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EIGENVALUE ESTIMATES FOR SINGULAR LEFT-DEFINITE

STURM-LIOUVILLE OPERATORS

JUSSI BEHRNDT, ROLAND MÖWS, AND CARSTEN TRUNK

Abstract. The spectral properties of a singular left-definite Sturm-Liouville
operator JA are investigated and described via the properties of the corre-

sponding right-definite selfadjoint counterpart A which is obtained by substi-

tuting the indefinite weight function by its absolute value. The spectrum of
the J-selfadjoint operator JA is real and it follows that an interval (a, b) ⊂ R+

is a gap in the essential spectrum of A if and only if both intervals (−b,−a)

and (a, b) are gaps in the essential spectrum of the J-selfadjoint operator JA.
As one of the main results it is shown that the number of eigenvalues of JA

in (−b,−a) ∪ (a, b) differs at most by three of the number of eigenvalues of A

in the gap (a, b); as a byproduct results on the accumulation of eigenvalues
of singular left-definite Sturm-Liouville operators are obtained. Furthermore,

left-definite problems with symmetric and periodic coefficients are treated, and

several examples are included to illustrate the general results.

1. Introduction

We investigate spectral properties of a Sturm-Liouville differential operator as-
sociated to the differential expression

(1.1) τ =
1

r

(
− d

dx
p
d

dx
+ q

)
, r, p−1, q ∈ L1

loc (R) real, p > 0 a.e.

In contrast to standard Sturm-Liouville theory we do not assume that the weight
function r is positive. Instead we consider indefinite Sturm-Liouville operators and
differential expressions; here it will be assumed that there exists some c ∈ R such
that the weight function r is positive on (c,∞) and negative on (−∞, c). Suppose
that the corresponding definite differential expression

(1.2) ` =
1

|r|

(
− d

dx
p
d

dx
+ q

)
is in the limit point case at both singular endpoints −∞ and ∞, or, equivalently,
that the maximal differential operator A associated to ` in the weighted Hilbert
space L2

|r|(R) is selfadjoint. If J denotes the multiplication by sgn r, then formally

the indefinite and definite differential expressions τ and ` are related via τ = J`,
and hence JA is the maximal operator associated to τ in L2

|r|(R). Observe that

the indefinite Sturm-Liouville operator JA is not symmetric nor selfadjoint in the
Hilbert space L2

|r|(R) but JA is selfadjoint with respect to an indefinite inner prod-

uct (which has J as its Gramian); we shall say that JA is a J-selfadjoint operator
in L2

|r|(R).

A modern topic in Sturm-Liouville theory is the study of qualitative and quan-
titative spectral properties of indefinite Sturm-Liouville differential operators. One
of the standard approaches is to describe the spectrum σ(JA) of the indefinite
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operator JA via the selfadjoint operator A and its spectral properties. In the left-
definite case, i.e., minσ(A) > 0, it follows that the spectrum of JA is real with a
gap around 0 and accumulates to +∞ and −∞, see, e.g., [8, 21, 30] and [1, 7] for
corresponding abstract results. If A is semibounded from below and the essential
spectrum satisfies minσess(A) > 0, then the nonreal spectrum of JA consists of at
most finitely many eigenvalues, the essential spectrum σess(JA) is real with a gap
around 0, and σ(JA) ∩ R accumulates to +∞ and −∞, see, e.g. [8, 25] and [20].
The spectral analysis of JA in the case minσess(A) ≤ 0 is more difficult; we refer
to [2, 4, 17] for more details and to [3, 5, 9, 10, 15, 16] for related questions and
further references.

The main objective of the present paper is to prove a local estimate on the
number of eigenvalues of JA in terms of the number of eigenvalues of A in gaps of
the essential spectrum in the left-definite case, i.e., minσ(A) > 0. In this situation
it is not difficult to see that for 0 ≤ a < b we have

(a, b) ∩ σess(A) = ∅ if and only if
(
(−b,−a) ∪ (a, b)

)
∩ σess(JA) = ∅.

Our main result Theorem 4.1 reads as follows: If (a, b) ∩ σess(A) = ∅, then the
number of eigenvalues nA(a, b) of A in (a, b) differs at most by three from the
number nJA(−b,−a) + nJA(a, b) of eigenvalues of JA in (−b,−a) ∪ (a, b),

∣∣nA(a, b)−
(
nJA(−b,−a) + nJA(a, b)

)∣∣≤ 3.

Under the assumption that the coefficients p, q and r are symmetric with respect
to 0 the estimate on the number of eigenvalues is improved in Theorem 4.4 for
intervals (a, b) with the property 0 ≤ a < minσ(A) < b ≤ minσess(A). The above
estimates also yield results on accumulation properties of eigenvalues of JA. More
precisely, if, e.g., b ∈ σess(A) and the eigenvalues of A in (a, b) accumulate to b,
then the eigenvalues of JA in the gaps (−b,−a) and (a, b) of the essential spectrum
accumulate to −b or b. This allows to transfer results on the accumulation (or non-
accumulation) of eigenvalues to the boundary of the essential spectrum of definite
Sturm-Liouville operators (as, e.g., the classical Kneser criterion from [19] or recent
extensions of it in [12, 13, 23, 24]) into the left-definite setting; see Section 5.1 for
more details.

The paper is organized as follows. In Section 2 the operators A, JA, and the
Dirichlet operators associated to the restrictions `+ and `− of the definite differen-
tial expression ` onto (c,∞) and (−∞, c) are introduced and some simple properties
of their spectra and essential spectra are collected. Section 3 establishes the connec-
tion of the poles and zeros of the Titchmarsh-Weyl coefficients m+, m− associated
to `+ and `−, respectively, with the poles and zeros of the Titchmarsh-Weyl co-
efficient M associated to τ . This connection is then used to describe the isolated
eigenvalues of A and JA in terms of the poles and zeros of the functions m+, m−
and M . The representation of the function M in terms of a Nevanlinna function
in Proposition 3.4 and the corresponding monotonicity properties are the crucial
ingredients in the proofs of our main results Theorem 4.1 and Theorem 4.4 in Sec-
tion 4. In Section 5 Kneser’s criterion is applied in the left-definite setting and
the general results are illustrated in this situation. Furthermore, a class of peri-
odic problems is considered (see also [22, 26] and [30, § 12.8] for a slightly different
indefinite periodic situation), and a simple solvable problem is briefly discussed.
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2. Preliminaries on definite and indefinite Sturm-Liouville operators

Let r, p−1, q ∈ L1
loc (R) be real valued functions with p > 0 and r 6= 0 almost

everywhere. We consider the differential expressions

τ =
1

r

(
− d

dx
p
d

dx
+ q

)
and ` =

1

|r|

(
− d

dx
p
d

dx
+ q

)
from (1.1) and (1.2). In this section we collect some simple properties on the spectra
of the associated maximal operators. It is assumed that the following condition (I)
holds for the weight function r:

(I) There exists c ∈ R such that the restriction r+ := r �(c,∞) is positive
almost everywhere and the restriction r− := r �(−∞,c) is negative almost
everywhere.

