
 
 
 
 
 
 
 

Closed linear relations and their regular 
points  

Preprint No. M 11/03 

Jean-Philippe Labrousse, Adrian Sandovici,  
Henk de Snoo, Henrik Winkler 

2011 

Impressum: 
Hrsg.: Leiter des Instituts für Mathematik 

Weimarer Straße 25 
98693 Ilmenau 

Tel.: +49 3677 69-3621 
Fax: +49 3677 69-3270 
http://www.tu-ilmenau.de/math/ 

Technische Universität Ilmenau 
Institut für Mathematik 



CLOSED LINEAR RELATIONS AND THEIR REGULAR POINTS

J.-PH. LABROUSSE, A. SANDOVICI, H.S.V. DE SNOO, AND H. WINKLER

Abstract. For a closed linear relation A in a Hilbert space H the notions
of resolvent set and set of points of regular type are extended to the set of

regular points. Such points are defined in terms of quasi-Fredholm relations of

degree 0. The set of regular points is open and for λ ∈ C in this set the spaces
ker (A− λ) and ran (A− λ) are continuous in the gap metric.

1. Introduction

Let A be a closed linear relation in a Hilbert space H. A point λ ∈ C is said to
belong to the resolvent set ρ(A) of A if

(R1) ran (A− λ) = H;
(R2) ker (A− λ) = {0}.

The set ρ(A) is open and (A− λ)−1, λ ∈ ρ(A), is a holomorphic family of bounded
everywhere defined linear operators on H. Furthermore, λ ∈ C is said to belong to
the set of points of regular type γ(A) of A if

(T1) ran (A− λ) is closed in H;
(T2) ker (A− λ) = {0}.

The set γ(A) is open and (A − λ)−1, λ ∈ γ(A), is a family of bounded linear
operators on ran (A− λ); see for instance [9].

The purpose of the present paper is to extend the notion of points of regular
type. A point λ ∈ C is said to belong to the set reg (A) of regular points of A if

(F1) ran (A− λ) is closed in H;
(F2) ker (A− λ)n ⊂ ran (A− λ), n ∈ N,

or, equivalently, if
(F3) ran (A− λ) is closed in H;
(F4) ker (A− λ) ⊂ ran (A− λ)n, n ∈ N.

It wil be shown that the set reg (A) is open and that for λ ∈ reg (A) the mapping
λ → ker (A − λ) is continous in the gap-metric (for closed linear subspaces of H).
Moreover, it will be shown that λ ∈ reg (A) if and only if ran (A− λ) is closed and
there exists a neighborhood U of λ such that ker (A− ζ) is close to ker (A− λ) in
the gap-metric for all ζ ∈ U . Finally, a characterization of reg (A) is given in terms
of generalized resolvents of A. For the case where A is an operator, these results can
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be found in Labrousse’s paper [12], and it turns out that the results in [12] remain
valid in the context of relations. However, all the previous arguments require an
interpretation and an adaptation to make them work for relations. The present
paper can be seen as a natural continuation of [13] and the notations introduced in
[13] will be used here as well.

As to the extension of previous results from the case of operators to the case of
relations, recall the following. For a closed relationA the adjoint A∗ is automatically
a closed linear relation and ran (A−λ) is closed if and only if ran (A∗− λ̄) is closed.
More generally, λ is a regular point of A if and only if λ̄ is a regular point of A∗. In
other words, there is a complete symmetry in the results for a closed linear relation
A and its adjoint A∗.

The paper is organized as follows. Section 2 contains a short introduction to
relations in Hilbert spaces. In particular, the notions of operator part, minimum
modulus, and generalized resolvent are introduced. Furthermore, there is a brief
review of the opening and gap between closed linear subspaces of a Hilbert space,
which play a fundamental role in the later arguments. Finally, a useful estimate for
the gap between eigenspaces of A in terms of the minimum modulus is given. Sec-
tion 3 contains the characterization of points in reg (A) in terms of a gap estimate.
In Section 4 it is shown that the set reg (A) is open and that various spaces are
continuous on reg (A) in terms of the gap metric. In Sections 5 there is a character-
ization of reg (A) in terms of generalized resolvents of A. For the convenience of the
reader Section 6 returns to the notions of the opening and gap between closed linear
subspaces of a Hilbert space. The various connections for gaps are illustrated.

2. Preliminaries

In this section some basic material is presented concerning linear relations in
Hilbert spaces, operator parts of linear relations, and of the minimum modulus of
relations. Estimates for the distance between eigenspaces of a linear relation will
be presented in terms of the gap or opening between such subspaces.

2.1. Relations, minimum moduli, and operator parts. Let A be a closed
linear relation from a Hilbert space H to a Hilbert space K; i.e., A is a closed linear
subspace of the product space H × K. Then A is the graph of a linear operator if
and only if mulA = {0}. Here mulA stands for the multivalued part of A; since A
is closed, it is automatically closed. The orthogonal operator part As of A is defined
by

As = { {f, g} : {f, g} ∈ A, (I −Q)g = 0 } = A ∩ (H⊕ (mulA)⊥),
where Q be the orthogonal projection from K onto (mulA)⊥. In the sense of
relations one then has As = QA. Clearly As is a closed operator contained in A.
Note that

domA closed ⇔ As bounded.
The adjoint A∗ of A is a closed linear relation from K to H, defined by

A∗ = { {f, f ′} ∈ K× H : (f ′, h) = (f, h′), {h, h′} ∈ A }.
The orthogonal operator part (A∗)s of A∗ is defined as above. Then As is a densely
defined operator from the Hilbert space domA to the Hilbert space domA∗. Like-
wise (A∗)s is a densely defined operator from domA∗ to domA. It is clear that

(As)× = (A∗)s,
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where A× denotes the adjoint of the densely defined operator As (as defined between
domA and domA∗). It is obvious that As is bounded if and only if (A∗)s is bounded,
and in this case

(2.1) ‖As‖ = ‖(A∗)s‖,

which follows from the usual identity ‖As‖ = ‖(As)×‖. Equivalently one has

(2.2) domA closed ⇔ domA∗ closed.

For different proofs of this equivalence, see [9].
Let A be a closed relation from H to K. Then the minimum modulus of A is

defined by

r(A) = inf
{
‖h′‖
‖h‖

: {h, h′} ∈ A, h ⊥ ker A
}
.

This number belongs to [0,∞]. Note that r(A) > 0 if and only if (A−1)s is bounded,
in which case

r(A) =
1

‖(A−1)s‖
,

cf. [6]. Moreover, it is clear from (2.1) that r(A) = r(A∗), and that

ranA closed ⇔ ranA∗ closed,

which of course is also clear from (2.2) by going over to inverses.
The multivalued part mulA is a closed linear subspace of H which induces the

following closed restriction of A:

Amul = {0} ×mulA.

An operator part B of A is an operator from H to K which satisfies

A = B +̂ A∞, direct sum,

where +̂ stands for a componentwise sum. The orthogonal operator part As of A is
an example of an operator part. Note that As and A are related by As = (I−Q)A,
where the product is in the sense of relations. The orthogonal operator part is based
on the orthogonal decomposition K = (mulA)⊥ ⊕mulA. For a different approach
to operator parts, see [9]. Now consider a closed linear subspace X of K, such that

(2.3) K = X + mulA, direct sum,

and let QX be the projection onto X parallel to mulA.

Lemma 2.1. The relation AX defined by

(2.4) AX = { {f, g} : {f, g} ∈ A, g ∈ X } = A ∩ (H⊕ X)

is a closed operator part of A and AX = QXA, so that

(2.5) A = AX +̂ Amul, direct sum.

Moreover, AX is bounded if and only if domA is closed.

