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Silicone Rubber Strain Gauge with High Elasticity 
 
 

ABSTRACT 
 
 
The application of silicone elastomeres can not be compared by this of traditional materials. Their 
industrial production goes back only to the 40’s and 50’s. Their “carrier” nowadays is however 
spectacular in each industry branches [1] including the mechanical engineering and in the food 
industry. In some fields they are not to replace like in medical applications. The paper summarise 
the results of the investigations at the BME and presents special silicone composites in new 
applications as hyperelastic sensor (patented) giving new ideas for constructers in the innovation 
process. 
 

INTRODUCTON 
 
New perspectives are opened for the manufacturing of products of the precision engineering and of 

the medical instrumentation by the special mechanical, electrical, optical, biochemical etc. 

properties of the "family" of silicone elastomeres. Our department concerns since some years with 

the application of these materials in different constructions. At the beginning of our investigations 

only few of the important material parameters for the FEM simulations and only partially 

information in wide range were given. Material models were known only in general form for 

elastomeres. So first it was unavoidable to estimate the exact material characteristics and material 

models. Since other essential material parameters like storage modulus and loss modulus depend on 

temperature and frequency FEM simulations and design of dynamic systems claim exact knowledge 

of these characteristics. 

 
 

DYNAMIC BEHAVIOUR OF THE SILICONE RUBBER MATERIAL 
 
One of the application fields of the sensor-actuator silicon rubber could be even the mechatronics. 

Mechatronic systems works always dynamical, the knowledge of exact dynamic and electric 

properties of the applied silicone material is necessary. Silicon-rubbers as special polymers have 

strong non-linear material parameters (relaxation and creep). In case of the dynamic simulations of 

the silicon rubber constructions with programs like MARC or ANSYS to decrease the errors it is 

important to use the exact material law obtained by the measuring on numerous test objects. The 

application of silicon rubber as construction material is not yet obvious. In cooperation with the 



TU Ilmenau our research group tries to combine this material with metals, silicone and with other 

polymers to create new flexible structures [2]. 

 
A. Material modelling 

For the identification of the dynamic model of this material we suggested a new method in the 

material science. This is the method of synthesis well known for the calculation of passive electric 

filter networks. The system analysis is used for a long time for the description of the dynamic 

properties of materials and also for polymers usually the "black-box" method is applied however the 

synthesis method for creating the network model of the material was not used. From the results of 

the one-axis strain-stress relation one can conclude to the dynamic model of the material. It means 

that if the input and output signals are given the unknown linear system can be determined but this 

process was empiric. 

In case of silicone rubber the problem is that no one of the conventional dynamic models (Kelvin, 

Maxwell, Voigt, Standard Solid, Burgers) can describe exactly its properties. We looked for the 

common dynamical model for both of strain and relaxation process. Our model with lumped but 

non-linear parameter describes with minimal error the dynamic behaviour of the investigated 

materials. The result of a large number of tests with silicone rubber probes is presented in [3] and 

[4]. 

 
B. Model identification by synthesis method 

It is known that for linear systems (in time and in operator domain as well) it is possible to 

determine the unknown third function if two of three are given. In this case the exciting input time 

function and the system time response - the measured values of strain and stress (force) - are 

known. We obtain the best passive network for the actual transfer function using the synthesis 

method by mathematical operations and not by empiric approximation. Problems can occur - and 

we had to confront with those also - that no every transfer function corresponds with a real network 

but there is a solution in form of approximated roots.  

The standard input function with the start time  ( )t 0+   is whether the unit velocity function (strain) 

or the step function (deformation velocity) with v(t)= 50 [mm/min] . 

Wacker manufactured silicon rubber types have been analysed. (R 4105/40-60-80 IGET). The 

hardness of these could be sorted into three groups: Sh40, Sh60, Sh80. 

The average values of the system answer functions σ(t) and f(t) have been approximated and also 

their Laplace transforms were calculated with help of the program “Mathematica 3.0”. 

