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Chapter 1 Introduction 

Among the optical effects that are intensively investigated in recent decades is 

the phenomenon of self-action of light beams in nonlinear optical media, which is 

characterized by a refractive index depending on the intensity of the light wave 

(e.g. self-trapping and self-focusing of optical beams, self-phase modulation of 

optical pulses etc.). The interaction of the light with a nonlinear material allows to 

realize the direct optical conversion of images and to control the space-time light 

structure. The formations of localized spatial structures, so-called optical solitons, 

which are solutions of the nonlinear differential equations describing such 

phenomena, are the focus of scientific and practical interest [1-6]. The reason for 

these intensive studies of solitons is the possibility of their use in modern 

communication systems, like high-speed systems of fiber-optical information 

transfer, including self-trapping structure formation due to nonlinear optical effects, 

creation of waveguiding optical elements with tunable characteristics etc. 

Owing to diffraction, a collimated beam of light with a diameter d  usually 

spreads with an angle of d/λ . However, already almost 50 years ago it was found 

that this spreading could be avoided in a nonlinear optical medium, which 

possesses an intensity-dependent index of refraction that increases with light 

intensity [7-9]. As a result, the beam forms a dielectric waveguide for itself with 

solitons as self-trapping solutions. These optical spatial solitons correspond to 

self-directed beams, which are limited in the across-track direction orthogonal to 

the direction of propagation [1]. Thereby the natural diffraction divergence of the 

propagating beam is compensated by the refraction of light when the refractive 

index is higher in the central part of the beam than at its periphery. The effect of 

the suppression of the diffraction by the local variation of the refractive index 

occurs therefore as a result of the exceptional properties of nonlinear media (i.e. 

the nonlinear increase of the refractive index in a region with higher intensity), 

leading to the spatial self-focusing of the beam. There is a dynamic balancing 

between diffraction of the beam and self-focusing due to the nonlinearity of the 

medium. Since the light wave is captured in an area with higher refractive index, 

such an area represents a waveguide or self-written channel, thus forming a 
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spatial soliton structure. If several of such light channels are formed in parallel, an 

interaction between them can happen [6]. In other words, solitons propagate and 

interact with each another while displaying properties that are associated with real 

particles (quasi-particles). 

The evidence for a similar nonlinear behaviour of wave/particle systems has 

finally been discovered not only in optics, but in almost all areas of physics, 

chemistry, biology, medicine, climate and weather research and even in 

economics. There is also a broadening of temporal pulses propagating in media 

that possess a frequency- or wavelength-dependent chromatic dispersion or a 

group-velocity dispersion. These are called “temporal solitons” [10]. Other 

examples in nature for solitons are e.g. gigantic sea waves, called “Tsunami”, the 

Amazonas tidal wave, called “Pororoca”, the atmospheric soliton in Australia, 

called “Morning Glory Cloud”, the conduction of pulsed nerve-cell stimulations or 

the soliton model for nucleons in theoretical nuclear physics, so-called 

“Skyrmions”. 

The practical realization of self-trapping depends to a large extent on the choice 

of a suitable photosensitive material [11]. Such requirements, like deep modulation 

of the refractive index (higher than 410− ) and the occurrence of the nonlinear 

properties of the medium by the interaction with laser irradiation, can be realized in 

photorefractive crystals during the dynamic recording of waveguides [4,12-15]. 

Photorefractive waveguides and diffractive structures are widely used to control 

laser beams, to spatially correct the profiles of light beams and to form specified 

space-time structures of laser radiation for optical information processing and 

holographic interferometry. However on the other hand, the high cost of 

photorefractive crystals, their significant sensitivity to environmental factors (like 

external irradiation, variation of humidity and temperature etc.), the necessity to 

use high control voltages (several kilovolts) and the complete destruction of the 

photoinduced soliton structure in the absence of light excitation limit appreciably 

the application of photorefractive crystals for optical communication and data 

transfer [16,17]. The splicing of damaged waveguides, the confinement of light 

beams to guarantee conditions for a steady-state information transfer and the 

fabrication of a variety of different optical splitters and switching systems for optical 

signals require the formation of waveguide channels that conserve their properties 

for a long time without a supporting radiation source. These tasks, as well as 
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constantly emerging new problems in fiber-optical technologies determine the 

need for further research and the development of new photosensitive materials for 

the generation of optical waveguide structures. 

Among new photosensitive optical media for recording of stationary self-

trapping structures, it is particularly important to develop polymeric materials that 

possess high transparency in the visible spectrum and stability of the recorded 

information over a wide temperature range [18-21]. Extensive usage of the 

photopolymeric media in various fields of science and technology are associated 

with the possibility to save information about the amplitude and phase of the object 

wave during hologram recording with high density data transfer [22-25]. Polymeric 

compositions are characterized by a wide range of spectral sensitivity, a high 

resolution, a recording capability with a sufficiently large modulation of the 

refractive index and the possibility of a subsequent enhancement of photoinduced 

structures [19,25-28]. Moreover, photopolymeric materials allow the formation of 

integrated and diffractive optical elements and of reflection and transmission 

holograms. The possibility to create a channel in polymers without damaging its 

surface is especially suitable for applications as waveguide-based photonic 

devices (i.e. interferometers, resonators, optical waveguide couplers, switches, 

elements of optical memory, and selective optical and electromagnetic 

commutators) [29-32]. The advantages of polymeric materials are low cost, 

technological simplicity and the possibility of replication. In addition, the physical 

and chemical properties of polymers, their optical characteristics and spectral 

range of absorption can be varied by selecting light-sensitive active components 

during the synthesis of the material. These attractive properties ensure that 

polymers represent the most commonly used material of all photorefractive 

materials and are associated with the invention of new kinds of recording 

polymeric media. 

Thereby, the main aim of the investigation of the nonlinear optical effect is to 

form spatially localized laser-beam distributions in the photopolymer and to 

generate self-trapping structures. In order to achieve the mentioned goals, the 

following tasks have to be solved: 

� examination of the distribution of a light field in a nonlinear medium, causing 

self-trapping of the beam as a result of the balance between diffraction and 

nonlinear focusing; 
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� investigation of the photorefractive formation of light-induced diffractive 

structures in polymeric materials; 

� application of the holographic relaxation technique in order to study the 

optical properties of polymeric materials (refractive index, modulation depth, 

dynamics of the photoinduced response) and selecting the optimal composition of 

materials suitable for self-channeling; 

� implementation of the numerical simulation of self-trapping in 

photopolymeric materials possessing the properties of nonlinear focusing and 

thermal defocusing of light beams; 

� experimental confirmation of the formation of waveguide channeling in a 

photosensitive polymeric material as a result of laser beam self-action. 

 

The study of already well known light-sensitive polymers and the development 

of new polymeric compositions with optimal requirements for light self-trapping and 

generation of stationary waveguides are essential. Different firms, such as 

DuPont, Polaroid or Bell, as well as numerous research institutes are engaged in 

developing new, commercially used photosensitive media [19-21]. The most 

commonly used materials for information storage and technical holography are 

high-resolution silver-halide photographic emulsions [33], dichromated gelatines 

[34,35], photochromic and porous glasses [36,37], photoresists, liquid crystals 

[38], and various polymeric compositions [21,22]. This also includes polymeric 

media based on polymethylmethacrylate (PMMA) with the distributed 

photosensitive molecules anthracene [25,39], xanthone [26] or 

phenanthrenequinone (PQ) [23,40-44] (the last two possess an additional 

diffusion-amplification mechanism). 

In the majority of cases the method of the preparation of polymeric layers is 

based on the photochemical reaction of polymerization (of radicals, cationic or 

anionic polymerization) and accompanied by diffusion processes [22]. An 

inaccurate choice of the photopolymerized compositions, an extremely high or low 

viscosity of polymers, a temperature variations when used can lead to a 

thermodynamic non-equilibrium of the polymeric layers and result in changes of 

the mechanical, optical and diffusion properties (“material aging”) [45-49]. 

Relaxation normally progresses very slowly and has an unfavourable influence on 

the recorded photoinduced structure continuing for many years. Besides, the 
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preparation of heterogeneous layers together with the effect of humidity, which is 

present in most polymers due to absorption of moisture from air, cause strong 

light-scattering and produces background noise [22,50,51]. These negative 

factors, corroborating with shrinkage and surface relief formation [52-54], can 

change or destroy the recorded diffractive structure, and consequently the stored 

information cannot be retrieved completely. 

The task of developing photosensitive polymeric media is to get the required 

optical properties with a minimum of adverse effects. The company “DuPont” and 

the “Polaroid Corporation” fabricate the most popular commercially available 

photo-polymerized media providing high diffraction efficiency (up to 90 %) of the 

recorded holograms and are widely used in applied holography [19,24,53,55]. On 

the other hand, most of this materials require the extra wet chemical post-

processing making their manufacturing complicated and results in a significant 

material shrinkage (about 3-4 % during recording [53]) and in a scattering noise 

[22]. 

The process of the preparation of layers in such material as dichromated gelatin 

requires special equipment and limits the lifetime of the samples to a few hours 

only [19,34,35]. The recording medium with anthracene needs the oxygen 

saturation before exposure and the removal of free oxygen after that leads to high 

time expenditure (8-15 days), material deformation and decreasing of diffraction 

efficiency [25,39]. Moreover, the mobility of the anthracene molecules results in a 

gradual degradation of the holograms reducing the life-time of high-qualitative 

holograms to about 8-10 hours. All mentioned unfavourable characteristics of 

photomaterials exclude them from being a feasible medium for self-trapping. 

During the course of the present Thesis, investigations of composite polymeric 

materials based on PMMA as host matrix with addition of light-sensitive molecules 

of the photosensitive PQ-dopant were performed. Based on previous studies, the 

material was selected according to its optical quality and ability to record most 

efficiently and stable holograms with the effect of diffusion amplification, using 

radiation in the visible of an average power of a few mW [40-44]. Recording by 

polymeric materials based on PQ-PMMA has been known since the beginning of 

the 90th [28,41,46,47,56]. PMMA-material was initially sensitive to UV light, but its 

sensitivity has been extended to the region of the visible spectrum by injection of 

photo-sensitizer materials. The generation of the diffractive structure in the PQ-
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PMMA occurs as a result of the modulation of optical parameters in the course of 

the photochemical hydrogen reduction by the redox cycling agent PQ with the 

formation of a semiquinone radical [42,57]. Its subsequent addition to a polymer 

macromolecule forms a stable photoproduct. Two holograms, phase-shifted 

approximately by π , are created and partially cancelled by each other. One of 

these holograms is due to the migration of PQ-molecules in the volume of the 

polymer, while the other represents the photoproduct. This mechanism provides 

the recording of the diffractive structure in real time by using a laser source which 

irradiates in the absorption band of PQ (480-540 nm). 

An increase of temperature during the post-exposure time activates the mobility 

of free PQ-molecules leading to a destruction of the grating generated by them in 

the polymer [42,46,56-58]. At the same time, the grating, which produced the 

distribution of the photoproduct in the layer, is stable. An increase of the 

modulation of the total refractive index occurs together with the formation of a 

highly efficient hologram. Thereby, the PQ-PMMA polymer provides the useful 

possibility to exploit the diffusion mechanism for an amplification of the 

photoinduced periodical structure. It results to the high values of the refractive-

index modulation ( 34 1010 −− − ). 

Another advantage is that PQ-PMMA material does not require an extra 

chemical processing. An additional optical fixation of the hologram makes the 

polymeric layer insensible to ambient radiation and also increases for years the 

stability of the generated spatial structure of the refractive index. By this technique, 

many applications of the PQ-PMMA material for self-trapping realization and for 

the creation of stationary stable waveguides are possible. The high radiation 

resistance of the polymer and the ability to restore to some extent areas that are 

damaged due to the thermal action allow to apply radiation of high peak power and 

to transfer information between pulsed beams in fiber-optical networks. 

As a result of the negligible diffusion of the photoproducts, the lifetime of a 

suitably formed space structure of the refractive index is large, but its properties 

depend strongly on the method of preparation of the photopolymeric medium. The 

method developed by us of layer formation of glassy PMMA and PQ components, 

which are capable to form strong chemical bonds with polymeric chains, consists 

of mixing the initial ingredients, subsequent pouring of the solution on glass 

substrates and drying [42,57,58]. The selection of the appropriate solvent, 
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choosing the optimum proportion of polymer and dye and the suitable synthesis 

and drying conditions provided the opportunity to create for the first time polymeric 

layers of good optical quality with a high PQ-concentration and a thickness of 

hundreds of micrometers. The initial rigidity of such media practically excludes the 

local change or shrinkage of the volume (several orders of magnitude less than 

the polymers mentioned above) and the wavefront distortion causing a possible 

information loss. A distinctive feature of the new preparation method is the ability 

to increase the concentration of light-sensitive PQ-molecules up to a few mole 

percent, which significantly increases the depth of the refractive-index modulation 

[42]. By this technique also favourable conditions are created for the recording of 

both, transmission and reflection holograms with diffraction efficiencies 

approaching 100 % (after diffusion amplification and light fixation). The obtained 

diffractive structures possess the necessary criterions for self-guided light-channel 

formation in the medium. 

In addition, polymers comprising PMMA as the base give a possibility to 

generate light self-interaction in it without photolithographic techniques [59]. The 

modulation of the nonlinear refractive index and a suitable matching of the 

necessary correlation between the light intensity and the diameter of the incident 

beam permit to form a direct self-trapping in the polymer. Especially interesting 

from the viewpoint of physics is the fact that self-trapping has never been 

investigated previously in the PQ-PMMA medium. 

Therefore, the light-sensitive PQ-PMMA polymeric compositions with the 

described optimal combination of physical-mechanical, technological and 

holographic parameters are attractive candidates to be used in the photoinduced 

structure formation and self-trapping generation. There are several stages of 

investigation involved, which are described in separate chapters of the presented 

Thesis. 

The second chapter deals with the basic mechanisms and the common 

approach for describing the self-trapping process of light in a nonlinear medium. 

As an approximation a cylindrical light beam with a rectangular profile of intensity 

has been assumed. The solution of the wave equation provides the conditions of 

self-focusing of a Gaussian beam. 

The third chapter describes the formation mechanism of stable diffractive 

structures in a polymeric medium with diffusion amplification. An overview of the 
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various existing PQ-PMMA photopolymeric media used for recording of volume 

diffractive structures is given, by which the choice of the optimal PQ-PMMA 

composition is justified. 

The fourth chapter focuses on the holographic method of investigating PQ-

containing polymeric media. The chemical synthesis, the preparation of the PQ-

PMMA layers and some of their copolymeric modifications showed various optical 

and chemical properties of the material. Examination of the photoinduced 

recording of structures, of the diffusion amplification and of the fixation processes 

have been performed with the aim of selecting an optimal PQ-PMMA composition 

and its subsequent application for self-trapping. 

The physical effect of self-channeling in PQ-PMMA media, predicted 

theoretically and observed experimentally, is discussed in the fifth chapter. The 

presented mathematical model describes qualitatively the main features of the 

generated waveguide. It correctly evaluates the spatial scale of the structure, 

identifies the influence on the self-trapping generation of various properties of the 

medium, of the beam geometry and of other nonlinear interaction characteristics. 

Particular attention is paid to the effect of thermal beam expansion, which in 

conjunction with the photorefractive nonlinearity of the medium results in the 

possibility to control optically the geometrical parameters of the generated 

channel. 

The last part contains a description of the practical usage of the developed 

photopolymeric elements. It is shown that stable holographic structures in PQ-

PMMA compositions are suitable as displays for the presentation of images, as 

interference filters and as other diffractive optical elements. The generated 

channels of stationary waveguides can be applied in telecommunication systems 

for a high-density transfer of information data, for the development of polymeric 

fiber-optic splitters as well as for the splicing of waveguides and their reconstitution 

after waveguide damages. 

 



  
 

Chapter 2  Self-Trapping in Nonlinear Media 

2.1. Formation of soliton-like structures in nonlinear materials 

Light manipulated by light itself is a matter of investigation for the optical-

processing technologies in nonlinear media during the past decades [1-4]. The 

formation of a straight channel by laser illumination due to self-trapping, self-

writing or generation of optical solitons has a wide application in optical data 

processing and technologies, like optical waveguide generation, information 

transmission, spectroscopy, microscopy, optical sensing, optical switching etc. 

[2,6,11,60-63]. The self-interaction of light in nonlinear media defines the intensity 

of the propagating wave by the dependence on the complex refractive index. It 

occurs due to the photoinduced generation of two refractive boundary surfaces by 

an optical beam with finite spatial cross-section, which propagates self-focused 

and without divergence in a medium. 

The suppression of the diffraction divergence of the laser beam in the medium 

by the mechanism of self-focusing nonlinearity is a widely used and well 

investigated effect of a self-trapped optical beam (so-called “spatial optical 

soliton”) [3]. It is based on a strong nonlinear interaction between the wave and the 

medium through which the beam is propagating [11]. Solitons occur in nature in all 

physical systems of particle waves, propagating in nonlinear media without 

dispersion in time or space [2]. They are observed in hydrodynamics, nonlinear 

optics, plasma- and astrophysics, biology [3,6,62,63] and in different kinds of 

material, like glass, polymers and semiconductors [31,64-66]. The spatial 

boundary structure corresponds to the light beam with stable properties and a well 

defined cross-section. It does not change its profile by travelling through nonlinear 

media. The local modulation of the refractive index (n ) due to the compensation of 

the “lens effect” and the natural divergence lead to a change of the wave front of 

the beam and generate an irregularity of the refractive index in the illuminated 

area. 

The dependence of the refractive index of the media on the intensity exists in 

many physical processes (electro-optical orientation or induced Kerr effect, 
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photorefractive effect, electrostriction, resonance and thermal nonlinearity etc.) 

[8,67-69]. In the case of the Kerr effect the change of the refractive index appears 

as a consequence of the change of the spatial orientation of the molecules and 

their alignment along the lines of the electromagnetic field. The modulation of the 

refractive index can also be attributed to the nonlinearity of the electric 

polarization. A change of the density of the medium as well as the related 

modulation of the refractive index can happen due to the energy dissipation when 

the medium is heated by a powerful light wave. 

The investigation of solitons started in 1962, when the possibility of self-guiding 

of a planar optical beam in a medium was first suggested [7]. Bright and dark 

solitons, optical vortices, quadratic and photorefractive solitons, the self-trapping 

effect , incoherent, temporal and discrete spatial solitons – all these terms denote 

different types of photorefractive, self-trapping mechanisms [15,70-72]. 

The invention of spatial solitons in photorefractive media was a very important 

event for optical physics. As they cross the material, these wave packets are 

causing a strong modulation of the refractive index of the medium of about 

34 1010 −− − . For the generation of the photorefractive self-trapping only a quite 

small optical power (µW) is required. Because of the scattering of light on the 

heterogeneities of the medium, the photorefractive material provides the possibility 

to directly observe the solitons during beam propagation [3]. 

Solitons can be useful for various applications like e.g. beam control and can 

also be used for the formation of light channels by CW laser irradiation [2]. 

Photorefractive crystals (SBN, BTO, BSO et al.), in which the formation of solitons 

is caused by the electro-optical modification of the refractive index due to light 

propagation, are the most widely used optical devices in this rather new field of 

research [3,9,11-15,73]. In addition to photorefractive crystals, some polymeric 

materials are being used recently for self-trapping purposes, because they can 

easily and cheaply be manufactured and allow to vary the spectral region by 

different sensitive additions (dye-molecules). 

In order to take a closer look at the main principles of self-trapping of light 

beams in nonlinear media, one has to examine the effect of light modification in 

more detail. Light can influence the irradiated area of the material and, as a 

consequence, can change its propagation by different mechanisms (self-focusing, 

self-defocusing, self-modulation, formation of solitons etc.). The wave diffraction in 
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nonlinear media is differs from diffraction effects in linear materials. Propagating 

optical beams in any uniform medium can cause broadening of the beam due to 

natural diffraction [2,3,6]. A nonlinear effect is responsible for the changes of the 

refractive index or of the absorption factor of the media. These changes of the 

index of refraction depend on the light intensity. The diffraction compensates the 

refraction effect because of a higher value of the refractive index within the 

illuminated area than outside of it. Thus, the light beam generates its own 

waveguide, capturing the light in the area with a higher refractive index. 

It is possible to find some characteristics of the wave propagation processes by 

a phenomenological description of the refractive index and without a detailed 

examination of the physical mechanism of nonlinearity. In the case of continuous 

cross-section beams a nonlinear addition ( n� ) to the real part of the refractive 

index arises and modifies n  of the media according to the following equation [3]: 

)I(n�nn 0 += , 2.1 

where 0n  is the initial refractive index in linear approximation, n�  is a complex 

function, which is determined by the particular mechanism of the nonlinear 

response in the medium and which depends on the light intensity I . In the simplest 

case the nonlinear part of the refractive index can be described as a power series 

of the electro-optical field strength: 

...AnAnn�
4

4
2

2 += , 2.2 

where ]φiexp[aA ⋅=  is the complex amplitude of the light wave that connected 

with the beam intensity by 
20 A

π8
cn

I = , φ  is the phase of the wave, 2n  and 4n  are 

expansion coefficients that are determined by the nonlinear properties of the 

medium. 

For investigation of the features of the nonlinear effect it is sufficient to examine 

the lowest term of the expansion of Eq. 2.2. However with high light intensities the 

nonlinear refractive index starts to deviate from the dependence 
2

2 An  and higher 

terms are playing a more important role. The competing influence of nonlinearities 

is increasingly activated. Such deviations were observed experimentally for 
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nonlinear materials like semiconductor waveguides, glasses doped by 

semiconductors and some polymers [3]. 

The sign of the coefficient 2n  in Eq. 2.2 is determined by the physical 

mechanism of the nonlinear response. For a Kerr nonlinearity one has usually 

0n2 > , whereas for a thermal nonlinearity 0n2 < . In the case of resonant 

nonlinearities the sign of the light-induced refractive-index changes is depend on 

the arrangement of the laser radiation frequency relative to the absorption and 

luminescence pattern. For equal profiles of absorption and emission (which 

characterize metal vapors, for instance) it is 0n2 >  in the short-wave region and 

0n2 <  in the long-wave region. If one examines complex molecular media (dye 

solutions), the Stokes shift of the absorption and luminescence patterns will be 

activated with 0n2 >  in the absorption band and with 0n2 <  in the luminescence 

band. 

 

According to this rather simple description of the index of refraction, the 

character of the evolution of the light beam depends on the sign of the 

nonlinearity. In a medium with 0n2 >  the refractive index increases due to 

increasing light intensity [Fig. 2.1 [a] ]. If the intensity has its maximum at the beam 

axis and its minimum at its borders one observes anisotropy of the refractive index 

in the medium. The refractive index reaches a maximum with maximum intensity 

(i.e. in the center of the beam) and a minimum at the boundary areas. The 

Fig. 2.1. Propagation of a laser beam in a medium [a] with a focusing nonlinearity and 
[b] with a defocusing nonlinearity of the refractive index; [c] exhibits the effect of self-
trapping, when the mechanism of nonlinear self-focusing is compensated by the 
divergence caused by diffraction. 
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nonlinear refraction leads to a concentration of energy. The peripheral parts of the 

beam start to deviate and to shift to the side with bigger refractive index (in our 

case to the direction of the beam axis). The modulation of the wave front along the 

beam axis results in its self-focusing. Accordingly, in media with such 

nonlinearities, an initially parallel beam will be focused. In this case, the medium 

can play the role of a “collecting lens”. This effect has a positive feed back 

character; the weakly increasing intensity in a certain area of the light beam leads 

to a concentration of the beam in this area and consequently to an even stronger 

rising of intensity. 

