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ON A CLASS OF J-SELF-ADJOINT OPERATORS
WITH EMPTY RESOLVENT SET

SERGII KUZHEL AND CARSTEN TRUNK

Abstract. In the present paper we investigate the set ΣJ of all
J-self-adjoint extensions of a symmetric operator S with deficiency
indices < 2, 2 > which commutes with a non-trivial fundamental
symmetry J of a Krein space (H, [·, ·]),

SJ = JS.

Our aim is to describe different types of J-self-adjoint extensions
of S. One of our main results is the equivalence between the pres-
ence of J-self-adjoint extensions of S with empty resolvent set and
the commutation of S with a Clifford algebra Cl2(J,R), where R
is an additional fundamental symmetry with JR = −RJ . This en-
ables one to construct the collection of operators Cχ,ω realizing the
property of stable C-symmetry for extensions A ∈ ΣJ directly in
terms of Cl2(J,R) and to parameterize the corresponding subset of
extensions with stable C-symmetry. Such a situation occurs natu-
rally in many applications, here we discuss the case of an indefinite
Sturm-Liouville operator on the real line and a one dimensional
Dirac operator with point interaction.

1. Introduction

Let (H, [·, ·]) be a Krein space with a non-trivial fundamental sym-
metry J (i.e., J2 = I, J ̸= ±I, and (H, [J ·, ·]) is a Hilbert space) and
corresponding fundamental decomposition

H = H+ ⊕ H−, (1.1)

where H± = 1
2
(I±J). Let A be a linear operator in H which is J-

self-adjoint with respect to the Krein space inner product [·, ·]. In
contrast to self-adjoint operators in Hilbert spaces (which necessarily
have a purely real spectrum), J-self-adjoint operators A, in general,
have spectra σ(A) which are only symmetric with respect to the real
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2 S. KUZHEL AND C. TRUNK

axis: µ ∈ σ(A) if and only if µ ∈ σ(A). Moreover, the situation where
σ(A) = C (i.e., A has the empty resolvent set) is also possible.

It is simple to construct infinitely many J-self-adjoint operators with
empty resolvent set. For instance, let K be a Hilbert space and let L be
a symmetric (non-self-adjoint) operator in K. Consider the operators

A :=

(
L 0
0 L∗

)
, J =

(
0 I
I 0

)
in the product Hilbert space H = K ⊕ K. Then J is a fundamental
symmetry in H and A is a J-self-adjoint operator. As ρ(L) = ∅, it is
clear that ρ(A) = ∅.

This example shows that the property ρ(A) = ∅ is a consequence of
the special structure of A. It is natural to suppose that this relation-
ship can be made more exact for some special types of J-self-adjoint
operators.

In the present paper we investigate such a point by considering the
set ΣJ of all J-self-adjoint extensions A of the symmetric operator S
with deficiency indices < 2, 2 > which commutes with J :

SJ = JS. (1.2)

Our aim is to describe different types of J-self-adjoint extensions of
S. For this let us denote (see Section 2.4 below) by U the set of all
fundamental symmetries which commute with S, by Σst

J we denote the
set of all J-self-adjoint extensions of S which commute with a funda-
mental symmetry in U, by ΥJ the set of all J-self-adjoint extensions
of S which commute with J and by ΥU, the set of all J-self-adjoint
extensions which commute with all operators in U. By definition we
have J ∈ U and

ΥU ⊂ ΥJ ⊂ Σst
J . (1.3)

Operators from Σst
J are said to have the property of stable C-symmetry,

see [23]. In particular, they are fundamental reducible and, hence,
similar to a self-adjoint operator in a Hilbert space. J-self-adjoint
operators with stable C-symmetries admit detailed spectral analysis
(like the case of self-adjoint operators), cf. [2, 18], and their set Σst

J may
be used as an exactly solvable model explaining (at an abstract level)
the appearance of exceptional points on the boundary of the domain
of the exact PT -symmetry in PT -symmetric quantum mechanics (see
[8, 16, 28, 29] and the references therein).

In the case of a simple symmetric operator S, we show in this paper
that the existence of at least one J-self-adjoint extension of S with
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empty resolvent set leads to the quite specific structure of the underly-
ing symmetric operator S. Namely, we have in (1.3) strict inclusions,

ΥU ⊂ ΥJ ⊂ Σst
J (ΥU ̸= ΥJ ̸= Σst

J ),

which implies a rich structure of extensions with completely different
properties. Moreover, in Corollary 4.7 and Theorem 4.8 below we give
a full parametrization of the sets ΥU, ΥJ and Σst

J in terms of (up to)
four real parameters.

If, on the other hand, all J-self-adjoint extension of S have non-
empty resolvent set, we show (cf. Theorem 4.1 below) equality in (1.3),

ΥU = ΥJ = Σst
J .

Moreover, we have U = {J}. This is in particular the case, if there
exists at least one definitizable extension (Corollary 4.2 below).

We show that the property of empty resolvent set for a J-self-adjoint
extension of S is equivalent to one of the following statements.

• There exists an additional fundamental symmetry R in H such
that

SR = RS, JR = −RJ.

• The operator S+ := S ¹H+ is unitarily equivalent to S− :=
S ¹H− , where H± are from the fundamental decomposition (1.1)
corresponding to J .

• The characteristic function s+ of S+ (in the sense of A. Straus,
see [31]) is equal (up to the multiplication by an unimodular
constant) to the characteristic function s− of S−.

If, in addition, the characteristic function Sh(·) of S is not identically
equal to zero, we provide a complete description of the set U in terms
of R and J . More precisely (see Theorem 4.6 below), U consists of all
operators C of the form

C = (cosh χ)J + (sinh χ)JR[cos ω + i(sin ω)J ]

with χ ∈ R and ω ∈ [0, 2π).
The operators J and R can be interpreted as basis (generating) el-

ements of the complex Clifford algebra Cl2(J,R) := span{I, J, R, JR}
and they give rise to a ‘rich’ family Σst

J . The results of the present pa-
per enables one to claim that the existence of J-self-adjoint extensions
with empty resolvent set for a symmetric operator S with property
(1.2) and deficiency indices < 2, 2 > is equivalent to the commutation
of S with an arbitrary element of the Clifford algebra Cl2(J,R).

The paper is structured as follows. Section 2 contains a lot of auxil-
iary results related to the Krein space theory and the extension theory
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of symmetric operators. In the latter case we emphasize the useful-
ness of the Krein spaces ideology for the description of the set ΣJ of
J-self-adjoint extensions of S in terms of unitary 2 × 2-matrix U and
the definition of the characteristic function Sh(·) of S.

In Section 3, we establish a necessary and sufficient condition under
which ΣJ contains operators with empty resolvent set (Theorem 3.1
and Corollary 3.3) and explicitly describe these operators in terms of
unitary matrices U (Corollary 3.2).

In Section 4 we establish our main result (Theorem 4.3) about the
equivalence between the presence of J-self-adjoint extensions of S with
empty resolvent set and the commutation of S with a Clifford algebra
Cl2(J,R). This enables one to construct the collection of operators
Cχ,ω realizing the property of stable C-symmetry for extensions A ∈
ΣJ directly in terms of Cl2(J,R) (Theorem 4.6) and to describe the
corresponding subset Σst

J of extensions A ∈ ΣJ with stable C-symmetry
in terms of matrices U (Corollary 4.7 and Theorem 4.8).

Section 5 contains some examples. We consider the case of an indef-
inite Sturm-Liouville expression on the real line. Then the symmetric
operator S is obtained by imposing additional boundary conditions at
zero (which in some sense decomposes the problem into two differential
expressions defined on R+ and R−, respectively). Then with the results
from Section 3 we are able to prove that all J-self-adjoint extensions of
S have non-empty resolvent set. This extends results from [6, 7, 19].
Finally, we consider a one dimensional impulse and a Dirac operator
with point perturbation.

Throughout the paper, the symbols D(A) and R(A) denotes the
domain and the range of a linear operator A. A ¹D means the restriction
of A onto a set D. The notation σ(A) and ρ(A) are used for the
spectrum and the resolvent set of A. The sign denotes the end of a
proof.