Proof. The identity (2.4) shows that AX is closed. Furthermore AX ⊂ A and
Amul ⊂ A show that AX +̂ Amul ⊂ A. For the converse inclusion {h, h′} ∈ A. Then
according to (2.3) h′ = k + ϕ with k ∈ X and ϕ ∈ mulA, so that

{h, h′} = {h, k}+ {0, ϕ}.
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This shows that {h, k} ∈ A, since {0, ϕ} ∈ Amul ⊂ A. Hence {h, k} ∈ AX and
thus A ⊂ AX +̂ Amul. To see that AX is an operator, let {0, k} ∈ AX, so that
k ∈ X ∩mulA and k = 0; cf. (2.3). Finally AX = QXA is straightforward. �

2.2. Generalized resolvents. Let A be a closed relation in a Hilbert space H and
let λ ∈ C. Then the formal inverse (A− λ)−1 is a closed relation in H defined by

(A− λ)−1 = { {h′ − λh, h} : {h, h′} ∈ A }.
Clearly mul (A−λ)−1 = ker (A−λ) and the orthogonal operator part ((A−λ)−1)s
of (A− λ)−1 is given by

((A− λ)−1)s = { {h′ − λh, h} : {h, h′} ∈ A, h ⊥ ker (A− λ) }.
The minimum modulus of A− λ is given by

(2.6) r(A− λ) = inf
{
‖h′ − λh‖
‖h‖

: {h, h′} ∈ A, h ⊥ ker (A− λ), h 6= 0
}
.

Hence, ran (A− λ) is closed if and only if r(A− λ) > 0, and in this case

r(A− λ) =
1

‖((A− λ)−1)s‖
.

In order to associate an everywhere defined closed operator with (A − λ)−1 some
direct sum decompositions of the Hilbert space H will be introduced.

Let X(λ) be a closed linear subspace of H such that

(2.7) H = X(λ) + ker (A− λ), direct sum.

Note that the special choice X(λ) = ran (A∗ − λ̄) corresponds to an orthogonal
decomposition. Let Qλ be the projection onto X(λ) parallel to ker (A−λ). Clearly,
ker Qλ = ker (A − λ) and Qλ maps domA into itself. The relation Qλ(A − λ)−1

corresponding to the decomposition (2.7) is a closed operator and it satisfies

(2.8) Qλ(A− λ)−1(k − λh) = Qλh, {h, k} ∈ A.
Moreover, parallel to (2.5) one has the direct sum decomposition

(2.9) (A− λ)−1 = Qλ(A− λ)−1 +̂ ({0} × ker (A− λ)), direct sum.

Hence if r(A − λ) > 0 or, equivalently, if ran (A − λ) is closed, then Qλ(A − λ)−1

is a bounded operator; cf. Lemma 2.1.
Now assume that r(A − λ) > 0 or, equivalently, that ran (A − λ) is closed. Let

Y(λ) be a closed linear subspace of H for which

(2.10) H = Y(λ) + ran (A− λ), direct sum.

Note that the special choice Y(λ) = ker (A∗ − λ̄) corresponds to an orthogonal
decomposition. Let Pλ be the projection onto ran (A−λ) parallel to Y(λ). Clearly
ker Pλ = Y(λ).

Corresponding to the direct sum decompositions (2.7) and (2.10) the operator
R(λ) is defined by

R(λ) = Qλ(A− λ)−1Pλ.

Clearly, it belongs to B(H), the Hilbert space of all bounded linear operators defined
on all of H. Note that if λ ∈ ρ(A), then ran (A − λ) = H and ker (A − λ) = {0},
and R(λ) coincides with the usual resolvent. For λ ∈ C the following notation is
useful:

Nλ(A) = ker (A− λ), N̂λ(A) = { {h, λh} : h ∈ Nλ(A) }.
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Lemma 2.2. Let A be a closed relation in a Hilbert space H, let λ ∈ C, and assume
that ran (A− λ) is closed. Then

(2.11) A = { {R(λ)ϕ, Pλϕ+ λR(λ)ϕ} : ϕ ∈ H } +̂ N̂λ(A), direct sum.

Moreover,

(2.12) mulA = {Pλϕ : R(λ)ϕ ∈ ker (A− λ) }.

Proof. The proof will be given in several steps.
Step 1. First it will be shown that the righthand side of (2.11) belongs to A or,

equivalently, it will be shown that

(2.13) {R(λ)ϕ, Pλϕ+ λR(λ)ϕ} ∈ A.

Clearly, Pλϕ = k − λh for some {h, k} ∈ A. With the projection Pλ (2.8) reads as

Qλ(A− λ)−1Pλ(k − λh) = Qλh, {h, k} ∈ A.

Next observe that ker Qλ = ker (A− λ) implies

{0, (I −Qλ)h} ∈ (A− λ)−1.

Together with {k − λh, h} ∈ (A− λ)−1, this gives

{k − λh,Qλh} ∈ (A− λ)−1

But with (2.8) this shows

{k − λh,Qλ(A− λ)−1Pλ(k − λh} ∈ (A− λ)−1

or, equivalently,
{Pλϕ,R(λ)ϕ} ∈ (A− λ)−1, ϕ ∈ H,

which is equivalent to (2.13).
Step 2. Next it will be shown that

(2.14) A ⊂ {{R(λ)ϕ, Pλϕ+ λR(λ)ϕ} : ϕ ∈ H } +̂ Nλ(A).

Let {h, k} ∈ A. Then ker Qλ = ker (A− λ) implies that

{h, k} − {(I −Qλ)h, λ(I −Qλ)h} = {Qλh, k − λh+ λQλh} ∈ A,

and observe that with ϕ = k − λh

{Qλh, k − λh+ λQλh} = {R(λ)ϕ, Pλϕ+ λR(λ)ϕ}.

Step 3. Write (2.11) as

A = { {R(λ)ϕ+ h, λ(R(λ)ϕ+ h) + Pλϕ} : ϕ ∈ H, h ∈ ker (A− λ) }.

Then it is clear that Pλϕ ∈ mulA if and only R(λ)ϕ+ h = 0. This completes the
proof of (2.12). �

Corollary 2.3. Let A be a closed relation in a Hilbert space H, let λ ∈ C, and
assume that ran (A − λ) is closed. Let P be the orthogonal projection onto mulA.
Then the orthogonal operator part As acts as follows:

(2.15) (As − λ)R(λ) = (I − P )Pλ − λPR(λ).

and

(2.16) R(λ)(As − λ)h = Qλh, h ∈ domA.
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2.3. Special properties of generalized resolvents. Assume that there is an
open set U ⊂ C, such that for all λ ∈ U the subspace ran (A − λ) is closed.
Furthermore, assume that for all λ ∈ U there exist closed linear subspaces X and
Y of H, such that the following decompositions hold:

(2.17) H = ker (A− λ) + X, direct sum,

and

(2.18) H = ran (A− λ) + Y, direct sum.

In other words, it is assumed that the closed linear subspaces X(λ) and Y(λ) in
(2.7) and (2.10) are independent of λ ∈ U . The projection Qλ onto X parallel to
ker (A− λ) and the projection Pλ onto ran (A− λ) parallel to Y then satisfy some
special properties.

Lemma 2.4. Let A be a closed relation in a Hilbert space H. Assume that for all
λ in an open set U ran (A − λ) is closed and that the direct sum decompositions
(2.17) and (2.18) hold. Then for all λ, µ ∈ U one has

QλQµ = Qµ, PµPλ = Pµ.

Proof. Let h ∈ H, then

h = (I −Qλ)h+Qλh = (I −Qµ)h+Qµh,

so that
(I −Qµ)h = (I −Qλ)h+ [Qλh−Qµh] ∈ ker (A− λ) + X.

Hence
(I −Qλ)(I −Qµ) = I −Qλ,

which leads to QλQµ = Qµ. Similarly, for h ∈ H,

h = Pλh+ (I − Pλ)h = Pµh+ (I − Pµ)h,

so that
Pλh = Pµh+ [(I − Pµ)h− (I − Pλ)h] ∈ ran (A− µ) + Y,

which leads to PµPλ = Pµ. �

Lemma 2.5. Let A be a closed relation in a Hilbert space H. Assume that for all
λ in an open set U ran (A − λ) is closed and that the direct sum decompositions
(2.17) and (2.18) hold. Then for all λ, µ ∈ U , λ 6= µ, one has

(2.19) R(λ)−R(µ) = (λ− µ)R(λ)R(µ).