The restrictions of the functions p and q onto the intervals (c,∞) and (−∞, c) will
be denoted by p+, q+, p− and q−, respectively.

The space of all (equivalence classes of) complex valued measurable functions f
such that |f |2|r| ∈ L1(R) is denoted by L2

|r|(R). Equipped with the scalar product

(2.1) (f, g) :=

∫
R
f(x) g(x) |r(x)| dx, f, g ∈ L2

|r|(R),

this space is a Hilbert space. The maximal operator Af = `f associated to the
definite Sturm-Liouville expression ` in L2

|r|(R) is defined on the dense subspace

D :=
{
f ∈ L2

|r|(R) : f, pf ′ locally absolutely continuous, `f ∈ L2
|r|(R)

}
.

We denote by D+ and D− the space of functions on (c,∞) and (−∞, c) which are
restrictions of functions from D onto (c,∞) and (−∞, c), respectively. Throughout
this paper it will be assumed that A satisfies the following condition (II):

(II) The maximal operator Af = `f defined on domA = D is selfadjoint in
L2
|r|(R) and minσ(A) > 0 holds.

Recall that A is selfadjoint if and only if the definite Sturm-Liouville expression `
is in the limit point case at both singular endpoints +∞ and −∞.

Besides the definite inner product (·, ·) in (2.1) the space L2
|r|(R) will also be

equipped with the indefinite inner product [·, ·] defined by

[f, g] :=

∫
R
f(x) g(x) r(x) dx, f, g ∈ L2

|r|(R).

The space L2
r(R) = (L2

|r|(R), [·, ·]) is a Krein space, the inner products (·, ·) and

[·, ·] are connected via the fundamental symmetry (Jf)(x) = sgn (r(x))f(x), x ∈ R,
that is, the relations

(Jf, g) = [f, g] and [f, g] = (Jf, g), f, g ∈ L2
|r|(R),

hold, see, e.g., [1, 7]. Note that formally we have τ = J`. The maximal operator
associated to τ coincides with JA. This operator is selfadjoint with respect to the
indefinite inner product [·, ·]; we shall say that JA is J-selfadjoint in the Hilbert
space L2

|r|(R). As a consequence of condition (II) and well-known properties of

J-nonnegative operators (see, e.g., [7]) we obtain the next proposition.

Proposition 2.1. Assume that conditions (I) and (II) hold. Then the indefinite
Sturm-Liouville operator

JAf = τf =
1

r

(
−(pf ′)′ + qf

)
, f ∈ dom JA = D,

is a J-selfadjoint operator in L2
|r|(R) with

σ(JA) ⊂ R and 0 ∈ ρ(JA).
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Each eigenvalue λ of JA is simple, i.e., dim ker(JA−λ) = 1 and there is no Jordan
chain of length greater than one.

For a more detailed analysis of the spectrum of JA it is useful to consider the
(definite) differential expressions

(2.2) `+ =
1

r+

(
− d

dx
p+

d

dx
+ q+

)
and `− = − 1

r−

(
− d

dx
p−

d

dx
+ q−

)
and the associated differential operators in the subspaces L2

r+(c,∞) and L2
−r−(−∞, c)

which consist of restrictions of functions from L2
|r|(R) onto the intervals (c,∞) and

(−∞, c), respectively. It follows from condition (I) that L2
r+(c,∞) and L2

−r−(−∞, c)
equipped with

(h1, h2)+ =

∫ ∞
c

h1(x)h2(x) r+(x) dx, h1, h2 ∈ L2
r+(c,∞),

(k1, k2)− =

∫ c

−∞
k1(x) k2(x) (−r−(x)) dx, k1, k2 ∈ L2

−r−(−∞, c),

are Hilbert spaces. Since ` is in the limit point case at +∞ and −∞ it follows that
the (restricted) differential expressions `+ and `− are in the limit point case at +∞
and −∞, respectively, and regular at c. In Section 3 below we will make use of the
Lagrange identities

(`+h1, h2)+ − (h1, `+h2)+ = (p+h
′
1)(c)h2(c)− h1(c)(p+h′2)(c),

(`−k1, k2)− − (k1, `−k2)− = −(p−k
′
1)(c)k2(c) + k1(c)(p−k′2)(c),

(2.3)

which hold for all h1, h2 ∈ D+ and k1, k2 ∈ D−. The Dirichlet operators

B+h = `+h, domB+ =
{
h ∈ D+ : h(c) = 0

}
,

B−k = `−k, domB− =
{
k ∈ D− : k(c) = 0

}
,

(2.4)

associated to `+ and `− in (2.2) are selfadjoint in the Hilbert spaces L2
r+(c,∞)

and L2
−r−(−∞, c), respectively. Then the orthogonal sums B = B+ ⊕ B− and

JB = B+ ⊕ (−B−) are selfadjoint operators in L2
|r|(R). The next lemma on the

spectrum and essential spectrum of the selfadjoint operators A, B and B± will
be useful later. For a closed operator T in a Hilbert space the essential spectrum
σess(T ) consists of all λ ∈ C such that T − λ is not a Fredholm operator. Note
that for a selfadjoint operator or a J-nonnegative operator T with ρ(T ) 6= ∅ the
set σess(T ) coincides with those spectral points which are no isolated eigenvalues of
finite multiplicity.

Lemma 2.2. Assume that conditions (I) and (II) are satisfied. For the spectra of
the operators A, B and B± the following relations hold:

(i) minσ(A) ≤ minσ(B) and minσ(A) ≤ minσ(B±);
(ii) σess(A) = σess(B+) ∪ σess(B−) = σess(B) and σess(B±) ⊂ σess(A);
(iii) minσess(A) = min {minσess(B+),minσess(B−)} = minσess(B).
(iv) Denote by EA and EB the spectral functions of A and B, respectively. For

an open interval ∆ with ∆ ∩ σess(A) = ∅ the estimate

|dim ranEA(∆)− dim ranEB(∆) | ≤ 1

holds if the corresponding quantities are finite. Otherwise dim ranEA(∆) =
∞ if and only if dim ranEB(∆) =∞.

