
PROCEEDINGS

13 - 17 September 2010

Crossing Borders within the ABC

Automation,

Biomedical Engineering and

Computer Science

Faculty of
Computer Science and Automation

www.tu-ilmenau.de

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

55. IWK
Internationales Wissenschaftliches Kolloquium

International Scientific Colloquium

http://www.tu-ilmenau.de
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

Impressum
Published by

Publisher: Rector of the Ilmenau University of Technology

Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff

Editor: Marketing Department (Phone: +49 3677 69-2520)

Andrea Schneider (conferences@tu-ilmenau.de)

 Faculty of Computer Science and Automation

(Phone: +49 3677 69-2860)
Univ.-Prof. Dr.-Ing. habil. Jens Haueisen

Editorial Deadline: 20. August 2010

Implementation: Ilmenau University of Technology

Felix Böckelmann
Philipp Schmidt

USB-Flash-Version.

Publishing House: Verlag ISLE, Betriebsstätte des ISLE e.V.

Werner-von-Siemens-Str. 16
98693 llmenau

Production: CDA Datenträger Albrechts GmbH, 98529 Suhl/Albrechts

Order trough: Marketing Department (+49 3677 69-2520)

Andrea Schneider (conferences@tu-ilmenau.de)

ISBN: 978-3-938843-53-6 (USB-Flash Version)

Online-Version:

Publisher: Universitätsbibliothek Ilmenau

Postfach 10 05 65

 98684 Ilmenau

© Ilmenau University of Technology (Thür.) 2010

The content of the USB-Flash and online-documents are copyright protected by law.
Der Inhalt des USB-Flash und die Online-Dokumente sind urheberrechtlich geschützt.

Home / Index:
http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

http://www.db-thueringen.de/servlets/DocumentServlet?id=16739

A GENERIC GUIDANCE SYSTEM FOR UNDERWATER VEHICLES

Helge Renkewitz, Torsten Pfuetzenreuter

Fraunhofer Application Center System Technology
Am Vogelherd 50

98693 Ilmenau, Germany
Email: helge.renkewitz@iosb-ast.fraunhofer.de

Email: torsten.pfuetzenreuter@iosb-ast.fraunhofer.de

ABSTRACT

Today, it is not exceptional for an institution to own

several different autonomous underwater vehicles. De-

spite the nice effect of having multiple platforms avail-

able, this can easily become a challenge for the user

and even more for a system designer. Each vehicle

is usually equipped with a native control system and

hardware specific modules. The Fraunhofer Applica-

tion Center System Technology in Ilmenau (Germany)

currently possesses three underwater vehicles (both au-

tonomous underwater vehicles (AUV) and remotely op-

erated vehicles (ROV)); another novel vessel is being

developed. All are equipped with individual guidance

systems. Thus, modifying and creating new software,

planning missions and evaluating them has to be done

in very different ways. This fact shows the necessity to

develop a new software framework for underwater ve-

hicles. It is called ConSys (short for Control System)

and offers several features that will be described in this

paper.

Index Terms— Autonomous Underwater Vehicles

(AUV), Remotely Operated Vehicles (ROV)

1. INTRODUCTION

The Fraunhofer Application Center owns three under-

water vehicles. Each vehicle has its individual control

system that is very different from the others with re-

spect to software module creation or modification, mis-

sion planning and evaluation. An ongoing project deal-

ing with the construction of a new AUV (up to 6000m)

for deep sea missions will provide us with another ve-

hicle in the near future.

Operating those autonomous systems from differ-

ent vendors is a challenge for the crews. Beside differ-

ent mission preparation tasks like battery charging, sen-

sor and actuator checks and communication setup, the

mission planning procedures vary entirely from vehicle

to vehicle. Typically, expert knowledge is required to

plan and monitor the mission as well as to evaluate the

collected data. While the data post processing and eval-

uation is an automatable job, planning and monitoring

are usually time consuming and often error sources.

