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Zusammenfassung

Diese Dissertation behandelt Lösungen stationärer und axialsymmetrischer Körper und

ihren parametrischen Übergang zu Schwarzen Löchern. Numerische Lösungen von Flüs-

sigkeiten im Gleichgewicht werden unter Annahme einer “strange quark matter”-Zu-

standsgleichung mit sehr hoher Genauigkeit berechnet. Verschiedene Sequenzen von

Konfigurationen werden für sphäroidale und toroidale Körper untersucht, um die wesent-

lichen Eigenschaften dieser Familie von Objekten aus “strange matter” aufzuzeigen.

Konfigurationen mit maximaler Masse und maximalem Drehimpuls wurden in der Nähe

von - aber nicht an - der “mass-shedding”-Grenze gefunden, im Gegensatz zu den Er-

wartungen.

Außerdem zeigen wir, dass “strange matter”-Ringe einen kontinuierlichen Übergang

zur extremen Kerr-Lösung erlauben. Die von Geroch und Hansen definierten Multi-

polmomente wurden untersucht und deuten auf ein universelles Verhalten von Körpern

hin, die sich parametrisch der extremen Kerr-Lösung annähern. Das Auftreten einer

“throat geometry” als charakteristisches Merkmal der extremen Kerr-Raumzeit wird

diskutiert. Dann zeigen wir, im Hinblick auf die Stabilität, dass ein Testteilchen, das

auf der Oberfläche des Ringes liegt, niemals genug Energie besitzt, um entlang einer

Geodäten ins Unendliche zu gelangen.

Ausgehend vom universellen Verhalten, welches die Multipolmomente andeuten, for-

mulieren wir eine Vermutung bezüglich der parametrischen Annäherung gleichförmig

rotierender Flüssigkeiten an die extreme Kerr-Lösung. Die Vermutung wird für ein Mul-

tipolmoment (den Drehimpuls) anhand eines “thermodynamischen Gesetzes” beschrie-

ben, welches für alle gleichförmig rotierenden Flüssigkeiten im Gleichgewicht gilt. Die

selbe Vermutung wird dann in ihrer Gesamtheit für die Staubscheibe gezeigt.

Abschließend wird das Ernst-Potential der Staubscheibe auf der Achse in eine Taylor-

Reihe in der Umgebung der extremen Kerr-Lösung entwickelt. Diese Reihe scheint

überall auf der Achse zu konvergieren, ausgehend vom Grenzfall des Schwarzen Lochs

bis hin zur Newton’schen Grenze der Scheibenlösung, außerhalb einer kleinen Region in

der Nähe der Scheibe. Die benutzte Methode erlaubt es uns sehr effizient, die Reihe in

beliebig hoher Ordnung zu entwickeln.
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Abstract

This thesis deals with solutions of stationary and axisymmetric relativistic bodies and

their parametric transition to black holes. Highly accurate numerical solutions were pro-

duced for perfect fluids in equilibrium made of strange quark matter. Several sequences

of configurations, including spheroidal bodies and rings, were produced to sketch the

main features of the family of strange matter bodies. The maximal mass and maximal

angular momentum configurations were found close to but not at the mass-shedding

limit, contrary to what was believed.

We also show numerically that strange matter rings permit a continuous transition

to the extreme Kerr black hole. The multipoles as defined by Geroch and Hansen

are studied and suggest a universal behaviour for bodies approaching the extreme Kerr

solution parametrically. We discuss the appearence of a “throat geometry”, a distinctive

feature of the extreme Kerr spacetime. Then we verify, with regard to stability, that a

particle sitting on the surface of the ring never has enough energy to escape to infinity

along a geodesic.

From the universal behaviour suggested by the multipoles, we formulate a conjecture

related to the parametrical approach of uniformly rotating fluids to the extreme Kerr

black hole. The conjecture is explained for one multipole (the angular momentum) using

a “law of thermodynamics” valid for all uniformly rotating bodies in equilibrium. The

same conjecture is then proved in its entirety for the disk of dust.

Finally, the Ernst potential on the axis of the disk of dust is expanded in a Taylor

series anchored at the extreme Kerr black hole limit. This series seems to converge

everywhere on the axis, from the black hole limit to the Newtonian limit of the disk

solution, except for a tiny region near the disk. The method used allows us to generate

the series efficiently to arbitrarily high orders.
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1. Introduction

Once stars exhaust their capacity to generate energy through thermonuclear reactions,

it is understood that they die by a variety of dynamical prosesses, which combine rapid

ejection of matter and contraction of the stellar core. Depending mainly on the initial

mass of the star, its final remnant is expected to be either a white dwarf, a neutron

star or a black hole. These remnants and the dynamical processes leading to them are

all configurations where relativistic effects are important, so relevant modelling needs to

be done in full accordance with general relativity. The dynamical transition to a stellar

remnant is still today an arduous task and not completely understood, but interesting

achievements have been published. Making use of the introduction of a local (3-D)

and dynamic notion of a “horizon” such as is described in [AK04], numerical work has

followed the collapse of an initial distribution of matter to a “black hole”, see e.g. [Fon03].

For sufficiently long run-times, a (4-D) event horizon can be located a postiori and there

exist simulations, e.g. [BHM+05], supporting the widely held expectation that after

collapse, the configuration will settle down to a Kerr black hole. Many questions are

still open however regarding the initial data, the matter model, the accuracy of the time

evolution, etc.

On the other hand, the modelling of the final remnants is a much easier task and

better understood, since the computation can take advantage of symmetries such as

stationarity, axial and equatorial symmetries, and because of the extremely high Fermi

energy expected for the degenerate fermion gas in white dwarfs and neutron stars, we

can assume that their particles have zero temperature. Many discussions conclude that

relativistic stellar models made of uniformly rotating cold perfect fluids are indeed rea-

sonable simplifications of real astronomical stars such as neutron stars [Lin92,MAK+08].

Within the class of stationary and axisymmetric bodies, the static cases (non-rotating

bodies) are the easiest to model and the best known properties are often found from

(and sometimes restricted to) this category. Among these interesting properties, it was

found that between static white dwarfs, neutron stars and black holes, no “smooth”

(quasi-static) transition exists: such transitions imply dynamical collapses. One of these

transitions assumes that the electron-degeneracy pressure in white dwarfs must fail near

the so-called “Chandrasekhar limit” [Cha31] and the dwarf must suddently collapse into

1



1. Introduction 2

a neutron star. For the second transition, the equation of state (EOS) of neutron stars

is still very speculative today, but under the assumption that the energy density in the

star does not increase outwards, it can be shown that stars in hydrostatic equilibrium

must satisfy the so-called “Buchdahl inequality”: they must have a radius greater than

9/8 times the radius1 of a black hole with the same mass [Buc59]. So a static star can

become a black hole only through the process of a dynamical collapse. Contrary to the

dynamics of the first transition, which is dependent on our knowledge of the EOS, the

dynamical collapse in the second transition is valid for any relevant EOS.

This “Buchdahl inequality” is true only for static stars, but it would be legitimate to

ask if, for the entire class of stationary and axisymmetric bodies, a smooth or “quasi-

stationary” transition between a star and a black hole could exist. In [Mei04,Mei06],

necessary and sufficient conditions for a quasi-stationary transition were presented and

it was proved that an extreme Kerr black hole necessarily results. Using the analytic

solution for the relativistic disk of dust [NM95], a transition to a black hole was found

explicitly [Mei02]. Transitions have also been found numerically for rings with a variety

of EOS [AKM03b,FHA05].

In this thesis, we want to investigate in detail the parametric (or quasi-stationary)

transition of stationary and axisymmetric bodies to black holes. Such a transition is

not plagued by all the problems of modelling dynamical collapses, but at the price of

being very highly idealized. A parametric sequence of configurations can at best model

a “non-dynamic” collapse. In astrophysical collapse scenarios, there may well be matter

that does not fall into the centre, and the time evolution of a non-stationary spacetime

will determine how gravitational radiation leaves the system and leads to changes in the

angular momentum of the central region. Thus the transition to a black hole considered

in this work should be seen as an instructive limit capable of shedding some light on

issues regarding the path matter could take in evolving to a black hole.

The conditions for a quasi-stationary transition between a star and a black hole de-

pends on the gravitational potential at the surface of the star, but not directly on the

EOS. So many stellar models with different EOS can be candidates for a parametric

transition to black holes. For this work, we wanted to focus our investigation on a stel-

lar model with an astrophysically plausible EOS. Among the several running candidates

for EOS of neutron stars, we decided to focus on a stellar model made of strange quark

matter: a type of “neutron star” made of equal numbers of deconfined up, down and

strange quarks.

1radius in Schwarzschild coordinates



1. Introduction 3

The work that we present here is planned as follows. We begin by summarizing in

Chapter 2 the essential concepts and equations of general relativity that are needed for

our work. Then, our investigation is divided in two parts.

In a first part (Chapter 3), we present solutions of a star model made of strange quark

matter. The first pages are devoted to a brief description of the equation of state used

here to model strange matter and the numerical method that we use to compute solutions

(Sec. 3.1). Then, sequences of solutions are presented, for strange stars with spheroidal

and toroidal topologies, and some extremal configurations are discussed (section 3.2).

Finally, we follow the progression of multipole moments of rings as they tend to those of

the extreme Kerr black hole, we discuss the appearance of a “throat region” separating

an “inner” from an “outer world”, and we verify numerically that a particle resting on

the ring’s surface is always gravitationally bound, a condition, which can be considered

to be a minimal requirement for stability (Sec. 3.3).

In a second part (Chapter 4), we explore a property of the Ernst potential that fluid

bodies in equilibrium share with black holes near the extreme Kerr black hole limit. This

property, which is conjectured in chapter 3, is partially explained by a “thermodynamical

law” and can take a nice form if the Ernst potential is written as a Taylor series with a

suitable choice of normalized coordinates (Sec. 4.1). As an example, we write down the

beginning of this Taylor series for the Ernst potential of the Kerr black hole (Sec. 4.2). We

prove that this conjecture indeed holds for the uniformly rotating disk of dust (Sec. 4.3).

And finally, we generate a Taylor series for the Ernst potential of the disk of dust near

its black hole limit (Sec. 4.4).

Throughout this thesis, units are used in which the gravitational constant G and

speed of light c are equal to one, and our sign convention of the metric signature is

(+, +, +,−).



2. An Overview of Stationary and Axisymmetric

Spacetimes

This chapter gives a quick and concise overview of the concepts and equations of general

relativity for stationary and axisymmetric spacetimes. It shows the essential information,

definitions and conventions that we make use for this work. For further information on

the theory of equilibrium configurations of rotating fluids, we recommend you to refer

to the book Relativistic Figures of Equilibrium [MAK+08].

2.1. The Metric Potentials and the Einstein Equations

2.1.1. The Metric of Stationary and Axisymmetric Spacetimes

A spacetime with axial symmetry and stationarity requires that the metric potentials gµν

be independent of a time coordinate t and an azimuthal angle ϕ. Restricting ourselves

to spacetimes filled only by vacuum and a rigidly rotating perfect fluid, a decomposition

of the metric into orthogonal 2-spaces becomes possible by virtue of the theorem given

in [KT66].1 The line element for such spacetimes can be written, with use of the Lewis-

Papapetrou coordinates, in the form

ds2 = e−2U [e2k(dρ2 + dζ2) + W 2dϕ2] − e2U(adϕ + dt)2, (2.1)

with the functions e2k, e2U , W and a depending on ρ and ζ only. The equatorial plane is

given by ζ = 0 and the axis of rotation by ρ = 0. These potentials should behave in such

a way that the metric becomes the Minkowski metric at spatial infinity (ρ2 + ζ2 → ∞)

and also corresponds to Newton’s theory of gravity far from the gravitational source:

gtt = −e2U = −1 +
2M

r
+ O

( 1

r2

)
, (2.2a)

gtϕ = −ae2U = −2J sin2 θ

r
+ O

( 1

r2

)
, (2.2b)

1This is the so-called “circularity condition”, which holds for a large class of energy-momentum tensor.
which includes rigidly rotating perfect fluid bodies.

4



2. An Overview of Stationary and Axisymmetric Spacetimes 5

gϕϕ = W 2e−2U − a2e2U = r2 sin2 θ
[
1 + O

( 1

r2

)]
, (2.2c)

gρρ = gζζ = e2k−2U = 1 +
2M

r
+ O

( 1

r2

)
(2.2d)

where M and J are respectively the gravitational mass and the angular momentum, and

where we use r :=
√

ρ2 + ζ2 and tan θ := ρ/ζ . Since we want to deal with uniformly

rotating sources, we introduce a coordinate system with a constant angular velocity Ω

around the rotation axis with respect to the frame of an observer at infinity:

ρ′ = ρ , ζ ′ = ζ , ϕ′ = ϕ − Ωt , t′ = t . (2.3)

The metric potentials of the “rotating frame” are related to those of the “non-rotating

frame” as follow:

e2U ′

= e2U [(1 + Ωa)2 − Ω2W 2e−4U ] , (2.4a)

(1 − Ωa′)e2U ′

= (1 + Ωa)e2U , (2.4b)

e2k′−2U ′

= e2k−2U (2.4c)

and W ′ = W is unaffected by the coordinate transformation.

2.1.2. Uniformly Rotating Cold Perfect Fluids as Gravitational Source

If we consider a perfect fluid body in thermodynamic equilibrium as the source of the

gravitational field, the energy-momentum tensor becomes

T αβ = (ǫ + p)uαuβ + p gαβ, (2.5)

where uα, ǫ and p are respectively the 4-velocity field, the energy density and the pressure

of the fluid.2

The independence of the metric potentials in (2.1) on the time t and the azimuthal

angle ϕ can be expressed using two associated Killing vectors: ξα = (0, 0, 0, 1) for

stationarity and ηα = (0, 0, 1, 0) for axisymmetry; the order of the components follows

xα = (ρ, ζ, ϕ, t). For solutions that are strictly stationary and axially symmetric, the

source must be in thermodynamic equilibrium, which is achieved for a fluid of zero

temperature and rigid rotation, and the 4-velocity must follow a time-like direction

which is a linear combination of the two Killing vectors. To satisfy all these conditions,

2Greek indices run from 1 to 4.
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the 4-velocity field must be

uα = e−U ′

(ξα + Ω ηα) = e−U ′

(0, 0, Ω, 1) or u′α = e−U ′

(0, 0, 0, 1) (2.6)

where uα and u′α are respectively in the frame of an observer at infinity and in the

“co-rotating frame” (rotating with the fluid), and we see that Ω becomes the angular

velocity of the source with respect to infinity. For a fluid in hydrostatic equilibrium, the

constant Ω can be expressed through several different concepts [HS67]:

Ω =
dϕ

dt
=

uϕ

ut
= − ∂ ut

∂ uϕ
=

∂M

∂J

∣∣∣∣
MB=constant

,

where the two last partial derivatives refer to nearby configurations in equilibrium, with

MB being the baryonic mass of the source.

The baryonic mass, the angular momentum J and the gravitational mass M can

be obtained from the energy-momentum tensor with the following integrals over a 3-

dimensional volume containing the source:

MB = 2π

∫∫
ǫB e2k′−3U ′

W dρ dζ , (2.7a)

J = − 2π

∫∫
(ǫ + p) a′ e2(k′−U ′) W dρ dζ , (2.7b)

M = 2ΩJ + 2π

∫∫
(ǫ + 3p) e2(k′−U ′) W dρ dζ , (2.7c)

where ǫB is the baryonic mass density, corresponding to the total energy density of a

volume element less the internal energy density (ǫB = ǫ − ǫint). The mass and angular

momentum from the volume integrals are the same as those measured in the asymptotic

behaviour at infinity in Eqs(2.2) [HS67], so the two methods of measurement provide an

important test of consistency for numerical solutions.

To describe the surface of a fluid body, the co-rotating potential U ′ has a useful

and intuitive meaning: the function is constant along isobaric surfaces. We rename the

potential V ≡ U ′, and the surface of the fluid body, defined to be the surface of vanishing

pressure, can thus be denoted by V = V0. The constant V0 is related to the relative

redshift Z0, the redshift of zero angular momentum photons emitted from the surface of

the body and observed at infinity:

e−V0 − 1 = Z0. (2.8)
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For zero temperature fluid bodies, one can relate the baryonic mass density ǫB to ǫ and

p through

ǫB =
ǫ + p

h(p)
, (2.9)

where h(p) is the specific enthalpy, and has the property that at any location in the

source, the product h(p) eV is always constant.

Nearby configurations in equilibrium with the same equation of state are related by

a law which looks like an analogue of the first law of thermodynamics at zero tempera-

ture [HS67]:

dM = ΩdJ + µcdMB , µc = h(0) eV0 . (2.10)

For sequences of constant angular momentum J , which contain an extremum of the

gravitational mass M within the sequence, it can be shown from the last equation that

the configuration with extremal M marks a limit of stability, provided that there exists

a dissipative mechanism which conserves J and MB. The unstable part of the sequence

near the extremum can be identified by the condition

d2M

dM2
B

> 0 . (2.11)

With the arbitrary 4-velocity uα of a test particle and the Killing vector ξα correspond-

ing to stationarity, one can define the specific energy of a test particle with respect to

infinity, i.e. the energy per unit mass, as E = −uαξα, which is a conserved quantity

along any geodesic. For a fluid element, the specific energy is thus

E = −uαξα = eV (1 − Ωa′) . (2.12)

This quantity can tell us how the matter is gravitationally bound. If E < 1, then the

test particle is bound and cannot escape to infinity on a geodesic; if E > 1, then the

particle has enough energy to escape.

2.1.3. The Einstein Field Equations

The computation of the Einstein field equations (without cosmological constant)

Rαβ − 1

2
Rgαβ = 8πT αβ
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from the co-rotating potentials of (2.4) and the energy momentum tensor (2.5) in the

co-rotating frame leads to the following system of differential equations:

∇2U ′ +
∇W · ∇U ′

W
+

e4U ′

2W 2
(∇a′)2 = 4πW e2(k′−U ′)(ǫ + 3p) , (2.13a)

∇2a′ − ∇W · ∇a′

W
+ 4∇U ′ · ∇a′ = 0 , (2.13b)

∇2W = 16πW e2(k′−U ′)p , (2.13c)

∇2k′ + (∇U ′)2 +
e4U ′

4W 2
(∇a′)2 = 8πe2(k′−U ′)p , (2.13d)

k′
,ρW,ζ + k′

,ζW,ρ − W,ρζ +
e4U ′

2W 2
a′

,ρa
′
,ζ − 2WU ′

,ρU
′
,ζ = 0 , (2.13e)

k′
,ρW,ρ − k′

,ζW,ζ +
1

2
(W,ζζ − W,ρρ) +

e4U ′

W
(a′

,ρ
2 − a′

,ζ
2
) − W (U ′

,ρ
2 − U ′

,ζ
2
) = 0 , (2.13f)

where ∇2 and ∇ are the Laplace and del operators on scalar potentials as if ρ and ζ

were Cartesian coordinates and where a comma denotes partial derivatives.