2. Preliminaries

2.1. Elements of the Krein space theory. Let H be a Hilbert space
with inner product (·, ·) and with non-trivial fundamental symmetry J
(i.e., J = J∗, J2 = I, and J ̸= ±I). The space H endowed with the
indefinite inner product (indefinite metric) [·, ·] := (J ·, ·) is called a
Krein space (H, [·, ·]). For the basic theory of Krein spaces and opera-
tors acting therein we refer to the monographs [4] and [10].

The projectors P± = 1
2
(I±J) determine a fundamental decomposi-

tion of H,

H = H+ ⊕ H−, H− = P−H, H+ = P+H, (2.1)
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where (H+, [·, ·]) and (H−,−[·, ·]) are Hilbert spaces. With respect to
the fundamental decomposition (2.1), the operator J has the following
form

J =

(
I 0
0 −I

)
.

A subspace L of H is called hypermaximal neutral if

L = L[⊥] = {x ∈ H : [x, y] = 0, ∀y ∈ L}.

A subspace L ⊂ H is called uniformly positive (uniformly negative)
if [x, x] ≥ a2∥x∥2 (resp. −[x, x] ≥ a2∥x∥2) a ∈ R for all x ∈ L. The
subspaces H± in (2.1) are examples of uniformly positive and uniformly
negative subspaces and, moreover, they are maximal, i.e., H+ (H−) is
not a proper subspace of an uniformly positive (resp. negative) sub-
space.

Let L+(̸= H+) be an arbitrary maximal uniformly positive subspace.

Then its J-orthogonal complement L− = L
[⊥]
+ is maximal uniformly

negative and the direct J-orthogonal sum

H = L+[+̇]L− (2.2)

gives a fundamental decomposition of H.
With respect to (2.2) we define an operator C via

C =

(
I 0
0 −I

)
.

We have C2 = I and C is a self-adjoint operator in the Hilbert space
(H, (·, ·)C), where the inner product (·, ·)C is given by

(x, y)C := [Cx, y] = (JCx, y), x, y ∈ H.

Note that (·, ·)C and (·, ·) are equivalent, see, e.g., [26]. Hence, one
can view C as a fundamental symmetry of the Krein space (H, [·, ·])
with an underlying Hilbert space (H, (·, ·)C).

Summing up, there is a one-to-one correspondence between the set
of all decompositions (2.2) of the Krein space (H, [·, ·]) and the set of
all bounded operators C such that

C2 = I, JC > 0. (2.3)

Definition 2.1. An operator A acting in a Krein space (H, [·, ·]) has
the property of C-symmetry if there exists a bounded linear operator C
in H such that: (i) C2 = I; (ii) JC > 0; (iii) AC = CA.
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In particular, if A is a J-self-adjoint operator with the property of
C-symmetry, then its counterparts

A± := A ¹L± , L± =
1

2
(I ± C)H

are self-adjoint operators in the Hilbert spaces L+ and L− endowed with
the inner products [·, ·] and −[·, ·], respectively. This simple observation
leads to the following statement, which is a direct consequence of the
Phillips theorem [4, Chapter 2, Corollary 5.20].

Proposition 2.2. A J-self-adjoint operator A has the property of C-
symmetry if and only if A is similar to a self-adjoint operator in H.

In conclusion, we emphasize that the notion of C-symmetry in Defi-
nition 2.1 coincides with the notion of fundamentally reducible operator
(see, e.g., [17]). However, in the context of this paper and motivated
by [2, 8, 9, 15, 28, 29], we prefer to use the notion of C-symmetry.

2.2. Elements of the extension theory in Hilbert spaces. Here
and in the following we denote by C+ (C−) the open upper (resp. lower)
half plane. Let S be a closed symmetric densely defined operator with
equal deficiency indices acting in the Hilbert space (H, (·, ·)).

We denote by Nµ = ker(S∗−µI), µ ∈ C \R, the defect subspaces of
S and consider the Hilbert space M = Ni+̇N−i with the inner product

(x, y)M = 2[(xi, yi) + (x−i, y−i)], (2.4)

where x = xi + x−i and y = yi + y−i with xi, yi ∈ Ni, x−i, y−i ∈ N−i.
The operator Z which acts as identity operator I on Ni and minus

identity operator −I on N−i is an example of a fundamental symmetry
in M.

According to the von-Neumann formulas (see, e.g., [30, 22]) any
closed intermediate extension A of S (i.e., S ⊂ A ⊂ S∗) in the Hilbert
space (H, (·, ·)) is uniquely determined by the choice of a subspace
M ⊂ M:

A = S∗ ¹D(A), D(A) = D(S)+̇M, (2.5)

Let us set M = Nµ (µ ∈ C+) in (2.5) and denote by

Aµ = S∗ ¹D(Aµ), D(Aµ) = D(S)+̇Nµ, ∀µ ∈ C+ (2.6)

the corresponding maximal dissipative extensions of S. The operator-
function

Sh(µ) = (Aµ − iI)(Aµ + iI)−1 ¹Ni
: Ni → N−i, µ ∈ C+ (2.7)

is the characteristic function of S defined by A. Straus [31].
The characteristic function Sh(·) is connected with the Weyl function

of the symmetric operator S constructed in terms of boundary triplets
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(see [11, p. 12], [14, p. 1123]). For instance, if M(·) is the Weyl function
of S associated with the boundary triplet (Ni, Γ0, Γ1), where

Γ0f = fi +V f−i, Γ1f = ifi − iV f−i, f = u+fi +f−i ∈ D(S∗) (2.8)

and V : N−i → Ni is an arbitrary unitary mapping, then

M(µ) = i(I + V Sh(µ))(I − V Sh(µ))−1, µ ∈ C+. (2.9)

The function V Sh(·) in (2.9) coincides with the characteristic func-
tion of S associated with the boundary triplet (Ni, Γ0, Γ1) [24].

Another (equivalent) definition of Sh(·) (see [31]) is based on the
relation

D(Aµ) = D(S)+̇Nµ = D(S)+̇(I − Sh(µ))Ni, µ ∈ C+, (2.10)

which also allows one to uniquely determine Sh(·).
The characteristic function Sh(·) can be easily interpreted in the

Krein space setting. Indeed, according to the von-Neumann formulas,
D(Aµ) = D(S)+̇Lµ, where Lµ ⊂ M is a maximal uniformly positive
subspace in the Krein space (M, [·, ·]Z). Using (2.10), we conclude that
Lµ = (I − Sh(µ))Ni and hence, −Sh(µ) is the angular operator of
Lµ with respect to the maximal uniformly positive subspace Ni of the
Krein space (M, [·, ·]Z) (see [4] for the concept of angular operators).

2.3. Elements of the extension theory in Krein spaces. In what
follows we assume that S satisfies (1.2), where J is a fundamental
symmetry in (H, (·, ·)).

The condition (1.2) immediately leads to the special structure of S
with respect to the fundamental decomposition (2.1):

S =

(
S+ 0
0 S−

)
, S+ = S ¹H+ , S− = S ¹H− , (2.11)

where S± are closed symmetric densely defined operators in H±.
Denote by ΣJ the collection of all J-self-adjoint extensions of S and

set

ΥJ = {A ∈ ΣJ | AJ = JA }. (2.12)

It is clear that ΥJ ⊂ ΣJ and an arbitrary A ∈ ΥJ is, simultaneously,
self-adjoint and J-self-adjoint extensions of S. The set ΥJ is non-empty
if and only if each symmetric operator S± in (2.11) has equal deficiency
indices. We always suppose that ΥJ ̸= ∅.

Since S satisfies (1.2) the subspaces N±i reduce J and the restriction
J ¹ M gives rise to a fundamental symmetry in the Hilbert space M.
Moreover, according to the properties of Z mentioned above, JZ = ZJ
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and JZ is a fundamental symmetry in M. Therefore, the sesquilinear
form

[x, y]JZ = (JZx, y)M = 2[(Jxi, yi) − (Jx−i, y−i)] (2.13)

defines an indefinite metric on M.
It is known (see, e.g., [2, Proposition 3.1]) that an arbitrary J-self-

adjoint extension A of S is uniquely determined by (2.5), where M is
a hypermaximal neutral subspace of the Krein space (M, [·, ·]JZ).