Proof. Recall that {R(µ)u, Pµu+ µR(µ)u} ∈ A. Furthermore it follows from (2.8)
that

R(λ)(k − λh) = Qλh, {h, k} ∈ A.
A combination leads to

R(λ)(Pµu+ µR(µ)u− λR(µ)u) = QλR(µ)u,

or, equivalently,

(λ− µ)R(λ)R(µ) = R(λ)Pµ −QλR(µ) = R(λ)−R(µ),

which follows from Lemma 2.4. �
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2.4. The opening between subspaces. This subsection contains a collection of
results concerning the various openings between closed linear subspaces of a Hilbert
space. A further discussion can be found in Section 6.

Let H be a Hilbert space and let M and N be closed subspaces of H. Denote the
corresponding orthogonal projections by PM and PN. Define the opening δ(M,N)
between M and N by

(2.20) δ(M,N) = ‖(I − PN)PM‖,
so that clearly 0 ≤ δ(M,N) ≤ 1 and also

(2.21) δ(N⊥,M⊥) = δ(M,N).

Moreover, observe that

(2.22) δ(M,N) < 1 ⇔ M + N⊥ closed, M ∩N⊥ = {0}.
The opening ε(M,N) between M and N is defined by

(2.23) ε(M,N) = ‖(I − PN)PM	(M∩N⊥)‖.

This leads to ε(M,N) = δ(M	 (M ∩N⊥),N) and also to

(2.24) ε(M,N) = ε(N,M), ε(M⊥,N⊥) = ε(M,N).

Due to the symmetry in (2.24) it follows that

(2.25) ε(M,N) < 1 ⇔ M + N⊥ closed ⇔ M⊥ + N closed.

The gap g(M,N) between M and N is defined by

(2.26) g(M,N) = ‖PM − PN‖,
so that g(M,N) ≤ 1. Moreover, it is clear that

(2.27) g(M,N) = g(N,M), g(M⊥,N⊥) = g(M,N).

The gap in (2.26) provides a metric on the space S(H) of all closed linear subspaces
of H.

Recall that for any pair of not necessarily orthogonal projections QM and QN

in B(H) such that ranQM = M and ranQN = N one has

(2.28) g(M,N) ≤ ‖QM −QN‖.
There is a chain of (in)equalities satisfied by the gap and the openings between

the subspaces M and N:

(2.29) ε(M,N) ≤ min(δ(M,N), δ(N,M)) ≤ max(δ(M,N), δ(N,M)) = g(M,N).

Observe that

(2.30) g(M,N) < 1 ⇔ H = M + N⊥ direct sum ⇔ H = M⊥ + N, direct sum.

If M ∩N⊥ = {0} and M⊥ ∩N = {0}, then

(2.31) ε(M,N) = δ(M,N) = δ(N,M) = g(M,N).

Hence, if δ(M,N) < 1 and δ(M⊥,N⊥) < 1, and, in particular, if g(M,N) < 1, then
the identities in(2.31) are satisfied.

Finally, note that if H = M + N⊥, M ∩N⊥ = {0}, and P is the projection onto
M parallel to N⊥, then

(2.32) ‖P‖ =
1√

1− g(M,N)2
,
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cf. Corollary 6.11. Furthermore, if g(M,N) < 1, then

dim M = dim N,

see [8] or [10].

2.5. Minimum modulus, opening, and gap. Let A be a closed linear relation
in a Hilbert space H and let λ0 ∈ C. Then ran (A − λ0) is closed if and only if
r(A−λ0) > 0. In this case the disk |λ−λ0| < r(A−λ0) will play a role in estimating
openings and gaps of closed linear subspaces associated with A.

Lemma 2.6. Let A be a closed linear relation in a Hilbert space H. Assume that
r(A− λ0) > 0 for some λ0 ∈ C. Then for all λ ∈ C:

(2.33) δ(ker (A− λ), ker (A− λ0)) ≤ |λ− λ0|
r(A− λ0)

.

Proof. The proof will be given in two steps.
Step 1. It will be shown that for all λ ∈ C:

(2.34) ‖(I − Pker (A−λ0))h‖ ≤
|λ− λ0|
r(A− λ0)

‖h‖, h ∈ ker (A− λ).

To see this, let h ∈ ker (A− λ), so that {h, λh} ∈ A. Decompose the element h as
follows:

h = h0 + h1, h0 ∈ ker (A− λ0), h1 ∈ ker (A− λ0)⊥.

Then {h0, λh0} ∈ A and clearly

{h1, λh− λ0h0} = {h, λh} − {h0, λ0h0} ∈ A, h1 ⊥ ker (A− λ0).

Since λh − λ0h0 − λ0h1 = (λ − λ0)h, it follows from (2.6) (with λ0 instead of λ)
that

r(A− λ0) ≤ |λ− λ0| ‖h‖
‖h1‖

.

Observe that h1 = (I−Pker (A−λ0))h, where Pker (A−λ0) is the orthogonal projection
onto ker (A− λ0). Hence (2.34) follows.

Step 2. Apply (2.34) with h = Pker (A−λ)ϕ, ϕ ∈ H, where Pker (A−λ) stands for
the orthogonal projection onto ker (A− λ). This gives

‖(I − Pker (A−λ0))Pker (A−λ)ϕ‖ ≤
|λ− λ0|
r(A− λ0)

‖Pker (A−λ)ϕ‖

≤ |λ− λ0|
r(A− λ0)

‖ϕ‖, ϕ ∈ H.

Now apply the definition in (2.20) to obtain (2.33). �

Let A be a closed linear relation and assume that r(A−λ0) > 0 for some λ0 ∈ C.
Then it follows from Lemma 2.6 and (2.22) that there is a direct sum decomposition:

(2.35) H = ker (A− λ) + (ker (A− λ0))⊥, direct sum,

valid for each λ ∈ C with |λ − λ0| < r(A − λ0) This observation will be used to
prove the following lemma.
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Lemma 2.7. Let A be a closed linear relation in a Hilbert space H and assume
that r(A− λ0) > 0. Then for all λ ∈ C which satisfy |λ− λ0| < r(A− λ0):

(2.36) r(A− λ) ≥ r(A− λ0)− |λ− λ0| > 0,

so that, in particular, ran (A− λ) is closed.

Proof. It follows from (2.36) that ran (A − λ) is closed for |λ − λ0| < r(A − λ0).
Hence, it suffices to show (2.36).

To show (2.36), let {h, k} ∈ A − λ and assume without loss of generality that
h ∈ ker (A− λ)⊥. Then, according to the direct sum decomposition (2.35) one has

h = h1 + h2, h1 ∈ ker (A− λ), h2 ∈ ker (A− λ0)⊥,

and since h ∈ ker (A− λ)⊥ it follows for h2 = h− h1 that

(2.37) ‖h2‖2 = ‖h‖2 + ‖h1‖2 ≥ ‖h‖2.
Due to {h, k} ∈ A− λ and {h1, 0} ∈ A− λ it follows that

{h2, k} ∈ A− λ or {h2, k + λh2} ∈ A.
Hence, one sees that

{h2, k + (λ− λ0)h2} ∈ A− λ0, h2 ∈ (ker (A− λ0))⊥,

so that from (2.6) (with λ0 instead of λ) it follows that

(2.38) ‖k + (λ− λ0)h2‖ ≥ r(A− λ0)‖h2‖.
Therefore, via the triangle inequality, (2.37), and (2.38) one obtains

‖k‖ ≥
∣∣‖k + (λ− λ0)h2‖ − |λ− λ0| ‖h2‖

∣∣
≥ (r(A− λ0)− |λ− λ0|) ‖h2‖(2.39)
≥ (r(A− λ0)− |λ− λ0|) ‖h‖,

where use has been made of |λ−λ0| < r(A−λ0). Since the inequality (2.39) holds
for all {h, k} ∈ A− λ with h ⊥ ker (A− λ), it follows that (2.36) holds. �

Let A be a closed linear relation in a Hilbert space H. It follows from Lemma
2.7 that the set

reg 0(A) = {λ ∈ C : ran (A− λ) is closed }
is open. Note that ρ(A) ⊂ γ(A) ⊂ reg 0(A).