To find solutions of these Einstein field equations, one must first solve the three first

equations in (2.13) for U ′, a′ and W in the whole spacetime, such that the asymptotic

conditions in (2.2), a′(ρ = 0, ζ) = 0 and W ′(ρ = 0, ζ) = 0 hold.3 Then, k′ can be

obtained via a line integration in Eq.(2.13e) and (2.13f) such that along the rotation

axis (ρ = 0) the condition

ek′

= lim
ρ→0

W

ρ

also holds. Eq.(2.13d) is then fulfilled automatically.

An ingredient missing for solving the Einstein FE is an equation of state (EOS),

relating ǫ and p. Specifying an EOS provides the solution with an absolute scale and the

solution is then specified by choosing two extra physical parameters (e.g. mass, angular

momentum, central pressure, equatorial radius of the body. . . ). The absolute scale can

be “hidden” if we use normalized dimensionless coordinates, which thus gives a solution

independent of scale.

2.2. The Vaccum Domain

Consider now the vacuum region exterior to the mass distribution and extending to infin-

ity. The right hand sides of the field equations in vacuum vanish because of ǫ = p = 0.

3Since we are restricting our attention to the axis, the asymptotic behaviour is the same in both
non-rotating and co-rotating frames.



2. An Overview of Stationary and Axisymmetric Spacetimes 9

In this region, there exists a conformal coordinate transformation4 z′ = z′(z), where

z′ := ρ′ + iζ ′ and z := ρ + iζ allowing one to choose ρ′(ρ, ζ) = W (ρ, ζ), which then leads

to

ds2 = e−2U [e2k′

(dρ′2 + dζ ′2) + ρ′2dϕ2] − e2U(adϕ + dt)2 . (2.14)

This is the metric in canonical Weyl coordinates. The Cauchy-Riemann conditions for

the transformation from (2.1) to (2.14) imply W,ρρ +W,ζζ = 0, which is valid only in the

vacuum domain by virtue of (2.13c) and thus justifies our restricting ourselves to that

region here. Now, we need to introduce two interesting formalisms which are valid in this

domain of spacetime: a complex gravitational potential defined by Ernst, Kramer and

Neugebauer, and the gravitational multipole moments defined by Geroch and Hansen.

2.2.1. The Ernst Equation

With the Einstein FE in the vaccum written in Weyl coordinates, Eq.(2.13b) may be

regarded as the integrability condition for the existence of a function b(ρ′, ζ ′) defined by

b,ρ′ = −e4U

ρ′
a,ζ′ and b,ζ′ =

e4U

ρ′
a,ρ′ . (2.15)

In other words, Eq.(2.13b) becomes b,ρ′ζ′ = b,ζ′ρ′ , and it implies that b must satisfy a

new field equation

(ρ′e−4Ub,ρ′ ),ρ′ + (ρ′e−4Ub,ζ′ ),ζ′ = 0 , (2.16)

which is the integrability condition a,ρ′ζ′ = a,ζ′ρ′. By combining Eqs (2.16) and (2.13a)

in the vacuum, the Einstein equations governing a and e2U can be rewritten using the

single, complex Ernst equation [Ern68,KN68]

(ℜf)∇2f = ∇f · ∇f , (2.17)

where f is the complex function f := e2U + ib. Also, e2U and b are obviously real, so

ℜf ≡ e2U , and ∇2 and ∇ are respectively the Laplace and the gradient operators in a

three dimensional Euclidean space, as if ρ′, ζ ′ and ϕ are cylindrical coordinates. To

fit with Eqs(2.2), the behaviour of the potential at infinity must be

f = 1 − 2M

r
+

2(M2 − iJ cos θ)

r2
+ O

( 1

r3

)
, (2.18)

4The prime notation that we use now identifies the Weyl coordinates, so it has nothing to do with the
prime notation which identified the “co-rotating frame” in the previous section.



2. An Overview of Stationary and Axisymmetric Spacetimes 10

where r :=
√

ρ′2 + ζ ′2 and tan θ := ρ′/ζ ′.

Once a and U have been solved for, the metric function k′ can be calculated via a line

integral. Solutions of the Ernst equation lead to solutions of the Einstein equations and

the metric potentials in the vacuum can be calculated from:

a,ρ′ = ρ′e−4Ub,ζ′ (2.19a)

a,ζ′ = −ρ′e−4Ub,ρ′ (2.19b)

k′,ρ′ = ρ′[U,2ρ′ −U,2ζ′ +
e−4U

4
(b,2ρ′ −b,2ζ′ )] (2.19c)

k′,ζ′ = 2ρ′[U,ρ′ U,ζ′ +
e−4U

4
b,ρ′ b,ζ′ ]. (2.19d)

Not only the form (2.17) of the Ernst equation is valid in both the “co-rotating” and

“non-rotating” frame, the Laplace and gradient operators can also be used in other

3-dimensional Euclidean coordinate systems.

The Ernst equation is a powerful tool to solve the Einstein field equations of axisym-

metric and stationary spacetimes in the vacuum since once we have a solution for f ,

the whole metric (2.14) can then be systematically determined. On the other hand, this

formalism cannot be extended inside matter, so it is not sufficient to generate global

solutions.

2.2.2. The Multipole Moments

From the Ernst potential f , one can define another complex gravitational potential ξ:

ξ =
1 − f

1 + f
⇔ f =

1 − ξ

1 + ξ
. (2.20)

Taking the potential ξ on the positive part of the axis of rotation (ρ′ = 0, ζ ′ > 0), we

can make a series expansion of it at infinity:

ξ(ρ′ = 0, ζ ′) =

∞∑

n=0

mn

ζ ′n+1
. (2.21)

By assuming reflectional symmetry about the equatorial plane, which is expected for

stationary fluid figures in equilibrium, it follows that mn is real for even n and imaginary

for odd n [Kor95,MN95].

The multipole moments Pn defined by Geroch [Ger70] and Hansen [Han73] are alge-

braic combinations of the coefficients mn and characterize the Ernst potential uniquely.
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An algorithm is presented in [FHP89] which generates the infinite set of Pn as a function

of the mn. In this work, we will extract the first multipoles of fluid solutions, so we write

down here the 7 first multipole moments that will be calculated later:

Pj = mj for j = 0, 1, 2, 3 (2.22a)

P4 = m4 −
1

7
M20m0 (2.22b)

P5 = m5 −
1

3
M30m0 +

1

21
M20m1 (2.22c)

P6 = m6 −
1

33
M20m

3
0 −

5

231
M20m2

+
4

33
M30m1 −

8

33
M31m0 −

6

11
M40m0,

(2.22d)

where Mjk ≡ mjmk − mj−1mk+1. These multipoles can then be normalized as follows:

yn = i(−2iΩ)n+1Pn. (2.23)

For the Kerr black hole, the multipole moments are simply

P (Kerr)
n = M( iJ/M)n, (2.24)

where M and J are respectively the mass and the angular momentum of the black hole.

Let ΩH be the angular velocity of the horizon. This quantity is the analogue of the

constant angular velocity Ω of rotating matter. Using the relation

J =
2M2(2ΩHM)

1 + (2ΩHM)2
. (2.25)

we then find

y(Kerr)
n (y0) = y0

(
2y2

0

1 + y2
0

)n

. (2.26)

Through this normalization, all multipoles yn vary at a different rate from zero for the

Schwarzschild BH to one for the extreme Kerr BH, as can be seen by taking respectively

y0 = 2ΩHM = 0 or 1.

2.3. The Black Hole Limit of Fluid Bodies in Equilibrium

It is usualy shown in the first or second lecture of general relativity, that a spherically

symmetric relativistic model star of uniform density with mass M and radius R cannot
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be compressed beyond the limit R/RS = 9/8 (RS is the Schwarzschild radius) without

dynamically collapsing, since the pressure in the centre of the body becomes infinite.

The same logic can be extended to a larger class of equations of state for which the

energy density decreases monotonically from the centre of the star to its surface: static

stars can only be in equilibrium for R/RS > 9/8. There is no continuous sequence of

static fluid bodies in equilibrium leading to a black hole.

However, we could ask if a continuous sequence of fluid bodies in equilibrium can

exist for the more general class of stationary and axisymmetric spacetimes. For the

static case, the Tolman-Oppenheimer-Volkoff equation is used to relate the radius of a

star to its pressure in the centre. With such an approach in the rotating case, we would

probably be restricted to searching for a black hole limit through numerical methods for

different rotating star configurations near the infinite pressure limit. Instead, we should

begin by asking what conditions need to be satisfied for a fluid body in equilibrium to

realize in the limit a black hole.

2.3.1. Necessary and Sufficient Condiditions for a Black Hole Limit

The horizon of a black hole can be intuitively described as a hypersurface boundary,

where it becomes impossible for events “inside the boundary” to have time-like or null-

like curves that can reach and influence the future of the domain “outside the boundary”.

The usual mathematical approach to define a horizon is to identify it as a null hyper-

surface, i.e. a hypersurface whose normal at every point is a null vector (nαnα = 0). In

the case of the Kerr BH, the horizon corresponds to the condition e2V = 0 and a normal

vector can be obtained by the gradient

e2V ,α = −2κ(ξα + ΩH ηα) ,

where κ and ΩH are respectively the surface gravity and the angular velocity of the

horizon, related to the mass M and angular momentum J of the black hole by

κ =

√
M2 − (J/M)2

2M
[
M +

√
M2 − (J/M)2

] , ΩH =
J

2M2
[
M +

√
M2 − (J/M)2

] . (2.27)

Thus, the only linear combination of Killing vectors which does not become space-like

on the horizon of a black hole is a null one:

(ξα + ΩH ηα)(ξα + ΩH ηα) = 0 . (2.28)
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On the other hand, the surface of a fluid body, characterized by the 4-velocity field of

Eq.(2.6) and the constant potential U ′ ≡ V = V0, has the surface condition

(ξα + Ω ηα)(ξα + Ω ηα) = −e2V0 , (2.29)

because the norm of 4-velocities is always uαuα = −1. If a continuous sequence of fluid

figures in equilibrium can reach a black hole limit, it must be a sequence of bodies with

time-like rotating velocity. Then, the surface of the body can only approach the limit

of a BH horizon for Ω = ΩH , the only non-space-like Killing vector combination on

a horizon. Comparing Eqs (2.29) and (2.28), we see that a sequence of fluid surfaces

requires V0 → −∞ to approach, in the limit, a horizon surface. We will see now that

this condition puts a constraint on the mass and angular velocity of a fluid body.

From Eqs(2.7), the mass and angular momentum of a rotating fluid are related through

M = 2ΩJ +

∫
ǫ + 3p

ǫB
eV dMB ,

where we use the short form dMB ≡ ǫB e2k′−3V W dρ dζdϕ. Substituting the baryonic

mass with Eq.(2.9) and using the property h(p)eV = h(0)eV0 , we get

M = 2ΩJ + eV0h(0)

∫
ǫ + 3p

ǫ + p
dMB .

We can easily see that the integral can range only from MB to 3MB. If we assume that

h(0)MB is always finite, the limit V0 → −∞ gives the constraint

M = 2ΩJ .

The Kerr BH that has a mass and angular momentum such that M = 2ΩHJ is the

extreme Kerr BH, where ΩH = ±1/(2M) and J = ±M2. Since we stated above that

the black hole limit can only be reached for Ω = ΩH , the conclusion from [Mei04] is that

the only possible candidate for a black hole limit of fluid bodies in equilibrium is the

extreme Kerr BH, characterized by J = ±M2.

A question that arises now: does a fluid body with V0 → −∞ necessarily have an event

horizon? If we consider the specific energy of Eq.(2.12) for particles of fluid resting on

the surface of the source, with the 4-velocity of Eq.(2.6), it reads

−eV0E = (ξα + Ω ηα)ξα .
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Assuming that particles on the surface are at least marginally bound (E ≤ 1), the last

equation implies in the limit V0 → −∞ that

(ξα + Ω ηα)ξα → 0 , and thus (ξα + Ω ηα)ηα → 0 .

Thus, the Killing vector (ξα + Ω ηα) becomes orthogonal to ξα and ηα on the surface

of the fluid, and because the Killing vectors ξα and ηα are always orthogonal to sur-

faces of constant (ϕ, t), it can be seen that the vector (ξα + Ω ηα) becomes orthogonal

to three linearly independent tangent vectors at each point of the fluid hypersurface.

Then, (ξα + Ω ηα) is a normal vector at every point of that hypersurface, and because

of Eq.(2.29) and e2V0 = 0, this normal vector is a null vector. The surface of the fluid

corresponds to a null hypersurface and then satisfies the conditions for a horizon. There-

fore, the metric of an extreme Kerr BH results outside the horizon, whenever a sequence

of fluid bodies admits the limit V0 → −∞ [Mei06].

2.3.2. The Extreme Kerr Black Hole Geometry

Because the extreme Kerr solution results in the black hole limit of fluid bodies, some

basic information should be given about it. Some properties of the spacetime are par-

ticular and unique compared to the Kerr solution in general. The extreme Kerr BH is

uniquely characterized by a single physical parameter; it is usual to choose either M , J

or Ω, which are related through:

J = M2 , M = 2ΩJ or 2ΩM = 1. (2.30)

With the spherical-like version of Weyl coordinates r =
√

ρ′2 + ζ ′2 and tan θ = ρ′/ζ ′,

the Ernst potential of the extreme Kerr BH reads

f =
r/M − 1 − i cos θ

r/M + 1 − i cos θ
. (2.31)

The metric can be rewritten using Eqs(2.19), and it takes the form

ds2 = e−2U [e2k(dr2 + r2dθ2) + r2 sin2 θdϕ2] − e2U(adϕ + dt)2 ,

with the following metric potentials:

e2U =
r2 − M2 sin2 θ

(r + M)2 + M2 cos2 θ
,
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a =
2M2(r + M) sin2 θ

r2 − M2 sin2 θ
,

e2k =
r2 − M2 sin2 θ

r2
.

The transformation of the metric into the better known Boyer-Lindquist coordinates can

be achieved using the substitution r = rBL−M , with rBL being Boyer-Lindquist’s radial

coordinate. Note that this last substitution holds only for the extreme Kerr BH; more

complicated transformation relations are needed to link the Weyl-Lewis-Papapetrou co-

ordinates with Boyer-Lindquist coordinates for the whole class of the Kerr solution.

The most particular property of the extreme Kerr BH is certainly its degenerated

horizon. The event horizon of the black hole is the surface where grr goes to infinity,

which occurs here at r = 0, i.e. in a single point at the origin of the coordinate system.

The Weyl coordinates do not show it very well, but the horizon still has a finite area

A = 8πM2 and the point r = 0 contains an infinite 3-dimensional volume, as we can see

by measuring a proper radial distance from the centre

δ(R) =

R∫

0

√
grr dr =

R∫

0

√(
1 +

M

r

)2

+
M2 cos2 θ

r2
dr = ∞ (2.32)

for any radial coordinate R outside the origin (R > 0). The geometry at the origin can

be better described by transforming the Weyl coordinates into a new set of coordinates

proposed by Bardeen and Horowitz [BH99]:

r = λr′ , θ = θ′ , ϕ = ϕ′ +
t′

2Mλ
, t =

t′

λ
.

In the limit λ → 0, a new line element reveals a infinitely long “throat geometry” for

the corresponding origin in Weyl coordinates:

ds2 =
1 + cos2 θ′

2

[
2M2

r′2
dr′2 + 2M2dθ′2 − r′2

2M2
dt′2
]

+
4M2 sin2 θ′

1 + cos2 θ′

[
dϕ′ +

r′

2M2
dt′
]2

.

This metric is no longer asymptotically flat at spatial infinity. In the case of fluid

bodies reaching the black hole limit, the throat geometry realizes a separation between

two infinitely distant worlds. At one extremity of the throat, an outside world has the

expected extreme Kerr BH solution, with the throat located near the horizon. At the

other extremity, an inner world contains the source around its centre and has the throat
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geometry at its spatial infinity. It should be noted that the horizon is a feature of

the throat geometry, so the surface of the fluid does not become a horizon. When we

required in 2.3.1 that the body’s surface needs to satisfy the conditions on the horizon,

it was from a typical point of view of the outside world, where it becomes impossible to

distinguish the throat from the source: they are both located at the origin of the Weyl

coordinate system.

Thus, it is possible to fit different solutions with matter in the inner world without

affecting the gravitational field of the outside world, as long as the parameters in (2.30)

are kept constant. It has been found that the inner world can contain matter such as

rings of perfect fluid or a rigidly rotating disk of dust. Moreover, continous sequences of

stationary and axisymmetric solutions exist for these bodies, from the Newtonian limit

to the extreme Kerr-BH limit. These given examples will be the central topics of the

next two chapters.



3. Strange Matter Stars and their Parametric Transition

to a Black Hole

Today, astronomical observations have identified more than a thousand compact objects

thought to be neutron stars, most of them being pulsars. Although there is little doubt

as to their existence, there is still much debate as to the properties of the extremely high

density matter that comprises them. One of the competing models to describe neutron

stars includes strange quark matter: matter that contains a mixture of strange quarks

along with the usual up and down quarks. It is even suggested that strange quark matter

could be more stable than nuclear matter, in which case “neutron stars” could in fact

be mainly composed of a pure quark matter core surrounded by a thin nuclear matter

crust [Web05].

In this chapter, we will consider a stellar model made entirely of strange quark mat-

ter. Solutions are produced by numerical methods. We first produce a class of solutions

with spheroidal topology, then we will look in detail at the parametric transition of

strange matter rings to a black hole. The approach we use to study this transition

differs from those in other papers [NM95,Mei02,AKM03b,FHA05], since we here con-

centrate on the behaviour of multipole moments and on the appearance of a region of

spacetime typical of metrics close to the extreme Kerr limit. The properties of axially

symmetric and stationary strange matter have already been studied for spheroidal con-

figurations [GHL+99], but they have not yet been considered for ring topologies and

their parametric transition to a black hole. Moreover, we include a comparison with the

corresponding transitions of rings governed by other equations of state.

The main results of this chapter were published in [LPA07].

3.1. Model and Method used for Relativistic Strange Stars

3.1.1. Equation of State

Our equation of state is based on the MIT bag model [CJJ+74,CJJT74,FJ84,AFO86].