In the case of 0n2 <  the refractive index of the medium decrease with higher 

intensity (the maximum intensity decreases at the output of the medium). The 

nonlinear medium plays the role of a “negative lens”. The wave front of the beam 

becomes divergent and the initially parallel beam will attain a diffraction expansion 

in the medium, corresponding to a defocusing effect [Fig. 2.1 [b] ]. 

Narrowing of the beam is connected with diffraction. The diffraction divergence 

is inversely proportional to the radius of the light beam at the entrance to the 

nonlinear medium ( 0x ). In consequence of a decreasing 0x  the divergence will 

increase and compensate the nonlinear compression, accordingly. Thus, self-

trapping of the optical beam occurs by achieving a good balance between 

diffraction and nonlinearity of the medium and induces a self-lensing or self-

focusing effect, correspondingly. The beam is propagating in the medium with a 

plane wavefront and without diffraction and any change of its dimensions 

[Fig. 2.1 [c] ]. There is a strong dependence of the beam power on the refractive 

index, causing correlations between diffraction and self-focusing. Change of 

intensity or of beam shape results in a distortion of self-focusing and the failure of 

the material. 

In the case of self-trapping we are considering now a cylindrical beam with 

rectangular amplitude distribution and radius 0x  [8]. According to Eq. 2.2 the 

refractive index is equal to 0n  outside of the beam cross-section and to 

2
20 Annn +=  inside [Fig. 2.2]. The light propagates till to the interface between 

the optically denser medium and the less dense part. The effect of the total 
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internal reflection of the beam at the interface line occurs for rather large angels ψ  

of the beam [Fig. 2.2]. 

 

The critical angle 0θ , corresponding to the slope angle against the axis of the 

beam, is equal to: 

]
Ann

n
arccos[θ 2

20

0
0

+
= . 2.3 

Considering the case of 0
2

2 nAn << , one obtains from Eq. 2.3: 

0

2
22

0 n

An2
θ = . 2.4 

Light waves with 0θθ >  exit the cylindrical cross-section of the beam, whereas 

beams with 0θθ <  are propagating in the direction of the beam axis and inside the 

beam envelope. For light beams with plane phase fronts at the entrance of the 

nonlinear medium, the angle θ  is determined by diffraction. For a light beam with 

radius 0x  the angle of the diffraction divergence can be determined as [8]: 

00

0
d nx2

λ61.0
θ

⋅
= , 2.5 

where 0λ  is the wavelength in vacuum. 

The behaviour of the beam can be described as contributions from the 

nonlinear parts of refraction and diffraction, which are defined by the angles 0θ  

and dθ , respectively. For a critical angle d0 θθ <  the beam is spread by 

divergence. But in this case, the beam is not so strongly broadened as in the linear 

case. For d0 θθ =  we get the condition of self-trapping with complete 

compensation of refraction and diffraction. This equality is valid for the special 

condition of a beam with maximum intensity and for a nonlinear medium. Thus, the 

Fig. 2.2. Propagation of the beam in the nonlinear medium. 
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threshold condition for the formation of self-focusing and the generation of a 

waveguide channel can be written as: 

00

0
d

0

2
th2

0 nx2
λ61.0

θ
n

An2
θ

⋅
=== , 2.6 

where thA  is the threshold amplitude of the light field corresponding to the case of 

compensation of the light divergence by light refraction due to photoinduced 

change of the refractive index. Considering the equations 2
00 xπIP = , where 0I  is 

the light intensity in the middle of the beam, and 
20 A

π8
cn

I = , which describe the 

dependence of the power of the light beam on beam intensity and electrical field 

strength, one obtains from Eq. 2.6 the following equation for the threshold power 

of the self-trapping channel: 

2

2
0

th n172
λc

P
⋅

⋅
≈ . 2.7 

In the case thPP >  one finds that the light beams are deviating from the axis by the 

self-focussing effect. 

Provided that the beam characteristics remain constant in the cross-section 

area, the self-trapping effect can be defined by a so-called “self-focusing length” 

( fsL − ) of the optical beam [74]. As a consequence of the formation of self-trapping 

in a nonlinear medium caused by the mutual compensation of self-focusing and 

divergence, the laser beam is usually focused within the medium. Starting at this 

focal point, the light beam propagates, forming a straight channel in the medium. 

The divergence of the beam appears again just after it is leaving the nonlinear 

medium. The effect of self-channeling will be confirmed when the length of the 

channel formed by self-trapping is found to be several times longer than the self-

focusing length. The self-focusing length can be determined approximately as the 

distance to the point, where the light beam with a plane phase front is focussed in 

the nonlinear medium [8,74]: 

2

2

0
0

0

0
fs

An2

n
x

x
L =

θ
=− . 2.8 
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The presented expression for the self-focusing length is valid under the 

condition that the amplitude of the electric field strength A  is much bigger than the 

threshold magnitude thA  [Eq. 2.6]. By inserting the expression of the power 

2
00 xπIP =  of the light beam into Eq. 2.8 one obtains the following equation: 

2

0
2
0

fs nP
c

4
nx

L
⋅

⋅
=− , 2.9 

which is valid for thPP >> . A general definition of the self-focusing length can be 

derived as: 

th2

0
2
0

fs
PP

1
n
c

4
nx

L
−

⋅
=− . 2.10 

When thPP = , the length of self-trapping approaches infinity [ ∞→− fsL ], which 

corresponds to the self-channeling effect. 

2.2. Evolution of the Gaussian laser beam under the condition of 

nonlinearity 

The self-trapping effect can be observed by the change of its amplitude and 

polarization and by the shape of the angular distribution of the radiation or the 

frequency spectrum of the light beam. Thus, the laser beam can be represented 

as a coherent electromagnetic radiation and described using Maxwell equations 

[12]. For beams with small angular divergence and weak change of the refractive 

index of the medium the vectorial wave equation can be reduced to the scalar one. 

The evolution of the wave in a nonlinear medium and for the stationary case with 

the slowly varying envelope approximation can be described by the so-called 

short-wave equation of the light field [8,12,75]: 

A
n

n�k2
z
A

ik2A�
0

2

−=
∂

∂
−⊥ , 2.11 

where ⊥�  is the transversal Laplace operator, z is the direction of the beam 

propagation, 
0

0

λ

nπ2
k =  is a wave number and n�  is the nonlinear change of the 
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refractive index. The dimension of the coordinates in the Laplacian in Eq. 2.11 

determines the dimensions of the self-trapping channel. For spatial optical solitons 

there are one-dimensional and a two-dimensional cases. 

Equation 2.11 can be transformed into equations for the wave amplitude and 

phase using ]φiexp[aA ⋅= : 
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Whereas Eq. 2.12 determines the trajectory of the light beam, Eq. 2.13 defines 

the change of the spatial distribution of the light-field intensity [ 20 a
π8

cn
I = ]. The 

expression 
ak

y/ax/a
2

2222 ∂∂+∂∂
 in Eq. 2.12 describes the action of diffraction. With 

the following approximation for a Gaussian beam ]
x2

yx
exp[aa

2
0

22

0
+

−⋅= , the 

referred quotient of Eq. 2.12 can be transformed for the central part of the beam 

( 0xy,x << ) to: 
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The light beam divergence can be decreased by a change of the nonlinear 

refractive index in the case of 0n� > . It is possible to derive from Eq. 2.12 and 

Eq. 2.14 the threshold condition for the self-focusing of the Gaussian beam: 

2
0

2

2

0

th

xπ2

λ

n
n�2

−= . 2.15 

From Eq. 2.12 one can conclude that in the case of a plane wave front 

[ 0
y
φ

x
φ

=
∂

∂
=

∂

∂
] at some point 0z  the expression 

z

φ

∂

∂
 becomes equal to zero. 
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Accordingly, the wave front remains plane for all 0zz ≥ , and the light wave 

propagates without divergence. 

In the approximation of a cubic nonlinearity one has 
2

2 Ann� = . Considering a 

Gaussian beam power [
2

2
00 A

8
xcn

P = ] Eq. 2.15 can be rewritten for the threshold 

power as: 

2
2

2
0

th
nπ32

λc
P = . 2.16 

The difference between the expression for a Gaussian light beam [Eq. 2.16] and 

the corresponding equation for a cylindrical light beam with a rectangular intensity 

profile is in the numerical factor. Thereby, to estimate the self-focusing length for a 

Gaussian beam it is possible to use Eq. 2.10, p.16. In experiments the threshold 

power and self-focusing length may vary from those given above. This is 

connected with the formation of waveguide modes in the generated light channel, 

with a saturation effect of the nonlinear refractive-index change, or with a self-

focusing instability. Though, the examined mechanisms of light self-focusing allow 

the choice of a nonlinear medium and the conditions of laser interaction with it, 

possessing the formation of waveguide channels. 

2.3. Self-trapping generation in polymeric materials 

The above mentioned method allows to describe theoretically the formation of 

the spatial self-trapping structures in nonlinear media based on the mechanism of 

the photoinduced modulation of the refractive index. With the aim of the self-

trapping formation we examined a PQ-PMMA polymeric material with nonlinear 

properties in which the photoinduced modulation of the refractive index is 

generated in a range of about 34 1010 −− −  [42,57]. In such polymers, that have the 

capability to compensate mutually diffraction and nonlinear effects, the light beam 

could form a straight channel with a length which is several times longer than the 

self-trapping length [59,76,77]. 

Basically the physics of self-writing and self-trapping in polymers is very similar 

to the physics of propagating spatial solitons which is based on the interaction of 
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light with media [29-32,64-66,75,78-83]. The channels are generated by a good 

correlation between the linear diffraction of light and the effect of nonlinear self-

focusing. The first formation of a self-written channel was accomplished by 

S. Frisken in 1993 in UV-cured epoxy (a tapered waveguide) [78]. After this 

discovery broad-range research has been performed with other photorefractive 

media. Self-channeling and self-focusing in photopolymers has been proven to be 

a self-registration process forming planar waveguides in the photopolymerisable 

resin, in liquid polymer diakrilat, in undoped glasses et al. [64-66,75,79-83]. 

Polymeric waveguides were realized mostly by using photolithography followed 

by developing and etching processes [31,32,82,84,85]. In some polymers the 

mechanism of self-trapping and self-focusing is based on the photopolymerization 

process which leads to a change of the permanent refractive index [64,79,83]. 

Self-trapping and self-focusing happens also by some molecular orientation 

processes and by a suitable distribution of electron clouds [65,81,86]. Planar 

waveguides can be produced by doping optically active organic molecules 

contained in the polymeric medium [32,82]. The formation of light channels in 

polymeric layers was mainly made due to the focusing of light onto the lateral side 

of the material and by shifting the light beam over the surface of the sample [59]. 

Waveguiding structures were also realized using femtosecond-laser 

micromachining [82] and a mask to perform three-dimensional direct-writing 

lithography [84,85,87]. 

Our experimental and theoretical investigations are differ fundamentally from 

mentioned techniques. They are based on direct self-trapping of the beam focused 

within the polymeric sample. By selection of suitable experimental conditions and 

a good correlation between diffraction and self-focusing, the light itself can 

generate a channel in the medium by nonlinear effects. 



  
 

Chapter 3 Investigation of Polymeric Compositions 

with Holographic Methods 

Investigations of the light-propagation processes in photorefractive materials 

can be executed by performing light diffraction on periodical structures. One of the 

most widely used method is the fixation of a high-frequency interference pattern in 

the light-sensitive media by photochemical and photophysical processes, i.e. by 

recording a holographic grating and observation of its evolution in time [39,47]. 

The recording of holograms is accomplished by the interference of two coherent 

laser beams illuminating with the spectral band width of the photomaterial [88]. 

This radiation process results in the change of the material density and, 

consequently, in the modulation of the refractive index. The characteristics of the 

generated periodical structure can be investigated by several methods 

(holographic grating relaxation technique [89], holographic relaxation spectroscopy 

[90], transient grating technique for short-living gratings [91], four-wave interaction 

in the nonlinear media [92], forced Rayleigh scattering [44,93] etc.). The obtained 

diffractive element forms a distribution of concentration gradients due to diffusion 

processes and defines all optical properties of the recording material. Recording 

and relaxation of the hologram is detected by the intensity variations of light 

diffracted from the photoinduced periodical structure. 

3.1. Photorefraction mechanism for the formation of photoinduced 

structures 

Phototransformation in most photopolymeric materials involves the diffusion of 

one or more of the components leading to a density change with a following 

formation of the modulation n�  of the refractive index [19]. If the value of n�  

reaches 410~ −  and more, one can say that the polymeric material possesses 

photorefractive properties [94]. For analysing the photorefraction mechanism one 

can use the Lorentz-Lorenz formula [95,96], (also known as the Clausius–Mossotti 

relation): 
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It describes the average refractive index of the medium n  of the particles as a 

function of the concentrations iC  of the components and of their refractions iR  

[molecular, if concentration is a quantity of particles in a unit of volume, or molar, if 

it is in molar in a unit of volume]. 

Thus, an activation of the photorefraction process occurs due to the change of 

refraction or concentration of the material. The refraction iR  is the change in 

direction of a wave due to a change in its speed. It occurs when light waves travel 

from a medium with a given refractive index to a medium with another at an angle. 

At the boundary between the media, the wave's phase velocity is altered, usually 

causing a change in direction. Its wavelength increases or decreases but its 

frequency remains constant. Accordingly, the refraction describes the contribution 

of particles to the refractive index and strongly depends on the molar polarizability. 

Thereby, the more the polarizability of the photoproduct molecules differs from the 

polarizability of the phototransformed molecules, the stronger are the changes of 

the photoreaction or of the refractive index, respectively. 

Another possibility to vary n is to modify the concentration of components by 

changing the material density ρ . The contribution of such a change of the density 

to the modulation of n can be written according to [94] in the following form: 
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where )W(ρ�  is the density change created by the light exposure W , )W(C  is 

the concentration of the formed photoproduct, R�  is the change in photorefraction 

of the sensitive component, i.e. the refraction variation of the active particles as a 

result of the photoreaction. A considerable influence of the photoinduced density 

change on n�  is known for phase grating recording materials containing 

dichromate gelatin and photopolymerized compositions. 

The investigation of the diffusion of the components in the recording medium 

shows that in some cases the photoinduced diffusion can amplify and stabilize the 

phase holograms during the period of post-exposure [23,25,28,57]. The recording 

process in the polymeric system during the diffractive-structure formation consists 
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schematically of two components. The first component (A) diffuses into the 

polymer, whereas the second one (photoproduct B) constitutes a part of a 

macromolecule and cannot diffuse [42,56,97]. The diffusion "washes away" the 

concentration distribution only of one of the substances. The distribution of another 

one is stable and antiphased to it. Since the contributions to the hologram 

corresponding to these distributions are also antiphased and, hence, compensate 

each other, diffusion degradation of one of them should lead to an amplification of 

the resulting hologram. 

Let us now consider a system in which a photoreaction proceeds: 

A → νh
B. 

According to the formation of two antiphased gratings in the recording layer (by 

mobile substance A and immobile substance B) the modulation of the refractive 

index of the holographic grating will be described by the following expression 

(using Lorentz-Lorenz formula [Eq. 3.1]): 

]C�RC�R[
n6
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n� AABB

22
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where BR  and AR , BC�  and AC�  are the molar refractions and absolute values 

of the concentration modulations of the photoproduct B and of the mobile 

molecules A, correspondingly. 

As a result of diffusion amplification the distribution of the substance A becomes 

homogenous in the layer and its contribution to the modulation of the refractive 

index degrades. The solution of the diffusion equation with an initially sinusoidal 

distribution of the concentration gives a modulation of the refractive index in the 

following form: 

)]]tt(γexp[)t(C�RC�R[
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where )t(C� eA  is the change of the concentration of the substance A induced by 

the light field, t  is the amplification time of the hologram, et  is the light exposure 

time. The rate constant of the amplification process (γ ) is defined as follows: 



Chapter 3. Investigation of Polymeric Compositions with Holographic Methods 23 
 

 

2)
Λ

π2
(Dγ = , 3.5 

with the spatial hologram period of the illuminated area Λ  and the diffusion 

coefficient D . The phase portrait after the amplification process of the hologram is 

formed by the distribution of the molecules attached to substance A: 

BeA

22

BB

22

R)t(C�
n6

)2n(
RC�

n6
)2n(

n� ⋅⋅
⋅

+
=⋅⋅

⋅

+
= , 3.6 

and is defined by the product of the concentration modulation of the photoproduct 

with its molar refraction. Owing to the diffusion of unreacted molecules A, 

0)t(C� A → , )t(n�  increases. The amplification factor M  of the phase pattern 

regarding to the refractive-index modulation is determined as: 

AB
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e RR
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=
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= . 3.7 

It corresponds to a complete linking of the photoproduct molecules to the 

macromolecules: )t(C�C� eAB = . 

The scheme explaining the process of hologram generation and diffusion 

amplification by the transformation of the initial substance A into the photoproduct 

B is illustrated in Fig. 3.1. Before illumination of the polymer, the mobile molecules 

of the diffusing substance A are homogenously distributed among the polymeric 

matrix. The interference field of the intensity (I ) is represented by a sinusoidal 

distribution [Fig. 3.1 [a] ]. During the recording process the photosensitive 

molecules A (or dye) attached to the polymeric matrix are forming the immobile 

substance B (or photoproduct). Meanwhile, the distributions of the concentrations 

of substances A and B become antiphased and provide an antiphased 

contributions to the spatial modulation of the refractive index, thereby partially 

weakening the resulting grating [Fig. 3.1 [b] ]. If the contribution to the refractive-

index modulation of the immobile substance B ( Bn� ) becomes considerably 

bigger than the contribution of the diffusing substance A ( An�− ), the summation 

of both indices ( AB n�n�n� −= ) is representing the refractive-index modulation 

n�  of the final distribution, which is in phase with the light field. 
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At room temperature the polymeric matrix contains some free volume, which 

can be considered as an empty space when the densest packing has not been 

reached [27]. Thermal motion begins when the system is warming up causing 

amplification of the grating. The solid body expands and forms an additional free 

volume, allowing even relatively large molecules to diffuse [97]. Thus, during the 

post-exposure period of time a thermal amplification mechanism can play a 

positive role and enhances the grating formation due to the diffusion process 

[Fig. 3.1 [c] ]. The photoproduct B stays immobile during heating and stable 

towards the degradation caused by diffusion. The second structure generated by 

substance A degrades with a second-degree dependence of the reaction velocity 

on the spatial frequency and with a linear dependence on the diffusion coefficient 

[Eq. 3.5, p.23]. 

After heating, the distribution of the diffusing substance A becomes 

homogeneous ( 0n� A = ), while the modulation of the summarized refractive index 

n�  increases and becomes equal to that of substance B ( Bn�n� = ). The 

recorded and amplified hologram achieves its maximum efficiency. 

Fig. 3.1. Formation of the spatial distribution during recording and amplification of the 
holographic grating: [a] distributions of the intensity ( I ) in the recorded interference 
pattern; [b] distributions of concentration (C ) and refractive-index modulation ( n� ) of 
substances A (diffusing) and B (immobile) and resulting grating after exposure; 
[c] distributions of n�  after diffusion amplification. 
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3.2. Implementation of the mechanisms of diffusion and amplification 

into PQ-containing media 

The described principle of the hologram formation was realized by the PQ-

photoreduction process in a medium composed of a PMMA polymeric matrix 

[23,98]. The special ability of the PQ as a photosensitive addition to join the 

polymer under irradiation results in the transformation of the dye-molecules into 9-

10-substituted derivatives of phenanthrene (phenanthrene chromophore, HPQR ). 

The diffusion of the dye through the polymeric matrix causes a density change 

with the subsequent modulation of the refractive index [19,56,57]. The recording of 

the periodical interference pattern with the following diffusion amplification of one 

or more components can be described on the molecular level [28,44,46,57]. At 

first, light absorption leads to a conversion of the PQ-molecules to the excited 

singlet state of quinine ( *1PQ ) and afterwards to the triplet state ( *3PQ ): 

*3*11 PQPQνhPQ →→+ . 

In the absence of oxygen, the triplet state of PQ starts to react with the 

surrounding molecules (these are macromolecules in the case of polymer glass) 

detaching a hydrogen atom from the methyl group. This leads to the formation of a 

couple of radicals: macroradical ( •R ) and semiquinone radical ( •HPQ ). Further 

radicals (even those that belong to different pairs) recombine. At the same time 

the formation of the chemical bonds occurs between the phenantrene group and 

the polymer, i.e. the stable photoproduct (HPQR ) is formed [Fig. 3.2]. 

 

Fig. 3.2. Attaching of the PQ-molecule [1] by the photoreaction to the macromolecule 
[2] in the polymeric matrix under illumination. 
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With the HPQR  formation an increase of the modulation of the refractive index 

and a rather weak grating can be already detected: 

HPQRRHPQRHPQ →+→+ ••*3
. 

The diffusion of the semiquinone radical plays the role of the “latent image 

regression” causing the high-frequency gratings to grow more slowly than the low-

frequency ones [44,47,56,97]. When phenanthrenequinone molecules are joined 

to macromolecules, two antiphased partially compensated gratings (generated 

photoproduct and free PQ-molecules) with sharply different diffusion lifetimes 

appear [Fig. 3.1 [b], p.24]. Due to their large sizes the macromolecules are 

practically immovable in comparison with the PQ-molecules, therefore, the grating 

of the photoproduct is stable. A thermal enhancement of the resulting hologram is 

observed by the process of diffusion degradation of the antiphased grating (an 

unreacted PQ “dissolves” over time due to diffusion) [Fig. 3.1 [c], p.24]. At the end 

of this process a homogeneous spatial distribution of the initial PQ-molecules is 

achieved. This does not contribute to the modulation of the refractive index of the 

hologram. Thus, the last step the grating formation is a “metastable” state, the 

photoinduced structure of which is based on the spatial distribution of 

phenanthrene chromophores. The period of the amplification process takes place 

over time periods of minutes to years, depending on the mean velocity at which 

the components diffuse, respectively. 

 

Fig. 3.3. Fixation of the periodical structure in a PQ-PMMA material by incoherent 
illumination: [a] amplified diffractive structure in the polymer before fixation; [b] fixed 
polymeric layer. 
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The photostability of the holograms can be achieved by incoherent irradiation 

with light in the range of the PQ absorption band. The residual unreacted PQ-

molecules, uniformly distributed in the sample volume, are transformed into 

insensitive photoproducts [Fig. 3.3]. Meanwhile, changes in the chemical 

composition and consequently in the average refractive index occur, but the 

spatial modulation of the other parameters stays stable. The medium becomes 

transparent to outer radiation and the amplified hologram is fixed. 