Observe that the case dim ranEA(∆) = dim ranEB(∆) = ∞ can only occur if
one or both of the endpoints of ∆ belong to the essential spectrum of A.
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Proof. (i) Define the closed symmetric operators S+ and S− in the Hilbert spaces
L2
r+(c,∞) and L2

−r−(−∞, c) by

S+h = `+h, domS+ =
{
h ∈ D+ : h(c) = (p+h

′)(c) = 0
}

and

S−k = `−k, domS− =
{
k ∈ D− : k(c) = (p−k

′)(c) = 0
}
.

As the orthogonal sum S+ ⊕ S− is a restriction of A it follows that S+ ⊕ S− is a
symmetric operator with a lower bound larger or equal to minσ(A) which is positive
by condition (II). Clearly, also S+ and S− are symmetric operators with lower
bounds larger or equal to minσ(A). As B+ and B− are the Friedrichs extensions of
S+ and S− (see [27, Theorem 3 and Corollary 2]) also their lower bounds are larger
or equal to minσ(A). This shows the second statement in (i); the first assertion in
(i) is an immediate consequence.

The assertions in (ii) and (iii) follow from

(2.5) dim ran
(
(B − λ)−1 − (A− λ)−1

)
= 1, λ ∈ ρ(A) ∩ ρ(B),

whereas (2.5) itself is a consequence of the fact that A and B are selfadjoint exten-
sions of the symmetric operator Rf = `f , domR = {f ∈ D : f(c) = 0}, which has
defect numbers (1, 1). This together with [6, § 9.3, Theorem 3] implies (iv). �

The following proposition on the essential spectrum of the indefinite Sturm-
Liouville operator JA complements the statements in Proposition 2.1. It is a simple
consequence of Lemma 2.2 and dim ran((JA − λ)−1 − (JB − λ)−1) = 1 for all
λ ∈ ρ(JA) ∩ ρ(JB). Note that ρ(JA) ∩ ρ(JB) 6= ∅ by Proposition 2.1.

Proposition 2.3. Assume that conditions (I) and (II) hold. Then the essential
spectrum of the indefinite Sturm-Liouville operator JA is given by

σess(JA) = σess(JB) =
(
σess(B+) ∪ σess(−B−)

)
⊂
(
σess(A) ∪ σess(−A)

)
.

3. The function M

In this section we define a function M with the help of Titchmarsh-Weyl coef-
ficients m+ and m− associated to the differential expressions `+ and `− in (2.2).
Since it turns out that the zeros of M coincide with the isolated eigenvalues of the
indefinite Sturm-Liouville operator JA we shall study the monotonicity properties
of M , which then lead to eigenvalue estimates in the next section. As a byprod-
uct we also obtain a result on the size of the spectral gap of JA around zero in
Proposition 3.3 below.

Assume throughout this section that conditions (I) and (II) hold and let B+

and B− be the selfadjoint Dirichlet operators in the Hilbert spaces L2
r+(c,∞) and

L2
−r−(−∞, c) from (2.4), and let λ ∈ ρ(B+) and µ ∈ ρ(B−). As `+ and `− are

in the limit point case at +∞ and at −∞, respectively, there are unique (up to a
constant multiple) solutions hλ ∈ D+ and kµ ∈ D− of the differential equations

`+h = λh and `−k = µk.

The functions m± : ρ(B±)→ C are defined by

m+(λ) :=
(p+h

′
λ)(c)

hλ(c)
and m−(µ) :=

(p−k
′
µ)(c)

kµ(c)
.

It is obvious that the poles of m± coincide with the isolated eigenvalues of
B±, and that the poles of the function λ 7→ m−(−λ) coincide with the isolated
eigenvalues of −B−. The functions m± are holomorphic on ρ(B±), they do not
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admit analytic extensions to points of σ(B±), and they are symmetric with respect
to the real axis, i.e.,

m+(λ̄) = m+(λ) and m−(µ̄) = m−(µ).

If we fix solutions hλ and kµ with hλ(c) = 1 and kµ(c) = 1 it follows from (2.3)
that the relations

(λ− λ̄)(hλ, hλ)+ = (`+hλ, hλ)+ − (hλ, `+hλ)+ = m+(λ)−m+(λ),

(µ̄− µ)(kµ, kµ)− = (kµ, `−kµ)− − (`−kµ, kµ)− = m−(µ)−m−(µ),

hold. Therefore, ±m± are so-called Nevanlinna functions. Recall that a complex-
valued function N is said to be a Nevanlinna function if N is holomorphic on C\R
and the properties

N(λ̄) = N(λ) and
ImN(λ)

Imλ
≥ 0

hold for all λ ∈ C\R. For later purposes it is important to note that a Nevanlinna
function N is monotonously increasing on real intervals which belong to its domain
of holomorphy and that N is equal to a constant on such an interval if and only if
N is a constant function on C, see, e.g., [18].

In the following we will relate the zeros and poles of the function

(3.1) M(λ) := m+(λ)−m−(−λ), λ ∈ ρ(B+) ∩ ρ(−B−),

with the eigenvalues of the operators JA and JB. Clearly, the domain of holo-
morphy of M contains the interval (−minσ(B−),minσ(B+)), the poles of M in
[minσ(B+),∞) and (−∞,−minσ(B−)] coincide with the poles of λ 7→ m+(λ) and
λ 7→ m−(−λ), respectively. Hence each pole of M in [minσ(B+),∞) is an isolated
eigenvalue of B+ and each pole of M in (−∞,−minσ(B−)] is an isolated eigen-
value of −B−. Therefore, each pole of M is an isolated eigenvalue of the operator
JB = B+⊕ (−B−), and, vice versa, every isolated eigenvalue of JB is a pole of M .
This shows assertion (ii) in the next proposition.

Proposition 3.1. For λ 6∈ σess(JA) the following assertions hold:

(i) λ ∈ σp(JA) if and only if λ is a zero of M ;
(ii) λ ∈ σp(JB) if and only if λ is a pole of M .

Proof. It remains to show assertion (i). For this observe first that λ 6∈ σess(JA) =
σess(B+)∪σess(−B−) is an eigenvalue of JA with corresponding eigenfunction fλ ∈
D if and only if fλ = hλ ⊕ k−λ, where hλ ∈ D+ and k−λ ∈ D− are the (nontrivial)
restrictions of fλ onto (c,∞) and (−∞, c), respectively, which satisfy the differential
equations

(3.2) `+hλ = λhλ, `−k−λ = −λk−λ,
and the conditions

(3.3) hλ(c) = k−λ(c), (p+h
′
λ)(c) = (p−k

′
−λ)(c).

