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WHAT IS DIFFERENT? - MODELING THE CHANGEABILITY OF THE
ENVIRONMENT

Jens Kessler, Christopher Gaudig, Christof Schroeter, Horst-Michael Gross

Ilmenau University of Technology
Neuroinformatics and Cognitive Robotics Lab

jens.kessler@tu-ilmenau.de

ABSTRACT
Within the field of mobile robotics, mapping is a well known
problem to be solved to enable a mobile system to drive
autonomously. In this work we present an improved ap-
proach on dynamic map adaptation with a previously given,
static map, built with a laser scanner. We are focusing
on modeling changes within this map at different time
scales, so old states of the environment are not getting
lost instantaneously. We discuss this problem under the
consideration of a) keeping the map consistent while in-
cluding changes and b) avoiding the conflict on fast adap-
tation vs. forgetting important environment structures. To
model these properties we built a stack of maps consider-
ing different time levels. In each stack observation data
are included with different insertion rate, and statistics
of laser beam pairs are built to guarantee consistency of
the estimated map. This allows us to construct a view of
the change of the environment over time, which classical
SLAM approaches cannot do.

Index Terms— Mapping, dynamic map adaptation, sta-
tistical map learning

1. INTRODUCTION

In mobile robotics the tasks of finding an appropriate way
to drive to a goal, following a person, or even to localize
the robot within the environment are still challenging. To en-
able a mobile robot to act well within the environment, the
robot needs an internal representation of the environment,
usually called a map. The problems of interaction with the
environment arise by using an outdated representation (map)
of the environment and releasing actions to an actual envi-
ronment, e.g. by trying to drive through a blocked floor, a
closed door or by trying to drive through moved pieces of
furniture. Thats why the robot has to adapt the internal map
in a consistent way by including new states of the environ-
ment and also retaining the old states of the environment. The
type of map used depends on the sensor used to observe the
environment. In our case the sensor is a laser scanner with a
measurement range of 270◦, so all observations are pairs of
range measurements coupled with viewing angles. From such
scans maps can be constructed. In literature the problem of
map building was discussed extensively in the past ten years
(see section 2 for details). The main goal of all approaches
was the automatic construction of maps within an initially
unknown environment. This class of approaches refer to the
SLAM problem definition (Simultaneous Localization and

This work has received funding from the European Commu-
nity‘s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 216487 (CompanionAble Project).

Mapping) and assumes a static map, which means the state of
the environment does not change over time. The state of the
environment as well as the successive states (poses) of the
robot are unknown and have to be estimated. Our approach
differs from that assumption in a way that we do not assume
the state of the environment as constant over time and we as-
sume the pose of the robot within the environment is known.
An environment state is for example the probability of a cell
being an obstacle or in our case the value of a hypothetical
distance to the next obstacle from a defined point, which is
in our case the center of a map node. We also assume that
a reliable state cannot be obtained after one observation, but
that only repeated observations can guarantee a stable long
term state.

By partially observing the environment we can acquire
new information of the current state of the environment, not
knowing at that point in time if the current observation is the
common state or an outlier. So our main goal is to detect a
reliable distance to the next obstacle from a defined spatial
point. To create a map of the environment, we construct a set
of nodes, where the centers of these nodes are the reference
points of possible obstacle configurations. These nodes con-
tain information coded in radial coordinates. So each node
can present a state, storing for every angle the most likely
distance to the next obstacle. This distance per angle does
not only depend on observations collected at that angle, but
is also correlated to distance measurements of neighboring
angles to provide additional information on the most likely
state. This is also helpful since the state of the environment
can only be partially observed, because laser scanners do not
always cover the full scanning circle, and the full environ-
ment state can only be assembled by many observations of
different parts of that environment. So the goal of our ap-
proach is to collect observations and to model for each node
of the map how observations may belong together to get an
assumption on the usual state of the environment. Also the
time (or the number of observations) until a ”fact” of the
environment is included into the internal world representation
is an important property of world modeling. We wanted to
construct an actual model of the environment, with the last
taken observation included to use in obstacle avoidance or
person tracking, and we wanted a long term stable represen-
tation to slowly adapt on world changes and include only the
stable (immobile) parts of the environment. The mechanism
of the long term memory, its stability and slow adaptation is a
key point on robust navigation in terms of path planning and
localization and is a key feature of our proposed algorithm.
To model these different adaptation requirements we create
different ”time levels” per node, each representing a different
level of adaptation speed.

