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ABSTRACT 

 

This paper investigates the possibility of transferring 

forecasting methods motivated by data compression 

into the domain of pattern based time series 

prediction. The investigation is conducted on the 

example of short term load forecast. Pattern-based 

time series are characterized by typical, repeating 

signal subsequences. Statistical data compression 

relies on pattern matching and the forecast of future 

patterns’ probabilities. Both, statistical compression 

and time series prediction, require the estimation of 

real valued entities. Context Mixing (CM), a  subclass 

of statistical compression algorithms, combines 

multiple predictions and achieves outstanding 

compression performance. To transfer CM concepts 

to time series prediction, the CM model structure is 

examined. A sample of electrical load data is analyzed 

to identify its typical characteristics. Subsequently a 

CM forecasting system is derived, taking the data 

properties into account. A simulation and an 

evaluation of the prediction error indicate very 

accurate forecasts.  

 

Index Terms – short term load forecast, time series 

forecast, pattern based time series, context mixing 

1. INTRODUCTION 

The forecast of time series has a widespread 

application in many different fields of science 

including economics, ecology and engineering. An 

estimation of future events outcome often serves as a 

foundation for planning, decision support and 

optimization. For instance, modern load management 

requires the forecast of electrical demand and the 

fluctuating solar and wind energy output. Over the 

last decade a rich set of generic models, mostly based 

on Neural Networks (NN), Fuzzy Systems (FS), 

Neuro-Fuzzy Systems (NFS) and Support Vector 

Regression (SVR) have been applied to real-valued 

prediction problems (e.g. short term load forecasting) 

[1]. 

In the field of data compression, statistical 

algorithms have always shown best compression 

performance among others. Similar to time series 

forecast, statistical compression requires models to 

estimate real values – probabilities. Starting in 2002, 

series of PAQ data compression programs, developed 

by Matt Mahoney and modified by many others, 

evolved and introduced CM as a new statistical 

compression algorithm [2], [3]. Despite its high 

processing and memory requirements CM gained 

growing attention due to its superb performance [4]. 

Breaking time series forecast and statistical 

compression down into their simplest element – the 

estimation of real values – clearly reveals a similarity 

between them. Starting from that observation this 

work shows how the concepts belonging to CM can 

be ported to the domain of time series forecast. Load 

forecasting, as an important practical example, serves 

as a test case for CM modeling, simulation and 

evaluation. The electrical load, typically containing 

repeating signal subsequences, is pattern based. 

This paper is divided into five further sections. The 

next section introduces the general structure and 

principles of CM starting from the data compression 

perspective. In Section 3 an electrical load data 

sample is analyzed to obtain its typical characteristics, 

which are utilized to derive a CM based model in 

section 4. Section 5 shows a simulation and 

evaluation of the CM model. Finally section 6 

summarizes and interprets the work’s results. 

2. CONTEXT MIXING 

2.1. Data compression 

Lossless data compression can be formally described 

as transforming a symbol sequence ������ … ��  over a 

finite alphabet Σ , �� ∈  Σ , into a less redundant 

representation. Statistical compression processes a 

single symbol �� at a time and divides the coding 

process into two steps: modeling and encoding [5]. 

In the ��
  step the (data) model assigns 

probabilities �(�� = �) to each possible value � ∈ Σ, 

which are afterwards mapped to a corresponding 

encoding, typically via  arithmetic coding. Probable 

symbols receive shorter encodings to achieve 

compression. The prediction accuracy can be 

improved by taking a discrete context, usually formed 

by preceding symbols, into account, e.g. an order-N 

context �(�� = �|�������� … ����) . That means a 

simple predictor �(�) ∀� ∈ Σ is addressed based on a 

discrete context, which is termed context modeling. 
Data processing is done bitwise in CM [3], Σ =  {0, 1} . Hence estimating �� = �(�� = 1)  is 

sufficient, since �(�� = 0) = 1 − �(�� = 1). A CM 

167



model mixes �  individual predictions ���  1 ≤ � ≤ � 

using a mixing function  . 

 �� =  (��� , ���, … , ��!) (1)

2.2. General structure 
As previously stated CM is a composite approach, i.e. 

the forecast system consists of at least several 

individual prediction submodels and a mixing 

function to combine the submodels’ predictions. Each 

submodel component usually [3] 

• works independent of other components, 

• is specialized to distinct situations (via contexts) 

and 

• adapts to the processed data.   