As a simple consequence we conclude

σp(JA) ∩ σp(B+) ∩ ρ(−B−) = ∅ and σp(JA) ∩ σp(−B−) ∩ ρ(B+) = ∅.
Furthermore, σp(B+) ∩ σp(−B−) = ∅ by Lemma 2.2 (i) and condition (II) and,
hence, it is sufficient to prove the equivalence in (i) for λ ∈ ρ(B+) ∩ ρ(−B−).

Assume first that λ ∈ σp(JA)∩ρ(B+)∩ρ(−B−), so that (3.2) and (3.3) hold for
some corresponding eigenfunction fλ = hλ ⊕ k−λ of JA and hλ(c) = k−λ(c) 6= 0.
This yields

(3.4) m+(λ) =
(p+h

′
λ)(c)

hλ(c)
=

(p−k
′
−λ)(c)

k−λ(c)
= m−(−λ)
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and hence M(λ) = 0. Conversely, let λ ∈ ρ(B+) ∩ ρ(−B−) be a zero of M and let
hλ ∈ D+ and k−λ ∈ D− be (nontrivial) solutions of (3.2) which satisfy hλ(c) =
k−λ(c) 6= 0. From M(λ) = 0 we obtain m+(λ) = m−(−λ) and it follows from
(3.4) that also the second condition in (3.3) is satisfied by hλ and k−λ. Therefore
fλ := hλ⊕k−λ belongs to D and is an eigenfunction of JA corresponding to λ. �

In a similar way as in Proposition 3.1 the eigenvalues of A and of B = B+⊕B−
are related to the poles and zeros of the functions m+ and m−. Since the isolated
eigenvalues of B+ and B− coincide with the poles of m+ and m− it is clear that λ
is an eigenvalue of B if and only if λ is a pole of m+ or m−; this shows item (ii) in
the next proposition. For the convenience of the reader also the first item will be
shown in detail.

Proposition 3.2. For λ 6∈ σess(A) the following assertions hold:

(i) λ ∈ σp(A) if and only if λ is a either a zero of m+ −m− or a pole of both
m+ and m−;

(ii) λ ∈ σp(B) if and only if λ is a pole of m+ or of m−.

Proof. It remains to show assertion (i). For this observe first that λ 6∈ σess(A) =
σess(B+)∪σess(B−) is an eigenvalue of A with corresponding eigenfunction fλ ∈ D
if and only if fλ = hλ ⊕ kλ, where hλ ∈ D+ and kλ ∈ D− are the (nontrivial)
restrictions of fλ onto (c,∞) and (−∞, c), respectively, which satisfy the differential
equations

(3.5) `+hλ = λhλ, `−kλ = λkλ,

and the conditions

(3.6) hλ(c) = kλ(c), (p+h
′
λ)(c) = (p−k

′
λ)(c).

Hence

σp(A) ∩ σp(B+) ∩ ρ(B−) = ∅ and σp(A) ∩ σp(B−) ∩ ρ(B+) = ∅.
Assume first that λ is an eigenvalue of A. Then either λ ∈ ρ(B+) ∩ ρ(B−) or

λ ∈ σp(B+)∩σp(B−). In the first case (3.6) impliesm+(λ) = m−(λ) and hence λ is a
zero of m+−m−. In the second case λ is a pole of both m+ and m−. Conversely, let
hλ ∈ D+ and kλ ∈ D− be nontrivial solutions of (3.5) which satisfy hλ(c) = kλ(c).
If λ is a zero of m+ − m− then λ ∈ ρ(B+) ∩ ρ(B−) and hλ(c) = kλ(c) 6= 0, so
that the assumption m+(λ) − m−(λ) = 0 implies the second condition in (3.6).
Therefore fλ := hλ ⊕ kλ belongs to D and is an eigenfunction of A corresponding
to λ. If λ is a pole of m+ and of m−, then λ ∈ σp(B+) ∩ σp(B−) and hence the
nontrivial solutions hλ ∈ D+ and kλ ∈ D− of (3.5) satisfy hλ(c) = kλ(c) = 0 and
(p+h

′
λ)(c) 6= 0 and (p−k

′
λ)(c) 6= 0. Since hλ and kλ are unique up to a constant

multiple, it follows that the function

fλ := (νhλ)⊕ kλ, where ν :=
(p−k

′
λ)(c)

(p+h′λ)(c)
,

belongs to D and is an eigenfunction of A corresponding to λ. �

As a consequence of the above propositions we obtain a statement on the size of
the spectral gap of JA around 0; cf. Proposition 2.1. We mention that item (ii) in
the next proposition can also be deduced from [28, Behauptung 3] applied to the
inverses of A and JA.

Proposition 3.3. Assume that conditions (I) and (II) are satisfied. Then the
following statements hold:

(i) If minσ(A) < minσess(A), then [−minσ(A),minσ(A)] ⊂ ρ(JA);
(ii) If minσ(A) = minσess(A), then (−minσ(A),minσ(A)) ⊂ ρ(JA).
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Proof. Let 0 < λ1 := minσ(A). We show first that the inclusion

(3.7)
(
−minσ(A),minσ(A)

)
⊂ ρ(JA)

holds under any of the assumptions in (i) and (ii), i.e., minσ(A) ≤ minσess(A). In
fact, by Lemma 2.2 and Proposition 3.2 (i) we have that m+ −m− is holomorphic
and does not vanish on (−λ1, λ1). Since m+ and −m− are Nevanlinna functions, it
follows that m+ is increasing and m− is decreasing on (−λ1, λ1). Thus, the images
of m+ and m− of (−λ1, λ1) are intervals which do not intersect. Consequently, the
images of m+ and m−(−·) of (−λ1, λ1) are also intervals which do not intersect,
so that M does not vanish on (−λ1, λ1). This, together with Proposition 3.1 (i)
implies that there are no eigenvalues of JA in (−λ1, λ1), which yields (3.7) and
hence assertion (ii) has been shown

In order to prove assertion (i) it remains to verify that λ1 and −λ1 are no
eigenvalues of JA if minσ(A) < minσess(A) holds. We provide the argument for λ1;
a similar reasoning applies to −λ1. By Proposition 3.2 (i) either m+(λ1) = m−(λ1)
or both functions m+ and m− have a pole at λ1. In the first case we have

M(λ1) = m+(λ1)−m−(−λ1) < m+(λ1)−m−(λ1) = 0

since −m− is a nonconstant Nevanlinna function which is holomorphic on (−∞, λ1]
(m− is not constant as otherwise σ(B−) = ∅). In particular, M(λ1) 6= 0 and hence
λ1 is not an eigenvalue of JA by Proposition 3.1 (i). If m+ and m− both have a
pole at λ1 then it follows from the holomorphy of m− on (−∞, λ1) that also M has
a pole at λ1. Again Proposition 3.1 (i) implies λ1 ∈ ρ(JA). �

Note that under the assumptions in Proposition 3.3 an upper estimate for the
spectral gap of JA can be given: If the smallest eigenvalue λ1 = minσ(A) of A
is a zero of m+ − m−, then it can be shown that the largest negative eigenvalue
λ1,−(JA) and the smallest positive eigenvalue λ1,+(JA) (i.e. the endpoints of the
spectral gap) of JA satisfy

minσ(−B−) < λ1,−(JA) and λ1,+(JA) < minσ(B+).