Under extremely high pressure, the nuclear boundaries of “neutron star” matter may

dissolve to create a phase of a deconfined Fermi gas of quarks, i.e. quarks do not

17
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form hadrons anymore. Up (u) and down (d) quarks could convert to other flavours

with the weak interactions in order to reach a state of lower Fermi energy. But if we

consider the mass of each flavour of quarks, only the strange (s) quark (ms ≈ 0.1 GeV)

would be added to the quark population since the others have much larger masses

(mc, mb, mt > 1 GeV) than the chemical potentials involved (∼ 0.3 GeV). Electrons

can also be present in order to keep the star electrically neutral. Chemical equilibrium

between the different fermions is maintained via weak interactions:

d ↔ u + e− + ν̄e , s ↔ u + e− + ν̄e , s + u ↔ d + u . (3.1)

The two first reactions involve neutrino escape which cools down the star to near zero

temperature in comparison to the Fermi energy of the quarks. One obtains from the

weak interactions of Eq.(3.1) the following chemical potential relations:

µu + µe = µd = µs ≡ µ .

In its simplest form, the bag model ignores the strong interaction and assumes the

mass of the three light quark flavours to be zero. The equilibrium configuration of

massless quarks has equal numbers of each flavour. Thus, the quark population becomes

electrically neutral and the electron population vanishes. With all these considerations,

the thermodynamic Landau potential of each flavour reads

Ωq = −
µ4

q

4π2
for q = u, d, s .

The QCD confinement of the quarks is established by a constant energy density B, the

“bag constant”, which describes the energy difference between the QCD vacuum and

the true vacuum. When summed, the pressures pq and energy densities ǫq of each quark

flavour are related to the total pressure p and total energy density ǫ in the star according

to

ǫ − B =
∑

q

ǫq =
∑

q

(
Ωq − µq

∂Ωq

∂µq

)
=

9µ4

4π2
,

p + B =
∑

q

pq =
∑

q

−Ωq =
3µ4

4π2
.
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These two last equations lead to a simple equation of state (EOS):

ǫ − 3p = 4B . (3.2)

One can see that for any pressure, the bag constant maintains the quark gas at finite

density. The limits of the bag correspond in our case to the surface of the star, such that

the star is entirely composed of strange matter. Thus, like the homogeneous EOS, but

unlike polytropic models, the density of strange matter is discontinuous at the surface.

Sometimes, we will compare results of strange quark stars with homogeneous fluids which

has the EOS ǫ = constant.

The bag constant B constitutes a natural unit to normalize most physical quantities

into dimensionless values. A typical estimate of this constant is B = 60 MeV fm−3 =

9.6×1033 J/m3 [GHL+99]. Using the solar mass as a second natural unit (with G = c =

1), this estimate translates to B−1/2 = 76.0 M⊙ (e.g. a star with M = 2 × 10−2B−1/2

would mean M = 1.52 M⊙). For the baryonic mass, dimensionless values should be

given by taking into account the specific enthalpy from Eq.(2.9). The enthalpy of our

model is given by

h(0) =
E

(uds)
0

E
(ud)
0

which is the ratio between the energy per unit baryon number of strange quark versus

normal matter at zero pressure. A typical estimate for this ratio is h(0) = 0.899, which

leads to
(
h(0)

√
B
)−1

= 84.5 M⊙ with the values given here. It is interesting to note

that E
(uds)
0 < E

(ud)
0 suggests that strange quark matter would be the true ground state

of matter at zero pressure.

In the Newtonian limit, the pressure p is low and negligible in comparison to B, so

the EOS takes the form ǫ = constant. Therefore, all the known Newtonian solutions

for homogeneous bodies will be found in the Newtonian limit of the MIT bag model.

If unstable at low pressure, a quark model of matter is not relevant in the Newtonian

limit, but it is taken as a limiting case of our EOS. In the most relativistic equilibrium

configurations, the star can reach either infinite central pressure or infinite redshift on

its surface. This first relativistic limit concerns stars with spheroidal topology, while the

latter corresponds to the extreme Kerr BH limit for a class of stars with ring topology.
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3.1.2. The Ansorg-Kleinwächter-Meinel Numerical Method

To generate relativistic solutions of stationary and axially symmetric fluid configura-

tions, we used a numerical method described in [AKM03a]. In the AKM-method, the

entire spacetime is compactified and divided in several domains. Because of stationarity,

axial and equatorial symmetries, only one quadrant of the ρ − ζ half-plane needs to be

represented in the compactification. For a given solution, the metric potentials from

Eq.(2.1) are written, using the proper coordinate mapping of each domain, as a spectral

expansion in the form of Chebyshev polynomials of the first kind. The Chebyshev poly-

nomial must reproduce a numerically accurate solution of Einstein field Eqs(2.13) on a

finite set of discrete grid-points covering the domain and the inter-domain boundaries.

To avoid a “Gibbs phenomenon” on the fluid surface discontinuity, one of the domain

boundaries is chosen to coincide with the surface.

By giving an initial solution, the AKM-method calls iteratively the Newton-Raphson

method in order to simultaneously find the metric potentials of a targeted nearby

fluid configuration which must be a solution of Einstein’s FE on the given grid-points.

Through each iteration, the search is constrained by inter-domain boundary conditions

and regularity conditions on the rotation axis and at spatial infinity. However, the

search has to determine the shape of the fluid surface where the metric potentials and

their first derivatives inside and outside the matter must behave continously through

the boundary. By fixing two independent physical parameters and by choosing a scaling

parameter for the coordinates, it should lead to a unique neighbouring solution. The

solution is finally given in a numerical list of Chebyshev coefficients from which one can

compute the metric potentials.

In our search of new configurations, we use some physical parameters not yet men-

tioned, such as the ratio rp/re of polar to equatorial coordinate radius and a mass-shed

parameter β defined as:

β = −r2
e

r2
p

d(ζ2
s )

d(ρ2)

∣∣∣∣∣
ρ=re

= − re

r2
p

lim
ρ→re

ζs
dζs

dρ

where ζs = ζs(ρ) is the ζ-axis position of the surface as a function of ρ. The mass-

shedding limit (also called Keplerian limit in other texts) is characterized by β = 0, while

the case where β = 1 holds for static solutions and Maclaurin spheroids. Fig. 3.1 shows

an example of a strange star configuration in equilibrium, here at the mass-shedding

limit with a cusp appearing on the surface equator.
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ρ
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re
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Figure 3.1: Example of a meridional cross-section of a strange matter star.
The star in this example is at the mass-shedding limit, near the maximal
gravitational mass configuration of the “Schwarzschild” class, with

√
B M =

3.72 × 10−2.

3.2. Solutions of Strange Quark Matter

3.2.1. The Schwarzchild Class of Strange Quark Matter

For homogeneous stars, it was shown that not all relativistic configurations in equilibrium

are connected continously to each other [SA03, AFK+04]. Starting with a static star

(Ω = 0) with an arbitrary central pressure pc, one can then change the parameters to

find continuous sequences of nearby equilibrium configurations that are bound by

• static solutions (Ω = J = 0 or β = rp/re = 1) with pc ∈ [0,∞],

• stars at infinite central pressure pc = ∞ with β ∈ [0, 1],

• stars at the mass-shedding limit β = 0 with pc ∈ [0,∞],

• Newtonian (non-Maclaurin) flat stars at pc = 0 with β ∈ [0, 1],

• Newtonian Maclaurin spheroids (pc = 0 and β = 1) with rp/re ∈ [0.17126..., 1].

We call it the Schwarzschild class, although it obviously does not contain only static

bodies. It is the class of bodies which contains the most relevant configurations for

astrophysics.

In the case of strange quark matter, we can confirm that a Schwarzschild class exists

with the same five boundaries as for homogeneous stars. Since the Newtonian limit

of strange matter has the same EOS as homogeneous fluids, the two Newtonian limit

sequences (Maclaurin and non-Maclaurin) have in all aspects the same physical char-

acteristics as those of homogeneous fluids with the same constant energy density. But
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Figure 3.2: Gravitational mass of the Schwarzschild class for strange matter
stars as a function of the flatness (rp/re-ratio). Equilibrium configurations
(grey zone) are bounded by sequences of static (a-b), infinite central pressure
(b-c), mass-shedding (c-d), non-Maclaurin Newtonian flat stars (d-e) and
Maclaurin spheroids (e-a) configurations. The class is folded on the upper
right and the dashed line marks the maximal extension of the mass within
the class.

as the configurations become more relativistic, the behaviour of strange stars differs

significantly.

An important property of strange matter stars is well illustrated by comparing our

Fig. 3.2 with the analogous Fig. 3 in [SA03] for homogeneous density. The Schwarzschild

class of strange matter is such that for typical sequences running from zero pressure to

infinite central pressure, the configuration with maximal mass is one with finite pressure.

In the case of homogeneous stars on the other hand, the mass increases monotonically

as the central pressure increases.

For strange matter, such a sequence of maximal mass dividing the class suggests that

a region of this class might be unstable. Indeed, a test of stability using Eq.(2.11) shows

us that configurations with higher central pressures are unstable. In articles concerning

strange matter stars, the stability with respect to axisymmetric perturbations is usually

illustrated by showing the mass-radius relationship [KWWG95]. This is done here in
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Figure 3.3: Relation between the circumferential radius Req on the equa-
tor and the gravitational mass M . Curves of constant angular momentum
J0, J3, J6, J9 are respectively for BJ = 0, 3 × 10−4, 6 × 10−4, 9 × 10−4. The
dots mark maximal masses, the dashed lines are the unstable part of the con-
stant J sequences. The dotted line represents the sequence of configurations
at mass-shedding limit and the Newtonian configurations are at origin.

Fig. 3.3, where we plot different sequences of constant angular momentum J . Each

sequence with non-zero angular momentum begins with a relatively low mass along the

mass-shedding limit, then the mass increases until it reaches maximum before decreasing

again. The maximal mass of each sequence marks the limit of stability. On the unstable

side of the sequences, J0 (static) and J3 evolve until the central pressure becomes infinite,

while J6 and J9 are examples of sequences which end again on a mass-shedding limit.

Considering again that a configuration with extremal mass marks a limit of stability

along sequences of constant angular momentum, we can notice in Fig. 3.3 that minima

seem to exist along the mass-shedding limit. By looking more carefully, it appears that

a tiny “valley” of minimal mass exists very near of this limit. Although our numerical

solutions show with confidence these tiny minima inside the class, the resolution was

insufficient to conclude which side of the “valley” should be unstable.
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The Schwarzschild class can be summarized in Fig. 3.4 where the entire domain of

equilibrium configurations fits into a rectangle parameterized by the mass-shedding pa-

rameter and a normalized central pressure. One can recognize the static solutions on

the right side, the infinite central pressure boundary on the top, the mass-shedding limit

on the left and Newtonian boundary at the bottom, with the entire Maclaurin sequence

degenerated in the lower right corner (white dot). Different sequences of constant angu-

lar momentum (J-sequences) and constant baryonic mass (N -sequences) are shown as

examples.

The constant N -sequences always start at a mass-shedding limit and they either stop

on the static sequence or join again to the mass-shedding limit. These sequences inter-

ested Gourgoulhon et al. [GHL+99] since they represent evolutionary sequences of stars

which slowly loose energy and angular momentum via electromagnetic or gravitational

radiation. It turns out that a category of stars with baryonic masses higher than the

value along the Ncrit-sequence, h(0)MB = 3.106 × 10−2 B−1/2, exist only if they rotate.

The constant J-sequences also start at mass-shedding limit and finish either at another

mass-shedding limit or with infinite central pressure. Along them, configurations with

maximal and minimal masses were found and are represented here by the full line.

One configuration has the maximal angular momentum (black dot), with J = 1.226 ×
10−4 B−1, which is very near but not exactly on the mass-shedding limit. It joins the

sequences of maximal and minimal masses. The maximal mass sequence has a sharp

turn near the mass-shedding limit and parallels this limit without joining it. Because

of poorer numerical resolution near the limit, it was not clear which side contains the

unstable configurations, like for the minimal mass sequence. As can be seen in Fig. 3.3,

the minimal mass is always less than 0.1% smaller than the mass of the mass-shed

configuration with same J . So physically speaking, it might be irrelevent to declare one

side of the minimal mass sequence to contain unstable configurations since there is little

expectation that real strange stars would be so accurately bound to this ideal model that

we use. The grey shading in the figure represents the domain of axisymmetric stability

including the inconclusive area near the mass shedding limit.

Some extreme configurations for the whole Schwarzschild class are presented in ta-

ble 3.2 while table 3.1 is restricted to static configurations. The maximal red shift

configurations, considering either static or rotating stars, are unstable with regard to

axisymmetric perturbations. Instability also occurs for the configuration with maximal

angular momentum. When data can be compared with [GHL+99], no difference is ob-

served for static configurations, while differences are small for rotating bodies, but larger
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Configuration ǫ∗c M∗ M∗
B R∗

circ Z0

max. circ. rad. 10.260 2.3653 2.7960 9.9545 0.38041
max. mass 19.251 2.5842 3.1061 9.5453 0.47678

max. red shift 42.241 2.4340 2.8802 8.6750 0.50953

Table 3.1: Configurations of static (no rotation) strange stars with max-
imal circumferential radius, mass and red shift. The physical quantities
are as follows: central energy density ǫc = B ǫ∗c , gravitational mass M =
0.01B−1/2 M∗, baryonic mass MB = 0.01h(0)−1 B−1/2 M∗

B, circumferential
radius Rcirc = 0.01B−1/2 R∗

circ and red shift Z0.

Configuration rp/re β ǫ∗c M∗ M∗
B J∗ Ω∗ Z0

max. flatness 0.1713 1.00 0.000 0.000 0.000 0.000 2.094 0.0000
max. ang. moment. 0.4567 0.01 10.64 3.701 4.394 12.26 3.500 0.7775

max. mass 0.4687 0.01 12.37 3.721 4.437 12.13 3.614 0.8177
max. pol. red shift 0.5065 0.01 25.27 3.477 4.145 9.841 4.084 0.8895
max. ang. velocity 0.5452 0.04 197.6 2.432 2.706 4.202 4.719 0.6882

Table 3.2: Configurations of the entire Schwarzschild class with maximal
flatness, angular momentum, mass, polar red shift and angular velocity. Some
parameters are the same as in table 3.1 and the others are: polar to equator
radius ratio rp/re, mass shedding parameter β, angular momentum J =
10−4B−1J∗, angular velocity Ω =

√
B Ω∗ and polar red shift Z0.

than expected considering their accuracy; e.g. our maximal mass is M = 2.828M⊙ and

Gourgoulhon et al. give M = 2.831M⊙ (using B−1/2 = 76.0 M⊙). Although this is

a 0.1% difference for the mass, this configuration from the same authors has a central

density ǫc = 1.261× 1018 kg m3 while our computation gives ǫc = 1.323× 1018 kg m3, a

5% difference.

A quark matter model that takes into account the mass of quarks, such as Kettner

et al. [KWWG95], suggests that heavier charm (c) quarks would begin to populate the

matter at energy densities ǫ > 9×1036 J/m3, where the constant B = 57.5 MeV fm−3 =

9.22 × 1033 J/m3 is used. Based on our EOS in Eq.(3.2), such density needs a pressure

beyond B−1 p > 324. With the help of Fig. 3.4, one can identify the stable configuration

with the highest central pressure, which is the most massive static configuration. The

pressure reaches B−1 p = 5.0835, which means that our simple model excludes the

existence of stable stars with heavier quarks than the strange quarks.

The configuration with maximal flatness (table 3.2) lies at a bifurcation point between

Maclaurin spheroids and non-Maclaurin Newtonian stars. This special configuration

connects the Schwarzschild class to a new class of configurations: the ring class. It is
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Figure 3.5: Example of a meridional cross-section of a strange matter ring.
The ring in this example has the parameters ρi/ρo = 0.7 and e2V0 = 0.1.

the only configuration that allows sequences of strange matter and homogeneous stars in

equilibrium to exit the Schwarzschild class [AFK+04]. No configuration of this first class

has an infinite red shift (the maximum reaches Z0 = 0.8895) and so no star in equilibrium

approaches the black hole limit: only a dynamical collapse can bridge a strange star to

a black hole. On the other hand, the ring class contains figures of equilibrium that reach

the black hole limit, so this class will interest us in the remaining part of this chapter.

3.2.2. The Ring Class of Strange Quark Matter

The ring class includes strange stars that have either spheroidal or toroidal topologies.

The cross-section of a ring is given in Fig. 3.5 as an example. The ratio between the

inner and outer radius ρi/ρo is a parameter of choice to characterize ring configurations.

To represent rings and spheroids consistently, we introduce here a parameter A which

takes the negative value A = −ρi/ρo when it is a ring and the positive value A = rp/re

for spheroids.

Sequences of strange matter bodies are again bound in the same way as for homoge-

neous bodies (see [AFK+04] for details):

• Newtonian “Dyson ring” sequence (V0 = 0) with A ∈ [0.17126...,−1],

• a ring singularity (A = −1) with two possible potentials (V0 = 0 or −∞),

• extreme Kerr black holes (V0 = −∞) containing rings with A ∈ [−1,−0.58428...],

• bodies at the mass-shedding limit (β = 0) with V0 ∈ [−∞, 0],

• Newtonian (non-Maclaurin) flat spheroids at V0 = 0 with β ∈ [0, 1],

• Newtonian Maclaurin spheroids with rp/re ∈ [0.11160..., 0.17126...].

The Newtonian limit of strange matter is always identical to that of homogeneous bodies.

The ring singularity, an infinitely thin ring, is a limiting case where the surface potential
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V0 jumps to infinity if the ring is given a non-zero mass. The density of the ring would

jump also to infinity and so, the physical interpretation of such a body is problematic.

The ring singularity should be seen as a limiting case of the ring class and not as a

physically relevant object.

A further comparison of rings of various EOS can be found in Fig. 3.6. Sequences of

rings rotating at the mass-shedding limit, are plotted in a two-dimensional parameter

space with 1 − eV0 on the y-axis and ρi/ρo on the x-axis. The mass-shedding limit is

reached when the path followed by a particle rotating at the outer edge of the ring

becomes a geodesic. For a given EOS, other ring configurations (i.e. not rotating at

the mass-shedding limit) lie to the left of the corresponding curve. One can see that

a transition to the extreme Kerr black hole is a generic feature of all rings considered

here. The transition to spheroidal bodies exists for strange matter rings, but not for

all EOS. What is particularly striking is how close together the curves for strange and

homogeneous rings remain right up to the black hole limit. This figure is a modified

version of Fig. 1 of [FHA05]. A discussion of the polytropic and Chandrasekhar EOS

can also be found in that paper.