Lemma 2.8. Let A be a closed linear relation in a Hilbert space H and assume
that r(A− λ0) > 0. Then for all λ ∈ C which satisfy |λ− λ0| < r(A− λ0):

(2.40) g(ran (A− λ), ran (A− λ0)) ≤ |λ− λ0|
r(A− λ0)

(< 1).

Proof. Assume that λ ∈ C satisfies |λ − λ0| < r(A − λ0). The proof will be given
in three steps.

Step 1. It will be shown that

(2.41) ran (A− λ) ∩ ran (A− λ0)⊥ = {0}.
To see this, let k ∈ ran (A − λ) ∩ ran (A − λ0)⊥. Since k ∈ ran (A − λ) there
exists some h ∈ H with {h, k} ∈ A− λ. Decompose h according to the direct sum
decomposition (2.35) as

h = h1 + h2, h1 ∈ ker (A− λ), h2 ∈ ker (A− λ0)⊥.
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Then {h2, k} = {h, k} − {h1, 0} ∈ A− λ, so that

(2.42) {h2, k + (λ− λ0)h2} ∈ A− λ0, h2 ∈ (ker (A− λ0))⊥.

Hence, if h2 6= 0 it follows from (2.42) and (2.6) (with λ0 instead of λ) that

(2.43) r(A− λ0) ≤ ‖k + (λ− λ0)h2‖
‖h2‖

.

Recall that also k ∈ (ran (A− λ0))⊥, so that

(2.44) (k + (λ− λ0)h2, k) = 0 or (λ− λ0)(h2, k) = −‖k‖2.

This implies that

(2.45) (k + (λ− λ0)h2, k + (λ− λ0)h2) = |λ− λ0|2‖h2‖2 − ‖k‖2 ≤ |λ− λ0|2‖h2|2.

If h2 6= 0, then (2.43) and (2.45) lead to

r(A− λ0) ≤ ‖k + (λ− λ0)h2‖
‖h2‖

≤ |λ− λ0|.

Since |λ− λ0| < r(A− λ0), it follows that h2 = 0, and thus k = 0 by (2.44). Hence
(2.41) is valid.

Step 2. It is shown that

(2.46) δ(ran (A− λ0), ran (A− λ)) ≤ |λ− λ0|
r(A− λ0)

< 1.

To see this, let k ∈ ran (A − λ0). Then {h, k} ∈ A − λ0 for some h ∈ H and one
may choose h ∈ (ker (A− λ0))⊥. Hence

{h, k} ∈ A− λ0, h ∈ (ker (A− λ0))⊥,

so that, by (2.6) (with λ0 instead of λ)

(2.47) r(A− λ0) ≤ ‖k‖
‖h‖

.

From k ∈ ran (A− λ0) and the inclusion {h, k + (λ0 − λ)h} ∈ A− λ it follows that

(I − Pran (A−λ))Pran (A−λ0)k

= (I − Pran (A−λ))k

= (λ− λ0)(I − Pran (A−λ))h,

where Pran (A−λ) and Pran (A−λ0) are the orthogonal projections onto ran (A − λ)
and ran (A− λ0), respectively. Therefore, with (2.47), one obtains

‖(I − Pran (A−λ))Pran (A−λ0)k‖ ≤ |λ− λ0| ‖h‖ ≤
|λ− λ0|
r(A− λ0)

‖k‖,

for all k ∈ ran (A− λ0) and hence for all k ∈ H. This shows that (2.46) holds.
Step 3. Recall that Lemma 2.7 shows that ran (A− λ) is closed. It follows from

(2.46) in Step 2 and (2.22) that

(2.48) ran (A− λ0) ∩ (ran (A− λ))⊥ = {0}.

Then (2.48) and (2.41) in Step 1 together with (2.31) and (2.46) lead to (2.40). �
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3. Regular points and quasi-Fredholm relations of degree 0

A closed linear relation A with ranA closed and ker An ⊂ ranA, n ∈ N, or,
equivalently, with ranA closed and ker A ⊂ ranAn, n ∈ N, is said to be a quasi-
Fredholm relation of degree 0; cf. (F1), (F2), and (F3), (F4). Such relations and,
more generally, quasi-Fredholm relations of order d, d ∈ N, have been studied in
[13], building on the work presented for closed linear operators in [12].

Definition 3.1. Let A be a closed linear relation in a Hilbert space H. A point
λ0 ∈ C is said to be a regular point of A if A − λ0 is a quasi-Fredholm relation of
degree 0. The set of regular points of A is denoted by reg (A).

The following theorem is the basic result of this paper: it characterizes regular
points of a closed linear relation.

Theorem 3.2. Let A be a closed linear relation in a Hilbert space H and let λ0 ∈ C.
(i) Assume that λ0 ∈ reg (A). Then r(A− λ0) > 0 and for all λ ∈ C for which
|λ− λ0| < r(A− λ0):

(3.1) g(ker (A− λ), ker (A− λ0)) < 1.

(ii) Assume that r(A−λ0) > 0 and that (3.1) holds for all λ in a neighborhood
of λ0. Then λ0 ∈ reg (A).

Proof. (i) Assume that λ0 ∈ reg (A). Then A−λ0 is quasi-Fredholm of degree 0; in
other words, ran (A−λ0) is closed and ker (A−λ0)n ⊂ ran (A−λ0), n ∈ N; cf. (F1)
and (F2). The condition that ran (A− λ0) is closed is equivalent to r(A− λ0) > 0.
The rest of the proof will be given in two steps.

Step 1. It will be shown that for all λ ∈ C with |λ− λ0| < r(A− λ0):

(3.2) H = ker (A− λ) + (ker (A− λ0))⊥,

or, equivalently, that for all λ ∈ C with |λ− λ0| < r(A− λ0):

(3.3) ker (A− λ0) ⊂ ker (A− λ) + ker (A− λ0)⊥,

In order to show (3.3), let h0 ∈ ker (A − λ0) and assume |λ − λ0| < r(A − λ0).
Since ker (A − λ0) ⊂ ran (A − λ0), there exists an element h1 ∈ H such that
{h1, u0} ∈ A − λ0. In fact, one may choose h1 such that h1 ⊥ ker (A − λ0). Note
that {h1, 0} ∈ (A− λ0)2 and h1 ∈ ker (A− λ0)2. Thus

{h0, h1} ∈ A− λ0, h1 ∈ ker (A− λ0)2 ∩ ker (A− λ0)⊥.

Continuing by induction it is shown that there is a sequence (hj)∞j=0 such that for
all j ∈ N ∪ {0}:

(3.4) {hj+1, hj} ∈ A− λ0, hj ∈ ker (A− λ0)j+1 ∩ ker (A− λ0)⊥.

It follows from (3.4) and (2.6) that r(A− λ0)‖hj+1‖ ≤ ‖hj‖, and therefore

(3.5) ‖hj‖ ≤
‖u0‖

(r(A− λ0))j
, j ∈ N ∪ {0}.

Hence it follows from (3.4) and (3.5) that |λ− λ0| < r(A− λ0) the sequence in

(3.6)


n∑
j=1

(λ− λ0)jhj ,−
n∑
j=1

(λ− λ0)jhj−1

 ∈ A− λ0,
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converges for n→∞ to some element

{ϕ, (λ− λ0)(ϕ+ h0)} ∈ H× H,

where the element ϕ is defined by the convergent series

(3.7) ϕ =
∞∑
j=1

(λ− λ0)jhj ∈ ker A− λ0)⊥,

cf. (3.4). Since A is closed, it follows that {ϕ, (λ− λ0)(ϕ+ h0)} ∈ A− λ0. Due to
{h0, 0} ∈ A− λ0 it follows that

{ϕ+ h0, (λ− λ0)(ϕ+ h0)} ∈ A− λ0,

or, in other words,

{ϕ+ h0, 0} ∈ A− λ or ϕ+ h0 ∈ ker (A− λ).

Recall that ϕ ∈ ker (A− λ0)⊥, so that

h0 ∈ ker (A− λ) + ker (A− λ0)⊥.

