

50. Internationales Wissenschaftliches Kolloquium

September, 19-23, 2005

Maschinenbau von Makro bis Nano / Mechanical Engineering from Macro to Nano

Proceedings

Fakultät für Maschinenbau / Faculty of Mechanical Engineering

Startseite / Index: <u>http://www.db-thueringen.de/servlets/DocumentServlet?id=15745</u>

Impressum				
Herausgeber:	Der Rektor der Technischen Universität Ilmenau UnivProf. Dr. rer. nat. habil. Peter Scharff			
Redaktion:	Referat Marketing und Studentische Angelegenheiten Andrea Schneider			
	Fakultät für Maschinenbau UnivProf. DrIng. habil. Peter Kurtz, UnivProf. DiplIng. Dr. med. (habil.) Hartmut Witte, UnivProf. DrIng. habil. Gerhard Linß, DrIng. Beate Schlütter, DiplBiol. Danja Voges, DiplIng. Jörg Mämpel, DiplIng. Susanne Töpfer, DiplIng. Silke Stauche			
Redaktionsschluss: (CD-Rom-Ausgabe)	31. August 2005			
Technische Realisierung: (CD-Rom-Ausgabe)	Institut für Medientechnik an der TU Ilmenau DiplIng. Christian Weigel DiplIng. Helge Drumm DiplIng. Marco Albrecht			
Technische Realisierung: (Online-Ausgabe)	Universitätsbibliothek Ilmenau <u>ilmedia</u> Postfach 10 05 65 98684 Ilmenau			
Verlag:	Verlag ISLE, Betriebsstätte des ISLE e.V. Werner-von-Siemens-Str. 16			

© Technische Universität Ilmenau (Thür.) 2005

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt.

ISBN (Druckausgabe):	3-932633-98-9	(978-3-932633-98-0)
ISBN (CD-Rom-Ausgabe):	3-932633-99-7	(978-3-932633-99-7)

Startseite / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=15745

98693 Ilmenau

W. Drahm / W. Kanunnikov / W. Masin

Hochfrequente Beschleunigungssensoren mit kleiner Phasenverschiebung

ABSTRACT

In this work principles of designing acceleration sensors with minimal and stable own phase shift that is necessary for measurement of phase ratio between various points of varying object are discussed. The dynamic model of the sensor for the simplified calculation is offered. Reasons of the choice of design, materials and manufacturing techniques are given. The opportunity of compensation of phase shift of the sensor by the electronic circuit connected with it is specified.

1. EINFÜHRUNG

Bei der Messung mechanischer Schwingungen ist in manchen Fällen eine möglichst präzise Einhaltung der Phasenverhältnisse zwischen verschiedenen Messpunkten eines Objektes notwendig. Das bedeutet, zwei Sensoren mit einer konstanten (ideal: keiner) Differenz ihrer Phasenverschiebungen müssen in einem entsprechenden Paar Messpunkte angeordnet werden. Diese Aufgabe könnte mit zwei absolut gleichen Sensoren gelöst werden; diese sind aber nicht verfügbar. Es müssen also Sensoren mit minimaler differentieller Phasendrift entwickelt werden.

Die differentielle Phasendrift ist dann minimal, wenn die Eigenschaften der Sensoren möglichst ähnlich, und ihre Phaseverschiebungen möglichst klein und stabil sind. Das erste Ziel wird durch die Reproduzierbarkeit von Sensorcharakteristiken erreicht, wozu kleine technologische Toleranzen bei der Herstellung beitragen; das zweite Ziel durch eine entsprechende Konstruktion, Technologie und Materialien.

Unter Sensoren für mechanische Schwingungen zeichnen sich Beschleunigungssensoren dadurch aus, daß sie für ihr Messignal keinen Bezugspunkt benötigen. Überdies sind sie sehr kompakt und zuverlässig. Die größte Verbreitung bei den Beschleunigungssensoren haben solche nach dem piezoelektrischen Prinzip gefunden. Neben großer Bandbreite, Robustheit und Zuverlässigkeit besitzen sie in der Regel eine relativ einfache Konstruktion, die für gestellte Aufgabe von großer Bedeutung ist. Welchen Prinzipien muß man folgen, damit die Konstruktion so eines Sensors dem genannten Ziel gerecht wird?