By creating an AUV of our own we were given the

opportunity to develop an adaptable software frame-

work for underwater vehicles called ConSys with the

following characteristics:

• Framework structure and communication: sup-

ports for modular control systems with simple

and powerful inter process communication mech-

anisms,

• Abstraction layer: complete abstraction layer for

all needed interfaces to the underlying operating

system, sensor and actor buses,

• Graphical user interface: easy to use, extensi-

ble, task-oriented application for mission plan-

ning and evaluation,

• Vehicle independent control system: support for

development of a vehicle independent control sys-

tem for AUVs and ROVs, including autonomous

and teleoperated manipulation capabilities.

• Messaging data structures: based upon the frame-

work infrastructure a number of domain-specific

data structures are defined to distribute all re-

quired information between the AUV’s software

modules. For other use cases only new data struc-

tures are needed to create a very different control

system.1

All three available vehicles to test and validate the

software framework are of different size, weight as well

as propulsion and steering configuration. The smallest

vehicle called Seebaer is derived from a mine-disposal

vehicle and equipped with a pan-tilt-zoom color cam-

era (length: 1,30 m, weight: 40 kg, Fig. 1(a). It is

powered by four stern thrusters and a vertical thruster

located at the center of gravity and controllable via a

fiber-optic link.

1The idea of domain-specific data structures is similar to the

CORBA standard, but without the abstraction overhead used in the

standardized architecture [1], [2].

370

(a) Seebaer (b) Seewolf (c) ExAuv

Fig. 1. Underwater vehicles

The Seewolf is a bigger version of the Seebaer since

it shares the propulsion concept (4 stern thrusters, one

vertical thruster, length: 2,00 m, weight: 120 kg, Fig.

1(b). Last year it was equipped with two lateral thrusters

located near bow and stern to allow transverse move-

ments, which are necessary for inspection of under-

water structures like ship hulls, piers or sheet piles.

Both Seebaer and Seewolf are currently modified with

a computer module and navigation sensor in order to

use them as autonomous vehicles in addition to the re-

mote control feature.

The newest vehicle was designed by students to

have an easy adaptable test vehicle for shallow wa-

ters up to 100 m and is called ExAUV (length: 0,84 m,

weight: 37 kg, Fig. 1(c). With an ROV-like shape and

six thrusters to control five degrees of freedom (DOFs)

it is a mobile and versatile system that can operate au-

tonomously as well as remotely controlled. The se-

lected construction allows the modification of thruster

positions, the integration of additional sensors or mount-

ing an underwater manipulator.

This paper will focus on the structure of the soft-

ware framework developed in C++, details on the im-

plementation including problems typically arising dur-

ing adaptation of new sensor and actor hardware, the

ideas of the graphical user interface and the applica-

tion of ConSys on the different vehicles owned by the

Fraunhofer Application Center.

2. FRAMEWORK STRUCTURE

Applying the framework and its rules during software

development leads to a clean, modular software design

where functional units are individual software modules.

This eases the design and test of the units, but requires

more effort for data transfer (inter-process communica-

tion between modules) and associated synchronization

overhead. In that it is similar to other software frame-

works like MOOS or ROS [3], [4]. The following state-

ments focus on the most important differences to these

frameworks.

The communication structure builds on top of the

Spread Toolkit, a high performance messaging service

[5]. In Spread, one or more computers form a commu-

nication group. It allows dynamical join, leave, sub-

scribe and unsubscribe operations from distributed ap-

plications. Messages can be served in unreliable, reli-

able or safe manner (more types applicable), bindings

for a large number of programming languages are avail-

able.

