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ON A CLASS OF J-SELF-ADJOINT OPERATORS
WITH EMPTY RESOLVENT SET

SERGII KUZHEL AND CARSTEN TRUNK

ABSTRACT. In the present paper we investigate the set ¥ ; of all
J-self-adjoint extensions of a symmetric operator .S with deficiency
indices < 2,2 > which commutes with a non-trivial fundamental
symmetry J of a Krein space (9, [, ]),

SJ=JS.

Our aim is to describe different types of J-self-adjoint extensions
of S. One of our main results is the equivalence between the pres-
ence of J-self-adjoint extensions of S with empty resolvent set and
the commutation of S with a Clifford algebra Clz(J, R), where R
is an additional fundamental symmetry with JR = —R.J. This en-
ables one to construct the collection of operators C ., realizing the
property of stable C-symmetry for extensions A € X ; directly in
terms of Cly(J, R) and to parameterize the corresponding subset of
extensions with stable C-symmetry. Such a situation occurs natu-
rally in many applications, here we discuss the case of an indefinite
Sturm-Liouville operator on the real line and a one dimensional
Dirac operator with point interaction.

1. INTRODUCTION

Let ($,[-,-]) be a Krein space with a non-trivial fundamental sym-
metry J (i.e., J2 =1, J # +I, and (9,[J-,]) is a Hilbert space) and
corresponding fundamental decomposition

53:53+@~6—, (1.1)

where . = $(I+J). Let A be a linear operator in $) which is J-
self-adjoint with respect to the Krein space inner product [-,-]. In
contrast to self-adjoint operators in Hilbert spaces (which necessarily
have a purely real spectrum), J-self-adjoint operators A, in general,
have spectra o(A) which are only symmetric with respect to the real
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2 S. KUZHEL AND C. TRUNK

axis: 1 € o(A) if and only if i € 0(A). Moreover, the situation where
o(A) = C (i.e., A has the empty resolvent set) is also possible.

It is simple to construct infinitely many J-self-adjoint operators with
empty resolvent set. For instance, let JC be a Hilbert space and let L be
a symmetric (non-self-adjoint) operator in K. Consider the operators

L 0 0 I
A':(o L*)’ J:(I 0)

in the product Hilbert space $ = K & K. Then J is a fundamental
symmetry in § and A is a J-self-adjoint operator. As p(L) = (), it is
clear that p(A) = 0.

This example shows that the property p(A) = () is a consequence of
the special structure of A. It is natural to suppose that this relation-
ship can be made more exact for some special types of J-self-adjoint
operators.

In the present paper we investigate such a point by considering the
set 3y of all J-self-adjoint extensions A of the symmetric operator S
with deficiency indices < 2,2 > which commutes with J:

SJ =JS. (1.2)

Our aim is to describe different types of J-self-adjoint extensions of
S. For this let us denote (see Section 2.4 below) by il the set of all
fundamental symmetries which commute with S, by X% we denote the
set of all J-self-adjoint extensions of S which commute with a funda-
mental symmetry in 4, by T ; the set of all J-self-adjoint extensions
of S which commute with J and by Yy, the set of all J-self-adjoint
extensions which commute with all operators in 4. By definition we
have J € 4 and

TyCTY;C Zsf (13)

Operators from X% are said to have the property of stable C-symmetry,
see [23]. In particular, they are fundamental reducible and, hence,
similar to a self-adjoint operator in a Hilbert space. J-self-adjoint
operators with stable C-symmetries admit detailed spectral analysis
(like the case of self-adjoint operators), cf. [2, 18], and their set 3% may
be used as an exactly solvable model explaining (at an abstract level)
the appearance of exceptional points on the boundary of the domain
of the exact P7-symmetry in P7-symmetric quantum mechanics (see
8, 16, 28, 29] and the references therein).

In the case of a simple symmetric operator S, we show in this paper
that the existence of at least one J-self-adjoint extension of S with



ON J-SELF-ADJOINT OPERATORS WITH EMPTY RESOLVENT SET 3

empty resolvent set leads to the quite specific structure of the underly-
ing symmetric operator S. Namely, we have in (1.3) strict inclusions,

YuCTyCust (TyTs#£5),

which implies a rich structure of extensions with completely different
properties. Moreover, in Corollary 4.7 and Theorem 4.8 below we give
a full parametrization of the sets Ty, T, and X% in terms of (up to)
four real parameters.

If, on the other hand, all J-self-adjoint extension of S have non-
empty resolvent set, we show (cf. Theorem 4.1 below) equality in (1.3),

Yy=T, =3

Moreover, we have f = {J}. This is in particular the case, if there
exists at least one definitizable extension (Corollary 4.2 below).

We show that the property of empty resolvent set for a J-self-adjoint
extension of S is equivalent to one of the following statements.

e There exists an additional fundamental symmetry R in $) such
that

SR=RS, JR=-RJ

e The operator S, = S [g, is unitarily equivalent to S_ :=
S ¢, where $. are from the fundamental decomposition (1.1)
corresponding to J.

e The characteristic function s, of S} (in the sense of A. Straus,
see [31]) is equal (up to the multiplication by an unimodular
constant) to the characteristic function s_ of S_.

If, in addition, the characteristic function Sh(-) of S is not identically
equal to zero, we provide a complete description of the set il in terms
of R and J. More precisely (see Theorem 4.6 below), 4l consists of all
operators C' of the form

C = (cosh x)J + (sinh x)JR[cosw + i(sinw)J]

with x € R and w € [0, 27).

The operators J and R can be interpreted as basis (generating) el-
ements of the complex Clifford algebra Cly(J, R) := span{/, J, R, JR}
and they give rise to a ‘rich’ family 3%. The results of the present pa-
per enables one to claim that the existence of J-self-adjoint extensions
with empty resolvent set for a symmetric operator S with property
(1.2) and deficiency indices < 2,2 > is equivalent to the commutation
of S with an arbitrary element of the Clifford algebra Cly(J, R).

The paper is structured as follows. Section 2 contains a lot of auxil-
iary results related to the Krein space theory and the extension theory
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of symmetric operators. In the latter case we emphasize the useful-
ness of the Krein spaces ideology for the description of the set ¥; of
J-self-adjoint extensions of S in terms of unitary 2 x 2-matrix U and
the definition of the characteristic function Sh(-) of S.

In Section 3, we establish a necessary and sufficient condition under
which ¥; contains operators with empty resolvent set (Theorem 3.1
and Corollary 3.3) and explicitly describe these operators in terms of
unitary matrices U (Corollary 3.2).

In Section 4 we establish our main result (Theorem 4.3) about the
equivalence between the presence of J-self-adjoint extensions of S with
empty resolvent set and the commutation of S with a Clifford algebra
Cly(J, R). This enables one to construct the collection of operators
O, realizing the property of stable C-symmetry for extensions A &
Y directly in terms of Cly(J, R) (Theorem 4.6) and to describe the
corresponding subset X% of extensions A € X ; with stable C-symmetry
in terms of matrices U (Corollary 4.7 and Theorem 4.8).