In the case that λ1 is a pole of m+ and m− the eigenvalues λ1,−(JA) and λ1,+(JA)
the above estimates hold with minσ(−B−) and minσ(B+) replaced by the sec-
ond largest eigenvalue of −B− and the second smallest eigenvalue of B+ if these
eigenvalues exist, and by minσess(B+) and maxσess(−B−) otherwise.

The next proposition and corollary will play an important role in the proof of
our main result in the next section.

Proposition 3.4. The function M admits the representation

(3.8) M(λ) =
−1

α+ λN(λ)
,

where N is a Nevanlinna function which is not identically zero on C and α is a real
constant. In particular, M is monotonously increasing (monotonously decreasing)
on subintervals of R+ (R−, respectively) which belong to its domain of holomorphy.

Proof. Let λ ∈ ρ(JA)∩ ρ(B+)∩ ρ(−B−) and let hλ, h0 ∈ D+, k−λ, k0 ∈ D− be the
unique functions that satisfy

(3.9) `+hλ = λhλ, `+h0 = 0, `−k−λ = −λk−λ, `−k0 = 0.

and the conditions

hλ(c) = k−λ(c), (p−k
′
−λ)(c)− (p+h

′
λ)(c) = 1,

h0(c) = k0(c), (p−k
′
0)(c)− (p+h

′
0)(c) = 1.

(3.10)

We claim that the functions fλ = hλ ⊕ k−λ and f0 = h0 ⊕ k0 are related via

(3.11) fλ = f0 + λ(JA− λ)−1f0.
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For this observe that λ(JA − λ)−1f0 ∈ D and, hence, g := f0 + λ(JA − λ)−1f0
satisfies the same conditions as f0 = h0 ⊕ k0 in (3.10). Hence, if we write g in the
form g = h⊕ k with h ∈ D+ and k ∈ D−, then we have

h(c) = k(c) and (p−k
′)(c)− (p+h

′)(c) = 1.

As (τ−λ)λ(JA−λ)−1f0 = λf0 we conclude that ±`±−λ applied to the restriction of
λ(JA−λ)−1f0 onto (c,∞) and (−∞, c) equals λh0 and λk0, respectively. Therefore

(`+ − λ)h = (`+ − λ)h0 + λh0 = 0,

(`− + λ)k = (`− + λ)k0 − λk0 = 0,

and it follows that h and k satisfy the equations `+h = λh and `−k = −λk. Since
the function fλ = hλ ⊕ k−λ in (3.9) and (3.10) is unique we obtain (3.11).

From

M(λ) =
(p+h

′
λ)(c)− (p−k

′
−λ)(c)

fλ(c)
= − 1

fλ(c)
,

M(0) =
(p+h

′
0)(c)− (p−k

′
0)(c)

f0(c)
= − 1

f0(c)
∈ R,

we conclude M(λ) 6= 0 for λ ∈ ρ(JA)∩ ρ(B+)∩ ρ(−B−) and M(0) 6= 0. With (2.3)
we have

λ[fλ, f0] = λ(hλ, h0)+ − λ(k−λ, k0)−

= (`+hλ, h0)+ − (hλ, `+h0)+ + (`−k−λ, k0)− − (k−λ, `−k0)−

= (p+h
′
λ)(c)h0(c)− hλ(c)(p+h′0)(c)− (p−k

′
−λ)(c)k0(c) + k−λ(c)(p−k′0)(c)

= fλ(c)− f0(c).

Thus −M−1 admits the representation

−M−1(λ) = −M−1(0) + λ[fλ, f0]

and with (3.11) and N(λ) := [(1 + λ(JA− λ)−1)f0, f0] we obtain

(3.12) −M−1(λ) = −M−1(0) + λN(λ).

A simple calculation shows

ImN(λ) = Imλ
(
A(JA− λ)−1f0, (JA− λ)−1f0

)
and since A is nonnegative by condition (II) it follows that N is a Nevanlinna
function, i.e., M admits a representation of the from (3.8) with α := −M(0)−1.

Note that N is not equal to zero on real intervals which belong to its domain
of holomorphy, as otherwise N ≡ 0 and (3.12) imply that M in (3.1) is equal to a
constant, so that the Titchmarsh-Weyl coefficients λ 7→ m+(λ) and λ 7→ m−(−λ) of
B+ and −B− differ by a real constant; a contradiction to σ(B+)∩σ(−B−) = ∅. Now
the remaining statements of Theorem 3.4 follow from the fact that the Nevanlinna
function N is monotonously increasing on real intervals which belong to its domain
of holomorphy. �

Corollary 3.5. In between two consecutive positive (negative) poles ν, ν′ of M such
that the interval (ν, ν′) belongs to the domain of holomorphy of M there is a unique
zero of M . Similarly, in between two consecutive positive (negative) zeros η, η′ of
M such that M is meromorphic in an open neighbourhood of the interval (η, η′)
there is a unique pole of M in (η, η′).

The poles of M in [minσ(B+),∞) (resp. (−∞,−minσ(B−))) coincide with the
poles of λ 7→ m+(λ) (resp. λ 7→ m−(−λ)), and hence with the isolated eigenvalues
of B+ (resp. −B−). From this we obtain with Corollary 3.5 and Proposition 3.1 (i)
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interlacing results of the positive eigenvalues of JA with respect to the eigenvalues
of B+ and of the negative eigenvalues of JA with respect to the eigenvalues of −B−.

Corollary 3.6. In between each two consecutive isolated eigenvalues of B+ (−B−)
in a gap of σess(B+) (σess(−B−)) there is exactly one isolated eigenvalue of JA.
Conversely, in between each two consecutive isolated positive (negative) eigenvalues
of JA in a gap of σess(JA) there is exactly one isolated eigenvalue of B+ (−B−,
respectively).

