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APPEARANCE-BASED PERSON TRACKING AND 3D POSE ESTIMATION OF
UPPER-BODY AND HEAD

Christoph Weinrich, Steffen Miiller, Horst-Michael Gross

Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Lab
christoph.weinrich@tu-ilmenau.de

ABSTRACT

In the field of human-robot interaction (HRI),
recognition of humans in a robot’s surroundings
is a crucial task. Besides the localization, the es-
timation of a person’s 3D pose based on monocu-
lar camera images is a challenging problem on a
mobile platform. For this purpose, an appearance-
based approach, using a 3D model of the human
upper body, has been developed end experimentally
investigated. For a real time tracking, the state of
the person is estimated by a particle filter tracker,
which uses different observation models for evalu-
ating pose hypotheses. The 6D body pose is modeled
by 4 parameters for the torso position and orien-
tation as well as 2 for the head pan and tilt. In
order to achieve real time operation, a smooth fit
value function simplifies the particle filter’s conver-
gence. Futhermore, a sparse feature based model
eliminates the need for computationally expensive
geometric transformations of the image, as required
by conventional Active Appearance Models (AAM).
The initialization problem of the pose tracker is
overcome by integrating a Histograms of Oriented
Gradients (HOG) detector.

Index Terms— Appearance model, visual person
detection, body pose tracking

1. INTRODUCTION

The visual detection and tracking of human pose is a
long-standing task with great importance to the human-
robot interaction. For realizing socially acceptable nav-
igation behaviors of a robot this pose information
is essential. Since 2005 the Histograms of Oriented
Gradients (HOG)[1] have been successfully used for
visual 2D full length body detection at lower scale.
Robustness to texture, color and illumination as well
as invariance to the body pose characterize this method.
Therefore, the orientation of a person is not perceptable
by HOG detectors. Additionally, the HOG detector is

This work has received funding from the European Commu-
nity’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 216487 (CompanionAble Project) and from the Ph.D.
Graduate School on Image Interpretation at Ilmenau University of
Technology.
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very time consuming and not suitable real time track-
ing. The robust detections of HOG however seem to be
useful for initialization and backup of other real time
tracking methods.

For appearance based tracking Cootes [2] origi-
nally introduced Active Aprearance Models (AAMs) in
1998. These parametric models are originally used for
face tracking and analysis, but the idea of analysis by
synthesis might be useful also for upper body detection.

The contribution of this paper is the combination
of HOG person detection with a 3D appearance model
of the human upper-body to recognize the exact body
pose and head orientation in real-time. In contrast to
other body models, which rely on texture models of the
target person, the presented appearance model initially
relies on edge information only and learns the color
model of the target person on the fly. By means of the
combination of HOG and the appearance model, we
are able to overcome the initialization problem of other
3D model tracking approaches as well as to distinguish
people by different appearance once a model has been
specialized.

The remainder of the paper first gives a brief survey
on people detection and tracking approaches, before
our approach is presented in detail. Some experimental
results show the achived quality and open issues of our
approach.

2. RELATED WORK

Visual person detection approaches can be categorized
into implicit and explicit methods. On the one hand,
implicit methods learn a background model and detect
foreground objects like people or moving objects as
a deviation from this model [3]. They require static
cameras, which prevents application on a mobile robot.
On the other hand, explicit methods detect people with
some kind of person model. This model can consist
of a representation of the complete body or only parts
thereof — the best example being the face. The most
prominent up-to-date face detection method is Ad-
aBoost, which learns and applies a cascade of simple
but very efficient image region classifiers [4]. Draw-
backs of face detection become relevant, whenever the
person does not face towards the robot or the face
appears too small due to a large distance.



Full body models can be distinguished into mono-
lithic and part-based models. Monolithic body rep-
resentations (mostly discriminative models) use tem-
plates, active contours or other features. The former
group uses huge numbers of static templates to capture
high variances in people’s poses [5]. Active contours
try to overcome the rigidness of templates by fitting
flexible structures to the human body [6]. They usually
are computationally expensive and may be distracted
by background structures. In the field of feature-based
monolithic methods, Histograms of Oriented Gradients
(HOG) and their derivations have established as state-
of-the-art person detectors [1].