In comparison with self-adjoint extensions in the sense of Hilbert
spaces, we remark that self-adjoint extensions of S in (H, (·, ·)) are
also determined by (2.5) but then subspaces M are assumed to be
hypermaximal neutral in the Krein space (M, [·, ·]Z) with the indefinite
metric (cf. (2.13))

[x, y]Z = (Zx, y)M = 2[(xi, yi) − (x−i, y−i)].

2.4. J-self-adjoint operators with stable C-symmetries. Denote
by U the set of all possible C-symmetries of the symmetric operator S.
By Definition 2.1, this means that

C ∈ U ⇐⇒ C2 = I, JC > 0, SC = CS.

The next result directly follows from [2]. We repeat principal stages
for the reader’s convenience.

Lemma 2.3. The set U is non-empty and C ∈ U if and only if C∗ ∈ U.

Proof. It follows from (1.2) that J ∈ U. Therefore, U ̸= ∅.
Let C ∈ U. The conditions C2 = I and JC > 0 are equivalent to

the presentation C = JeY , where Y is a bounded self-adjoint operator
in H such that JY = −Y J [2, Remark 2.1]. In that case C∗ = Je−Y

and, obviously, C∗ satisfies the relations C∗2 = I and JC∗ > 0.
Since S commutes with J and C one gets SeY = eY S. But then

SC∗ = SeY J = eY JS = C∗S. Hence, C∗ ∈ U.

Definition 2.4 ([23]). An operator A ∈ ΣJ has the property of stable
C-symmetry if A and S have the property of C-symmetry realized by
the same operator C, i.e., there exists C ∈ U with AC = CA.

Denote

Σst
J = {A ∈ ΣJ | ∃C ∈ U such that AC = CA}. (2.14)

Due to Definition 2.4, Σst
J consists of J-self-adjoint extensions A of

S with the property of stable C-symmetry. It follows from (2.12) and
(2.14) that Σst

J ⊃ ΥJ . Hence, Σst
J is non-empty.

Denote
ΥU = {A ∈ ΣJ | AC = CA, ∀C ∈ U}. (2.15)
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It is clear that
ΥU ⊂ ΥJ ⊂ Σst

J ⊂ ΣJ . (2.16)

The next Theorem gives a condition for the non-emptiness of the
left-hand side of the chain (2.16).

Theorem 2.5. If the characteristic function Sh(·) of S is boundedly
invertible for at least one µ ∈ C+, then ΥU ̸= ∅.

Proof. Let C ∈ U. Then S∗C = CS∗ (see the proof of Lemma 2.3)
and, hence,

C : Nµ→Nµ, ∀µ ∈ C \ R. (2.17)

Therefore, AµC = CAµ for maximal dissipative extensions Aµ of S
(see (2.6)). This means that the characteristic function Sh(·) defined
by (2.7) commutes with an arbitrary C ∈ U, i.e.,

Sh(µ)C = CSh(µ), ∀µ ∈ C+, ∀C ∈ U. (2.18)

It follows from Lemma 2.3 and (2.18) that Sh(µ)C∗ = C∗Sh(µ).
Therefore,

Sh∗(µ)C = CSh∗(µ), ∀µ ∈ C+, ∀C ∈ U. (2.19)

Let Sh(µ) be boundedly invertible for a certain µ ∈ C+ and let
V : Ni → N−i be the isometric factor in the polar decomposition of
Sh(µ). Then V C = CV for all C ∈ U (since (2.18) and (2.19)). This
means that the operator

A = S∗ ¹D(A), D(A) = D(S)+̇{(I + V )Ni}
belongs to ΥU.

Remark 2.6. The similar result was established by Kochubei [25, The-
orem 1] for the collection of unitary operators U = {U} with the prop-
erty that U ∈ U implies U∗ ∈ U.

According to (2.17), an arbitrary C ∈ U determines two operators
C ¹N±i

acting in N±i.

Lemma 2.7. If S is a simple symmetric operator, then the correspon-
dence C ∈ U → {C ¹Ni

, C ¹N−i
} is injective.

Proof. Assume the existence of an operator pair {C ¹Ni
, C ¹N−i

}
for two different operators C, C̃ ∈ U. Then (C − C̃)D(S∗) ⊂ D(S).

Therefore, (C − C̃)Nµ ⊂ D(S). On the other hand, (C − C̃)Nµ ⊂ Nµ

by (2.17). The obtained relations yield Cfµ = C̃fµ for any fµ ∈ Nµ

and µ ∈ C \R. This means that C = C̃ (since the symmetric operator
S is simple).
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3. Necessary and sufficient condition under which ΣJ

contains elements with empty resolvent set.

In what follows we assume that the deficiency indices of operators
S± in (2.11) is < 1, 1 >. In that case, the defect subspaces N±i(S±) of
S± are one-dimensional and

Ni(S+) = (I + Z)(I + J)M; N−i(S+) = (I − Z)(I + J)M;

Ni(S−) = (I + Z)(I − J)M; N−i(S−) = (I − Z)(I − J)M.

Hence, N±i(S±) are orthogonal in the Hilbert space (M, (·, ·)M) (see
(2.4)).

Let {e++, e+−, e−+, e−−} be an orthogonal basis of M such that

Ni(S+) = ker(S∗
+ − iI) = span{e++},

Ni(S−) = ker(S∗
− − iI) = span{e+−},

N−i(S+) = ker(S∗
+ + iI) = span{e−+},

N−i(S−) = ker(S∗
− + iI) = span{e−−},

(3.1)

and the elements e++, e+−, e−+, e−− have equal norms in M. It follows
from the definition of e±± that

Ze++ = e++, Ze+− = e+−, Ze−+ = −e−+, Ze−− = −e−−

Je++ = e++, Je+− = −e+−, Je−+ = e−+, Je−− = −e−−
(3.2)

Relations (3.2) mean that the fundamental decomposition of the
Krein space (M, [·, ·]JZ) has the form

M = M− ⊕M+, M− = span{e+−, e−+}, M+ = span{e++, e−−}.
(3.3)

According to the general theory of Krein spaces [4, Chapter 1, Theo-
rem 8.10], an arbitrary hypermaximal neutral subspace M of (M, [·, ·]JZ)
is uniquely determined by an unitary mapping of M− onto M+. Since
dim M± = 2 the set of unitary mappings M− → M+ is in one-to-one
correspondence with the set of unitary matrices

U = eiϕ

(
qeiγ reiξ

−re−iξ qe−iγ

)
, q2+r2 = 1, q, r ∈ R+, ϕ, γ, ξ ∈ [0, 2π).

(3.4)
In other words, formulas (3.3), (3.4) allow one to describe a hyper-

maximal neutral subspace M of (M, [·, ·]JZ) as a linear span

M = span{d1, d2} (3.5)
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of elements

d1 = e++ + qei(ϕ+γ)e+− + rei(ϕ+ξ)e−+;
d2 = e−− − rei(ϕ−ξ)e+− + qei(ϕ−γ)e−+.

(3.6)

This means that (3.4) - (3.6) establish a one-to-one correspondence
between domains D(A) = D(S)+̇M of J-self-adjoint extensions A of S
and unitary matrices U . To underline this relationship we will use the
notation AU for the corresponding J-self-adjoint extension A.

It follows from (2.18) (with C = J) that the characteristic function
Sh(·) : Ni → N−i commutes with J . Combining this fact with the
obvious presentations

Ni = Ni(S+) ⊕ Ni(S−) = span{e++, e+−},

N−i = N−i(S+) ⊕ N−i(S−) = span{e−+, e−−}
(3.7)

and relations (2.10), (3.2), we arrive at the conclusion that

Sh(µ)e++ = s+(µ)e−+, Sh(µ)e+− = s−(µ)e−−, (3.8)

where sj are holomorphic functions in C+. Moreover, it is easy to see
that relations in (3.8) determine the characteristic functions

Sh+(µ) : Ni(S+) → N−i(S+), Sh−(µ) : Ni(S−) → N−i(S−) (3.9)

of the symmetric operators S+ and S−, respectively.
We will use the notation

s+ ≈ s−

if the identity eiαs+(µ) = s−(µ) holds for for all µ ∈ C+ and for a
certain choice of an unimodular constant eiα, i.e., the sign ≈ means
the equality up to the multiplication by an unimodular constant.