This paper is structured as follows: in the next section we

294



0

update rate

1
Add all
obs.

Add no further
observation

CAD maps, 
manual maps

finished SLAM

running
SLAM

Fig. 1. A scheme of update rates. While most algorithms
assume statical maps they either include no new information
into that map (when they assume the map is complete) or all
information (when map building is in progress). Only a few
algorithms, including that one presented her, use a different
update rate to include and forget information regarding the
map.

present the state of the art within the field of map building
and updating. In the following section we discuss how data
averaging can be applied to different time levels of memory,
like short term memory, mid term memory and long term
memory and how the map is structured in order to allow up-
dates. In the fourth section the description of the problem of
consistent state estimation is given, followed by the key ideas
on dynamic map adaptation. In the fifth section experiments
and their results are shown. The paper is closed by a short
reflection on the presented methods and what further work
has to be done on this field of research.

2. RELATED WORK

At the beginning of navigation research in robotics, maps
where constructed entirely by humans, since other basic prob-
lems where in the focus of operation [1]. As these problems
of localization and robot motion where solved to a certain
degree, also the problem of mapping came into focus of re-
search. Soon it was understood that the learning of a map
of an unknown environment was closely connected to the
estimation of the pose of the robot within that environment
[2]. The map estimation and the pose estimation are in fact
closely coupled estimation problems. With this knowledge a
class of SLAM algorithms evolved over the following years
[3],[4],[5],[6],[7]. The drawback of all these algorithms is
the assumption of a static environment, since most of these
algorithms try to find a match of laser-scans [6],[7] or land-
marks [3],[4],[5], which assume a constant position of these
features within the map over time. If that assumption fails, it
is not possible to assume a correct position of the robot and so
the whole SLAM solution will fail. All these approaches of
classical SLAM have in common that they represent just one
snapshot of the environment, representing only the last visited
state of the environment and assuming this state is valid all
time. So one has the choice to include every new observation
into the map, when the SLAM algorithm is running and the
needed area to be mapped is not covered, or to include no ob-
servation into the map, when the needed area is covered (see
Fig. 1). Nevertheless in the past two years various approaches
have evolved to overcome these constraints and could up-
date maps for an entire system life cycle. These techniques
still require a correct localization hypothesis when returning
to a previously visited place [8] or at least some remaining
valid landmarks to retain a correct position [9]. When some
correspondences to previously seen landmarks are present,

newly seen landmarks can be added to the scene, or not seen
landmarks can be removed from the scene description. It is
the first time this new class of scene description deals with a
memory model to filter information before that information
becomes part of the scene or is forgotten. It is achieved by
simply counting the appearance of visual features, residing
in the short term memory, and adding features to the scene
when a certain counting threshold has passed. When a feature
should be seen at a certain position but is missing for a certain
number of observations, this visual feature is removed from
the scene description. As [10] mentioned, this is biologically
plausible, since Atkinson found three kinds of time depen-
dent visual memory systems within human brains: a short
term memory for sensory details with an average time span
to forgetting of under 1 second, a reduced mid-term mem-
ory with an average time span of 15-30 seconds, and a long
term memory, where only repeated information from mid-
term memory is stored, which guaranties a very stable mem-
ory representation over time. This knowledge is often used
implicitly when dealing with maps. For example [11] tried
to classify sonar scans as ”moving objects” or ”static back-
ground” before mapping, than only the static measurements
where used for mapping. On the other hand [12] used the
same classification to separate humans from the background
to get useful person hypotheses.