This proves (3.3).
Step 2. It will be shown that (3.1) holds. Since r(A − λ0) > 0, it follows from

Lemma 2.6 that with |λ− λ0| < r(A− λ0):

(3.8) δ(ker (A− λ), ker (A− λ0)) < 1.

Hence (3.8) together with (2.22) lead to

(3.9) ker (A− λ) ∩ ker (A− λ0)⊥ = {0}.
Furthermore, it follows from (3.2) in Step 1 that

(3.10) (ker (A− λ))⊥ ∩ ker (A− λ0) = {0}.
Hence (3.9) and (3.10) together with (2.30) and (2.31) show that (3.1) holds.

(ii) Assume that r(A− λ0) > 0 and that (3.1) holds for all λ in a neighborhood
U(λ0) of λ0. Then ran (A − λ0) is closed and by (F3) and (F4) it suffices to show
that

ker (A− λ0) ⊂ ran (A− λ0)n, n ∈ N.
In fact, the following statement will be proved by induction:

(3.11) ker (A− λ0) ⊂ ran (A− λ0)n, ran (A− λ0)n is closed , n ∈ N.
For n = 0 this is clearly satisfied. Assume that (3.11) is valid for some n ∈ N. The
argument will be given in two steps.

Step 1. It will be shown that ran (A−λ0)n+1 is closed. Let k ∈ ran (A−λ0)n+1.
Then there exist elements kj ∈ ran (A − λ0)n+1 such that kj → k in H, and there
are elements hj ∈ H such that

{hj , kj} ∈ (A− λ0)n+1.

Since (A− λ0)n+1 = (A− λ0)(A− λ0)n, there are elements χj ∈ K such that

(3.12) {hj , χj} ∈ (A− λ0)n, {χj , kj} ∈ A− λ0.

Decompose these elements χjj by

(3.13) χj = ϕj + ψj , ϕj ∈ ker (A− λ0), ψj ∈ ker (A− λ0)⊥.

Note that {ϕj , 0} ∈ A− λ0, and it follows from (3.12) and (3.13) that

(3.14) {ψj , kj} = {χj , kj} − {ϕj , 0} ∈ A− λ0, ψj ⊥ ker (A− λ0).
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Therefore, by (2.6), it follows from (3.14) that

‖ψj − ψl‖ ≤ r(A− λ0)‖kj − kl‖.

Hence, (ψj) is a Cauchy sequence, and thus ψj → ψ for some ψ ∈ H. Therefore
{ψj , kj} is a sequence in A− λ0 with the property

{ψj , kj} → {ψ, k} ∈ A− λ0,

since A is closed.
Now recall that ψj = χj − ϕj . Here by (3.12) one has χj ∈ ran (A − λ0)n and

by (3.13) and the induction hypothesis one has

ϕj ∈ ker (A− λ0) and ϕj ∈ ran (A− λ0)n.

Therefore ψj ∈ ran (A − λ0)n and by the induction hypothesis that ran (A − λ0)n

is closed, it follows that ψ ∈ ran (A − λ0)n. Together with {ψ, k} ∈ A − λ0 this
shows that k ∈ ran (A − λ0)n+1. Hence ran (A − λ0)n+1 ⊂ ran (A − λ0)n+1 and
ran (A− λ0)n+1 is closed.

Step 2. It will be shown that

(3.15) ker (A− λ0) ⊂ ran (A− λ0)n+1.

But first observe that

(3.16) ker (A− λ) ⊂ ran (A− λ0)n for λ 6= λ0, n ∈ N,

since h ∈ ker (A− λ) implies that {h, (λ− λ0)h} ∈ A− λ0.
Now let h ∈ ker (A−λ0), so that h = Pker (A−λ0)h, where Pker (A−λ0) stands for

the orthogonal projection onto ker (A−λ0). The induction hypothesis (3.11) gives

Pker (A−λ)h ∈ ran (A− λ0)n+1,

and it follows that

(3.17) h− (Pker (A−λ0) − Pker (A−λ))h = Pker (A−λ)h ∈ ran (A− λ0)n+1.

By Step 1 the space ran (A − λ0)n+1 is closed and let Pran (A−λ0)n+1 be the corre-
sponding orthogonal projection. From (3.17) it follows that

h− (Pker (A−λ0) − Pker (A−λ))h

= Pran (A−λ0)n+1(h− (Pker (A−λ0) − Pker (A−λ))h),

or, equivalently,

(3.18) (I − Pran (A−λ0)n+1)h = (I − Pran (A−λ0)n+1)(Pker (A−λ0) − Pker (A−λ))h.

Hence, (3.18) and (2.26), give

‖(I − Pran (A−λ0)n+1)h‖ ≤ ‖(Pker (A−λ0) − Pker (A−λ))h‖
≤ ‖Pker (A−λ0) − Pker (A−λ)‖ ‖h‖
= g(ker (A− λ), ker (A− λ0)) ‖h‖.

(3.19)

Due to (2.30) and (2.31) it follows that

(3.20) g(ker (A− λ), ker (A− λ0)) = δ(ker (A− λ), ker (A− λ0)).

Therefore (3.19) and Lemma 2.6 give

(3.21) ‖(I − Pran (A−λ0)n+1)h‖ ≤ |λ− λ0|
r(A− λ0)

‖h‖
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for all λ ∈ U(λ0) with |λ− λ0| < r(A− λ0). The inequality (3.21) implies

h = Pran (A−λ0)n+1h ∈ ran (A− λ0)n+1.

Hence (3.15) has been shown. �

The following corollary is a useful restatement of Theorem 3.2, which parallels
Corollary 2.8.

Corollary 3.3. Let A be a closed linear relation in a Hilbert space H and let λ0 ∈ C.
Then λ0 ∈ reg (A) if and only if r(A−λ0) > 0 and there exists a neighborhood U(λ0)
of λ0 such that

(3.22) g(ker (A− λ), ker (A− λ0)) < 1, λ ∈ U(λ0).

The neighborhood U(λ0) contains the disk

(3.23) {λ ∈ C : |λ− λ0| < r(A− λ0) },
and on that disk

(3.24) g(ker (A− λ), ker (A− λ0)) ≤ |λ− λ0|
r(A− λ0)

.

The following result is a direct consequence of Theorem 3.2; see [13]. Due to
the formal level of relations there is no need anymore to require A to be a densely
defined operator, cf. [12, Corollaire 4.12].

Corollary 3.4. Let A be a closed relation in a Hilbert space. Then

λ ∈ reg (A) ⇔ λ̄ ∈ reg (A∗).

Note also that λ ∈ ρ(A) if and only if λ̄ ∈ ρ(A∗). However, when λ ∈ γ(A),
then, in general, λ̄ ∈ reg (A∗) \ γ(A∗).

Another direct consequence of Theorem 3.2 is the following result, cf. [12, Corol-
laire 4.11].

Corollary 3.5. Let A be a closed relation in a Hilbert space for which

(3.25) ker (A∗ − λ̄) = ker (A− λ), λ ∈ C.
Then reg (A) = ρ(A).

Proof. Since ρ(A) ⊂ reg (A), it suffices to show reg (A) ⊂ ρ(A). Let λ ∈ reg (A),
then (3.25) implies that

ker (A∗ − λ̄) = ker (A− λ) ⊂ ran (A− λ) = ker (A∗ − λ̄)⊥,

so that ker (A∗ − λ̄) = {0}. Hence ker (A− λ) = {0} and ran (A− λ) = H, which
shows that λ ∈ ρ(A). �

4. Regular points and continuity

Let A be a closed relation for which r(A − λ0) > 0. Then for all λ ∈ C which
satisfy |λ− λ0| < r(A− λ0) one has the direct sum decomposition

(4.1) H = ran (A− λ) + (ran (A− λ0))⊥, direct sum,

and, likewise,

(4.2) H = ran (A− λ)⊥ + ran (A− λ0), direct sum,

as follows from Lemma 2.8. Now assume that λ0 ∈ reg (A). Then for all λ which
satisfy |λ− λ0| < r(A− λ0) one has the direct sum decompositions
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(4.3) H = ker (A− λ) + (ker (A− λ0))⊥, direct sum.

and, likewise

(4.4) H = ker (A− λ)⊥ + ker (A− λ0), direct sum,

as follows from Corollary 3.3. The dependence on λ of the first summands in the
direct sum decompositions (4.1), (4.2), (4.3), and (4.4) is studied in the following
proposition.