Theorem 3.1. Assume that the deficiency indices of operators S± in
the presentation (2.11) of S are < 1, 1 >. Then J-self-adjoint exten-
sions of S with empty resolvent set exist if and only if s+ ≈ s−.

Proof. It follows from (2.10) that a J-self-adjoint extension AU of S
with the domain D(AU) = D(S)+̇M has a non-real eigenvalue µ ∈ C+

if and only if U has a nontrivial intersection with the subspace Lµ =
(I − Sh(µ))Ni. Therefore,

σ(AU) ⊃ C+ if and only if M∩Lµ ̸= {0} ∀µ ∈ C+.

Since AU is a J-self-adjoint operator, the inclusion σ(AU) ⊃ C+ is
equivalent to σ(AU) = C.

In view of (3.7) and (3.8), Lµ = (I − Sh(µ))Ni = span{c1(µ), c2(µ)},
where

c1(µ) = e++ − s+(µ)e−+, c2(µ) = e+− − s−(µ)e−−. (3.10)
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Therefore, the relation M∩Lµ ̸= {0} holds if and only if the equation

x1d1 + x2d2 = y1c1(µ) + y2c2(µ) (3.11)

has a nontrivial solution x1, x2, y1, y2 ∈ C for all µ ∈ C+. Substi-
tuting (3.6) and (3.10) into (3.11) and combining the corresponding
coefficients for e±± we obtain four relations

x1 = y1, x1qe
i(ϕ+γ) − x2re

i(ϕ−ξ) = y2

x2 = −y2s−(µ), x1re
i(ϕ+ξ) + x2qe

i(ϕ−γ) = −s+(µ)y1

or
qei(ϕ+γ)y1 − (1 − rei(ϕ−ξ)s−(µ))y2 = 0,

(rei(ϕ+ξ) + s+(µ))y1 − qei(ϕ−γ)s−(µ)y2 = 0.

The last system has a nontrivial solution y1, y2 for all µ ∈ C+ if and
only if its determinant∣∣∣∣ qei(ϕ+γ) −1 + rei(ϕ−ξ)s−(µ)

rei(ϕ+ξ) + s+(µ) −qei(ϕ−γ)s−(µ)

∣∣∣∣ = 0, ∀µ ∈ C+.

This is the case if and only if

e2iϕs−(µ) = rei(ϕ+ξ) + s+(µ) − rei(ϕ−ξ)s−(µ)s+(µ), ∀µ ∈ C+ (3.12)

Further, Sh(i) = 0 by the construction (see (2.7) or (2.10)). Hence
s+(i) = s−(i) = 0 and relation (3.12) takes the form rei(ϕ+ξ) = 0 (for
µ = i) which means that r = 0. Therefore, an operator AU ∈ ΣJ has
empty resolvent set if and only

e2iϕs−(µ) = s+(µ), ∀µ ∈ C+. (3.13)

Corollary 3.2. If s+ ≈ s−, then operators AU ∈ ΣJ with empty resol-
vent set are determined by the matrices:

U = eiϕ

(
eiγ 0
0 e−iγ

)
, γ ∈ [0, 2π), (3.14)

where ϕ ∈ [0, 2π) is uniquely determined by (3.13) if Sh ̸≡ 0 and ϕ is
an arbitrary parameter if Sh ≡ 0.

Corollary 3.3. Let S be a simple symmetric operator. Then ΣJ con-
tains operators with empty resolvent set if and only if the operators S±
in (2.11) are unitarily equivalent.

Proof. Assume that ΣJ contains operators with empty resolvent set
and Sh ̸≡ 0. Then s+ ̸≡ 0 and (3.13) holds for a certain ϕ ∈ [0, 2π).
Consider unitary mappings V± : N−i(S±) → Ni(S±) defined by the
relations

V+e−+ = e++, V−e−− = e2iϕe+−.
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By virtue of (3.8) and (3.9), we get

V+Sh+(µ)e++ = s+(µ)e++,

V−Sh−(µ)e+− = e2iϕs−(µ)e+− = s+(µ)e+−.
(3.15)

Then V+Sh+(·) and V−Sh−(·) are the characteristic functions (in the
sense of [24]) of S± associated with the boundary triplets (Ni(S±), Γ0, Γ1)
of S∗

± defined by (2.8). Identifying the defect subspaces Ni(S+) =
span{e++} and Ni(S−) = span{e+−} with C and using (3.15) we ar-
rive at the conclusion that the characteristic functions of S± associated
with boundary triplets (C, Γ0, Γ1) coincide.

The same is true when Sh ≡ 0. In that case, s+ ≡ s− ≡ 0 and the
characteristic functions Sh± of S± are equal to zero.

Since S is a simple symmetric operator, S± are also simple symmetric
operators. In that case, the equality of characteristic functions of S±
implies the unitary equivalence of S± [14, 24].

Conversely, if S± are unitarily equivalent then S+ = W−1S−W ,
where W is an unitary mapping of H+ onto H−. Therefore,

W : Nµ(S+) → Nµ(S−) and WSh+(µ) = Sh−(µ)W. (3.16)

Assuming µ = ±i in the first identity of (3.16) and using (3.7), we find
w1, w2 ∈ C with

We++ = w1e+−, We−+ = w2e−−, |w1| = |w2| = 1. (3.17)

It follows from (3.8) and (3.17) that WSh+(µ)e++ = s+(µ)We−+ =
w2s+(µ)e−− and Sh−(µ)We++ = w1Sh−(µ)e+− = w1s−(µ)e−−. Com-
bining the last two identities with the second relation in (3.16) ones get
e2iϕs−(µ) = s+(µ), where e2iϕ = w1/w2. The statement of Corollary
3.3 follows now from Theorem 3.1.

4. J-self-adjoint extensions with empty resolvent set

As above the deficiency indices of operators S± in the presentation
(2.11) of S are supposed to be < 1, 1 >. In the following we discuss
the different situations which can occur:

• no member of ΣJ has non-empty resolvent set;

• there are members of ΣJ with empty resolvent set, where we dis-
cuss the cases Sh(·) ̸≡ 0 and Sh(·) ≡ 0, separately (cf. Sections
4.2.1 and 4.2.2).
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4.1. The set ΣJ has no operators with empty resolvent set.

Theorem 4.1. If ΣJ has no operators with empty resolvent set, then

ΥU = ΥJ = Σst
J

in (2.16). Moreover, if S is a simple symmetric operator, then U =
{J}.

Proof. Let C ∈ U. It follows from (2.17) that the operator C ¹N±i

acts in N±i and satisfies the relations

(C ¹N±i
)2 = I, JC ¹N±i

> 0. (4.1)

Denote by C1 and C2 the 2 × 2-matrix representations of C ¹Ni
and

C ¹N−i
with respect to the orthogonal bases e++, e+− and e−+, e−− of

Ni and N−i, respectively. Then (4.1) takes the form

C2
j =

(
1 0
0 1

)
,

(
1 0
0 −1

)
Cj > 0, j = 1, 2 (4.2)

(since J ¹N±i
are determined by (3.2)). The Hermiticity of the matrix

in the second relation of (4.2) enables one to deduce that a matrix Cj

satisfy (4.2) if and only if

Cj = Cχj ,ωj
:=

(
cosh χj (sinh χj)e

−iωj

−(sinh χj)e
iωj − cosh χj

)
, χj ∈ R, ωj ∈ [0, 2π).

(4.3)
Combining (2.18) with (3.8) and (4.3) we get(

s+(µ) 0
0 s−(µ)

)(
cosh χ1 (sinh χ1)e

−iω1

−(sinh χ1)e
iω1 − cosh χ1

)
(4.4)

=

(
cosh χ2 (sinh χ2)e

−iω2

−(sinh χ2)e
iω2 − cosh χ2

)(
s+(µ) 0

0 s−(µ)

)
for matrix representations Cχj ,ωj

of the operators C ¹N±i
.