Like in the work of [9], which deals with adapting a map
containing visual features by using time dependent memory,
the approach of [13] presents another idea on map adaptation,
based on laser scanner observations, to reflect the changeabil-
ity of the world with a time dependent memory model. Here
not a simple counting threshold is used to select laser scans
as the valid observation, but a statistical model, derived from
a memory representation (for details, see section 3). A map is
built with nodes labeled with laser scans at the position of that
node. These scans are independent from each other and repre-
sent each the most likely scan observed at a particular angle.
With a scheme on including new scans to that particular angle
and forgetting scans they where able to model different types
of time memory. This work is the foundation of our approach.
A main drawback of this method is the dependency of the
environment state only on the observation count of distances
per angle. This can lead to inconsistencies since each angle
is handled independently and the result of the angles state
estimation depends only on how often it was observed and
not on states of neighboring angles, which give additional
information on the decision of the most likely state. In [14]
the author suggests that statistical inference of observed cells
describe the state of neighboring unobserved cells, because
the system has learned before that these cells behave equally
when changing because they belong to the same object. So
a door state could be estimated by just observing a part of
that door and by statistical knowledge previously collected.
This is a property [13] have not taken into account. Both
ideas presented in [13] and [14] form the basis of the work
presented here and we fuse both ideas on coding maps as
most likely previously measured ranges per angle bin, and
deciding on a state of one entity (here a range per angle bin,
in [14] the state of an occupancy cell) by using neighboring
state estimates.

3. DIFFERENT TIME LEVELS OF MEMORY

The first question is: how to implement different time de-
pendent memory characteristics into a model of state estima-
tion? A common way is to take a sliding window averaging
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Fig. 2. Different time levels of the map are represented by
nodes with different λi parameters. Each node level consists
of a set of angle bins, collecting a set of distance mea-
surements in their corresponding angle interval. Additionally
each angle bin is split into range intervals to collect corre-
lation information from ranges measured inside the current
and the neighboring angle bin.

of the form dt+1 = (1 − u) · dt + u · dcurr , where d is
in our case a range measurement at one angle. One sample
dcurr would then have a weight (or influence) on the result
of w(t) = u · eln(1−u)·t. After a time of t1/2 = ln2

λ
(with

λ = −ln(1−u) and u = eλ−1) this sample would have lost
half of its initial averaging weight. The value of λ regulates
the level of forgetting old measurements and respecting new
measurements. In [13] it was shown, that the decay rate of
w(t) could be experimentally proven in biological organisms
also. However, this averaging procedure has the problem that
it can produce results of d never measured by the laser system
and tends to fade from one dominant measurement to the
next. One requirement of the estimation of the most likely
d is that only previously measured values should be chosen.
So the averaging process has to be interpreted as a selection
process from a set of measurements. In this fashion the pa-
rameter λ regulates the interval of inserting new data and
releasing old data from that set and also the amount of data to
insert and forget (see [13]). By randomly choosing the data
to insert from the incoming measurements and randomly for-
getting old measurements the memory model is established
with different time characteristics. So the designer can decide
with the parameter λ which forgetting rate is appropriate to
construct short-term, mid term and long term memories.

The map consists of a set of nodes, where each node
has different instances (parameters λ) to construct a different
memory level for the same spatial space(see Fig.2). Each time
level of a node consists of a set of angle bins, covering the
full 360◦ range. In these bins observations to the next mea-
sured obstacle are collected in a unsorted set. Additionally
each angle bin is also split into range bins. These bins are
needed to find the most likely distance in that angle bin with
taking into account all measurement from the neighboring
angle bin. Each distance measurement belongs to a range bin.
The occurrence of range-bin pairs is collected to guarantee
a consistent overall estimation, which is described in detail
in section 4. In each time level the parameter λ is chosen
for a different time characteristic, like short term, mid term
and long term memory. This parameter influences the decay
rate of the sliding window (or the length of that window)
or, interpreted as an insertion rate, the number and interval
of new observations to be inserted and old observations to
be removed from the current set of observations. To remove
a range measurement from the current set, we also have to
update the statistic on the correlation of the current ranges

to the neighboring ranges. Each range measurement is con-
nected to a so called co-occurrence pair, which is described in
more detail in the next section. These pairs influence the co-
occurrence count in a matrix. Here it is important to mention
that upon removal of a measurement from one angle bin,
also a randomly selected co-occurrence entry from the same
angle bin and the corresponding range bin is also removed.
So an overall map with different levels of consistent more
or less actual states will occur. The benefit of such a map
lies in a measurement of path planning stability, where paths
at different time levels may differ from each other, and also
in an improved localization capability, since different world
configurations can be assumed to be valid.

