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Abstract Sign type spectra are an important tool in the investigation of spectral prop-
erties of selfadjoint operators in Krein spaces. It is our aim to show that also sign type
spectra for normal operators in Krein spaces provide insight in the spectral nature of
the operator: If the real part and the imaginary part of a normal operator in a Krein
space have real spectra only and if the growth of the resolvent of the imaginary part
(close to the real axis) is of finite order, then the normal operator possesses a local
spectral function defined for Borel subsets of the spectrum which belong to posi-
tive (negative) type spectrum. Moreover, the restriction of the normal operator to the
spectral subspace corresponding to such a Borel subset is a normal operator in some
Hilbert space. In particular, if the spectrum consists entirely out of positive and neg-
ative type spectrum, then the operator is similar to a normal operator in some Hilbert
space.
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1 Introduction

Recall that a bounded operator N in a Krein space (H , [., .]) is normal if NN+ =
N+N, where N+ denotes the adjoint operator of N with respect to the Krein space
(indefinite) inner product [., .]. In contrast to (definitizable) selfadjoint operators in
Krein spaces, the knowledge about normal operators is very restricted.

Some results exist for normal operators in Pontryagin spaces. The starting point
is a result of M.A. Naimark, see [20], which implies that for a normal operator N in
a Pontryagin space Πκ there exists a κ-dimensional non-positive common invariant
subspace for N and its adjoint N+. In [17,21] spectral properties of normal operators
in Pontryagin spaces were considered and, in the case Π1, a classification of the
normal operators is given.

There is only a very limited number of results in the study of normal operators
in spaces others than Pontryagin spaces. In [11] a definition of definitizable normal
operators was given and it was proved that a bounded normal definitizable operator
in a Banach space with a regular Hermitian form has a spectral function with finitely
many critical points. Let us note that in this case the spectral function is a homo-
morphism from the Borel sets containing no critical points on their boundaries to a
commutative algebra of normal projections, see also [3]. Some advances for Krein
spaces without the assumption of definitizability can be found in [5]. We mention
that [3] contains some perturbation results for fundamentally reducible normal op-
erators. The case of fundamentally reducible and strongly stable normal operators is
considered in [6,7].

On the other hand, the spectral theory for definitizable (and locally definitizable)
selfadjoint operators in Krein spaces is well-developed (see, e.g., [15,12,4] and ref-
erences therein). One of the main features of definitizable selfadjoint operators in
Krein spaces is their property to act locally (with the exception of at most finitely
many points) similarly as a selfadjoint operator in some Hilbert space. More pre-
cisely, the spectrum of a definitizable operator consists of spectral points of positive
and of negative type, and of finitely many exceptional (i.e. non-real or critical) points,
see [14]. For a real point λ of positive (negative) type of a selfadjoint operator in a
Krein space there exists a local spectral function E such that (E(δ )H , [., .]) (resp.
(E(δ )H ,−[., .])) is a Hilbert space for (small) neighbourhoods δ of λ .

In [13,16] a characterization for spectral points of positive (negative) type was
given in terms of normed approximate eigensequences. If all accumulation points of
the sequence ([xn,xn]) for each normed approximate eigensequences corresponding
to λ are positive (resp. negative) then λ is a spectral point of positive (resp. negative)
type. Obviously, the above characterization can be used as a definition for spectral
points of positive (negative) type for arbitrary (not necessarily selfadjoint) operators
in Krein spaces (as it was done in [2]). It is the main result of this paper that also for
a normal operator N in a Krein space (H , [., .]) positive and negative type spectrum
implies the existence of a local spectral function for N. However, for this we have to
impose some additional assumptions: The spectra of the real and imaginary part of N
are real and the growth of the resolvent of the imaginary part (close to the real axis)
of N is of finite order. Under these assumptions we are able to show that N has a local
spectral function E on each closed rectangle which consists only of spectral points
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of positive type or of points from the resolvent set of N. The local spectral function
E is then defined for all Borel subsets δ of this rectangle and E(δ ) is a selfadjoint
projection in the Krein space (H , [., .]). It has the property that (E(δ )H , [., .]) is a
Hilbert spaces for all such δ . This implies that the restriction of N to the spectral
subspace E(δ )H is a normal operator in the Hilbert space (E(δ )H , [., .]).

