4 mode during

primary eclipse, shown for the orbital phases -0.05 (left) and +0.05 (right). Yellow and blue regions

indicate positive and negative RVs, respectively.
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Figure 6.2: The orbital RV curve around primary eclipse showing the Rossiter effect (black) and the

same curve additionally perturbed by a sectoral [=3 oscillation mode (red).

the secondary is set to zero, which can be done easily because the Shellspec07_inverse program
works with pre-computed line and continuum fluxes. In the result, we simulate the influence
of the secondary moving in a Keplerian orbit with the oscillating primary and acting during
the eclipse phases as a black disk that causes the timely variable obscuration of the primary
(Figure 6.1). The orbital period of RZ Cas is roughly 1.2 d, the total duration of the primary
eclipse is of about 0.2d, and the three pulsation modes observed in 2006 spectroscopically
(Lehmann & Mkrtichian 2008a) are roughly 57, 62, and 64 cd~!. Thus we observe between
11 and 13 oscillation cycles during one eclipse. To obtain a sufficient resolution, the step
width of our calculations was chosen in a way that one pulsation cycle covers 14 steps. All
calculations are based on an intrinsic pulsation velocity amplitude of 15 kms™!. The absolute
amount of this velocity amplitude will play no role in the interpretation of the results as long
it is small compared to the rotation velocity, because at the end we will compare only relative
values. After computing the synthetic spectra in the different orbital phases and on a grid of
different combinations of (I,m) wavenumbers, we determine the RVs of the primary as the
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Figure 6.3: Time series of line profiles computed over one pulsation cycle of a sectoral [=3 mode
(left) and the corresponding RVs measured from these lines (right) at out-of-eclipse phases (top) and
at in-eclipse phases (bottom).

center of gravity of the line profiles by calculating its first moments.

Figure 6.2 shows the RVs computed in this way from line profiles that are perturbed (red)
and unperturbed (black) by non-radial oscillations, in this case by a sectoral [=3 mode. The
obtained RVs are then corrected for the Rossiter effect by subtracting the RVs calculated
from the unperturbed profiles from the perturbed ones, in our example by subtracting the
black curve from the red one. Figure 6.3 shows in its left panels time series of line profiles
computed for a sectoral [=3 mode at out-of-eclipse and at in-eclipse phases. In the first case
we see the distortions introduced by the pulsation as bumps traveling across the line profile.
The RVs calculated from the first moment of the line profiles are shown in the right panel.
During the eclipse phases, in the result of the timely varying obscuration of the primary, the
line profiles are dominated by the sharp line core that moves from blue to red. The right
panel shows the RVs after subtracting the RVs measured from the unperturbed profiles at
the same eclipse phases. In the result of this subtraction we obtain pure pulsation RV curves.
Figure 6.4 shows two examples. In the left panel we see the amplitude amplification of the RV
variations during primary eclipse as we found to be typical for all zonal and tesseral modes in
the case of a partial eclipse. There is one maximum centered at the time of minimum light.
For all the sectoral modes, and only for these, we observe a double-peaked behavior. The
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Figure 6.4: RV curves corrected for the Rossiter effect and folded with the orbital period. The
primary minimum occurs at phase zero. Left: For a zonal (I, m)=(1,0) mode. Right: For a sectoral
(I,m)=(3,3) mode.

strongest amplification is observed during the first and the last parts of the eclipse outside
its central part (Figure 6.4 right).

In practice, we will measure the amplification of the RV variations by determine the
RVs from the observed spectra. In this case, we have to compensate for the Rossiter effect
in a different way. Lehmann & Mkrtichian (2008a), for instance, did this by removing the
distortions by the Rossiter effect by removing nightly trends from the RVs observed for
RZ Cas. Such a procedure will work as long as the pulsation period is much shorter than the
duration of the eclipse.

In the following, we search for systematic correlations between stellar, system and pul-
sation parameters and the amplitudes of the oscillation modes. Since RV measurements are
only sensitive to low-degree modes, we limit our calculations to [ <4. The results will be
shown for prograde modes (m >0) only, but they are valid for retrograde modes as well
because no dependence on the direction of the propagation was found. To determine the re-
lationship between the amplitudes of the oscillation modes and the fraction of the primary’s
surface that is obscured by the secondary during the phase of minimum light, we consider
three different orbital inclinations of ¢+ = 68°, 75°, and 82°. The last value corresponds to
the orbital inclination of RZ Cas. Figure 6.5 gives an impression of the fraction of the visible
surface of the primary that is covered by the secondary at the center of the primary eclipse

for the three different inclinations.