4. THE PROBLEM OF CONSISTENT WORLD
REPRESENTATION

As stated in section 2, we assume that the pose of the robot
in map coordinates is always known. So we concentrate only
on map adaptation and do not solve a SLAM problem. To
formulate the problem definition on consistent world states
we have to describe some basic structures first. We create
nodes that form the map, labeled with virtual 360◦ scans
with configurable angle resolution (see Fig. 3). Each angle
interval is called an angle bin, denoted as Sa. Each node has
its first angle bin viewing into direction φn = 0. Each angle
bin stores a collection of virtual range scans. To insert such a
range scan into an angle bin we have to transform an actual
robot scan into nodes coordinates, since the robot usually is
not at the nodes position.

xr

�n=0
xn

�no

�r=0

�ro

xo

�nr

Fig. 3. A node with 16 angle bins and 4 range bins per angle.
The scan taken from the robot has to be transformed to the
node’s position. Each point of the robot’s scan is transformed
into global Cartesian coordinates and afterwards to polar
coordinates relative to the node’s center.

As shown in figure 3, the robot has its own local coor-
dinate system, where scans are stored relative to the robots
viewing direction φr . The pose �xr of the robot is also known
as well as the view direction φnr in global coordinates. The
transformation is executed in two steps. First the position of
the obstacle point �xo is calculated in Cartesian coordinates
relative to the robot’s position �xr and the global view direc-
tion φn.
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[
xro

yro

]
=

[
dr · cos(φnr + φro)
dr · sin(φnr + φro)

]
(1)

with dr the measured distance to the obstacle.
In the second stage we simply add the distance between

�xr and �xn as offset to the coordinates xro, yro and transform
these coordinates back into polar coordinates.

[
xno

yno

]
=

[
xro

yro

]
+ ( �xn − �xr)

[
dno

φno

]
=

[ √
x2

no + y2
no

atan( yno
xno

)

]
(2)

Here dno and φno are the distance and angle of the virtual
scan from the node. We can define that such a pair of obstacle
angle and obstacle distance is an observed state of the envi-
ronment. In [13] the angle φno is discretized into bins and
all values dno are collected within these bins. By selecting
the median of all stored range values a ”most likely” scan is
selected to represent the state of the environment at that angle.
The benefit of this selection is, that only previously measured
values are possible. But this method has one major drawback,
because all angle bins are handled independently. So the se-
lection of the ”most likely” measurement is only based on the
measurement count within that angle bin and is not related
to neighboring bins. This can cause inconsistencies of ”half
visible” objects in impossible states (half in new position and
half in old position), when one part of the object is seen more
often in the new state than the other part.

As a solution to this problem we take into account the
statistical dependencies of neighboring scans, since states of
real objects within the world do influence neighboring scans
if they span over several angle bins. To capture this influence
we model so called co-occurrences. This means that a mea-
surement in angle bin A is correlated with a measurement in
the neighboring angle bin B (see Fig. 4). For simplified mod-
eling we take the Markovian assumption that a scan is only
correlated with its immidiate neighbor scan. We built a sim-
ple statistic upon this fact by also clustering the laser scans
into range bins (per angle) and counting the co-occurrence
to the neighboring scan in a co-occurrence matrix. In fig. 4
for example, whenever a scan in angle bin A was measured
in range bin 3, the range bin of the next scan B was 2. The
same holds true for range bin 〈A, 4〉 correlated with range bin
〈B, 4〉 of the next angle bin. The update of the co-occurrence
matrix is quite simple: every time a scan (classified into range
bin α ) has a valid next scan (classified into range bin β), the
co-occurrence matrix of angle bin Sa[α][β] is increased by
one.