3.3. Parametric Transition to a Black Hole

We explained in section 2.3 that the extreme Kerr solution is the only black hole limit of

rotating perfect fluid bodies in equilibrium. The extreme Kerr black hole is characterized

by the relation

J = ±M2,

where M is the mass and J the angular momentum. To study quasi-stationary transi-

tions (sequences of bodies in equilibrium) that lead to black holes, we use bodies with

a ring topology, since spheroidal bodies do not seem to have stationary sequences that

lead to black holes [AFK+04]. For spheroidal bodies, a finite upper bound is observed

for Z0, defined in Eq.(2.8). In contrast, the transition to a black hole occurs if and only if

Z0 → ∞ (see 2.3.1). We will explore now such transitions with the concept of multipole

moments.

3.3.1. Multipole Moments of Rings

The multipole moments that we use were defined in section 2.2.2. As V0 tends to −∞,

we expect the multipole moments to become closer and closer to those of an extreme

Kerr black hole. We tested this numerically by making use of a (slightly modified version
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of a) highly accurate computer program as described in [AKM03a]. This program was

used for all the results presented in this chapter.

The numerical solutions given by the AKM-method are the four potentials corre-

sponding to the metric of Eq.(2.1) inside the body and in the vacuum domain. Since the

multipoles must be read from the Ernst potential, the three potentials U(ζ), a(ζ), W (ζ)

on the ζ-axis in the vacuum must be expressed as two potentials U(ζ ′), a(ζ ′) in the Weyl

coordinate ζ ′ of Eq.(2.14). First, we write the three potentials on the axis as series of ζ

in the form:

lim
ρ→0

e2U = 1 +
∞∑

j=1

uj

ζj
(3.3a)

lim
ρ→0

a

W 2
=

∞∑

j=3

qj

ζj
(3.3b)

lim
ρ→0

W

ρ
= 1 +

∞∑

j=1

c2j

ζ2j
. (3.3c)

By integrating the last equation, one can express ζ on the axis as a function of the Weyl

coordinate ζ ′:

ζ ′ =

∫
W

ρ
dζ = ζ +

∞∑

j=1

c2j

(1 − 2j)ζ2j−1
=⇒ ζ = ζ ′ +

∞∑

j=1

c′2j−1

ζ ′ 2j−1
.

The Weyl coordinate can be directly introduced into Eq.(3.3a) to find U(ζ ′). Then, the

potential b(ζ ′) can be calculated using all three series from Eqs(3.3), with the help of an

integral from Eq.(2.15) and the property on the axis where a ∝ ρ2 implies a,ρ′ ∝ 2ρ′ :

b(ζ ′) = lim
ρ′→0

∫
e4U

ρ′

∂a

∂ρ′
dζ ′ = lim

ρ′→0
2

∫
e4U a

W 2
dζ ′.

The multipole moments can then be extracted from the Ernst potential f(ζ ′) = e2U(ζ ′)+

ib(ζ ′).

Figures 3.7 and 3.8 show the first seven multipole moments for homogeneous and

strange matter rings where the ratio between the inner coordinate radius ρi and the

outer radius ρo is held constant at a value of ρi/ρo = 0.7. The left side of the plots

corresponds to the Newtonian limit and the right side tends to the black hole limit. As

V0 → −∞, the normalized multipoles all tend to one, demonstrating that this sequence

indeed approaches the extreme Kerr solution.
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Figure 3.7: The normalized multipoles yn versus eV0 for homogeneous rings
with ρi/ρo = 0.7 .
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Figure 3.8: The normalized multipoles yn versus eV0 for strange matter
rings with ρi/ρo = 0.7.
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It is interesting to note, with respect to eV0 (or Z0), how slowly the exterior spacetime

approaches that of a Kerr black hole. Consider, for example, the configuration from

Fig. 3.8 with eV0 = 10−2. Whereas the value J/M2 = 1.00014 is very close to the

limiting value of one reached in the extreme Kerr limit, the product 2ΩM = 0.9813

deviates rather significantly from it. This makes itself felt particularly for the higher

multipole moments where powers of Ω are in play. The moment y4, for example, has

reached only a value of y4 ≈ 0.91 for this configuration.

To understand better the nature of the transition to the black hole, we compare the

multipole moments of the above strange matter ring sequence with those of the Kerr

solution. In Fig. 3.9 the yn for n = 1 . . . 6 are plotted against y0 = 2ΩM for the strange

matter ring sequence from above. A corresponding picture for the sequence of Kerr

solutions (see (2.26)) is displayed in Fig. 3.10. The clear similarity between these plots

is emphasized in Fig. 3.11 where each yn for the ring (solid line) and the Kerr solution

(dotted line) is compared in a small figure over its whole range. The region very close

to the extreme Kerr limit is then shown for y1–y5 in detail. The graphs strongly suggest

that the slopes
dyn

dy0

(y0 = 1) (3.4)

are the same for the Kerr family and for the strange matter ring sequence discussed

here. In fact, we found these slopes to be independent of the specific EOS being used.1

For the Kerr solutions, it follows from (2.26) that

dyn

dy0
(y0 = 1) = n + 1, (3.5)

which leads us to the conjecture that (3.5) holds true for all sequences of rotating bodies

that admit the transition to an extreme Kerr black hole. This conjecture provides a

universal growth rate with which the yn approach unity.

In Table 3.3, a comparison of the values of the first five moments yn for a variety of

configurations all with eV0 = 10−2 is provided. The set of configurations chosen includes

rings with various different EOS and various radius ratios and also includes the uniformly

rotating disk of dust. A discussion of the multipoles of this last configuration as well

as plots analogous to Fig. 3.8 can be found in [KMN95]. Since all multipole moments

tend to one in the limit V0 → −∞, these multipoles will provide almost no way of

1We checked this for ring sequences governed by homogeneous, polytropic and Chandrasekhar EOS
as well as for the rigidly rotating dust family (this will be shown for the disk in section 4.3.3). The
Chandrasekhar EOS describes a completely degenerate, zero temperature, relativistic Fermi gas.
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Table 3.3: The multipole moments yn for various configurations of rings and
the rigidly rotating disk of dust, all with eV0 = 10−2. The polytropic ring has
a polytropic index n = 1 (see [MAK+08] for explanation of polytropic EOS).

y0 y1 y2 y3 y4

strange matter (ri/ro = 0.6) 0.982 0.964 0.947 0.930 0.913
strange matter (ri/ro = 0.7) 0.981 0.963 0.945 0.928 0.910
strange matter (ri/ro = 0.8) 0.981 0.962 0.943 0.925 0.907
homogeneous (ri/ro = 0.7) 0.981 0.963 0.945 0.927 0.910

polytropic n = 1 (ri/ro = 0.7) 0.982 0.965 0.948 0.931 0.914
relativistic disk of dust 0.984 0.969 0.953 0.938 0.924

Table 3.4: The multipole moments yn for various configurations, all with
e−V0 = 1.1 ⇔ Z0 = 0.1.

y0 y1 y2 y3 y4

(×10−2) (×10−3) (×10−3) (×10−5) (×10−5)
strange matter (ri/ro = 0.6) 2.22 1.21 1.04 8.92 7.44
strange matter (ri/ro = 0.7) 2.09 1.16 1.02 8.69 7.43
strange matter (ri/ro = 0.8) 1.92 1.09 0.978 8.49 7.46
homogeneous (ri/ro = 0.7) 2.09 1.16 1.01 8.68 7.42

polytropic n = 1 (ri/ro = 0.7) 2.14 1.27 1.11 10.1 8.75
relativistic disk of dust 2.36 1.73 1.56 12.5 21.7

distinguishing between various configurations close to this limit.

In contrast, we present the multipole moments for configurations near the Newtonian

limit (e−V0 = 1.1) in Table 3.4. Here one can see that there is far more variation amongst

the rings and that the disk of dust differs significantly from any of the rings. The values

in the table also reflect the fact that strange matter has the same Newtonian limit as

homogeneous matter.

3.3.2. Throat Geometry

One of the most interesting features of bodies near the extreme Kerr black hole limit is

the appearance of a throat geometry [BH99,Mei02]. In the limit, the throat separates

the ‘inner world’, containing the ring, from the ‘outer world’. The outer world is the

asymptotically flat extreme Kerr spacetime, which is described by a single parameter

and in which the horizon is located at the end of the infinitely long throat. On the other

hand, the inner world is not asymptotically flat and is related to the outer world through

its asymptotic behaviour, which contains information about the one free parameter that
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uniquely describes the outer world. Any point in the outside world is infinitely far away

from any point in the inner world. For example, in the equatorial plane, one finds that

the radial proper distance δ from the point ρ = 0 to the point ρ is

δ =

ρ∫

0

√
gρρ

∣∣
ζ=0

dρ̃.

For the extreme Kerr black hole δ tends logarithmically to infinity as ρ → 0 as shown

by Eq.(2.32) (the horizon in the coordinates used here is located at ρ = 0).

One way to represent the throat is to plot
√

gϕϕ/M in the equatorial plane as a

function of δ/M . Then, the throat appears as a plateau, i.e. a region appears in which the

circumference of a circle of constant radius ρ = ρc, tends toward a constant, independent

of the radius ρc. As the extreme Kerr black hole is approached, this region becomes

infinitely long. Figure 3.12 shows the appearance of the throat for a sequence of strange

matter rings with ρi/ρo = 0.7 as the parameter eV0 tends to zero. Even in the first of

these pictures (e2V0 = 10−1), the highly relativistic nature of the ring is demonstrated

by the fact that a small portion of the curve has a negative slope. That is, there exists a

region of spacetime in which circles lying in the equatorial plane and centred about the

origin have decreasing circumference with increasing radius. The last of these pictures

is similar to Fig. 13 in [BW71] in which the ‘inner world’ is separated from the extreme

Kerr solution by the infinite throat region. The proper distance between a point in what

becomes the inner world (e.g. the outer edge of the ring ρ = ρo) and a point in what

becomes the outer world (e.g. ρ = M) tends to infinity as e2V0 → 0. In a sense, we can

say that the ‘throat region’ near the black hole limit ‘swallows’ the information as to

what kind of configuration is sitting at the centre, as can be seen in Table 3.3.

The numerical ‘inner world’ solution was produced with a program that prescribes the

asymptotic behaviour of the throat region (see [BH99]). Since the ‘asymptotically flat

computer program’ is capable of rendering rings with a relative redshift Z0 well in excess

of 100, the metric behaviour provided by this program can be used as initial input for

the Newton-Raphson method of the ‘inner world program’ [AKM03a].

3.3.3. Escape Energy

With ui referring to the four-velocity of a particle resting on the ring’s surface, E−1 could

be called the “escape energy”. If it is negative, then a sufficiently small perturbation will

not suffice to induce the particle’s escape to infinity on a geodesic, and it is referred to
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Figure 3.12: The function
√

gϕϕ in the equatorial plane is plotted versus
proper distance, both normalized with respect to the mass M . In the throat
region,

√
gϕϕ/M tends to the constant value 2. All four plots were made for

a strange matter ring with a radius ratio ρi/ρo = 0.7 and with a value for e2V0
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Figure 3.13: The specific energy E versus (ρ − ρi)/(ρo − ρi) on the surface
of a variety of strange matter rings with ρi/ρo = 0.7.

as gravitationally bound. In proving that V0 → −∞ is a sufficient condition for reaching

the black hole limit [Mei06], use was made of the reasonable assumption that particles on

the fluid’s surface are gravitationally bound. One expects that this minimal requirement

for stability will always be satisfied. We now proceed to verify this assumption for a

large class of rings.

Figures 3.13 and 3.14 show the value of E along the surface of a variety of strange

matter rings as it depends on radius. The radial parameter (ρ − ρi)/(ρo − ρi) is chosen

since it runs from 0 to 1 for every ring. In Fig. 3.13 curves are plotted for a constant

value ρi/ρo = 0.7 and for varying V0. We see that E tends to 1 in the Newtonian

limit, which follows directly from Eq. (2.12). Figure 3.14 shows the behaviour of E for

various values of ρi/ρo and constant V0. Since configurations with small ρi/ρo do not

exist when V0 becomes too negative (see Fig. 3.6), we chose V0 to be in the Newtonian

regime in order to be able to consider a wide range of values for the radius ratio. For

every example considered in Figs 3.13 and 3.14, a maximal value at the outside edge of

the ring in the equatorial plane is reached, just as one would expect. It is interesting

to compare these results with the relativistic disk of dust for which E = 1 holds at the

outer edge independent of the value of Z0 [MK95].

Focussing our attention now on the outer edge of the ring in the equatorial plane,



3. Strange Matter Stars and their Parametric Transition to a Black Hole 39

0.0 0.2 0.4 0.6 0.8 1.0
0.94

0.96

0.98

1.00

ρ−ρi

ρo−ρi

E

ρi/ρo = 0.1
ρi/ρo = 0.3
ρi/ρo = 0.5
ρi/ρo = 0.7
ρi/ρo = 0.9

Figure 3.14: The specific energy E versus (ρ − ρi)/(ρo − ρi) on the surface
of a variety of strange matter rings near the Newtonian limit (e2V0 = 0.9).

we see in Fig. 3.15 how E depends on V0 for a sequence of strange matter rings with

ρi/ρo = 0.7. It is apparent that a maximum is reached in the Newtonian limit. For rings

rotating at the mass-shedding limit, the value of E is also significantly smaller than one

for small eV0 . The results for homogeneous rings are very similar and we can verify that

E ≤ 1 holds (i.e. the escape energy is negative) for a large class of rings.

This ends our investigation about strange matter rings and their parametric transi-

tion to the black hole. Since the behaviour given by Eq.(3.5) seems to be independent of

the equation of state of our rings, we want to investigate this conjecture more in depth

in the next chapter.
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Figure 3.15: The specific energy E versus eV0 at the outer edge in the
equatorial plane for strange matter rings with ρi/ρo = 0.7.



4. Ernst Potentials near the Black Hole Limit

Among stationary and axisymmetric solutions containing a black hole or a fluid in equi-

librium as the source, three categories of continuous sequences of solutions are known

to reach the extreme Kerr BH: various rings of fluids [AKM03b, FHA05], the rigidly

rotating disk of dust [BW71,NM93], and obviously, the Kerr BH sequence. Sequences

of rings made of strange quark matter were studied in the previous chapter, and similar

sequences of rings with other equation of states were also produced in the literature

mentioned just above. For the rigidly rotating disk of dust and the Kerr BH, exact

analytical solutions are known.

In the previous chapter, we observed that the multipole moments on the rotation axis

of the rings and the Kerr black hole have a common behaviour near the extreme Kerr

black hole limit, a behaviour characterized by Eq.(3.5). In this chapter, we make use

of (3.5) to write down the beginning of a Taylor series of the Ernst potential of fluids

in equilibrium near the black hole limit, with suitable coordinates. Then, we apply this

Taylor series to the analytical solutions of the Meinel/Neugebauer disk of dust and the

Kerr BH.

4.1. Reformulation of the Conjecture

4.1.1. Normalized Multipoles

Staying in the vacuum domain where we can use of the Weyl coordinates1 and the Ernst

potential, let us first introduce two new pairs of dimensionless Weyl coordinates, one

normalized with the angular velocity Ω of the source, and a second one normalized with

the mass M of the same source:

ρ̃ := 2Ωρ , ζ̃ := 2Ωζ, and (4.1a)

ρ̂ :=
ρ

M
, ζ̂ :=

ζ

M
. (4.1b)

1We drop here the prime notation from section (2.2.1).

41
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From the potential ξ in Eq.(2.20), one can calculate the same series (2.21) with the

dimensionless coordinates and get the same general form:

ξ =
∞∑

n=0

mn

ζn+1
=

∞∑

n=0

m̃n

ζ̃n+1
=

∞∑

n=0

m̂n

ζ̂n+1
. (4.2)

The new dimensionless coefficients have the following relations, deduced from (4.2):

m̃n = (2Ω)n+1mn , m̂n =
mn

Mn+1
and m̃n = (2ΩM)n+1m̂n . (4.3)

Since the zeroth multipole moment is the gravitational mass of the source, P0 = m0 = M ,

it follows that M̃ = 2ΩM and we can then also say m̃n = (M̃)n+1m̂n. It follows also

that m̂0 = 1 is an identity.

To avoid becoming lost with the “tilde” and “hat” notation, keep in mind that a

“tilde” is added to a variable when this variable is multiplied by a power of 2Ω such that

it becomes dimensionless, and the same is done with a “hat” when it involves powers

of M to make it dimensionless. The multipole moments can also be transformed into

normalized and dimensionless moments in a similar fashion as the mn coefficients:

P̃n = (2Ω)n+1Pn and P̂n =
Pn

Mn+1
(4.4)

These relations seem naively copied from Eq.(4.3) when in fact the Pn for n > 3 are

indeed long algebraic combinations of mn, but a dimensional analysis shows that they

agree.

Because of equatorial symmetry, as stated in section 2.2.2, coefficients and multipoles

with even index are real and the odd ones are purely imaginary. The absolute values

of m̃n and P̃n have a domain going from 0 to 1 for fluid bodies2 and black holes. With

m̂n and P̂n, their absolute values vary from 0 to ∞ for fluid bodies, except for the fixed

number P̂0 = m̂0 = 1, while black holes are again restricted to [0,1]. When P̃n = 0

for all n, or when P̂n = 0 for n > 0, we obtain the Schwarzschild geometry outside the

source, and the scenario where P̃n = in or P̂n = in for all n corresponds to the extreme

Kerr geometry. More generally, the Kerr black hole has P̃n = inM̃n−1J̃n or P̂n = inĴn,

and it was also found empirically in [FK09] that for a rigidly rotating perfect fluid in

2But only rings and the rigid disk of dust are known to reach 1
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equilibrium, surrounded by vacuum,

∣∣∣P̂n

∣∣∣ ≥
∣∣∣Ĵn
∣∣∣ ,

where the right hand side is equivalent to the
∣∣∣P̂n

∣∣∣ of a Kerr black hole with the same

mass and angular momentum as the fluid body. Also, the equality in this relation is

only reached for the extreme Kerr black hole limit
∣∣∣P̂n

∣∣∣ = 1.

The normalized multipoles yn defined in Eq.(2.23), which always gives real positive

values for black holes and rings, are related here in this new notation by P̃n = inyn. P̃n

has the same absolute value as yn, but it is not systematically real positive. This leads

to P̃n = m̃n = in in the extreme Kerr black hole limit, and Eq.(3.5), which we believe

to hold for any sequences of rotating bodies in equilibrium that admit a transition to a

black hole, becomes

dP̃n

dM̃
(M̃ = 1) =

dm̃n

dM̃
(M̃ = 1) = (n + 1) in . (4.5)

Note here that the algebraic structure that links P̃n and m̃n is such that choosing P̃n or

m̃n in the derivative of (4.5) is equivalent for M̃ = 1; at least, this is verified for the 11

first multipoles shown in [FHP89], and we are confident that it holds for n > 10.

If we substitute P̃n by P̂n in the derivative, we get

dP̃n

dM̃
=

d(M̃n+1P̂n)

dM̃
= (n + 1)M̃nP̂n + M̃n+1 dP̂n

dM̃
.