When mixing the predictions it is important to 

distinguish how a subset of  models is specialized to 

the current situation, since specialized models are 

likely to give better predictions. Typically, situations 

are identified by a discrete context, thus it can be 

beneficial to select a mixing function based on a 

context, too. 

Substituting the probability estimations ���  from 

eqn. (1) with expected value estimations "��  yields the 

basic structure of a CM model for time series 

prediction. 

 "� =  ("��, "��, … , "�!)  (2)

Now the questions of choosing a mixing function   

and designing the expected value estimations need to 

be addressed. 

2.3. Basic modeling 

In compression, the minimization of the encoded 

messages length, i.e. its entropy, is  meaningful. The 

aim of optimal prognosis can be formulated as the 

minimization of the MSE.  

 min 1& '("( − ")*)�
*

(+�
 (3)

Eqn. (3) evaluates the mean squared error of a single 

prediction ")*  regarding the encountered sequence of 

L observations "�"� … "* , where "* is the most recent 

observation. 

Giving higher weights to more recent observations 

can improve the estimation of ")* . Thus an 

exponentially decaying weight 

 ,( = ,*�( (4)

with , ∈ [0, 1) ⊂  ℝ is used to modify eqn. (3). 

 min 1& ' ,(("( − ")*)�
*

(+�
 (5)

Deriving eqn. (5) and finding its roots with respect to ")* results in the optimal estimation. 

 ")* = 0*1* = ∑ ,("(*(+�∑ ,(*(+�  (6)

A further consideration regarding  0*  and eqn. (4) 

shows, that the estimation can be formulated 

recursively. 

 
0* = "* +  , ("*�� + , "*�� + … + ,*��"�)455555555565555555557

89:; 
 

(7)

The term  1*  can be treated in the same fashion. Thus 

eqn. (6) can be expressed recursively, which eases an 

implementation. 

 ")* = 0*1* = ,0*�� + "*��,1*�� +  1  (8)

An interpretation of such an estimate can be 

derived when comparing ")*  and ")*��  to yield an 

adjustment. 

 ")* − ")*�� =  11* ("* − ")*��)4556557
<=

   (9)

Eqn. (9) depicts an adjustment proportional to the 

prediction error >* . As L increases, the term 1 1*⁄  

decreases. For a very large number of observations, 

i.e. & → ∞, the geometric series 1*  converges to its 

asymptotic limit. 

 
11* *→BCDE 1 − , (10)

Hence the weighting parameter ,  in eqn. (4) is 

directly related to the asymptotic adjustment of 

estimations. 

2.4. Mixing function 

Despite an expected value estimation, the second 

central component of a CM forecast model is the 

mixing function, see eqn. (2). Adaption to the 

processed data can be realized similar to eqn. (5). 

 min 12 ' ,(("( − ")*)�
*

(+�
 (11)

The prediction ")*  equals the mixing function from 

eqn. (2). In general the mixed prediction can be a 

nonlinear function of its inputs, but here a linear, 

weighted average 

 ")* =  ' G*�
!

�+�
")*�  (12)

is chosen for several reasons: 

• Overfitting is hardly possible [1], 
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• optimal weights can be calculated

• nonlinear relations are handled via contexts,

• its successful use under similar circumstances is 

reported in literature [6]. 

 

Deriving eqn. (11) and finding its roots with 

respect to G*�  yields a linear equation system. The 

row in the processing step & of the equation system is

 
' H' ,(")(I")(�

*

(+�
J455565557

K9LM
G*I

!

I+�
=  '

*

(+4
or expressed in matrix notation 

 N*G* = O* 

with N* ∈ ℝ!P! , G* , O* ∈ ℝ! . 

symmetric, i.e. Q*�I ≡ Q*I�
. As a consequence of eq

(12) and (13) the coefficients Q*�I
calculated recursively similar to eqn. 

 
Q*�I = ")*��I ")*��� + ,Q*�I

O*�  = "*��")*��� +  ,O
 

Since eqn. (11) is quadratic there

optimal solution for G*  per step 

constrains concerning G* , since these worsen 

function value. 

Various methods can be used to solve 

Conjugate Gradient approach [7]

successfully for this purpose. 