Application Interface Layer (AIL)

ConSys Interface Layer (CIL)

Spread Toolkit

Comm

Object

Module

Base

Serial

Ports

Low Level

Controller

Application

starter

Message

logger

Controller

Library

Filter

Library

OS Services

(Windows 2000 – 7 / Linux)

Logging Threads

Processes
Configuration

Handling
Utility Classes

Mutexes &

Events

Expression

Library

CAN

Library

Navigation

Library

Vehicle

Configurator

Task

Library

Sensor AppsNavigation

Event

Processor

Mission

Management

System

Status

MATLAB

Interfaces

Fig. 2. ConSys framework overview

For the ConSys software modules the messaging

system and its configuration is transparent - changes

to message delivery settings or network configurations

are handled in the toolkit. Modules need to connect to a

Spread daemon (locally or centralized in the network)

and join a group in order to receive ConSys messages

(Fig. 3(a).

ConSys has the capability to create so called ’shared

modules’. These are started as one process and con-

sist of all functional units configured as shared mod-

ules (Fig. 3(b). The data transmission between these

units occurs with very low latencies while the commu-

nication with other modules remains unchanged. Ini-

tially, this concept will be used for the navigation mod-

ule linking the information of different sensors to form

the vehicle’s position and attitude estimation.

371

Subsciption

Management

Service

Client 1

Client 2

Client 3

Client 4

Inter-Process Communication

(Unicast, Broadcast, Multicast)

Registration / Deregistration /

Subscription / Unsubscription

Data transmission

(a) Classical modules

Subsciption

Management

Service

Client 1

Client 2

Client 3

Client 4

Inter-Process Communication

(Unicast, Broadcast, Multicast)

Registration / Deregistration /

Subscription / Unsubscription

Data transmission

Data transmission via message queues

(b) Shared modules

Fig. 3. ConSys modules communication structure

3. ABSTRACTION LAYER

The ConSys framework introduces an operating system

abstraction layer called ConSys Interface Layer (CIL)

to form a platform-independent base for the software

modules (Fig. 2). This layer contains the elemental

elements for application programming:

• a communication class based on Spread Toolkit,

• a serial port class necessary for sensor interfac-

ing,

• multi-thread support classes (threads, mutexes,

events)

• logging facilities to save log messages from the

modules,

• a module base class that incorporates the com-

munication, configuration and message handling

procedures and

• several other utility classes for easier module pro-

gramming.

On top of the CIL a number of commonly used ap-

plications are implemented, for instance an application

starter (starts and monitors all other modules), a system

status observer (checks CPU load, memory consump-

tion, etc.) or an universal message logger (logs mes-

sages sent via the communication channel).

Applications dealing with sensors and actuators or

controlling the vehicles route require additional fea-

tures that are located at the Application Interface Layer

(AIL):

• The navigation library contains coordinate trans-

formations, a serial port driver class and several

sea water computation algorithms derived from

[6] and [7]. Position estimation classes are avail-

able to compute the vehicle’s location and atti-

tude based on navigation sensor inputs [8].

• The filter and controller libraries are needed for

input data filtering and vehicle control and con-

sist of state-of-the-art algorithms.

• The CAN library aggregates the Controller Area

Network (CAN) drivers for different hardware

interfaces and CANopen device profiles for mo-

tor controllers (DSP-402) and general I/O mod-

ules (DSP-401) [9].

• The expression library is needed for evaluation

of logical expressions and primarily used by the

event processor application. The event processor

is configured by scripts to check statements like

((Depth < 1.0) && WifiAllowed) and to react depend-

ing on the evaluation result with the execution of

a shell script or the publication of a message.

• The task library contains a number of mission

tasks that can be combined to form a complex

mission. The mission management application

uses this library to execute a mission and to re-

plan it if necessary [10].

All these libraries are continuously extended with algo-

rithms, drivers and mission tasks.

4. GRAPHICAL USER INTERFACE

Complex underwater systems like AUVs and ROVs are

usually equipped with a wide range of sensors that pro-

duce a huge amount of data. This data can be automat-

ically processed and evaluated but the user finally has

to make decisions based on this information. In case

of controlling a ROV, this can lead to a high cognitive

load for an operator during a mission and makes it even

more important to provide a graphical interface which

is ergonomically designed [11].