Existing part-based body models are mostly gener-
ative and feature-based. These models consist of dif-
ferent body parts (head, torso, limbs) and a representa-
tion of their spatial relationship making them adequate
to capture different body poses. The body parts and
relationships can either be modeled explicitly [7] or
implicitly — including the well-known Implicit Shape
Model [8]. The main disadvantage of these approaches
is the high computational cost for detecting body parts.
Therefore, methods with explicit modeling often are
initialized manually or by predefined poses, assume
little self-occlusion and favorable illumination condi-
tions.

Among these presented methods several combi-
nations exist. In [9] for example a monolithic HOG
detector is combined with deformable sub parts, which
increases detection performance given partial occlu-
sion.

Once detection on individual images is possible,
tracking of persons over time usually improves ac-
curacy of these methods. Here, mostly probabilistic
state estimation and tracking approaches are applied,
often based on the Bayesian Filter. Unimodal state
hypotheses thus are tracked with Kalman filters and
its derivates, whereas for multimodal tracking typically
particle filters are employed [10].

3. 3D UPPER BODY APPEARANCE MODEL
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Fig. 1. Structure of our 3D Appearance Model for
evaluation of an image’s likelihood given a hypothesis:
a shape model defines feature positions, observation
models compare image to expected appearance, yield-
ing a likelihood
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The core of our approach is a 3D appearance
model (Figure 1). It estimates the likelihood P (I|0),
that the current image I might be observed given the
person-pose-hypothesis parameter vector 8. To esti-
mate P (I]0), the image I is evaluated at several
discrete feature positions: The shape model determines
the positions of m=19 edge features (along the body’s
silhouette) and n=45 surface features, according to the
pose parameters 6. Using these feature positions, two
generic and two person-specific observation models
(see sections 3.2 and 3.3) evaluate the likelihood of
the current image I. Finally the likelihood estimations
of the parts are combined to get a global fit value
approximation P (I|6).

In order to find the best pose parameters 6, in
the Active Appearance Model (AAM) [2] approach a
local gradient descent on an image difference measure
is applied, which relies on an adequate initialization.
Contrary, in our approach the global parameter space
is searched by a particle filter, which samples for ini-
tialization positions. During an inner loop a gradient
ascent is applied to adapt the hypotheses, aiming to fit
the image best and thus reduce the number of particles
needed. Details on the adaptation process are given in
section 4.

Furthermore, a fundamental difference to the AAM’s
texture model is that the image is only evaluated at
discrete positions, by several difference measures. Due
to efficiency reasons, we use no parametric model of
the color and edge appearance, instead a likelihood es-
timation is required substituting the direct comparison
in image space. This likelihood function is a weighted
mixture of different aspects. On the one hand there are
generic components to detect people in general, even
if the model could not adapt to an individual yet. The
generic models are a contour model of the upper body
(edge model) as well as a HOG detector. Details on
these are described in 3.2

On the other hand, there are person-specific com-
ponents primarily analyzing the color at the 3D feature
points projected by the shape model. In particular the
direct color and color differences of feature point pairs
are modeled and adapted to a detection online in order
to specialize the model. Later on, this helps to reiden-
tify persons to be tracked.

3.1. Shape Model

The Shape Model is used to model the person’s geo-
metric shape in 3D space. It is parameterized by the
direction and distance to the camera (polar coordinates
in top view), the height of the model (body size), the
orientation angle towards the camera (heading direc-
tion), and the pan-tilt parameters of the head.

The model has been learned from a sequence of
people wearing a flexible marker suit, standing upright
in front of a camera. A non linear bundle adjustment
method has been used for optimizing the feature’s po-



sitions. Originally, also a principal component analysis
has been applied to the 3D shapes to allow represen-
tation of individual body properties (breast, stomach,
and shoulder measures). For reasons of efficiency, the
current implementation neglects these parameters.

According to the model parameters 8, knowing the
camera geometry, the expected positions of particular
edge and surface-features are projected into the cam-
era’s image plane. For the edge-features in addition
to the positions kq,...,k,,, the gradient orientations
Y1y .oy Ym are modeled.