 



C. From stress analysis to admittance network 
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Substituting the Laplace transforms of σ(t) and v(t) we obtain the following transfer function 

considered for resulting admittance. 
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The function can be written in fractal form for identifying the corresponding admittance network 

but there are some equal variants for this. One of them is shown in the Fig. 2. 
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Fig. 3. The strain-stress characteristic depends on the strain velocity

Fig.2. One of the dynamic models of the
analysed rubber types 

Fig. 1. Typical strain-stress diagrams of the analysed
silicon rubbers 

 
 
 
 
 
 
 
 
 
 
 
 
The calculated network consists 5 parameters (k1, k2, k3, b1, b2), exactly two parallel Maxwell-

models parallel with a spring. 

 
 



D. Non-linear dynamic material model 
 
The mechanic behaviour of polymers are usually non-linear - silicon rubbers are also not 

exceptions. They have long, winded chain structure. In Fig. 3 one can follow how the stress 

changes depending on the different strain velocity [6], [8]. The diagrams in Fig. 4 and 5 show that 

the stiffness depends on the measure of the elongation and the damping factor depends on the 

deformation velocity. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The stiffness depending on the strain
 and the time (relaxation process)

Fig.5. Damping depending on the velocity
and time (creep) 

 
 
 
In reality the stiffness depends mainly on the average chain length and on the type of radicals and 

this is supported by the measuring.  

 
 

SILICONE RUBBER AS STRAIN GAUGE 
 
Wackers made soot dotted silicon rubber type R570/70 have been analysed to clear the relation 

between strain and electric resistance. Commercial strain gauges made from semiconductor material 

or from metal work only in the range of 37 1010 −− 〈≈=〈
l
dlε . Conductive silicon rubber could offer a 

technical solution for deformation measuring of high elasticity structures made from polymers 

especially from silicon rubber.  

 
 
 
 

v(t)v)b(t,x(t)x)k(t,F(t) ⋅+⋅= 
 
 

Fig. 6. The nonlinear model of the silicon rubber 
 



The idea is patented in [7]. The results of the investigation show that there is a significant 

correlation between strain and conductivity and this effect is reproducible. Change rates up to 250 – 

300 % related to the base resistance could be achieved although the characteristic is non-linear. The 

conductive silicon rubber can be applied in the recent form for example as limit switch. The 

investigation is going on to develop materials with better linearity for the use as analogue sensor. 

The electric properties of the carbon dotted polymers are determined by the type, amount and the 

size of particles [5]. In our sensor the carbon particles are statistically spread in the filling silicone 

rubber material and they are in connection since the average distance of them is about 100 Å or less. 

There are two main electric resistances to observe. The resistance of the carbon particles RA and the 

complex impedance of the contact surfaces ( )
1+

==
CC

C
CCC CsR

RsCRsZ . Our measuring results show 

that the resulting resistance really decreases for higher frequencies. The next figure shows the 

simple model of the conductive silicone rubber gauge. 
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 Fig. 7. The simple structure model of 

conductive silicone rubber  
 
 
 
 
The doting by carbon makes the silicon rubber electrically conductive. Adding 10-30 nm sized 

acetate carbon into the rough material of the silicon rubber, after the vulcanization electrically 

conductive rubber is given for use. The higher the amount of carbon in the composite, the higher is 

also the conductance of it. The answer function of elongation is continuously, so the rubber 

conducts the electricity by tunnel conductance, not by contact conductance. The percentage of 

carbon influences however strongly the mechanical properties of the material. 

The electrically conductive silicon rubber can be applied as sensor in a wide range of deformation 

but also other special properties can also be useful. Such properties are the easy and safety 

manufacturing, the large range of thermal usage, the excellent environmental resistance like the 

hard water-repellent. 

 

In the next figures we present some measuring results supporting the correlation between the force 

on the silicone rubber strip and the changing of resistance in the low frequency range. We also show 

the fatigue elongation and bending test results. 
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Fig. 8. Measured relation of electric and mechanical
behaviours of conductive silicon rubber 

Fig.9. Periodic elongation test of conductive
silicone rubber without pretension 

 
Fig. 8 shows that the resistance changing rate allows the application not only in Wheatstone-bridges 

but also in direct measuring method. 

For dynamic systems cyclic bending fatigue tests and axial loading cyclic stress fatigue tests were 

also claimed. 
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The aim of tests is not only to determine the life span but also to know if the conductivity changes 

according to the cyclic mechanical load. 