Section 5 contains some examples. We consider the case of an indef-
inite Sturm-Liouville expression on the real line. Then the symmetric
operator S is obtained by imposing additional boundary conditions at
zero (which in some sense decomposes the problem into two differential
expressions defined on R, and R_, respectively). Then with the results
from Section 3 we are able to prove that all J-self-adjoint extensions of
S have non-empty resolvent set. This extends results from [6, 7, 19].
Finally, we consider a one dimensional impulse and a Dirac operator
with point perturbation.

Throughout the paper, the symbols D(A) and R(A) denotes the
domain and the range of a linear operator A. A [p means the restriction
of A onto a set D. The notation o(A) and p(A) are used for the
spectrum and the resolvent set of A. The sign m denotes the end of a
proof.

2. PRELIMINARIES

2.1. Elements of the Krein space theory. Let $ be a Hilbert space
with inner product (-, -) and with non-trivial fundamental symmetry .J
(i.e., J = J* J> =1, and J # +I). The space $ endowed with the
indefinite inner product (indefinite metric) [-,:] := (J-,-) is called a
Krein space (9,][-,+]). For the basic theory of Krein spaces and opera-
tors acting therein we refer to the monographs [4] and [10].

The projectors Py = %([ +J) determine a fundamental decomposi-
tion of 9,

H=H, 09, H. =P O, =P.9, (2.1)
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where (94, [,+]) and (9_, —[-,-]) are Hilbert spaces. With respect to
the fundamental decomposition (2.1), the operator J has the following

form
I 0
J_<0 —I)'

A subspace £ of § is called hypermazximal neutral if
g=eW=lrcy:[z,y]=0, Vyec g}

A subspace £ C $ is called uniformly positive (uniformly negative)
if [z,2] > a®||z||* (vesp. —[z,z] > a?||x||*) a € R for all z € £. The
subspaces $)+ in (2.1) are examples of uniformly positive and uniformly
negative subspaces and, moreover, they are maximal, i.e., §, ($_) is
not a proper subspace of an uniformly positive (resp. negative) sub-
space.

Let £, (# $,) be an arbitrary maximal uniformly positive subspace.
Then its J-orthogonal complement £ = S[f I'is maximal uniformly
negative and the direct J-orthogonal sum

H=2L [+ (2.2)

gives a fundamental decomposition of §.
With respect to (2.2) we define an operator C' via

C:(é _O]>

We have C? = I and C is a self-adjoint operator in the Hilbert space
(%, (+,*)¢), where the inner product (-, -)¢ is given by

(@,9)c = [Cx,y] = (JCx,y), z,y€SH.

Note that (-,-)¢ and (+,-) are equivalent, see, e.g., [26]. Hence, one
can view C as a fundamental symmetry of the Krein space (9, [, ])
with an underlying Hilbert space (9, (-, )c).

Summing up, there is a one-to-one correspondence between the set
of all decompositions (2.2) of the Krein space (9, [-,-]) and the set of
all bounded operators C' such that

=1, JC > 0. (2.3)

Definition 2.1. An operator A acting in a Krein space (9, [-,-]) has
the property of C-symmetry if there exists a bounded linear operator C

in §) such that: (i) C* =1, (i) JC >0; (iii) AC = CA.
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In particular, if A is a J-self-adjoint operator with the property of
C-symmetry, then its counterparts

1
Ai 2:A[2i, sizé(IiC)ﬁ

are self-adjoint operators in the Hilbert spaces £, and £_ endowed with
the inner products [, -] and —[-, -], respectively. This simple observation
leads to the following statement, which is a direct consequence of the
Phillips theorem [4, Chapter 2, Corollary 5.20].

Proposition 2.2. A J-self-adjoint operator A has the property of C-
symmetry if and only if A is similar to a self-adjoint operator in $).

In conclusion, we emphasize that the notion of C-symmetry in Defi-
nition 2.1 coincides with the notion of fundamentally reducible operator
(see, e.g., [17]). However, in the context of this paper and motivated
by [2, 8, 9, 15, 28, 29|, we prefer to use the notion of C-symmetry.

2.2. Elements of the extension theory in Hilbert spaces. Here
and in the following we denote by C, (C_) the open upper (resp. lower)
half plane. Let S be a closed symmetric densely defined operator with
equal deficiency indices acting in the Hilbert space (), (+,-)).

We denote by N, = ker(S* — ul), p € C\R, the defect subspaces of
S and consider the Hilbert space MM = M;+N_; with the inner product

(@, y)om = 2[(zi, i) + (2—i,y-i)], (2.4)
where x = x; +x_; and y = y; + y_; with z;,y, € Ny, v, y_; € N_;.
The operator Z which acts as identity operator I on 91; and minus
identity operator —I on 91_; is an example of a fundamental symmetry
in 9.
According to the von-Neumann formulas (see, e.g., [30, 22]) any
closed intermediate extension A of S (i.e., S C A C S*) in the Hilbert

space ($),(-,-)) is uniquely determined by the choice of a subspace
M C

A=S5"Ipw),  D(A)=D(S)+M, (2.5)
Let us set M =91, (1 € C4) in (2.5) and denote by
A= Ioay  D(A)=D(S)N, YweC, (26

the corresponding maximal dissipative extensions of S. The operator-
function
Sh(p) = (A, —il)(A, +iD)7" o M = Ny, peCy (2.7)

is the characteristic function of S defined by A. Straus [31].
The characteristic function Sh(+) is connected with the Weyl function
of the symmetric operator S constructed in terms of boundary triplets
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(see [11, p. 12], [14, p. 1123]). For instance, if M(+) is the Weyl function
of S associated with the boundary triplet (91,9, T'1), where

Lof =fi+ Vi Tif=ifi—iVf f=u+fi+tfieD(S") (2.8)
and V : 0M_; — MM, is an arbitrary unitary mapping, then
M(u) = i(I + VSh()(I = VSh()™',  peCy.  (29)

The function VSh(-) in (2.9) coincides with the characteristic func-
tion of S associated with the boundary triplet (9;, Ty, I'y) [24].

Another (equivalent) definition of Sh(-) (see [31]) is based on the
relation

D(A,) = D(S)+N, = D(S)+(I — Sh(w))Mi, peCyy  (2.10)

which also allows one to uniquely determine Sh(-).

The characteristic function Sh(-) can be easily interpreted in the
Krein space setting. Indeed, according to the von-Neumann formulas,
D(A,) = D(S)+L,, where L, C M is a maximal uniformly positive
subspace in the Krein space (9, [, ]z). Using (2.10), we conclude that
L, = (I —Sh(p))M; and hence, —Sh(yu) is the angular operator of
L,, with respect to the maximal uniformly positive subspace 91; of the
Krein space (9, [-,-]z) (see [4] for the concept of angular operators).

2.3. Elements of the extension theory in Krein spaces. In what
follows we assume that S satisfies (1.2), where J is a fundamental
symmetry in ($), (-, -)).

The condition (1.2) immediately leads to the special structure of S
with respect to the fundamental decomposition (2.1):

S, 0
S:( 0+ S_), Sy =8"Tg,, S-=81Ig, (2.11)

where S are closed symmetric densely defined operators in $..
Denote by ¥, the collection of all J-self-adjoint extensions of S and
set

It is clear that Y; C ¥; and an arbitrary A € T is, simultaneously,
self-adjoint and J-self-adjoint extensions of S. The set Y ; is non-empty
if and only if each symmetric operator Sy in (2.11) has equal deficiency
indices. We always suppose that Y ; # ().