If ΣJ has no operators with empty resolvent set, then s+ ̸≈ s− (Theo-
rem 3.1). In that case identity (4.4) holds only in the case χ1 = χ2 = 0,

i.e., C0,ω1 = C0,ω2 =

(
1 0
0 −1

)
. Therefore, if s+ ̸≈ s− then

C ¹N±i
= J ¹N±i

, ∀C ∈ U. (4.5)

Let us consider an arbitrary AU ∈ Σst
J . Then AUC = CAU for some

choice of C ∈ U. It is known that AUC = CAU if and only if CM = M ,
where M is defined by (3.5) and (3.6) [2, Theorem 3.1]. This and (4.5)
give CM = M if and only if JM = M . Therefore, AUJ = JAU and
AU ∈ ΥJ . Thus ΥJ = Σst

J . The identity ΥU = ΥJ is verified in the
similar manner.
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If S is a simple symmetric operator, then U = {J} due to Lemma
2.7 and relation (4.5).

Recall, that a J-selfadjoint operator A in a Krein space (H, [·, ·]) is
called definitizable (see [26]) if ρ(A) ̸= ∅ and there exists a rational
function p ̸= 0 having poles only in ρ(A) such that [p(A)x, x] ≥ 0 for
all x ∈ H.

Corollary 4.2. If ΣJ contains at least one definitizable operator, then
ΥU = ΥJ = Σst

J .

Proof. If A ∈ ΣJ is definitizable then an arbitrary operator from
ΣJ is also definitizable [5]. Therefore, ΣJ has no operators with empty
resolvent sets.

4.2. The set ΣJ contains operators with empty resolvent set.

In that case two quite different arrangements for the sets ΥU, ΥJ ,
and Σst

J are possible and they will be discussed in Sections 4.2.1 and
4.2.2 below.

We recall that ΣJ contains operators with empty resolvent set if
and only if eiαs+(µ) = s−(µ), µ ∈ C+, for a certain parameter eiα

(Theorem 3.1). Here, the functions s±(·) are defined in (3.8) with the
use of elements {e±±} which are determined up to the multiplication
with an unimodular constants. Therefore, without loss of generality,
we may assume

s+ = s−. (4.6)

Theorem 4.3. Let S be a simple symmetric operator. Then the set ΣJ

contains operators with empty resolvent set if and only if there exists a
fundamental symmetry R (i.e., R2 = I and R = R∗) in H such that

SR = RS, JR = −RJ. (4.7)

Proof. By virtue of Corollary 3.3, the existence of J-self-adjoint
extensions of S with empty resolvent set implies that the symmetric
operators S± in (2.11) are unitarily equivalent. Hence, S+ = W−1S−W ,
where W is an isometric mapping of H+ onto H−. It is clear that the
operator

R =

(
0 W−1

W 0

)
(4.8)

determined with respect to the fundamental decomposition (2.1) is a
fundamental symmetry in H and satisfies (4.7).

Conversely, if (4.7) holds, then S+ = RS−R. Therefore S± are uni-
tarily equivalent and ΣJ contains elements with empty resolvent set
(Corollary 3.3).
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Remark 4.4. We do not need the condition of simplicity of S in The-
orem 4.3 if relations (4.7) hold. Indeed, H1 =

⋂
µ∈C\R R(S − µI) is the

maximal subspace invariant for S on which the operator S1 = S ¹H1 is
self-adjoint [13, p.9]. Therefore,

H = H0 ⊕ H1, (4.9)

where H0 coincides with the closed linear span of all ker(S∗ − µI)
(µ ∈ C \ R) and the restriction S0 := S ¹H0 is a simple symmetric
operator in H0. It is clear that the restrictions J ¹H0 and R ¹H0 are
fundamental symmetries in H0 and they satisfy (4.7) for S0. Applying
Theorem 4.3, we establish the existence of J ¹H0-self-adjoint extensions
of S0 with empty resolvent set. Since an operator A ∈ ΣJ has the
decomposition A = A0 ⊕ S1 with respect to (4.9), where A0 is a J ¹H0-
self-adjoint extension of S0, the set ΣJ contains J-self-adjoint operators
with empty resolvent set.

From (4.7) one concludes that the four operators I, J, R, and JR are
linearly independent. Hence, the operators J and R can be interpreted
as basis (generating) elements of the complex Clifford algebra

Cl2 = span{I, J, R, JR}.

Corollary 4.5. Let S satisfy (4.7) and let J̃ ∈ Cl2 be a nontrivial fun-

damental symmetry in H. Then there exists J̃-self-adjoint extensions
of S with empty resolvent set.

Proof. It is easy to see that an operator J̃ ∈ Cl2 is a nontrivial

fundamental symmetry in H (i.e., J̃2 = I, J̃ = J̃∗, and J̃ ̸= I) if and
only if

J̃ = α1J + α2R + α3iJR, α2
1 + α2

2 + α2
3 = 1, αj ∈ R. (4.10)

Denote R̃ = β1J + β2R + β3iJR, where
∑

β2
j = 1, βj ∈ R. By

virtue of (4.10), R̃ is a fundamental symmetry in H which commutes

with S. Assuming
∑

αjβj = 0, we obtain J̃R̃ = −R̃J̃ . Since J̃ is a
fundamental symmetry in H which commutes with S, the statement
follows from Theorem 4.3.

4.2.1. The case Sh ̸≡ 0.

Theorem 4.6. Let S be a simple symmetric operator with nonzero
characteristic function Sh(·) and the set ΣJ contains operators with
empty resolvent set. Then all operators C ∈ U have the form

C := Cχ,ω = J [(cosh χ)I + (sinh χ)Rω], (4.11)
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where R satisfies (4.7), Rω = ReiωJ = R[cos ω + i(sin ω)J ], and χ ∈
R, ω ∈ [0, 2π).

Proof. First, we will show Cχ,ω ∈ U. Since ΣJ contains operators
with empty resolvent set, there exists a unitary mapping W : H+ → H−
such that S+ = W−1S−W (Corollary 3.3). This allows one to determine
a fundamental symmetry R in H with the help of formula (4.8).

The operator R possesses the properties (4.7) by the construction.
Therefore, the subspaces N±i reduce R. Let R1 = (r1

ij)
2
i,j=1 and R2 =

(r2
ij)

2
i,j=1 be the matrix representations of R ¹Ni

and R ¹N−i
with respect

to the bases e++, e+− and e−+, e−− of Ni and N−i, respectively. It

follows from (3.17) and (4.8) that Rj =

(
0 w−1

j

wj 0

)
, where |w1| =

|w2| = 1. Moreover, since we assume (4.6), the parameter ϕ in the proof
of Corollary 3.3 is equal to zero and, hence, w := w1 = w2. The exact
values of unimodular constant w depends on the choice of W . Without
loss of generality we may assume (multiplying W by an unimodular
constant if it is necessarily) that w = 1. Then

R := R1 = R2 =

(
0 1
1 0

)
. (4.12)

Let us consider the collections of operators Cχ,ω determined by (4.11)
It is known that Cχ,ω = JeχRω , where Rω = ReiωJ = R[cos ω+i(sin ω)J ]
is a fundamental symmetry in H, which anticommutes with J (i.e.,
RωJ = −JRω) [2]. Such a representation leads to the conclusion that
C2

χ,ω = I and JCχ,ω > 0. Moreover SCχ,ω = SCχ,ω due to (1.2) and
(4.7). Therefore, an arbitrary Cχ,ω belongs to U.

Rewriting (4.11) as follows

Cχ,ω = (cosh χ)J + (sinh χ)(cos ω)JR − i(sinh χ)(sin ω)R

and using (4.12) we obtain that both matrix representations of Cχ,ω ¹Ni

and of Cχ,ω ¹N−i
coincide with

Cχ,ω =

(
cosh χ (sinh χ)e−iω

−(sinh χ)eiω − cosh χ

)
.