Putting this last result into Eq.(4.5) with P̂n(M̃ = 1) = in, it turns out that the

conjecture takes a nicer form:

dP̂n

dM̃
(M̃ = 1) =

dm̂n

dM̃
(M̃ = 1) = 0 . (4.6)

4.1.2. The Multipoles and the First Law of Thermodynamics

It can be shown that a part of our conjecture is indeed explained by the analogous form

of the “first law of thermodynamics” for rotating bodies. In “classical” thermodynamics,

the first law states that for an infinitesimal change in a system of N particles with a

temperature T , an entropy S, a volume V , a pressure p and a chemical potential µc, the
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internal energy U is changed by

dU = TdS − pdV + µcdN .

When we refer to astrophysical bodies, their physical properties can be also related to

analogous “thermodynamic laws” (or mechanics laws). Nearby configurations between

black holes or between bodies of fluid in equilibrium are governed respectively by the

following “first laws”:

dM = 1
8π

κ dA + Ω dJ + ∅ ,

dM = ∅ + Ω dJ + µc dMB .

Here, κ is the surface gravity of the black hole, given by Eq.(2.27), and is the black

hole analogue of the temperature. The surface area of the horizon A is analogous to the

entropy. The second equation is from Eq.(2.10). The empty sets (∅) emphasize that black

holes have no “chemical potential-particle” term, while our equation for fluid bodies

shows no “temperature-entropy” term since we consider that our bodies in equilibrium

have zero temperature.

We can see that these laws govern a relation between the two first multipole moments

(M and J). As was explained in section 2.3.1, the parameters κ for black holes and µc

for fluid bodies vanish as they approach the extreme Kerr BH limit. The result is that

the “first law” of both black hole and fluid body configurations become identical in the

limit:

dM = Ω dJ (4.7)

This show that in the extreme Kerr BH limit, not only the mass and angular momentum

is fixed at J = M2, but but the trend of M and J for configurations near this limit is

the same for black holes and fluid bodies.

If we translate the normalized multipoles M̃ , P̃1 and P̂1 in terms of M and J and Ω,

we get for infinitesimal changes

dM̃ = d(2ΩM) = 2 (Ω dM + M dΩ) ,

dP̃1 = d(4iΩ2J) = 4 i (Ω2 dJ + 2 Ω J dΩ) ,

dP̂1 = d(iM−2J) = i M−2 (dJ − 2 J M−1 dM) .

In the extreme Kerr BH limit, we can subtitute Ω, J and dJ in terms of M and dM
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thanks to Eqs (2.30) and (4.7). Then we find

dP̃1

dM̃
(M̃ = 1) =

4i (Ω dM + M dΩ)

2 (Ω dM + M dΩ)
= 2i ,

dP̂1

dM̃
(M̃ = 1) =

0

2 (Ω dM + M dΩ)
= 0 .

These results are exactly what is expected in Eqs(4.5) and (4.6) for n = 1. This proves

that what we conjectured for n = 1 is simply a consequence of the first thermodynamic

law for fluid bodies, where its law becomes identical to the black hole thermodynamic

law in the limit of the extreme Kerr BH (2ΩM → 1). No analogous “first law of

thermodynamics” that implies the further multipole moments (n > 1) exists, so we

cannot extend this proof to the entire conjecture.

4.1.3. A Taylor Series Near the Black Hole Limit

Suppose now that we have a list of coefficients m̃n that can be parameterized as functions

of M̃ . We can thus write the normalized multipoles as a Taylor series at M̃ ≡ 2ΩM → 1

and then use the extreme Kerr black hole result m̃n(M̃ = 1) = in and the conjecture in

Eq.(4.5) for the two first terms:

m̃n(M̃) = m̃n(1) +
dm̃n

dM̃
(1)(M̃ − 1) +

1

2

d2m̃n

dM̃2
(1)(M̃ − 1)2 + · · ·

= in
[
1 + (n + 1)(M̃ − 1) + O[(M̃ − 1)2]

]

It will be more suitable from now on to use the parameter ε := 1−2ΩM , which becomes

ε = 0 in the extreme Kerr black hole limit, and is small and positive near the limit. If

we introduce the last result for the multipoles into Eq.(4.2), we get two sums that can

be substituted into short rational functions:

ξ(ε; ζ̃) =
1

ζ̃

∞∑

n=0

(
i

ζ̃

)n [
1 − (n + 1)ε + O(ε2)

]

=
1

ζ̃

∞∑

n=0

(
i

ζ̃

)n

− 1

ζ̃

∞∑

n=0

(
i

ζ̃

)n

(n + 1)ε +
1

ζ̃

∞∑

n=0

(
i

ζ̃

)n

O(ε2)

=
1

ζ̃ − i
− ζ̃

(ζ̃ − i)2
ε + O(ε2) .
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We can reconstitute from this result the original form of the Ernst potential f using

Eq.(2.20), which yields as a series of ε

f(ε; ζ̃) =
ζ̃ − 1 − i

ζ̃ + 1 − i
+

2ζ̃

(ζ̃ + 1 − i)2
ε + O(ε2) . (4.8)

The first part of the series can be easily recognized as the Ernst potential of the extreme

Kerr BH on the ζ-axis. The second part, coming from the conjecture in Eq.(3.5), is

the leading term describing the behaviour of the Ernst potential for a parameterized

transition of a fluid body in equilibrium to the extreme Kerr BH solution. In other

words, the Ernst potential of a black hole and any fluid body in equilibrium with the

same mass M and angular velocity3 Ω, near the limit 2ΩM = 1, have the same Ernst

potential in normalized coordinates on the rotation axis up to O(ε2).

Similar series can be written using the mass as normalization. The Ernst potential is

produced in the same manner as above, and it yields

ξ(ε; ζ̂) =
1

ζ̂ − i
+ ∅ + O(ε2) ,

f(ε; ζ̂) =
ζ̂ − 1 − i

ζ̂ + 1 − i
+ ∅ + O(ε2) . (4.9)

Again, the extreme Kerr solution occupies the first part of the series, but the next order

correction, corresponding to the conjecture, vanishes (∅). So the Ernst potential on the

axis of a fluid in equilibrium would have sequences of solutions near the extreme Kerr

solution with a first correcting term in O(ε2). The conjecture from Eq.(3.5) or (4.6) is

then equivalent, in normalized Weyl coordinates (ρ̂, ζ̂), saying

df

dM̃
(M̃ = 1) = 0 . (4.10)

Moreover, the “extreme Kerr term” in (4.9) already gives the exact mass term 2Mr−1 in

the series expansion at infinity of Eq.(2.18), so the remainder terms O(ε2) of this series

are not expected to contribute in r−1:

ζ̂ − 1 − i

ζ̂ + 1 − i
= 1 − 2

ζ̂
+ O

(
1

ζ̂2

)
= 1 − 2M

ζ
+ O

(
1

ζ2

)
. (4.11)

This is not expected to hold in the former normalization, since the “extreme Kerr term”

3The angular velocity of the horizon in the case of a black hole.



4. Ernst Potentials near the Black Hole Limit 47

in Eq.(4.8) represents a black hole with the same angular momentum as the source of

f , not the same mass.

Using the extreme Kerr black hole as the “anchor” term of a parametric Taylor series

of the Ernst potential near the black hole limit is certainly a relevant choice, since it was

demonstrated in section 2.3 that the extreme Kerr BH is the only candidate for a BH

limit of a stationary and axisymmetric rotating body in equilibrium [Mei06], and such

limits exist for rings and disks of dust. We will turn our work now to two analytically

solved Ernst potentials, the Kerr BH and the the rigidly rotating thin disk of dust,

investigating the property that was conjectured from the rings, and deriving the Taylor

series for these solutions.

4.2. Ernst Potential of the Kerr Black Hole

It is not difficult to make the Taylor series of the Kerr metric, since this metric is not

only already exact, but also, it can be written in a very concise form. Much has been said

about this metric in comparison to other stationary and axisymmetric solutions. The

metric was first found by Kerr [Ker63], then Boyer and Lindquist provided a suitable

coordinate transformation which shed light on the “black hole nature” of the metric

[BL67]. More physical processes concerning rotating black holes were studied, especially

by Bardeen, Press and Teukolsky in [BPT72]; of particular interest in this last article

is the description of the extreme Kerr BH (J = ±M2), with its special infinitely long

“throat geometry”.

Thus, it is not our goal to write down a series expansion for the purpose of investigating

the Kerr solution itself, but instead, it can be used for comparison with other series of

the same kind, and in particular, with the disk of dust in the next section. The Ernst

potential of a Kerr BH of mass M and angular momentum J is

f = 1 − 4M

r− + r+ + 2M + i
J(r− − r+)√

M4 − J2

(4.12)

where r± are positive quantities defined by

r2
± = r2

[
sin2 θ +

(
cos θ ±

√
M4 − J2

Mr

)2
]

and the coordinates are the “spherical version” of the Weyl coordinates, with ρ = r sin θ
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K+

K−

ρ

ζ

Figure 4.1: In Weyl coordinates, the horizon of the Kerr BH is a segment

on the rotation axis, with the poles at ρ = 0, ζ = K± = ±
√

M2 − (J/M)2.
For the extreme Kerr BH (J = M2), the horizon shrinks into a point at the
origin.

and ζ = r cos θ. The horizon is located on a segment of the rotation axis between the

points (r =
√

M2 − (J/M)2, θ = 0) and (r =
√

M2 − (J/M)2, θ = π/2), as illustrated

in Fig. 4.1.

The potential can be converted into a function of M and Ω using the relation in

Eq.(2.25). We can then transform the parameters and coordinates into dimensionless

quantities using powers of either 2Ω or M as explained above. The normalized potential

can be easily computed as a power series of ε ≡ 1−2ΩM , and we can take advantage of

this to produce the series for the whole space (not just the axis). The series, normalized

with 2Ω, reads

f(ǫ; r̃, θ) =
r̃ − 1 − i cos θ

r̃ + 1 − i cos θ
+

2 r̃

(r̃ + 1 − i cos θ)2
ε (4.13)

+
r̃3(2 − i cos θ) + r̃2(1 + i cos θ) + sin2 θ(r̃ + i cos θ + cos2 θ)

r̃2 (r̃ + 1 − i cos θ)3
ε2

− 2 sin2 θ[(r̃ + i cos θ)2 + 2 cos2 θ(r̃ + 1)] + i cos θ[(r̃2 + 4r̃ + 2 i cos θ)r̃2 + sin4 θ]

r̃2 (r̃ + 1 − i cos θ)4
ε3

+ O(ε4) ,

and with the other normalization,

f(ǫ; r̂, θ) =
r̂ − 1 − i cos θ

r̂ + 1 − i cos θ
+

r̂ sin2 θ + (r̂2 + sin2 θ) i cos θ

r̂2(r̂ + 1 − i cos θ)2
(ε2 + ε3) + O(ε4) . (4.14)

The first impression we get from those series is how concise Eq.(4.14) is in comparison

to (4.13). In the “tilde” expansion, the second term (ε1) seems to play a particular
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function: it introduces the sole correction that the series needs to read the exact mass

of the black hole at spatial infinity. If we expand Eq.(4.13) at r̃ → ∞, we find:

f = 1 − 2(1 − ε)

r̃
+ O

(
1

r̃2

)
= 1 − 2M

r
+ O

(
1

r2

)

Compared with Eq.(4.11) on the axis, we can also say that no further orders of ε are

expected to contribute in r−1 for the black hole.

A second observation concerns the horizon. For the extreme Kerr BH, the horizon

is degenerated to a single point at r = 0. A parametric transition from the extreme

Kerr to the Schwarzschild BH is illustrated in Weyl coordinates by a point-like horizon

becoming a small line on the rotation axis and then growing until its length becomes

2M in the static case (see Fig. 4.1). If we set θ = 0, so we stay on the “positive part”

of the rotation axis, the north pole of the horizon should be met at the point where

e2U ≡ ℜf = 0. In Eq.(4.13), if we consider only the two first terms, we always find

ℜf = 0 at r̃ = r = 0, which suggests that we do not move away from the extreme

Kerr geometry until we consider terms in εn with n > 1, as is obviously the case for

Eq.(4.14).

4.3. Ernst Potential of the Uniformly Rotating Disk of Dust

The Ernst equation simplifies significantly the form of Einstein’s field equations. But

this formalism is restricted to vacuum, and thus, it is insufficent for solving a global

problem where matter fills a part of the spacetime. On the other hand, solving the full

stationary and axisymmetric Einstein field equations with a source is still an arduous

task today, and almost all fully relativistic solutions with matter have been obtained

through numerical methods. Well, not all... If it is possible to model an astrophysical

body where the pressure p vanishes everywhere (also in the body), this would set to zero

the r.h.s. of each equation in (2.13), except (2.13a). Even more, the fact that the r.h.s.

of Eq.(2.13c) becomes zero allows us to adopt the Weyl coordinates (W = ρ) for the

whole spacetime, including inside the body. It is then possible to describe the interior of

the body in the same coordinate system as is needed for the use of the Ernst equation in

empty space. Such a model could be realized if we imagine a uniformly rotating fluid ball

which flattens until it becomes an infinitely thin pressureless fluid disk, more commonly

called the rigidly rotating disk of dust.

The relativistic uniformly rotating disk of dust was already well studied numerically
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ρ0

ρ

ζ

Figure 4.2: The thick line is the infinitesimally thin disk of dust. The disk
has a radius ρ0 and rotates around the axis ζ .

in [BW69,BW71], more than two decades before a complete exact analytical solution

of the metric was given in [NM93, NM94, NM95]. A uniformly rotating disk seems

to be unrealistic as an astrophysical object, especially because it is very unstable to

fragmentation [BW71]. Nevertheless, this simple model can provide precious information

regarding the general physical properties of a wider class of highly relativistic and rapidly

rotating objects. The use of the disk model becomes even more interesting for us, since

apart from rings, it is the only known uniformly rotating body that has a sequence

of solutions reaching the extreme Kerr BH limit. And we know the exact solution

analytically!

4.3.1. Ernst Potential of the Disk

The thin disk of dust is represented in Fig. 4.2. It rotates at a constant angular velocity

Ω and the dust is distributed everywhere within 0 ≤ ρ ≤ ρ0 around the rotation axis at

ζ = 0. The parameter ρ0 is the radius of the disk and the co-rotating metric potential

V has a constant value, denoted V0, everywhere on the surface of the disk. On the other

hand, the energy and baryonic surface mass densities are not constant within the disk:

they must vary in a unique way such that each particle of dust can follow a geodesic of

constant ρ and Ω by the sole effect of gravitation. The physical parameters that we just

mentioned can be combined into a “relativistic parameter” called:

µ = 2Ω2ρ2
0e

−2V0 . (4.15)

The disk has a sequence of solutions that can be tuned to a specific solution by fixing

two parameters. But by using normalized and dimensionless coordinates, the disk can

be characterized by a unique parameter. Thus, from the Ernst potential (we will write
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it soon), we can extract dimensionless combinations of physical parameters as functions

of only µ. If we consider also the gravitational mass M and the imaginary part of the

Ernst potential at the centre of the disk b0, we have the following relations

e2V0 =
h′cn(Î, h′)2

h
, b0 = −sn(Î, h′) dn(Î, h′)

h
, (4.16a)

Ω0 ≡ Ωρ0 =
1

2

√
1 − h′2

h2
cn(Î, h′) , (4.16b)

M̃ ≡ 2ΩM = − b0 − Ω0c1 , (4.16c)

where am(u, k), sn(u, k), cn(u, k) and dn(u, k) are the Jacobian elliptic functions, and

h, h′, Î and c1 are the following functions of µ:4

h =

√
1

2

(
1 +

1√
µ−2 + 1

)
, h′ =

√
1

2

(
1 − 1√

µ−2 + 1

)
, (4.16d)

Î =
4

√
1 + µ2

π

µ∫

0

g(x)√
µ − x

dx , g(x) =
ln(

√
1 + x2 + x)√
1 + x2

, (4.16e)

c1 =
1√
µ

{
2 4

√
1 + µ2 E(am(Î, h′), h′) − (µ +

√
1 + µ2)I0 + I1

}
, (4.16f)

and In =
1

π

µ∫

0

g(x)xn

√
µ − x

dx . (4.16g)

We will make extensive use of elliptic functions from now, so we refer you to the def-

initions and conventions that we use in Appendix A. To make our equations easier to

read, we will not specify the argument and modulus of the Jacobian elliptic functions

when they mean 5:

am ≡ am(Î, h′), sn ≡ sn(Î, h′), cn ≡ cn(Î, h′), dn ≡ dn(Î, h′). (4.16h)

The Ernst potential for a uniformly rotating disk of dust is given in [NM95] for the

whole spacetime. The form given there uses integrals that need to follow particular

paths on a Riemann surface, but it is possible to rewrite it in the form of Rosenhain’s

4We need to introduce here a function called Î with a “hat”, but this “hat” (written a little bit smaller),
is not related to our normalization notation (written with a bigger “hat”). We prefer to write it like
this to stay consistent with the notation used in other works in Jena, and hope it will not lead to
confusion.

5Notice italic vs roman fonts to distinguish
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theta function where it is not necessary to consider the Riemann surface anymore. We

could decide to face up to this full form of the potential and compute the derivatives that

interest us, but although the disk of dust is considered a simple model, its associated

Ernst potential is lengthy and complicated. Since the multipole moments of stationary

and axisymmetric configurations can be entirely obtained from the axis potential, and

thus all information of the gravitation in the vacuum domain can be derived from the

axis potential, it is sufficient to restrict ourselves to the rotation axis, where the potential

becomes simpler. The representation of the potential that we will use is considerably

different form the one given in [NM95], but the transformations are provided in detail

in [MAK+08] (as well as other interesting information concerning the disk solution).