2. PRINZIPIELLE KONSTRUKTION UND DYNAMISCHES MODELL

Bekanntlich läßt sich die Phasenverschiebung des Beschleunigungssensors folgendermaßen darstellen:

$$\varphi_S = -\operatorname{arctg} \frac{2\beta\eta}{1-\eta^2} \tag{1}$$

mit β – Dämpfungsgrad, $\eta = \frac{f}{f_0}$, f – Schwingfrequenz, f_0 – Eigenfrequenz des Sensors. Daraus

folgt, daß ein derartiger Sensor für die Verminderung der Phasenverschiebung möglichst kleine β (hohe Güte) und η (hohe f_0) besitzen. Dabei muß man dem Umstand Rechnung tragen, daß das Produkt der Empfindlichkeit und des Quadrates der Eigenfrequenz bei jedem beliebigen Beschleunigungssensor im Rahmen einer bestimmten Konstruktion konstant bleibt, und die Erhöhung der Eigenfrequenz gleichzeitig zur Abnahme des Ausgangssignals führt.

Bild 1. Prinzipielle Konstruktion des Sensors ohne Deckel

Zur Gewährleistung hoher Eigenfrequenz und Güte muß die Sensorkonstruktion möglichst einfach hinsichtlich der Anzahl der Bauteile und ihrer Formen sein. Sonst werden zusätzliche Freiheitsgrade eingeführt, die wiederum zusätzliche Resonanzen bedingen. Dadurch wird

praktisch unvermeidlich die Bandbreite des Sensors vermindert. Ideal für das Ziel einer hohen Bandbreite ist die klassische Konstruktion des Piezosensors, nämlich ein in Längsrichtung beanspruchtes Piezoelement mit einer darauf untergebrachten seismischen Masse (Bild 1). Eine Vorspannung mit Hilfe einer Schraubenverbindung ist nachteilig, weil dadurch immer Fügestellen entstehen, die zusätzliche mechanische Resonanzen hervorrufen können.

Die Berechnung solcher Sensoren ist unter Berücksichtigung der Tatsache durchzuführen, daß kein Bauteil absolut hart ist, und der Sensor ein System mit verteilten Parametern darstellt. In diesem Fall sind Gleichungen partieller Ableitungen zu lösen. Für die Praxis genügt es zumeist, den Sensor als ein System einer endlichen Anzahl *n* von Freiheitsgraden zu betrachten.

Jeder Bauteil im Bild 1 kann als ein in einem Körper unendlicher Masse zugefügter Stab betrachtet werden. Die Eigenfrequenz eines solchen Stabes läßt sich folgendermaßen durch seine Masse *m* und Nachgiebigkeit *n* ausdrücken [1]:

$$f_0 \cong \frac{1}{2\pi\sqrt{0.405mn}}$$

Es erlaubt uns, dynamisches Modell des Sensors, wie folgt, darzustellen (Bild 2). Hier bedeuten:

	$0,4 m_M$	
С	$M \rightarrow P_{I}$	М
	$0,4 m_{M}$	
C_P	$M \stackrel{\sim}{\searrow} \qquad \square P_{I}$	PM
	$0,4 m_P$	
($P_P \prec \square P_P$	Р
	$0,4 m_P$	
C_G	$P_{P} \stackrel{\sim}{\leq} \square P_{Q}$	3P
	$0,4 m_G$	
($C_G \prec \square P$	G
	$0,4 m_G$	
C_{c}	$_{DG} \rightleftharpoons \square P_{G}$	0G
7		7

Bild 2. Dynamisches Modell des Sensors ohne Deckel

 $m_G, m_P, m_M; C_G, C_P, C_M; P_G, P_P, P_M$ – Massen, Steifigkeiten und Dämpfungskoeffiziente dreier Bestandteile des Sensors; $C_{GP}, C_{PM}; P_{GP}, P_{PM}$ – Steifigkeiten und Dämpfungskoeffiziente von Fügestellen; C_{OG} und P_{OG} – Kontaktsteifigkeit und Dämpfungskoeffizient am Ort der Aufstellung des Sensors. Weil jede Masse die Erregung von beiden Seiten gleich aufnimmt, ist sie im Modell symmetrisch für zwei 40-prozentige Teile "zersplittert". Damit bildet sich ein System mit 6 Freiheitsgraden.