We emphasize that this result provides a simple sufficient condition for the normal
operator N to be similar to a normal operator in a Hilbert space: If each spectral point
of N is of positive or of negative type and if the spectra of the real and imaginary part
of N are real and the growth of the resolvent of the imaginary part is of finite order,
then N is similar to a normal operator in a Hilbert space.

2 Some auxiliary statements

In this section we collect some statements on bounded operators in Banach spaces.
As usual, by L(X ,Y ) we denote the set of all bounded linear operators acting between
Banach spaces X and Y and set L(X) := L(X ,X). The dual of a Banach space X will
be denoted by X ′.

In fact, Lemmas 2.1–2.3 below are well known. However, we provide their short
proofs in order to make this exposition self-contained.

Lemma 2.1 Let S and T be two commuting bounded operators in a Banach space X
and let p be a polynomial in two variables. Then

σ(p(S,T )) ⊂ {p(λ ,µ) : λ ∈ σ(S), µ ∈ σ(T )}.

If, in addition, the operators S+T and i(S−T ) have real spectra, i.e.

σ(S +T ) ⊂ R and σ(S−T ) ⊂ iR (1)

then the following identity holds:

σ(p(S,T )) = {p(λ ,λ ) : λ ∈ σ(S)}.

In particular, we have

σ
(

S +T
2

)
= {Reλ : λ ∈ σ(S)},

σ
(

S−T
2i

)
= {Imλ : λ ∈ σ(S)}.

Proof Let A be the double-commutant of S and T (the Banach algebra of elements of
L(X) which commute with every operator that commutes with S and T ). It is easy to
see that A is commutative and that σA(A) = σ(A) for every A ∈ A, cf. [19, Chapter
I, §1, Lemma 24]. From [19, Chapter I, §2, Theorem 4] we obtain

σ(p(S,T )) = {ϕ(p(S,T )) : ϕ ∈ A′ \{0} multiplicative}
= {p(ϕ(S),ϕ(T )) : ϕ ∈ A′ \{0} multiplicative}
⊂ {p(λ ,µ) : λ ∈ σ(S), µ ∈ σ(T )}.
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Assume now that the operators S + T and i(S−T ) have real spectra. Then, for any
multiplicative ϕ ∈ A′ \{0} we have

ϕ(S)+ϕ(T ) = ϕ(S +T ) ∈ σ(S +T ) ⊂ R,

ϕ(S)−ϕ(T ) = ϕ(S−T ) ∈ σ(S−T ) ⊂ iR,

and hence ϕ(T ) = ϕ(S). Now, the assertion is just a consequence of σ(S) = {ϕ(S) :
ϕ ∈ A′ \{0} multiplicative}. ⊓⊔

The approximate point spectrum σap(T ) of a bounded linear operator T in a Ba-
nach space X is the set of all λ ∈ C for which there exists a sequence (xn) ⊂ X with
∥xn∥ = 1 for all n ∈ N and (T −λ )xn → 0 as n → ∞. A point in σap(T ) is called an
approximate eigenvalue of T . We have

∂σ(T ) ⊂ σap(T ) ⊂ σ(T ), (2)

see [10, Chapter VII, Proposition 6.7]. Therefore, σap(T ) ̸= ∅ if X ̸= {0}.
We mention that in this paper a subspace is always a closed linear manifold.

Lemma 2.2 Let T be a bounded operator in a Banach space X and let L be a
subspace of X which is invariant with respect to T . Then

σ(T |L ) ⊂ σ(T )∪ρb(T ),

where ρb(T ) is the union of all bounded connected components of ρ(T ). In particular,
if σ(T ) ⊂ R, we have

σ(T |L ) ⊂ σ(T ).