4. Eigenvalue estimates in gaps of the essential spectrum

In this section we prove estimates on the number of eigenvalues of JA in a gap
of the essential spectrum. Recall that all eigenvalues of the operators A, JA, B+,
−B− and, hence, JB are simple. For a selfadjoint or J-selfadjoint operator T and
a real interval (a, b) such that (a, b) ∩ σess(T ) = ∅ the number of eigenvalues of T
in (a, b) will be denoted by nT (a, b), i.e.,

nT (a, b) = ]
{
λ ∈ σp(T ) : λ ∈ (a, b)

}
.

The following theorem is the main result of this note. It provides a local estimate
on the number of eigenvalues of JA in terms of the number of eigenvalues of A in
a gap of the essential spectrum. Recall that by Lemma 2.2 and Proposition 2.3 we
have for 0 ≤ a < b

(a, b) ∩ σess(A) = ∅ if and only if
(
(−b,−a) ∪ (a, b)

)
∩ σess(JA) = ∅.

Theorem 4.1. Assume that conditions (I) and (II) hold for the Sturm-Liouville
operator A and let JA be the corresponding indefinite Sturm-Liouville differential
operator. For 0 ≤ a < b such that (a, b) ∩ σess(A) = ∅ the estimate

(4.1)
∣∣nA(a, b)−

(
nJA(−b,−a) + nJA(a, b)

)∣∣≤ 3

is valid if the corresponding quantities are finite; otherwise

nA(a, b) =∞ if and only if nJA(−b,−a) + nJA(a, b) =∞.

Observe that the case nA(a, b) =∞ (and, hence, nJA(−b,−a) + nJA(a, b) =∞)
can only occur if one or both of the endpoints a and b belong to the essential
spectrum of A which implies the following corollary.

Corollary 4.2. Let A, JA and (a, b) be as in Theorem 4.1 and assume, in addition,
that b ∈ σess(A), or, equivalently, that b ∈ σess(JA) or −b ∈ σess(JA). Then the
eigenvalues of A in (a, b) accumulate to b if and only if the eigenvalues of JA in
(−b,−a) ∪ (a, b) accumulate to b or −b.

Proof of Theorem 4.1. Let (a, b) be as in the theorem and suppose that the number
nA(a, b) of eigenvalues of A in (a, b) is finite. Since the eigenvalues of A are all sim-
ple, nA(a, b) coincides with dim ranEA(a, b) and we conclude from Lemma 2.2 (iv)
that dim ranEB(a, b) differs at most by one from nA(a, b). Hence the number of
eigenvalues nB+(a, b) + n−B−(−b,−a) of JB = B+ ⊕ −B− differs at most by one
from nA(a, b) and by Proposition 3.1 (ii) the same holds true for the number of
poles of the function M in (−b,−a) ∪ (a, b). It follows from Corollary 3.5 that M
has at least nA(a, b)− 3 zeros in (−b,−a) ∪ (a, b), so that

nJA(−b,−a) + nJA(a, b) ≥ nA(a, b)− 3

by Proposition 3.1 (i). In order to show (4.1) suppose that

nJA(−b,−a) + nJA(a, b) > nA(a, b) + 3.

In this case Proposition 3.1 (i) yields that there are more than nA(a, b) + 3 zeros
of M in (−b,−a)∪ (a, b) and hence there are more than nA(a, b) + 1 poles of M in
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(−b,−a) ∪ (a, b) by Corollary 3.5. On the other hand, by the above reasoning the
number of poles of M in (−b,−a) ∪ (a, b) differs at most by one from nA(a, b), a
contradiction and (4.1) is shown.

From (4.1) it follows that for a (or b) in the essential spectrum of A the quantity
nA(a, b) is finite if and only if the quantity nJA(−b,−a) + nJA(a, b) is finite. �

Let us now consider the case where the coefficients p, q and r satisfy some sym-
metry properties with respect to c. For simplicity we assume c = 0 and for the
following we suppose:

(III) The functions p and q are even and r is odd, i.e.

p(x) = p(−x), q(x) = q(−x) and r(x) = −r(−x) for a.e. x ∈ R.

Obviously, (III) implies for the operators B+ and B− from (2.4)

σ(B+) = σ(B−) and σess(B+) = σess(B−).

Together with Proposition 2.3 we conclude

σess(JA) = σess(A) ∪ σess(−A).

Furthermore, if hλ ∈ D+ and kλ ∈ D− are related via hλ(x) = kλ(−x), x ∈ R+,
then we have

`+hλ = λhλ, if and only if `−kλ = λkλ.

Together with (p+h
′
λ)(0) = −(p−k

′
λ)(0) this implies m+(λ) = −m−(λ) and it

follows that the function M in (3.1) is given by

(4.2) M(λ) = m+(λ) +m+(−λ).

Observe that by Proposition 3.1 (i) the eigenvalues of JA are symmetric with
respect to zero. In particular nJA(a, b) = nJA(−b,−a) in Theorem 4.1. This
implies the following statement which is a slight improvement of the estimate (4.1)
in Theorem 4.1 if condition (III) holds and nA(a, b) is even.

Corollary 4.3. Let the assumptions be as in Theorem 4.1 and assume, in addition,
that condition (III) is satisfied. If nA(a, b) is even, then the estimates∣∣ 1

2nA(a, b)− nJA(a, b)
∣∣ =

∣∣ 1
2nA(a, b)− nJA(−b,−a)

∣∣ ≤ 1

are valid.

The estimates in Theorem 4.1 and Corollary 4.3 will be further improved in
Theorem 4.4 below for the case that condition (III) holds and instead of a gap in
the essential spectrum we consider the special situation of an interval (α, β) with
0 ≤ α < minσ(A) < β ≤ minσess(A).

Theorem 4.4. Assume that conditions (I), (II), and (III) hold for the Sturm-
Liouville operator A, that minσ(A) < minσess(A) and let JA be the corresponding
indefinite Sturm-Liouville differential operator. For 0 ≤ α < minσ(A) < β ≤
minσess(A) the following holds:

(4.3) nJA(α, β) = nJA(−β,−α) =

{
1
2nA(α, β) if nA(α, β) is even,
1
2 (nA(α, β)± 1) if nA(α, β) is odd,

where one of the quantities nA(α, β), nJA(α, β), nJA(−β,−α) is infinite if and only
if all the quantities nA(α, β), nJA(α, β), nJA(−β,−α) are infinite.