To sum the existing concepts of the diffusion and the chemical properties of the 

system containing PQ-PMMA it is possible to separate out the several steps of the 

hologram “life” [42,46,56,97]. At first, light absorption generates radicals due to the 

conversion of PQ-molecules from the singlet-exited quinine to its triplet state with 

subsequent hydrogen abstraction from macromolecules. Quinine molecules 

transform to semiquinone radicals, and a relatively weak grating can be detected. 

The second step consists of attaching the semiquinone radical to the 

macromolecule, forming a stable photoreaction product with subsequent change of 

its refraction. As mentioned already, the high-frequency gratings are amplified 

more slowly than the low-frequency ones as a consequence of the slower diffusion 

of the semiquinone radicals. At the next step, the process of thermal diffusion 

enhancement starts and plays a significant role. The migration of unreacted PQ-

molecules results in the degradation of their periodical structure, while the 

antiphased hologram of the photoproduct is stable. The resulting hologram is then 

amplified. Higher spatial frequencies of the gratings and higher temperature of the 

post-exposure process lead to a faster achievement of constant efficiency. 

In some cases, when the maximum modulation of the refractive index is 

reached, one observes a minor degradation process of the hologram (usually not 

more than a few percents of the n -modulation). One possible cause is binding of 

the PQ-molecules not to the polymer chain, but to the low-molecular substances in 

a composition comprising a residual monomer or a solvent (with a concentration of 

about 5 %). Because of the increased volume, the product of such a chemical 

additive slowly diffuses, reducing slightly the strength of the grating. 

Thus, in spite of a small difference between the optical parameters of the PQ-

molecule and of its photoproduct, it is possible to observe a relatively weak grating 

already during the recording process. Diffusion relaxation of one of two periodical 

structures results in a phase modulation of the amplification by an order of 
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magnitude and therefore increases the diffraction efficiency of the formed structure 

up to the saturation. 

3.3. PQ-PMMA polymeric compositions 

Stable variation of the refractive index in photopolymers occurs due to the 

redistribution of the components by diffusion during the illumination time and the 

post-exposure period. The hardness of the material, determined by the particular 

method of the polymer synthesis, has an influence on the characteristics of the 

PQ-diffusion and on the parameters of the formed hologram [48]. A softer PQ-

PMMA structure leads to a decrease of the amplification time. Accordingly, the 

maximum modulation of the refractive index is achieved faster, but the produced 

holograms possess lower stability, and a degradation process under high 

temperatures is activated. Any deviation from the process of the optimum 

synthesis of the rigid PMMA-structure results in a very slow diffusion of the PQ-

molecules. Thus, diffusion characteristics are depending strongly on the type of 

PQ-PMMA layers, the concentration of the residual monomer and dye, the 

chemical preparation and the treatment of the samples. To find a good balance 

between all parameters and to choose the best preparation method is the task 

required next. 

There are worldwide several research groups in the field of investigating PQ-

PMMA polymers [Belarusian State University (Minsk, Belarus) [42,57,58], Harbin 

Institute of Technology (Harbin, China) [99-102], National Chiao Tung University 

(HsinChu, Taiwan) [23,103-108], University of Arizona (Tucson, USA) [43,109-

115] and Vavilov State Optical Institute (St. Petersburg, Russia) [25,27,28,37,44, 

46-48,56,93,97,98] ]. In spite of the apparent resemblance between their 

researches, each laboratory has its special techniques concerning the 

manufacturing process of the polymeric materials as well as the selection of 

optical parameters of the recorded photoinduced structures. The main distinctive 

characteristic is the method of layer preparation. 

The photochemical reaction used in most research centers is based on the free 

radical bulk polymerization process of a monomer (methylmethacrylate, MMA) with 

PQ-molecules and a polymerization initiator (usually azo-bis-isobutyrolnitrile, 

AIBN). The components are composed in different weight ratios, depending on the 
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particular research institute. The PQ-concentration varies from 0.05 mol.% up to 

0.35 mol.%. The basis of the holographic recording is the chain reaction of the 

radical polymerization providing the photoinduced change of the refractive index 

and the real-time recording of the particular phase structure [23]. The 

photoinitiated system absorbs light and generates free radicals. Polymerization of 

the monomer by free radicals leads to the formation of polymeric chains 

[20,22,116]. The accompanying diffusion process causes gradients of density and 

results in the modulation of the refractive index. In some polymeric compositions it 

is possible to activate additional diffusion, generating thermal enhancement of the 

grating. 

The spectral range of the light illuminating the PQ-containing polymeric media 

covers the wavelength interval from 350 nm to 600 nm. The effective range of the 

spectral sensitivity for layers with a thickness of about hundreds microns reduces 

to 480-540 nm [42,100]. The comparison of the photonic quantum yields in PQ-

PMMA for several wavelengths shows that the change of the exciting light from 

blue to green results in an increase of the quantum yield. This occurs due to the 

high intermolecular interaction of the light-absorbing centers with the environment 

and the subsequent increase of the probability for the occurrence of the 

photochemical reactions [41,109,110,113]. Thereby, the most widely used source 

of radiation for photoinduced interaction with PQ-PMMA material is the Argon (Ar) 

laser with a wavelength of 514.5 nm. In some types of PQ-PMMA composites the 

recording of diffractive structures was observed with laser irradiation at 

wavelengths of 488 nm and 532 nm [100,115]. 

The stability of holograms depends on the mobility of the macromolecules, 

whose increase leads to structure deformation and information loss. The polymers 

produced in the Institute of St. Petersburg possess minor diffusion during grating 

recording (the diffusion coefficient of free PQ-molecules is about s/cm10 217−  at 

C20o , and is reaching s/cm10 218−  for macromolecules at the same conditions) 

[27,44,56]. This reduction of the photoproduct diffusion by an order of magnitude 

in comparison with the initial PQ-diffusion is due to the increase of the volume of 

MMA molecules (0.1 nm3) under photoreaction in the volume of the PQ-molecules 

(0.15 nm3-0.18 nm3) [47]. In the post-exposure period of amplification the diffusion 

coefficient of the free PQ-molecules increases up to s/cm10 215−  (at C80o ) 



Chapter 3. Investigation of Polymeric Compositions with Holographic Methods 30 
 

 

causing diffusion activation, which results in a homogeneous PQ-distribution in the 

polymeric layer [97]. Thus, faster diffusion of free PQ-molecules leads to a grating 

amplification during the period of post-exposure. The slower diffusion of 

macromolecules is responsible for the stable formation of holographic structures. 

The change of preparation techniques influences the molecular mobility causing 

the variation of the process velocity and results in the absence of post-exposure 

amplification. Samples that are used in Taiwan University possess at room 

temperature considerably higher diffusion coefficient values ( s/cm10 27−≈ ) 

compared to previous groups [103]. The increase of the diffusion coefficient is 

caused by several components. The fabrication of polymeric samples is carried 

out by the prepolymerization technique with subsequent attachment of PQ-radicals 

either to PMMA or to residual MMA that is available in abundance. Separation of 

the photochemical reaction during holographic recording from the polymerization 

of the host monomer molecules during material preparation was made to alleviate 

shrinkage problems [104]. Such PQ-PMMA materials do not require any post-

amplification by annealing; on the contrary the gratings become unstable within 

few hours by tempering at high temperatures due to an increasing diffusion of both 

components (PQ-molecules and PQ-MMA groups) [103-105,108]. Moreover, this 

preparation method allows a small PQ-concentration in the mixture (0.25-

0.35 mol.%) causing low values of the diffraction efficiency (one tenth of per cent) 

that is inefficient for self-trapping generation [23,103,106-108]. 

Thick PQ-PMMA samples (up to 5 mm) with efficiencies of about several 

percents after recording and with improved values up to 60 % after tempering 

amplification were obtained in the Harbin Institute [100-102]. The preparation is 

based on MMA-PQ polymerization with AIBN as solvent (PQ-concentration is 

0.35 mol.%) [101]. Holographic structures recorded with a wavelength of 532 nm 

showed dark diffusion enhancement of the grating by this PQ-PMMA combination 

[102]. At Arizona University, using the same preparation method one found a 

possibility to generate highly efficient photoinduced structures in PQ-PMMA at 

488 nm. These structures find a wide application as holographic filters operating at 

1550 nm [109-112,114]. Modification of the polymer by the addition of 

nanoparticles is another way to increase the efficiency of holograms [115]. All 

these variations generate deep refractive modulation ( 310n� −≈ ), but scattering 
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losses increase up to 30 %. Besides, thick samples produced in these research 

groups possess a significant relief formation and shrinkage (up to several percent 

of the layer volume) due to compression of the material under light interaction. 

The method of radical polymerization used in most research institutes does not 

let to attain photoinduced structures with 100 % efficiency [42]. One of the reasons 

is the limited quantity of the photoreduced PQ-molecules that can attach to 

macromolecules and form photoproducts (usually only ~ 50 % of PQ-molecules 

take part in the photoreaction). Some portion of the molecules is interacting with a 

residual monomer forming a low-molecular photoproduct with decreased 

modulation of the refractive index. 

Summing up the obtained data from different research groups it can be noted 

that the polymerization reaction can be used for preparation of PQ-PMMA samples 

with large dimensions and moderate refractive-index modulation. But the PQ-

concentration is limited in these media causing lower n� -values. Besides, 

polymerized PQ-PMMA layers give no complete PQ-photoreaction with the 

polymeric matrix. Scattering centers as microscopic air bubbles lead to the 

significant information loss. The dramatic shrinkage distorts the holograms and 

limits their lifetime [27,104,108]. Thick volume samples cause a high angular and 

spectral selectivity and could be the reason for the formation of the surface relief. It 

is seemingly the result of mechanical stress relaxations that lead to macroscopic 

expansion or compression of the material [19,26,104,105]. 

One possibility to reduce these undesirable effects and to improve diffraction 

efficiency of the recorded holographic structures is to use polymeric films with a 

thickness of hundreds of microns and a high concentration of PQ-molecules, 

resulting in a significant depth of refractive-index modulation. It entails some 

complications by using the above presented block polymerization technique with 

limitated solubility of PQ in MMA (most research groups are using PQ-

concentration, which do not contain more than 0.5 mol.% of this addition, resulting 

in “weak” hologram formation). These difficulties can be solved by preparation of 

layers with a high dye-concentration and by using a film pouring method with a 

mixture of PMMA dissolved in an organic solution of PQ-molecules. 

Our institute in cooperation with the Minsk University has developed several 

techniques of layer preparation. The first method based on the photoaddition of 

PQ-molecules to the purified PMMA, the second one consists in the 
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polymerization of the monomer. These methods were improved and modified by 

matching to a good solvent and by optimizing the ratio of components. The main 

feature of the new methods consists in pouring the liquid viscous PQ-PMMA 

solution on the glass substrate, followed by a slow drying process. The properties 

of the polymeric mixture together with specific drying conditions allow to evaporate 

the solvent completely from the film, saving the high optical quality of the 

polymeric sample with almost zero disturbing defects. Accordingly, the new 

method of layer preparation allows to include successfully the PQ-molecules into 

the polymer with a concentration up to 4 mol.%, which was never obtained before 

[42,57]. 

The modifications of the preparation technique and the increase of the PQ-

concentration improve the quality of the processes of phase holograms recording, 

amplification and degradation. The developed PQ-PMMA samples are providing a 

significantly deeper modulation of the refractive index with a higher n -amplitude 

and a larger amplification factor during the recording of transmission and reflection 

holograms with a diffraction efficiency of nearly 100 % [26,42]. The layer 

preparation by a pouring of the solution provides extra freedom for the variation of 

material parameters: the films can be produced from polymers with any matched 

distribution of molecules. A high efficiency of the photoinduced structure in PQ-

PMMA materials with long shelf-life due to negligible diffusion of the 

macromolecules together with nonlinear properties allow to use these polymers for 

self-trapping purposes. 

Several characteristics of the PQ-PMMA medium produced by pouring from the 

solution were analysed by our research group during recent years 

[26,42,57,58,117-127]. The main accent was placed on improving the optical 

quality of the material and on achieving high-efficient and stable diffractive 

structures. Experimentally it was found that the amplification factor for the 

transmission grating is usually in the range of 8-9 and the final refractive-index 

modulation is below 3102 −⋅  [42]. These values are limited by the initial 

concentration of PQ-molecules in the polymeric layer. Changing the PQ-

concentration from 0.5 mol.% up to 4 mol.% leads to a sixfold increase of n�  [57]. 

A significant increase of the dye-concentration can cause undesirable formation of 

low-molecular photoproducts. The presence of PQ-components in large quantities 

results in a higher probability for the photoreaction between PQ-molecules or for 
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the PQ interaction with the residual solvent. The investigation of unfavourable 

effects caused by the PQ-PMMA composition exhibited their negligible 

contributions for the hologram formation and for the refractive-index modulation. 

Besides this, dark processes (photoreaction after recording without a radiation 

source results in amplification or degradation of the grating), scattering noise and 

considerable effects of shrinkage were not detected in the PQ-PMMA medium 

during few weeks at room temperature for grating periods of about few microns 

under slow diffusion processes. It allows high-quality recording and sharp 

reconstruction of the holograms. Thus, the special PQ-PMMA material produced 

by our group in cooperation with the Belarusian University possesses good mix of 

components (e.g. good relationship number of sensitive dye, polymeric matrix and 

added solvent) and provides the necessary refractive-index modulation in order to 

produce qualitatively excellent polymeric layers. 

A detailed description of the techniques of layer preparation, of the main 

diffusion characteristics of the produced material will be discussed in the next 

chapter. Moreover, the influence of the non-sinusoidal profile of the refractive 

index and of non-local effects as well as of the deformation of surface and volume 

of the material on the formation of the photoinduced structure will also be 

examined. Different types of modified PQ-PMMA copolymers prepared by pouring 

of polymeric solutions in order to generate thin films were analyzed carefully with 

the aim to select the best composition for stable self-trapping generation. 

 



  
 

Chapter 4 Polymeric Media Based on 

Polymethylmethacrylate with Distributed 

Phenanthrenequinone Molecules 

 

A simple composition of the polymeric compound material with favourable 

adhesion properties, an easy mechanism for the formation of holograms and for 

the corresponding preparation methods using only modest temperatures are the 

necessary requirements for the production of a medium which is best suited for the 

generation of self-trapping. The use of unstable photorefractive media with a short 

storage time can result in defects of the recorded photoinduced structure and can 

negatively influence on the holograms. Therefore, the production of PQ-PMMA 

layers with a high concentration of dye-components by pouring of liquid polymeric 

mixture on glass substrates – as described in chapter 3 – is a major advancement 

for optical information processing and for holographic interferometry. This ensures 

to reduce shrinkage and scattering damages of the medium and to enlarge the 

modulation of the refractive index. By applying a new preparation process, 

samples with a good combination of physical and holographic characteristics for 

direct interaction of light and medium were obtained. 

In this chapter we present an extensive investigation of the polymeric 

compositions based on PQ-molecules distributed in the PMMA matrix. 

Modifications of the necessary copolymer (CP) were performed by two different 

methods, using either a purified PMMA-polymer or a polymerized MMA-monomer. 

Surveying and recording of the diffractive structures generated in photorefractive 

materials allows to select the most stable polymeric composition with best optical 

and thermal properties for the application of self-trapping. 
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4.1. Preparation of PQ-PMMA samples and recording of holograms 

4.1.1. Formation of polymeric layers with a large PQ-concentration excluding 

polymerization process 

The first method for the preparation of layers that will be discussed in this 

chapter is a technologically more straight-forward technique based on the addition 

of a PQ-dopant to the polymeric chain (PMMA) without exploiting the 

polymerization process. It consists of the formation of films from a liquid solution of 

PQ-molecules dissolved in a polymer with subsequent drying of the sample under 

special conditions. The used PMMA was purified from the monomer. By this 

procedure a reaction between PQ and MMA-links is avoided and a contribution of 

“negative” gratings to the recording process is excluded [42]. In this way the 

degree of attaching of the PQ-molecules to the polymeric layer by the impact of 

light is close to 100 %. 

The developed PQ-PMMA chains are long enough for the material to be 

considered as a polymer (the mean number of monomer units per chain is 

approximately equal to 300, which is larger than the critical number of about 180 

for the simpler PMMA chain) [46,47]. The PQ-PMMA composition consists of a 

molar mass of mol/g100  for PMMA [ n285 )OHC( ] and of mol/g208  for PQ 

[ 2814 OHC ]. The density of the polymer is 3cm/g19.1 , and the refractive index of 

PMMA is equal to 1.49, which is close to the refractive index of glass. With this 

material, polymeric films can be produced on silicate-glass substrates with 

negligible influence of the glass on the reconstructed holographic image. The 

polymer based on purified PMMA with PQ-molecules is called hereafter briefly PQ-

PMMA. 

For the preparation of layers, the components were weighed in necessary 

proportions and dissolved in an organic solvent (chloroform). Usually for a 

polymeric layer thickness of 100 µm a 10 % PMMA solution with an addition of PQ 

of about 2-4 mol.% of the amount of the polymer was used. The solution was 

filtrated after mixing in order to decrease the quantity of light-scattering centers. 

The glass substrates were coated with the liquid solution of the various ingredients 

to form polymeric films of the necessary dimensions and shape. The mechanical 

rigidity that is required for holographic application was obtained by subsequent 
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drying. For a slow removal of the solvent, the samples were placed in a Petri dish 

for 20 hours at temperatures of C100o , which is below the glass transition 

temperature of the PMMA ( C105o ) [118]. 

The thickness of the layers was limited by the mechanical properties obtained 

by the process of film deposition. This is caused by the inability to prepare and to 

fix uniform polymeric layers with thicknesses up to a few tens of millimetres. 

Therefore, the average thickness of the PQ-PMMA samples used for the following 

experiments varied from 100 µm up to 500 µm [Fig. 4.1]. 

The method of layer 

preparation by pouring allows to 

deposit several molar percents of 

the PQ-molecules into the 

polymeric matrix. The majority of 

the samples discussed in the 

literature were produced by the 

solution of a block of polymerized 

MMA-monomer embedded in the 

moulding box. This process limits the dye-concentration to maximum 5.0  mol.% 

by the solubility of PQ in the monomer. A good matching of polymeric ingredients 

and solvent allows to achieve successfully concentration values up to 

3cm/mol105 -4⋅ , resulting in a higher efficiency of the diffractive structure [57]. 

Approaching the critical value of 4-5 mol.% of PQ-concentration produces an 

undesirable heterogeneity of the PQ-distribution in the sample and results in a 

high probability for activation of the processes of layer crystallization which can 

destroy the polymer. In the presented experiments we used a PQ-concentration of 

about 2.5-3 mol.% resulting in high values of the amplitude modulation of the 

refractive index (up to -410n� ≈ ) and in sharp grating recording. 

The amount of the spectral sensitivity of a polymeric layer is determined by the 

sensitive dye added to the polymeric matrix. Typical optical absorptions of the PQ-

PMMA samples before exposure and after illumination by green light (514.5 nm) 

are shown in Fig. 4.2. The absorption factor is determined as the logarithmical 

ratio of the input ( inI ) to the transmitted ( outI ) intensities [ )I/Ilg( outin ]. The PQ-

PMMA samples show a strong absorption below the green wavelength and a 

 

Fig. 4.1. [a] A PQ-PMMA polymeric sample 
[layer thickness is 100 µm; PQ-concentration is 
3 mol.% ] and [b] reflection at day light of the 
diffractive structure formed in a PQ-PMMA layer. 
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significant absorption coefficient in the wavelength range from 480 nm up to 520-

530 nm [42]. The samples are totally transparent for wavelengths longer than 

540 nm. Under exposure by Ar-laser radiation the PQ-dopant changes its chemical 

structure by forming a photoproduct. At the same time, the initially yellowish 

samples become transparent. Moreover, the absorption band of the PQ-PMMA 

layer shifts to the blue range. The illuminated samples show absorption only in the 

UV regime. The change of absorption of the PQs and of the photoproduct is 

evidence of the difference between their refractive indices in the whole visible 

spectrum and a proof of hologram formation. 

 

4.1.2. Recording and reconstruction of diffractive structures 

The investigations of the photosensitive material by the holographic relaxation 

technique enable to observe the temporal evolution of a diffractive structure and to 

detect even very slow diffusion processes [39,46]. This holographic principle is the 

most common technique to record coherent interference patterns of the object 

wave with a reference wave in the photosensitive material with subsequent 

reconstruction of the hologram due to light diffraction at the recorded interference 

structure. Moreover, it allows the recording of both, photoinduced reflection and 

transmission gratings, in the bulk of the material. Volume holograms provide the 

opportunity to save the information in the whole volume of the medium, thus 

Fig. 4.2. Spectral dependences of the absorption of a PQ-PMMA sample before Ar-laser 
illumination and after 3 min and 30 min of exposure time, respectively [PQ-concentration 

is 3 mol.%, input intensity is 2cm/mW60  at 514.5 nm]. 
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representing an optical memory with ultrahigh capacity and low probability for an 

unwanted damaging of separate parts of the hologram. 

 

Fig. 4.3. Scheme of the experimental setup for recording and reconstruction of holograms 
for the case of [a] and [b] transmission gratings and [c] reflection grating in a polymer 
[(1) collimator, (2) diaphragm, (3) beam splitter, (4) mirrors, (5) glass substrate with a 
recording layer, (6) precision rotary table]. Recording is performed by an Ar-laser 
(514.5 nm), reconstruction by a He-Ne laser (633 nm); diffrI  denotes the intensity of the 
diffracted beam, Λ  is the grating period, and h  is the thickness of the layer. 

The experimental setup for recording and reconstructing of holographic gratings 

is shown in Fig. 4.3 [a]. The reference and object waves are represented by plane 

waves converging at an angle θ2  in the recording layer and generating an 

interference pattern. The source of the monochromatic radiation is an Ar-laser with 

a wavelength of 514.5 nm and a coherent length of about 30 cm. The temporal 

and spatial coherence values of the source were proven with a Michelson-Young 

interferometer, correspondingly. Using collimator (1), diaphragm (2), beam splitter 

(3) and two reflecting mirrors (4), two coherent light beams with an intensity ratio 

of 1:1 can be extracted. They interfere in the plane of the polymeric sample (5) 

recording a symmetric phase structure. The simple method of recording by an 

angular variation between both beams – as indicated in the figure by green lines – 

makes it possible to exactly control the grating period during the hologram 

recording. The intensity of each of the input beams has been chosen to be equal 

to 2cm/mW30  for layers with thicknesses of about a few hundreds of microns. A 

system of different filters is used, if necessary, to block one or both beams as well 

as to multiple weaken the beam power. The aperture of the incident beams is 

limited by a diaphragm with 5 mm hole diameter. 
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In most cases during hologram formation the smallest distance between grating 

lines is approximately equal to the used light wavelength [128]. It follows that the 

displacement of photographic material during exposure time should be smaller 

than a certain percentage of the wavelength. The interferometric stability of the 

sample is provided by thorough and reliable fastening of the recording polymeric 

film on the vibration-insulated optical table. Acoustical and thermal perturbations 

by the ambient air may also cause instabilities of the interference pattern. To 

reduce the influence of these factors the optical path length (especially between 

beam splitter and hologram) is usually chosen as small as possible. Decrease of 

the exposure time has also a positive influence on the mechanical stability 

reducing perturbations by the environment. 