Proof Let λ be a point which belongs to σ(T |L ) and at the same time to an un-
bounded connected component of ρ(T ). Since σap(T |L ) ⊂ σ(T ) we conclude λ /∈
σap(T |L ). The assertion now follows from (2), applied to T |L . ⊓⊔

Lemma 2.3 (Rosenblum’s Corollary) Let S and T be bounded operators in the
Banach spaces X and Y , respectively. If σ(S)∩ σ(T ) = ∅, then for every Z ∈
L(Y ,X ) the operator equation

SX −XT = Z

has a unique solution X ∈ L(Y ,X ). In particular, SX = XT implies X = 0.

Proof For X ∈ L(Y ,X ) define S (X) := SX and T (X) := XT . Then S and T
are elements of L(L(Y ,X )). If λ ∈ ρ(S) then the resolvent (S −λ )−1 is given by
X 7→ (S−λ )−1X . Hence, λ ∈ ρ(S ). Similarly, one proves σ(T ) ⊂ σ(T ). The op-
erators S and T commute. Thus, Lemma 2.1 yields σ(S −T ) ⊂ {λ − µ : λ ∈
σ(S), µ ∈ σ(T )}. By σ(S)∩σ(T ) = ∅ it follows that the operator S −T is bound-
edly invertible. ⊓⊔
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Let T be a bounded operator in a Banach space and let Q⊂C be a compact set. We
say that a subspace LQ is the maximal spectral subspace of T corresponding to Q if
LQ is T -invariant, σ(T |LQ)⊂ σ(T )∩Q and if L ⊂LQ holds for every T -invariant
subspace L with σ(T |L ) ⊂ Q. Recall that such a subspace is hyperinvariant with
respect to T , i.e. it is invariant with respect to each bounded operator which commutes
with T (see [9, Chapter 1, Proposition 3.2]).

If the bounded operator T has real spectrum, we say that the growth of the resol-
vent of T is of finite order n, n ∈ N \ {0}, if for some c > 0 there exists an M > 0,
such that

0 < | Imλ | < c =⇒ ∥(T −λ )−1∥ ≤ M
| Imλ |n

. (3)

Since the function ρ 7→ M/ρn, 0 < ρ < 1, satisfies the Levinson condition (cf. [18,
formula (2.1.2)]), it is a consequence of (3) and [18, Chapter II, §2, Theorem 5] that
to each compact interval ∆ there exists the maximal spectral subspace L∆ for T
corresponding to ∆ .

By r(T ) we denote the spectral radius of a bounded operator T in a Banach space.

Lemma 2.4 Let T ̸= 0 be a bounded operator in a Banach space with real spectrum
such that the growth of its resolvent is of order n. Then for all k ≥ n we have∥∥∥T k

∥∥∥ ≤ 2k∥T∥k−n(M +∥T∥n−1)r(T ),

where M = sup{| Imλ |n∥(T −λ )−1∥ : 0 < | Imλ | < ∥T∥}.

Proof For ρ > 0 we define the function

M(ρ) = sup{| Imλ |n∥(T −λ )−1∥ : 0 < | Imλ | < ρ}.

It is obvious that this function is non-decreasing and continuous. Therefore, M(0) :=
infρ>0 M(ρ) exists. We have M = M(∥T∥).

Let k ≥ n. Let C be the circle with center 0 and radius ρ > r(T ). For 0 < | Imλ |<
ρ we have

∥(T −λ )−1∥ ≤ M(ρ)
| Imλ |n

. (4)

Observe that for j ∈N, j ≥ 1, the function λ 7→ λ− j(T −λ )−1 is holomorphic outside
of C . Due to ∥(T −λ )−1∥ = O(|λ |−1) as |λ | → ∞, the Cauchy integral theorem and
standard estimates of contour integrals we obtain∫

C
λ− j(T −λ )−1 dλ = 0, j ≥ 1.