Für ein solches Modell gilt [2]:

$$\mathbf{M}\mathbf{X}'' + \mathbf{P}\mathbf{X}' + \mathbf{C}\mathbf{X} = 0 \tag{2}$$

mit M, P, C – Massen-, Dämpfungs- und Steifigkeitsmatrizen, X'', X', X – Beschleunigungs-, Geschwindigkeits- und Bewegungsvektoren.

Die Matrizen haben folgende Formen:

$$\mathbf{M} = \begin{pmatrix} 0,4m_G & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0,4m_G & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0,4m_P & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0,4m_P & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0,4m_M & 0 \\ 0 & 0 & 0 & 0 & 0 & 0,4m_M \end{pmatrix},$$

$$\mathbf{P} = \begin{pmatrix} P_{OG} + P_G & -P_G & 0 & 0 & 0 & 0 \\ -P_G & P_G + P_{GP} & -P_{GP} & 0 & 0 & 0 \\ 0 & -P_{GP} & P_{GP} + P_P & -P_P & 0 & 0 \\ 0 & 0 & -P_P & P_P + P_{PM} & -P_{PM} & 0 \\ 0 & 0 & 0 & 0 & -P_{PM} & P_{PM} + P_M & -P_M \\ 0 & 0 & 0 & 0 & 0 & -P_{PM} & P_{PM} + P_M & -P_M \end{pmatrix},$$

Die Matrix C ist ähnlich P mit dem Unterschied, daß statt Dämpfungskoeffizienten P Steifigkeiten C erscheinen.

Eigenschwingungen des Systems lassen sich in der Art

$$X(t) = Ae^{\lambda t} \tag{3}$$

beschreiben.

Die Substitution (2) in (1) gibt eine Gleichung der Potenz 2n zur Bestimmung von λ

$$\left|\mathbf{M}\lambda^{2}+\mathbf{P}\lambda+\mathbf{C}\right|=0,$$

die paarweise konjugierte Wurzeln besitzt:

$$\lambda_i = \delta_i + j\omega_i, \lambda_i^* = \delta_i - j\omega_i.$$

Diese Größen nennt man oft komplexe Eigenfrequenzen.

folgende

DW

Ein Deckel (Bild 3), der für die Abschirmung eine wesentliche Rolle spielt, macht das

Bild 3. Prinzipielle Konstruktion

sind

Bezeichnungen angenommen: DG -

Deckelwand, DO - Deckeloberteil.

Der letzte ist als eine Membran zu

betrachten, für die gemäß [1] 0,32

voller Masse berücksichtigt werden

des Sensors mit Deckel

Bild

Deckel-Grundplatte,

Im

muß.

Modell komplizierter, indem er zusätzliche Freiheitsgrade und damit Resonanzen hinzufügt (Bild 4).

Bild 4. Dynamisches Modell des Sensors mit Deckel

System zweiter Ordnung mit einem Freiheitsgrad darstellen läßt. Die Praxis zeigt, daß eine solche Beschreibung in den meisten Fällen ausreicht. Darin bedeutet f_0 die niedrigste Eigenfrequenz des Sensors.

Leider wird die Berechnung des Modells gemäß Bild 2 dadurch erschwert, daß die Dämpfungskoeffizienten in der Regel nicht vorliegen. Diese Dämpfung wird normalerweise durch innere Reibung in Materialien hervorgerufen und kann am besten experimentell nachgewiesen werden. Man geht deswegen zunächst von einem konservativen System ($\mathbf{P} = 0$) aus, das durch entsprechende Messungen optimiert wird. Dasselbe betrifft die Steifigkeit C_{OG} , die von Materialien, Unebenheit und Rauheit beider Oberflächen abhängig ist. Ein grober

Die Formel (1) bezieht sich auf eine vereinfachte Beschreibung des Sensors, wenn er sich durch ein Näherungswert für die spezifische Steifigkeit bei "idealen" Oberflächen ist 0,5·10¹⁴ N/m³. Bei der Verschlechterung beliebiger obengenannter Bedingungen wird dieser Wert sinken.