Let C ∈ U. Then the matrix representations of its restrictions C ¹Ni

and C ¹N‘i
coincide with Cχ1,ω1 and Cχ2,ω2 defined by (4.3). Further-

more, since Sh(µ)C = CSh(µ) (see (2.18)), the identity (4.4) holds.
That is equivalent to the relations χ1 = χ2 and e−iω1 = e−iω2 (since
(4.6) is true and s+ ̸≡ 0).

Setting χ = χ1 = χ2 and ω = ω1, one concludes that the matrix
representations Cχj ,ωj

coincides with Cχ,ω. Therefore, C = Cχ,ω due to
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Lemma 2.7. Thus, the collection of operators {Cχ,ω} defined by (4.11)
coincides with U.

Combining Theorem 4.6 with [2, Theorem 3.2, Proposition 3.3], we
immediately derive the following statement.

Corollary 4.7. Let S and ΣJ satisfy the condition of Theorem 4.6 and
let AU ∈ ΣJ be defined by (3.4) - (3.6). Then the strict inclusions

ΥU ⊂ ΥJ ⊂ Σst
J

hold and the following relations are true.

(i) AU belongs to ΥU if and only if

U = ei π
2

(
0 eiξ

−e−iξ 0

)
, ξ ∈ [0, 2π);

(ii) AU belongs to ΥJ if and only if

U = eiϕ

(
0 eiξ

−e−iξ 0

)
, ϕ, ξ ∈ [0, 2π);

(iii) AU belongs to Σst
J \ ΥJ if and only if

U = eiϕ

(
qeiγ reiξ

−re−iξ qe−iγ

)
, γ, ξ ∈ [0, 2π), q, r > 0, q2 + r2 = 1,

where 0 < q < | cos ϕ|. In that case the operator AU has the Cχ,ω-
symmetry, where ω = γ and χ is determined by the relation q =
− tanh χ cos ϕ.

4.2.2. The case Sh ≡ 0.

If Sh ≡ 0, then s+(µ) = s−(µ) = 0 for all µ ∈ C+. Therefore,
by Theorem 3.1, ΣJ contains operators with empty resolvent set and
Theorem 4.3 and Corollary 4.5 hold. However Theorem 4.6 is not true
due to the fact that the set of all stable C-symmetries U is much more
greater then the formula (4.11) provides. That is why the commutation
condition (4.4) is vanished for s± ≡ 0 and we cannot establish the
relationship between parameters χ1, ω1 and χ2, ω2 of matrices Cχj ,ωj

(see the proof of Theorem 4.6).

Theorem 4.8. Let S be a simple symmetric operator with zero char-
acteristic function and let AU ∈ ΣJ be defined by (3.4) - (3.6). Then
ΥU = ∅ and the strict inclusions

ΥU ⊂ ΥJ ⊂ Σst
J

hold.
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(i) AU belongs to ΥJ if and only if

U = eiϕ

(
0 eiξ

−e−iξ 0

)
, ϕ, ξ ∈ [0, 2π);

(ii) AU belongs to Σst
J \ ΥJ if and only if

U = eiϕ

(
qeiγ reiξ

−re−iξ qe−iγ

)
, ϕ, γ, ξ ∈ [0, 2π), q, r > 0, q2 + r2 = 1.

Proof. (i) It follows from [2, Proposition 3.3].
(ii) Let AU ∈ Σst

J . Then AUC = CAU for some choice of C ∈ U.
This is equivalent to the relation CM = M , where M = span{d1, d2}
is defined by (3.5) and (3.6) (see the proof of Theorem 4.1). Moreover,
it follows from the proof of Theorem 4.1 that the operators C ¹Ni

and
C ¹N−i

acts in Ni and N−i, respectively and they have the matrix
representations Cχ1,ω1 and Cχ2,ω2 defined by formula (4.3).

Combining [23, Lemma 3.3] with Lemma 2.7 we conclude that the
correspondence

C ∈ U → {Cχ1,ω1 , Cχ2,ω2}, χj ∈ R, ωj ∈ [0, 2π) (4.13)

is bijective for the case of zero characteristic function (Sh ≡ 0).
It follows from (3.6) and (4.3) that

Cd1 = Cχ1,ω1e++ + qei(ϕ+γ)Cχ1,ω1e+− + rei(ϕ+ξ)Cχ2,ω2e−+ =

k1e++ − [sinh χ1e
iω1 + qei(ϕ+γ) cosh χ1]e+− + [rei(ϕ+ξ) cosh χ2]e−+ + k2e−−,

where

k1 = cosh χ1 + qei(ϕ+γ) sinh χ1e
−iω1 , k2 = −rei(ϕ+ξ) sinh χ2e

iω2 . (4.14)

Taking the definition (3.6) of dj into account we conclude that Cd1 ∈
M if and only if Cd1 = k1d1 + k2d2, where kj are defined by (4.14). A
direct calculation shows that the last identity holds if we set

χ = χ1 = χ2 = − tanh−1 q, ω1 =
γ + ϕ

2
, ω2 =

γ − ϕ

2
. (4.15)

A similar reasoning shows that Cd2 ∈ M if we choose parameters χj

and ωj according to (4.15). Note that χ can be defined in (4.15) just
in the case 0 ≤ q < 1.

Thus, if AU ∈ ΣJ is defined by (3.4) - (3.6) with 0 ≤ q < 1, then
choosing parameters χj, ωj due to (4.15) and using the bijection (4.13),
we establish the existence of C ∈ U such that AUC = CAU . Therefore
AU ∈ Σst

J . Since AU ∈ ΥJ when q = 0 (see item (i)) and the spectrum
of AU coincides with C when q = 1 (it follows from Corollary 3.2), we
prove (ii).
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Let us assume that AU ∈ ΥU. In that case AUC = CAU for all
C ∈ U. Taking (4.13) into account, we conclude that the element
Cd1 = Cχ1,ω1e++ + qei(ϕ+γ)Cχ1,ω1e+− + rei(ϕ+ξ)Cχ2,ω2e−+ belongs to M
(i.e., Cd1 = k1d1 + k2d2, where kj are defined by (4.14)) for all values
of parameters χj and ωj. This is impossible. Hence, ΥU = ∅.

The next statement is a direct consequence of Proposition 2.2 and
Theorem 4.8.

Corollary 4.9 ( [23]). If S is a simple symmetric operator with zero
characteristic function, then an operator AU ∈ ΣJ has real spectrum
if and only if AU has stable C-symmetry and, hence, AU is similar to
self-adjoint operator. Otherwise, the spectrum of AU coincides with C.

5. Examples

5.1. Degenerate Sturm-Liouville problems on the finite inter-
val. The necessary and sufficient conditions for the Dirichlet eigenvalue
problem associated with the Sturm-Liouville equation

−(p(x)y′)′ = λr(x)y, −∞ < a ≤ x ≤ b < ∞ (5.1)

to be degenerate (i.e., the spectrum of this eigenvalue problem fills the
whole complex plane) were established in [27]. We consider one of the
simplest cases where p(x) = r(x) = (sgn x) and [a, b] = [−1, 1].

The symmetric operator S associated with −(sgn x)((sgn x)y′)′ and
boundary conditions y(−1) = y(1) = 0 takes the form Sy = −y′′,

D(S) = {y ∈ W 2
2 (−1, 0) ⊕ W 2

2 (0, 1) | y(0±) = y′(0±) = y(±1) = 0}
(5.2)

and (5.1) takes the form Sy = λy.
The operator S has the deficiency indices < 2, 2 > and it commutes

with the fundamental symmetry Jy(x) = (sgn x)y(x) in H = L2(−1, 1).
The corresponding symmetric operators S±y = −y′′ (see (2.11)) with
the domains

D(S+) = {y ∈ W 2
2 (0, 1) | y(0+) = y′(0+) = y(1) = 0},

D(S−) = {y ∈ W 2
2 (−1, 0) | y(0−) = y′(0−) = y(−1) = 0}

act in H+ = L2(0, 1) and H− = L2(−1, 0), respectively.
Consider the parity operator Py(x) = y(−x) and set R := P . It is

clear that R is a fundamental symmetry in L2(−1, 1) and it satisfies
(4.7). To describe these operators we observe that solutions y±

µ (x) of
the equations

S∗
±y − µy = −y′′(x) − µy(x) = 0, y(±1) = 0, µ ∈ C+
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have the form

y+
µ (x) =

{
sin

√
µ(x − 1), x ∈ [0, 1]

0, x ∈ [−1, 0],

y−
µ (x) =

{
0, x ∈ [0, 1]
− sin

√
µ(x + 1) x ∈ [−1, 0].