Therefore, the relation(
λ 2 −ρ2

λ

)k

=
k

∑
j=0

(
k
j

)
λ 2 j−k (

−ρ2)k− j



6

yields

− 1
2πi

∫
C

(
λ 2 −ρ2

λ

)k

(T −λ )−1 dλ =
k

∑
j=⌈k/2⌉

(
k
j

)
(−ρ2)k− jT 2 j−k,

where ⌈k/2⌉ denotes the smallest integer larger than k/2. Since k ≥ n and
∣∣∣λ 2−ρ2

λ

∣∣∣ =
2| Imλ | for λ ∈ C , together with (4) this gives∥∥∥∥∥T k +

k−1

∑
j=⌈k/2⌉

(
k
j

)
(−ρ2)k− jT 2 j−k

∥∥∥∥∥ ≤ 2kM(ρ)ρk−n+1,

and hence ∥∥∥T k
∥∥∥ ≤

(
2kM(ρ)ρk−n +

k−1

∑
j=⌈k/2⌉

(
k
j

)
ρ2(k− j)−1∥T∥2 j−k

)
ρ.

Letting ρ → r(T ) we obtain

∥∥∥T k
∥∥∥ ≤

(
2kM(r(T ))∥T∥k−n +

k

∑
j=0

(
k
j

)
∥T∥2(k− j)−1∥T∥2 j−k

)
r(T ).

We have M(r(T ))≤ M(∥T∥), which leads to the desired estimate with M = M(∥T∥).
⊓⊔

For a finite interval ∆ we denote by ℓ(∆) the length of ∆ .

Corollary 2.5 Let T be as in Lemma 2.4. Then there exists C > 0 such that for each
k ≥ n, each λ ∈ σ(T ) and each compact interval ∆ with λ ∈ ∆ and ℓ(∆) ≤ ∥T∥ we
have ∥∥∥(T |L∆ −λ )k

∥∥∥ ≤ 22k∥T∥kC · ℓ(∆),

where L∆ denotes the maximal spectral subspace of T corresponding to ∆ .

Proof We have σ(T∆ ) ⊂ ∆ , where T∆ := T |L∆ . Clearly, the growth of the resolvent
of T∆ −λ is of order n. Since ∥T∆ −λ∥ ≤ ∥T∥+ |λ | ≤ 2∥T∥ and r(T∆ −λ ) ≤ ℓ(∆),
Lemma 2.4 gives the estimate∥∥∥(T∆ −λ )k

∥∥∥ ≤ 2k (2∥T∥)k−n
(

M̃ +2n−1∥T∥n−1
)

ℓ(∆)

with M̃ = sup{| Im µ |n∥(T∆ −λ −µ)−1∥ : 0 < | Im µ | < ∥T∆ −λ∥}. As λ is real,

M̃ ≤ sup{| Im µ |n∥(T −λ −µ)−1∥ : 0 < | Im µ| < 2∥T∥}
≤ sup{| Im µ |n∥(T −µ)−1∥ : 0 < | Im µ | < 2∥T∥},

which is independent of ∆ , k and λ . ⊓⊔



7

3 Spectral points of positive type of bounded operators in G- spaces

Recall that an inner product space (H , [., .]) is called a Krein space if there exist
subspaces H+ and H− such that (H+, [., .]) and (H−,−[., .]) are Hilbert spaces and

H = H+ u H−, (5)

where u denotes the direct sum of subspaces. We refer to (5) as a fundamental de-
composition of the Krein space (H , [., .]).

An inner product space (H , [., .]) is called a G-space if H is a Hilbert space and
the inner product [., .] is continuous with respect to the norm ∥ ·∥ on H , that is, there
exists c > 0 such that

|[x,y]| ≤ c∥x∥∥y∥ for all x,y ∈ H .

Let (., .) be a Hilbert space inner product on H inducing ∥·∥. Then the inner products
(., .) and [., .] are connected via

[x,y] = (Gx,y), x,y ∈ H ,

where G ∈ L(H ) is a uniquely determined selfadjoint operator in (H ,(., .)). It is
well known that (H , [., .]) is a Krein space if and only if G is boundedly invertible,
see, e.g. [8,1]. A bounded operator A in the G-space H is said to be [., .]-selfadjoint
or G-selfadjoint if

[Ax,y] = [x,Ay] (6)

holds for all x,y ∈ H .