To make the Ernst potential of the disk a function of one physical parameter, in our

case µ, we begin by introducing the normalized and dimensionless coordinates x := ρ/ρ0

and y := ζ/ρ0. The potential on the axis is obtained by evaluating it in the limit x → 0;

it then becomes a function of two variables: f(µ; x = 0, y) → f(µ; y). By restricting

ourselves to the positive part of the axis (y > 0), the Ernst potential can be written as

follows:

f(µ; y) =
1 − iNQ−

N + iQ+
, (4.17a)

with the following functions defined as real functions of µ and y:

Q± =
1 − 2Ω2

0(y
2 + 1 +

√
(y2 + 1)2 + µ−2)

−b0 ∓ 2Ω0y
, (4.17b)

N = exp
{
R − 2Î(S + V + Z + U) + T

}
, (4.17c)

R =
y
√

µ

π
√

(y2 + 1)2 + µ−2

µ∫

0

x(y2 + 1) + µ−1

µ(y2 + 1) − x
· g(x)√

µ − x
dx , (4.17d)

S =
h′(y2 − τ 2)

2
√

(y2 + 1)2 + µ−2
, (4.17e)

V = sign(y − τ)
h
√

P (1 − hP )(P − h)

1 − hP − h′
, (4.17f)

Z = X − E(h′)

K(h′)
Y , (4.17g)

U =
π

4K(h)

(
2Y

K(h′)
− 1

)
, (4.17h)

T = ln ϑ2

(
W+ ,−π

K(h′)

K(h)

)
− ln ϑ2

(
W− ,−π

K(h′)

K(h)

)
, (4.17i)
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W± =
π

2K(h)

[
Î ±

(
Y − K(h′)

2

)]
, (4.17j)

X = sign(y − τ)E(υ, h′) , (4.17k)

Y = sign(y − τ)F (υ, h′) , (4.17l)

υ = arcsin

[√
1 − hP

h′

]
, (4.17m)

P =

√
(y2 + 1)2 + µ−2 + 2hτy

(y + τ)2
(4.17n)

and all the other functions (also real) depend on µ only, namely the Eqs(4.16) and

τ = 4

√
µ−2 + 1 .

The function Z is a Jacobian Zeta function like the general form given in Eq.(A.9), and

ϑ2 is the Jacobian theta function given in Eqs(A.10).

The disk solution is physically relevant between the Newtonian limit given by µ → 0

and the ultra-relativistic limit, the black hole limit, given by the smallest positive value

of µ for which cn(Î, h′) = 0. This “upper limit”, called µ0, is:

0 ≤ µ ≤ µ0 = 4.6296618434743420427...

Because we are interested in the behaviour of the disk near the black hole limit, where

2ΩM → 1, we will later need the two normalized coordinates of Eq.(4.1). This can be

achieved by substituting y = y(µ) in the Ernst potential with the help of 2ΩM = M̃(µ)

and Ωρ0 = Ω0(µ):

y(µ) =
ζ

ρ0
=

2ΩM

2Ωρ0

ζ

M
=

M̃(µ)

2Ω0(µ)
ζ̂ , (4.18a)

y(µ) =
ζ

ρ0

=
2Ωζ

2Ωρ0

=
ζ̃

2Ω0(µ)
. (4.18b)

It has the consequence that ζ̂ := ζ/M makes the mass M independent of µ and ζ̃ := 2Ωζ

makes the angular velocity Ω independent of µ.

4.3.2. Ernst Potential of the Disk in the Black Hole Limit

The black hole limit is reached for µ → µ0. But simply calculating f(µ0, y) will not give

us the expected black hole potential of Eq.(2.31) on the axis, because the normalized
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coordinate y becomes the axis coordinate of the inner world (see section 2.3.2). So the

limit µ → µ0 must be achieved with a second condition that guarantees that we end

up with the axis of the outside world. This is achieved by using the non-normalized

coordinate ζ instead of y, which permits the radius of the disk to shrink to zero, or by

evaluating the functions in the limit y → ∞ along with µ → µ0.

Because of Eq.(4.16b), it is also equivalent to saying that the limit is reached for

Ω0 → 0 or ρ0 → 0 (Ω cannot be zero). If we evaluate all the functions in the black hole

limit, we find

am =
π

2
, sn = 1 , cn = 0 , dn = h(µ0) , Î = K(h′(µ0)) ,

ρ0 = 0 , Ω0 = 0 , b0 = −1 , 2ΩM ≡ M̃ = 1 ,

P = 1 , X =
E
(
h′(µ0)

)
+ 1 − h′(µ0)

2
, Y =

K
(
h′(µ0)

)

2
,

R = 0 , S =
h′(µ0)

2
, V =

h(µ0) − h′(µ0) − 1

2
, Z =

1 − h(µ0)

2
,

S + V + Z = 0 , U = 0 , T = 0

which give all together N = 1, and with the help of 2Ω0y = 2Ωζ and 2ΩM = 1:

Q± = 1 ± 2Ωζ or equivalently Q± = 1 ± ζ

M
. (4.19)

Finally, the Ernst potential of the disk from Eq.(4.17a) becomes identical to the po-

tential of the extreme Kerr BH on the axis:

f(µ0; ζ̂) =
ζ̂ − 1 − i

ζ̂ + 1 − i
or f(µ0; ζ̃) =

ζ̃ − 1 − i

ζ̃ + 1 − i
. (4.20)

This is again the Ernst potential of the extreme Kerr solution on the axis, and the

solution can be uniquely extended to the whole spacetime by performing a Bäcklund

transformation, which gives Eq.(2.31).

4.3.3. Derivatives of the Ernst Potential in the Black Hole Limit

The next step would be to verify if the conjecture that we observed for rings is also true

for the disk. In this sense, we want to verify if Eq.(4.10) holds. It can be verified by

computing the derivative of the Ernst potential in the normalized parameter set f(µ; ζ̂),

or equivalently, by using the non-normalized parameter set f(M, µ; ζ) and keeping the
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mass M constant for the derivatives. So we would expect, considering M constant,

f ′(M, µ; ζ) ≡ df

dM̃
=

df

dµ

/dM̃

dµ
(4.21)

to vanish in the black hole limit. From the chain rule, the last equation can be decom-

posed into

df

dµ
=

−1

N + iQ+

[
(f + iQ−)

dN

dµ
+ if

dQ+

dµ
+ iN

dQ−

dµ

]
, (4.22a)

dM̃

dµ
= − db0

dµ
− c1

dΩ0

dµ
− Ω0

dc1

dµ
(4.22b)

where we expect in the limit that either the first derivative vanishes or the second one

blows up to infinity.

With the help of derivatives of elliptic functions in appendix A and also with Eqs(B.3),

let us first compute the derivatives for Eq.(4.22b):

db0

dµ
= 2h′cn

{
2h′2sn cn dn +

[
1 − 2dn2

][
E(am , h′) − h2Î +

√
1 + µ2

dÎ

dµ

]}
,

dΩ0

dµ
=

h′2cn

2

√
1 − h′2

h2

[ 1

µ
+

sn2

√
1 + µ2

]
− h′sn dn

4

√
µ−2 + 1

[√
1 + µ2

dÎ

dµ
+ E(am , h′) − h2Î

]
,

dc1

dµ
=

−I1

2µ3/2
+

4

√
µ−2 + 1

2

[ Î − 2E(am , h′)

µ(1 + µ2)
+ 4

dE(am , h′)

dµ
− 2

dÎ

dµ

]

and

dE(am , h′)

dµ
=

1√
1 + µ2

{ Î sn2

1 + µ2
+ h′2

(
E(am , h′)cn2 − sn cn dn

)}
+ dn2 dÎ

dµ
,

dÎ

dµ
=

4

√
1 + µ2

2π

{2g(µ)√
µ

+

µ∫

0

g(µ) − g(x)

(µ − x)3/2
dx +

µ

1 + µ2

µ∫

0

g(x)√
µ − x

dx
}

.

For the derivative of Î, we used the following substitution to have a regular function,

which avoids the presence of a zero in the denominator:

lim
x→µ

g(x)√
µ − x

−
µ∫

0

g(x)

2(µ − x)3/2
dx ≡ g(µ)√

µ
+

µ∫

0

g(µ) − g(x)

2(µ − x)3/2
dx . (4.25)
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We can now evaluate Eq.(4.22b) in the limit µ → µ0:

dÎ

dµ
= 0.2404694628... ,

E(am , h′) = E(h′) = 1.566360837... ,
dE(am , h′)

dµ
= 0.2414654076... ,

db0

dµ
= 0 ,

dΩ0

dµ
=

1

2τ

[h2K(h′) − E(h′)√
1 + µ2

− dÎ

dµ

]
= −0.1197970406... ,

dc1

dµ
= 0.1263305681...

And we can see now that the derivative of M̃ does not become zero and stays finite:

dM̃

dµ
(µ0) = −c1(µ0)

dΩ0

dµ
(µ0) = 0.1256363714... (4.26)

Since (4.22b) stays finite, then we expect Eq.(4.22a) to vanish in the limit.

Most terms in (4.22a) are already known by taking the results in section (4.3.2), so

only the three derivatives of N , Q+ and Q− need extra computations. We first use

Eqs(4.18) to express the Eqs(4.17a) as functions of M , µ and ζ , then we split Q± into

numerator and denominator parts to perform the derivative:

Q± =
2M2 − M̃2(ζ2 + ρ2

0 +
√

(ζ2 + ρ2
0)

2 + µ−2ρ4
0)

2M(∓M̃ζ − Mb0)
=

QNUM

QDEN ±

,

where M̃ , ρ0 and b0 are functions of µ. The derivative gives:

dQ±

dµ
=

1

QDEN ±

[dQNUM

dµ
− Q±

dQDEN ±

dµ

]
, (4.27)

dQNUM

dµ
= − 2M̃

[
ζ2 + ρ2

0 +
√

(ζ2 + ρ2
0)

2 + µ−2ρ4
0

]dM̃

dµ

− 2M̃2ρ0

[
1 +

ζ2 + (1 + µ−2)ρ2
0√

(ζ2 + ρ2
0)

2 + µ−2ρ4
0

]dρ0

dµ
+

M̃2ρ4
0

µ3
√

(ζ2 + ρ2
0)

2 + µ−2ρ4
0

,

dQDEN ±

dµ
= 2M(∓ ζ

dM̃

dµ
− M

db0

dµ
) ,
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with the derivatives of M̃ and b0 already calculated and

dρ0

dµ
=

2M

M̃

[dΩ0

dµ
− Ω0

M̃

dM̃

dµ

]
. (4.28)

In the limit µ → µ0 (involving ρ0 → 0), Eqs (4.28) and (4.27) become:

dρ0

dµ
(µ0) = 2M

dΩ0

dµ
(µ0) ≈ −0.2395940813 M , (4.29)

dQ±

dµ
(µ0) = ± dM̃

dµ
(µ0)

ζ

M
= ∓c1(µ0)

dΩ0

dµ
(µ0)

ζ

M
≈ ± 0.1256

ζ

M
. (4.30)

The last derivatives that remain are those needed for N :

dN

dµ
= N

{dR

dµ
− 2Î

[dS

dµ
+

dV

dµ
+

dZ

dµ
+

dU

dµ

]
− 2

dÎ

dµ

[
S + V + Z + U

]
+

dT

dµ

}
. (4.31)

The derivative of R is finite for any value of 0 < µ ≤ µ0, but this becomes evident only

if we use a similar substitution like in Eq.(4.25) to keep all terms regular. The result

yields

dR

dµ
=

{
ζ4 − ρ4

0τ
4

ρ0

dρ0

dµ
+

(ζ2 + ρ2
0)

2 − µ−2ρ4
0

2µ

}
R

(ζ2 + ρ2
0)

2 + µ−2ρ4
0

+
ρ0

π
√

(ζ2 + ρ2
0)

2 + µ−2ρ4
0



(ζ2 + ρ2

0τ
4)

g(µ)

ζ
+ ζ

√
µ

µ∫

0

G(x, µ, ζ)dx√
µ − x



 ,

with the integrand function

G(x, µ, ζ) =
g(µ)

2(µ − x)

(
1 +

ρ2
0τ

4

ζ2

)
+

g(x)

µ(ζ2 + ρ2
0) − xρ2

0

[
2(x + µ−1)ρ0

dρ0

dµ
− ρ2

0

µ2

− x(ζ2 + ρ2
0) + µ−1ρ2

0

2(µ − x)
− x(ζ2 + ρ2

0) + µ−1ρ2
0

µ(ζ2 + ρ2
0) − xρ2

0

(
ζ2 + ρ2

0 − 2(µ − x)ρ0
dρ0

dµ

)]
.

The derivatives for S, V , U and Z give

dS

dµ
=

S ρ0

(ζ2 + ρ2
0)

2 + µ−2ρ4
0

[
ρ3

0

µ3
− 2(ζ2 + τ 4ρ2

0)
dρ0

dµ

]

− 1√
(ζ2 + ρ2

0)
2 + µ−2ρ4

0

[
h(ζ2 − τ 2ρ2

0)

4(1 + µ2)
+ h′τ 2ρ0

(
dρ0

dµ
− ρ0

2µ(1 + µ2)

)]
,

dV

dµ
= V

{
h′3h

[
2 − hP

1 − hP
− h

P − h
+

2h(h′P − h)

h′(1 − hP − h′)

]
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+
1

2

dP

dµ

[ 1

P
− h

1 − hP
+

1

P − h
+

2h

1 − hP − h′

]}
,

dZ

dµ
=

dX

dµ
− E(h′)

K(h′)

dY

dµ
− Y√

1 + µ2

[
h2 +

E(h′)

K(h′)

(E(h′)

K(h′)
− 2h2

)]
,

dU

dµ
=

π

4K(h)

{ 1√
1 + µ2

[E(h)

K(h)
− h′2 − 2Y

K(h′)

(E(h)

K(h)
− E(h′)

K(h′)
+

µ√
1 + µ2

)]

+
2

K(h′)

dY

dµ

}
,

where the derivatives of X, Y and P are

dY

dµ
= sign(ζ − τρ0)

dF (υ, h′)

dµ
,

dX

dµ
= sign(ζ − τρ0)

dE(υ, h′)

dµ
,

dF (υ, h′)

dµ
=

1√
hP

dυ

dµ
+

1√
1 + µ2

[
h2F (υ, h′) − E(υ, h′) +

√
(1 − hP )(1 − h/P )

]
,

dE(υ, h′)

dµ
=

√
hP

dυ

dµ
+

h2

√
1 + µ2

[
F (υ, h′) − E(υ, h′)

]
,

dυ

dµ
=

1√
h(P − h)

[ −h

2
√

1 − hP

(dP

dµ
+

h′2P√
1 + µ2

)
+

h2
√

1 − hP√
1 + µ2

]
,

dP

dµ
=

1

(ζ + τρ0)2

{ ρ0√
(ζ2 + ρ2

0)
2 + µ−2ρ4

0

[
2(ζ2 + τ 4ρ2

0)
dρ0

dµ
− ρ3

0

µ3

]

+ hτρ0ζ
[ 1√

1 + µ2
− 1

µ

]
+ 2hτζ

dρ0

dµ
− 2Pτ(ζ + τρ0)

[ −ρ0

2µ(1 + µ2)
+

dρ0

dµ

]}
.

Finally, only the derivative of T remains, which is made of theta functions. Later in

this work, we will need an elegant way to produce a series of the theta functions of T . So

we spend some effort on writing the derivative of T in a form which involves functions

that were already familiar or used above and where no theta functions are called anymore.

If we consider in general a function ϑ2(w, B) where w and B are functions of a variable

x, one can obtain with the help of Eq.(A.12), Eq.(A.11) and Heuman’s Lambda function

(A.8) the following result:

d

dx
ln ϑ2(w, B) = Λ0

dw

dx
+

{
Λ2

0

4
+

K2(k)

π2

[
dn2(u, k′) − 1 +

E(k)

K(k)

]}
dB

dx
(4.32)

with w =
πu

2K(k)
, B = −π

K(k′)

K(k)
and Λ0 ≡ Λ0(am(u, k′), k) .
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This can be used for the theta functions of T , so we get

dT

dµ
= Λ0+

dW+

dµ
− Λ0−

dW−

dµ
(4.33a)

+

{
Λ2

0+ − Λ2
0−

4
+

K2(h)

π2

[
dn2(u+, h′) − dn2(u−, h′)

]} dB

dµ
,

dW±

dµ
=

π

2K(h)

{
h′2K(h) − E(h)

K(h)
√

1 + µ2
u± +

dÎ

dµ
± dY

dµ
∓ h2K(h′) − E(h′)

2
√

1 + µ2

}
, (4.33b)

dB

dµ
=

π

K(h)
√

1 + µ2

[
E(h′) − K(h′)

(
1 − E(h)

K(h)

)]
, (4.33c)

with the use of the short forms B ≡ −πK(h′)/K(h), Λ0± ≡ Λ0(am(u±, h′), h) and

u± ≡ Î ± (Y − K(h′)/2). The derivative of the Ernst potential with respect to the

relativistic parameter µ for disks of constant mass is now fully known.

Only the derivatives in Eq.(4.31) remain to be evaluated in the black hole limit. First,

we need the following derivatives in the limit µ → µ0:

dP

dµ
= 4τ(h − 1)

M

ζ

dΩ0

dµ
(µ0) ,

dυ

dµ
=

√
h
[
2τ

M

ζ

dΩ0

dµ
(µ0) +

h − 1

2
√

1 + µ2
0

]
,

dY

dµ
= +

dF (υ, h′)

dµ
= 2τ

M

ζ

dΩ0

dµ
(µ0) +

h2K(h′) − E(h′)

2
√

1 + µ2
0

,

dX

dµ
= +

dE(υ, h′)

dµ
= h

[
2τ

M

ζ

dΩ0

dµ
(µ0) +

hK(h′) − hE(h′) − h′2

2
√

1 + µ2
0

]
,

dW±

dµ
=

π

2K(h)

{
K(h′)√
1 + µ2

0

(
h′2 − E(h)

K(h)

)
+

dÎ

dµ
± 2τ

M

ζ

dΩ0

dµ
(µ0)

}
,

Λ0± = Λ0

(π

2
, h′(µ0)

)
= 1 ,

where τ , h and h′ are obviously evaluated at µ0. Then, the limit µ → µ0 for the

derivatives of R, S, V , Z, U and T gives

dR

dµ
=

2I1(µ0)√
µ0

M

ζ

dΩ0

dµ
(µ0) ,

dS

dµ
=

−h

4(1 + µ2
0)

,

dV

dµ
=

h′ + h

4(1 + µ2
0)

+ 2τh(h − 1)
M

ζ

dΩ0

dµ
(µ0) ,

dZ

dµ
=
(
h − E(h′)

K(h′)

)
2τ

M

ζ

dΩ0

dµ
(µ0) −

h′

4(1 + µ2
0)

,

dU

dµ
=

πτ

K(h)K(h′)

M

ζ

dΩ0

dµ
(µ0) ,

dT

dµ
=

2πτ

K(h)

M

ζ

dΩ0

dµ
(µ0) .
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The identities (B.2) are helpful to simplify the results. Now, we can combine these last

results with the functions evaluated at µ0 in section 4.3.2 to write down the black hole

limit of Eq.(4.31), which becomes:

dN

dµ
=

2M

ζ

dΩ0

dµ
(µ0)

{
I1(µ0)√

µ0

− 2τh2K(h′) + 2τE(h′)

}
.

What is found between the brackets is just c1 evaluated at µ0 (see Eq.(4.16f)). So the

limit can be simply written:

dN

dµ
(µ0) =

2M

ζ
c1(µ0)

dΩ0

dµ
(µ0) . (4.34)

We are now able to evaluate the derivative for the Ernst potential, in Eq.(4.22a). With

N(µ0) = 1, Eqs (4.19), (4.20), (4.30) and (4.34), we find the expected result:

df

dµ
(µ0) = 0 .