In spite of the irradiation by an Ar-laser at the edge of the material absorption 

band, it is possible to generate highly efficient holographic gratings in the PQ-

PMMA medium by transmission as well as by reflection of laser light [57]. 

Recording of a transmission hologram applying a symmetrical scheme occurs by 

interference of object and reference waves, incident on the recording medium from 

one side under the same angle θ  to the normal direction of the film [Fig. 4.3 [b] ]. 

By reconstruction of the transmission hologram a diffracted wave ( diffrI ) is 

observed in the transmitted light. The distance between two adjacent intensity 

maxima of the recorded interference pattern determines the grating period (Λ ). 

Figure 4.3 [c] demonstrates the principle of the recording and reconstruction of 

the reflection hologram, when object and reference waves are incident on the 

medium from opposite sides. The reconstruction of such a grating provides the 

diffracted wave in reflection. Reflection holograms are widely used in applications 

of holography and displays. The volume properties (spectral and angular 

selectivity) of the recorded structure gives a possibilities to use a source with a 

continuous spectrum (standard incandescent lamp, sun) for the reconstruction of 

the object wave [Fig. 4.1 [b] , p.36]. Nevertheless, basic measurements are usually 

carried out at a high-frequency transmission grating. Reflection holograms are 

used less because of their high sensitivity to the variations of the average 

refractive index and to the sample deformations occurring during material 

processing [97,110]. 
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Thus, the recording of the spatial periodical structure can be observed due to 

the photophysical and photochemical processes in the polymeric medium caused 

by the interaction of light with the medium. The relaxation of the holographic 

grating can be detected by the evolution of the light beam diffracted at the 

photoinduced structure. 

The diffraction efficiency (η ) of the recorded structure is defined by the fraction 

of the diffracted wave radiation. This characteristic feature represents an important 

experimental parameter, which depends on hologram type, medium properties and 

conditions of recording and reconstruction of the grating. The general definition of 

the diffraction efficiency is given as the ratio of the diffracted beam intensity ( diffrI ) 

to the incident intensity ( 0I ) and obeys the expression [20,128]: 

0

diffr

I
I

η = . 4.1 

To solve technical and experimental problems another parameter is playing an 

important goal: the ratio of the intensity of the diffracted beam to the total output 

intensity behind the holographic grating ( )II/(I diffrtrdiffr +=η , trI  is the intensity of the 

beam transmitted without diffraction) [57]. With this definition of the diffraction 

efficiency the Fresnel reflection losses are already taken into account. 

The absence of absorption can be demonstrated by using a Helium-Neon (He-

Ne) laser as reconstruction radiation with a wavelength of 633 nm, for which the 

PQ-PMMA layer is transparent. A collimated beam of monochromatic He-Ne light 

is falling on the surface of the hologram which is mounted on the rotary table as 

part of the optical setup for reconstruction of holograms [Figs.4.3 [b] and [c] ]. By 

turning the hologram relative to the direction of the incident laser beam the 

maximum light intensity can be achieved to measure the zero-order intensities of 

the diffracted beams using photodetectors. 

The maximum intensity of the diffracted wave is defined by the Bragg condition 

[88]: 

λmθsinΛ2 = , 4.2 

with the grating period Λ , the angle θ  between the direction of the wave 

propagation and the grating plane and the wavelength of the incident radiation λ . 

The magnitude ,..3,2,1m =  determines the diffraction order of the periodical 
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structure of the grating. Equation 4.2 describes for the order 1m =  the condition of 

the principal maximum of the diffracted wave for generating the volume hologram. 

The deviation from the Bragg's law results in reduced diffraction intensity and 

determines the selective properties of the hologram. 

The Kogelnik formula connects the diffraction efficiency with the amplitude 

modulation of the refractive index ( n� ) of a transmission phase grating as follows 

[57,88]: 

hπ

)ηarcsin(θcosλ
n�

⋅

⋅
= , 4.3 

where h  is the thickness of the layer. The ratio between the spatial frequency and 

the thickness of the layer describes the hologram type. It determines the main 

properties of the diffractive structure (angular and spectral selectivity, diffraction 

efficiency) and can be characterized by the Klein parameter (Q ) [128]: 

2Λn

hπλ2
Q = . 4.4 

For Q<1 the hologram is assumed to be optically thin, whereas for Q>10 the 

hologram is representing a volume and for Q>1000 one gets a three-dimensional 

highly selective hologram. 

Changes of the composition of the polymeric media vary the ability of the 

diffractive structure recording. Each photorefractive material requires a special 

amount of energy per volume to generate a stable and efficient hologram. The 

magnitude of the power for the light exposure ( W ) can be defined as: 

2
0

e

xπ

tP
W

⋅

⋅
= , 4.5 

where P  is the summarized power of both beams, et  is the recording time and 0x  

is the beam radius. Increasing the power of exposure results in an increase of the 

modulation of the refractive index till to saturation. 

During hologram formation the recording of the gratings occurs till maximal 

diffraction efficiency is achieved. Thermally amplified PQ-PMMA layers can be 

fixed by the incoherent irradiation of the PQ-molecules by the absorption band. 

The homogeneous illumination of the polymer leads to a complete 

phototransformation of unreacted PQ-molecules which are uniformly distributed in 
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the sample. An exposure causes decreasing of the optical density for wavelengths 

in the range of the PQ-absorption band, but the resulting modulation of the 

refractive index n�  of the grating is preserved. The holographic structure is fixed 

and stable towards the interaction of outer radiation. 

4.2. Characteristics of holograms recorded in PQ-PMMA 

4.2.1. Kinetics of holographic grating formation and amplification 

Experimental investigations concern first of all the recording of holographic 

transmission gratings in polymeric layers and the observation of the efficiency and 

modulation depth of the refractive index under photoinduced processes. During 

the experiments several samples of this type based on purified PMMA with a PQ-

concentration up to 3 mol.% were prepared and series of equal holograms were 

recorded. Figure 4.4 presents a typical dependence of the modulation of the 

refractive index on the irradiance (power of exposure per area) during recording of 

a holographic grating with 3 µm period. The values of n�  are based on the 

experimentally obtained diffraction efficiency values [Eq. 4.3, p.41]. The refractive-

index modulation exhibits a monotonic increase up to a maximum value of n�  that 

is attained already at a power of exposure of 2cm/J10  [Fig. 4.4 [a] ]. The 

photoattachment of the PQ to the polymer and the formation of the phenanthrene 

structures result in a stable photoinduced pattern. 

 

Fig. 4.4. Experimentally determined dependence of the modulation of the refractive index 
versus power of exposure [a] during recording of the transmission grating till the maximum 
and [b] slow degradation of the grating [PQ-concentration is 2.5 mol.%, layer thickness is 
100 µm, grating period is 3 µm]. The measurements are made with an accuracy of 5 %. 
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The saturation of the refractive-index modulation is achieved at 4101.1n� −⋅≈  

and starts to decrease again at an irradiance of 2cm/J30 , leading to a slow 

degradation of the diffractive structure [Fig. 4.4 [b] ]. The maximum values of the 

refractive-index modulation that were obtained during grating recording by the 

variations of the parameters were 410)54( −⋅÷ . 

The main advantage of a PQ-containing holographic media consists of the 

possibility of their post-exposure amplification. An initially stable but not with 

maximum efficiency recorded grating can afterwards be enhanced and improved 

by a subsequent annealing process. After recording, weak holographic structures 

possess minor defects or distortions. Activation of the diffusion or a corresponding 

increase of the diffusion rate of PQ-molecules at higher temperatures causes a 

post-exposure thermal amplification of the grating and an increase of the 

diffraction efficiency by orders of magnitudes. Post-exposure treatment is usually 

started several minutes after the recording process, thus excluding any 

intermediate change of the holographic structure. Measuring the diffraction 

efficiency directly after the holographic recording and just before the heating 

process starts confirms that no hologram degradation happens in between. 

The processes of thermal enhancement carried out for temperature variations 

from C55o  up to C90o . The temperature was chosen below the PMMA-glass 

transition temperature to save the initial rigidity of the polymer, but not lower than 

C50o  where the diffusion rate is considerably slower. The values of amplitude 

modulation of n  are increasing ten times due to heating ( 3
max 102n� −⋅≈ ). 

Therefore, this technique provides the recording of highly efficient holograms in 

the PQ-PMMA samples under investigation. 

Previous experiments with the PQ-PMMA medium showed that the spatial 

distribution profile of the optical parameters (refractive index and absorption 

coefficient) during recording of the holograms is different from the sine-distribution 

of the light intensity of the interference pattern [57]. To proof the character of this 

nonsinusoidal profile, one can observe the numerous diffraction orders (up to 5-6 

orders) already at the initial step of grating recording [57,58,93]. This phenomenon 

is not typical for volume holograms which are characterized by a single nonzero 

diffraction order only [25]. This nonsinusoidal effect can be explained as a result of 
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the overlapping of the interferences fields on the same aria of the material with 

different spatial periods. In other words, by recording of one grating one can note 

the generation of several gratings with spatial frequencies multiplied by the 

recorded grating frequency [58]. Experimental investigation of the optical density 

of PQ-PMMA layers demonstrated the nonlinear behaviour of the PQ-consumption 

during photoreaction exposure. This nonlinearity results in the distortion of the 

refractive-index profile and in its deviation from the sinusoidal distribution, as 

provided by the interference pattern. The occurrence of the multiplied gratings are 

reducing the 1st-grating maximum of the generated diffractive structure and are 

limiting the magnitude of n� , compared with the otherwise possible maximum 

[42]. 

 

Figure 4.5 [a] presents the diffraction behaviour of the dependence of the 

gratings diffraction efficiency on the annealing time at C55o . A rapid strengthening 

of the hologram occurs for the first grating (1 [ C55o ]) up to a maximum of 

diffraction efficiency of 80 %. Saturation was reached after 25 hours of heating and 

remained stable in time. A maximum of the second grating (2 [ C55o ]) of almost 

one order of magnitude lower was obtained already in the early stages of the 

grating amplification and stayed constant for a very long time. 

The dependences of the modulation of the refractive index on temperatures of 

the post-exposure annealing of C55o  and C70o  are demonstrated in Fig. 4.5 [b]. 

Almost immediately after exposure, n�  of the second holograms (2 [ C55o ] and 

Fig. 4.5. [a] Dependence of the diffraction efficiency and [b] dependence of the amplitude 
modulation of the refractive index versus annealing time for the transmission gratings 
with periods of [a] 1.2 µm (1) and 0.6 µm (2) and [b] 2.4 µm (1) and 1.2 µm (2) [PQ-
concentration is 2.5 mol.%; layer thickness is 125 µm, power of exposure is 2cm/J12 ]. 
The measurements are made with an accuracy of 5 %. 
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2 [ C70o ]) does not exceed 3103.0 −⋅ . Under heating n�  grows by an order of 

magnitude with a similar slope as the increase of the diffraction efficiency η . As 

can be seen in Fig. 4.5 [b], the rate of change of the amplification process 

depends weakly on temperature. The rise of n� , approaching saturation, is only 

slightly faster at C70o  for the first grating (1 [ C70o ]) as compared with that of the 

thermal annealing at C55o  (1 [ C55o ]), whereas no clear difference was observed 

for the second generated gratings. Series of experiments under different heating 

conditions (up to C90o ) have proved that a variation of the temperature for the 

post-exposure annealing does not significantly influence the magnitude of the n� -

maximum. However, the lower the temperature, the slower is in general the 

amplification process, but the maximal efficiency is the same. This dependence of 

the enhancement velocity on temperature is associated with the acceleration of 

diffusive molecular motion, resulting in the development and the amplification of 

the hologram, but also in its faster destruction. The speed of grating amplification 

is determined by the unreacted PQ-molecules, uniformly distributed throughout the 

sample. This process depends on all experimental conditions, like material 

composition, pre-treatment, annealing temperature and spatial frequency of the 

hologram. 

 

Fig. 4.6. [a] Dependence of the normalized and [b] dependence of the non-normalized 
modulation of the refractive index on the annealing time at a temperature of C70o : 

[a] corresponds to an irradiance of 2cm/J12 and various grating periods of 1.5 µm (1), 
2 µm (2) and 3 µm (3); [b] corresponds to a grating period of 1.5 µm and different powers 
of exposure of 2cm/J12  (1), 2cm/J7  (2), 2cm/J2.3  (3) and 2cm/J5.1  (4). [PQ-
concentration is 2.5 mol.%, layers thickness is 125 µm]. The measurements are made 
with an accuracy of 5 %. 
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Variations of the spatial frequency of the hologram are substantially influencing 

the amplification process. Figure 4.6 [a] presents the behaviour of the normalized 

to the maximum refractive-index modulation versus time. The small differences of 

the grating periods are effecting the annealing time of post-exposure hologram 

amplification. The decrease of the period of diffractive structures causes a 

reduction of the time for achieving the maximum modulation of the refractive index. 

Thus, the higher the spatial frequency and temperature of the post-exposure 

process, the faster the saturation of the efficiency. 

A correct selection of the energy of the incident laser light is very important to 

get optimum n� -values of the polymeric medium. Figure 4.6 [b] exhibits typical 

experimental curves for the dependence of the refractive-index modulation under 

thermal annealing at C70o  and for a 1.5 µm grating period on different power 

values of exposure. By increasing the irradiance or the time of post-exposure 

heating, correspondingly, the phase modulation of the transmission holograms is 

amplified gradually till saturation. These saturation maxima are stronger with 

increasing power strength of exposure. As can be seen from Fig. 4.6 [b], a 

variation of the exposure from 2cm/J5.1  to 2cm/J12  and the corresponding 

enhancement of heating results in an amplification of the n� -maxima by more 

than a factor of two, thereby leading to a deeper modulation of the refractive index 

of the recorded hologram. 

Experimentally we detected a nearly negligible volume variation of the PQ-

PMMA material during thermal amplification. Moreover, a small shrinkage of the 

polymeric layers was found as difference of the thickness of exposed and 

unexposed areas of the sample. This is a result of the initial material compression 

due to its interaction with light and the following expansion of the polymer by 

thermal treatment (formation of a surface relief). The advantage of the method of 

pouring a liquid PQ-PMMA solution on the surface consists in the negligible 

shrinkage of the material, which is by an order of magnitude smaller than in the 

case of the block-preparation process based on MMA polymerization. For 

example, the technique of bulk-polymerization leads to a shrinkage of about 

0.03 % even during the recording process, which can easily increase in some 

cases up to several percents [109]. In contrast, according to our experimental 

results, PQ-PMMA layers with thicknesses of hundreds of microns do not reveal 
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any volume modulation during recording of the grating and show shrinkage values 

of only about 0.002 % during post-exposure amplification at rather high 

temperatures of C80o . This negligible shrinkage practically excludes any variation 

of the photoinduced refractive-index modulation and can also be related with 

ageing or mechanical stresses of the polymeric material [46,110]. This is similar to 

the diffusion of elements of the free volume (or the residual solvent) in the 

direction of minimum (dark area) or of maximum illumination (light area) with small 

diffusion coefficients and does not distort the kinetics of the PQ-PMMA medium. 

4.2.2. Diffusion of PQ-molecules during recording, enhancement and 

stabilization of holograms 

The recording of the interference pattern in polymeric media due to 

photophysical and photochemical reactions with following amplification of the 

grating generates sufficient gradients of concentrations. It is possible to detect 

even slow diffusion processes in polymers by observation of the evolution of a 

periodical structure. The characteristic length of the grating period can be varied 

by changing the geometry of the optical scheme. The dependence of the rate of 

change of the amplification process on the spatial period length defines the 

diffusion action. 

Based on experimental data we conclude that under laser illumination the 

diffusion of both PQ-molecules and photoproducts results in the formation of the 

periodical structure in the medium. After the recording process the fabricated 

grating is stable due to the large size of the macromolecules, which are practically 

immobile as compared with the much smaller PQ-molecules. The thermal 

enhancement of the holographic grating is the result of an accelerated process of 

increased mean velocity at which PQ-molecules diffuse. A possible contribution of 

photoinduced radicals to the diffusion mechanism causing a regression of the 

latent image was not observed by us, in contrast to the results obtained in [46]. A 

diffusion of low-molecular products can also be excluded, because of the absence 

of processes of dark degradation after recording of the gratings. The observed 

lack of the diffusion of additive compounds of radicals and low-molecular 

substances can be associated with the matching of pure and contamination-free 

solvent and a high degree of PQ-adherence to the polymeric matrix. 
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The evolution of the diffusion coefficient of PQ-molecules during grating 

recording is shown in Fig. 4.7 [a]. The change of the diffusion coefficient due to 

light exposure was obtained by an approximation of the recording kinetics of the 

holograms. Due to small migrations of PQ-molecules by diffusion it becomes 

possible to detect extremely low values of D  (close to s/cm10 216− ). The 

photoattachment of PQ-molecules to the polymeric matrix is responsible for a 

decrease of its concentration under exposure. The diffusion coefficient for the PQ-

molecules amounts to values of s/cm10 217−  during illumination. As mentioned 

already, the magnitude of the diffusion coefficient of the photoproducts during the 

process of photoattaching is an order of magnitude lower than that of the PQ-

molecules and amounts to s/cm10 218− . It is a result of two-times larger size of 

the photoproduct molecules in compare with dye-molecules. 

 

The following process of thermal amplification occurs due to the diffusion of 

unreacted PQ-components and results in their homogeneous distribution within 

the polymeric layer. The experimental curves of Fig. 4.5 [b], p.44 show the 

dependence of the modulation of the refractive index on the amplification time. 

They can be described by an exponential expression, taking into account the 

diffusion of the PQ-molecules [26,27,58]: 

]tγexp[Hn�n� 0 −⋅+= , 4.6 

Fig. 4.7. [a] Diffusion coefficient versus power of light exposure W during recording of a 

grating with a 3 µm period; [b] rate of change of the amplification process γ  versus 2Λ− , 
where Λ  denotes the grating period [PQ-concentration is 3 mol.%, layer thickness is 
100 µm]. 
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where 0n�  corresponds to the modulation of the refractive index at the end of the 

diffusion processes, γ  is the diffusion-rate constant of the grating amplification, H 

is a parameter characterizing the contribution of the amplification process. 

Approximation of the experimental dependence by Eq. 4.6 helps to extrapolate 

empirical parameters of the thermal amplification process. 

The dependence of γ  on the grating period indicates its diffusive nature. 

According to Eq. 3.5, p.23, the dependence of the magnitude of γ  on 2Λ−  has a 

linear character. The amplification kinetics of the holograms with different periods 

were approximated by Eq. 4.6. There is the directly proportional dependence of 

the rate of change of the amplification process on the inversely square of the 

grating period [Fig. 4.7 [b] ]. The linear increase of γ  with 2Λ−  confirms the 

assumption about the nature of a single-component diffusion process during 

thermal annealing. 

Thereby, the achievement of the maximum of the hologram amplification can be 

regarded as a uniform distribution of PQ-molecules in the polymeric layer. Thus, 

the fixation of the periodical structure by incoherent radiation with wavelengths in 

the range of the PQ-absorption band leads to the complete phototransformation of 

the unreacted dye-molecules. 

To achieve stability of the amplified hologram by the following fixation 

process without any change of its refractive-index parameters requires the 

complete enhancement of the previously formed periodical structure. The 

detection of the degree of the diffusion-amplification process one can carry out by 

the observation of the n� -evolution. The values of the refractive-index modulation 

immediately after the hologram recording ( en� ) are directly connected to changes 

of the PQ-concentration ( PQC� ) and to the refraction coefficients of the 

components [58]: 

]RR[)t(C�
n6

)2n(
n� PQHPQRPQ

22

e −⋅
⋅

+
= . 4.7 

To estimate the molar refraction values of the PQ-molecules and the probability 

for their attachment to the photoproduct molecules, one can use the technique 

based on the property of refraction additivity to the group contribution [42,129]. 
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Smaller differences between the molar refractions of the initial material and of the 

photoproduct produce larger amplitude-modulation coefficients. The result of the 

calculation provides the following values of the refraction coefficients for the 

photoproduct: mol/cm9.62R 3
HPQR =  and for the PQ-molecules: 

mol/cm5.61R 3
PQ =  [42,58]. In spite of the small difference of the refraction 

coefficients of photoproduct and PQ ( mol/cm4.1R� 3= ) one can determine the 

degree of completeness of the diffusion process applying fixation of the hologram 

by light at different stages of the thermal amplification process. If the distribution of 

PQ in a layer is homogeneous at the end of the thermal enhancing process, the 

continuous irradiation with wavelengths in the PQ-absorption band will cause the 

uniform binding of PQ to the photoproduct. Illumination of the layer will not lead to 

any changes of the amplitude modulation of the refractive index. In the case of an 

incomplete diffusion process during the irradiation by incoherent illumination one 

can observe the transformation of PQ-molecules, which are distributed in the layer 

volume, to the light-insensitive photoproduct. Meanwhile the values of amplitude 

modulation of the refractive index will decrease. 

The range of possible variations of the refractive-index modulation during the 

fixation process lies between en��0 ≤≤  [Eq. 4.7]. During the diffusion 

amplification process proceeding in the polymeric layer the amplitude modulation 

of the refractive index is given as: 

)]]tt(γexp[RR[)t(C�
n6

)2n(
n� ePQHPQRPQ

22

during −−⋅−⋅
⋅

+
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After complete addition of PQ-molecules to a polymeric matrix the amplitude 

modulation of n  becomes equal to: 

)]]tt(γexp[RR[)t(C�
n6

)2n(
n� eHPQRHPQRPQ

22

after −−⋅−⋅
⋅

+
= . 4.9 

The difference between the two previous expressions [Eq. 4.8 and Eq. 4.9] will 

provide the reduction of the refractive-index modulation due to a homogeneous 

fixation process (� ). By comparing it with Eq. 4.7 one notices that the decrease of 

the � -modulation during the diffusion amplification process depends on the value 

of en�  in the following form: 
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)]]tt(γexp[n�� ee −−⋅= . 4.10 

As an experimental proof, several holographic gratings with different 

amplification ratios under the thermal process at C55o  were exposed by 

homogeneous Ar-laser illumination. Figure 4.8 [a] presents the amplification 

kinetics of the partially enhanced sample with a 3 µm grating period. A sharp 

decrease of n�  at the initial time of the homogenous fixation occurs as a result of 

incomplete thermal amplification of the hologram before irradiation. The large 

quantity of the unreacted PQ-molecules leads to their transformation to the light-

insensitive photoproducts with a directly decreasing refractive-index modulation. 

The following annealing process at higher temperatures (up to C70o ) has no 

influence on the grating efficiency. 