Since S satisfies (1.2) the subspaces My, reduce J and the restriction
J | 9 gives rise to a fundamental symmetry in the Hilbert space 9.
Moreover, according to the properties of Z mentioned above, JZ = Z.J
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and JZ is a fundamental symmetry in 9. Therefore, the sesquilinear
form

["L‘7 y]JZ = (JZ:E, y)im - 2[(‘]1‘17 yz) - (Jx—ia y—l>] (213)
defines an indefinite metric on 9.

It is known (see, e.g., [2, Proposition 3.1]) that an arbitrary J-self-
adjoint extension A of S is uniquely determined by (2.5), where M is
a hypermazimal neutral subspace of the Krein space (I, [-,-];2).

In comparison with self-adjoint extensions in the sense of Hilbert
spaces, we remark that self-adjoint extensions of S in (9, (-,+)) are
also determined by (2.5) but then subspaces M are assumed to be

hypermaximal neutral in the Krein space (9, [-, -] z) with the indefinite
metric (cf. (2.13))

[ZL’, y]Z = (Zl',y)gm = 2[@%%) - (x—ia y—z)]
2.4. J-self-adjoint operators with stable C-symmetries. Denote

by U the set of all possible C'-symmetries of the symmetric operator S.
By Definition 2.1, this means that

Ceyd <= C*=1, JO>0, SC=CS.

The next result directly follows from [2]. We repeat principal stages
for the reader’s convenience.

Lemma 2.3. The set 3 is non-empty and C' € U if and only if C* € 4.

Proof. Tt follows from (1.2) that J € 4. Therefore, Ll # (.

Let C € 4. The conditions C? = I and JC > 0 are equivalent to
the presentation C' = Je¥, where Y is a bounded self-adjoint operator
in § such that JY = =Y J [2, Remark 2.1]. In that case C* = Je™¥
and, obviously, C* satisfies the relations C*? = I and JC* > 0.

Since S commutes with J and C one gets Se¥ = e¥'S. But then
SC* = Se¥J=¢eYJS = C*S. Hence, C* € U. m

Definition 2.4 ([23]). An operator A € X; has the property of stable
C-symmetry if A and S have the property of C-symmetry realized by
the same operator C, i.e., there exists C' € { with AC' = C'A.

Denote
¥¥ ={A € ¥;|3C € Usuch that AC = CA}. (2.14)

Due to Definition 2.4, 3% consists of J-self-adjoint extensions A of
S with the property of stable C-symmetry. It follows from (2.12) and
(2.14) that X5 D T ;. Hence, X% is non-empty.

Denote

Ty={AeX,| AC =CA, VC € u}. (2.15)
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It is clear that
TyCY,;C¥¥Cyy. (2.16)

The next Theorem gives a condition for the non-emptiness of the
left-hand side of the chain (2.16).

Theorem 2.5. If the characteristic function Sh(-) of S is boundedly
invertible for at least one u € C, then Yy # ().

Proof. Let C' € Y. Then S*C = CS* (see the proof of Lemma 2.3)
and, hence,
C:n,—-Nn,, Vue C\R. (2.17)
Therefore, A,C = CA, for maximal dissipative extensions A, of S
(see (2.6)). This means that the characteristic function Sh(-) defined
by (2.7) commutes with an arbitrary C' € 4 i.e.,

Sh(p)C = CSh(p), VueCyp, VC el (2.18)

It follows from Lemma 2.3 and (2.18) that Sh(u)C* = C*Sh(u).
Therefore,

Sh*(p)C = CSh* (),  VueC,, VCelil (2.19)

Let Sh(u) be boundedly invertible for a certain p € C, and let
V M, — Y, be the isometric factor in the polar decomposition of
Sh(u). Then VC = CV for all C' € U (since (2.18) and (2.19)). This

means that the operator
A=5"Ipnay, DA =D(S)HU+V)N}
belongs to Ty. m

Remark 2.6. The similar result was established by Kochubei [25, The-
orem 1] for the collection of unitary operators i = {U} with the prop-
erty that U € U implies U* € L.

According to (2.17), an arbitrary C' € i determines two operators
C Im., acting in Ny,.

Lemma 2.7. If S is a simple symmetric operator, then the correspon-
dence C € b — {C o, C [m_,} is injective.

Proof. Assume the existence of an operator pair {C' [g,,C [oq_,}
for two different operators C, C' € #l. Then (C — C)D(S*) C D(S).
Therefore, (C' — é)m# C D(S). On the other hand, (C' — 6’)‘)‘1# cm,
by (2.17). The obtained relations yield C'f, = 5fu for any f, € M,

and p € C\ R. This means that C' = C' (since the symmetric operator
S is simple). m
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3. NECESSARY AND SUFFICIENT CONDITION UNDER WHICH 3
CONTAINS ELEMENTS WITH EMPTY RESOLVENT SET.

In what follows we assume that the deficiency indices of operators
St in (2.11) is < 1,1 >. In that case, the defect subspaces DMy;(S54) of
Sy are one-dimensional and

N(Sy) =L +2) I+ )M, N(S4) =T —Z)(I+ J)n,

M(S_) = (I +2)(I—J)M;  M_(S_) = (I — Z)(I — J)M.

Hence, 9M4;(S+) are orthogonal in the Hilbert space (9, (-,-)om) (see

(2.4)).

Let {e44,e4_,e_,,e__} be an orthogonal basis of 9 such that
MN;(S4) = ker(S% —il) = spanfe;},
M (S-) = ker(S* —il) =span{e,_},

MN_;(Sy) = ker(S% + i) = span{e__ },

M_;(S_) = ker(S* +il) = span{e__},

(3.1)

and the elements e, ,e;_,e_,,e__ have equal norms in 9. It follows
from the definition of er4 that

Z€++ =€y, Z€+7 =€y, Z€,+ = —€_4, Je_ = —e__
Jey=eyy, Jeo =—ey , Je_,=e_,, Je__=—e__

Relations (3.2) mean that the fundamental decomposition of the
Krein space (9, [-,];z) has the form

M=M_eM,, M_ =span{e;_,e_.}, M, =span{e i, e__}.

(3.3)
According to the general theory of Krein spaces [4, Chapter 1, Theo-
rem 8.10], an arbitrary hypermaximal neutral subspace M of (I, [-,],2)

is uniquely determined by an unitary mapping of 9t_ onto 9t,. Since
dim M. = 2 the set of unitary mappings MM — M, is in one-to-one
correspondence with the set of unitary matrices

; e re®
U=e ¢ < _gﬂefif qefi'y ) ) q2—|-7”2 = 17 q,T € R+a ¢777£ € [07271—)
(3.4)

In other words, formulas (3.3), (3.4) allow one to describe a hyper-
maximal neutral subspace M of (I, [-,-],z) as a linear span

M = span{d;,dy} (3.5)
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of elements
dy = eyy +qe' e, 4 rel@te
i(9-¢) i(é—) (3.6)
dy=e__ —re ey +qe' " Ve_.

This means that (3.4) - (3.6) establish a one-to-one correspondence
between domains D(A) = D(S)+M of J-self-adjoint extensions A of S
and unitary matrices U. To underline this relationship we will use the
notation Ay for the corresponding J-self-adjoint extension A.