6.2 Results

As mentioned above, we restricted our calculations to I < 4. The numerical simulations
showed, however, that for [=4 the resulting RV amplitudes at the out-of-eclipse phases are
very small and of low accuracy, insufficient to derive reliable amplification factors. Thus
we give the results for [=4 only for the eclipse phases, where the corresponding amplitudes
are enhanced by the spatial filtration effect and become measurable. Figure 6.6 shows a
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Figure 6.5: The radial velocity field on the surface of the primary for a sectoral /=4 mode at the

center of the primary eclipse for orbital inclinations of 68°, 75°, and 82° (from left to right).

compilation of the results obtained for different non-radial pulsation modes in dependence
on the orbital inclination. It shows in the first row the RV amplitudes calculated at the
out-of-eclipse phases. The different (I, m) combinations are marked to the right. The second
row shows the maximum amplitudes calculated during the primary eclipse. The third row
shows the corresponding amplification factors which we define as the difference between the
maximum amplitude during the eclipse and the amplitude at out-of-eclipse phases, normalized
to the latter one. The columns represent the results for zonal, sectoral, and tesseral modes
(from left to right).

Before we interpret the behavior of the different modes in Figure 6.6, we have to mention
that a different inclination of the orbit always also means a different inclination of the rotation
axis of the pulsating star. Thus the behavior of the modes in the out-of-eclipse phases for
different inclinations of the orbit results only from the different inclinations of the rotation
axis of the star. The pulsation amplitudes observed during the eclipses, on the other hand,
are influenced by the inclination of the rotation axis as well as by the different fractions of
the surface of the primary that are covered by the secondary for different orbital inclinations.

Mkrtichian et al. (2004) showed (see § 1.4.2) that for all eclipsing binaries that are seen
nearly equator-on all oscillation modes with [+|m|=odd are smeared out in the disk inte-
grated light which restricts the number of pulsation modes that can be observed at out-
of-eclipse phases. Our results confirm this conclusion, as we can see from the first row of
Figure 6.6. All modes with odd combinations of [ and m show low amplitudes at large in-
clinations. We further see that the sectoral modes of lowest degree (I=1) give rise to the
largest amplitudes, followed by the (I, m)=(2,2) mode. All sectoral modes show an increase
of the amplitudes with the inclination of the rotation axis, but this increase is only small.
Also the zonal (I, m)=(2,0) mode shows this behavior, whereas all the modes with odd [, m
combinations behave in the opposite way, the amplitudes decrease with increasing inclination
of the rotation axis, confirming the conclusion by Mkrtichian as mentioned before.

Although there are some exceptional cases like the (I,m)=(2,0) mode, one can say that in
general the amplitudes outside the eclipse decrease with increasing [, as it is expected from a
calculation or observation in the disk-integrated light. For a given [, the sectoral modes show
the largest amplitudes if the star is seen nearly equator-on. The behavior is more complex in
the case of lower inclinations, where e.g. the (I,m) = (3,2) mode shows a larger amplitude
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Figure 6.6: RV amplitudes at out-of-eclipse phases (top) and during the eclipses (center row), and

the corresponding amplification factors (bottom) versus orbital inclination. The results are shown for

zonal, sectoral, and tesseral modes (from left to right).
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than the (I, m) = (3,3) mode.

From Figure 6.6 it can be seen that in most cases the amplification of the RV amplitudes
is largest if the star is seen nearly equator-on, which is expected when a larger fraction of
the primary’s surface is eclipsed by the companion and the spatial filtration effect works
more efficiently. Only for the (I,m)=(3,0) mode, the maximum amplification occurs at a
lower inclination of 75°. In the case of the sectoral modes, the (=3 mode which shows the
smallest amplitudes outside the eclipse, is the most enhanced one. Such a behavior can also
be observed for the modes with odd [, m combinations. These are the weakest modes in the
out-of-eclipse phases and show the strongest amplification during the eclipse. Thus, due to
the spatial filtration effect, we can detect also non-radial pulsation modes during the eclipse
which amplitudes may be below the detection limit outside the eclipse. For that reason
we included in the middle row of Figure 6.6 also the [=4 modes, although their amplitudes
outside the eclipse are near to zero, which prevented us from calculating reliable amplification
factors for these modes.