 

In Fig. 4.8 [b] one can observe a similar process for the case of a completely 

amplified holographic grating. The kinetics stays stable under exposure confirming 

a homogeneous distribution of the PQ-molecules in the polymeric layer at the end 

of the process. Besides, fixation results in a high stability of the generated 

periodical structure against the surrounding illumination and produces effective 

holographic elements with constant optical properties. 

Numerical calculations confirmed our experimental data. For the case of an 

incomplete diffusion process [Fig. 4.8 [a] ], Eq. 4.10 leads to the result: 

Fig. 4.8. Dependences of the amplitude modulation of the refractive index on the 
annealing time for samples irradiated by homogeneous Ar-laser radiation [PQ-
concentration is 2.5 mol.%, layers thickness is 130 µm, grating period is 3 µm]. Annealing 
process was occurred under C55o  temperature before a homogeneous exposure and 

under C70o  after exposure]. The measurements are made with an accuracy of 5 %. 
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5
numer 1072.1� −⋅=  with the parameters 13s108.4γ −−⋅= , 4

e 107.1n� −⋅= , 

s65te =  and h2.57t = . An approximation of the experimental results by Eq. 4.10 

gives the value 5
erexp 1096.1� −⋅= , which is close to the numerical one. Similarly, 

in the case of a complete diffusion process [Fig. 4.8 [b] ] one obtains 0�numer =  

( 15s1011.1γ −−⋅= , 4
e 1003.4n� −⋅= , s65te = , h2.58t = ) that is in a good 

agreement with experiment, because the decrease of the amplitude modulation of 

the refractive index was not observed. 

Thus, despite of the small difference of the refraction coefficients of PQ and 

photoproduct, homogeneous exposure enables to fix sufficiently any changes of 

the amplitude modulation of the refractive index and to realize the diffusion 

process entirely. The complete grating amplification requires approximately 20-

30 hours of annealing at C55o , depending on the grating period. This can be 

accelerated by applying higher temperatures (at C70o  the grating is amplified 

already within 10-15 hours). The fixation of the periodical structure after its 

complete amplification can be done by uniform irradiation. The recorded amplified 

and fixed grating is temporally stable in case of a variation of the surrounding 

conditions (increasing temperature, additional illumination). 

4.3. PQ-P(MMA) samples and modified copolymer (CP) 

High-quality glass-like polymeric materials with their excellent optical 

properties can be used in various fields, e.g. for telecommunication or as 

holographic displays and channel formation with the aim of storage of information 

and data transfer. Most of these applications require high thermal and adhesion 

properties of the media. The possibility to use thin, transparent and contamination-

free polymeric films containing a large concentration of PQ-molecules as dopant 

results in a low shrinkage effect of the material and a precise modulation of its 

index of refraction. These particular characteristics guarantee a long-lasting 

stability of the polymeric compounds during photoinduced structure formation. 

Usually post-exposure enhancement of the holographic structures is achieved at 

temperatures of C8050 o− , limited by the glass transition temperature of PMMA 

( C105o ). An increase of the thermal stability by applying up to C140o  leads to a 
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lower refractive-index modulation, i.e. to grating degradation, as shown in our 

previous experiments [57]. 

To broaden the field of applications we improved the polymeric properties by 

increasing their thermal stability up to C200160 o−  [117,118,120,130]. The 

preparation of these new, heatproof polymers was implemented, using a new 

method of copolymerization of MMA with polar monomers by the technique of 

homopolymerization. Such monomers include in particular acrylic acid (AA), 

methacrylic acid (MA), and methacrylamide (MAA). After producing the PMMA 

basic material layer molding was carried out using pouring of a liquid solution of 

the polymerized PMMA on glass substrates with injection of a high PQ-

concentration. The use of the method of radical polymerization together with high 

dye-concentration is necessary to achieve the desired large values of the 

refractive-index modulation, similar to new thermostable recording media with 

large n� -values produced by other research groups. This polymerized PQ-PMMA 

medium is designated in the following as PQ-P(MMA). 

4.3.1. MMA based polymer with Acrylic Acid as copolymer 

By applying a special polymerization method, a new medium of polymerized 

PQ-P(MMA) with high PQ-concentration was developed. The initial P(MMA) 

polymer was prepared by block polymerization of MMA at C600  under nitrogen 

atmosphere utilising multi-step washing with distilled water and drying at C500  

[117]. ММА produced by the Rohm GmbH & Co. (Germany) was purified by 

distillation at reduced pressure before polymerization. As initiator 2.2’-azo-bis-

isobutyronitrile (AIBN) was used. We succeeded to inject PQ into the polymerized 

polymer with high concentration (up to 4 mol.%), a technique which was not 

demonstrated so far in previous research work. The mixture of PMMA, PQ and 

dichloroethane as solvent was casted on the glass substrate followed by 

evaporation of the solvent and drying of the produced layers. 

From previous experiments it is known that materials based on polymerized 

PQ-P(MMA) possess a minor refractive-index modulation together with quite 

reduced thermal and adhesion properties [130]. It is very difficult to use PQ-

P(MMA) recording media in conjunction with silicate glass and to subject such 

polymeric compounds to high temperatures. One way to eliminate these problems 
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can be to modify P(MMA) in order to improve its thermo-mechanical 

characteristics, in particular to enhance its heat resistance and to improve the 

adhesion to glass, but at the same time to save its spectral transparency. 

We have developed a new modified polymeric medium by radical 

copolymerization of MMA with acrylic acid (AA). Radical block copolymerization 

was carried out in a glass test tube fitted with a backflow condenser. Using a molar 

ratio of (AA : MMA) = 1 : 1, polymerization proceeded in a current of nitrogen at a 

temperature of C60o  during 4 hours period. As an initiator AIBN was used. After 

completion of the synthesis the obtained polymeric sample was grinded at room 

temperature and washed with water and ethanol to remove unreacted monomers 

and the unconsumed AA-homopolymer. Dried samples were dissolved in 

dimethylformamide (DMF). The solution was passed through a Schott filter, after 

which the product of copolymerization is deposited in water. A small quantity of 

P(MMA) may possibly remain on the filter, which is not soluble in DMF. Some AA-

homopolymer stayed in the CP precipitant. The composition of CP was determined 

by acid-base titration of carboxyl groups in an organic solvent. MMA copolymer 

with AA was solved in acetic acid contained in the glass tube [117]. The polymeric 

samples were obtained by pouring the liquid solution of MMA+AA and PQ on the 

glass substrates with following drying at C70o . The film thickness was varied from 

70 µm up to 100 µm for all types of polymers modifications. 

 

The choice of the synthesis process influences the generated chemical 

structure and the characteristics of the formed comonomer layer and can also 

Fig. 4.9. Content of the AA-links in the copolymerization product (β ) in dependence of the 
molar fraction of polar comonomer (MMA+AA) in the monomer mixture (δ ). 



Chapter 4. Polymeric Media Based on PMMA with Distributed PQ-Molecules 55 
 

 

change the optical parameters of the material. The determination of the 

composition of the CP in dependence on the composition of the monomer mixture 

allows to estimate the reactivity of the monomer during the copolymerization 

reaction. Experimental results of the copolymer and monomer compositions are 

shown in Fig. 4.9, where δ  is the molar fraction of polar comonomers in the 

mixture of monomers and β  is the molar fraction of polar comonomers in the 

copolymer. The equality of δ  and β  represents the “ideal” copolymerization 

process, where the additive reaction of polymerization occurs completely. For the 

system of MMA+AA the complete synthesis happens for 3.0δ < . Increasing the 

δ -values results in the enrichment of the copolymer CP by MMA-links and 

decreasing the quantity of the AA-links. Therefore, to get optimal optical and 

thermal properties the best composition is obtained for choosing 2.0δ = . 

 

Figure 4.10 presents spectral evaluations of both media, PQ-P(MMA) and PQ-

P(MMA+AA), under illumination in the VIS range. Polymers were illuminated by an 

Ar-laser (514.5 nm, 2cm/mW60 ). Comparing these results with the spectra of 

PQ-PMMA without polymerization [Fig. 4.2, p.37] one can see a similarity of the 

active absorption band approximately up to a wavelength of 520 nm. In spite of the 

similar spectral behaviour of both materials, the absorption of PQ-P(MMA) 

decreases faster than that of its copolymer with AA. For PQ-P(MMA) we need just 

5 min of irradiation with a light intensity of 2cm/mW60  to make it completely 

transparent at 514.5 nm wavelength, while for the copolymer we achieved only 

about 50 % of phototransformation for the same exposure conditions. 

Fig. 4.10. Spectral dependences of absorption [a] for polymerized PQ-P(MMA) and [b] for 
a modified copolymer PQ-P(MMA+AA) under Ar-laser illumination [PQ-concentration is 
4 mol.%, input intensity is 2cm/mW60  at 514.5 nm wavelength]. 
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Holographic gratings in PQ-P(MMA) and PQ-P(MMA+AA) media were recorded 

and reconstructed using the same scheme as presented in Fig. 4.3, p.38. 

Formation and evolution of the periodical structure were measured to investigate 

the optical and thermal properties of the polymers [117,118]. The concentration of 

the PQ-molecules was 4 mol.%, the thickness of the layers was 90 µm and the 

grating period was 0.6 µm. The values of the diffraction efficiency were measured 

during the process of grating recording by detecting the diffracted beam intensity. 

The kinetics of η  for both materials are shown in Fig. 4.11. 

With the new PQ-P(MMA+AA) medium values of the diffraction efficiency up to 

32 % were obtained within 600 s of recording time followed by a slight reduction of 

the efficiency till saturation has been reached near 20 % (about the same as the 

maximum efficiency of PQ-P(MMA) ) [Fig. 4.11 [b] ]. The magnitudes of efficiency 

during recording are higher for CP with AA than for PQ-P(MMA) [Fig. 4.11 [a] ]. 

The maximum values are reached faster for PQ-P(MMA+AA) CP (about 60-80 s), 

but continuous illumination of this polymer results in an exponential grating 

degradation. The refractive-index modulation n�  during hologram recording for 

both cases covers the range of 410− . 

The difference of the behaviours in spectra and kinetics can be explained by 

different photochemical reactions taking place in the different polymeric media. For 

PQ-P(MMA) samples one observes an increasing diffraction efficiency as a result 

of the additive of semiquinone radicals to the macromolecules. In the case of the 

Fig. 4.11. Diffraction efficiency kinetics [a] of polymerized PQ-P(MMA) and [b] of 
copolymer PQ-P(MMA+AA) versus recording time. The gratings with a period of 0.6 µm 
are written and read out by an Ar-laser (514.5 nm). The measurements are made with an 
accuracy of 5 %. 
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copolymer the situation is different [117]. In PQ-P(MMA+AA) the formation of 

hydrogen bonds occurs due to the reacting macromolecules, which results in the 

following two competing processes contributing differently to the photoinduced 

grating formation: 

HPQRRHPQ →+ ••  

and 

products ionrecombinatHPQHPQ →+ •• . 

The delay of the PQ-diffusion in the CP is a result of the formation of hydrogen 

bonds by AA-links and the reduced mobility of the macromolecules. This is 

responsible for the reduced interaction probability of the PQ-molecules with the 

copolymer and the only partial attachment of PQ to MMA+AA [118]. Thus, the 

gratings can only be formed by CP with lower reaction velocity, therefore, 

however, ensuring a long grating storage. 

 

A thermal analysis of PQ-P(MMA) as well as of the copolymer PQ-P(MMA+AA) 

is presented in Fig. 4.12. Polymeric layers were annealed by temperatures in the 

range of C200100 o− . During thermal heating, a short-term amplification of the 

diffraction efficiency was observed due to the fast PQ-diffusion, whereas the 

Fig. 4.12. Dependence of the diffraction efficiency normalized to the maximum values on 
heating time at temperatures of [a] C100o , [b] C160o  and [c] C200o . Fill circles 
correspond to PQ-P(MMA) and hollow squares correspond to the copolymer PQ-
P(MMA+AA). The measurements are made with an accuracy of 5 %. 
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longer term reduction of η  is a result of the slow diffusion of the large 

photoproduct molecules. Initial η -values are higher for CP layers in comparison 

with PQ-P(MMA) for the same process conditions of recording and annealing. A 

temperature increase up to C160o  leads for both samples to a similar tendency of 

grating degradation. This is the highest temperature so far, for which the evolution 

of gratings in polymerized PQ-P(MMA) has been observed. Annealing in the range 

of C200170 o−  results in a complete destruction of the PQ-P(MMA) material and 

generates only a weak holographic structure in its copolymer. However, even at 

C200o  the values of diffraction efficiency for PQ-P(MMA+AA) were dropping to 

zero within 300 minutes [Fig. 4.12 [c] ]. 

The adhesion properties of the polymerized polymeric and copolymeric films 

have been investigated by taking into account the action of the mechanic force 

required to remove the polymeric film from the glass substrate. This can be 

observed in the glass bulb during the synthesis process, as well as during drying 

and subsequent formation of the polymeric film in a Petri dish. The experiments 

demonstrated that the copolymer has better adhesion properties to silicate glass 

compared with the MMA homopolymer. Besides, in all cases adherence was 

worse than in purified PQ-PMMA. 

4.3.2. Non-local response in polymerized material 

The decrease of the spatial period of holographic gratings recorded in non-

polymerized PQ-PMMA layers results in a faster grating amplification, but has no 

influence on the achieved maximum values of n�  [Fig. 4.6 [a], p.45]. A similar 

experiment was made for block synthesized PQ-P(MMA) and for its copolymer 

with AA. The time maxt  (in s) for achieving the maximum diffraction efficiency 

versus the angle θ2  between the interfering beams is shown in Fig. 4.13. 

Whereas for the case of non-polymerized PQ-PMMA this dependence is linear, for 

polymerized PQ-P(MMA) [Fig. 4.13 [a] ] and for PQ-P(MMA+AA) [Fig. 4.13 [b] ], 

the dependence is different. The decrease of time maxt  with increasing angle θ2  

(i.e. decreasing of the grating period) is observed till to the critical angle for which 

the diffraction efficiency reaches its maximum within shortest time ( 080θ2 = ). 

After that angle, maxt  and the value of the diffraction efficiency grow again for both 
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kinds of material. Fresnel reflection was taken into account for each case; 

therefore, its influence on this behaviour is excluded. 

 

Accordingly, one can obtain from the experiment the particular angle between 

the incident beams for which the time, necessary to reach the maximum of 

diffraction efficiency, is minimal. This non-typical behaviour of the grating kinetics 

suggested to us an idea of a non-local response presented in polymerized material 

[119]. Under illumination of the photopolymeric material the monomer is activated. 

Polymeric chains can be generated in a bright illuminated region, growing slowly 

into the nearest dark region. This spreading of the chains leads to a “smearing” 

(averaging) of the recorded refractive-index profile and is responsible for a non-

local material response [131-134]. This situation can be modelled by a one-

dimensional diffusion process of grating formation [55,131,134-136]. The 

mathematical description of the redistribution process of molecules exhibits the 

existence of the non-local, nonlinear properties of polymers and provides a 

possibility to find out the non-local response length of PQ-components [119]. 

An experimental observation of the temporal behaviour of the diffractive 

structure helps to simulate numerically the diffusion mechanism in the PQ-P(MMA) 

material and in its copolymer. We assume that modified photopolymers possess 

diffusion properties of two components (of the mobile substance (PQ) and the 

rather immobile photoproduct molecules) [57,117]. The model presented in the 

following is based on the Sheridan and Lawrence’s theory [131,132]. It describes 

the contribution of the non-local response by a one-dimensional diffusion theory. 

Fig. 4.13. Dependence of the time maxt  for achieving the maximum diffraction efficiency 

on the angle θ2  between the interfering beams for holographic gratings recorded [a] in 
PQ-P(MMA) and [b] in PQ-P(MMA+AA). The measurements are made with an accuracy 
of 5 %. 
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According to Zhao and Mouroulis [134] the change of the diffusion coefficient has 

negligible influence on the grating formation in a polymerized photopolymer and 

can be assumed as a constant parameter of the model. 

The expression t/)t,x(C ∂∂  that describes the change of the PQ-concentration 

in time and space (according to the second Fick law for the one-dimensional case, 

when the diffusion coefficient D  is a constant) can be written in the following way 

[131]: 

∫
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∞−

⋅−
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∂

∂

∂
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∂
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, 4.11 

where )'t,'x(F  is the copolymerization rate and, )'t,t,'x,x(R  defines the non-local 

response (the change of the concentration at the point { }'t,'x , in case, the material 

was exposed at the point { }t,x ). According to [131] the non-local response of the 

medium can be described using a non-local response length σ  by: 

πσ2

]σ2/)'xx(exp[
)'xx(R

2−−
=− . 4.12 

The modulation of the photoproduct concentration [ t/)t,x(N ∂∂ ] can be found from: 

)t,x(CIξ
t

)t,x(N
⋅⋅=

∂

∂
, 4.13 

where ξ  is the constant of copolymerization. During the recording process the light 

intensity distribution in the layer is given by: 

])fxcos[V1(I)t,x(I 0 ⋅+⋅= , 4.14 

with initial intensity 0I , fringe visibility V  and spatial frequency of the grating f  

[
Λ

π2
f = ]. The rate of photoattachment (probability) is proportional to the beam 

intensity and equal to: 

])fxcos[V1(F)t,x(F 0 ⋅+⋅= , 4.15 

with 00 IξF ⋅= . The solution of Eq. 4.11 can be written as a Fourier series: 

]ifxcos[)t(C)t,x(C
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. 4.16 
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We shall consider only two first harmonics: 

]fxcos[)t(C)t(C)t,x(C 10 ⋅+= . 4.17 

Substituting this equation in Eq. 4.11 one can derive the following expressions 

for the concentration of the first two harmonics during recording of the grating: 
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After integration of Eq. 4.13 and substitution of Eq. 4.18 in it one gets the 

modulation of the photoproduct concentration: 

...]fx2cos[)t(N]fxcos[)t(N)t(N)t,x(N 210 +⋅+⋅+= . 4.19 

For the first two harmonics one obtains accordingly: 
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4.20 

If the change of the concentrations is relatively small, the modulation of the 

refractive index of volume holographic gratings can be derived as the diffusion 

contribution of both processes using the Lorentz-Lorenz formula [96]: 

i
i

i

22

C�R
n6

)2n(
n� ∑

⋅

+
= , 4.21 

where iR  and iC�  are the refraction coefficient and the change of concentration of 

the i-th components (i = PQ or photoproduct). The diffraction efficiency η  for 

volume reflection holograms under the Bragg condition can be calculated using 

the Kogelnik formula [Eq. 4.3, p.41]. 

To analyze the influence of the non-local response of the medium on the grating 

formation process one can switch off or switch on this effect in the model. In the 

theoretical calculations the following parameters have been used: refractive index 

5.1n = , wavelength 5.514λ =  nm, diffusion coefficient s/cm10D 217−= , input 
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intensity of each beam: 2
0 cm/mW200I = , constant of copolymerization 

2115 cmsW1067,5ξ −−−⋅=  [119]. 

 

Figure 4.14 shows the experimental (points) and theoretical (lines) curves of the 

diffraction efficiency versus the time for reaching the maximum of η  corresponding 

to a variation of input angles from 20o to 120o. Theoretical simulations confirm that 

an increase of the incidence angle leads to a decrease of the time necessary for 

reaching the maximal diffraction efficiency up to a certain interaction angle. Above 

this particular angle of incidence the corresponding times increase again. In the 

case of PQ-P(MMA) this time decreases from 100 s (angle 20o) till 80 s (80o) and 

then increases up to 86 s (120o) again. Besides, one can note that the grating with 

the incidence angle of 120o is the most stable in behaviour confirming the optimum 

recording time in the range of 80 s. 

Figure 4.15 shows the theoretically calculated normalized to the maximum time 

necessary for achieving the maximal diffraction efficiency versus the angle 

between the beams for different fitted values of the non-local response length of 

PQ. The general form of the theoretical curve coincides with the experimental one 

[Fig. 4.13, p.59]. The agreement of the experimental and theoretical results 

justifies to suppose that the existence of an extreme of the time for reaching the 

maximal diffraction efficiency versus the angle between the beams is due to a non-

Fig. 4.14. Experimental (points) and theoretical (lines) dependences of the diffraction 
efficiency normalized to the maximum versus time for reaching the maximal values for 
incidence angles o20 , o80  and o120 , which correspond to the grating periods of 1.5 µm, 
0.4 µm and 0.3  µm, respectively. The initial PQ-concentration is 2.5 mol.% and the non-

local response length amounts to 31σ =  nm. 
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local response of the PQ-P(MMA) polymeric layer and its copolymer. Fitting the 

averaged curve of the non-local response length of phenanthrenequinone leads to 

a value of 31 nm for PQ-P(MMA) and of 70 nm for PQ-P(MMA+AA). 

 

4.3.3. Copolymers of MMA with Methacrylamide and Methacrylic Acid 

The next step for the improvement of adhesion and thermal properties of PQ-

P(MMA) media was its modification by MMA-copolymerization with polar 

monomers [methacrylamide (MAA) and methacrylic acid (MA)]. The choice of the 

method of copolymer synthesis was determined by the ability of the comonomer to 

dissolve in the MMA-monomer. The MA is soluble in MMA, therefore its 

copolymerization can be performed by a strong intermolecular block interaction in 

the MAA-element. This makes it indissoluble in the monomer due to the formation 

of hydrogen bonds between carbonyl and amide molecules groups. Radical 

copolymerization of ММА with МАА occurs in a 40 % solution of the monomer 

mixture with 1,4-dioxane at C80o  in the presence of AIBN as initiator. The 

duration of synthesis is 4 hours; the concentration of AIBN amounted to 10 % of 

the mass of the monomer mixture. The molar fraction of МАА and MA in the 

monomer mixture (δ ) was varying from 0.2 up to 0.8. 

The polymeric samples of both copolymers were prepared from a 10 % solution 

in acetic acid. PQ was added in the quantity of 4 mol.% after its complete 

dissolution. The solution was poured on smooth glass plates and dried at C80o  to 

Fig. 4.15. Theoretical dependence of the time necessary to achieve the maximum 
diffraction efficiency on the angle between the interfering beams ( θ2 ) for different values 

of the non-local response length σ . 
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remove the solvent. The average thickness of the achieved polymeric films was 

90 µm. 

 

Figure 4.16 exhibits the absorption spectra versus exposure for P(MMA+MAA) 

and PQ-P(MMA+MA) copolymers. Both media were illuminated during 1 hour and 

are characterized by a slow photoattaching reaction of the PQ-molecules to the 

polymeric matrix. The same situation was observed experimentally for various 

possible variations of molar fraction of МАА and MA in the monomer mixture. 

 

Experimental data for the dependence of the copolymeric composition on the 

composition of the monomer mixture in PQ-P(MMA+MAA) and PQ-P(MMA+MA) 

are shown in Fig. 4.17. For the system MMA+MAA the deviation of the 

experimental curve from the theoretical diagonal is significant. For small values of 

Fig. 4.16. Absorption spectra before and during illumination of copolymers [a] PQ-
P(MMA+MAA) and [b] PQ-P(MMA+MA) under Ar-laser illumination [PQ-concentration is 
4 mol.%, input intensity is 2cm/mW60  at 514.5 nm wavelength]. 