It follows from (2.18) (with C' = J) that the characteristic function
Sh(:) : 9M; — N_; commutes with J. Combining this fact with the
obvious presentations

M = M(S4) @M(S-) =span{esy,eq},
M, =N_;(S4) ®N_;(S-) =span{e_;,e__}
and relations (2.10), (3.2), we arrive at the conclusion that
Sh(p)esr = si(pe—y,  Sh(ples— =s_(ne——, (3.8)

where s; are holomorphic functions in C,. Moreover, it is easy to see
that relations in (3.8) determine the characteristic functions

Sho () : M(S4) — NMy(S4),  Sho(p) - M(S-) — Ni(S-)  (3.9)

of the symmetric operators S, and S_, respectively.
We will use the notation

(3.7)

S = S_
if the identity e"®s, (u) = s_(u) holds for for all p € C, and for a

certain choice of an unimodular constant €@, i.e., the sign ~ means
the equality up to the multiplication by an unimodular constant.

Theorem 3.1. Assume that the deficiency indices of operators S+ in
the presentation (2.11) of S are < 1,1 >. Then J-self-adjoint exten-
stons of S with empty resolvent set exist if and only if s, ~ s_.

Proof. 1t follows from (2.10) that a J-self-adjoint extension Ay of S
with the domain D(Ay) = D(S)+M has a non-real eigenvalue p € C,

if and only if U has a nontrivial intersection with the subspace L, =
(I — Sh(u))M;. Therefore,

o(Ay) D C; ifand only if MNL, # {0} VueC,.

Since Ay is a J-self-adjoint operator, the inclusion o(Ay) D Cy is
equivalent to o(Ay) = C.
In view of (3.7) and (3.8), L, = (I —Sh(u))M; = span{ci(p), ca(p)},

where

c1(p) = ery — syple—y, co(p) = e — s-(ple——. (3.10)
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Therefore, the relation MNL, # {0} holds if and only if the equation
r1dy + Tady = Y11 (1) + yaca () (3.11)

has a nontrivial solution z1,22,y1,y2 € C for all p € C,. Substi-
tuting (3.6) and (3.10) into (3.11) and combining the corresponding
coefficients for e+ we obtain four relations

T = Y1, ' xlqei(d)ﬂ)' — 2ore 078 =y
Ty = —yas_(p), e’ 420’0 = —s ()
or , '
g’y — (1 = 1@ 9s_(u))ys = 0,
(TGM)%) + 51 (1))yr — qeiwﬂ)s—(ﬂ)?b = 0.
The last system has a nontrivial solution v,y for all u € C, if and
only if its determinant
qe%(¢+7) _1 + re%(‘ﬁ_g)si (/J,)
re Pt 4 s (1) ¢ s _(p)
This is the case if and only if
s _(p) = re'®t 45, (u) — e’ Os_(u)sy(n), YueCy (3.12)

Further, Sh(i) = 0 by the construction (see (2.7) or (2.10)). Hence
s4(i) = s_(i) = 0 and relation (3.12) takes the form re'®+& = 0 (for
i = 1) which means that » = 0. Therefore, an operator Ay € ¥; has
empty resolvent set if and only

e*s_(n) =si(p),  VpeC,. (3.13)

:0, VH;E(C+

Corollary 3.2. If s, ~ s_, then operators Ay € ¥ ; with empty resol-
vent set are determined by the matrices:

. iy
U= e ( 60 69” > , v € [0, 2m), (3.14)

where ¢ € [0,2m) is uniquely determined by (3.13) if Sh Z 0 and ¢ is
an arbitrary parameter if Sh = 0.

Corollary 3.3. Let S be a simple symmetric operator. Then ¥; con-
tains operators with empty resolvent set if and only if the operators Si
in (2.11) are unitarily equivalent.

Proof. Assume that ¥ ; contains operators with empty resolvent set
and Sh # 0. Then s, # 0 and (3.13) holds for a certain ¢ € [0, 27).
Consider unitary mappings Vi : 9M_;(S+) — M;(S4) defined by the
relations

Vie_y =eqq, Vie__ =¢e*e, .
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By virtue of (3.8) and (3.9), we get

ViShy(pers = sy (n)esy, (3.15)

VSh_(i)es— = e%%s_(p)es = s, (n)es

Then V,;Sh,(-) and V_Sh_(-) are the characteristic functions (in the
sense of [24]) of S5 associated with the boundary triplets (9;(S+), o, I'1)
of S% defined by (2.8). Identifying the defect subspaces D;(Sy) =
span{e;} and 9M;(S_) = span{e,_} with C and using (3.15) we ar-
rive at the conclusion that the characteristic functions of S4 associated
with boundary triplets (C, 'y, I';) coincide.

The same is true when Sh = 0. In that case, sy = s_ = 0 and the
characteristic functions Shy. of S. are equal to zero.

Since S is a simple symmetric operator, Sy are also simple symmetric
operators. In that case, the equality of characteristic functions of Si
implies the unitary equivalence of Sy [14, 24].

Conversely, if Sy are unitarily equivalent then S, = W~1S_W,
where W is an unitary mapping of $, onto _. Therefore,

W, (51) — M, (S-) and WShy(u) = Sh_(u)W. (3.16)

Assuming p = %4 in the first identity of (3.16) and using (3.7), we find
wy,wy € C with

We,y =wies, We_p =wie__, |w|=|wy|=1. (3.17)

It follows from (3.8) and (3.17) that WSh, (u)eyr = sy(u)We_y =
wasy(u)e—— and Sh_(u)Weyy = wiSh_(p)er— = wys_(p)e——. Com-
bining the last two identities with the second relation in (3.16) ones get
e%9s_(u) = sy (u), where €2 = w; /w,. The statement of Corollary
3.3 follows now from Theorem 3.1. m

4. J-SELF-ADJOINT EXTENSIONS WITH EMPTY RESOLVENT SET

As above the deficiency indices of operators S. in the presentation
(2.11) of S are supposed to be < 1,1 >. In the following we discuss
the different situations which can occur:

e no member of ¥ ; has non-empty resolvent set;

e there are members of ¥ ; with empty resolvent set, where we dis-
cuss the cases Sh(-) # 0 and Sh(-) = 0, separately (cf. Sections
4.2.1 and 4.2.2).



14 S. KUZHEL AND C. TRUNK

4.1. The set Y¥; has no operators with empty resolvent set.

Theorem 4.1. If ¥; has no operators with empty resolvent set, then
Ty="T;=%%

in (2.16). Moreover, if S is a simple symmetric operator, then {4 =

{/}.