Remark 3.1 Note that in a G-space it is in general not possible to define a bounded
adjoint with respect to [., .] of a bounded operator. However, in a Krein space this is
possible. In this case, the usual notion of selfadjointness in a Krein space coincides
with [., .]-selfadjointness in G-spaces.

Spectral points of definite type, defined below for bounded operators in a G-space,
were defined for [., .]-selfadjoint operators in G-spaces in [16] and in [2] for arbitrary
operators (and relations) in Krein spaces.

Definition 3.2 For a bounded operator A in the G-space (H , [., .]) a point λ ∈σap(A)
is called a spectral point of positive (negative) type of A if for every sequence (xn)
with ∥xn∥ = 1 and ∥(A−λ )xn∥→ 0 as n → ∞, we have

liminf
n→∞

[xn,xn] > 0
(

limsup
n→∞

[xn,xn] < 0, respectively
)

.

We denote the set of all points of positive (negative) type of A by σ++(A) (σ−−(A),
respectively). A set ∆ ⊂ C is said to be of positive (negative) type with respect to A if
every approximate eigenvalue of A in ∆ belongs to σ++(A) (σ−−(A), respectively).

Remark 3.3 If the operator A is [., .]-selfadjoint, then the sets σ++(A) and σ−−(A)
are contained in R (cf. [16]).
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The following lemma is well known for selfadjoint operators in Krein spaces
and [., .]-selfadjoint operators in G-spaces (see e.g. [4,16]). The proof for arbitrary
bounded operators remains essentially the same. However, for the convenience of the
reader we give a short proof here.

Lemma 3.4 Let A be a bounded operator in the G-space (H , [., .]). Then a compact
set K ⊂ C is of positive type with respect to A if and only if there exist a neighbour-
hood U of K in C and numbers ε,δ > 0 such that for all x ∈H and each λ ∈U we
have

∥(A−λ )x∥ ≤ ε∥x∥ =⇒ [x,x] ≥ δ∥x∥2.

In this case, the set U is of positive type with respect to A.

Proof Assume that K is a compact set of positive type with respect to A, i.e. K ∩
σap(A)⊂ σ++(A). Let λ0 ∈ K. Then it follows from Definition 3.2 and the properties
of the points of regular type of A that there exist ε0,δ0 > 0 such that for all x ∈ H
we have

∥(A−λ0)x∥ ≤ 2ε0∥x∥ =⇒ [x,x] ≥ δ0∥x∥2.

From this we easily conclude that for all x ∈ H and all λ ∈ C with |λ −λ0| < ε0 we
have

∥(A−λ )x∥ ≤ ε0∥x∥ =⇒ [x,x] ≥ δ0∥x∥2.

Since λ0 was an arbitrary point in K, the assertion follows from the compactness of
K. The converse statement is evident. ⊓⊔

One of the main results of [16] is that under a certain condition a [., .]-selfadjoint
operator in a G-space has a local spectral function of positive type on intervals which
are of positive type with respect to the operator. Let us recall the definition of such a
local spectral function and the exact statement for [., .]-selfadjoint operators.

Definition 3.5 Let (H , [., .]) be a G-space, A ∈ L(H ) and S ⊂ C. A set function
E mapping from the system B(S) of Borel-measurable subsets of S whose closure
is also contained in S to the set of [., .]-selfadjoint projections in H is called a local
spectral function of positive type of the operator A on S if for all Q,Q1,Q2, . . .∈B(S)
the following conditions are satisfied:

(i) (E(Q)H , [., .]) is a Hilbert space.
(ii) E(Q1 ∩Q2) = E(Q1)E(Q2).

(iii) If Q1,Q2, . . . ∈ B(S) are mutually disjoint, then

E

(
∞⋃

k=1

Qk

)
=

∞

∑
k=1

E(Qk),

where the sum converges in the strong operator topology.
(iv) AB = BA =⇒ E(Q)B = BE(Q) for every B ∈ L(H ).
(v) σ(A|E(Q)H ) ⊂ σ(A)∩Q.