Die Berechnung wird dann wesentlich vereinfacht, wenn die Materialien des Sensorgrundkörpers, des Piezoelementes und der Masse sich durch gleiches Verhältnis E/ρ kennzeichnen. Dabei kann ein Sensor im Bild 1 in erster Annäherung als ein (und nicht mehrere) Stab betrachtet werden, wessen Eigenfrequenz

$$f_0 = \frac{1}{4l} \sqrt{\frac{E}{\rho}} \quad [1]$$

mit *l* – Stablänge ist.

Die Steifigkeiten eines Sensors nach dem Bild 1 sind um so höher, je kleiner die Abmessungen in der Längsrichtung und je größer sie in der Querrichtung sind. Das bedeutet, daß die Konstruktionen möglichst scheibenförmig sein müssen.

Der Anschluß des Sensors muß mit dünnen Leitern, ohne einen Stecker realisiert. Zu dicke Leiter können eine wesentliche zusätzliche Dämpfung einbringen, ein Stecker – auch zusätzliche Resonanzen.

3. MATERIALIEN

Die Hauptforderungen auf Konstruktionsmaterialien für die zu besprechenden Sensoren sind: gute elastische Eigenschaften (kleine Dämpfung), hohe Verhältnis E/ρ (hohe Eigenfrequenz), hohe zeitliche Stabilität (kleine differentielle Phasendrift).

Als Piezomaterial ist Quartz konkurrenzlos. Verglichen mit Piezokeramiken zeichnet er sich in allen drei oben erwähnten Eigenschaften aus. Allerdings besitzt er eine wesentlich kleinere Empfindlichkeit. Aber hier kommt folgende allgemeine Tendenz ins Spiel: eine höhere Empfindlichkeit hat schlechtere Genauigkeit und Stabilität zur Folge. Mangel an Empfindlichkeit kann mittels Verstärkung kompensiert werden.

Einige Materialien mit guten elastischen Eigenschaften, die für die Herstellung metallischer Sensorbauteile benutzt werden können, sind in der nachfolgenden Tabelle dargestellt:

Marke (russische Bezeichnung)	Titan- legierung BT6 (C)	Stahl ШX15	Aluminium- Magnesium- legierung AMr6	Duralumin Д16Т	Stahl 12X18H9T	Stahl 30XΓCA	Stahl 36НХТЮ
$E/ ho, x10^6,$ Pa·m ³ /kg	27,1	26,9	26,5	25,8	25,6	25,2	23,1

Wie aus der Tabelle ersichtlich, unterscheiden sich die angeführten Materialien nach dem Wert E/ρ unwesentlich. In diesem Fall sind für die Auswahl andere Eigenschaften wichtig.

Wenn neben kleiner Phasenverschiebung die Masse von großer Bedeutung ist, kann man Titan- und Aluminiumlegierungen (ВТ6, АМг6, Д16Т) anwenden. Allerdings, alle Anforderungen auf gleichem Niveau zu erfüllen, ist unmöglich, und man muß deswegen mit einer gewissen Verschlechterung elastischer Eigenschaften rechnen.

Besondere Eigenschaften hat die Chrom-Nickellegierung 36HXTIO; die zu den sogenannten alternden Legierungen gehört. Eine Besonderheit dieser Legierungen besteht darin, daß sie im gehärteten Zustand eine hohe Plastizität besitzen, und die Erhöhung elastischer Eigenschaften wird bei einer Anlaßhärtung erreicht. Neben guten elastischen Eigenschaften besitzt dieser Stahl eine hohe zeitliche Stabilität des Elastizitätsmoduls, Stabilität im weiten Temperaturbereich, Korrosions- und Schwingungsfestigkeit.

Als "exotisches", aber nicht aussichtsloses Material läßt sich Beryllium mit $E/\rho \cong 120$ nennen.