Proof. Let C' € . It follows from (2.17) that the operator C' o,
acts in 94, and satisfies the relations

(C fmii)z = [, JC r‘ﬁj:z‘> 0. (41)

Denote by C; and Cy the 2 x 2-matrix representations of C' [g, and
C' [m_, with respect to the orthogonal bases e, ;,e,  and e_,,e__ of
M; and I_;, respectively. Then (4.1) takes the form

10 1 0 .
CJ?:(O 1), (0 _1>(3j>0, j=1,2 (4.2)

(since J [o,, are determined by (3.2)). The Hermiticity of the matrix
in the second relation of (4.2) enables one to deduce that a matrix C;
satisfy (4.2) if and only if

o o cosh x; (sinh x;)e™™ . .
Cj = ij,w]- " < —(sinh Xj)eiwj — cosh x; , Xj €ER, w; €0,2m).
(4.3)

Combining (2.18) with (3.8) and (4.3) we get
< si(p) 0 > < cosh x1 (sinh xq)e~ ) (4.4)

0 s_(w —(sinh xp)e™*  —cosh x;
B cosh x2 (sinh yq)e~ %2 se(p) 0
— \ —(sinh xg)e™?  —coshy, 0 s_(w

for matrix representations Cy, ., of the operators C' [m,,.
If 3 has no operators with empty resolvent set, then s, % s_ (Theo-
rem 3.1). In that case identity (4.4) holds only in the case x; = x2 = 0,

(1) _01 ) Therefore, if s, % s_ then

C rmﬂ: J rfjtii, VO e . (45)

Let us consider an arbitrary Ay € 3X%. Then AyC = C Ay for some
choice of C' € 4. Tt is known that AyC = C' Ay if and only it CM = M,
where M is defined by (3.5) and (3.6) [2, Theorem 3.1]. This and (4.5)
give CM = M if and only if JM = M. Therefore, AyJ = JAy and
Ay € Ty, Thus T; = X%, The identity Ty = T is verified in the

similar manner.

i.e., CO#HI = CO,wz =
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If S is a simple symmetric operator, then # = {J} due to Lemma
2.7 and relation (4.5). m

Recall, that a J-selfadjoint operator A in a Krein space (9),[,]) is
called definitizable (see [26]) if p(A) # () and there exists a rational
function p # 0 having poles only in p(A) such that [p(A)z,z] > 0 for
all z € 9.

Corollary 4.2. If X; contains at least one definitizable operator, then
Ty=T"T,=13%.

Proof. If A € ¥, is definitizable then an arbitrary operator from
Y., is also definitizable [5]. Therefore, > ; has no operators with empty
resolvent sets. m

4.2. The set Y; contains operators with empty resolvent set.

In that case two quite different arrangements for the sets Yy, Y,
and 3% are possible and they will be discussed in Sections 4.2.1 and
4.2.2 below.

We recall that >; contains operators with empty resolvent set if
and only if e“s,(u) = s_(u), p € C,, for a certain parameter e
(Theorem 3.1). Here, the functions s () are defined in (3.8) with the
use of elements {e;1} which are determined up to the multiplication
with an unimodular constants. Therefore, without loss of generality,
we may assume

Sy =s_. (4.6)

Theorem 4.3. Let S be a simple symmetric operator. Then the set 3,
contains operators with empty resolvent set if and only if there exists a
fundamental symmetry R (i.e., R* =1 and R = R*) in § such that

SR=RS, JR=-RJ. (4.7)

Proof. By virtue of Corollary 3.3, the existence of J-self-adjoint
extensions of S with empty resolvent set implies that the symmetric
operators Sy in (2.11) are unitarily equivalent. Hence, S, = W~1S_W,
where W is an isometric mapping of $, onto $H_. It is clear that the

operator
0 w-t
e () 4

determined with respect to the fundamental decomposition (2.1) is a
fundamental symmetry in $) and satisfies (4.7).

Conversely, if (4.7) holds, then S, = RS_R. Therefore Sy are uni-
tarily equivalent and X ; contains elements with empty resolvent set
(Corollary 3.3). m
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Remark 4.4. We do not need the condition of simplicity of S in The-
orem 4.3 if relations (4.7) hold. Indeed, $1 = ,cc\g R(S — pf) is the
maximal subspace invariant for S on which the operator S; = S [g, is
self-adjoint [13, p.9]. Therefore,

H=5H D N, (4.9)

where $) coincides with the closed linear span of all ker(S* — ul)
(0 € C\ R) and the restriction Sy := S [g, is a simple symmetric
operator in $y. It is clear that the restrictions J [g, and R [g, are
fundamental symmetries in $)y and they satisfy (4.7) for Sy. Applying
Theorem 4.3, we establish the existence of J | g4,-self-adjoint extensions
of Sy with empty resolvent set. Since an operator A € X; has the
decomposition A = Ay & Sy with respect to (4.9), where Ay is a J [g,-
self-adjoint extension of Sy, the set ¥ ; contains J-self-adjoint operators
with empty resolvent set.

From (4.7) one concludes that the four operators I, J, R, and JR are
linearly independent. Hence, the operators J and R can be interpreted
as basis (generating) elements of the complex Clifford algebra

Cly = span{l, J, R, JR}.

Corollary 4.5. Let S satisfy (4.7) and let j€~Cl2 be a nontrivial fun-

damental symmetry in $. Then there exists J-self-adjoint extensions
of S with empty resolvent set.

Proof. It is easy to see that an operator J € Cly is_a nontrivial
fundamental symmetry in $) (i.e., J2=1 J=Jand J#1I ) if and
only if

J=o1J + R+ asiJR, o?+ai+ai=1 «o; R (4.10)

Denote R = B1J + BoR + (3t R, where 252 =1, B, € R. By
virtue of (4.10), R is a fundamental symmetry in $) which commutes
with S. Assuming ) «;8; = 0, we obtain JR = —RJ. Since J is a

fundamental symmetry in § which commutes with S, the statement
follows from Theorem 4.3. m

4.2.1. The case Sh # 0.

Theorem 4.6. Let S be a simple symmetric operator with nonzero
characteristic function Sh(-) and the set ¥; contains operators with
empty resolvent set. Then all operators C' € 1 have the form

C:=C,y = J[(cosh x)I + (sinh x)R,], (4.11)
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where R satisfies (4.7), R, = Re™’ = Rlcosw + i(sinw)J], and x €
R, w € [0,27).

Proof. First, we will show C,, € Y. Since X; contains operators
with empty resolvent set, there exists a unitary mapping W : $, — 9_
such that S, = W~1S_W (Corollary 3.3). This allows one to determine
a fundamental symmetry R in $ with the help of formula (4.8).

The operator R possesses the properties (4.7) by the construction.
Therefore, the subspaces M; reduce R. Let Ry = (r};)7,-, and Ry =
(Tfj)f ;=1 be the matrix representations of R [o, and R [s_, with respect
to the bases ey y,e. and e_,,e__ of M; and ‘ﬁ_f, respectively. It
follows from (3.17) and (4.8) that R, = ( ° “’6‘
|wy| = 1. Moreover, since we assume (4.6), the parameter ¢ in the proof
of Corollary 3.3 is equal to zero and, hence, w := w; = wy. The exact
values of unimodular constant w depends on the choice of W. Without
loss of generality we may assume (multiplying W by an unimodular

constant if it is necessarily) that w = 1. Then

, where |w;| =

R::R1:R2:<(1) (1]) (4.12)

Let us consider the collections of operators C, ,, determined by (4.11)
It is known that C, ,, = JeX® where R, = Re™’ = R[cosw+i(sinw).J]
is a fundamental symmetry in $), which anticommutes with J (i.e.,
R,J = —JR,) [2]. Such a representation leads to the conclusion that
C:,=1and JC,, > 0. Moreover SC,, = SC,, due to (1.2) and
(4.7). Therefore, an arbitrary C, ., belongs to 4l.