(vi) σ(A|(I −E(Q))H ) ⊂ σ(A)\Q.
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By C+ (C−) we denote the open upper (lower, respectively) halfplane of the
complex plane C.

Theorem 3.6 Let A be a [., .]-selfadjoint operator in the G-space (H , [., .]). If the
interval ∆ is of positive type with respect to A and if each of the sets ρ(A)∩C+ and
ρ(A)∩C− accumulates to each point of ∆ , respectively, then A has a local spectral
function E of positive type on ∆ . For each closed interval δ ⊂∆ the subspace E(δ )H
is the maximal spectral subspace of A corresponding to δ .

4 Locally definite normal operators in Krein spaces

For the rest of this paper let (H , [., .]) be a Krein space. It is our aim to extend
Theorem 3.6 to normal operators in Krein spaces. Recall that a bounded operator N
in a Krein space (H , [., .]) is called normal if it commutes with its adjoint N+, i.e.

N+N = NN+.

By definition the real part of a bounded operator C in a Krein space (H , [., .]) is the
operator (C +C+)/2 and the imaginary part is given by (C−C+)/2i. It is clear that
both real and imaginary part of an arbitrary bounded operator are [., .]-selfadjoint.
Moreover, it is easy to see that a bounded operator in (H , [., .]) is normal if and only
if its real part and its imaginary part commute.

Lemma 4.1 Let N be a normal operator in the Krein space (H , [., .]). If ReN and
ImN have real spectra only, then σ(N) = σap(N).

Proof Assume that λ ∈ σ(N)\σap(N). Then N −λ has a trivial kernel and ran(N −
λ ) ̸= H is closed. Hence, λ ∈ σp(N+). Set L := ker(N+−λ ). This subspace is N-
invariant. By Lemma 2.2 the operators ReN|L and ImN|L have real spectra. Thus,
by Lemma 2.1 (with S = N+|L and T = N|L ) we conclude that σ(N|L ) = {µ :
µ ∈ σ(N+|L )} = {λ}. Hence, λ ∈ σap(N|L ) ⊂ σap(N). A contradiction. ⊓⊔

The following theorem is the main result of this section.

Theorem 4.2 Let N be a normal operator in the Krein space (H , [., .]). If ReN and
ImN have real spectra and the growth of the resolvent of ImN is of finite order, then
N has a local spectral function of positive type on each closed rectangle [a,b]× [c,d]
which is of positive type with respect to N.

Proof Let [a,b]× [c,d] be of positive type with respect to N. Together with Lemma
4.1 we have

([a,b]× [c,d])∩σ(N) ⊂ σ++(N).

By Lemma 3.4 there exist an open neighbourhood U of [a,b]× [c,d] in C and num-
bers ε,δ ∈ (0,1) such that

λ ∈ U , x ∈ H , ∥(N −λ )x∥ ≤ ε∥x∥ =⇒ [x,x] ≥ δ∥x∥2. (7)



10

By Corollary 2.5, there exists a value τ > 0 such that for each compact interval ∆
with length ℓ(∆) < τ and any λ ∈ ∆ ∩σ(ImN) we have∥∥∥(ImN|L∆ −λ )k

∥∥∥ ≤ δ k−1εk

2k for all k = k0,k0 +1, . . . ,2k0, (8)

where k0 is the order of growth of the resolvent of ImN and L∆ is the maximal
spectral subspace of ImN corresponding to the interval ∆ .

The proof will be divided into three steps. In the first step we define the spectral
subspace corresponding to rectangles ∆1 ×∆2 ⊂ U with ℓ(∆2) < τ . In the second
step we prove some properties of the spectral subspaces defined in step 1. In the third
step we define the spectral subspace corresponding to the rectangle [a,b]× [c,d] and
complete the proof.