Due to the 3D nature of the body, self occlusion is
of significant relevance. Thus for each surface-feature
position p,a visibility value v; is calculated, in order
to handle self occlusion of the upper body. Due to the
convex shape of a body, visibility is defined by the
angle of the feature to the shape model center and the
shape model center to the camera. Thus, no normal
vector (as usually used for backface culling) has to be
modeled and transformed each time an evaluation is
necessary.

During the tracking process, for each particle the
shape model defines the feature positions in the current
image, at which evaluation by the observation models
takes place. In the following, these likelihood estima-
tors are described in detail.

3.2. Generic observation model components
Edge Model

Due to the great variance of texture and color of
peoples clothes, the only invariant information can be
found in the image gradients. The success of robust
detection approaches, like HOG, prove the relevance
of these features. The edge model compares expected
edge orientation of the silhouette to the gradient orien-

tations I P in the image, whereat the respective magni-

tudes I M of the image gradients are used as weights.

Since image gradients are placed very locally (see
Fig. 2a), a slightly different position parameter 8 will
produce great changes in the response of the edge
model likelihood. To get a smooth likelihood function,
which will speed up convergence of the particles, some
preprocessing is applied to the edge image, which is
computed as described in the following.

In order to extract the horizontal and vertical edge

images I X and I Y, simple Roberts’ Cross kernels are
used:
X 1 0
=1Ix (0 - 1) (1
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The resulting images can be used to calculate the edge
gradients orientation (phase) I P and magnitudes I m

Y
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To reduce noise and emphasize the relevant edges, a
nonlinear filter is applied to the magnitude image I'",
suppressing low values and emphasizing the higher
ones. Additionally, in order to get a smoothed gradient
image, the gradient magnitudes are spatially spread
out similar to the Chamfer algorithm [11], while edge
orientation is taken from the highest magnitude in the
surrounding pixels. This algorithm allows to propagate
the edge information to arbitrary distance at constant
time. Figure 2b shows the resulting gradient image,
used for sampling the difference between edge orien-
tation and the respective expectation.

(@ 1", 1P

OV

Fig. 2. Left: raw gradient image, Right: propagated
edges; In both images orientation is coded by hue and
the magnitude by intensity.

For evaluating a particle’s edge likelihood, for each
edge feature point of the shape model, a Gaussian
on the difference between expected measured orienta-
tion is applied and weighted by the magnitude at the
feature’s position. High likelihoods are resulting from
correctly oriented image gradients directly situated at
the expected shape model feature positions. The edge
models likelihood F'¥ (I, 8) is calculated as the arith-
metic mean of all m edge fit values. One might expect a
product here, assuming independent observations at the
feature positions. However, experiments showed that
this assumption might not be correct and an average
is more robust.

HOG Model

As already noticed, the HOG detector [1] is a very
reliable source of information, which we do not want
to miss. Caused by the expensive computational effort,
we unfortunately only can run the HOG detector in
a parallel process every second. We trained an HOG
detector on upper body data, containing different body
orientations. Due to Non-Maximum-Suppression, this
should result in one bounding box for each detected
person. To get a real-valued likelihood F7O¢ (I,0)
for weighting the particles of the particle filter based
tracker, the matching of the expected bounding box,



resulting from the shape model features (see above), to
the closest HOG detection is used. Due to a fixed ratio
of HOG detection bounding boxes, the area of bound-
ing box overlap can not be applied directly. Instead we
only use the vertical overlap and the horizontal distance
(see Fig. 3). Additionally, it would be possible to in-
clude a real valued likelihood of the HOG detections as
introduced by Felzenszwalb [9].

HOG Detection

vertical
overlap

hape Model

> Bounding Box
distance of hori-

zontal centers

Fig. 3. For calculation of HOG likelihood for a given
hypothesis 8, only the vertical overlap and the hor-
izontal distance, between the bounding box detected
by HOG and the expected bounding box of the Shape
Model, are used

3.3. Specific observation model components

While the HOG models are useful for detecting peo-
ple initially, only the Edge Model is applicable at
an adequate frame rate. For robust tracking, which is
not possible purely based on edge orientation, and for
identification of different people, more person depen-
dent information is needed. The color of clothes, hair
and skin are suitable. Once an HOG and edge based
model could be fitted, the color of feature points can be
adapted for the present person, and the information of
color and color difference model now allows a tracking
in real time, based on edges and color features. In par-
ticular, each time an unspecific color model trained on
multiple people yields better likelihood than a person
specific model, a new instance for the person specific
trackers is created for that person. Models not matching
for a longer time are deleted.