Fig. 4.17. Content [a] of MAA-links and [b] of MA-links in the copolymerization product 
(β ) in dependence on the molar fraction of the polar comonomer (MAA or MA) (δ ) in the 
mixture of the monomers. 
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δ  till 0.2-0.3 the correlation between MMA and MAA-links is practically identical to 

that of the initial monomer mixture and to the mixture with CP. It starts to deviate 

strongly at higher values [Fig. 4.17 [a] ]. The maximum deviation was obtained for 

δ  between 0.4 and 0.6. At these values a deficiency of methacrylamides links in 

CP was observed. At higher content of MAA the composition of CP gets closer to 

the composition of the comonomer mixture. 

In a system of MMA+MA at δ  varying from 0.2 to 0.4 the composition of the 

copolymer is chemically similar to that of the monomer mixture, i.e. the 

copolymerization results in an azeotropic mixture [Fig. 4.17 [b] ]. With further 

increase of the MA content in the monomer mixture from 0.4 up to 0.8 one 

observes deviations of the CP-composition mixture from an azeotropic one. The 

formation of MMA+MA copolymer with a statistical distribution of these compounds 

supports the depletion of the CP-mixture by the MA-links for 4.0δ > . 

Series of experiments of hologram recording with different δ -values were 

performed by analogy to previous investigations of copolymers [Fig. 4.18]. Both 

copolymers possess a low modulation of the refractive index. Generation of the 

diffractive structure in the PQ-P(MMA+MAA) medium was realized in the range of 

δ  between 0.2 and 0.4, whereas for the copolymer with the MA-content the 

modulation of the refractive index occurs for 3.0δ ≤ . These results are correlated 

with the type of copolymerization, i.e. gratings can be recorded, when the 

compositions consisting of copolymer and monomer are forming a chemically 

related mixture, showing an azeotropic behaviour. For both components the 

maximum achieved values of the diffraction efficiency are in the range of 

%104.0η −≈ , showing a photoinduced structure, which is weak in comparison 

with previous polymeric media. 
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Further gratings have to be annealed in order to further increase their thermal 

stability. Diffractive structures were generated by applying temperatures up to 

C160o . However, further heating results in a complete destruction of the 

hologram. Thus, copolymers with MAA and MA contents show a weak grating 

formation with limited optical and thermal characteristics in comparison with 

previous CP-content. The positive and important quality of copolymeric films is 

their advanced adhesion property, producing a tight connection between the 

material and glass substrate. 

4.4. Conclusion 

Polymeric materials based on a PMMA matrix containing distributed PQ-

molecules are fabricated for the purpose of optical recording by generating 

holographic diffractive structures under Ar-laser illumination. Additionally, using a 

new technology of sample preparation by injecting a high PQ-concentration (up to 

4 mol.%), diffractive structures with almost 80-90 % efficiency were generated in 

polymers of thicknesses of hundreds of microns. Pouring of the liquid solution on 

glass substrates with following drying together with a high concentration of dye 

results in a deep modulation of the refractive index during photoinduced structure 

recording ( 4105n� −⋅≈ ). A moderate layer thickness mainly excludes shrinkage 

and relief formation. Recording and enhancement of the gratings under different 

Fig. 4.18. Diffraction efficiency dependences versus recording time [a] in PQ-
P(MMA+MAA) and [b] in PQ-P(MMA+MA) copolymers under Ar-laser illumination [PQ-

concentration is 4 mol.%, input intensity is 2cm/mW60 at 514.5 nm wavelength]. The 
measurements were made with an accuracy of 5 %. 
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conditions show the independence of the achieved n� -values on the spatial 

period, but lead to a bigger modulation of n�  by increasing the injected energy. 

The investigation of the process of thermal enhancement proved its enhancing 

influence on the periodical structures amplifying the refractive-index modulation by 

an order of magnitude ( 310n� −≈ ). Homogenous irradiation stabilized the 

recorded grating making it insensitive to surrounding illumination and increasing 

the shelf-life of the holograms. 

The improvement of the optical parameters of the polymeric samples for their 

broader applications was obtained by block polymerization of the MMA monomer 

producing copolymeric media. Modified PQ-P(MMA) materials as well as PQ-

P(MMA+AA) possess a relatively large value of diffraction efficiency during 

recording [ %3020η −= ] with refractive-index modulation in the range of 410− . The 

thermostable PQ-P(MMA+AA) medium enables to save grating structures by 

heating up to temperatures of maximal C200o . These particular properties make 

copolymers very attractive for their application in the field of telecommunication 

and fabrication of displays, where high stability and resistance towards high 

temperatures plays a major role. 

In spite of these advantages the insufficient adhesion of the modified material is 

responsible for the rather complicated process of pouring of the polymeric solution 

with high PQ-concentration on the silicate glass substrate. The fast degradation of 

the recorded gratings and the behaviour of the non-local response results in 

somewhat blurred and unsharp pictures with lower refractive-index modulation and 

shorter grating stability as compared with purified PQ-PMMA monomer media. 

Modified copolymers with methacrylamide and methacrylic acid reveal a slower 

process of phototransformation due to PQ-molecules with a weaker modulation of 

the refractive index. The formation and evolution of the holographic gratings in 

copolymers are complicated processes due to the existence of intermolecular 

hydrogen bonds together with competing reaction contributions of cross and 

square recombination of polymeric radicals. Besides, previous research works 

indicate the strong influence of the polymerization process on the surface relief 

formation destroying the recorded image. 

Comparing the optical properties of all developed PQ-containing polymeric 

media leads to the conclusion to continue the investigations of the self-trapping 
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formation in purified monomer PMMA with high PQ-concentrations. The 

photoinduced change of the refractive index in PQ-PMMA achieved already 

without extra annealing is sufficient to generate stable self-written channels in 

nonlinear polymeric media by light interaction. Because of the relatively large 

molecular size of the doping agents post-diffusion dark processes of this material 

are ruled out. Also, depending on the applied temperature the gratings, formed in 

this material, are stable for tens of years. Moreover, PQ-PMMA photopolymers do 

not show any effects of surface deformation and non-local behaviour during 

recording of grating structures forming effective distinct holograms. 



  
 

Chapter 5 Self-Trapping in Polymers Based on PQ-

PMMA 

5.1. Numerical modeling of (1+1)D laser-beam self-trapping in 

polymeric layers 

 

In the previous chapters we 

mentioned that nonlinear wave 

propagation and diffraction of a light 

beam in nonlinear materials are 

effectively compensated by the 

effect of self-trapping [3,6]. In order 

to investigate this phenomenon 

occurring in light-sensitive PQ-

PMMA media, the behaviour of a 

light beam focused on the front surface of the sample was examined. Compared to 

a uniform linear medium, where an optical beam strongly diverges [Fig. 5.1 [a] ], 

the propagating laser beam forms in the PQ-PMMA polymer a nonlinear area with 

higher refractive index in direction of the light propagation. The correlation 

between the intensity of the input beam and its diameter results in a decrease of 

the diffraction properties of the beam and in a concentration of the light beam in 

the formed channel. If the thus captured beam is able to save its characteristic 

properties for a certain period of time, a homogeneous channel waveguide located 

along the propagation axis is generated in the area with the modified refractive 

index [Fig. 5.1 [b] ]. This self-channeling can be formed in one-dimension as well 

as in the volume of a nonlinear media. The next step of our research is to 

investigate numerically and also experimentally the photoinduced generation of 

the (1+1)D-self-trapping process. The light propagates with a finite spatial cross 

section, whereby the self-focused beam travels without divergence in the PQ-

PMMA medium. 

 

 

Fig. 5.1. [a] Propagation of a laser wave in air 
and [b] generation of self-trapping in a 
photopolymer. 
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5.1.1. Theoretical approach of the light propagation in polymers 

The self-channeling of a laser beam in the PQ-PMMA layer occurs due to the 

nonlinear action of the change of the refractive index. The distribution of light 

corresponding to a coherent electromagnetic illumination is described by Maxwell 

equations. To characterize the propagation of a laser beam in a polymeric medium 

one can use the scalar Helmholtz equation [12]: 

0EKE
2
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∧

, 5.1 

with nkK 0
�

⋅=
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, where 00 λ/π2k = , 0λ  is the free-space wavelength, 

)t,z,x(κi)t,z,x(nn −=
�

 is the complex refractive index with the nonlinear coefficient 

of the extinction )t,z,x(κ . The magnitude n
�

 includes the absorption of the medium 

and the real part of the refractive-index coefficient n�n)t,z,x(n 0 += , 0n  is the 

initial refractive index, and n�  is the photoinduced variation of the refractive index. 

In the case of (1+1)-D Eq. 5.1 has the solution: 

]ikzexp[)z,x(AE −⋅= , 5.2 

with the complex amplitude of the light wave ]φiexp[aA ⋅=  and wave number 

00 nkk ⋅= . Equation 5.1 yields the diffraction equation for the distribution of the 

beam along the coordinate z in the polymeric layer: 
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where nkK 0 ⋅=  and α  is the absorption coefficient of the medium that is equal to 

PQmol Cαα ⋅= , PQC  is the PQ-concentration and molα  is the molar absorption 

cross-section [137]. In consideration of variations of the PQ-concentration under 

illumination the absorption coefficient depends on coordinates and time 

[ )t,z,x(αα = ]. One notices that Eq. 2.11, p.16 is a generalization of the obtained 

Eq. 5.3 with zero absorption of the medium ( 0α = ). 

The solution of Eq. 5.3 can be found by using the split-step method [138,139]. 

For this purpose we write Eq. 5.3 in the form: 
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According to the split-step method the complex amplitude A  is assumed to be 

the sum of a linear ( LA ) and a nonlinear ( NLA ) part: 

NLL AAA += . 5.5 

By separating the linear [Eq. 5.6 [a] ] and the nonlinear [Eq. 5.6 [a] ] parts of 

Eq. 5.3 one obtains: 
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The nonlinear part has an analytical solution, but the linear one can be 

calculated only numerically. If we assume a small step along the z-direction, then 

the two parts can be treated separately with only a relatively small numerical error. 

Thus, for the nonlinear part the solution has the form: 
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For the linear part the fast Fourier transform (FFT) is applied, which is an 

efficient algorithm to compute the discrete Fourier transform (DFT) and its inverse. 

For the direct Fourier transformation we substitute the Fourier function by the 

following expression: 
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where xω  is the projection of the Fourier-transformation frequency on the x axis. 

Finally, the solution of the linear part is: 
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5.1.2. Simulation of the diffusion mechanism 

The diffusion process in the PQ-PMMA photopolymer can be described by two 

diffusion mechanisms: the first one is the diffusion of unreacted PQ-molecules, the 

second one is the diffusion of the photoproduct. In the one-dimensional case the 

change of the PQ-component is described by the following expression [121]: 
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where )t,z,x(C  is the change of the PQ-concentration by diffusion with the 

diffusion coefficient )t,x(D  and the coupling rate ε . The diffusion coefficient is 

defined by a formula derived from the free-volume theory. Accordingly, )t,x(D  is 

represented by an exponential decrease, which is caused by an increasing change 

of the photoproduct concentration: 
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where 0C  is the initial PQ-concentration before illumination, )t,z,x(N  is the change 

of the concentration of the photoproduct, 0D  is the initial diffusion coefficient and 

dc  is the diffusion constant that was found experimentally according to [131]. 

Taking Eq. 5.11 into account, one can assume that not all PQ-molecules 

contained in the illuminated part of the layer are involved in the photoreaction 

process. 

Equation 5.11 can be solved in the same way as it was done for Eq. 5.4, p.71 

using the split-step method by separation into a linear [Eq. 5.12 [a] ] and a 

nonlinear [Eq. 5.12 [a] ] part: 
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Here the nonlinear part has the solution: 
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and the linear one yields (using FFT): 
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where xω  and zω  are the projections of the frequencies obtained by their Fourier 

transformation on the x and z axes. 

The change of the PQ-concentration can be written as the difference between 

the present (C ) and the initial ( 0C ) concentrations: 

0CCC� −= , 5.15 

whereas the change of the photoproduct can be found from [121]: 

)t,z,x(CIε
t

)t,z,x(N
⋅⋅=

∂

∂
. 5.16 

Based on the values for the variations of the concentrations of the photoproduct 

and the PQ-molecules, inserting their refraction coefficients ( HPQRR  and PQR ) and 

using the Lorentz-Lorenz formula, the following expression for the change of the 

refractive index is obtained [42,96]: 

)]t,z,x(CR)t,z,x(NR[
n6

)2n(
n� PQHPQR

22

PQ ⋅−⋅
⋅

+
= . 5.17 

5.1.3. Results of the theoretical modeling 

The simulation of the self-trapping mechanism in the PQ-PMMA medium was 

calculated numerically by using the Mathlab program. For the theoretical treatment 

we used a Gaussian distribution for the intensity [ )]x/x(exp[II 2
0

2
0 −= ] and the 

following parameters, obtained from previous experiments [42,57,119-121] 

refractive index 5.1n = , wavelength in vacuum nm5.514λ0 = , difference between 

the refraction coefficients of photoproduct and PQ /molcm4.1R� 3=  [42,58], initial 

concentration of PQ-molecules in the polymeric layer mol.%4.1C0 = , molar 

absorption cross-section /molcm10α 25
mol = , diffusion coefficient /scm10D 217−= , 

diffusion coefficient constant 2
d 10c −= , absorption coefficient α  (which varies 
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thereby in the range of about a few tens of cm-1), and coupling rate 

2-1-15 msW10ε −=  (which was found theoretically from a simulation calculation of 

the holographic grating formation) [121]. 

A series of numerical simulations for various cross-sections of the input beam 

have been performed showing a similar behaviour of the beam for all cases. As 

typical dimension for the laser-beam we used an input radius µm6x0 =  (at the 1/e 

mean) for the presented model, corresponding to the beam full width at half 

maximum of about 10 µm (FWHM). To prove our prediction about self-trapping in 

the polymer we need to generate a channel with a length several times longer than 

the self-focussing length, the so-called, “Rayleigh length” [74]. Inserting a one-

dimensional Gaussian beam in Eq. 2.8, p.15 one can derive the following 

expression for the Rayleigh length: 0
2
0R λ/nxπ2L = . For the PQ-PMMA layer it 

amounts to about 0.7 mm [ µm6x0 = , nm5.514λ0 =  and 5.1n = ]. In the following 

numerical simulations were performed with a value of 5 mm for the channel length 

and with an input-beam intensity of 2
0 W/cm1I = , required to achieve the 

necessary change of the refractive index. 

 
Fig. 5.2. Simulation calculations of the self-trapping formation in the PQ-PMMA 
polymeric layer in dependence on the recording time [from 30 s to 240 s]. 
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Using the theory presented above, the formation process of beam focusing can 

be described as a consequence of the compensation of the divergence of light by 

the nonlinear response of the polymeric medium. Figure 5.2 shows an example for 

the formation of self-trapping in a polymeric layer by the light intensity distribution. 

The self-trapping process develops within 2.5-3 min. Further illumination longer 

than 4 min leads to an overfocusing of the laser beam. One assumes that the 

formation of the self-trapping channel in the PQ-PMMA polymeric layer for the 

predicted parameters (e.g. an input intensity of about 2cm/W1 ) requires a 

recording time of about 120-180 s. 

The distributions of the change of the refractive index in a polymeric layer after 

different times of illumination are shown in Fig. 5.3. The variation of the amplitude 

of the refractive index reaches its maximum (of about 4104n� −⋅= ) at the front of 

the polymeric layer. The channel is formed gradually and achieves the maximum 

of n�  within the sample. The simulated values of the maximal refractive-index 

change are in good agreement with the experimental results of the recorded 

periodical structures (chapter 4.2). 

 

The change of the cross-section of the output beam under laser radiation is 

illustrated in Fig. 5.4. Three temporal phases can be separated. The first phase 

(several seconds) corresponds to the case, when the beam cannot escape from 

the medium due to strong absorption. The second phase (until ~ 2 min) 

corresponds to a sharp decrease of the radius of the output beam. The third phase 

Fig. 5.3. Simulation of the refractive-index change versus illumination time [t=30 s, 90 s 
and 180 s]. 
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(several minutes) corresponds to a slow asymptotic constriction of the output 

beam. At 125 s the output radius becomes equal to the input one ( µm6x0 = ), and 

a straight channel in the polymeric layer is generated. Subsequent laser radiation 

leads to a further reduction of the self-trapping channel width. 
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Fig. 5.4. Numerically calculated dependence of the output-beam radius versus recording 
time. 

Figure 5.5 [a] shows the variation of the beam radius along the polymeric layer 

during illumination. At first the natural divergence of the beam dominates. Then the 

increase of n�  together with a rapid reduction of absorption in the central part of 

the beam profile leads to a contraction of the beam radius. Afterwards a further 

illumination forms a channel by compensating the natural divergence. 

 
Fig. 5.5. [a] Evolution of the output-beam radius depending on the length of the layer for 
different illumination times of 30 s, 60 s, 90 s and 120 s and [b] analogous dependence for 
a fixed recording time of 120 s. 
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It is possible to retrace the evolution of the beam radius at the time of the self-

trapping formation (i.e. at 120 s) [Fig. 5.5 [b] ]. For a sample with a length of 5 mm 

the beam radius shows small variations. In the middle of the layer the beam radius 

exhibits some deviations but approaches an almost constant value of about 

5.5 �m at the end of the sample. In contrast, natural divergence would lead to a 

beam radius of ~ 70 �m on the 5 mm-length. 

In summarising, the generation of self-trapping of light beams in photopolymers 

based on PMMA doped with PQ-molecules has clearly been proven. The 

calculated change of the refractive index reached values as large as 4104n� −⋅= . 

Beam propagation over a length of 5 mm (that is ten times larger than the 

Rayleigh length) is sufficient to demonstrate unambiguously the self-trapping 

effect. 

5.2. Experimental demonstration of self-trapping in PQ-PMMA layers 

After a theoretical model for the self-trapping formation was derived, an 

experimental proof is definitely required. These experiments were carried out by 

using the newly developed PQ-PMMA layers. In previous chapters it was 

demonstrated that a sufficient variation of the refractive index and the formation of 

an efficient diffractive structure has been obtained. The high thermal stability of the 

PQ-containing polymeric layers recommends such photorefractive media as very 

suitable candidates for the self-channeling processes. In this chapter we 

demonstrate for the first time experimental results which prove the self-trapping of 

a laser beam in photosensitive PQ-PMMA polymeric materials. 

The polymeric layers were prepared by applying the technology as developed 

by us and described above [i.e. dissolution of PQ and PMMA in chloroform as 

solvent, pouring this liquid onto a glass substrate and subsequently drying it slowly 

in a Petri dish at a temperature of C100o  for 20 hours]. As was described already, 

the PMMA, carefully purified of the monomer, was used without exploiting the 

effect of polymerization. Experiments for self-trapping generation were made for a 

series of samples with a layer thickness of 400 µm and a PQ-concentration of 2.5-

3 mol.%. 

To generate a waveguiding structure in the polymer an Ar-laser was used 

[Fig. 5.6 [a] ]. The laser power required to form a channel is found experimentally 
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to be in the range of milliwatts. That is an order of magnitude higher than the 

values obtained previously from the theoretical model. The laser beam was 

focused on the front surface of the polymeric layer using a microscope objective 

with a focal length of 16 mm. The PQ-PMMA sample was placed on a mechanical 

stage which allows to control the position of the input beam. The beam diameter at 

its waist behind the microscope objective was 16 µm (FWHM). A CCD-camera 

was used to detect visually the self-trapping formation. 

 

The polymeric layers have a yellow colour with an absorption band up to about 

530 nm. Under Ar-laser illumination (514.5 nm) the colour changed from yellow to 

almost transparent, which means that all photosensitive PQ-molecules join the 

polymeric matrix with subsequent formation of light-sensitive photoproducts. The 

self-induced waveguiding structure in the PQ-PMMA medium is shown in 

Fig. 5.6 [b]. 

The experiment was carried out with several identical samples. The illumination 

of the samples with a power of 8 mW was made for periods of 60 min. The 

generation of the planar straight channel induced by the incident light itself was 

observed in the PQ-PMMA layer during an irradiation period of 12 min [Fig. 5.7]. 

The photoattachment of PQ-molecules to the polymeric matrix resulted in a 

necessarily nonlinear change of the refractive index by which a stable waveguiding 

structure was produced by the Ar-laser illumination. The formed channel has a 

length up to 4-5 mm after an exposure time of 6-10 min. By further illumination 

(15-60 min) the distortion of the self-trapping channel started. This happens due to 

the absorption of PQ-molecules in the peripheral areas of the channel, leading to a 

multiple broadening of the channel and to a loss of the self-trapping property. 

Fig. 5.6. [a] Schematic setup for formation of a self-trapped channel using Ar-laser 
illumination and a microscope objective; [b] self-trapping in a PQ-PMMA polymeric layer 
(top view). 
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In spite of the small-input beam diameter (16 µm) the width of the achieved 

channel was about 500 µm [Fig. 5.7]. The additional investigation of the Plexiglas 

PMMA material without PQ-molecules under Ar-light illumination revealed a high 

divergence of the propagating beam [Fig. 5.8]. This led us to suggest that as a 

result of the high input power at the beam focus the polymeric absorption material 

starts warming up with the consequently large increase of scattering of light. 

The activation of the warming-up 

effect in the PQ-PMMA film results 

in the formation of a thermal-lens 

and increases the divergence of 

the laser beam, starting just after 

beginning of the illumination. 

Normally Plexiglas is almost 

transparent for Ar-laser radiation, 

being subjected to the natural 

diffraction of light. According to the parameters of the laser and the microscope 

objective, the light divergence in the PMMA layer should be equal to 10-12 mrad. 

The thermal lens formed in the layer increases the light divergence even under the 

Fig. 5.7. Experimental self-trapping formation in the PQ-PMMA layer by Ar-laser 
illumination during 12 min [laser power is 8 mW, PQ-concentration is 2.5 mol%, layer 
thickness is 400 µm]. 

 

Fig. 5.8. Ar-laser-light propagation in a pure 
PMMA medium through the micro objective with 
a magnification factor of 10 and a focal length of 
16 mm [light power is 8 mW]. 
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influence of minor absorption ( ≈α  a tens of cm-1). However, the high intensities in 

the focal region ( 2cm/kW1I ≈ ) lead to a broader distribution of light [Fig. 5.8]. 

The injection of the light-sensitive PQ-components into the polymeric matrix 

causes the photoproduct formation and generates a straight channel [Fig. 5.7]. 

The process of fast heating appears at the point of maximum input intensity till the 

PQ-phototransformation is completed and proceeds within the layer. The formation 

of the self-channeling with significant cross-section can be associated with two 

competitive mechanisms: thermal beam expansion together with the variation of 

the photoinduced nonlinear refractive index. 