On the other hand, the appearance of pulsation modes during the eclipse phases that
cannot be detected outside the eclipse may complicate an identification of the modes from the
observed amplification factors alone. But there are additional possibilities to come to a unique
identification. First, we found that only the sectoral modes show the double-peaked behavior
in their RV-curves during the eclipse as it is illustrated in the right panel of Figure 6.4. The
zonal and tesseral modes show only one peak centered at the phase of minimum light. In this
way we detected a unique tool to distinguish the sectoral modes from all other modes. And
second, we will have the information from the analysis at the out-of-eclipse phases by the
usual mode identification techniques like the moment method (Balona 1986; Briquet & Aerts
2003) or the pixel-by-pixel method (Gies & Kullavanijaya 1988) which are both included in
the FAMIAS program package (Zima 2008). One will use in general all possible information
available from photometry and spectroscopy and apply a combination of various methods.
The investigation of the spatial filtration effect adds on method more and can give additional
constraints on the possible [, m combinations.

Finally, we want to mention that we found one mode, the (I,m) = 2,0 mode, that shows
no amplification of its RV variation at all, independent of the orbital inclination. The RV
oscillations are damped at the very center of the partial eclipse, but not enhanced. Actually,
we have no explanation why one of the zonal modes shows such a different behavior.



Chapter 7

Conclusions

Asteroseismology is a young and powerful domain in modern astrophysics allowing for prob-
ing the interiors of the stars by the interpretation of the frequencies, amplitudes and phases of
their non-radial oscillation modes. Besides a unique mode identification in terms of n,[ and
m quantum numbers, the precise knowledge of stellar parameters like mass, radius, effective
temperature, gravity, and metalicity is needed for a subsequent construction of an astero-
seismic model of a star. The best way to get as much information about stellar parameters
as possible and to be able to compare the results obtained from two independent methods
is to combine spectroscopic and photometric observations. There is a lack of appropriate
programs for a complete analysis of spectroscopic data, however. The aim of this work was
twofold. First, to establish a computer program that is capable of analyzing the composite
spectra of double-lined, eclipsing binaries taken in all orbital phases including the eclipses
and of deriving optimized stellar and system parameters from this analysis. And second, to
use the program for a detailed investigations of the two oEA stars RZ Cas and TW Dra.

In the first step, we developed the new computer program ShellspecO7_inverse that solves
the inverse problem of finding stellar and system parameters of eclipsing binaries from ob-
served time-series of high-resolution spectra. Shellspec07_inverse analyses the full information
content of the line profiles observed at all orbital phases, including the eclipses. It counts
for the non-sphericity of the Roche lobe filling secondary and uses an improved modeling
of the gravity and limb darkening effects. The desired parameters like effective tempera-
tures, masses, radii and vsini of the components, its separation, or the orbital inclination
are calculated by means of a non-linear optimization procedure using a fast version of the
Levenberg-Marquardt algorithm. To derive the necessary input parameters, we additionally
used the KOREL and the SynthV programs together with the LLmodels code.

The KOREL program delivered precise orbital solutions for both target stars. In the case
of RZ Cas, we find that the orbital period increased by (2.0+0.1) s between the two epochs of
observations in 2001 and 2006. A significant change in the RV semi-amplitudes of RZ Cas as
presumed by Lehmann & Mkrtichian (2008a) could be excluded. The increase of the orbital
period can be explained by the transfer of the angular momentum that was stored during
the rapid mass transfer episode in 2001 in the accelerated rotation of the outer layers of the
primary back to the orbit. No differences could be found between the orbital elements of
TW Dra derived from the spectra taken in 2007 and 2008. The advantage of the KOREL
program to calculate time-dependent relative line strengths was in particular useful to handle
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the unpredictable light contributions of the third component in the spectra of TW Dra. Due
to the fact that we had two special spectra of the components at our disposal - the single,
observed spectrum of the third component and the spectrum of TW Dra observed during the
total eclipse, we could show that our approach of the renormalization of the KOREL output
spectra works well. At the same time we really proved, may be for the first time, that the
decomposing of spectra with KOREL gives reliable results.