Here
√
· denotes the branch of the square root defined in C with a cut

along [0,∞) and fixed by Im
√

λ > 0 if λ ̸∈ [0,∞). Moreover,
√
· is

continued to [0,∞) via λ 7→
√

λ ≥ 0 for λ ∈ [0,∞). According to (3.1),
the elements e±± can be chosen as follows:

e++ = y+
i , e+− = y−

i , e−+ = y+
−i, e−− = y−

−i

and the functions s±(µ) in (3.8) can be calculated immediately by re-
peating the arguments in [31]. For completeness we outline the method.

The characteristic function Sh+(µ) of S+ is determined by the first
relations in (3.8) and (3.9). Employing here (2.10) we get

y+
µ (x) = u(x) + ce++ − cs+(µ)e−+, u ∈ D(S+), x ∈ [0, 1], (5.3)

where c is a constant which is easily determined by setting x = 0 and
taking into account the relevant boundary conditions:

c =
sin

√
µ

sin
√

i − s+(µ) sin
√
−i

.

Differentiating (5.3) with a subsequent setting x = 0 gives rise to
√

µ cos
√

µ = c
√

i cos
√

i − cs+(µ)
√
−i cos

√
−i.

The last two relations leads to the conclusion:

s+(µ) =

√
i sin

√
µ cos

√
i −√

µ cos
√

µ sin
√

i
√
−i sin

√
µ cos

√
−i −√

µ cos
√

µ sin
√
−i

.

Considering the characteristic function Sh− of S− we obtain the same
expression for s−(µ). Thus s+ = s− ̸≡ 0. By Theorem 3.1, the set ΣJ of
J-self-adjoint extensions of S contains operators with empty resolvent
set. Applying Corollary 3.2 and taking the explicit form of elements
e±± into account we derive the following description of all possible J-
self-adjoint extensions A(= Aγ) of S with empty resolvent set: Aγy =
−y′′,

D(Aγ) =

 y ∈ W 2
2 (−1, 0) ⊕ W 2

2 (0, 1) |
eiγy(0+) = y(0−),

eiγy′(0+) = −y′(0−),

y(±1) = 0,


where γ ∈ [0, 2π) is an arbitrary parameter.
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Remark 5.1. Since the symmetric operator S satisfies (4.7) with fun-
damental symmetries J = (sgn x)I and R = P , Corollary 4.5 implies

the existence of J̃-self-adjoint extensions of S with empty resolvent

set for any nontrivial fundamental symmetry J̃ which belongs to the
Clifford algebra Cl2 = span{I, J, R, JR}.

5.2. Indefinite Sturm-Liouville operators (sgn x)(− d2

dx2 + q(x)).
Consider the indefinite Sturm-Liouville differential expression

a(y)(x) = (sgn x)(−y′′(x) + q(x)y(x)), x ∈ R
with a real potential q ∈ L1

loc(R) and denote by D the set of all functions
y ∈ L2(R) such that y and y′ are absolutely continuous and a(y) ∈
L2(R). On D we define the operator A as follows:

Ay = a(y), D(A) = D. (5.4)

Assume in what follows the limit point case of a(y) at both −∞ and
+∞. Then we obtain the J-self-adjoint operator A in the Krein space
(L2(R), [·, ·]J), where J = (sgn x)I.

The operator A is a J-self-adjoint extension of the symmetric oper-
ator

S = (sgn x)

(
− d2

dx2
+ q

)
, D(S) = {y ∈ D | y(0) = y′(0) = 0} (5.5)

with deficiency indices < 2, 2 >.
The operator S commutes with J and its restrictions onto subspaces

L2(R±) of the fundamental decomposition L2(R) = L2(R+) ⊕ L2(R−)
coincides with the symmetric operators

S+ = − d2

dx2
+ q+, S− =

d2

dx2
− q−, D(S±) = P±D(S), q± = q ¹R±

with deficiency indices < 1, 1 > acting in the Hilbert spaces H+ =
L2(R+) and H− = L2(R−), respectively and P± are orthogonal projec-
tors onto L2(R±) in L2(R).

Denote by cµ(·), sµ(·) the solutions of the equation

−f ′′(x) + q(x)f(x) = µf(x), x ∈ R, µ ∈ C
with the boundary conditions

cµ(0) = s′µ(0) = 1, c′µ(0) = sµ(0) = 0. (5.6)

Due to the limit point case at ±∞ there exist unique holomorphic
functions M±(µ) (µ ∈ C \ R) such that the functions

ψ±
µ (x) =

{
s±µ(x) − M±(µ)c±µ(x), x ∈ R±
0, x ∈ R∓

(5.7)
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belongs to L2(R). The functions M±(·) are called the Titchmarsh-
Weyl coefficients of the differential expression a(·) on R± (see, e.g., [21,
Definition 2.2]). They are Nevanlinna functions and they satisfy the
following asymptotic behavior

M±(µ) = ± i√
±µ

+ O

(
1

|µ|

)
, (µ → ∞, 0 < δ < arg µ < π − δ) (5.8)

for δ ∈ (0, π
2
), see [12].

The asymptotic behavior (5.8) was used for justifying the property
ρ(A) ̸= ∅ for the concrete J-self-adjoint extension A of S defined by
(5.4), cf. [19]. We extend this result for all operators in ΣJ .

Theorem 5.2. Let the symmetric operator S be defined by (5.5) and
J = (sgn x)I. Then the set ΣJ of J-self-adjoint extensions of S does
not contain operators with empty resolvent set.

Proof. The proof is divided into two steps. In the first one we
calculate the characteristic function of S. In step 2 we apply Theorem
3.1.

Step 1. It follows from the definition of S± and (5.7) that the defect
subspaces N±i(S+) coincides with span{ψ+

±i} and the defect subspaces
N±i(S−) coincides with span{ψ−

±i}. Therefore, we can choose basis
elements {e±±} as follows:

e++ = ψ+
i , e−+ = ψ+

−i, e+− = cψ−
i , e−− = cψ−

−i,

where an auxiliary constant c > 0 is determined by the condition
∥ψ+

i ∥ = ∥ψ−
i ∥ (or, that is equivalent, by the condition ∥ψ+

−i∥ = ∥ψ−
−i∥)

and it ensures the equality of norms ∥e++∥ = ∥e+−∥ = ∥e−+∥ = ∥e−−∥.
By virtue of (5.6) and (5.7),

e±+(0) = −M+(±i), e′±+(0) = 1, e±−(0) = −cM−(±i), e′±−(0) = c.
(5.9)

Using these boundary conditions and repeating the arguments of Sub-
section 5.1, we arrive at the conclusion that the characteristic function
Sh of S is defined by the following functions s+(·) and s−(·) in (3.8):

s+(µ) =
M+(µ) − M+(i)

M+(µ) − M+(−i)
, s−(µ) =

M−(µ) − M−(i)

M−(µ) − M−(−i)
. (5.10)

Step 2. By Theorem 3.1 the set ΣJ contains operators with empty
resolvent set if and only if e2iϕs−(µ) = s+(µ), µ ∈ C+, for a certain
choice of ϕ ∈ [0, 2π). Tending µ → ∞ in this identity and taking (5.8)
and (5.10) into account, we obtain that

e2iϕ =
M+(i)M−(−i)

M+(−i)M−(i)
. (5.11)
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Rewriting e2iϕs−(µ) = s+(µ) with the use of (5.10) and (5.11) we get

M+(µ)M−(µ)[e2iϕ − 1] + M+(µ)[M−(−i) − e2iϕM−(i)]

+M−(µ)[M+(i) − e2iϕM+(−i)] = 0. (5.12)

Denote M±(i) = eiθ±|M±(i)|, where θ± ∈ (0, π) (since Im M±(i) >
0). Then (5.11) takes the form e2iϕ = e2i(θ+−θ−) and relation (5.12) can
rewriting (after routine transformations) as follows:

M+(µ)M−(µ) sin(θ+ − θ−) − M+(µ)|M−(i)| sin θ+ (5.13)

+M−(µ)|M+(i)| sin θ− = 0. ∀µ ∈ C+

Since the coefficients |M∓(i)| sin θ± of M±(µ) are real, identity (5.13)
cannot be true for the whole C+ (due to the asymptotic behavior (5.8)).
Therefore, ΣJ does not contain operators with empty resolvent set.