Proposition 4.1. Let A be a closed linear relation in a Hilbert space H. Then the
set reg (A) is open, and the mappings

(i) λ ∈ reg (A)→ ker (A− λ);
(ii) λ ∈ reg (A)→ (ker (A− λ))⊥;
(iii) λ ∈ reg (A)→ ran (A− λ);
(iv) λ ∈ reg (A)→ ran ((A− λ))⊥,

from reg (A) into the space S(H) of closed linear subspaces of H provided with the
gap-metric, are continuous.

Proof. It suffices to show that the set reg (A) is open. It then follows from Lemma
2.8, Corollary 3.3, and (2.27) that the indicated mappings are continuous from
reg (A) into the space S(H), provided with the gap-metric.

In order to show that the set reg (A) is open, let λ0 ∈ reg (A). Then let the point
λ ∈ C satisfy

(4.5) |λ− λ0| < r(A− λ0).

It has been shown in Lemma 2.7 that ran (A − λ) is closed. Now it will be shown
that there exists a neighborhood V of λ so that for all µ in that neighborhood one
has g(ker (A− µ), ker (A− λ)) < 1; in other words that λ is also a regular point of
the relation A.

Let λ ∈ C satisfy (4.5). The neighborhood V of λ is defined by

(4.6) V = {µ ∈ C : 2|µ− λ| < r(A− λ0)− |λ− λ0| }.

For any µ ∈ V it follows from the definition in (4.6) and the assumption (4.5) that

|µ− λ0| ≤ |µ− λ|+ |λ− λ0|
< (r(A− λ0)− |λ− λ0|)/2 + |λ− λ0|(4.7)
= (r(A− λ0) + |λ− λ0|)/2.

Due to (4.5), the inequality (4.7) shows that any µ ∈ V also satisfies:

(4.8) |µ− λ0| < r(A− λ0),

Hence V is contained in the disk in (4.5). In particular, it follows from Lemma 2.7
that ran (A− µ) is closed for all µ ∈ V.

For µ ∈ V the definition in (4.6) and the inequality in (2.36) imply that

(4.9) |µ− λ| < 2|µ− λ| ≤ r(A− λ0)− |λ− λ0| ≤ r(A− λ).

Since ran (A− λ) is closed, Lemma 2.6 may be applied, which gives with (4.9)

(4.10) δ(ker (A− µ), ker (A− λ)) ≤ |µ− λ|
r(A− λ)

< 1, µ ∈ V.
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Furthermore, (4.8) shows that (2.36) holds with λ replaced by µ:

(4.11) r(A− µ) ≥ r(A− λ0)− |µ− λ0| > 0,

Hence, in (4.11) an application of (4.7) and the definition of V lead to

r(A− µ) ≥ r(A− λ0)− |µ− λ0|
> r(A− λ0)− |λ− λ0|)/2
> |µ− λ|.

(4.12)

Since ran (A− µ) is closed, Lemma 2.6 may be applied, which gives with (4.12)

(4.13) δ(ker (A− λ), ker (A− µ)) ≤ |λ− µ|
r(A− µ)

< 1, µ ∈ V.

It follows from (4.10), (4.13), and (2.31) that g(ker (A− λ), ker (A−µ)) < 1 for
µ ∈ V. In particular, this leads to λ ∈ reg (A). Therefore it has been shown that
reg (A) is open in C. �

5. Regular points and generalized resolvents

Let A be a closed linear relation in a Hilbert space H for which λ0 ∈ reg (A).
Then by Lemma 2.7, Lemma 2.8, and Corollary 3.3 there is a neighborhood

(5.1) U = {λ ∈ C : |λ− λ0| < r(A− λ0) }

of λ0, such that

(5.2) r(A− λ) ≥ r(A− λ0)− |λ− λ0| > 0, λ ∈ U ,

so that ran (A− λ), λ ∈ U , is closed,

(5.3) g(ran (A− λ), ran (A− λ0)) ≤ |λ− λ0|
r(A− λ0)

, λ ∈ U ,

and

(5.4) g(ker (A− λ), ker (A− λ0)) ≤ |λ− λ0|
r(A− λ0)

, λ ∈ U .

Hence, by (5.3) and (5.4), one has for all λ ∈ U the direct sum decompositions

(5.5) H = ker (A− λ) + ker (A− λ0)⊥, direct sum,

and

(5.6) H = ran (A− λ) + ran (A− λ0)⊥, direct sum.

Let Qλ be the projection onto (ker (A − λ0))⊥ parallel to ker (A − λ) defined by
(5.5), so that

ker Qλ = ker (A− λ).
Likewise, let Pλ be the projection onto ran (A−λ) parallel to ran (A−λ0)⊥ defined
by (5.6), so that

ranPλ = ran (A− λ).
With these projections define the generalized resolvent R(λ), λ ∈ U :

(5.7) R(λ) = Qλ(A− λ)−1Pλ, λ ∈ U .

and recall that R(λ) ∈ B(H). Due to (5.5) and (5.6) the generalized resolvent R(λ)
satisfies the resolvent identity (2.19).



GENERALIZED RESOLVENTS AND QUASI-FREDHOLM RELATIONS 17

In the following theorem the notion of graph norm will be used. Recall that a
closed linear relation A in a Hilbert space H induces a ”graph norm” on domA:

‖h‖2D = ‖h‖2 + ‖Ash‖2, h ∈ domA,

so that the pair (domA, ‖ · ‖D) is a Hilbert space. With these simple preparations
the following theorem may be stated.

Theorem 5.1. Let A be a closed linear relation in a Hilbert space H and let λ0 ∈ C.
Then the following statements are equivalent:

(i) λ0 ∈ reg (A);
(ii) there is a generalized resolvent of A, holomorphic in a neighborhood of λ0,

in the sense of the graph norm.

Proof. (i) ⇒ (ii) Let λ0 ∈ reg (A) and let the neighborhood U of λ0 be defined in
(5.1). Define R(λ) as in (5.7), then by (2.15)

AsR(λ) = (I − P )Pλ + λ(I − P )R(λ).

Hence, for all h ∈ H this leads to

‖R(λ)h‖2D = ‖AsR(λ)h‖2 + ‖R(λ)h‖2

= ‖(I − P )Pλh+ λ(I − P )R(λ)h‖2 + ‖R(λ)h‖2

≤ 2‖Pλh‖2 + (2|λ|2 + 1)‖R(λ)h‖2.
(5.8)

Each of these terms will be estimated. First observe that

{Pker (A−λ)R(λ)h, 0} ∈ A− λ,
and thus (2.11) leads to

{ (I − Pker (A−λ))R(λ)h, Pλh } ∈ A− λ,
(I − Pker (A−λ))R(λ)h ⊥ ker (A− λ).

(5.9)

It follows from (5.9) and (2.6) that

(5.10) r(A− λ)‖(I − Pker (A−λ))R(λ)h‖ ≤ ‖Pλh‖, u ∈ H.

Furthermore, it follows from the definition of Qλ that for all h ∈ H:

‖Pker (A−λ)R(λ)h‖ = ‖Pker (A−λ)(I − Pker (A−λ0))R(λ)h‖
≤ ‖Pker (A−λ)(I − Pker (A−λ0))‖ ‖R(λ)h‖
≤ g(ker (A− λ), ker (A− λ0)) ‖R(λ)h‖

(5.11)

Note that (5.11) shows

(1− g(ker (A− λ), ker (A− λ0))2)‖R(λ)h‖2

≤ ‖R(λ)u‖2 − ‖Pker (A−λ)R(λ)h‖2

= ‖(I − Pker (A−λ))R(λ)h‖2.
(5.12)

Combine (5.10) and (5.12) to obtain

(5.13) ‖R(λ)h‖2 ≤ 1
(1− g(ker (A− λ), ker (A− λ0))2)(r(A− λ)2)

‖Pλh‖2.