Color Model

The Color Model operates in the HSI color space. For
each shape model feature point, a Gaussian distribution
on the HSI color is specified. Its parameters are learned,
using the images when the model has been fitted using
the generic models. Therefore, a recursive Maximum
Likelihood estimation is used. While different color
spaces have been tested, we found that robustness on il-
lumination changes and shadow casting are represented
best in a decorrelated space like HSI. Reflecting that
issue, the estimated variance regarding the intensity
dimension usually is higher than for hue and saturation.

To get the color likelihood F© (I,8) for a given
parameter vector @, again all feature positions ¢ are
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evaluated and combined taking into account their cur-
rent visibility v;.

First, the Gaussians are evaluated with the current
pixel color at feature position ¢, yielding wg ;, ws,; and
wr ; for the three color space channels.

One disadvantage of HSI space is the high noise of
hue for high and low intensities. Therefore, a second
step mixes w in a continuous manner. A is the mix-
ing function depending on the image intensity at the
considered pixel. It is high for weak intensities, falling
to zero for medial intensities and rising again for high
intensities.

WH,; +Ws,; + Wi

w; = A(l]’i 3

) swr g+ (1 - A(l]’i)) .
(5)

Once the color model responses w; for all the
feature positions are evaluated, they are combined,
weighting by the visibility v;.

o vi - In(ws)

1=

m (©6)
i

FC(1,0) = exp (
Uj

Color Difference Model

As described above, the color model is adapted using
only a few images. Typically, the person does not
turn around, to show all the feature points for train-
ing the color. Induced by an unsymmetrically trained
color model, the tracker will prefer orientations used
while training the color model, since the according
color features mostly match better to the observations,
than unspecified color features. In order to allow a
prediction of backside colors of a person, the general
color difference model knows relationships of colors of
different shape model feature points and helps adapting
the unobserved features. Unfortunately, this intelligent
update of color models was not yet implemented for the
experimental tests described below, but it is expected
that it improves the orientation estimation drastically.

3.4. Likelihood Estimation

Once the partial likelihoods have been determined, they
have to be combined into a particle weight. Again
the independence of the modalities (color, edge and
HOG) can not be assumed, thus a pure product is not
sufficient. In our implementation, a Gamma-operation,
known from Fuzzy logic, is used. It is a compromise
between product and arithmetic mean.

P(116) ~ ~ ( " [T oMmm <e,1>) ;
Me{E,HOG,C,CD}
(1-9) ( >

Me{E,HOG,C,CD}
It is aspired to learn the ~ and o™ parameters of
that combination function on training data.

1

M M
]| a F (971)> @)



Algorithm 1 Tracking

1: for all particle hypotheses 8, do

2:  Prediction using stochastic motion model

3:  repeat // local optimisation

4 Importance Sampling using appearance like-
lihood P (I]0) from observation model

5: gradient ascent

6:  until convergence

7: end for
8: Resampling

4. TRACKING

The tracking is based on the condensation algo-
rithm [12], a particle filter for state estimation. In
our implementation, this state is the pose of persons,
characterized by the parameter vector 6. If there are
multiple persons present, an additional dimension of
the state space is the identitiy, that is the person specific
model to be used.

Initially the particles are equally distributed within
the pose space.

For each new image the particle positions 8 are
predicted using a stochastic human motion model (see
alg. 1). This model considers restrictions of joints and
limitations in space.

A conventional particle filter at this step would
apply the importance sampling in order to weight the
particles. Because of the high dimensional pose space
and the limited number of particles, the likelihood of
finding the optimal position in the state space is rather
low. To prevent suboptimal particle distributions, a
local optimization step has been introduced, which by
means of a gradient ascent improves particle positions,
before the final importance sampling is done. One may
notice, that such a local optimization changes the belief
distribution, but we are interested in the maximum at
all. Too strong convergence can be compensated by a
rather wide motion model. Two possible methods for
the local optimization have been evaluated, a Particle
Swarm Optimization (PSO) and deterministic gradient
ascent, where each dimension is optimized iteratively.
The PSO could not outperform the greedy gradient as-
cent and therefore, the more efficient gradient method
has been chosen.