Remark 5.3. The relation (5.13) is reduced to M+ ≡ M−, if we are
trying to prove ρ(A) ̸= ∅ for the concrete operator A defined by (5.4),
see, e.g., [19, Proposition 2.5]. This could also be deduced here by a
simple calculation involving Corollary 3.2 and (3.14).

By virtue of Theorems 4.1, 5.2 the set Σst
J of J-self-adjoint opera-

tors with stable C-symmetry is reduced to the set ΥJ of self-adjoint
extensions of S which commute with J in the case of indefinite Sturm-
Liouville operators. The set ΥJ consists of all self-adjoint extensions
of S with separated boundary conditions on 0, i.e.,

A ∈ ΥJ ⇐⇒ Ay = a(y), D(A) = {y ∈ D | a±f(0±)−b±f ′(0±) = 0}.

5.3. One dimensional impulse operator with point perturba-
tion. Consider the symmetric operator

S = −i
d

dx
, D(S) = {y ∈ W 1

2 (R, C2) | y(0) = 0}

in the Hilbert space L2(R, C2) := L2(R) ⊗ C2.

Lemma 5.4. The operator S has deficiency indices < 2, 2 > and its
characteristic function Sh is equal to zero.

Proof. The operator S can be presented S = S1 +S2 with respect to
the decomposition L2(R, C2) = L2(R−, C2) ⊕ L2(R+, C2). The restric-
tions S1 = S ¹L2(R−,C2) and S2 = S ¹L2(R+,C2) are maximal symmetric
operators in the Hilbert spaces L2(R−, C2) and L2(R+, C2), respec-
tively, with deficiency indices < 0, 2 > and < 2, 0 >, respectively.
Therefore S has deficiency indices < 2, 2 > and Nµ(S) = Nµ(S2) for
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all µ ∈ C+ (since S2 has deficiency indices < 2, 0 >). An arbitrary
fµ ∈ Nµ(S) admits the representation

fµ = u + fi, u ∈ D(S2), fi ∈ Ni(S2).

Comparing the obtained formula with (2.10) we obtain Sh(µ) = 0.

Remark 5.5. The operator J = (sgn x)I is a fundamental symmetry
in L2(R, C2) and S commutes with J . The symmetric operators S−
and S+ in (2.11) coincides with S1 and S2, respectively, and hence
their deficiency indices are < 0, 2 > and < 2, 0 >. Hence, there are no
J-self-adjoint extensions of S and the sets ΣJ and ΥJ are empty.

To achieve a non-empty set ΣJ , we have to choose a fundamental
symmetry J in such a way that the deficiency indices of S± in (2.11)
are < 1, 1 >. To this end, we write an arbitrary element y ∈ L2(R, C2)
as follows

y =

(
y1

y2

)
= y1 ⊗ h+ + y2 ⊗ h−, h+ =

(
1
0

)
, h− =

(
0
1

)
and consider the fundamental symmetry Jy =

(
y1

−y2

)
in L2(R, C2).

In that case, the operators S± in (2.11) act in the Hilbert spaces
L2(R,H±), where H± = span{h±} and they are determined by the
formulas

S± = −i
d

dx
, D(S±) = {y ∈ W 1

2 (R,H±) | y(0) = 0}. (5.14)

Obviously, S± have deficiency indices < 1, 1 >. This means that the
set ΣJ is non-empty and its elements can be parameterized by unitary
matrices U in (3.4).

In order to describe the subset of J-self-adjoint extensions with
empty resolvent set in ΣJ we have to calculate basis elements {e±±}
(see (3.1)) and to apply Corollary 3.2.

Denote by

yi(x) =

{
e−x, x ≥ 0
0, x < 0,

y−i(x) =

{
0, x ≥ 0
ex, x < 0

the solutions of the equation −iy′ − µy = 0 (µ ∈ {i,−i}). Using the
definition of S± and (3.1) we obtain

e++ = yi ⊗ h+, e+− = yi ⊗ h−, e−+ = y−i ⊗ h+, e−− = y−i ⊗ h−.

Corollary 3.2 and equalities (3.5), (3.6) imply that an arbitrary J-
self-adjoint extension AU with empty resolvent set has the domain
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D(AU) = D(S)+̇M , where M is a linear span of elements

d1 = e++ + ei(ϕ+γ)e+−, d2 = e−− + ei(ϕ−γ)e−+, ϕ, γ ∈ [0, 2π).

The obtained expression leads (after some trivial calculations) to the
following description of J-self-adjoint extensions AU(= Aϕγ) of S with
empty resolvent set: Aϕγy = −iy′,

D(Aϕγ) =

{
y =

(
y1

y2

)
∈ W 1

2 (R \ {0}) ⊗ C2 |
y2(0+) = ei(γ+ϕ)y1(0+)

y2(0−) = ei(γ−ϕ)y1(0−)

}
,

where ϕ, γ ∈ [0, 2π) are arbitrary parameters.

5.4. One dimensional Dirac operator with point perturbation.
Let us consider the free Dirac operator D in the space L2(R) ⊗ C2:

D = −ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3, D(D) = W 1

2 (R) ⊗ C2,

where σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
are Pauli matrices and c > 0.

The symmetric Dirac operator

S = D ¹ {u ∈ W 1
2 (R) ⊗ C2 | u(0) = 0}

has the deficiency indices < 2, 2 >, see [1], and it commutes with the
fundamental symmetry J = P⊗σ3 in L2(R)⊗C2, where P is the parity
operator Py(x) = y(−x). In that case, the operators S± in (2.11) are
restrictions of S onto the Hilbert spaces

[Leven
2 (R)⊗H+]⊕ [Lodd

2 (R) ⊗H−], [Lodd
2 (R)⊗H+]⊕ [Leven

2 (R) ⊗H−],

respectively (H± are the same as in (5.14)) and S± have deficiency
indices < 1, 1 >.

The defect subspaces Ni and N−i of S coincide, respectively, with
the linear spans of the functions {y1+, y2+} and {y1−, y2−}, where

y1±(x) =

(
−ie∓it

(sgn x)

)
eiτ |x|, y2±(x) = (sgn x)y1±(x), (5.15)

τ = i
c

√
c4

4
+ 1, and eit :=

(
c2

2
− i

) (√
c4

4
+ 1

)−1

, see, e.g., [1].

Using the definition of S± and (3.1) we obtain

e++ = y1+, e+− = y2+, e−+ = y1−, e−− = y2−. (5.16)

The adjoint operator

S∗ = −ic
d

dx
⊗ σ1 +

c2

2
⊗ σ3
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is defined on the domain D(S∗) = W 1
2 (R \ {0}) ⊗ C2 and an arbitrary

J-self-adjoint extension AU ∈ ΣJ is the restriction of S∗ onto D(AU) =
D(S)+̇M , where M is defined by (3.5) and (3.6) with e±± determined
by (5.16).

It is easy to see that the fundamental symmetry R = (sgn x)I in
L2(R)⊗C2 also commutes with S and JR = −RJ . Taking into account
Remark 4.4 we establish the existence of J-self-adjoint extensions of S
with empty resolvent set.

A routine calculation with the use of Corollary 3.2 gives that AU ∈
ΣJ has empty resolvent set if and only if AU(= Aγ) is the restriction
of S∗ onto the set D(Aγ) ={

y ∈ W 1
2 (R \ {0}) ⊗ C2 |

Λγ[y(0+) + y(0−)] = y(0+) − y(0−)

y′(0+) + y′(0−) = Λγ[y
′(0+) − y′(0−)]

}
,

where Λγ =

(
eiγ 0
0 e−iγ

)
.
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