As a matter of fact, controlling such a system with

all its sensors and actuators requires an experienced

372

user. But it’s not always guaranteed to provide suffi-

cient knowledge to the actual user of the system so it is

very important to design the Graphical User Interface

(GUI) according to well-proven guidelines (based on

the DIN EN ISO 9421-110 [12]). By following these

guidelines it can be guaranteed that a new user will not

be confused by the system’s operating mode or by the

windows design and functionality.

Based on these thoughts the aspired GUI should

have the following properties:

• highly customizable for each user

• adjustable at runtime

• load and save different layouts

• provide shortcuts for experienced users

• help system for new users

4.1. Current prototype

The GUI will be implemented in Nokias QT frame-

work [13]. This software framework was chosen be-

cause it allows porting the application onto different

operating systems. Developing the GUI is done by us-

ing Microsoft R© Visual Studio R© but the platform for

the actual application will be a Linux system.

A graphical interface should provide a better view

on the data that is processed in the ConSys core. Hence,

an interface between the core application and libraries

was necessary. Once the data is correctly delivered to

the GUI, showing this information is only design and

filter process.

Right now, the current prototype is able to receive

data from the ConSys framework and to show this data

in a QT application. Those applications are designed

as widgets which will register automatically to the cor-

responding ConSys application (when they are started)

and receive its data. Given this approach it is clear that

all sensors will have an own sensor widget that can be

placed anywhere in the mainwindow. The QT widget

that allows this design is called Dockwidget. These

widgets can be docked to a main widget, to other sen-

sor widgets or even moved out of the actual window

to become a flowing widget. This will be very useful if

one or more sensors have to be observed very intensely.

As mentioned before, each user might have own

preferences in how to design the GUI. Therefore, it is

necessary to save one or more certain GUI layouts and

load it later as they are required. This functionality is

not only helpful for the individual desires of different

users but also for defining pre-assembled layouts for

specific vehicles. Imagine a set of layouts for each ve-

hicle that can be loaded at runtime by just choosing the

corresponding menu item.

One of the most important widgets in the GUI will

be the mission planning tool. As mentioned before,

processing and evaluating the sensor data can be au-

tomated but planning the mission for the vehicle will

still be done by the operator. Thus, carefully designing

this application is the most important part in the GUI

implementation and will be described in the next sec-

tion.

4.2. Mission Planning Tool

The map interface for the current mission planning tool

is based on a LGPL QT widget called QMapControl
[14] but was modified for the first approach. Its native

functionality can be described as follows:

• it is compatible with many map providers

• custom objects can be drawn into the map

• new objects can be added to any coordinate

• the navigation is customizable

• map tiles can be stored persistently

At first, it should be possible to add routes or mis-

sions to these maps. Therefore, new functionality was

integrated that allows the user to draw new routes or

missions into the map. These routes can be displayed

as visual overlays to the map (see figure 4) or as textual

information into an additional route editor.

This editor shows each part of the mission with

its corresponding properties like the type, the ID and

the start/end position of the mission segment. Obvi-

ously, as the route and the mission is getting more com-

plex, the mission plan and its corresponding data grows

rapidly.

Fig. 4. A mission plan with encoded depth information

Another disadvantage of a two-dimensional plan-

ning tool for underwater vehicles is that the information

about depths has to be displayed somehow. In this pro-

totype, depth information is stored in the mission plan

as well - so experienced users can see this information

in the editor. For unexperienced users the correspond-

ing tracks or arcs are painted in the map with different

colors. Figure 4 shows the encoded depth information.