The decomposed spectra of both stars have been analyzed with the SynthV program
based on atmosphere models computed with LLmodels for the hot primary components and
on MARCS atmosphere models for the cool secondaries. By an iterative adjustment of the
atmospheric parameters, in particular of the elemental abundances, to the observed spectra
and a recalculation of the atmosphere models we ended up with consistent model atmospheres
and synthetic spectra. The obtained fit of the decomposed spectra of the hot primaries of
the two stars was almost perfect. In the case of the late-type secondaries, the less precise
determined local continuum and the fact that SynthV assumes a spherical configuration of
the stars lead to a lower but still reliable quality of the fit. In the result of the abundance
analysis we could show that the primary of RZ Cas has abundances that are close to the
solar ones. Only silicon is depleted by a factor of 2.5. The secondary of RZ Cas shows an
underabundance of Fe and Cr by factors of 3 to 4 and may have a lower metalicity by -0.5
dex compared to the sun. A slightly enhanced metalicity of about +0.15 dex was found for
the primary of TW Dra. For the secondary we assumed solar abundances. We can say in
general that the primaries of both systems are normal A stars with abundances close to the
solar values. In particular, we did not find any A Boo signatures of the primary of RZ Cas as
reported by Narusawa et al. (2006).

The orbital elements derived with KOREL and the stellar parameters obtained from
the analysis of the decomposed spectra have been used as starting values for the Shell-
spec07_inverse program. By means of this program we fine-tuned the stellar and system
parameters based on the observed composite spectra of the spectroscopic binaries in all or-
bital phases and taking the non-spherical shapes of the Roche-lobe filling secondaries and
the resulting gravity darkening into account. Whereas the spectra of TW Dra could be well
fitted by assuming a value of the gravity darkening exponent of §=0.08 as predicted for a
star with a convective envelope (Lucy 1967), we had to use for the hemisphere of RZ Cas that
points toward the primary the ultra-high value of 3=0.5. The latter finding partly confirms
the results by Varricatt et al. (1998), who derived for RZ Cas $=0.56 as a global value from
photometry. On the other hand, such a high value cannot be interpreted in terms of some
unusual gravity darkening. Owur interpretation is that the secondary of RZ Cas exhibits a
large cool and dark spot centered on its surface at the inner Lagrangian point, as already
pointed out by Unno et al. (1994). The authors calculated that cool dark spots should appear
in the low-gravity surface regions of the secondary of Algol-type systems in the result of the
enthalpy transport via the inner Lagrangian point. They expected two spots in this way, one
pointing toward the primary, and the other on the opposite side. According to our results,
RZ Cas shows only one such spot pointing toward the primary, both in its quiet state in 2006
and in its active phase in 2001. No hints to any unusual gravity darkening were found for
TW Dra.

Our usage of the two-dimensional O—C line intensity residual distributions shown in § 4.3.1
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and Section 5.4 was twofold. First, we used the integrated value as a measure of the goodness
of the fit. And second, the two-dimensional representation allowed us to see all the effects
that were not covered by our model. In the case of TW Dra we ended up with very smooth
fits for both epochs of observations in 2007 and 2008, pointing to quiet states of the system
in both years. The same result we obtained from the analysis of the spectra of RZ Cas
taken in 2006. In all these cases it was not necessary to include Algol-typically effects like
a gas stream or an accretion annulus into the calculations to improve the results. When
we applied the model obtained for RZ Cas from 2006 to the spectra from 2001, however, we
saw that the model does not fit the observations. Although the results could be improved
by introducing an accretion annulus of varying density into the calculations, orbital phase
dependent structures in the O—C distribution remained. This result confirms the assumption
by Lehmann & Mkrtichian (2008a) that RZ Cas was observed in 2001 in or shortly after an
episode of rapid mass transfer, leading to a complex distribution of circumbinary matter that
cannot be explained by our simple model.

In most cases, the finally obtained stellar and system parameters agree well with those
previously found from photometry. In the case of RZ Cas, the mass of the primary and
the separation of the components are slightly smaller, whereas the temperatures of both
components are higher. All other system parameters agree with at least one of the pre-
vious determinations. For the primary, we deduce a spectral type of A2V. Based on our
results obtained from the analysis of the decomposed spectrum of RZ Cas as well as from
Shellspec07_inverse we can exclude the lower temperatures that lead to spectral type A3 as
derived by the other authors. Because of the large cool spot, expressed in our model by the
ultra-high gravity darkening exponent, we can not define a spectral type for the secondary.
The derived effective temperature at the pole of 4800 K would correspond to spectral type
GS8III.

Comparing the values of the rotational period of the primary derived from the radius
and the vsin¢ with the orbital period, we find, within the errors of measurement, that the
primary of RZ Cas rotates synchronously, the synchronization factor follows to 1.00£0.01.
For TW Dra, we obtain about the same accuracy in deriving the synchronization factor and
can show that its rotational angular velocity is (1.074+0.01) times faster than the orbital one.