Thereby, experimental results indicate the possibility of the formation of straight 

waveguides in PQ-PMMA media. The broadening of the channel can be 

associated to the activation of the thermal defocusing in the material due to the 

high input power. This defocusing effect is compensated by the effect of nonlinear 

self-focusing of the light beam generating a waveguide structure. Making the 

assumption of the thermal expansion of self-trapping we decided to prove it 

theoretically. An improvement of the previously derived numerical model by 

including the thermal effect can be implemented by taking the heat-conduction 

equation into consideration. 

5.3. Broadening of the self-trapping channel due to thermal defocusing 

in PQ-PMMA polymers 

5.3.1. Mechanism of light-channel expansion 

The special characteristic of the light-beam distribution in polymeric materials is 

a nonlinear change of the absorption coefficient during the PQ-photoattachment 

process. Thus, along with the variation of n  caused by the photoreaction of PQ 

( PQn� ), a thermal change of the refractive index ( Tn� ) is closely connected with 

this and has to be taken into account for any simulation calculation. Under steady-

state conditions the influence of the thermal effect on the change of the refractive 

index can be calculated as [140]: 

T
n

C
Itα

n�
ρ

T
∂

∂
= , 5.18 
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where α  is the absorption coefficient of the medium, I  is the beam intensity, t  is 

the effective interaction time, ρC  is the heat capacity of the unit volume, called 

also the volumetric heat capacity, and Т/n ∂∂  is the thermooptical coefficient. 

Since the medium is normally hotter on the beam axis, compared with the outer 

regions, a transverse gradient of the refractive index is caused, called the 

thermooptical effect, which is quantified by the coefficient Т/n ∂∂ . Index changes 

can be caused by the temperature dependence of the refractive index and by the 

thermally induced mechanical stress (photoelastic effect). Both mechanisms can 

lead to bulging of the end faces of the gain medium, causing the effect of thermal 

lensing, which plays a significant role in laser resonators. 

In the case of an excitation by short pulses (in the range of nanoseconds) the 

effective interaction time is determined by the pulse duration ( pulsett = ). For an 

irradiation with a continuous-wave laser the interaction time is defined by the 

thermal relaxation time )aπ4/(Ltt T
22

rel == , where L  is the area of interaction and 

ρTT C/ka =  is the thermal diffusivity coefficient (which is defined as the thermal 

conductivity Tk  divided by the product of the density ρ  and the specific heat 

capacity Tc , which is identified as the volumetric heat capacity ρcC Tρ ⋅= ). In the 

general case the effective interaction time is determined by the expression 

)]t/texp(1[tt rpulserel −−= . In a medium with 0Т/n <∂∂ , there is a defocusing effect 

caused by the temperature, which eliminates the process of self-focusing [8]. In 

rare cases, when 0Т/n >∂∂ , one can observe the reverse situation, i.e. a heating 

of the medium generates self-focusing. 

The variation of the refractive index due to warming can be essentially higher at 

a certain area in the polymeric layer and can compensate accordingly the n� -

change caused by photoattaching. The position of this area corresponds to the 

maximum light intensity and results in a channel widening. To investigate the 

complete change of the refractive index in the PQ-PMMA material during self-

trapping generation, we included the mechanism of thermal nonlinearity in the 

numerical simulations. 

The change of the temperature ( T� ) in the illuminated area can be calculated 

using the heat conduction equation along the two orthogonal coordinates x and z 

[141]: 
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where b  is the coefficient of the heat transfer and ρcC Tρ ⋅=  is the volumetric heat 

capacity with the specific heat capacity Tc  and the density ρ  of the material, as 

mentioned above. 

The solution of Eq. 5.19 provides the value of T�  (temperature difference 

between the waveguide structure and the surrounding material), which can be 

calculated by separation of the linear [Eq. 5.20 [a] ] and nonlinear [Eq. 5.20 [b] ] 

parts of Eq. 5.19 applying the split-step method [139]: 
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ρ

NL
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Iα

t
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∂

∂
. 5.20 [b] 

The change of the refractive index due to the heating ( Tn� ) results in the 

thermal defocusing of the beam and can be calculated by the following expression: 

T�
T
n

n� T
∂

∂
= , 5.21 

where -14 K103.1T/n −⋅−=∂∂  is the thermooptical coefficient of PMMA [142]. 

Because of the negative value of the thermooptical coefficient the thermal change 

of the refractive index leads to an absolute magnitude with opposite sign as 

compared with the magnitude of PQn�  (contributions of the change of refractive 

index due to the PQ-reaction with subsequent photoproduct formation [Eq. 5.17, 

p.73]). This results in a thermal defocusing of the light beam with the 

corresponding channel broadening. The sum of the two contributions to the 

change of the refractive index ( Σn� ) is decreasing according to: 

TPQΣ n�n�n� += . 5.22 
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5.3.2. Numerical simulation of channel broadening 

These calculations are based on the PQ-PMMA parameters used in the 

experiment presented above: laser input power 8 mW, input-beam radius 

6.9x0 =  µm (at 1/e mean) and the initial PQ-concentration 2.5 mol.%, 5.1n = , 

5.514λ0 =  nm, mol/cm4.1R� 3=  [42]. The absorption coefficient α  varies in the 

range of about tens of 1cm− . For the solution of Eq. 5.20 [a] the thermal diffusivity 

coefficient was assumed to be s/m10a 27
T

−=  and a heat capacity of 

K)J/(m107.1C 36
ρ ⋅⋅=  was used, which were corresponding to the properties of 

the PQ-PMMA material [142-144]. The magnitude of the heat-transfer coefficient 

was found to be inversely proportional to the velocity of the heat propagation in the 

polymeric medium. In the numerical calculations 1s2.0b −=  was chosen for a 

polymeric layer thickness of 400 µm [141,142]. 

 

The obtained changes of the refractive index Tn�  due to thermal defocusing in 

dependence on the illumination time for different layer lengths are presented in 

Fig. 5.9. The decrease of the change of the thermal refractive index reaches 

values of 2
T 101n� −⋅−= . The negative value of Tn�  substantially exceeds the 

positive change of the refractive index 4
PQ 10n� −≈  [121]. The superposition of 

both processes leads in total to a negative change of the refractive index at the 

local point where the laser has higher intensity. The interplay of thermal 

Fig. 5.9. Distribution of the thermal changes of the refractive index in dependence on the 
illumination time for different lengths of the polymeric layer [1.5 mm, 3 mm, 4.5 mm and 
6 mm]. 
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defocusing and nonlinear properties of the medium causes a channel widening at 

this point. 

 

The numerical evolution of the total refractive-index profile is shown in Fig. 5.10. 

As mentioned above already, one can observe that in spite of the small input 

beam diameter (16 µm) the resulting channel has a large width of about 500 µm. 

The influence of the thermal change of the refractive index occurs immediately 

when the polymeric layer is hit by the laser beam, thus substantially expanding the 

self-trapping channel. At the point where the channel is already formed the 

temperature of the polymer is reduced and the total refractive index becomes 

positive. This allows already illuminated and chilled areas to be used as 

waveguiding structures. The complete formation of a self-trapping channel in the 

PQ-PMMA layer of a length of 6 mm was generated within 5-6 min of illumination 

with an input beam power of 8 mW. The obtained numerical result corresponds to 

our previous experimental observation of the formation of a straight channel 

[Fig. 5.7, p.69]. 

Fig. 5.10. Formation of the refractive-index profile for illumination times of [a] 120 s, 
[b] 180 s, [c] 240 s and [d] 300 s. 
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Fig. 5.11. Evolution of the spreading of temperature in the polymeric layer during an 
illumination period of 300 s. 

Thus, the mechanism of channel formation and broadening can be described 

like a heat wave propagating together with a light wave through the polymer 

[Fig. 5.11]. At the point of maximum intensity the formation of a thermal lens 

occurs with subsequent activation of the thermal defocusing effect. The main 

broadening of the channel is observed during the first 15 s after starting the 

illumination process. At the place of the maximal beam intensity the temperature of 

the polymeric layer achieves a peak value of about C100o  (for input beam power 

of 8 mW) due to the thermal absorption of the PQ-PMMA material. After finishing 

the PQ-photoaddition process the layer becomes transparent to the laser light and 

the illuminated area cools down. At this time the warming-up process is stopped. 

The area of the maximal temperature, a heat wave, moves forward together with 

the propagating light-beam with a velocity determined by the speed of the reaction 

of the PQ-photoattaching process to the polymeric matrix. 
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5.3.3. Control of the width of the generated waveguide 

In consideration of the 

dependence of the thermal 

defocusing on the beam power, 

we examined the possibility of the 

self-trapping formation using 

specific cross-section parameters 

of the channel. A numerical 

simulation of channel formation 

provides a possibility to control 

the development of the channel 

width and allows to produce 

waveguiding structures of desired 

dimensions. 

Figure 5.12 demonstrates the results of the numerical calculation of the profile 

of the refractive-index change for input powers of 8 mW and 2 mW. The diameter 

of the channel is reducing by a factor of about 0.5, if the power decreases by a 

factor of 4. 

After the theoretical simulation of the self-trapping has been made, an 

experimental improvement of the formation of channels with various widths was 

required. The experiment was carried out by using the same PQ-PMMA layers and 

experimental setup as in the previous self-trapping-formation experiment [Fig. 5.6, 

p.78]. The formed channel has been detected as an area with practically absent 

absorption. The results of photometric measurements of the formed self-trapping 

channel gave us the possibility to plot the cross-section of the distribution of the 

refractive index in the polymeric layer and to determine the diameter of the 

generated channel. The formation of the waveguiding structures for two different 

input-beam powers (8 mW and 2 mW) is shown for both cases in Fig. 5.13 

together with the n� -distributions normalized with respect to the maximum values 

of the refractive-index profiles. At the input beam power of 8 mW the channel 

broadens out to a width of 510 µm (FWHM), whereas it achieved the width of 

285 µm for the lower input power of 2 mW. The experimental results coincide with 

Fig. 5.12. Simulation of the refractive-index 
profiles for input powers of 2 mW (dotted line) and 
8 mW (solid line). 



Chapter 5. Self-Trapping in Polymers Based on PQ-PMMA 87 
 

 

the theoretical ones with only small deviations due to the good agreement 

between the theoretical and experimental parameters. 
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5.4. Conclusion 

In this chapter the possibility of the self-trapping channel formation by a (1+1)D 

beam in a polymethylmethacrylate matrix containing PQ-molecules is shown 

experimentally and theoretically for the first time. It is proven that this reaction is 

due to the change of the photoinduced nonlinear refractive index. An analytical 

description connected with a numerical calculation of the propagation of self-

trapped laser beams in PQ-PMMA polymeric layers was shown. A theoretical 

model for the spatial distribution of boundary optical waves was described 

depending on the experimentally obtained characteristic beam parameters. 

The calculated self-trapped beam radius was 6 µm, and the formation of self-

trapping was observed between 120 s and 180 s after starting the illumination, 

applying a beam intensity of 2cm/W1  of 514 nm wavelength, respectively. By 

simulation calculations a maximum value of 4104 −⋅  for the refractive-index change 

was obtained. A self-trapping effect with a propagating length of 5 mm (exceeding 

several times the Rayleigh length) was confirmed. 

The self-trapping of a laser beam in a PQ-PMMA layer was generated by using 

an Ar-laser. A width of the channel in the polymer of 500 µm was achieved with an 

incident beam of 16 µm diameter and remained constant along a distance of 4-

5 mm. According to the mechanism of self-trapping the focused laser beam should 

Fig. 5.13. Measured normalized refractive-index profiles for input beams with a power [a] 
of 8 mW and [b] of 2 mW. 
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propagate through the nonlinear media keeping its cross-section parameters 

constant without broadening. It was confirmed numerically by using the diffraction 

equation for the beam distribution, including the effects of diffusion and absorption 

of the medium. The effect of self-trapping widening was explained by the thermal 

defocusing of a light beam due to an input power large enough for the generation 

of self-channeling. 

The numerical model of the description of the propagation of a laser beam in 

PQ-PMMA media was improved by taking the heat-conduction equation into 

consideration. Heating produces a negative change of the refractive index in the 

photopolymer, which leads to the reduction of the resulting n�  and to channel 

widening. The formation of a self-trapped channel with a length of 6 mm was 

observed by applying Ar-laser illumination for a duration of 5-6 min. This is in good 

agreement with the experimental results. The effect of thermal beam expansion 

together with the nonlinearity of the medium are responsible for the self-trapping 

mechanism. Moreover, a way was found to control the diameter of the generated 

channel by varying the input power of the laser beam. The experimental results 

were confirmed by the theoretical modeling of the self-trapping process. For a 

width of 16 µm of the input beam and an input power of 8 mW a channel width of 

510 µm was obtained experimentally and of 520 µm theoretically. For a lower 

power of 2 mW the theoretical width is 280 µm compared to an experimental value 

of 285 µm. 

 



  
 

Chapter 6 Applications of PQ-PMMA Optical Media 

Photorefractive polymeric media with good photosensitivity, long storage time 

and easy fabrication make it possible to create optical elements having unique 

properties including diffractive optical elements and reflection and transmission 

holograms [18-20,107]. They can be applied for the fabrication of optical 

holographic memories, image storage devices, in multiplexing holography and 

three-dimensional displays [24,145-148]. High capacity, high density and fast 

readout rates, that are required for new computer and internet technologies, can 

be attained by two- and three-dimensional holographic information record, 

applying these media also for the rapidly proceeding development of CD/DVD 

technologies [116,149-151]. 

The low-price production process and the manufacturing of high-precision 

components suppose it profitable to use PQ-containing medium for the realization 

of interference filters with high-spectral selectivity and for the fabrication of 

multiple-channel optical demultiplexers for astronomy, spectroscopy and 

communication technology [28,113,115]. PQ-PMMA media are used for the 

production of filters operating with at wavelengths of 1550 nm [109-111] as well as 

in some optical holographic instruments for data storage [25,40,41,102,117-120]. 

The wide field of their possible practical application is given by the possibility to 

mold stable polymeric samples with required dimensional parameters and desired 

shapes. These PQ-PMMA media are characterized by minimal shrinkage and 

scattering effects together with a large dynamic range of the refractive-index 

modulation. Using holography, light that is reflected by a sample interferes with the 

reference light, leading to an interference pattern, i.e. a hologram, by which for 

instance cell structures can be newly presented in different depths and with 

different optical characteristics such as transmission, reflection and refraction 

index. 

PQ-PMMA polymeric layers possess high-optical qualities and open new 

applications for multiplexing hologram formation [23,107,108,114]. Widening of the 

angular selectivity of the photoinduced structures recorded in polymers by optical 

image multiplexing allows the application of the diffractive elements as holographic 
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concentrators of the radiation energy to improve the efficiency of solar cells. The 

ability to generate waveguiding structures in PQ-containing samples is important 

for the optimization of the optical interconnection wiring and for splicing of fibers 

[100]. It is a potentially useful technique in the wide range of the development of 

fiber-optical systems, optical interconnects and waveguide couplers. Fixation of 

efficient and stable gratings in the PQ-PMMA polymer enables to produce optical 

beam splitters for controlling the beam. 

In general, optical devices based on the PQ-PMMA possess high reliability, a 

wide range of operation temperature and a broad angular acceptance. The whole 

set of these parameters makes it possible to replace complex optical systems for 

the interaction of monochromatic light by simple volume phase holograms 

recorded in PQ-PMMA materials with definite parameters. In addition, the self-

trapping generation of gratings opens new feasibilities for optical communication 

processes using waveguiding channels for light transfer and as light splitters. 

6.1. PQ-PMMA polymers for head-up displays 

Stable volume holograms written into photopolymeric layers can serve as 

mirrors, mode selectors, deflectors, filters and splitters. Moreover, they have a 

wide application in automobile head-up displays (HUDs) as holographic screens 

[152-154]. The HUDs have been used for many years in military aircraft cockpits 

and are now being installed also in civil aircrafts and vehicles [154]. The main 

utilization of HUD is to provide the driver with all necessary information (symbols 

and/or images) concerning traffic conditions in the form of virtual pictures by 

reflecting images off a transparent surface in the line of sight of the user. Vehicle 

windshields consist usually of two glass plates cemented with polyvinylbuteral 

(PVB). According to the technical specifications of the autoclave manufacturer 

Tamglass, the production of a HUD is proceeded during about 2 hours at 

temperatures of C1400  under a pressure of 13 bar. 

After developing new PQ-P(MMA+AA) polymeric media with high thermal 

stability (up to C2000 ) we designed a new HUD screen for vehicle windshields 

with a holographic grating [120,125]. The reflection holographic grating that is 

located between the glass plates of windshields should satisfy some requirements. 

First of all its high diffraction efficiency has to be combined with a quite low angular 
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and spectral selectivity to provide efficient reflection of the relatively broadband 

radiation within the angular range that is required for the observation. These 

properties were obtained by decreasing the thickness of the holograms and 

increasing the modulation depth of the refractive index. Obviously, holographic 

gratings should be transparent for visible light and stable against temperatures up 

to C140o  and pressures up to 13 bar, qualities which are achieved by PQ-

P(MMA+AA) copolymers. 

The generation of the reflection grating in the photopolymeric layer was carried 

out by Ar-laser irradiation with intensities of the interfering beams of 30 mW each. 

In order to prevent coincidence between the reflections on the grating and on the 

rear glass surface, the grating was slightly tilted against the glass substrates with 

an inclination angle of 02.1γ =  [Fig. 6.1 [a] ]. The geometric size of the 

photopolymeric sample was cm5cm5 × . The recorded grating had an aperture of 

about 3 cm with a grating period of 0.2 �m. The recorded holograms were 

amplified by heating at C80o  and stabilized by ultraviolet (UV, 300-350 nm) 

illumination. The remaining free, not bound PQ-molecules can be transformed into 

a non-photosensitive product [57,117,118]. The layer containing the grating was 

inserted between the two glass plates of the windshield, as shown in Fig. 6.1 [a]. 

Finally, the whole system was heated for 2 hours at C140o . 
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The values of diffraction efficiency and angular selectivity were measured by 

using the radiation of a solid-state laser at a wavelength of 532 nm, which 

possesses negligible absorption by PQ-P(MMA). Losses by Fresnel reflection and 

Fig. 6.1. [a] Schematic diagram of the laminated glass with the tilted reflection grating 
recorded in the PQ-PMMA layer [grating period is 0.2 �m, tilt angle is 1.20]; [b] normalized 
diffraction efficiency as a function of the angle of incidence of the light beam, providing a 
measure of the angular selectivity of the grating. 
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dispersion were included. The diffraction efficiency measured relative to the 

incident beam amounts to 50 %. The angular selectivity was controlled by 

monitoring the change of the diffracted beam intensity. The angular selectivity 

amounts to 0.6o [Fig. 6.1 [b] ]. The shrinkage of the PMMA-photopolymeric layer is 

lower than the similar DuPont materials [53,55]. Thus, no wavelength shift or 

aberration caused by heating or pressing of the material has been observed. 

The schematic HUD setup is shown in Fig. 6.2 [a]. It consists of a collimated 

light-emitting diode (LED, 532 nm) with a diffuser, a screen with the holographic 

grating, and a display with the inverted picture that is projected onto the detection 

screen. The reflection angle is 41o in air. 

 

Fig. 6.2. [a] Schematic presentation of the optical path of a HUD with a light-emitting diode 
(LED) and [b] reflections from grating and glass substrate of the HUD-screen. 

One can see on the picture [Fig. 6.2 [b] ] the reflections of the signal beam (as a 

time image “17:30”) from glass and holographic grating generated in the laminated 

glass. It demonstrates the good optical contrast of the newly developed HUD-

screen, which in combination with an appropriate angular selectivity allows filtering 

out the important information independently of the background illumination. 

6.2. Waveguide optics 

6.2.1. Splicing of optical fibers by applying the self-trapping mechanism 

The wide-ranging utilization of PQ-PMMA media for the fabrication of 

interference filters, displays and holographic elements and the possibility to 

produce straight and stable self-trapping light channels open up many possibilities 

of new applications in fiber-optics research. Most of the optical communication 
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systems are based on light transfer through optical fibers [138,155,156]. The 

generation of straight channels in PQ-PMMA layers could be improved by 

integrating an optical fiber into the polymer layer during the manufacturing 

process. By this technique, light can be irradiated into the sample more easily and 

much more accurately [Fig. 6.3 [a] ]. In the case of a fiber for admitting of light, the 

generation of a self-trapping channel is the same as for direct light input into the 

polymer. The distribution of the formed straight channel in the layer can be 

controlled also by CCD-cameras. 

 

Figure 6.3 [b] exhibits the experimental realization of the self-channeling in PQ-

PMMA using light injection through an optical fiber. By a microscope objective and 

a precision rotary table it is possible to irradiate laser light into the core of the fiber 

with minimum radiation losses. By a careful treatment of the fiber ends the 

efficiency of light entrance and exit is not impaired. Self-trapping of the light beam 

generated by the fiber possesses the same properties as that generated by direct 

light injection. 

The technique of light injection using optical fibers, investigated in the course of 

this doctoral Thesis, provides an opportunity to solve also the problem of the 

splicing of optical fibers. One of the common problems of data transfer using fibers 

is the high probability of disruption and breakage of the optical fiber during its 

exploitation. In such cases the ability to restore data transmission within the 

shortest period of time is of a great importance. A simple replacement of the cable 

is practically impossible in most cases. Therefore, a fast and automatic self 

healing of the damaged fiber is needed. Splicing a pair of waveguides usually 

requires complex and expensive devices, which are difficult to fabricate and are 

rather massive in size, since pressure, heat and/or mechanical power have to be 

used [157,158]. 

Fig. 6.3 [a] Scheme of light injection through a fiber into a PQ-PMMA layer for a self-
trapping generation; [b] experimental setup for formation of a self-trapping channel using a 
microscope objective and an optical fiber with a core diameter of 50 µm. 
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The problem of cable disruption in all kinds of networks led us to develop a 

splicing mechanism of waveguide fibers based on self-trapping in PQ-PMMA 

media. The polymer is able to represent the connecting material between the 

disrupted ends of an optical fiber and fixes fiber ends. The generation of a self-

trapping channel inside PQ-PMMA substrate between two disrupted cables is 

stable over time and enables the waveguides to recover the transfer of 

communication signals. 

To use the self-trapping mechanism for splicing of optical fibers it is necessary 

to align both ends of a ruptured fiber along a straight line and to connect them 

again [Fig. 6.4 [a] ]. The ends of the optical fiber should be prepared with a flat 

surface perpendicular to the fiber axis. The fibers can be placed in special holders. 

Such support arrangements can be used after as a mould form for the liquid 

polymer. Pouring PQ-PMMA solution on the substrate and subsequent drying 

forms a solid polymer cube around the fiber. 

 

By injection of the light from an Ar-laser into the polymer at both ends of the 

fiber a waveguiding channel could be generated. The two parts of the 

disconnected fiber, which are connected to each other in such a manner, will 

possess optical properties similar to a continuous fiber. This perspective 

application of the self-trapping mechanism for fiber splicing is shown in Fig. 6.4 [b]. 

It demonstrates that the damaged part of the fiber is replaced with low insertion 

losses by a self-formed waveguiding channel. 