3.  LOAD DATA ANALYSIS

3.1. About the data 

The present load data time series &�
obtained from a regional Thuringian 

Germany) power supplier. It spans across three years, 

ranging from 1. Jan. 1998, 0:15 to 31

24:00. Sampling takes place every 15 min, thus there 

are S =  96  values per day. 

transformes &�  into "� ∈ [0, 1V . &
lowest and highest observed load value.

 "� = &� − &
& − &  

3.2. Autocorrelation 
The two week time series extract displayed in

shows a daily and weekly cycle, which coincides with 

the autocorrelation plot in fig. 2. Typically a day is 

highly correlated with the same day of the previous 

week. More recent observations are of 

dependence, since the autocorrelation decreases. 

Therefore the load patterns change over time.

ptimal weights can be calculated, 

nonlinear relations are handled via contexts, 

l use under similar circumstances is 

and finding its roots with 

yields a linear equation system. The ��
 

of the equation system is 

' ,("(")(�
*

+�4556557
W9L

 
(13)

(14)

 Note that N* is 

As a consequence of eqns. 

*�I
 and O*�  can be 

eqn. (7). 

*���I
 

O*���  

(15)

is quadratic there is just a single 

per step & . There are no 

, since these worsen the cost 

Various methods can be used to solve eqn. (14). A 

[7] has been used 

LOAD DATA ANALYSIS 

� is customer load 

Thuringian (federal state of 

It spans across three years, 

ing from 1. Jan. 1998, 0:15 to 31. Dec. 2000, 

15 min, thus there 

values per day. Normalization &  and &  name the 

lowest and highest observed load value. 

(16)

The two week time series extract displayed in fig. 1 

, which coincides with 

Typically a day is 

highly correlated with the same day of the previous 

week. More recent observations are of higher  linear 

e the autocorrelation decreases. 

erefore the load patterns change over time. 

Figure 1: Normalized load data from 1. Jan 1998 to 

13. Jan 1998. 

Figure 2: Load time series autocorrelation

for 1. Jan 1998, 0:15  to 31. Dec

3.3. Data clustering 

To investigate similarities between load profiles

data is treated as a set of feature vectors

Each vector corresponds to the

(0:15 to 24:00). The Fuzzy C-Means Algorithm 

utilized to cluster the data, which results in a set of 

membership degrees XI: ℝZ
XI([�) , 1 ≤ \ ≤ ] ,  is a measure of similarity 

between the \�
 clusters’ representative 

pattern [�. In order to ease visualization each vector 

receives a crisp cluster assignment.

 ,� = arg max�bIbc
The cluster indices \  are ordered by their daily 

average load d{[I}, thus d{[�}
 d{[} = 1S '

Z

�+
Fig. 3 shows the result of the clustering process. 

Solid vertical lines denote the time change (hence 

these enclose the summertime).

a load pattern according to table 

 

Marker 
Small dark 

Circle 
Plus 

Day Weekday Saturday

Table 1: Graphical representation of day types.

 

: Normalized load data from 1. Jan 1998 to 

 

es autocorrelation computed 

Dec 1998, 24:00. 

similarities between load profiles the  

t of feature vectors [� ∈ ℝZ . 

Each vector corresponds to the ��
 daily load pattern 

Means Algorithm [8] is 

utilized to cluster the data, which results in a set of → [0, 1V ⊂ ℝ . Each 

is a measure of similarity 

representative [I and a load 

In order to ease visualization each vector 

receives a crisp cluster assignment. 

XI([�) (17)

are ordered by their daily { } e df[Ig, � e \. 
' [�

Z

+�
 (18)

esult of the clustering process. 

the time change (hence 

these enclose the summertime). Each point represents 

table 1. 

 
Big light 

Circle 
Cross 

Saturday Sunday Holiday 

: Graphical representation of day types. 
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In general free days and weekdays show different 

behavior. Free days can further be subdivided into 

Saturdays, Sundays and holidays. Typically free days 

have a lower average load than weekdays, probably 

due to lower industrial activity.  Sundays 

lowest electrical load. The influence of the time 

change is obvious – almost no clusters cross the 

marked dates. 

Figure 3: Clustered load profiles for 1. 

31.Dec 1998, 12 clusters. 