373

Preparation Planning Execution Evaluation

Application messages:

Vehicle: Seewolf

Battery: 40 Ah

Limits

Depth: 300 m

Duration: 2h 30min

Start

Limit

Check

Add DelChkPar

Abort End

Survey

Len: 3 nm

Width: 5 nm

HOG: 50 m

Survey

S
E

Transit

Transit

(a) Mission planning: start position, survey and end position plannend by

user, other elements are inserted automatically

Preparation Planning Execution Evaluation

Vehicle messages:

Lat: 28.29

Lon: -15.66

Dep: 120.2

Seewolf

Vehicle: Seewolf

Mode: Manual control

SOG: 2 kn

HOG: 22.0 m

Heading: 48.1 °

Roll: 0.8°

Pitch: 1.5 °

Nav

Pow

Batt

Sens

HD

Mem

CPU

Payl

Stop

Surface

(b) Mission execution: in teleoperated mode the most important vehicle data

are shown beside the forward looking sonar and the sea map

Fig. 5. GUI design ideas

In this example you can see that the mission’s operat-

ing depth at the beginning is different from the depth at

the end. Taking a closer look at the editor will give the

additional information that at the end of the mission the

vehicle descends below the surface, then ascends to the

surface and descends again at the end of the mission.

Some ideas of how to improve the User Interface

are illustrated in figures 5(a) and 5(b). These concep-

tual pictures show the aspired type of GUI that will be

finally used in our framework.

Here, the typical mission stages are shown at the

top of the windows. You can see different tabs for

preparation, planning and execution. This can also be

extended to other stages like observation and evalua-

tion. Each of these tabs has a certain layout and will be

clearly distinguishable from each other.

Figure 5(a) shows the automated mission planning.

As mentioned above, the current tool produces a huge

amount of points for complex missions. An operator

would need much time to set up such a complex mis-

sion. The new idea is simple: the user just inserts the

start and end position (or a point of interest (POI)) and

defines the type of mission (like exploration, inspec-

tion, etc.). All the other steps will be done by the ap-

plication. Given the type of mission, environmental pa-

rameters (sea maps, sensor data, vehicle dynamics etc.)

the tool will automatically generate a route with sub-

tasks. In this figure, the subtasks include starting and

ending the mission, transitting the vehicle and survey

special areas.

The information displayed on the screen is just the

one the user entered (it can be seen at the right side of

5(a)). Reducing the information avoids the information

overload of the operator and allows inexperienced users

to work with the system. But it has to be guaranteed

that there will be a mode available, where the operator

can check the automatically generated data in order to

change values manually.

As the planning is done, a user can switch to the

execution tab shown in figure 5(b). Here, the current

vehicle(s) are shown on the map and the most impor-

tant sensor data can be displayed at the side of the win-

dow. These sensor widgets can be arranged as the op-

erator desires. A small status control is shown at the

bottom right corner of the screen. With an information

display like that crucial information like battery charge

status, communication link and error messages can be

displayed (encoded into colors).

Special configuration files for different vehicles al-

low the creation of special layouts for every vehicle.

Infact, none of the vehicles have identical sensor equip-

ments. Configuring the GUI according the vehicle could

be done once - with all the sensors provided - and then

be saved. As the system is started, the configuration

file is parsed and as soon as a certain vehicle is defined

its corresponding GUI layout is automatically loaded.

Registering the sensors and actuators and giving the op-

erator the ability to work as the system is ready.

5. VEHICLE INDEPENDENT CONTROL
SYSTEM

The different vehicles that will be used for evaluation of

the ConSys framework have different propulsion con-

figurations. A common data structure is defined for the

controller configuration as well as for the controller set

points. The controller configuration message contains

the information needed to set up the low level controller

of the vehicle in question:

• The control mode defines what DOFs are con-

trolled by an automatic control algorithm (in au-

tonomous mode all functions will be controlled

and in pure teleoperated mode no one). This

feature enables the assisted teleoperated mode

where some degrees (e.g. course, pitch, depth)

are controlled automatically and the operator can

374

concentrate on his primary tasks, for instance to

manipulate object with an robotic arm.

• The remaining thrusters get the demanded rota-

tional speed.2 For these actuators the control-

ling software module sends the thruster identi-
fiers (names) in the same sequence as it send the

speed values during operation.

The controller set points message consists of:

• controller setpoints for controlled DOFs: depth,

forward speed, lateral speed, course and pitch,

• rotational speed for thrusters that are not con-

trolled.