Zu Nachteilen dieser Materialien gehört die Tatsache, daß sie zum Piezoelement und Leitern mehr oder weniger schwierig gelötet werden. Das Lötverbinden der Grundplatte und seismischer Masse mit dem Piezoelement muß vorgezogen werden. Eine Vorspannung bringt in der Regel zusätzliche Resonanzen, das Kleben – unzulässige Dämpfung. Eine Lötschicht mit der Dicke 10 – 50 µm vermehrt praktisch die Anzahl von Freiheitsgraden nicht, zuzgleich besitzt sie viel bessere elastische Eigenschaften, als Klebstoff. Leider brauchen obengenannte Metalle zum Löten eine vorläufige Bedeckung, und die meisten von ihnen noch eine spezielle Technologie. So, um Stahl 36HXTЮ anzulöten, sind eine Versilberung, hohe Temperatur und Ultraschall notwendig. Ziemlich einfache Technologien existieren nur für Aluminiumlegierungen, und das ist ein wesentlicher Anlaß, um nämlich diesen Materialien Vorzug zu geben.

Obwohl für die seismische Masse grundsätzlich dieselbe Materialien verwendet werden können, ist es zweckmäßiger, ein Material mit möglichst großer Dichte auszuwählen. Die seismische Masse aus solchem Material wird eine kleinere vertikale Abmessung haben, was zum kleinen Abstand ihres Schwerpunktes von der Oberfläche des Piezoelementes führt. Je kleiner dieser Abstand ist, desto kleiner ist die Querempfindlichkeit. Solche Materialien sind z.B. Wolframlegierungen BHMIL und BHMX mit $\rho \cong 18 \cdot 10^3 \text{ kg/m}^3$.

Das Löten fast aller obenerwähnter Materialien ist mit einem üblichen Lot möglich, mit der Bedingung, daß die Oberflächen davor mit Zinnzinklot bedeckt sind.

4. LADUNGSVERSTÄRKER

Eines der Probleme bei der Lösung der Aufgabe des Aufbaus eines Beschleunigungssensors mit kleiner Phasenverschiebung ist ein kleines Ausgangssignal. Dies liegt an der hohen Eigenfrequenz, die der Sensor zur Verminderung eigener Phasenverschiebung besitzen muß. Eine Vergrößerung der Eigenfrequenz ist limitiert durch das minimal zulässige Signal, das im konkreten Fall notwendig ist.

Die Ausgangsleistung piezoelektrischer Sensoren ist sehr klein, deswegen muß der Sensor auf einen Verstärker mit großem Eingangswiderstand belastet werden. Es ist vernünftig, den bewährten Ladungsverstärker (Bild 5) zu benutzen. Einer seiner wichtigsten Vorteile besteht

Bild 5. Ladungsverstärker

sogar die Sensorphase kompensiert.

Die Wandlungsfunktion des Ladungsverstärkers ist [3]

$$\dot{S} = \frac{U_A}{\dot{Q}_E} \cong -\frac{1}{C} \frac{j\omega\tau_R}{1+j\omega\tau_R}$$
(4)

mit \dot{Q}_E – dem Ausgangssignal des Sensors, τ_R – Zeitkonstante der Rückkopplung. Daraus folgt für die Phasenverschiebung:

$$\varphi_V = \arg \dot{S} = \operatorname{arctg} \frac{1}{\omega \tau_R}.$$
(5)

Um eine kleine Phasenverschiebung φ_V zu bekommen, muß man eine großes τ_R gewährleisten. Es ist dabei vernünftig, zu versuchen, φ_V in gleicher Grössenordnung, wie die Phasenverschiebung des Sensors φ_S , zu machen.

Die Erfahrungen zeigen, daß β typischerweise etwa 0,04 beträgt (1). Bei $\eta = 0,001$ ergibt die Formel (1) $\varphi_S = -8 \cdot 10^{-5}$. Wenn, z.B., die Frequenz f = 400 Hz ist, soll τ_R bei der Bedingung $\varphi_V = -\varphi_S$ den Wert 5 s haben. Das hat einen sehr großen Widerstand *R* zur Folge, der die

dem Sensor parallel geschaltete Kapazitäten C_p praktisch keine Rolle spielen. Jedes zusätzliches Glied in der Meßkette trägt

seine eigene Phasenverschiebung ein und ist von

trotzdem notwendig ist, muß man dazu streben, daß

seine Phasenverschiebung entweder klein ist, oder

es

diesem Hinsichtspunkt unerwünscht. Wenn

darin, daß unstabile und unkontrollierbare parasitäre,

Stabilität der Offsetspannung und der Phasenverschiebung (wegen eigener Nichtstabilität) verschlechtert.