The yearly fluctuation of the average daily load 

(high load during cold seasons, low load during warm 

seasons; possibly caused by lighting and 

heating/cooling) can clearly be observed in 

it greatly influences the clustering process. To mask 

out this effect the average daily load 

vector [ is removed yielding  

 [i = ([� −  d{[}  [� − d{[} … 
and the clustering process is repeated (

segmentation of free days is more pronounced

case. Sundays and holidays are mostly grouped into 

the same clusters and are more strictly distinguished 

from Saturdays. Still the assignment of clusters is 

shaped by the temporal progression, which is more 

evidence for the time varying characteri

load patterns. 

Figure 4: Clustered load profiles for 1. 

31.Dec 1998, daily mean removed, 12 clusters.

s and weekdays show different 

behavior. Free days can further be subdivided into 

Typically free days 

have a lower average load than weekdays, probably 

due to lower industrial activity.  Sundays show the 

ad. The influence of the time 

almost no clusters cross the 

 
: Clustered load profiles for 1. Jan 1998 to 

The yearly fluctuation of the average daily load 

load during cold seasons, low load during warm 

; possibly caused by lighting and 

can clearly be observed in fig. 3, i.e. 

it greatly influences the clustering process. To mask 

out this effect the average daily load component of a 

}  [Z − d{[})j (19)

and the clustering process is repeated (see fig. 4). The 

segmentation of free days is more pronounced in this 

case. Sundays and holidays are mostly grouped into 

more strictly distinguished 

Still the assignment of clusters is 

shaped by the temporal progression, which is more 

evidence for the time varying characteristics of the 

 
Clustered load profiles for 1. Jan 1998 to 

removed, 12 clusters. 

4. LOAD FORECASTING MOD

4.1. Requirements 
Short term load forecast denotes

from a few minutes to several days. In this case study

the forecasting horizon S is assumed to be a single 

day, thus S = 96  discrete values.

predicted value for the point 

horizon of day �. 
4.2. Context models 

A single expected value estimator 

as a (sub-) model will hardly achieve good prediction 

performance. Hence – in analogy to data compression 

– a discrete context should be used to increase 

prediction accuracy via specialization. Context layout 

greatly depends on process characteristics

requirements, i.e. in particular: 

• Each point 1 ≤ k ≤ S requires an estimation,

• similar day types can be clustered (e.g. holiday 

and Sunday) and different types should be treated 

separately, 

• weekly periodicity should 

 

To identify day types a bit vector (l���l�l�m�) ∈ {0, 1}� is assigned to each day 

bit l� identifies whether or not the day 

analysis has shown that Sunday (

holidays (e.g. n�  =  010 ) are similar and thus 

clustering the observations might be beneficial.

Mapping both day types to the same value of 010  requires to zero l���
procedure each possible set bit is replaced 

degree of freedom,  � ∈ {0, 1
eight possible combinations of 

parameters   =  ( �  � …  ��
corresponding decimal value to o(101) =  5. In Table 2 o(n�1 ≤ � ≤ 12 . The calculation of a discrete context 

following this technique is defined via the operator ⊗: {0, 1}� P {0, 1}�� → [0, 7V ⊂
based on  , as described above. Afterwards 

resulting bit string is mapped to a discrete value using o(⋅). 

 o(n�) 0 1 2 3  l��� 0 0 0 0 l� 0 0  �  t l�m� 0  � 0  � 

Table 2: Parametrized scheme for 

of n� . 
The periodicity can be handled analogous. Each 

day �  receives a day index 

degrees of freedom, u =
corresponding to Monday ( u�
Sunday (uv) are introduced. In a pr

the current day maps to its day index 

Otherwise a day index of zero is assigned. To express 

LOAD FORECASTING MODEL 

denotes time spans ranging 

minutes to several days. In this case study, 

is assumed to be a single 

discrete values. ")�,
  names the 

predicted value for the point k  within the forecast 

value estimator from eqn. (6) used 

) model will hardly achieve good prediction 

in analogy to data compression 

a discrete context should be used to increase 

specialization. Context layout 

greatly depends on process characteristics and 

 

requires an estimation, 

similar day types can be clustered (e.g. holiday 

different types should be treated 

 be handled. 