Recall that

(5.14) ‖Pλ‖2 =
1

1− g(ran (A− λ), ran (A− λ0))2
,
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as follows from (2.32).
Now choose 0 < c < r(A− λ0) and consider a compact disk Uc of the form

Uc = {λ ∈ U : |λ− λ0| ≤ c }
inside U . Then one obtains from (5.2), (5.3), and (5.4) the uniform bounds

(5.15) r(A− λ) ≥ r(A− λ0)− c > 0, λ ∈ Uc,

(5.16) g(ran (A− λ), ran (A− λ0)) ≤ c

r(A− λ0)
< 1, λ ∈ Uc,

and

(5.17) g(ker (A− λ), ker (A− λ0)) ≤ c

r(A− λ0)
< 1, λ ∈ Uc.

Hence (5.8), (5.13), and (5.14) together with (5.15), (5.16), and (5.17) lead to the
existence of Kc for which

‖R(λ)h‖D ≤ Kc‖h‖, h ∈ H,

for all λ ∈ Uc. Since the family R(λ), λ ∈ U , forms a pseudo-resolvent, this implies
analyticity on U .

(ii) ⇒ (i) Assume that there exists a generalized resolvent R(λ) of A which is
holomorphic in a neighborhood of λ0. In order to show that λ0 ∈ reg (A) it suffices
to show that A− λ0 is quasi-Fredholm of degree 0. By assumption, ran (A− λ0) is
closed. Hence, it remains to show that for all n ∈ N
(5.18) ker (A− λ0)n ⊂ ran (A− λ0),

recall the equivalence between (F1), (F2) and (F3), (F4).
Step 1. It will be shown by induction that for λ 6= λ0 and all n ∈ N

ker (A− λ0)n ⊂ ran (A− λ).

If u ∈ ker (A−λ0) then {u, (λ0−λ)u} ∈ A−λ, and it follows that u ∈ ran (A−λ).
If u ∈ ker (A − λ0)n and ker (A − λ0)n−1 ⊂ ran (A − λ) then {u, v} ∈ A − λ0 for
some v ∈ ker (A − λ0)n−1, implying that v + (λ0 − λ)u ∈ ran (A − λ) and hence
u ∈ ran (A− λ).

Step 2. Observe that ran (A− λ) is closed for λ in a neighborhood of λ0. Let P
denote the orthogonal projection onto mulA. As mulA ⊂ ran (A−λ) for all λ ∈ C,
it follows that both P and I − P commute with Pran (A−λ) and also with Pλ for
λ ∈ reg (A). Note that (I − P )Pran (A−λ) is an orthogonal projection.

Let h ∈ ker (A − λ0)n, then clearly Pran (A−λ)h = h and Ph = PPran (A−λ0)h,
and it follows that

‖h− Pran (A−λ0)h‖ = ‖(I − P )(Pran (A−λ) − Pran (A−λ0))h‖
≤ ‖(I − P )Pran (A−λ) − Pran (A−λ0)‖ ‖h‖
≤ g((I − P )ran (A− λ), (I − P )ran (A− λ0)) ‖h‖
≤ ‖(I − P )(Pλ − Pλ0)‖‖h‖,

where (2.26) and (2.28) have been used. Now observe that

(I − P )Pλ = AsR(λ)− λR(λ) + λPR(λ).

Since R(λ) is holomorphic in the graph norm, it follows that ‖(I − P )(Pλ − Pλ0)‖
tends to 0 for λ→ λ0. Hence one concludes that

h = Pran (A−λ0)h ∈ ran (A− λ0),
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which shows (5.18). �

6. On the opening between subspaces

Let H be a Hilbert space and let M and N be closed linear subspaces of H. In
general, the sum M + N need not be closed (see [16] for an interesting example).
This section presents of review of necessary and sufficient conditions under which
M + N is closed.

The intersection M∩N, the overlapping of M and N, is a closed linear subspace.
Hence the Hilbert space H has the following orthogonal decomposition

(6.1) H = (M ∩N)⊥ ⊕ (M ∩N).

Introduce the ’reduced’ subspaces M0 and N0 by

(6.2) M0 = M ∩ (M ∩N)⊥, N0 = N ∩ (M ∩N)⊥.

Then M0 and N0 are closed linear subspaces of (M ∩N)⊥ and

(6.3) M0 ∩N0 = {0}.
Denote the orthogonal complements of M0 and N0 in (M ∩N)⊥ by M⊥0 and N⊥0 ,
respectively.

Lemma 6.1. Let M and N be closed linear subspaces of a Hilbert space H and let
M0 and N0 be defined by (2.20). Then, corresponding to (6.1), M and N have the
orthogonal decompositions

(6.4) M = M0 ⊕ (M ∩N), N = N0 ⊕ (M ∩N).

Moreover, the space (M ∩N)⊥ has the following decompositions

(6.5) (M ∩N)⊥ = M0 ⊕M⊥, (M ∩N)⊥ = N0 ⊕N⊥,

in other words M⊥ = M⊥0 and N⊥ = N⊥0 .

Corollary 6.2. Let M and N be closed linear subspaces of a Hilbert space H and
let M0 and N0 be defined by (2.20). Then the following statements are equivalent:

(i) M + N is closed;
(ii) M0 + N0 is closed.

Moreover, the orthogonal complements satisfy

M⊥ + N⊥ = M⊥0 + N⊥0 ,

so that both sums are closed simultaneously.

To see whether the linear subspace M + N is closed or not, it suffices, according
to Lemma 6.1, to assume that M ∩ N = {0}. lf the subspace M + N is closed
and M ∩ N = {0}, then M + N may be considered as a Hilbert space in its own
right with corresponding projections from M + N onto M or N. This leads to
the following simple characterization, based on parallel projections and the closed
graph theorem.

Lemma 6.3. Let M and N be closed linear subspaces of a Hilbert space H. Then
the following statements are equivalent:

(i) M + N is closed and M ∩N = {0};
(ii) there exists ρ > 0 such that

(6.6) ρ
√
‖f‖2 + ‖g‖2 ≤ ‖f + g‖, f ∈M, g ∈ N.
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Let M and N be closed linear subspaces of a Hilbert space H and let PM and PN

denote the corresponding orthogonal projections. The opening c0(M,N) between
M and N is defined as

(6.7) c0(M,N) = sup{ |(f, g)| : f ∈M, ‖f‖ ≤ 1, g ∈ N, ‖g‖ ≤ 1 }.
It is clear from this definition that c0(M,N) = c0(N,M). Moreover, since

c0(M,N) = sup{ |(PMf, PNg)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1 },
it follows that

c0(M,N) = ‖PMPN‖,
which characterizes c0(M,N) in terms of the orthogonal projections PM and PN.

Proposition 6.4. Let M and N be closed linear subspaces of a Hilbert space H.
Then the following statements are equivalent:

(i) c0(M,N) < 1;
(ii) M + N is closed and M ∩N = {0}.

Let M and N be closed linear subspaces of a Hilbert space H. The opening
c(M,N) between M and N is defined as

(6.8) c(M,N) = c0(M0,N0),

where M0 and N0 are defined as in (2.20). It is clear from this definition that
c(M,N) = c(N,M). Moreover, it follows that

c(M,N) = sup{ |(PM∩(M∩N)⊥f, PN∩(M∩N)⊥g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1 }
= sup{ |(P(M∩N)⊥PMf, P(M∩N)⊥PNg)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1 }
= sup{ |PMf, P(M∩N)⊥PNg)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1 }
= sup{ |(PMf, PN∩(M∩N)⊥g)| : ‖f‖ ≤ 1, ‖g‖ ≤ 1 },

which leads to

(6.9) c(M,N) = c0(M,N0) = c0(M0,N),

where the last equality follows by symmetry. In terms of orthogonal projections
one has

c(M,N) = ‖PM∩(M∩N)⊥PN∩(M∩N)⊥‖ = ‖PMP(M∩N)⊥PNP(M∩N)⊥‖
= ‖PMPNP(M∩N)⊥‖ = ‖PMPN(I − PM∩N)‖
= ‖PMPN − PMPNPM∩N‖ = ‖PMPN − PM∩N‖,

which characterizes c(M,N) in terms of the orthogonal projections PM and PN.