Rewriting (4.11) as follows

Cyw = (cosh x)J + (sinh x)(cosw)J R — i(sinh x)(sinw) R

and using (4.12) we obtain that both matrix representations of C, ,, [m,
and of C, ,, [m_, coincide with

c cosh y (sinh y)e~™
X« 7\ —(sinhy)e®  —coshy '

Let C' € Y. Then the matrix representations of its restrictions C' [,
and C [, coincide with C,, ., and C,, ., defined by (4.3). Further-
more, since Sh(u)C' = CSh(u) (see (2.18)), the identity (4.4) holds.
That is equivalent to the relations x; = x2 and ¢! = e~™“2 (since
(4.6) is true and s; # 0).

Setting x = x1 = x2 and w = wy, one concludes that the matrix
representations Cy, ., coincides with C, .. Therefore, C'= C, ,, due to
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Lemma 2.7. Thus, the collection of operators {C,,} defined by (4.11)
coincides with 3. m

Combining Theorem 4.6 with [2, Theorem 3.2, Proposition 3.3], we
immediately derive the following statement.

Corollary 4.7. Let S and X ; satisfy the condition of Theorem 4.6 and
let Ay € ¥ be defined by (3.4) - (3.6). Then the strict inclusions

THCTJCZSJt

hold and the following relations are true.
(i) Ay belongs to Yy if and only if

s 0 e’f
U:e2(_6—i§ 0 >7 56[0727()7
(ii) Ay belongs to Y ; if and only if
i 0 67;6
U:€¢(_6i§ 0 )7 ¢7€€[0,2ﬂ');
(iii) Ay belongs to X5\ Y if and only if
. vy 3
U= ( —qrif"f qr:,iv ) . 7, &€0,2m), q,r >0, @+’ =1,

where 0 < ¢ < |cos@|. In that case the operator Ay has the C, -
symmetry, where w = v and x 15 determined by the relation q =
— tanh x cos ¢.

4.2.2. The case Sh= 0.

If Sh = 0, then s, () = s_(u) = 0 for all p € C,. Therefore,
by Theorem 3.1, ¥, contains operators with empty resolvent set and
Theorem 4.3 and Corollary 4.5 hold. However Theorem 4.6 is not true
due to the fact that the set of all stable C-symmetries 4 is much more
greater then the formula (4.11) provides. That is why the commutation
condition (4.4) is vanished for s = 0 and we cannot establish the
relationship between parameters xi,w; and X3, ws of matrices Cy, .,
(see the proof of Theorem 4.6).

Theorem 4.8. Let S be a simple symmetric operator with zero char-
acteristic function and let Ay € ¥, be defined by (3.4) - (3.6). Then
Ty = 0 and the strict inclusions

Tu C TJ C Zf]t
hold.
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(i) Ay belongs to Yy if and only if
i 0 67;5
U:e¢<_e—i§ 0 )7 ¢7£€[072ﬂ->;
(i) Ay belongs to X5\ Ty if and only if

. iy I3
U=e" ( _Cfnee_ig qree_m ) . 6,7,£€[0,2m), ¢,r >0, ¢+’ =1

Proof. (i) It follows from [2, Proposition 3.3].

(i) Let Ay € X%, Then AyC = CAy for some choice of C' € 4.
This is equivalent to the relation CM = M, where M = span{dy, ds}
is defined by (3.5) and (3.6) (see the proof of Theorem 4.1). Moreover,
it follows from the proof of Theorem 4.1 that the operators C' [y, and
C [m_, acts in M, and N_;, respectively and they have the matrix
representations C,, ., and Cy,, defined by formula (4.3).

Combining [23, Lemma 3.3] with Lemma 2.7 we conclude that the
correspondence

C et — {Cyw1,Crown}s X; € R, w; €10,2m) (4.13)

is bijective for the case of zero characteristic function (Sh = 0).
It follows from (3.6) and (4.3) that

Cdy = Cyy yery +qe"C, ey +re@tOC,, e\ =
kieyy — [sinh x1€™ + qe'®*) cosh xi]ey— + [re @) cosh xale_y + kpe__,
where

ki = cosh 1 4+ ¢’ @) sinh y1e7, ky = —re't8) ginh X2€™2. (4.14)

Taking the definition (3.6) of d; into account we conclude that C'd; €
M if and only if Cdy = kidy + kads, where k; are defined by (4.14). A
direct calculation shows that the last identity holds if we set

T+o V=9
= w= o (415)

A similar reasoning shows that C'dy € M if we choose parameters x;
and w; according to (4.15). Note that x can be defined in (4.15) just
in the case 0 < ¢ < 1.

Thus, if Ay € X, is defined by (3.4) - (3.6) with 0 < ¢ < 1, then
choosing parameters y;, w; due to (4.15) and using the bijection (4.13),
we establish the existence of C' € U such that AyC' = C'Ay. Therefore
Ay € 3%, Since Ay € T; when ¢ = 0 (see item (i)) and the spectrum
of Ay coincides with C when ¢ = 1 (it follows from Corollary 3.2), we
prove (ii).

X=x1=X2=—tanh 'q, w
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Let us assume that Ay € Ty In that case AyC = CAy for all
C € 4. Taking (4.13) into account, we conclude that the element
Cdy = Cyy iy +qe’®tC, Ler +ref@+OC e | belongs to M
(i.e., Cdy = kydy + kody, where k; are defined by (4.14)) for all values
of parameters y; and w;. This is impossible. Hence, Ty = (. m

The next statement is a direct consequence of Proposition 2.2 and
Theorem 4.8.

Corollary 4.9 ( [23]). If S is a simple symmetric operator with zero
characteristic function, then an operator Ay € X; has real spectrum
if and only if Ay has stable C-symmetry and, hence, Ay is similar to
self-adjoint operator. Otherwise, the spectrum of Ay coincides with C.

5. EXAMPLES

5.1. Degenerate Sturm-Liouville problems on the finite inter-
val. The necessary and sufficient conditions for the Dirichlet eigenvalue
problem associated with the Sturm-Liouville equation

—(p(x)y) = Ar(z)y, —oco<a<z<b<oo (5.1)

to be degenerate (i.e., the spectrum of this eigenvalue problem fills the
whole complex plane) were established in [27]. We consider one of the
simplest cases where p(x) = r(z) = (sgn z) and [a,b] = [—1,1].
The symmetric operator S associated with —(sgn z)((sgn z)y’)" and
7

boundary conditions y(—1) = y(1) = 0 takes the form Sy = —y”,

D(S) = {y € W5(-1,0) & W;(0,1) | y(0%) =/ (0£) = y(&1) :<§}2)
and (5.1) takes the form Sy = \y.

The operator S has the deficiency indices < 2,2 > and it commutes
with the fundamental symmetry Jy(x) = (sgn x)y(z) in $ = Lo(—1,1).
The corresponding symmetric operators Sty = —y” (see (2.11)) with
the domains

D(Sy) ={y € W3(0,1) | y(0+) = ¢/ (0+) = y(1) = 0},

D(S-) ={y € W3(=1,0) | y(0—) = /(0—) = y(~1) = 0}

act in 4 = Ly(0,1) and $H_ = Lo(—1,0), respectively.