In particular, the eigenvalues of A below minσess(A) accumulate to minσess(A)
if and only if the eigenvalues of JA in the interval (−minσess(A),minσess(A))
accumulate to −minσess(A) and to minσess(A).



12 JUSSI BEHRNDT, ROLAND MÖWS, AND CARSTEN TRUNK

Observe that the case nA(α, β) = ∞ (and, hence, nJA(α, β) = nJA(−β,−α) =
∞) can only occur if the endpoint β belongs to the essential spectrum of A.

Proof. Let λ1 = minσ(A) be the smallest eigenvalue of A. By Proposition 3.2 (i)
and (4.2) the isolated eigenvalues of the Sturm-Liouville operator A coincide with
the poles and zeros of the function m+. Hence λ1 is either a pole or a zero of m+.
Since m+ is a Nevanlinna function the poles and zeros of m+ in (α, β) alternate.
Therefore one of the following four cases occurs if n := nA(α, β) <∞:

(i) n is even and λ1 is a pole of m+;
(ii) n is even and λ1 is a zero of m+;
(iii) n is odd and λ1 is a pole of m+;
(iv) n is odd and λ1 is a zero of m+.

In case (i) the function m+ has n
2 poles and n

2 zeros in (α, β). Moreover, the
largest eigenvalue λn of A in (α, β) is a zero of m+ and hence m+ is positive
on (−∞, λ1) ∪ (λn, β). The function M has n

2 poles in [λ1, λn−1] and it follows
from Corollary 3.5 that there are n

2 − 1 zeros of M in (λ1, λn−1). Since m+ is
positive on (−∞, λ1) and m+(λn) = 0 it follows that M has also one zero in
(λn−1, λn), and is positive on (α, λ1) and [λn, β). Now Proposition 3.1 (i) implies
nJA(α, β) = n

2 = 1
2nA(α, β) and by symmetry also nJA(−β,−α) = n

2 = 1
2nA(α, β).

The simple modifications of this argument for case (ii) are left to the reader.
In case (iii) the function m+ has 1

2 (n + 1) poles and 1
2 (n − 1) zeros in (α, β).

Moreover, m+ is positive on (−∞, λ1) and since the largest eigenvalue λn of A in
(α, β) is a pole m+ is negative on (λn, β). The function M has 1

2 (n + 1) poles in

[λ1, λn] and it follows from Corollary 3.5 that there are 1
2 (n − 1) zeros of M in

(λ1, λn). Furthermore, since m+ is positive on (−∞, λ1) and negative on (λn, β)
there may be one more zero of M in (λn, β). Now Proposition 3.1 (i) implies
nJA(α, β) = 1

2 (n ± 1) = 1
2 (nA(α, β) ± 1) and by symmetry also nJA(−β,−α) =

1
2 (n±1) = 1

2 (nA(α, β)±1). The simple modifications of this argument for case (iv)
are left to the reader. Relation (4.3) is proved.

From (4.3) it follows also that for β in the essential spectrum of A the quantity
nA(α, β) is finite if and only if the quantities nJA(α, β) and nJA(−β,−α) are finite.

�

The next proposition on the interlacing properties of the eigenvalues of JA with
respect to the eigenvalues of A can be shown with the same methods as Theo-
rem 4.4. If (a, b) is a gap in σess(A) we denote by (λk) the eigenvalues of A in
increasing order, where k = 1, . . . , nA(a, b) if nA(a, b) is finite, k ∈ N (k ∈ −N) if
the eigenvalues accumulate to b (a, respectively), and k ∈ Z if both endpoints a
and b are accumulation points of eigenvalues of A.

Proposition 4.5. Assume that conditions (I), (II), and (III) hold for the Sturm-
Liouville operator A and let JA be the corresponding indefinite Sturm-Liouville
differential operator. Let (a, b) ∩ σess(A) = ∅ and denote by (λk) the eigenvalues of
A in (a, b) in increasing order. Then exactly one of the following statements hold:

(i) Each interval (λ2k−1, λ2k) contains exactly one eigenvalue of JA and each
interval [λ2k, λ2k+1] belongs to ρ(JA);

(ii) Each interval (λ2k, λ2k+1) contains exactly one eigenvalue of JA and each
interval [λ2k−1, λ2k] belongs to ρ(JA).

Furthermore, in the case a < λ1 = minσ(A) < b ≤ minσess(A) statement (i) holds,
that is, for the positive eigenvalues λk(JA) of JA ordered in an increasing way we
have

λk(JA) ∈ (λ2k−1, λ2k) , k = 1, 2, . . .
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5. Examples

In this section some applications and examples illustrating the results in the
previous section are presented. We start with a variant of Kneser’s classical os-
cillation result in the context of indefinite Sturm-Liouville operators. As a second
application a periodic problem is treated and in a third explicit example the num-
ber of eigenvalues of the indefinite operator is computed for a particularly simple
potential.

5.1. Kneser’s result for left-definite Sturm-Liouville operators. In this first
example accumulation of the eigenvalues of JA to the essential spectrum is studied
with the help of Kneser classical result from [19], see also [11, Corollary XIII.7.57]
and [12, 13, 23, 24, 29] for possible generalizations. For simplicity let here r(x) =
sgn (x), p(x) = 1, and assume that q > 0 admits the positive limits

0 < q∞ := lim
x→+∞

q(x) = lim
x→−∞

q(x).

Clearly, condition (I) holds with c = 0 and by well-known results (see, e.g. [29,
Theorem 6.3]) the corresponding maximal Sturm-Liouville operator Af = −f ′′+qf ,
f ∈ D, satisfies condition (II). Here we have σess(B±) = [q∞,∞) and therefore

σess(A) = [q∞,∞).

By Propositions 2.1 and 2.3 the essential spectrum of the J-selfadjoint indefinite
Sturm-Liouville operator JAf = sgn (−f ′′ + qf), f ∈ D, is then given by

σess(JA) = (−∞,−q∞] ∪ [q∞,∞).

Let us now make use of Kneser’s criterion: If

(5.1) lim sup
x→∞

x2(q(x)− q∞) < −1

4
or lim sup

x→−∞
x2(q(x)− q∞) < −1

4

holds, then there are infinitely many eigenvalues of B+ or B−, respectively, be-
low their essential spectrum and hence also the eigenvalues of A accumulate to
minσess(A). By Theorem 4.1 there are infinitely many eigenvalues of JA in the
corresponding gap (−q∞, q∞) in σess(JA). In the present situation it follows also
that the eigenvalues of JA in (−q∞, q∞) accumulate to q∞ (−q∞) if the first (sec-
ond, respectively) condition in (5.1) holds.