Proposition 6.5. Let M and N be closed linear subspaces of a Hilbert space H.
Then the following statements are equivalent:

(i) c(M,N) < 1;
(ii) M + N is closed.

Let H be a Hilbert space and let A ∈ B(H) (the bounded linear operators, defined
on all of H). The minimum modulus r(A) of A is now

(6.10) r(A) = inf
{
‖Ah‖
‖h‖

: h ∈ H	 ker A
}
.

Then ranA is closed if and only if r(A) > 0 and, furthermore, r(A∗) = r(A).
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Theorem 6.6. Let M and N be closed linear subspaces of a Hilbert space H. Then

(6.11) c(M,N)2 + r((I − PN)PM)2 = 1.

In particular,

(6.12) c(M⊥,N⊥) = c(M,N).

Proof. First observe that the following identity holds:

(6.13) ker ((I − PN)PM) = (M ∩N)⊕M⊥.

To see this, note that the righthand side is contained in the lefthand side. For the
reverse inclusion, assume that (I − PN)PMh = 0 and write h = f + g with f ∈M
and g ∈M⊥. Then f = PNf , so that f ∈M∩N. Hence, h ∈ (M∩N)⊕M⊥. This
completes the proof of the reverse inclusion. It follows from (6.13) and (6.5) that

(6.14) (ker ((I − PN)PM))⊥ = M ∩ (M ∩N)⊥.

Hence, by means of (6.10) and (6.14), it can be seen that

(6.15) r((I − PN)PM) = inf
{
‖(I − PN)PMh‖

‖h‖
: h ∈M ∩ (M ∩N)⊥

}
.

The following straightforward identity

‖(I − PN)PMh‖2

‖h‖2
=
‖PMh‖2

‖h‖2
− ‖PNPMh‖2

‖h‖2
, h ∈ H \ {0},

and (6.15) lead to

(6.16) r((I − PN)PM)2 = 1− sup
{
‖PNPMh‖2

‖h‖2
: h ∈M ∩ (M ∩N)⊥

}
.

It follows from M ∩ (M ∩N)⊥ ⊂M and the identity (6.5) that

sup
{
‖PNPMh‖2

‖h‖2
: h ∈M ∩ (M ∩N)⊥

}
= sup

{ ‖PNPM∩(M∩N)⊥h‖2

‖h‖2
: h ∈M ∩ (M ∩N)⊥

}
= sup

{ ‖PNPM∩(M∩N)⊥h‖2

‖h‖2
: h ∈ H

}
.

(6.17)

Hence, (6.16) and (6.17) show that

(6.18) r((I − PN)PM)2 = 1− c0(N,M ∩ (M ∩N)⊥)2.

This identity (6.18) together with (6.9) and the symmetry of c0 lead to (6.11).
Since the minimum modulus is invariant under taking adjoints, it follows that

(6.19) r((I − PN)PM)) = r(PM(I − PN)).

The identity (6.19), Theorem 6.6, and the symmetry property of c(M,N) lead to

c(M,N) = c(N⊥,M⊥) = c(M⊥,N⊥),

in other words (6.12) has been shown. �

The next result is a direct consequence of Theorem 6.6, when it is combined with
the characterization in Proposition 6.5.

Theorem 6.7. Let M and N be closed linear subspaces of a Hilbert space H. Then
the following statements are equivalent:
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(i) M + N is closed;
(ii) M⊥ + N⊥ is closed.

Morover, the following statements are equivalent:
(iii) M + N is closed and M ∩N = {0};
(iv) M⊥ + N⊥ = H.

In particular, the following statements are equivalent:
(v) M + N = H and M ∩N = {0};
(vi) M⊥ + N⊥ = H and M⊥ ∩N⊥ = {0}.

Let M and N be closed linear subspaces of a Hilbert space H. The gap g(M,N)
between M and N is defined as (2.26), where PM and PN are the orthogonal
projections onto M and N, respectively. The identity

PM − PN = PM(I − PN)− (I − PM)PN

shows that g(M,N) ≤ 1.

Proposition 6.8. Let M and N be closed linear subspaces in H. Then

(6.20) max(c0(M,N), c0(M⊥,N⊥)) = g(M,N⊥).

In particular, if c0(M,N) = c0(M⊥,N⊥), then c0(M,N) = g(M,N⊥).

Corollary 6.9. Let M and N be closed linear subspaces in H. Then

c(M,N) ≤ min(c0(M,N), c0(M⊥,N⊥)

≤ max(c0(M,N), c0(M⊥,N⊥)) = g(M,N⊥).
(6.21)

Moreover, if M ∩N = {0} and M⊥ ∩N⊥ = {0}, then

(6.22) c(M,N) = c0(M,N) = c0(M⊥,N⊥) = g(M,N⊥).

Theorem 6.10. Let M and N be closed linear subspaces of a Hilbert space H. Then
the following statements are equivalent:

(i) g(M,N⊥) < 1;
(ii) M + N = H and M ∩N = {0}.

If either of these equivalent conditions holds, then the chain of equalities in (6.22)
is satisfied.

Corollary 6.11. Let M and N be closed linear subspaces of a Hilbert space H such
that g(M,N⊥) < 1, or equivalently, H = M + N and M ∩N = {0}. Then

(6.23) g(M,N⊥) =

√
1− 1
‖P‖2

(= c(M,N) = c0(M,N) = c0(M⊥,N⊥)),

where P is the projection onto M, parallel to N.

Proof. Observe that the condition M ∩N = {0} implies that

r((I − PN)PM) = inf
{
‖(I − PN)f‖
‖f‖

: f ∈M

}
=
(

sup
{

‖h‖
‖(I − PN)f‖

: f ∈M

})−1

.

(6.24)
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Hence (6.23) follows from Theorem 6.6, Theorem 6.10, and (6.24) once the following
identity has been established:

(6.25) ‖P‖ = sup
{

‖f‖
‖(I − PN)f‖

: f ∈M

}
.

In order to show (6.25), note that

‖P‖ = sup
{
‖f‖
‖f + g‖

: f ∈M, g ∈ N

}
.

The decomposition f + g = (I − PN)f + h with h = PNf + g belonging to N gives

‖f + g‖2 = ‖(I − PN)f‖2 + ‖PNf + g‖2, f ∈M, g ∈ N,

and it follows that

‖P‖ = sup

{
‖f‖√

‖(I − PN)f‖2 + ‖h‖2
: f ∈M, h ∈ N

}
.

This representation clearly implies (6.25). �

The opening c0(M,N) and the opening c(M,N) have been introduced by J.
Dixmier [3] and by K. Friedrichs [5], respectively. For related treatments, see [2]
and [12]; note that in [12] the notations

ε(M,N) = c(M,N⊥) and δ(M,N) = c0(M,N⊥)

have been used. The results in Propositions 6.4 and 6.5 go back to J.-Ph. Labrousse
[12] and to F. Deutsch [2, Theorem 12]. Theorem 6.6 goes back to Labrousse [12].
According to [2] the identity (6.12) was originally found by D.C. Salmon [15]; a
different proof of it was provided in [2]. Note that a similar result does not hold for
the opening c0(M,N). Theorem 6.7 can be found, for instance, in [10]. Proposition
6.8 has a long history; see [1] and [12]. The result in Corollary 6.11 goes back to
V.E. Lyantse [14]. In this particular case the identity c0(M,N) = c0(M⊥,N⊥) (< 1)
goes back to M.G. Krĕın, M.A. Krasnoselskĭı, and D.P. Milman [11]; for a different
proof see [2], [8].
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Bull. Soc. Math. France, 77 (1949), 11–101.
[4] P.A. Fillmore and J.P. Williams, ”On operator ranges”, Adv. Math., 7 (1971), 254–281.

[5] K. Friedrichs, ”On certain inequalities and characteristic value problems for analytic functions

and for functions of two variables”, Trans. Amer. Math. Soc., 41 (1937), 321–364.
[6] S. Goldberg, Unbounded linear operators, Mc Graw Hill, New York, 1966.
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