Consider the parity operator Py(x) = y(—z) and set R := P. It is
clear that R is a fundamental symmetry in Ly(—1,1) and it satisfies
(4.7). To describe these operators we observe that solutions y(z) of
the equations

Sty —py = —y"(x) —py(x) =0, y(£l)=0, peCy
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have the form

n sin rx—1), z€]0,1
yu<x>:{o, vEe =1 xe{—l,]()],

_ 0, z € [0,1]
Y (1) = { —sin/u(z +1) xe[-1,0].
Here /- denotes the branch of the square root defined in C with a cut
along [0,00) and fixed by Imv/A > 0 if A ¢ [0,00). Moreover, /- is
continued to [0, 00) via A — v/A > 0 for A € [0, 00). According to (3.1),
the elements ey can be chosen as follows:

ey =Y, e =Yy, eL=yl, e =y,
and the functions sy (p) in (3.8) can be calculated immediately by re-
peating the arguments in [31]. For completeness we outline the method.
The characteristic function Shy (u) of S, is determined by the first
relations in (3.8) and (3.9). Employing here (2.10) we get
Y () = u(x) +cepy —csp(wey, weD(Sy), z€l0,1], (53)

where c is a constant which is easily determined by setting x = 0 and
taking into account the relevant boundary conditions:

sin /p
sin Vi — s, (p) sinv/—i

Differentiating (5.3) with a subsequent setting = = 0 gives rise to

VI cos /1L = cVicos Vi — esy () v/—i cos v/—i.
The last two relations leads to the conclusion:
() Visin ucosﬂ—\/ﬁcos ,usin\/g
s = .
W V —iSin /1 cos vV —1 — /11 cos \ /i sin \/—i
Considering the characteristic function Sh_ of S_ we obtain the same
expression for s_(u). Thus s, = s_ # 0. By Theorem 3.1, the set ¥ of
J-self-adjoint extensions of S contains operators with empty resolvent
set. Applying Corollary 3.2 and taking the explicit form of elements

e++ into account we derive the following description of all possible J-
self-adjoint extensions A(= A,) of S with empty resolvent set: A,y =

1
-y,

CcC =

ey(0+) = y(0-),
D(A,) = ¢ y € WF(=1,00 @ W5 (0,1) | €y (0+) = —¢/(0-),
y(£1) =0,

where v € [0,27) is an arbitrary parameter.
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Remark 5.1. Since the symmetric operator S satisfies (4.7) with fun-
damental symmetries J = (sgn x)/ and R = P, Corollary 4.5 implies
the existence of J-self-adjoint extensions of S with empty resolvent

set for any nontrivial fundamental symmetry J which belongs to the
Clifford algebra Cly = span{I, J, R, JR}.

5.2. Indefinite Sturm-Liouville operators (sgn :(:)(—% + q(x)).
Consider the indefinite Sturm-Liouville differential expression

a(y)(z) = (sgn z)(—y"(z) + ¢(x)y(z)), z€R
with a real potential ¢ € L} (R) and denote by D the set of all functions

loc

y € Lo(R) such that y and 3’ are absolutely continuous and a(y) €
Ly(R). On ® we define the operator A as follows:

Ay =a(y), D(A)=2. (5.4)

Assume in what follows the limit point case of a(y) at both —oco and
+00. Then we obtain the J-self-adjoint operator A in the Krein space
(L2(R), [-,-]s), where J = (sgn x)I.

The operator A is a J-self-adjoint extension of the symmetric oper-
ator

d2

S = (sgn ) (—@ ¥ q) - D(S) = {y e D|4(0) = 4/(0) = 0} (55)

with deficiency indices < 2,2 >.

The operator S commutes with J and its restrictions onto subspaces
Ls(Ry) of the fundamental decomposition Ls(R) = Ly(Ry) @ Ly(R_)
coincides with the symmetric operators

2 2

d d
5’_’_:_@_|_q_"_7 S_:w—q_, D(Si)ZPj:D(S)y d+ = (¢ rR:l:

with deficiency indices < 1,1 > acting in the Hilbert spaces $, =
Ly(Ry) and $_ = Ly(R_), respectively and Py are orthogonal projec-
tors onto La(R.) in Ly(R).

Denote by ¢,(-), s,(-) the solutions of the equation

— (@) +a(@)f(z) = pf(z), xR, peC
with the boundary conditions

u(0) = 8,(0) =1, ,(0) = 5,(0) = 0. (5.6)

"

Due to the limit point case at oo there exist unique holomorphic
functions M4 (u) (1 € C\ R) such that the functions

VE(e) = { ‘Sf“(x) ~ Malwjenu(o), @ Eﬁi (5.7)
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belongs to Ly(R). The functions My (-) are called the Titchmarsh-
Weyl coefficients of the differential expression a(-) on Ry (see, e.g., [21,
Definition 2.2]). They are Nevanlinna functions and they satisfy the
following asymptotic behavior

Mi(,u):i\/._+0(| |), (p—00,0<d<argpu<m—20) (5.8)

for 6 € (0,%), see [12].

The asymptotic behavior (5.8) was used for justifying the property
p(A) # O for the concrete J-self-adjoint extension A of S defined by
(5.4), cf. [19]. We extend this result for all operators in 3.

Theorem 5.2. Let the symmetric operator S be defined by (5.5) and
J = (sgn x)I. Then the set X; of J-self-adjoint extensions of S does
not contain operators with empty resolvent set.

Proof. The proof is divided into two steps. In the first one we
calculate the characteristic function of S. In step 2 we apply Theorem
3.1.

Step 1. It follows from the definition of Sy and (5.7) that the defect
subspaces M4;(S, ) coincides with span{y{.} and the defect subspaces
M, (S-) coincides with span{y,}. Therefore, we can choose basis
elements {eLy} as follows:

C+t+ = %U;r, -4+ = ¢jz7 C+— = C¢;a €—— = C¢:i7
where an auxiliary constant ¢ > 0 is determined by the condition
17| = Il || (or, that is equivalent, by the condition |[v5]| = [[¢¥7]])
and it ensures the equality of norms [je; || = |lex_|| = |le—+| = [|le—_][-
By virtue of (5.6) and (5.7),

e24(0) = =My (), € (0) =1, ex(0) = —eM_ (i), ey_(0) =c.
(5.9)
Using these boundary conditions and repeating the arguments of Sub-
section 5.1, we arrive at the conclusion that the characteristic function
Sh of S is defined by the following functions s;(-) and s_(-) in (3.8):

S+(,U) _ M+(:u)_ M+(_Z> : s_(,u) _ M*(:u)_ M*(_Z) )
M () — My (—i) M_(p) — M_(—i)
Step 2. By Theorem 3.1 the set X ; contains operators with empty
resolvent set if and only if €?®s_(u) = s, (u), p € C,, for a certain
choice of ¢ € [0,27). Tending ;1 — oo in this identity and taking (5.8)
and (5.10) into account, we obtain that
e ML)V (i)

= M ()M (i) G101

(5.10)
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Rewriting e?®s_(u) = s (1) with the use of (5.10) and (5.11) we get

M () M- ()62 = 1] + My ()[M-(=i) — ¢** M_(3)]
M ()M () — POMy (=) = 0. (5.12)

Denote M. (i) = e*|My(i)|, where 6+ € (0,7) (since Im M (i) >
0). Then (5.11) takes the form e*¢ = €2(+=0-) and relation (5.12) can
rewriting (after routine transformations) as follows:

M ()M () in(8, — 6) — M, ()| M_ () sin (5.13)
+M_(p)|My(i)|sinf_ =0. YueCy

Since the coefficients |Mx(7)|sinfy of My (u) are real, identity (5.13)
cannot be true for the whole C (due to the asymptotic behavior (5.8)).
Therefore, > ; does not contain operators with empty resolvent set. m

Remark 5.3. The relation (5.13) is reduced to M, = M_, if we are
trying to prove p(A) # () for the concrete operator A defined by (5.4),
see, e.g., [19, Proposition 2.5]. This could also be deduced here by a
simple calculation involving Corollary 3.2 and (3.14).