After that a common resampling is perfomed. Un-
fortunately, condensation algorithm converges all parti-
cles close to the maximum. In order to be able to detect
new people, a defined rate of particles is randomly
interspersed.

5. REAL TIME TRACKING AS SHARED
TRACKING

A fundamental issue of the proposed tracker is the com-
putational effort. As noticed above, the HOG model
needs several seconds for one image. Because this
would delay the complete tracker, we decided to run
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two instances in parallel (see Fig. 4). The first instance
is running in real time, while only edge and person
specific color models are used. Naturally, no robust
tracking is possible initially.

On the second instance, which is running with
a very slow frame rate and the delay of the HOG
detector, the detections and local optimization yields
good results. However, it is not really applicable for
tracking. Once this slow instance has found a detection,
the user specific models, which are shared with the
other instance, are updated. From that point, the real
time tracker can find people robustly.

3D Appearance

3D Appearance

Tracker Detector
Generic Person- Generic
Components|| Specific ] - _(; Components
without HOG| [Components update | . Hog

+Qbest

Fig. 4. Structure of the shared overall tracker: a real
time instance (left part) uses edges and color models,
a more specific but significantly slower instance is
utilizing the edge and HOG model, while updating the
color models of the fast instance

6. EXPERIMENTS

The validation data was captured, while a person moved
within a 2m x 4m rectangular area in front of the robot
(see Fig. 6).

X[m]
9,12,14@F-------- - 10,16
‘,,,::\,:,,,,,,,,;,,,f<_.7
R
' *::7'*/::** L S ]
1,11,15‘4 ffffffff 1 - Se

Fig. 6. Bird’s eye view of a test person’s trace. Numbers
give the sequential order

The robot captured images (1396pz x 260pz) of
its surrounding using an omnidirectional camera (SONY
RPU C2512) at 6.5 frames per second. Furthermore,
a laser scanner (Hokuyo URG-04LX) was applied to
gain ground truth data of the person’s position and
orientation. The person’s orientation follows from the
positions, because of the predefined trace the person
had to pass.
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Fig. 5. Histograms on the errors in the cylindrical position dimensions (a-c) and the upper body orientation (d).

In order to evaluate the real time tracker, in a
first pass, the HOG detector has been applied on the
sequence and adapted the color model to its detections
as described above. The image sequence consists of
592 images, but when the person turned around at the
corner points no exact orientation data exists in the
ground truth data. Thus these images are neglected for
the evaluation, while 319 images remaine.

We could operate the system on a 2 GHz CPU
in real time at 6.5 frames per second, which was the
limitation due to the camera used.

The validation of the person’s pose estimation is
performed in cylindrical coordinates as also used for
the pose parameters of the shape model. Figure 6 shows
a few histograms on the errors in each of the position
dimensions we were interested in.

The most informative value for validation is the es-
timation of the direction angle (. This reflects the hori-
zontal position in the onmidirectional image. The his-
togramm of the absolute direction error shows a clear
tendency that people’s position is correctly tracked.
Higher errors occured when the person was very close
to the robot and thus covered a wider area, which is not
matchable to the laser scan accurately.

The estimation of the height z in the image has
an impressive low variance of o, = 4.76cm. The
errors here are caused by head-contour mismatches.
Sometimes the model fitted to the shoulders instead of
the head.

The evaluation of the distance estimation 7 is vi-
sualized in Figure 5(c). Its variance is o, = 0.43m,
which is not as good as for the horizontal and vertical
positions. The reason for that is the variance of the
body shape. Our model assumes a rigid body structure,
causing greater variance in depth by means of the
inverse perspective.

The body orientation is not estimated robustly. As
mentioned above, due to the not yet implemented color
difference model, the initial angle can be detected
rather good, but when the person turns and the other
side is becoming visible, the prior in the color model
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causes the wrong adaptation. We are optimistic to
overcome this drawback by the color difference model.

Conclusions

The proposed approach extends the generic person de-
tection, via Histograms of Oriented Gradients (HOG),
by parallel real-time 3D pose tracking and person iden-
tification based on specific color appearance models.
We could overcome the limitation due to computational
effort of the HOG by splitting the real time tracker from
a slow instance operating the HOG.
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