To identify day types a bit vector n� =
is assigned to each day �. A 

identifies whether or not the day � is free. Data 

analysis has shown that Sunday ( n� = 110 ) and 

) are similar and thus 

clustering the observations might be beneficial. 

both day types to the same value of n� =
�.  To formalize this 

set bit is replaced by a binary 1} . Table 2 shows all 

 n� and the resulting 12 

��) . o(n�) assigns the 

corresponding decimal value to a bit string n� , e.g. 

�) is given for  � = 1,
calculation of a discrete context 

is defined via the operator V ⊂ w. First n� is altered 

, as described above. Afterwards the 

resulting bit string is mapped to a discrete value using 

4 5 6 7  x  v  y  �� 

0 0  z  �� 

0  { 0  �| 

Parametrized scheme for all possible values 

The periodicity can be handled analogous. Each 

receives a day index 1 ≤ G� ≤ 7 . Seven = (u�u� … uv) ∈ {0, 1}v, 
�) , Tuesday ( u�) , … 

In a processing step �, 

the current day maps to its day index G�, if u� = 1. 

Otherwise a day index of zero is assigned. To express 
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this, an operator ⊗: {1, 2, … , 7} P {0,1}v → [0, 7V ⊂w 

 G� ⊗ u = G�u}~  (20)

is introduced. 

In the ��
 step each point k within the prediction 

horizon receives a discrete context ]�,
  which 

quantizes the calendar information. The quantization 

is controlled by the parameters   and u. 

 ]�,
 = S[2�(G� ⊗ u) + (n� ⊗  )V +  k  (21)

4.3. Model components 

Combining a context quantization, eqn. (21), and an 

expected value estimator, eqn. (6), results in a 

conditional expected value estimator. 

 ")�,
 = d{"�,
| ]�,
}  (22)

The separation of steady and alternating 

components per load pattern can improve the 

discriminability. An additional parameter O ∈ {0, 1} 

controls, if a model predicts "�,
  or only the 

alternating component "�,
 −  "̅� , 1 ≤ k ≤ S. Due to 

the separation a model for predicting the steady 

component "̅�  is required. To ease prediction "̅�  is 

decomposed. 

 "̅� = "̅��� + ∆"̅� (23)

Since in the ��
 prediction step, the previous steps 

information is known, only the estimation of ∆"̅�  is 

required. A conditional expected value estimator from 

eqn. (22) can be used for this purpose. 

Additional environmental factors (e.g. temperature, 

solar radiation, etc.) influence load patterns. This 

information isn’t available for the given data set. 

However, causality can be assumed, i.e. similar 

environmental characteristics will result in similar 

load patterns. When forecasting "�,
  (or "�,
 −  "̅� ) 

related situations "I,
, � − � e \ e � are identified 

by comparing the &  latest known load samples "���,Z�
 to situations in the past "I��,Z�
 0 ≤ k e &. 

The �  most recently observed load patterns are 

considered. 

 �I� = 1& '�"I��,Z�
 − "���,Z�
��*��


+|
 (24)

names the similarity measure between the days \ and �. Eqn. (22) is extended to yield 

 ")�,
 = df"�,
�]�,
 ≡ ]I,
 �I� e �} . (25)

Note that the sequence of utilized samples must be 

sorted descendently by �I� to assign higher weights to 

more similar observations, according to eqns. (4) and 

(6). Such an estimator adds two more degrees of 

freedom – the similarity radius � and the length & of 

the compared signal subsequence. The parameter � 

can be chosen based on computational resources. 

4.4. Forecasting system 

The set of forecasting submodels consists of 7 

components: 

• Two expected value estimator, eqn. (22), 

• an extended estimator, eqn. (25), 

• a single estimator df∆"̅�| ]�,�g  and "̅��� 

according to eqn. (23), 

• the most recently known point "���,Z and 

• a constant input ")�,
 = 1. 

Individual predictions are combined using the mixing 

function described in section 2.4. 

 ")�,
z =  (")�,
� , ")�,
� , … , ")�,
v ) (26)

A symmetric, static weighting of adjacent estimations ")�,
��, ")�,
, ")�,
m� yields the final forecast. 

 ")�,
y = G")�,
��z + (1 − 2G)")�,
z + G")�,
m�z  (27)

Eqn. (27) advantage of neighboring observations’ 

correlation. There is a single parameter, G ∈[0, 0.5V ⊂ ℝ. 