 

Fig. 9 shows in case of bending that the resistance stays stable during the load changes. It is 

important that the shape of the load curve does not change even after 350.000 load changes only the 

average value is shifted. The measuring information is carried by the curves depending on the 

mechanical load. Pre-stress of the silicon rubber improves the linearity and cyclic preloading is 

necessary to stabilize the electric material properties see Fig. 8. 

 
 



APPLICATION ON PNEUMATIC MUSCLE 
 
The actuator is a so called Pneumatic Muscle manufactured by FESTO, which was introduced a few 

years ago. We placed for the measuring of displacement a carbon doted silicon rubber stripe as 

sensor on it with the goal to realize the position control of the high elasticity actuator. 

The contracting pneumatic cylinder – called as pneumatic muscle – works like the real muscle. That 

is a type of membrane contracting cylinder which has two main elements. One of them is a tube 

which is made of a relatively soft, leak-free gasket material. The other is a net which contains fibers 

in rhomboid shape. These fibers do not change their geometry. The net gives the strength to the 

cylinder and wears the mechanical stress. In the cylinder – like in every cylindrical body – radial 

and axial forces rise due to the inertial pressure. 

In the case of the Pneumatic Muscle the net structure is designed to carry all the forces. When the 

system gets to be under pressure the shape of the net changes, the length of the tube will be smaller 

and the diameter will be larger, and the tube will produce an axial pulling force. This pulling force 

can be affected by the pressure. 

 

The change of shape is rather large. Normal gauge with a strain range of  can not be 

applied for measuring of the length changing of the Pneumatic Muscle so we use the advantages of 

our silicone rubber gauge. The resistance changing due to the pulling force is measured. 

37 1010 −− ≤≤ ε

After the digitalization of the measured voltage – dependent to the resistance of the rubber – a 

digital proportional control is realized by a microcontroller. The microcontroller controls the 

applied pressure by an electromechanical valve. The Pneumatic Muscle is initially loaded by a 

known weight, and there is a possibility to set up a reference value – independently to the stress 

relaxation – by a helical potentiometer Fig. 12. 
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Fig. 12. Arrangement of the control system 
for Pneumatic Muscle 

 Fig. 13. Block diagram of the control 
 



The signals of the transducer reach the microcontroller through the interface unit. The output signal 

of the microcontroller is a PWM sign, which is filtered by a low pass filter and amplified for driving 

of the electric valve. The desired position value of the actuator can be set up on a BCD switch. 

Fig. 13 shows the block diagram of the control of Pneumatic Muscle and Fig. 14 illustrates the test 

equipment. 

Silicone sensor 
(patented) 

„Pneumatic Muscle” 

Microcontroller 

Conrol measure 
of elongation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Test equipment of the pneumatic control system with silicone rubber (patented) sensor 
 
 

COMBINATION OF SILICON RUBBER BASED ACTUATOR AND SENSOR 
 
The idea to couple the silicon rubber sensor with the special “Ferro-silicone” actuator developed by 

our research group was obvious for us since the sandwich construction has the same mechanical 

properties but with two different electric and magnetic behaviours. The sandwich construction is 

also patented in [7]. The combination of both materials allows the lay out of high elasticity 

constructions with control. The so called Ferro-silicone material is also a composite. The smart iron 

particles embedded in the silicone rubber structure allow the shape control of this high elasticity 

structure by electromagnetic field. About the realisation of a snail like locomotion system is 

reported in [9]. 

 
CONCLUSION 

 
The silicon rubber is a relatively new material. We presented it for two new applications namely as 

sensor and as actuator in mechatronic systems. Since the exact material properties for the FEM 

simulations in the CAD process were not known a new material modelling method, the system 

synthesis was applied for the determination of the material models. This is a new method in the 



material science. We showed that pre-stressed conductive silicon rubber works like strain gauge for 

measuring of deformations in high elasticity constructions. The design of this type of constructions 

especially for the use in the field of controlled pneumatics has been presented. The combination of 

both structures as integrated sensor-actuator will induce new ideas in the industrial applications. 
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