6.2.2. Prospects of multiple-waveguiding applications 

In order to find much more applications of PQ-based, photosensitive polymeric 

materials our Institute together with a group from the Research Center “Vavilov 

State Optical Institute” (St. Petersburg, Russia) have recently developed new and 

Fig. 6.4. [a] Injection of the two ends of the broken optical fiber into the polymer at the 
area of their disruption and [b] formation of a self-trapping channel between the two fiber 
tips inside the polymeric medium by laser illumination, thus repairing again the ruptured 
fiber. 
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more voluminous PQ-PMMA samples with thicknesses up to millimetres [25]. The 

production of high-quality, thick and homogeneous polymers by pouring the liquid 

solution into a mould of appropriately larger volumes required the decrease of the 

PQ-concentration till 0.5 mol.%. Figure 6.5 [a] exhibits the sample of a polymeric 

medium with a 3 mm thickness together with its absorption spectrum. 

 

The initial sample is light-sensitive up to wavelengths of ~ 530 nm [Fig. 6.5 [a] ]. 

The reduction of the dye concentration causes a faster PQ-photoaddition to the 

PMMA and results as a consequence in the formation of a photoproduct, which is 

insensitive to the Ar-laser radiation. In thick PQ-PMMA layers smaller variations of 

the refractive index ( 41025.0n� −⋅= ) are produced during recording already after 

several minutes of illumination. However, the original ability to record highly 

efficient photoinduced structures is conserved. Diffraction efficiencies of almost 

30 % are obtained by transmission gratings recorded in thick PQ-PMMA material 

[Fig. 6.5 [b] ]. This thick polymer possesses sufficient variation of its density in 

order to activate the nonlinear properties of the medium and to generate the self-

trapping mechanism. 

The large increase of the dimensions of the polymers, maintaining at the same 

time the high optical properties of the recorded photoinduced structures, offers the 

possibility of many new applications of the self-channeling technique. These are 

e.g. the generation of multiple self-trapping waveguides [Fig. 6.6 [a]], of fiber 

optical splitters and optical switches for light control and splitting during information 

transfer in thick polymers, as shown in Figs. 6.6 [b] and [c]. 

Fig. 6.5. [a] Absorption spectrum of a PQ-PMMA sample (see insert) before Ar-laser 
illumination and after 2 min of exposure time; [b] diffraction efficiency depending on the 
recording time for a transmission grating [PQ-concentration is 0.5 mol.%, input intensity is 

2cm/mW60  at 514.5 nm wavelength, grating period is 0.5 µm, layer thickness is 3 mm]. 
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 The possibility to control 

the diameter of the formed 

channels by variation of the 

intensity of the incident laser 

radiation allows to generate 

waveguiding-like structures 

with specified cross-section 

parameters. Therewith, the 

PQ-PMMA material can possess a good optical quality suitable to transmit near-

infrared light, which is widely used in optical telecommunication [43,109,110]. 

Besides that, by the self-trapping technique in thick PQ-PMMA layers the main 

elements of fiber optics, mentioned above, could rather easily be fabricated. By 

generating of two crossing self-trapping waveguides in thick polymeric layers at 

the same time diffractive elements could be produced [Fig. 6.6 [c] ]. These 

complex photoinduced structures are the prospects to be used as switches or as 

optical filters for separating light waves of specified wavelengths. 

6.3. Conclusion 

Various applications of PQ-containing polymeric media deposited on glass 

substrates were demonstrated. The prototype of a head-up display based on a 

reflection grating recorded in a PQ-P(MMA+AA) photopolymeric layer was 

developed. The produced holographic grating was thermally stable up to C140o . 

The angular selectivity amounted 0.60. The hologram is transparent and can be 

used for the production of laminated glasses for windshields of vehicles. 

The possibility to insert optical fibers into the PQ-PMMA samples was shown. 

This procedure allows waveguiding-channel formation suitable for applications of 

fiber splicing. It was also demonstrated that polymeric media containing 

waveguide channels could be inserted between damaged fiber tips in order to 

repair ruptured optical fibers preserving their high optical qualities. The ability of 

preparing also voluminous PQ-PMMA samples opened new perspectives for 

applications of multiple self-trapping optical devices. Such multiple waveguiding 

structures could be perfectly used for optical switching of light beams and as 

optical splitters in information-transfer systems. 

 

Fig. 6.6. [a] Multiple self-trapping waveguides; [b] 
fiber-optical splitters and [c] optical switches 
generated in voluminous PQ-PMMA layers. 



  
 

Chapter 7 Conclusions 

In the present work comprehensive theoretical and experimental investigations 

of the self-trapping of a light beam in a photorefractive medium have been 

performed and are presented in detail. It has been shown that self-trapping of a 

laser beam due to the self-interaction of the propagating light wave with the 

nonlinear medium occurs under the condition of the well balanced concurrence of 

the effects of diffraction and nonlinear focusing. The nonlinear change of the 

refractive index, which determines the main properties of the generated 

waveguiding structure, was examined in a prospective polymeric medium based 

on polymethylmethacrylate (PMMA) with a high concentration of 

phenanthrenequinone (PQ) molecules. The photoinduced change and formation of 

structures in the PQ-PMMA material was generated by the laser light itself due to 

the PQ-photoattachment to the polymeric matrix and the formation of a 

photoproduct. The optimization of the PQ-PMMA composition was carried out with 

the help of recording and investigation of diffraction gratings. The holographic 

relaxation technique allows to establish the conditions for achieving high nonlinear 

modulations of the refractive index necessary to generate the self-trapping. 

The results from examining the self-trapping effect of light in polymeric media, 

consisting of PMMA doped with PQ-molecules, can be summarized as follows: 

� A manufacturing method for the preparation of photopolymeric layers based 

on the pouring of a purified PMMA solution with high concentrations of PQ-

additions (up to 4 mol.%) onto a glass substrate and subsequently drying under 

a special operating treatment was developed. The obtained films are light-

sensitive in the visible spectral range of 480–530 nm and are suitable for the 

generation of the stable light-induced waveguiding structures. 

� It has been established that the light-induced change of the refractive index 

is due to the photoattachment of the light-sensitive PQ-molecules to the 

polymeric chains of the medium and the following formation of the photoproduct. 

The distribution of the concentration of the photoproduct is antiphased to the 

corresponding one of unreacted PQ-molecules in the polymeric layer. The 

diffusion of these free PQ-molecules leads to an increasing refractive-index 
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modulation by an order of magnitude up to maximum values of 310n� −= . 

Diffractive structures with almost 80-90 % efficiency were generated in polymers 

with thicknesses of hundreds of microns using Ar-laser illumination at 514 nm 

wavelength. 

� In order to increase the thermal stability of the polymeric material and to 

improve its adhesion properties, modifications of the monomer by adding acrylic 

acid (AA), methacrylamide (MAA) or methacrylic acid (MA) were performed. The 

thermal stability of the polymerized material has been extended to temperatures 

as high as C200o , which significantly exceeds the glass transition temperature 

of the PMMA matrix. A holographic recording with a diffraction efficiency of 30 % 

was carried out with these materials. The non-local mechanism of the refractive-

index modulation was investigated experimentally and associated with the 

polymerization process caused by the interacting light beam. The non-local 

response length of the phenanthrenequinone molecules amounts to 70 nm for 

PQ-P(MMA+AA). 

� A theoretical model for the self-trapping of a (1+1)D beam based on the 

experimental data was developed. The conditions under which the nonlinear self-

interaction of light can compensate the diffraction divergence were defined. 

Numerical simulations of the light-beam propagation assuming distances much 

longer than the Rayleigh length have confirmed the possibility of the formation of 

channel waveguides. 

� The recording of self-trapping structures implemented in layers of purified 

PMMA with a high PQ-concentration has been performed under the action of an 

argon laser of 8 mW input power. A comparison of the propagation of light 

beams in pure PMMA and in PMMA containing sufficient amounts of PQ-

molecules confirmed the decisive role, which the photoattachment process of the 

light-sensitive PQ-molecules to the polymeric matrix plays for the formation of 

the waveguide channel. 

� It was found that the formation of the waveguide is strongly influenced by 

heating of the medium, which results in an additional thermal defocusing of the 

light beam. The theoretical modeling of the light propagation under conditions of 

the mutual action of the processes of PQ-photoattachment and thermal 

nonlinearity has confirmed the validity of the proposed approach. 
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� A new method for controlling the waveguide cross-sections by changing the 

ratio of the two competing mechanisms of the nonlinear refractive-index variation 

(namely the formation of the photoproducts and the heating of the medium while 

varying the power of the light beam) was proposed. With a diameter of the 

channel much larger than the diameter of the laser beam waist in the focal plane 

the following simple relation has been derived: the square of the ratio of the 

diameters of the two beams is equal to the ratio of their powers. By using this 

relation it is possible to generate channels with well defined and suitable cross-

sections. 

The obtained results have the prospect of practical application for the formation 

of waveguide channels and of diffractive optical elements based on the relatively 

cheap polymeric media. The prototype of a head-up display using a reflection 

grating generated in the layer of the PQ-PMMA copolymer was demonstrated. The 

produced holographic structure possesses good optical properties, high 

transparency and thermal stability suitable e.g. for their application in windshields. 

Besides, there is a great interest of using these holographic structures for the 

coupling of optical fibres as well as for the generation of optical X- and Y-splitters. 

The inclusion of additional diffractive elements into these waveguiding systems 

enables the construction of Bragg filters for the spectral separation of the laser 

illumination. 

 



  
 

Chapter 8 Outlook 

The obtained scientific results provide a good basis for the further research in 

the field of photopolymeric diffractive and waveguiding optics. From a practical 

point of view it seems appropriate to study the possibility of the connecting of 

disrupt optical fibers under conditions of the rough (imprecise) alignment of their 

ends. This connection could be achieved with partial overlapping of the light 

beams at the fiber outputs. The photoinduced change of the refractive index in the 

overlapping area of the beams will lead to their connection with the following 

formation of the waveguide channel, which will ensure a reliable information 

transfer. With the generation of two intersecting waveguides in PQ-PMMA 

polymeric media it becomes possible to realize fiber-optical splitters and optical 

switches. A system of parallel waveguides could realize the effect of discrete 

diffraction, in which a system of waveguides can implement the multiplexing of the 

optical signals, as well as their spectral decomposition. 

Increasing scientific interest is connected with the modeling of neural networks 

and devices for quantum computing, when it is necessary to create a system of 

optical connections with complex topological structure, including even three-

dimensional cases. Due to the self-interaction of the light beams in the 

photopolymeric medium one could observe the occurrence of the effects of light 

self-organization and formation of various spatial structures of the refractive index. 

At the same time it should be noted that for the increasing of the refractive-

index gradient over the cross-section of the waveguide during its generation it is 

possible to provide the high diffusion of PQ-molecules at distances much longer 

than the diameter of the channel. Considering the dependence of the PQ-diffusion 

coefficient on the temperature one can select the desired temperature conditions, 

at which the dye-molecules can diffuse from the significant adjacent areas of the 

sample into the waveguide channel. This way it can be expected to increase the 

photoinduced change of the refractive index of more than one order, which will 

allow forming waveguide structures with a small bending radius. Photocapture of 

the free PQ-molecules will keep a fail-safe fixation of the formed waveguide 

structures providing high stability against temperature and incident light. 



  
 

Chapter 9 Zusammenfassung 

In der vorliegenden Arbeit wurden umfangreiche theoretische und 

experimentelle Untersuchungen des "Self-Trapping"-Effekts eines Lichtstrahls in 

einem photorefraktiven Medium durchgeführt und im Detail vorgestellt. Es hat sich 

gezeigt, dass das "Self-Trapping" eines Laserstrahls infolge der Selbst-

Wechselwirkung der sich ausbreitenden Lichtwelle mit dem nichtlinearen Medium 

unter der Bedingung auftritt, dass ein ausgewogenes Zusammenwirken der beiden 

Effekte der Divergenz und der nichtlinearen Fokussierung stattfindet. Die 

nichtlineare Änderung des Brechungsindex, die die wichtigsten Eigenschaften der 

erzeugten wellenleitenden Struktur bestimmt, wurde in einem neuartigen 

Polymermaterial untersucht, das aus Polymethylmethacrylat (PMMA) mit einer 

hohen Konzentration von Phenanthrenchinon-(PQ)-Molekülen besteht. Die 

photoinduzierte Änderung und die Bildung von Strukturen im PQ-PMMA-Material 

wurden durch das Laserlicht selbst erzeugt und zwar als Folge der lichtinduzierten 

Bindung der PQ-Moleküle ("PQ-Photoattachment") an die Polymermatrix unter 

Bildung des Photoprodukts. Die Optimierung der PQ-PMMA-Zusammensetzung 

basiert auf Messungen des Beugungswirkungsgrades holographischer Gitter. 

Diese holographische Technik ermöglicht es auch, die Bedingungen für das 

Erreichen einer starken nichtlinearen Modulation des Brechungsindex zu 

bestimmen, die die Voraussetzung für das Auftreten des "Self-Trapping"-Effekts 

sind. 

Die Ergebnisse der Untersuchungen des "Self-Trapping"-Effekts von Licht in 

Polymeren, die aus PMMA dotiert mit PQ-Molekülen bestehen, können kurz wie 

folgt formuliert werden: 

� Ein Verfahren zur Herstellung von photopolymeren Schichten wurde 

entwickelt, das aus dem Giessen einer gereinigten PMMA-Lösung mit hohen 

Konzentrationen von PQ-Zusätzen (bis zu 4 mol.%) auf Glassubstrate und dem 

anschließenden Trocknen unter besonderen Betriebsbedingungen besteht. Die 

erhaltenen Filme sind im sichtbaren Spektralbereich von 480 nm bis 530 nm 

lichtempfindlich und eignen sich zur Bildung von stabilen licht-induzierten 

wellenleitenden Strukturen. 
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� Es wurde gezeigt, dass die licht-induzierte Änderung des Brechungsindex 

eine Folge des "Photoattachment"-Prozesses der lichtempfindlichen PQ-

Moleküle ist, also ihrer durch Lichteinfall bewirkten photochemischen Bindung an 

die Polymerketten des Mediums und der daraus resultierenden Bildung des 

Photoprodukts. Die Verteilung der Konzentration des Photoprodukts ist 

gegenphasig zur Konzentration der nicht photochemisch gebundenen PQ-

Moleküle in der Polymerschicht. Die Diffusion dieser freien PQ-Moleküle führt zu 

einer um eine Größenordnung verstärkten Modulation des Brechungsindex bis 

zu Maximalwerten von 310n� −= . Diffraktive Strukturen mit fast 80-90 % 

Effizienz wurden in Polymeren mit Dicken von mehreren hundert Mikrometern 

durch Bestrahlung mit Ar-Lasern bei 514 nm Wellenlänge erzeugt. 

� Um die thermische Stabilität des Polymers zu erhöhen und seine 

Hafteigenschaften zu verbessern, wurden Änderungen des Monomers durch 

Zugabe von Acrylsäure (AA), Methacrylamid (MAA) oder Methacrylsäure (MA) 

vorgenommen. Die thermische Stabilität des polymerisierten Materials wurde bis 

auf hohe Temperaturen von C200o  erweitert, Temperaturen, die deutlich über 

der kritischen Glasübergangstemperatur der PMMA-Matrix liegen. Eine 

holographische Aufnahme mit einem Beugungswirkungsgrad von 30 % wurde 

mit diesen Materialien hergestellt. Die nicht-lokale Wirkung durch die Modulation 

des Brechungsindex wurde experimentell untersucht und dem 

Polymerisationsprozess zugeordnet, der durch die Wechselwirkung mit dem 

Lichtstrahl verursacht wird. Die nicht-lokale Responselänge der 

Phenanthrenchinon-Moleküle beträgt 70 nm für PQ-P(MMA+AA). 

� Ein theoretisches Modell für das "Self-Trapping" eines (1+1)D-Lichtstrahls 

wurde auf Grundlage der experimentellen Daten entwickelt. Es wurden die 

Bedingungen definiert, unter denen die nichtlineare Selbst-Wechselwirkung von 

Licht die durch verursachte Divergenz des Strahls kompensieren kann. 

Berechnungen der Verteilung des Lichtstrahls durch numerische Simulation 

unter der Annahme, dass die Strahlwege viel länger sind als die Rayleigh-Länge, 

haben die Eignung zur Bildung von Wellenleiterkanälen bestätigt. 

� Die Erzeugung von "Self-Trapping"-Strukturen in Schichten von gereinigtem 

PMMA mit einer hohen PQ-Konzentration wurde mit Hilfe eines Ar-Lasers von 

8 mW Eingangsleistung durchgeführt. Ein Vergleich der Ausbreitung von 
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Lichtstrahlen in reinem PMMA und in PMMA mit ausreichenden Mengen von 

PQ-Molekülen, bestätigte die entscheidende Rolle, die der Prozess der 

photochemischen Bindung der lichtempfindlichen PQ-Moleküle an die 

Polymermatrix bei der Bildung eines Wellenleiterkanals spielt. 

� Es wurde festgestellt, dass die Bildung des Wellenleiters stark durch 

Erwärmung des Mediums beeinflusst wird, die zu einer zusätzlichen thermischen 

Defokussierung des Lichtstrahls führt. Die theoretische Modellierung der 

Lichtausbreitung unter den Bedingungen der gegenseitigen Einwirkung der 

Prozesse des PQ-Photoattachment und der thermischen Nichtlinearität hat die 

Gültigkeit des vorgeschlagenen Ansatzes bestätigt. 

� Eine neue Methode zur Kontrolle der Wellenleiter-Querschnitte durch 

Veränderung der Anteile der beiden konkurrierenden Mechanismen, die zur 

Variation des nichtlinearen Brechungsindex führen (nämlich die Bildung der 

Photoprodukte und die Erwärmung des Mediums durch Variation der Leistung 

des Lichtstrahls) wurde vorgeschlagen. Mit einem Kanaldurchmesser, der viel 

größer als der Durchmesser der Laserstrahl-Taille in der Brennebene ist, wurde 

die folgende einfache Beziehung abgeleitet: das Quadrat des Verhältnisses der 

Durchmesser der Strahlen ist gleich dem Verhältnis ihrer Strahlleistung. Mit Hilfe 

dieser Beziehung ist es möglich, Kanäle mit genau abgegrenzten und 

geeigneten Querschnitten zu erzeugen. 

Die erzielten Ergebnisse bieten die Perspektive der praktischen Anwendung für 

die Erzeugung von Wellenleiterkanälen und von diffraktiven optischen Elementen, 

die aus relativ kostengünstigen Polymeren hergestellt worden sind. Der Prototyp 

eines "Head-Up-Displays" unter Verwendung eines Reflexionsgitters, das in der 

Schicht des PQ-PMMA-Copolymers generiert wurde, ist demonstriert worden. Die 

erzeugte holographische Struktur besitzt gute optische Eigenschaften, hohe 

Transparenz und thermische Stabilität, die sich z.B. für ihre Anwendung in der 

Windschutzscheibe eignen. Außerdem gibt es ein großes Interesse für die 

Verwendung dieser holographischen Strukturen zur Kopplung von optischen 

Fasern sowie für die Herstellung von optischen X- und Y-Verzweigern. Der 

Realisierung zusätzlicher diffraktiver Elemente in diesen wellenleitenden 

Systemen ermöglicht den Bau von Bragg-Filtern für die spektrale Trennung der 

Laserstrahlung. 
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Abbreviations and Variables 

PQ - phenanthrenequinone 

PMMA - polymethylmethacrylate 

MMA - methylmethacrylate 

AIBN - azo-bis-isobutyrolnitrile 

CP - copolymer 

AA - acrylic acid 

MA - methacrylic acid 

MAA - methacrylamide 

DMF - dimethylformamide 

PVB - polyvinylbuteral 

UV - ultraviolet 

CW - continuous wave 

Ar - argon 
He-Ne  - helium–neon 

FFT - fast Fourier transform 

DFT - discrete Fourier transform 

HUD - head-up display 

CCD - charge-coupled device 
•R  - macroradical 

•HPQ  - semiquinone radical 
HPQR  - photoproduct 

LED - light-emitting diode 

d  - diameter of a light beam 

0λ  - free-space wavelength 

n  - refractive index of the medium 

0n  - initial refractive index 

n�  - photoinduced variation of the refractive index 

PQn�  - change of the refractive index caused by the photoreaction of PQ 

Tn�  - thermal change of the refractive index 

I  - light intensity 

A  - complex amplitude of the light wave 

thA  - threshold amplitude of the light field 
φ  - phase of the wave 

2n , 4n  - expansion coefficients determined by nonlinear medium properties 

0x  - radius of the light beam (at 1/e-mean) 
ψ  - angel of the total internal reflection of the beam 
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0θ  - slope angle against the axis of the beam 

dθ  - angle of the diffraction divergence 

P  - power of the light beam 

thP  - threshold power of the light beam 

fsl −  - self-focusing length of the optical beam 

⊥�  - transversal Laplace operator 

z  - direction of the beam propagation 

k  - wave number 

iC  - concentration of the i-th component 

iR  - molar refraction of the i-th component 

R�  - change in photorefraction of the components 
ρ  - material density 

W  - light exposure 
t  - recording / amplification time of the hologram 

et  - light exposure time 
γ  - diffusion-rate constant of the amplification process 

Λ  - spatial grating period 

D  - diffusion coefficient 

0D  - initial diffusion coefficient 

dc  - diffusion constant 

M  - amplification factor of the phase pattern 

inI  - input beam intensity 

outI  - transmitted beam intensity 

diffrI  - intensity of the diffracted beam 

0I  - incident intensity of the beam (initial intensity) 
θ  - angle between direction of the wave propagation and grating 

plane h  - thickness of the layer 
η  - diffraction efficiency of the recorded structure 

m  - diffraction order of the periodical structure 

Q  - Klein parameter 

H - parameter characterizing contribution of the amplification process 

en�  - refractive-index modulation after the hologram recording 

0n�  - refractive-index modulation at the end of the diffusion processes 

PQC�  - changes of the PQ-concentration 
)t,z,x(N  - change of the concentration of the photoproduct 

0C  - initial PQ-concentration before illumination 

δ  - molar fraction of polar comonomers in the mixture of monomers 
β  - molar fraction of polar comonomers in the copolymer 

maxt  - time for achieving the maximum diffraction efficiency 

)'t,'x(F  - copolymerization rate 
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)'t,t,'x,x(R  - non-local response 

σ  - non-local response length 

ξ  - constant of copolymerization 

V  - fringe visibility 

f  - spatial frequency of the grating 

n
�

 - complex refractive index 

)t,z,x(κ  - nonlinear coefficient of the extinction 
ω  - circular frequency 
α  - absorption coefficient of the medium 

molα  - molar absorption cross-section 
ε  - coupling rate 

Rl  - Rayleigh length 

ρC  - heat capacity of the unit volume (volumetric heat capacity) 
Т/n ∂∂  - thermooptical coefficient 

L  - area of interaction of light and medium 

Ta  - thermal diffusivity coefficient 

Tk  - thermal conductivity 

Tc  - specific heat capacity 

T�  - change of the temperature in the illuminated area 
b  - coefficient of the heat transfer 
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