A low level controller application is responsible for

driving the actuators. Therefore it transforms the set-

points into control actions (if automatic control mode

is active for one or more DOFs) or directly sends the

desired rotational speed to the thrusters. The low level

controller contains control modules for the different ve-

hicles.

6. CONCLUSION

The software introduced in this paper could help devel-

opers and operators of ROVs and AUVs to ease their

work. Using one software framework on different un-

derwater vehicles is unique and will provide the op-

portunity to rapidly implement new components for an

existing system. A common GUI which is designed

according to Human Factors should increase the per-

formance of the operators.

Acknowledgment
The authors would like to thank the Fraunhofer Gesell-

schaft in Munich, Germany for funding this research

work via its MAVO program. It is part of the MAVO

project TIETeK of several Fraunhofer institutes to de-

velop a deep diving autonomous underwater vehicle.

A specific feature of this vehicle will be the pressure

neutral design of most of the components reducing the

vehicle’s weight, size and costs.

7. REFERENCES

[1] Michi Henning and Steve Vinoski, Advanced
CORBA programming with C++, Addison-

Wesley, Reading, Mass., 1999.

[2] Michi Henning, “The rise and fall of corba,”

Queue, vol. 4, no. 5, pp. 28–34, 2006.

2If the vehicle has control fins, the desired angles will be trans-

mitted.

[3] Paul Newman, “MOOS-a mission oriented oper-

ating suite,” Tech. Rep. OE2003-07, MIT Depart-

ment of Ocean Engineering, 2003.

[4] Morgan Quigley, Ken Conley, Brian Gerkey,

Josh Faust, Tully B. Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Y. Ng, “Ros: an open-

source robot operating system,” in ICRA Work-
shop on Open Source Software, 2009.

[5] Yair Amir, Claudiu Danilov, Michal Miskin-

Amir, John Schultz, and Jonathan Stanton, “The

Spread toolkit: Architecture and performance,”

Tech. Rep. CNDS-2004-1, Computer Science De-

partment, Johns Hopkins University, 2004.

[6] N. P. Fofonoff and R. C. Millard, “Algorithms for

computation of fundamental properties of seawa-

ter,” UNESCO Technical Papers in Marine Sci-
ence, 44, 1983.

[7] J. M. Pike and F. L. Beiboer, “A comparison be-

tween algorithms for the speed of sound in seawa-

ter,” Tech. Rep. Special Publication No. 34, The

Hydrographic Society, 1993.

[8] Torsten Pfuetzenreuter, Thomas Rauschenbach,

and Juergen Wernstedt, “Multisensor fusion for

navigation of underwater vehicles,” in Proceed-
ings of the 2006 IEEE International Conference
on Multisensor Fusion and Integration for Intelli-
gent Systems (MFI 2006), Heidelberg, Germany,

Sept. 2006, pp. 151–154.

[9] Olaf Pfeiffer, Andrew Ayre, and Christian Keydel,

Embedded Networking with CAN and CANopen,

Copperhill Media Corporation, 2008.

[10] Torsten Pfuetzenreuter, “Advanced mission man-

agement for long-range autonomous underwater

vehicles,” in OCEANS 2003. Proceedings, 22-26

Sept. 2003, vol. 2, pp. 928–933.

[11] Markus Dahm, Grundlagen der Mensch-
Computer-Interaktion, Pearson Studium,

München [u.a.], 2006.

[12] “DIN 9421-110: Ergonomics of human-system

interaction - Part 110: Dialogue principles,” 4

2006.

[13] “Qt 4.6: Qt reference documentation,”

http://qt.nokia.com/doc/4.6/index.html.

[14] Kai Winter, “QMapControl - a Qtopia widget for

map applications on mobile devices,” diploma

thesis (in german), Design Computer Science Me-

dia Department, University of Applied Sciences

Wiesbaden, 2008, Original title: ”QMapCon-

trol ein Qtopia-Widget für Kartenanwendungen

auf mobilen Geräten”.

375