Similarly, if instead of (5.1) we have

lim inf
x→∞

x2(q(x)− q∞) > −1

4
and lim inf

x→−∞
x2(q(x)− q∞) > −1

4
,

then there are only finitely many eigenvalues of B+ and B− below their essen-
tial spectrum and hence there are also only finitely many eigenvalues of A be-
low minσess(A). In this situation Theorem 4.1 implies that JA has only finitely
many eigenvalues in the corresponding gap around zero and their total number
in (−q∞, q∞) differs at most by three of the number of eigenvalues of A below
q∞ = minσess(A).

5.2. Periodic operators. Suppose that the coefficients |r|, p and q of the defi-
nite Sturm-Liouville expression ` are γ-periodic for some γ > 0 and assume that
essinf q/|r| is positive. Then conditions (I) and (II) are satisfied for the correspond-
ing maximal operator A in L2

|r|(R). Furthermore, let λ1 < λ2 ≤ λ3 ≤ . . . be

the eigenvalues of the selfadjoint operator associated to ` restricted to functions in
L2
|r|(0, γ) with the boundary conditions(

f(0)
(pf ′)(0)

)
=

(
f(γ)

(pf ′)(γ)

)
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and let µ1 ≤ µ2 ≤ µ3 ≤ · · · be the eigenvalues of the selfadjoint operator associated
to ` restricted to functions in L2

|r|(0, γ) with the boundary conditions(
f(0)

(pf ′)(0)

)
= −

(
f(γ)

(pf ′)(γ)

)
.

Then 0 < λ1 < µ1 ≤ µ2 < λ2 ≤ λ3 < µ3 . . . and it is well-known that

σ(A) = σess(A) = [λ1, µ1] ∪ [µ2, λ2] ∪ [λ3, µ3] . . .

holds, see, e.g., [29, § 12]. Here it follows that also σess(B+) = σess(B−) = σess(A)
holds, and therefore by Proposition 2.3 the essential spectrum σess(JA) of JA has
a band structure, is symmetric with respect to 0 and is given by

. . . [−µ3,−λ3] ∪ [−λ2,−µ2] ∪ [−µ1,−λ1] ∪ [λ1, µ1] ∪ [µ2, λ2] ∪ [λ3, µ3] . . . .

Since A has no eigenvalues in the (possible) gaps (µ1, µ2), (λ2, λ3), (µ3, µ4), . . . , of
σess(A) we conclude from Theorem 4.1 that each of the sets

(−µ2,−µ1) ∪ (µ1, µ2), (−λ3,−λ2) ∪ (λ2, λ3), (−µ4,−µ3) ∪ (µ3, µ4), . . .

contains at most 3 eigenvalues of the indefinite Sturm-Liouville operator JA. Note
that by Proposition 3.3 we have (−λ1, λ1) ⊂ ρ(JA). Furthermore, if the coefficients
r, p, and q satisfy the symmetry condition (III), then Corollary 4.3 implies that in
each of the (possible) gaps

. . . (−µ4,−µ3), (−λ3,−λ2), (−µ2,−µ1), (µ1, µ2), (λ2, λ3), (µ3, µ4), . . .

of σess(JA) there is at most one eigenvalue.

5.3. A solvable problem with a hyperbolic cosine potential. As an explicit
example consider the situation r(x) = sgnx, p(x) = 1 and

q(x) = (κ+ 1)2 − κ(κ+ 1)

cosh2(x)
for some κ ∈ N.

Obviously, conditions (I) and (III) are satisfied. Moreover, q(x) ≥ κ + 1 and
lim|x|→∞ q(x) = (κ+ 1)2 imply that for the corresponding maximal operator A we

have minσ(A) ≥ κ + 1 and σess(A) = [(κ + 1)2,∞). In particular, condition (II)
is also fulfilled. It is known (see, e.g., [14]), that the operator A has precisely κ
eigenvalues in the interval (κ + 1, (κ + 1)2). Therefore, the essential spectrum of
the corresponding indefinite Sturm-Liouville operator JA is given by

σess(JA) = (−∞,−(κ+ 1)2] ∪ [(κ+ 1)2,∞)

and by Theorem 4.4 the operator JA has κ
2 eigenvalues in the interval (κ+1, (κ+1)2)

if κ is even and κ±1
2 eigenvalues if κ is odd. The same holds for the interval

(−(κ + 1)2,−(κ + 1)); cf. Theorem 4.4. Note that by Proposition 3.3 κ + 1 and
−(κ+ 1) are no eigenvalues of JA.

Acknowledgement. The authors thank Gerald Teschl for fruitful remarks.
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[24] H. Krüger and G. Teschl, Relative oscillation theory, weighted zeros of the Wronskian, and
the spectral shift function, Comm. Math. Phys. 287 (2009), 613–640.

[25] H. Langer, Spectral functions of definitizable operators in Krein spaces, in: Functional Anal-

ysis: Proceedings of a Conference Held at Dubrovnik, Yugoslavia, November 2-14, 1981,
Lecture Notes in Mathematics 948, Springer (1982), 1–46.

[26] M. Marletta and A. Zettl, Floquet theory for left-definite Sturm-Liouville problems, J. Math.

Anal. Appl. 305 (2005), 477–482.
[27] R. Rosenberger, A new characterization of the Friedrichs extension of semibounded Sturm-

Liouville operators, J. London Math. Soc. 31 (1985), 501–510.
[28] B. Textorius, Minimaxprinzipe zur Bestimmung der Eigenwerte J-nichtnegativer Operatoren,

Math. Scand. 35 (1974), 105–114.

[29] J. Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathemat-
ics 1258, Springer, 1987.

[30] A. Zettl, Sturm-Liouville theory, AMS, Providence, RI, 2005.

Institut für Mathematik, MA 6-4, Technische Universität Berlin, Strasse des 17. Juni

136, D-10623 Berlin, Germany
E-mail address: behrndt@math.tu-berlin.de

Institut für Mathematik, Fakultät für Mathematik und Naturwissenschaften, Tech-
nische Universität Ilmenau, Postfach 10 05 65, D-98684 Ilmenau, Germany

E-mail address: roland.moews@tu-ilmenau.de

Institut für Mathematik, Fakultät für Mathematik und Naturwissenschaften, Tech-

nische Universität Ilmenau, Postfach 10 05 65, D-98684 Ilmenau, Germany

E-mail address: carsten.trunk@tu-ilmenau.de