By virtue of Theorems 4.1, 5.2 the set X% of J-self-adjoint opera-
tors with stable C-symmetry is reduced to the set T ; of self-adjoint
extensions of S which commute with J in the case of indefinite Sturm-
Liouville operators. The set T ; consists of all self-adjoint extensions
of S with separated boundary conditions on 0, i.e.,

AeT; <= Ay= a(y), D(A) = {y eD ‘ aif(()i)—bif’([)i) = O}

5.3. One dimensional impulse operator with point perturba-
tion. Consider the symmetric operator

S= it D(S) = {y € WI(R,C) | y(0) = 0)

in the Hilbert space Ly(R,C?) := Ly(R) ® C2.

Lemma 5.4. The operator S has deficiency indices < 2,2 > and its
characteristic function Sh is equal to zero.

Proof. The operator S can be presented S = S; + S5 with respect to
the decomposition Ly(R, C?) = Ly(R_,C?) & Ly(R,,C?). The restric-
tions S1 = S [r,®_,c2) and Sy = S [1,r, c2) are maximal symmetric
operators in the Hilbert spaces Lo(R_,C?) and Lo(R,,C?), respec-
tively, with deficiency indices < 0,2 > and < 2,0 >, respectively.
Therefore S has deficiency indices < 2,2 > and 91,(S5) = 9,(5,) for
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all u € C, (since Sy has deficiency indices < 2,0 >). An arbitrary
fu € M, (5) admits the representation

f# =u -+ fi, u &€ D(SQ), fz € ‘ﬂZ(SQ)
Comparing the obtained formula with (2.10) we obtain Sh(x) = 0. m

Remark 5.5. The operator J = (sgn )/ is a fundamental symmetry
in Ly(R,C?) and S commutes with J. The symmetric operators S_
and Sy in (2.11) coincides with S; and S, respectively, and hence
their deficiency indices are < 0,2 > and < 2,0 >. Hence, there are no
J-self-adjoint extensions of S and the sets >; and T ; are empty.

To achieve a non-empty set ¥;, we have to choose a fundamental
symmetry J in such a way that the deficiency indices of Sy in (2.11)
are < 1,1 >. To this end, we write an arbitrary element y € Ly(R, C?)
as follows

_( ) _ (1 (0
y_<y2)_y1®h’++y2®h—7 h+_<0)7h—_(1>

and consider the fundamental symmetry Jy = ( y;/ ) in Ly(R, C?).
—Y2

In that case, the operators Sy in (2.11) act in the Hilbert spaces
Ly(R, Hy), where Hy = span{hi} and they are determined by the
formulas

d
dx’
Obviously, Sy have deficiency indices < 1,1 >. This means that the
set Xy is non-empty and its elements can be parameterized by unitary
matrices U in (3.4).

In order to describe the subset of J-self-adjoint extensions with
empty resolvent set in X; we have to calculate basis elements {eL.}
(see (3.1)) and to apply Corollary 3.2.

Denote by

(z) = e*, x>0 (z) = 0, >0
Yi\t) = 0, x<0, Y=\ =3 e*, 2<0

Y

Sy = —i D(Sy) = {y € Wy (R, Hz) | y(0) = 0}. (5.14)

the solutions of the equation —iy’ — uy =0 (u € {i, —i}). Using the
definition of Si and (3.1) we obtain

et =Yi®hy, e =yi®h, ey =y ;Qhy, e =y ;Qh_.

Corollary 3.2 and equalities (3.5), (3.6) imply that an arbitrary .J-
self-adjoint extension Ay with empty resolvent set has the domain
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D(Ay) = D(S)+M, where M is a linear span of elements
dl =e4t + 6i(¢+’y)€+—7 d2 =e__+ ei(¢—7)€_+’ ¢7 e [O’ 27T)

The obtained expression leads (after some trivial calculations) to the
following description of J-self-adjoint extensions Ay (= Ay, ) of S with
empty resolvent set: Ay, y = —iy/,

Y2

9 = t(1+9)y,
D(Ay,) = {y _ ( yl ) e Wi\ {(opec | O $(0+) }

y2(0—) = "0y, (0-)
where ¢,y € [0,27) are arbitrary parameters.

5.4. One dimensional Dirac operator with point perturbation.
Let us consider the free Dirac operator D in the space Lo(R) ® C?:

d 2
D=—icr @0 +% @0, DD)=W(R)®C

dx 2
where 01 = (1) (1) ), 03 = ( é _01 ) are Pauli matrices and ¢ > 0.

The symmetric Dirac operator
S=D|{uecW;R)®C*|u0) =0}

has the deficiency indices < 2,2 >, see [1], and it commutes with the
fundamental symmetry J = P®o3 in Ly(R)@C?, where P is the parity
operator Py(x) = y(—=z). In that case, the operators Sy in (2.11) are
restrictions of S onto the Hilbert spaces

[LS™(R) @ Ho] @ [LS(R) @ H_], [L{™(R)@H,] @ [LE"(R) @ H_],

respectively (H. are the same as in (5.14)) and Sy have deficiency
indices < 1,1 >.

The defect subspaces 91; and D1_; of S coincide, respectively, with
the linear spans of the functions {y;,,ve4 } and {y1_,y2_}, where

Y1+ () = ( (;gzﬁjzt) ) erlel, Yor () = (sgn x)y1+ (), (5.15)

1
r= %,/% +1, and e := (% —Z’) (\/%—F 1> , see, e.g., [1].

Using the definition of S; and (3.1) we obtain

€+t = Y14, E4— =Y24, €=U, € =Y. (5.16)

The adjoint operator

2

s =—icl gom+Ss
= —ic— — Qo0
dx o1 2 3
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is defined on the domain D(S*) = W} (R \ {0}) ® C? and an arbitrary
J-self-adjoint extension Ay € 3 is the restriction of S* onto D(Ay) =
D(S)+M, where M is defined by (3.5) and (3.6) with e+ determined
by (5.16).

It is easy to see that the fundamental symmetry R = (sgn x)I in
Ly(R)®C? also commutes with S and JR = —RJ. Taking into account
Remark 4.4 we establish the existence of J-self-adjoint extensions of S
with empty resolvent set.

A routine calculation with the use of Corollary 3.2 gives that Ay €
¥, has empty resolvent set if and only if Ay(= A,) is the restriction
of S* onto the set D(A,) =

1 o My(04+) +y(0-)] = y(0+) — y(0—)
{?J e W,(R\{0}) ® C* | Y (04) + 1/ (0=) = Ay (0+) — o/ (0-)] }

e’ 0

0 e
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