This also means that (4.21) vanishes since the denominator given by (4.26) remains

finite:
df

dM̃
(M̃ = 1) = 0 .

4.4. Taylor Series of the Disk

Beyond the single task of verifiying if Eq.(4.10) holds for the disk, we can expand the

Ernst potential of the disk using a Taylor series near the BH limit, written in an explicit

form similar to Eqs(4.8) and (4.9). Since the functions of the disk are all written as

function of µ and ζ , we choose to keep the relativistic parameter (µ−µ0) in the expansions

instead of converting everything into the more universal parameter ε = 1 − 2ΩM .

To realize an explicit form of the Taylor series, we make use of a “computer algebra

system” (i.e. Maple and Mathematica) and we divide the work in two steps. First, we

write down the series of all functions that depend on µ only. Then, we do the same for

the remaining functions which depend on µ and ζ . To perform these calculations, the

technical challenge was to program the series such that the time and memory space of

the computation do not blow up. We present here some technical choices to compute

efficiently and compare the series with the exact functions in the context of physics. For

functions depending on ζ , the computation is done twice with using the two normaliza-
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tions already introduced before: either with ζ̃ = 2Ωζ or ζ̂ = ζ/M . [KLM10]

4.4.1. Series of Functions of µ

The set of functions that depend on µ only are listed in Eqs(4.16). For each of these

functions, the resulting derivatives of µ in the limit µ → µ0 give pure numbers (no other

variables).

The direct computation of a series of Î with the form given previously is impracticable

because zeros come out for some denominators, which was the reason for using the

substitution (4.25) previously. To avoid this pathology, we rewrite the function with the

substitution x = µ sin2 φ. This has also the effect of removing the dependence on µ in

the interval of integration:

Î(µ) =
4

√
1 + µ2

π

µ∫

0

g(x)√
µ − x

dx =
2 4

√
µ2 + µ4

π

π/2∫

0

g(µ sin2 φ) sin φ dφ. (4.35)

The derivatives of Î are then easy to calculate by using recursively the relation in

Eq.(B.3d). The series starts with

Î(µ) = 1.5752 + 0.24046 (µ− µ0) − 0.017245 (µ− µ0)
2

+ 0.0017270 (µ− µ0)
3 + O[(µ − µ0)

4] , (4.36)

where decimal numbers are truncated after 5 significant digits. Similarly, the deriva-

tives of all other functions of µ that we need for the Ernst potential can be expressed

recursively with the help of the relations given in Eqs(B.3), (A.5) and (A.7).

After this first task, we can already express in a Taylor series a few functions with

physical meaning, such as the Ernst potential at the origin, given by f(ρ = 0, ζ = 0) ≡
f0 = e2V0 +ib0, as well as the dimensionless products Ωρ0 and 2ΩM . These four functions

and other functions within them need to be expanded with significant numerical precision

since they are needed in the remaining series expansions.

Let us now introduce the following notation for the n-th order Taylor approximation

An of a function of µ near the extreme Kerr BH limit:

An (Ωρ0(µ)) =
n∑

j=0

cj(µ − µ0)
j , (4.37)

with A∞ (Ωρ0(µ)) = Ωρ0(µ) ,
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j e2V0 b0 Ωρ0 2ΩM
0 0 -1 0 1
1 0 0 -1.1979704×10−1 1.2563637×10−1

2 6.1997318×10−3 2.8702661×10−2 8.2373333×10−3 -2.2207483×10−2

3 -2.1917290×10−3 -3.9472326×10−3 4.3533289×10−4 1.1246071×10−3

4 4.5766410×10−4 3.5824068×10−4 -1.9230828×10−4 1.7087311×10−5

5 -7.5851829×10−5 -2.0388433×10−5 3.8239383×10−5 -1.4784817×10−5

6 1.1139165×10−5 -9.6924305×10−7 -6.5882003×10−6 3.0205335×10−6

7 -1.5243204×10−6 6.0947891×10−7 1.0947125×10−6 -5.0848591×10−7

8 1.9941471×10−7 -1.4423676×10−7 -1.8180382×10−7 8.0708022×10−8

9 -2.5296376×10−8 2.7737508×10−8 3.0627438×10−8 -1.2616141×10−8

10 3.1381072×10−9 -4.9011518×10−9 -5.2656087×10−9 1.9805535×10−9

Table 4.1: First coefficients cj of the expansions defined in Eq.(4.37) for the
functions e2V0 , b0, Ωρ0 and 2ΩM . The single digit numbers are exact values,
while the eight digits numbers are truncated.

where Ωρ0(µ) is used here only as an example. For the short list of functions that we

introduced, we show their first expansion coefficients cj in Table 4.1. The same functions

are also ploted in Fig. 4.3 with their respective Taylor approximations of order n = 5 and

n = 10. This last figure allows us to assess a first opinion on the quality of the Taylor

series. Approximations with n = 5 and n = 10 are indistinguishable from the exact

function on the plot for µ > 2, while polynomials of higher orders (n = 10 vs n = 5 on

the plot) improve the approximation near the Newtonian limit (µ → 0) reasonably well.

In Fig. 4.4, one can see that the Taylor series seem to converge to their respective exact

functions from the extreme Kerr BH limit (µ = µ0) all the way down to the Newtonian

limit (µ = 0). The convergence is readily seen in the figure with e2V0 , while for the three

other functions, one must take into account the logarithmic scale to appreciate it. Since

the function e2V0 is related to the redshift of photons emitted from the surface, as defined

in Eq.(2.8), we can calculate how wrong the redshift becomes from the approximations.

In the Newtonian limit, where the Taylor approximations have the greatest deviations,

the redshifts of these photons become Z0 = 0.17691, 9.0567 × 10−3, 4.2302 × 10−4 for

n = 5, 10, 15 respectively, while obviously no redshift is expected from exact Newtonian

solutions.

4.4.2. Series of Functions of (µ, ζ̃)

The following step to obtain a series of the Ernst potential of the disk is to expand

the remaining terms which depend on both µ and ζ . At this point, we introduce the
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Figure 4.3: Four exact functions of µ compared to their Taylor approxi-
mations with orders n = 5 and 10. On the right side of the graphic, the
functions are from the top to the bottom: 2ΩM , Ωρ0, e2V0 and b0.

normalized coordinate ζ̃ ≡ 2Ωζ in every function given in Eqs (4.17). By computing

series near µ = µ0 for R(µ, ζ̃), S(µ, ζ̃), V (µ, ζ̃), Z(µ, ζ̃), U(µ, ζ̃) and T (µ, ζ̃), we can

then determine the series of N(µ, ζ̃) which can be combined with the series of Q±(µ, ζ̃)

to obtain the Ernst potential of the disk on the axis.

For the function R(µ, ζ̃), it is necessary to rearrange the integral with the substitution

x = µ sin2 φ, similarly to Eq.(4.35), in order to calculate numerically:

R(µ, ζ̃) =

√
2Ω0ζ̃

π

√
(ζ̃2 + 4Ω2

0)
2µ2 + 2Ω4

0

π/2∫

0

(ζ̃2 + 4Ω2
0)µ

2 sin2 φ + 4Ω2
0

ζ̃2 + 4Ω2
0 cos2 φ

· g(µ sin2 φ) sinφ dx

where Ω0 is a function of µ already expanded before. Once the integrand is expanded

in a series of (µ−µ0), the integral becomes easier to perform on each individual term of

the expansion. This series contains polynomials of 1/ζ̃ with odd exponents and starts

with

R(µ, ζ̃) = − 0.24697

ζ̃
(µ − µ0) −

0.015102

ζ̃
(µ − µ0)

2
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Figure 4.4: These figures show the deviation of n-th order Taylor approxi-
mation An to their respective exact functions. The Taylor series are truncated
into polynomials of order n = 1 to 15 for the functions e2V0 and b0, and from
n = 0 to 15 for Ωρ0 and 2ΩM . The lines are ordered from the smallest n to
the largest when one follows the abcisssa from right to left. The parameter µ
is shown on the abscissae and the ordinates show on a logarithmic scale the
absolute value of the deviations. The plunges to zero in the middle for a few
curves only mean that the corresponding polynomials An intersect the exact
function at that point.
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+

(
0.0063269

ζ̃
+

0.0021138

ζ̃3

)
(µ − µ0)

3 + O[(µ − µ0)
4] (4.38)

where numbers are again truncated after five significant digits. The next functions to

expand, S(µ, ζ̃) and P (µ, ζ̃), do not require anything other than a direct computation

of the series from the computer. The series of S reads

S(µ, ζ̃) = 0.053082− 0.011080 (µ− µ0) +

(
0.0022735− 0.0061646

ζ̃2

)
(µ − µ0)

2

+

(
−4.5822 × 10−4 +

0.0021646

ζ̃2

)
(µ − µ0)

3 + O[(µ − µ0)
4] . (4.39)

At this point, if someone were to look at plots of the series R, S and P in comparison

to their exact functions, one would realize that the series diverge in a specific region of

the axis ζ̃. Indeed, none of the series which has the coordinate ζ̃ in it converges on the

entire domain, except obviously in the extreme Kerr BH limit. To get a better picture

of the domain of convergence of our last series, let us have a closer look at the factor√
(y2 + 1)2 + µ−2 which is present in each of the three functions. It is known that a

Taylor series (binomial series) of a function (1 + x)k at x = 0 converges only for |x| ≤ 1.

Let write now our square root, with our coordinate ζ̃ = 2Ω0y, in a form which looks like

the binomial (1 + x)k:

√
(y2 + 1)2 + µ−2

y2 + 1
=

[
1 +

16Ω4
0

µ2 ζ̃4

[
1 +

4Ω2
0

ζ̃2

]−2
]1/2

. (4.40)

We obtain a function made of a binomial (k = −2) included in a second larger one

(k = 1/2), here enclosed in square brackets. Series near the extreme Kerr BH are series

near the value µ = µ0, where Ω0(µ0) = 0. If we identify Ω0 as our relativistic parameter

and make µ a function of it, µ(Ω0), we can now interpret Taylor series near the black

hole limit as series near the value Ω0 = 0.6 Our two binomials can now be solved for

the convergence condition of binomial series. The series of our square root function

converges only for

ζ̃ ≥ 2 Ω0 and ζ̃ ≥ 2 Ω0 ℜ
(√

1

µ
− 1

)
. (4.41)

The first condition is important for µ ≥ 1/2 while the second is relevant for µ ≤ 1/2.

Since the square root function from Eq.(4.40) is called in all remaining functions needed

6In the Newtionian limit Ω0 = 0 also holds, so it is a bad relativistic parameter, but this can be
ignored for the purpose of finding a domain of convergence.
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Figure 4.5: Sign change boundary from sign(ζ̃ − 2τΩ0) in comparison
to the limit of convergence from Eq.(4.41). Functions which depend on√

(y2 + 1)2 + µ−2 are expected to diverge below either 2 Ω0 or 2 Ω0

√
µ−1 − 1,

which makes series with negative sign(ζ̃ − 2τΩ0) almost irrelevant.

for the Ernst potential, its domain of convergence is expected to constrain the conver-

gence of all series that remain to be calculated, including the final series of the Ernst

potential. Note that condition ζ̃ ≥ 2 Ω0 is equivalent to saying ζ ≥ ρ0, which suggests

that the segment of the axis where the divergence occurs is equal to the radius of the

disk. As the disk shrinks to the origin (ρ0 → 0) as we approach the BH limit, so does

the region in which the functions diverge.

The function V (µ, ζ̃) is not difficult to expand by calling P (µ, ζ̃) where needed. But

which sign should we choose from the factor “sign(y− τ)”? As we know from Eq.(4.41),

series are expected to diverge in a region near the disk, so we might prefer to use the

sign which is valid far from the disk: the “plus sign”. Moreover, it happens that the sign

boundary, ζ̃ = 2τΩ0 in our normalized coordinates, follows closely the limits of conver-

gence given above, as one can see in Fig. 4.5. The result is that ζ̃ = 2τΩ0 approximates

very well the limit of convergence from above, and indeed, series like V (µ, ζ̃) diverge

close to the sign change boundary, which makes the domain with “negative sign” almost

irrelevant for our series. Although we choose the “plus sign”, the series of V is anchored
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(µ = µ0) on a negative value:

V (µ, ζ̃) = − 0.055908 +

(
0.012264 +

0.0013618

ζ̃

)
(µ − µ0)

+

(
−0.0026412 − 6.6713 × 10−4

ζ̃
+

0.0064947

ζ̃2

)
(µ − µ0)

2

+

(
5.5869 × 10−4 − 2.1410 × 10−4

ζ̃
− 0.0023506

ζ̃2
− 2.3723 × 10−4

ζ̃3

)
(µ − µ0)

3

+ O[(µ − µ0)
4] . (4.42)

The remaining functions Z(µ, ζ̃), U(µ, ζ̃) and T (µ, ζ̃) depend all on the elliptic inte-

grals given by X(µ, ζ̃) and Y (µ, ζ̃). Since we restrict ourselves from now on to the “plus

sign” domain, the latter functions become simply X = E(υ, h′) and Y = F (υ, h′). The

derivatives needed for the series are all defined in Appendix A, but one must be careful

to compute a routine which generates series out of elliptic functions in a reasonable

amount of computation time and memory. Instead of using recursivly Eqs(A.7) for each

derivative of the Jacobian elliptic functions, a better strategy is to produce instead series

of these functions by expanding the right hand sides of

υ = am(Y, h′) = arcsin

[√
1 − hP

h′

]
,

sin(υ) = sn(Y, h′) =

√
1 − hP

h′
,

cos(υ) = cn(Y, h′) =

√
h (P − h)

h′
,

√
1 − h′2 sin2(υ) = dn(Y, h′) =

√
hP .

Then, the Taylor series of F (υ, h′) and E(υ, h′) can be computed as series containing

derivatives of the Jacobian elliptic functions. Each time that the derivatives of Jacobian

elliptic functions need to be evaluated, the answer can be easily picked up in the four

series obtained from above. By properly combining the series of F (υ, h′), E(υ, h′), K(h),

K(h′) and E(h′), we obtain:

Z(µ, ζ̃) = 0.0028257 +

(
−0.0011830 +

1.9350 × 10−6

ζ̃

)
(µ − µ0)

+

(
3.6763 × 10−4 − 1.7627 × 10−6

ζ̃
− 3.3002 × 10−4

ζ̃2

)
(µ − µ0)

2
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+

(
−1.0047 × 10−4 +

9.5848 × 10−7

ζ̃
+

1.8595 × 10−4

ζ̃2
+

3.3835 × 10−7

ζ̃3

)
(µ − µ0)

3

+ O[(µ − µ0)
4] , (4.43)

U(µ, ζ̃) = − 0.066452

ζ̃
(µ − µ0) +

0.0085785

ζ̃
(µ − µ0)

2

+

(
−7.1026 × 10−4

ζ̃
+

0.0012715

ζ̃3

)
(µ − µ0)

3 + O[(µ − µ0)
4] . (4.44)

To achieve the Taylor series of T (µ, ζ̃) with a minimum of effort, we produced first

a series from its derivative given by Eqs(4.33). Thanks to Eq.(4.32), this form of the

derivative is avoids of theta functions, and moreover, all functions that make up this

derivative were already expanded for the previous series. So we only need to insert the

series from the former functions into Eqs(4.33), rearrange the terms into a proper series,

then integrate it to recover T in the form of a series. This gives

T (µ, ζ̃) =

∫ [
series of

dT

dµ

]
dµ =

∫ [ ∞∑

n=1

T (n)(µ0, ζ̃)
(µ − µ0)

n−1

(n − 1)!

]
dµ

= T (µ0, ζ̃) +

∞∑

n=1

T (n)(µ0, ζ̃)
(µ − µ0)

n

n!

= 0 − 0.20935

ζ̃
(µ − µ0) −

0.0042719

ζ̃
(µ − µ0)

2

+

(
0.0038072

ζ̃
+

0.0040061

ζ̃3

)
(µ − µ0)

3 + O[(µ − µ0)
4] , (4.45)

where the zero is to emphasize that a constant of integration, which is T (µ0, ζ̃) = 0, was

indeed added.

At this stage, the remaining computations are straight foward. The series of N(µ, ζ̃) is

obtained by combining together the series from Eqs (4.36), (4.38), (4.39), (4.42), (4.43),

(4.44) and (4.45):

N(µ, ζ̃) = 1 − 0.25127

ζ̃
(µ − µ0) +

(
−0.012990

ζ̃
+

0.031568

ζ̃2

)
(µ − µ0)

2 (4.46)

+

(
0.0056452

ζ̃
+

0.0032641

ζ̃2
+

2.1819 × 10−4

ζ̃3

)
(µ − µ0)

3 + O[(µ − µ0)
4] .
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And the expansions of Ω0(µ) and b0(µ) are needed for Q±(µ, ζ̃), which gives:

Q±(µ, ζ̃) = 1 ± ζ̃ − 0.028702 (µ− µ0)
2 + 0.0039472 (µ− µ0)

3

+

(
−3.5824 × 10−4 − 3.8436 × 10−5(1 ± ζ̃)

ζ̃2

)
(µ − µ0)

4

+ O[(µ − µ0)
5] . (4.47)

4.4.3. Series of the Ernst Potential of the Disk

Both real series (4.46) and (4.47) can now be combined into the complex Ernst potential.

This potential, given by Eq.(4.17a), can be expanded around µ → µ0, and it takes the

following form:

f(µ; ζ̃) =
ζ̃ − 1 − i

ζ̃ + 1 − i
− 0.25127 ζ̃

(ζ̃ + 1 − i)2
(µ − µ0) (4.48)

+

[
0.063137 i

(ζ̃ + 1 − i)3
− 0.012845(1 + i)

(ζ̃ + 1 − i)2
+

0.044414

ζ̃ + 1 − i

]
(µ − µ0)

2

+

[
0.015864

(ζ̃ + 1 − i)4
+

−0.0065282 + 0.0064556 i

(ζ̃ + 1 − i)3
− 0.0034840− 0.022452 i

(ζ̃ + 1 − i)2

+
−0.0066618 + 0.0033960 i

ζ̃ + 1 − i
− 0.0022492

]
(µ − µ0)

3

ζ̃
+ O[(µ − µ0)

4] .

We only wrote down the beginning of our results and with only five significant digits,

since the space needed for further orders inflates rapidly. But the method that we used

to compute the Ernst potential allows us to generate the series beyond ten orders with

more then ten significant digits in a reasonable amount of time; e.g. a personal computer

with a 2.2 GHz CPU takes around 2 minutes to compute all series up to ten orders and

ten significant digits.