Um ein großes τ_R bei niedrigeren Widerständen zu erhalten, benutzt man statt eines Widerstandes *R* eine T-Shaltung (Bild 6). Man kann zeigen, daß die Wandlungsfunktion \dot{S}

dabei sich als

$$\dot{S} = -\frac{j\omega C \left(R_1 + R_2 + \frac{R_1 R_2}{R_3}\right)}{1 + j\omega C \left(R_1 + R_2 + \frac{R_1 R_2}{R_3}\right)}$$

Bild 6. Ladungsverstärker mit einer T-Schaltung in der Rückkoplung ausdrücken läßt. Der Vergleich dieser Formel mit (4) läßt schließen, daß bei einer T-Schaltung eine neue Zeitkonstante $\left(R_1 + R_2 + \frac{R_1R_2}{R_3}\right)C$ in Frage kommt.

Sie kann offensichtlich statt Vergrößerung des

Widerstandes mittels einer Vergrößerung des Verhältnisses R_1R_2/R_3 einen hohen Wert erreichen.

Wie es aus den beiden Formeln (1) und (5) ersichtlich ist, haben die Phasen φ_S und φ_V unterschiedliche Vorzeichen. Das bedeutet die Möglichkeit ihrer gegenseitiger Kompensierung. Damit diese Kompensation auch in der Zeit und bei Temperaturänderungen sich bewährt, müssen die Alterungs- und Temperaturkoeffiziente von die Phasen φ_S und φ_V bestimmenden Größen auf entsprechende Weise vereinbart werden.

Ein Einbau des Verstärkers in den Sensor wird nicht empfohlen: das macht die Konstruktion komplizierter mit unerwünschten Folgen bezüglich zusätzlicher Resonnanzen und Dämpfung.

Bild 7

Muster der Beschleunigungssensoren; Rechts ohne Deckel

5. SCHLUSSFOLGERUNGEN

Die obigen Betrachtungen sind bei der Entwicklung von Quartzbeschleunigungssensoren mit der Eigenfrequenz von ca. 300 kHz und der Empfindlichkeit 0,1 mV \cdot s²/m entstanden. Ein hergestelltes Muster ist im Bild 7 dargestellt. Sein Piezoelement hat die Dicke 0,2 mm.

Man muß aber dem Umstand Rechnung tragen, daß nachdem so ein Sensor gebaut ist, die Aufgabe seiner Montage am Objekt bleibt (die Parameter C_{OG} und P_{OG} in den Bildern 2 und 4). Eine ungenügende Berücksichtigung dieses Problems kann sogar perfekte Eigenschaften des Sensors zunichte machen. So führte z. B. eine Verschraubung des Sensors am Objekt sofort zu einer Verminderung der ersten Resonanzfrequenz von 300 kHz auf 18 kHz. Bei der Gestaltung der Montage ist deswegen besonderes Augenmerk auf die Vermeidung weiterer mechanische Resonanzen zu legen.

Literatur:

[1] Levschina E.S., Nowicky P.W. Elektrische Messungen physikalischer Größen.—Lenungrad: Energoatomisdat, 1983.—320 S. (in Russ.)

[2] Migulin W.W., Medwedev W.I., Mustel E.R., Parigin W.N. Grundlagen der Schwingungstheorie.—Moskau: "Nauka", 1978.—392 S. (in Russ)

[3] Gutnikov W.S. Integrierte Elektronik in Meßeinrichtungen.-Leningrad: Energoatomisdat, 1988.-304 S. (in Russ.)

Autorenangaben:

Dr. Wolfgang Drahm Endress+Hauser GmbH+Co. KG, Am Lohmühlbach 12 85356 Freising Tel: +49 8161 99 72 60 Fax: +49 8161 99 72 70 E-mail: <u>drahm@ehfs.de</u> Wassily Kanunnikov Prof. Walery Masin Polytechnische Universität St. Petersburg, Polytechnitscheskaja Str. 29 195251 Petersburg Tel: 007 (812) 247-60-01 Fax: 007 (812) 247-22-40 E-mail: masin@list.ru