Note that these scans and these statistics are collected
over time, so many possible configurations of the environ-
ment are observed. Also only parts of what may be seen from
the position of the node is observed at a time, since laser
scanners usually do not cover the full circle at one observa-
tion. Since we had to consider only a predefined length of
observation time of the sliding window, we restrict the co-
occurrence matrix to a maximum entry count. So, when the
full count of possible entries is reached and a new observation
is added to that angle bin, we randomly clear one entry from
the matrix and also remove the corresponding scan in the
range bin. Finally, a list of measured ranges per angle bin and
a co-occurrence matrix per angle bin results, which represents
the statistical correlation between the range bins of the actual
scan and the neighboring scan. The interesting question to
solve now is ”What is the most likely range bin configuration

xnA
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e
bi

n
n

i
A

range bin in B4         3      2       1
1       2       3       4

1
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3

4

4

4

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig. 4. Example of one of 16 transition matrices, containing
statistics regarding range scans from angle bin A to B. Here
two configurations exist: one tells that scans in range bin 3
are always followed by scans in range bin 2 (blue), the other
that scans in bin 4 are followed by scans in bin 4 (orange).

for all angle bins at that node?”. This represents the assumed
actual state of the environment at that position. To solve this
question we have to combine all available statistic data to find
the configuration with the highest probability. Let the scan
distance of angle bin Si be di and the scan vector of all scans

be �D = 〈d1, d2, ..dn〉, then we can formulate the estimation
problem as follows:

p(d∗
1, d

∗
2, ..., d

∗
n) = max�D p(d1, d2, ..., dn) (3)

where p(d1, d2, ..., dn) is the probability distribution over
all scan ranges and 〈d∗

1, d
∗
2, ..., d

∗
n〉 the optimal combination

of scans. By applying the Markov assumption we can rewrite

p(d1, d2, ..., d3) = p(d1) · p(d2|d1) · ... · p(dn|dn−1) (4)

From this distribution the most likely combination of the
ranges 〈d1, d2, ..., d3〉 has to be found. This problem can be
visualized as a pseudo cyclic path search through a field where
each node represents a range bin within an angle bin (see
Fig. 5). Pseudo cyclic means that the first row of nodes and
the last row of nodes are identical and a valid path has to
end at that range index it has started from. The weights of
the graph edges are the conditional probabilities p(dn|dn−1)
which could be easily acquired from the co-occurrence matri-
ces. The starting costs for the nodes of the first row is the cor-
responding prior p(d1). The path with the maximal product
of all edges is our required result. Obviously paths starting
with a prior of zero can be neglected. Additionally, as seen
in Fig. 5, we have to consider only these paths where a no-
zero weight to the next angle bin exists. Normally the amount
of possible paths is not very large, so it is possible to search
through all these paths with brute-force, but there is another
way to gracefully solve the same problem. The search of an
optimal path is also a well known problem in informatics. Di-
jkstra proposed such a solution in [15]. The difference to our
graph is, that a path is found where the sum of all weights is
minimal. But we can easily reformulate the graph weights to
create a graph suitable for Dijkstra graph search. We simply
invert the graph weights to new weights wij = 1/p(dj |di)
(see Fig. 5 c)) and also transform the prior in the same way. In
this fashion we can effectively calculate the optimal path even
in complex scenarios with a high count of possible paths.
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Fig. 5. The transformation from the bin representation to a graph. Only these values in the transition matrix from one angle
bin to the next create edges, which have a co-occurence count greater than zero ( a) and b)). The weight of the graph is the
number of visits in the range bin divided by the overall count of visits in the angle bin. To reformulate the problem of finding the
maximum product we create a graph with reciprocal weights and now can search for the path with the minimum sum. Columns
of the graph are the range bins, rows of the graph represent the angle bin. Note that the number of angle bins is one bin extra
to copy the first row into the last row and create a pseudo cyclic graph.

With that path we have an optimal range bin for every
angle bin. From each optimal range bin we select the me-
dian range measurement, like it is done in [13], to be sure
to select a distance measured before. The only exception to
consider are angle bins without any measurement (because
we have never observed anything within that bin). In this case
all ranges are assumed possible and have an entry inside the
co-occurence matrix, but the weights to the next angle bin are
set to one. So all paths passing that bin are equally possible.