The forecasting system contains a rich set of 

parameters, including integer and real values and 

bitmasks. To solve the model parameter estimation 

problem DCGA, a Niching Genetic Algorithm [9], is 

used. 

5. SIMULATION AND EVALUATION 

5.1. Way of processing 

The three years of present data is subdivided into 

training data for model fitting and testing data for 

evaluation. The training data spans across two years, 

from 1. Jan. 1998, 0:15 to 31. Dec. 1999, 24:00 and 

the remaining year, from 1. Jan. 2000, 0:15 to 31. 

Dec. 2000, serves as testing data. 

To simplify the evaluation process the obtained 

forecasts are compared to a trivial predictor, 

 ")�,
j = "��v,
, (28)

which takes advantage of the weekly periodicity 

shown in fig. 2. In the following subsection the 

presented models’ prediction is named ")�,
c!, the same 

terminology is used for the prediction errors, >�,
j  and >�,
c!. The prediction error is given by 

 >�,
 = ")�,
 − "Z�m
. (29)

5.2. Simulation and results 

Forecasting accuracy is measured by analyzing the 

statistical properties of the prediction errors. A rough 

overview is presented in table 3. Compared to the 
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naive forecast the developed model hal

magnitudes of standard deviation and minim

maximal prediction error. 

 

 Mean Std. Min.>�,
j  3.871 10�t 4.764 10�� −3.440>�,
c! −8.506 10�x 2.408 10�� −1.841
Table 3: Characteristic values for the forecast error.

The mean is an order of magnitude lower and very 

close to zero. 

A rough evaluation already justifies the increased 

computational effort of ")�,
c!  compared to 

judge about the average performance throughout

prediction horizon S  figures 5 and

mean and standard deviation of >�,
j
cases the mean is close to zero, >�,
c!
more varying picture. 

Figure 5: Mean and standard deviation>�,
j  from 1. Jan. 2000 to 31. Dec. 2000.

A comparsion of fig. 5 and fig. 

standard deviation is reduced in its span and aver

During the time of social activity (6:00 

load seems to be more difficult to predict. In 

standard deviation reaches two plateaus (6:30 and 

12:30 – 17:00). Such a behavior is suppressed by CM 

forecasting, i.e. much more precise forecasts can be 

obtained for the corresponding time range.

Figure 6: Mean and standard deviation of >�,
c! from 1. Jan. 2000 to 31. Dec. 2000.

naive forecast the developed model halved the 

magnitudes of standard deviation and minimal and 

Min. Max. 

440 10�� 3.667 10�� 

841 10�� 1.337 10�� 

or the forecast error. 

The mean is an order of magnitude lower and very 

A rough evaluation already justifies the increased 

compared to ")�,
j . To 

judge about the average performance throughout the 

and 6 illustrate the 


 and >�,
c!. In both 


c! shows a slightly 

 
: Mean and standard deviation (Std.) of  

from 1. Jan. 2000 to 31. Dec. 2000. 

and fig. 6 shows that the 

reduced in its span and average. 

During the time of social activity (6:00 – 20:00) the 

more difficult to predict. In fig. 5 the 

standard deviation reaches two plateaus (6:30 and 

. Such a behavior is suppressed by CM 

ch more precise forecasts can be 

obtained for the corresponding time range. 

 
: Mean and standard deviation of  

from 1. Jan. 2000 to 31. Dec. 2000. 

6. SUMMARY

This paper presented the paradigms of CM and  

derived modifications of model components to make 

these suitable for time series forecast. Short term load 

forecast served as a test case for model design. Hence 

a sample of load data has been analyzed to identify 

and take advantage of its typical characteri

forecasting system was constructed based on the 

analysis’ results and fitted to the 

evaluation of the prediction error on the testing data 

showed good forecast results

enhancement compared to a naive forecast.
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SUMMARY 

This paper presented the paradigms of CM and  

rived modifications of model components to make 

these suitable for time series forecast. Short term load 

forecast served as a test case for model design. Hence 

a sample of load data has been analyzed to identify 

and take advantage of its typical characteristics. The 

constructed based on the 

fitted to the training data. An 

evaluation of the prediction error on the testing data 

results and a significant 

enhancement compared to a naive forecast. 
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