In Fig. 4.6, the series of the Ernst potential is shown as Taylor polynomials for n =3,

6 and 9 at different positions on the axis, and it is compared to the exact potential.

One can see that for large distances from the disk (in Fig. 4.6, ζ̃ = 10 or 2), the series

seems to converge for any value of µ. Closer to the disk (ζ̃ = 0.5 in Fig. 4.6), the series

does not converge any more for values of µ too much smaller than µ0. This divergence

is expected, as was discussed in Section 4.4.2. One can also see that for very relativistic

disks (µ > 2), the series with orders like n = 3 or 6 give excellent approximations as

long as the series is evaluated for sufficiently large ζ̃.
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Figure 4.6: Real and imaginary parts of the Ernst potential and their

respective Taylor approximation as function of µ for ζ̃ =10, 2 and 0.5. The
solid lines are from the exact Ernst potential, while the dotted, dash-dotted
and dashed lines are Taylor polynomials with orders n = 3, 6, 9 respectively.
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Analogous Taylor series can be computed using the other normalized and dimension-

less coordinate, ζ̂ ≡ ζ/M , which we already introduced earlier in this work. The method

to find these series is the same as before, so we do not need to present each step again.

The final result starts with:

f(µ; ζ̂) =
ζ̂ − 1 − i

ζ̂ + 1 − i
− 0.025836 i

(ζ̂ + 1 − i)2
(µ − µ0)

2 (4.49)

+
−0.0062737 + 0.0032261 i ζ̂

ζ̂ (ζ̂ + 1 − i)2
(µ − µ0)

3 + O[(µ − µ0)
4] .

The latter normalization (ζ̂) shows again series that are systematically more concise

than the former normalization; this was also true for the black hole series in section 4.2.

We can already see that the beginning of Eq.(4.49) agrees with what we conjectured in

Eq.(4.9) since the first order correction vanishes, although the two series do not use the

same expansion term for the next orders (ε vs (µ − µ0)). Similarly, the two first terms

of Eq.(4.48) should agree with what we conjectured in Eq.(4.8). This can be seen if ε

from this second series is expanded in a power series of the disk parameter (µ − µ0):

ε = 1 − M̃(µ) = −dM̃

dµ
(µ0)(µ − µ0) + O[(µ − µ0)

2].

By picking the numerical value from Eq.(4.26), we find then that both series agree since

the second term of the black hole becomes:

2ζ̃

(ζ̃ + 1 − i)2
ε = − 2ζ̃

(ζ̃ + 1 − i)2

dM̃

dµ
(µ0)(µ − µ0) + O[(µ − µ0)

2]

= −0.2512727428 ζ̃

(ζ̃ + 1 − i)2
(µ − µ0) + O[(µ − µ0)

2] .

It means that the coefficient 0.25127... does not represent a quantity which distinguishes

the disk from a black hole with the same mass M and angular velocity Ω: it is a mere

effect of the choice of the expansion parameter (within the class of uniformly rotating,

stationary and axisymmetric bodies).

On the other hand, the coefficients of further expansion terms vary depending on what

kind of body the source is. In this manner, they allow us to identify whether we have

a black hole or some uniformly rotating fluid. Comparing Eqs(4.14) and (4.49), we find

that both the black hole and the disk of dust have potentials with the following structure
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on the axis:

f(ε; ζ̂) =
ζ̂ − 1 − i

ζ̂ + 1 − i
+

C2 i

(ζ̂ + 1 − i)2
ε2 + O(ε3) (4.50)

where C2 is a coefficient which is different for both bodies. If we take the series for 2ΩM

in Table 4.1, we find:

ε = 1 − 2ΩM = −1.2563637 × 10−1(µ − µ0) + O[(µ − µ0)
2] ,

(µ − µ0)
2 = 63.353298 ε2 + O(ε3) .

The last result can be used to substitute (µ−µ0)
2 by ε2 in Eq.(4.49), which thus provides

the series with the same relativistic parameter ε used for the black hole. We finally find

out that the characteristic coefficient C2 is, for the two bodies:

C2 = +1 for the Kerr black hole,

C2 = −1.636816606... for the disk of dust.

It would be interesting to know if other bodies such as rings have also the same form as

given in Eq.(4.50).

In Fig. 4.7, we compare Eq.(4.50) up to ε2 with the respective exact functions for the

disk and the black hole, using the coordinate ζ̂. The different behaviours can be seen

near the source (ζ̂ < 3) for the Ernst potentials and their approximations; in the far

field, the correction terms wane and the Ernst potentials are essentially identical to a

extreme Kerr BH of the same mass (see Eq.(4.11)). For the black hole, the series up to

ε2 follows the exact potential closely. The approximation for e2U even crosses zero into

negative values near the centre, suggesting that the source might have a horizon7. For

the disk, both curves of e2U stay positive everywhere.

If we compare the series of the Ernst potential at the centre of the disk8, f0 = e2V0 +ib0,

with our two series (4.48) and (4.49) at the origin of the normalized axis, ζ̃ = ζ̂ = 0, the

result might look surprising as they are not the same:

f0(µ) = −i + (0.0061997 + 0.028702 i) (µ − µ0)
2 + O[(µ − µ0)

3] ,

f(µ; ζ̃ = 0) = −i + 0.012918 (µ− µ0)
2 +

(
higher orders diverge to ∞ as ζ̃ → 0

)
,

f(µ; ζ̂ = 0) = −i + 0.012918 (µ− µ0)
2 +

(
higher orders diverge to ∞ as ζ̂ → 0

)
.

7on the axis, the horizon is situated where e2U = 0.
8The Ernst potential is identical on the axis ζ with either non-rotating or co-rotating coordinate.
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Figure 4.7: Real and imaginary parts of Ernst potentials of disks and black

holes compared to their series up to order ε2, plotted along the axis ζ̂ for
different values of the parameter ε ≡ 1−2ΩM . The curves are the followings:
exact disk (− − −), series of disk (· · · · · · ), exact black hole (− − −),
series of black hole (· · ·). The extreme Kerr BH (solid line) is shown as
reference, independently of ε.
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This difference can be explained by the normalization of the coordinate system and the

unique property of the extreme Kerr BH geometry. As explained in section 2.3.2, the

disk of dust, in its extreme Kerr BH limit, is contained in an “inner world” which is

separated from an “outer world” by an infinitely long “throat geometry”. The normalized

coordinate that we chose for the series, ζ̃ ≡ 2Ωζ and ζ̂ ≡ ζ/M , are such that the disk

shrinks to the origin as we approach the BH limit: it describes then an asymptotically

flat spacetime with a degenerate black hole horizon at the origin. If we had chosen a

different normalization such as y = ζ/ρ0, the coordinate system would have ended up

describing the inner world: a disk of dust with finite radius surrounded by the throat

geometry in the far field.



5. Conclusion

We began our work by investigating in chapter 3 the relativistic solutions of fluid bodies

made of strange quark matter. Through sequences of highly accurate numerical solu-

tions, it was possible to identify extremal solutions (maximal mass, angular momentum,

etc.) and to define the limits of these fluids in equilibrium with great precision.

Whereas it is known analytically that the EOS describing strange matter tends to

that of a homogeneous body in the Newtonian limit, we saw here that sequences of

configurations with these two EOS are similarly bounded by a mass-shedding limit,

an infinite central pressure, the extreme Kerr black hole limit, etc. All continuously

connected solutions are said to form a “class”. Strange matter bodies can be divided

up into the same classes as for homogeneous fluids: a “Schwarzschild class” containing

only spheroids, and a “ring class” where continuous transitions between spheroidal and

toroidal bodies exist, etc. But strange stars also have characteristics which distinguish

them from homogeneous bodies. We have shown in Figs 3.2, 3.3 and 3.4, that a domain

of the Schwarzschild class is unstable. Indeed, along sequences of constant angular

momentum, maximal masses are found at intermediate configurations. The accuracy of

our solutions allowed us to find that the configurations in the class with maximal mass

or maximal angular momentum are not exactly at the mass-shedding limit, contrary to

what was believed.

It was also shown numerically that a parametric transition exists from strange matter

rings to the extreme Kerr BH. It is expected that E ≤ 1 always holds on the surface

of a fluid body. Indeed, this inequality was used to prove that for rotating fluids the

extreme Kerr black hole necessarily results if e2V0 → 0 [Mei06]. We have verified that

this inequality is correct for a large class of rings. Figs 3.7 and 3.8 suggest that the

transition to the black hole is rather slow as e2V0 → 0. This can be made more precise

through the comparison with the Kerr solution, which leads us to conjecture that for

every stationary rotating body permitting a transition to a black hole, the multipole

moments yn tend to one according to the formula

dyn

dy0
(y0 = 1) = n + 1 . (5.1)
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The plots of the multipole moments provide evidence suggesting that any given moment

yn, n > 0, of such bodies is always greater than that of the Kerr solution with the

same y0. It then follows that the Kerr metric could never represent the exterior of these

configurations.

In chapter 4, we discussed again the multipoles and the result from Eq.(5.1) by using

two types of normalization. There it was found that the conjecture for n = 1 in Eq.(5.1)

is a consequence of the first “law of thermodynamics” for uniformly rotating fluids. If

the Ernst potential of a uniformly rotating fluid can be expanded by the relativistic

parameter 2ΩM near the extreme Kerr BH limit, we showed that Taylor series on the

positive part of the axis would read

f =
ζ/M − 1 − i

ζ/M + 1 − i
+ ∅ + O[(1 − 2ΩM)2] ,

where the first term is from the extreme Kerr BH solution and the vanishing first cor-

rection term is equivalent to the previous conjecture. Using the Ernst potential on the

axis of the uniformly rotating disk of dust, we first proved that the conjecture indeed

holds for this body by computing the derivative of the potential. Then, we developed

a computer routine which can generate the Taylor series of the Ernst potential for the

disk up to arbitrary order. Although it might only be useful for few expansion terms

near the black hole limit, the series indeed seems to converge for the entire sequence of

disk configurations and everywhere on the axis, except for a tiny segment near the disk.

As our knowledge of astrophysical collapse scenarios improves, it will be interesting to

see how strong the connections can be to the quasi-stationary collapse considered here.

Although the conjecture from Eq.(5.1) holds for the disk and our sequences of rings,

it is proved for uniformly rotating fluids only for n = 1. It would also be interesting

to provide an explanation of this conjecture for the further multipoles. And again, as

the series for the black hole and the disk both begin with the same structure given in

Eq.(4.50), one can ask if this form also holds for other bodies near the extreme Kerr BH

limit, such as rings.
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[MAK+08] R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer, and D. Petroff. Rel-

ativistic Figures of Equilibrium. Cambridge University Press, Cambridge,

2008.

[Mei02] R. Meinel. Black holes: A physical route to the Kerr metric. Ann. Phys.

(Leipzig), 11:509–521, August 2002.

[Mei04] R. Meinel. Quasistationary collapse to the extreme Kerr black hole. Ann.

Phys. (Leipzig), 13:600–603, October 2004.

[Mei06] R. Meinel. On the black hole limit of rotating fluid bodies in equilibrium.

Class. Quantum Grav., 23:1359, 2006.
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A. Elliptic Integrals and Functions

This appendix provides our definitions of the different functions related to elliptic inte-

grals and some useful relations or identities. Most definitions, conventions or notations

are inspired from [GR94].

Elliptic integral of the first and second kind respectively:

F (φ, k) :=

φ∫

0

dθ√
1 − k2 sin2 θ

=

sin φ∫

0

dx√
(1 − x2)(1 − k2x2)

(A.1)

E(φ, k) :=

φ∫

0

√
1 − k2 sin2 θdθ =

sinφ∫

0

√
1 − k2x2

1 − x2
dx (A.2)

The number k is called the modulus of these integrals, and k′ :=
√

1 − k2 is called the

complementary modulus.

Complete elliptic integrals:

K(k) := F
(π
2
, k
)

, E(k) := E
(π
2
, k
)

. (A.3)

Functional relations between elliptic integrals:

E(k)K(k′) + K(k)E(k′) − K(k)K(k′) =
π

2
(A.4)

∂F (φ, k)

∂φ
=

1√
1 − k2 sin2 φ

, (A.5a)

∂F (φ, k)

∂k
=

1

k′2

(
E(φ, k) − k′2F (φ, k)

k
− k sin φ cosφ√

1 − k2 sin2 φ

)
, (A.5b)

∂E(φ, k)

∂φ
=

√
1 − k2 sin2 φ , (A.5c)

∂E(φ, k)

∂k
=

E(φ, k) − F (φ, k)

k
. (A.5d)
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Jacobian elliptic functions:

u := F (φ, k)

am u ≡ am(u, k) := φ , (A.6a)

sn u ≡ sn(u, k) := sin φ , (A.6b)

cn u ≡ cn(u, k) := cos φ , (A.6c)

dn u ≡ dn(u, k) :=

√
1 − k2 sin2 φ . (A.6d)

Derivatives of the Jacobian elliptic functions:

∂am u

∂u
= dn u , (A.7a)

∂sn u

∂u
= cn u dn u , (A.7b)

∂cn u

∂u
= − sn u dn u , (A.7c)

∂dn u

∂u
= − k2sn u cn u , (A.7d)

∂am u

∂k
=

dn u

kk′2

[
−E(am u, k) + k′2u + k2 sn u cn u

dn u

]
, (A.7e)

∂sn u

∂k
=

dn u cn u

kk′2

[
−E(am u, k) + k′2u + k2 sn u cn u

dn u

]
, (A.7f)

∂cn u

∂k
= − dn u sn u

kk′2

[
−E(am u, k) + k′2u + k2 sn u cn u

dn u

]
, (A.7g)

∂dn u

∂k
= − k sn u cn u

k′2

[
−E(am u, k) + k′2u +

sn u dn u

cn u

]
. (A.7h)

Heuman’s Lambda function:

Λ0(φ, k) :=
2

π
[E(k)F (φ, k′) + K(k)E(φ, k′) − K(k)F (φ, k′)] (A.8)

Jacobian Zeta function:

Z(u, k) := E(am u, k) − E(k)

K(k)
u (A.9)
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Jacobian theta functions:

ϑ1(w, B) =
∞∑

n=−∞

(−1)n exp
{[

1
2
(2n + 1)

]2
B + (2n + 1)w

}
, (A.10a)

ϑ2(w, B) =
∞∑

n=−∞

exp
{[

1
2
(2n + 1)

]2
B + (2n + 1)w

}
, (A.10b)

ϑ3(w, B) =

∞∑

n=−∞

exp
{
n2B + 2nw

}
, (A.10c)

ϑ4(w, B) =

∞∑

n=−∞

(−1)n exp
{
n2B + 2nw

}
. (A.10d)

One particular partial derivative with ϑ2:

∂

∂w
ln
(
ϑ2(w, B)

)
= Λ0

(
am(u, k′) , k

)
(A.11)

with w =
πu

2K(k)
and B = −π

K(k′)

K(k)

One general property with partial derivatives of ϑ2:

∂

∂B
ϑ2(w, B) =

1

4

∂2

∂w2
ϑ2(w, B) (A.12)



B. Some Useful Functions for the Disk of Dust

B.1. List of Functions in the Ernst Potential of the Disk

Functions which depend only on the relativistic parameter µ:

τ = 4

√
1 +

1

µ2
,

h =

√
1

2

(
1 +

1√
µ−2 + 1

)
,

h′ =

√
1

2

(
1 − 1√

µ−2 + 1

)
,

g(x) =
ln(

√
1 + x2 + x)√
1 + x2

=
arcsinh x√

1 + x2

(
=

1

2

d

dx
[arcsinh x]2

)
,

In =
1

π

µ∫

0

g(x) xn

√
µ − x

dx ,

Î = 4

√
1 + µ2 I0 =

4

√
1 + µ2

π

µ∫

0

ln(
√

1 + x2 + x)√
1 + x2

√
µ − x

dx ,

am ≡ am(Î, h′), sn ≡ sn(Î, h′), cn ≡ cn(Î, h′), dn ≡ dn(Î, h′) ,

c1 =
1√
µ

{
2 4

√
1 + µ2 E(am , h′) − (µ +

√
1 + µ2)I0 + I1

}
,

e2V0 =
h′cn 2

h
, b0 = −sn dn

h
,

Ω0 ≡ Ωρ0 =
1

2

√
1 − h′2

h2
cn ,

M̃ ≡ 2ΩM = −b0 − Ω0c1 ,

The functions “am”, “sn”, “cn” and “dn” call the Jacobian elliptic functions which are

defined in Appendix A.
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Functions which depend only on µ and the axis coordinate ζ :

y =
ζ

ρ0
=

ζ̃

2Ω0
=

M̃

2Ω0
ζ̂ ,

R =
y
√

µ

π
√

(y2 + 1)2 + µ−2

µ∫

0

x(y2 + 1) + µ−1

µ(y2 + 1) − x
· g(x)√

µ − x
dx ,

S =
h′(y2 − τ 2)

2
√

(y2 + 1)2 + µ−2
,

P =

√
(y2 + 1)2 + µ−2 + 2hτy

(y + τ)2
,

V = sign(y − τ)
h
√

P (1 − hP )(P − h)

1 − hP − h′
,

υ = arcsin

[√
1 − hP

h′

]
,

X = sign(y − τ)E(υ, h′) ,

Y = sign(y − τ)F (υ, h′) ,

Z = X − E(h′)

K(h′)
Y ,

U =
π

4K(h)

(
2Y

K(h′)
− 1

)
,

W± =
π

2K(h)

[
Î ±

(
Y − K(h′)

2

)]
,

T = ln ϑ2

(
W+ ,−π

K(h′)

K(h)

)
− ln ϑ2

(
W− ,−π

K(h′)

K(h)

)
,

N = exp
{

R − 2Î (S + V + Z + U) + T
}

,

Q± =
1 − 2Ω2

0(y
2 + 1 +

√
(y2 + 1)2 + µ−2)

−b0 ∓ 2Ω0y
.

Again, K, E, F and ϑ2 call elliptic functions which are defined in Appendix A. Finally,

the complex Ernst potential on the axis of the rigidly rotating disk reads:

f(µ; y) =
1 − iNQ−

N + iQ+

.
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B.2. Some Other Useful Relations

The following identities can be useful:

h2 + h′2 = 1 , 2h h′ =
1√

1 + µ2
(B.1)

(1 − h − h′)(h − h′ − 1) = 2h(1 − h) ,
h − h′ − 1

1 − h − h′
=

h

1 − h′
(B.2)

Some derivatives can take a recursive form:

dτ

dµ
=

− τ

2µ(1 + µ2)
, (B.3a)

dh

dµ
= 2h2 h′3 , (B.3b)

dh′

dµ
= − 2h′2 h3 , (B.3c)

dg(x)

dx
=

1 − xg(x)

1 + x2
. (B.3d)
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