5. EXPERIMENTS AND RESULTS

In this section we show a short proof of concept with some
experiments. Within these experiments we evaluate only one
node of the map to give a better impression of side effects.
Of course all shown properties can be extended to the set of
all nodes defining the map. To show the properties we have
placed the robot onto a floor of our lab. The space initially
observed is a circular area of 3 meters in diameter. The scans
are incomplete since the robot is only equipped with a scanner
covering 270◦. The scan is transformed to a scan at the node’s
position with bins of one degree resolution. Each angle bin is
equally partitioned into segments of 7,5 cm, so each angle
bin consists of 20 range bins. Figure 6 shows a result on
convergence from one state of the environment to the second
state. The remaining (unlikely) scans are shown as light red
fillings of the range bins.

The resulting ranges switch from one state to the other
when enough observations are collected and old observations
are forgotten, so the probability of range bin Si+1(rnew) after
range measurement Si(ri) is higher than the old range bin
Si+1(rold). In this case (enough) observations of only a part
of the obstacle lead to a jump in scan prediction. This can be
seen in Fig. 7, where the robot has previously observed the
full new obstacle a few times and afterwards only is able to
observe only a part of the obstacle (here the robot has turned
and could only observe the ”upper” part of the obstacle). Note
that now previously unseen parts of the environment could
be observed and are now included immediately into the most
likely scan.

A last experiment is dedicated to position jumps due to a

Fig. 6. Adaptation of one time level of one node. On the left
is the state as observed usually before. Then the environment
changes and the set of measurements and the co-occurences
slowly adapt to the new state until most observations belong
to the new state and the estimated state result (red line)
changes to the new state.

Fig. 7. The gray part could not be observed by the laser for a
long time. But both possible states where observed before and
by assuming the state of previous angles (observed regularly)
the most likely states of the dark gray angle bins could be
estimated depending on the previous states.
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bad localization of the robot. In such a case the transforma-
tion of the robot scan will result in an incorrect virtual scan
with an error in translation and rotation. This can be seen in
Fig. 8. When the ”wrong” observation occur more often, the
resulting scan begins to focus also on the transformed scan
with the most frequent localization error. Nothing happens
when de-localization occurs only for a few observations.

Fig. 8. The effect of localization noise. Here two hypotheses
are measured because of an wrong scan transformation. The
dominant hypotheses is selected.

Last experimental results discuss the processing time. Since
only one scan could be included into one node at a time, an
update step of the full map consists only of that time. So pro-
cessing time of the update of one scan is equal to processing
time of the whole global map! Listed below are the averaged
processing time results split to the number of paths that have
to be searched because of different counts of starting points
with non-zero prior.

Number of start bins processing time

1 17 - 31 ms
2 43 - 52 ms
3 72 - 81 ms
4 90 - 98 ms

Table 1. Table with number of start range-bins in the first
angle bin and the needed processing time. As can be seen the
processing time is nearly linear.

Here we have an average of 24 ms on each path run.
When all 20 ranges of the start bin contain a valid start point
(because they where measured at least once), we will need
500 ms. So on the worst case scenario we can update the map
with two scans per second. The results where calculated with
a dual core processor running at 2.4 GHz.

6. CONCLUSION

The benefit of our approach is the representation of consistent
expected observations at different levels of time-scale, so no
mixtures of observations which are very unlikely to occur in
the same state are selected. All this information is represented
in a consistent fashion to the mobile robot to improve local-
ization and path planning.

We take into account different time levels by assembling
a map containing nodes where each node of the map collects
sensor information with a different update rate. So we can
model maps with a long term memory characteristic, short
term memory characteristic and all in between. Our approach

also presents how to create consistent environment informa-
tion when the impression of a certain place was only partially
observable and collected at different points in time. Future
work has to be done to further increase the performance of
the optimization task on finding the optimal scan configura-
tion. Also the side effects on localization errors have to be
investigated. As said before path planning and localization
can benefit from different time scales. This also has to be
evaluated further.
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