For TW Dra, all spectroscopically derived parameters agree very well with those from
the most recent photometric investigation by Zejda et al. (2010) using the Wilson-Devinney
program. In cases of the radius of the primary and the orbital inclination, we reach the same
accuracy as obtained from photometry. For the masses and the mass ratio, the derived errors
are about twice the photometric errors. According to the obtained stellar parameters, the
primary of TW Dra is a slightly evolved A5V star and the secondary a K11V subgiant.

The results of the analysis of the two oEA stars using the newly developed computer pro-
gram Shellspec07_inverse showed that the stellar and system parameters can be derived with
high accuracy, comparable to that achieved with the WD code from the light curve analysis.
A necessary precondition was, of course, that we had extended time-series of high-resolution
spectra of a good orbital phase coverage at our disposal. This fact encouraged us to think
about a further development of the program by including the line profile perturbations due to
the non-radial pulsations with the aim to derive the stellar and system parameters together
with the amplitudes, phases, and [, m wavenumbers of the pulsations from the observed spec-
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tra. Actually, the available computer power (single PCs using a LINUX platform) is not
sufficient to realize such a project, however. Nevertheless, we did a first attempt to check
for the influence of the pulsations onto the computed line profiles by restricting our calcu-
lations to a simple model, including only the radial velocity field perturbations due to the
non-radial pulsations and did not try to solve the inverse problem of the determination of the
parameters from the observations. After some attempts to show the influence of the spatial
filtration effect on the oscillations observed in the light curves of pulsating eclipsing binaries
(e.g., Gamarova et al. (2003), Rodriguez et al. (2004a), Reed et al. (2005)), our spectroscopic
investigation is the first systematic search for similar effects in the line profiles.

In the result of the numerical simulations we find relationships between the RV ampli-
tudes in the out-of-eclipse and eclipse phases and the different non-radial pulsation modes
in dependence on the inclinations of the rotation axis and the orbital plane. Our most im-
portant finding is that the modes that show the lowest amplitudes outside the eclipse are
most amplified by the spatial filtration effect during the eclipses. We conclude that we can
observe in this way non-radial pulsation modes during the eclipses whose amplitudes are nor-
mally below the detection limit. This is in particular the case for the oscillation modes with
I+ |m| = odd. Their influence on the line profiles is smeared out in the disk-integrated light
outside the eclipses as also found by Mkrtichian et al. (2004) but strongly amplified during
the eclipse phases if the primary is seen nearly equator-on.

A unique identification of the non-radial pulsation modes is one of the basic preconditions
for a successful asteroseismic modeling of the stars. The spatial filtration effect observed in
oscillating Algol-type stars allows to constrain the number of possible oscillation modes in
terms of [, m numbers considerably. We have found that only the sectoral modes give rise
to a double-peaked amplification feature in the RV curves centered at the primary minimum
while the zonal and tesseral modes produce only a single peak. Thus both the shape of the
envelope of the RV curve and the mode-typical values of the RV amplitude amplification
factor during the eclipse that we derived in dependence on the [, m wavenumbers can be used
for a mode identification.

The results of this work, in particular the high accuracy obtained for the spectroscopically
derived stellar and system parameters and the possibilities offered by the spatial filtration
effect in investigating the stellar pulsations of eclipsing binaries encouraged us to think about
a further development of the Shellspec0O7_inverse program in the future. We plan to apply
different improvements. One is to derive the parameters of the non-radial pulsations like
intrinsic velocity amplitudes, phases, and the [,m wavenumbers together with the stellar
and system parameters from the observed time series of spectra. For that we have to treat
the effect of the pulsations on the line profiles in a more physical way by including the
surface temperature and area perturbations into the calculations. And we do not want to
use computed RVs but compare the calculated line profiles directly with the observed ones.
For this task we need line profiles of high S/N which we want to obtain from the calculation
of least-squares deconvolved (LSD, Donati et al. (1997)) profiles from the observed spectra.
The usage of such mean profiles together with the orbital phase binning will enhance the
S/N drastically and even high-degree | modes will become measurable, as could be shown
by Lehmann et al. (2009) in the case of TW Dra. To be able to compute the required
large number of line profiles in a reasonable time the Shellspec07_inverse program will be
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parallelized to run it on a cluster PC that will be available in next time at the Thiiringer
Landessternwarte. We plan to apply the improved ShellspecO7_inverse program to oEA stars
as well as to spectra of brighter eclipsing binaries detected by the Kepler space satellite to
add the urgently needed spectroscopic information to its high-accuracy photometric data.
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