1. Let ∆1 and ∆ be compact intervals such that ∆1 ×∆ ⊂ U and ℓ(∆) < τ . Note
that the inner product space (L∆ , [., .]) is a G-space which is not necessarily a Krein
space. Since a maximal spectral subspace is hyperinvariant (see, e.g. [9]), the space
L∆ is invariant with respect to N, N+, ReN and ImN. By A0, B0, N0 and N0,+ denote
the restrictions of ReN, ImN, N and N+ to L∆ , respectively. Then we have, see
Lemma 2.2,

σ(A0) ⊂ σ(ReN) ⊂ R and σ(B0) ⊂ σ(ImN)∩∆ . (9)

Moreover, from N0 = A0 + iB0, N0,+ = A0 − iB0, (9) and Lemma 2.1 we conclude

σ(A0) = {Reλ : λ ∈ σ(N0)} and σ(B0) = {Imλ : λ ∈ σ(N0)},

hence
σ(N0) ⊂ σ(A0)×∆ ,

The operator A0 is obviously [., .]-selfadjoint. In the following we will show

∆1 ∩σ(A0) ⊂ σ++(A0). (10)

To this end set

ε̃ := min
{

ε
2
,

δ j−2ε j

2 j(∥ ImN∥+ r(ImN)) j−1 : j = 2, . . . ,k0

}
,

We may assume that ImN ̸= 0. Otherwise, the assertion of Theorem 4.2 follows di-
rectly from Theorem 3.6. We will show that for all α ∈ ∆1∩σ(A0) and for all x ∈L∆
we have

∥(A0 −α)x∥ ≤ ε̃∥x∥ =⇒ [x,x] ≥ δ∥x∥2,

which then implies (10), see Lemma 3.4. If σ(ImN)∩∆ = ∅, then it follows from
(9) that L∆ = {0}, and nothing needs to be shown. Otherwise, there exists β ∈ ∆ ∩
σ(ImN). Let α ∈∆1∩σ(A0) and x∈L∆ , ∥x∥= 1, and suppose that ∥(A0−α)x∥≤ ε̃ .
Let us prove that for all j = 1, . . . ,2k0 we have

∥∥(B0 −β ) jx
∥∥ ≤ δ j−1ε j

2 j . (11)
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For j = k0, . . . ,2k0 this is a direct consequence of (8). Assume now that (11) holds
for all j ∈ {k, . . . ,k0} where k ∈ {2, . . . ,k0} but does not hold for j = k−1, i.e.∥∥∥(B0 −β )k−1x

∥∥∥ >
δ k−2εk−1

2k−1 . (12)

Then we have∥∥∥∥(N0 − (α + iβ ))
(B0 −β )k−1x

∥(B0 −β )k−1x∥

∥∥∥∥ ≤ ∥B0 −β∥k−1∥(A0 −α)x∥+∥(B0 −β )kx∥
∥(B0 −β )k−1x∥

≤ 2k−1(∥ ImN∥+ r(ImN))k−1

δ k−2εk−1 ε̃ +
2k−1

δ k−2εk−1
δ k−1εk

2k

≤ ε
2

+δ
ε
2
≤ ε.

As α + iβ ∈ ∆1 ×∆ ⊂ U , it follows from (7) that

δ ≤
[

(B0 −β )k−1x
∥(B0 −β )k−1x∥

,
(B0 −β )k−1x
∥(B0 −β )k−1x∥

]
≤ ∥(B0 −β )2k−2x∥

∥(B0 −β )k−1x∥2 .

Owing to k ≤ 2k−2 ≤ 2k0, relation (11) holds for j = 2k−2 by assumption, and thus∥∥∥(B0 −β )k−1x
∥∥∥ ≤

√
δ−1∥(B0 −β )2k−2x∥ ≤

√
δ 2k−4ε2k−2

22k−2 =
δ k−2εk−1

2k−1

follows. But this contradicts (12). Hence, (11) holds for j = k−1, and, by induction,
for j = 1. Hence,

∥(N − (α + iβ ))x∥ ≤ ∥(A0 −α)x∥+∥(B0 −β )x∥ ≤ ε.

By (7), this yields [x,x] ≥ δ and (10) is proved.
Due to Theorem 3.6 the operator A0 ∈ L(L∆ ) has a local spectral function E∆ of

positive type on ∆1, and the subspace

H∆1×∆ := E∆ (∆1)L∆

is the maximal spectral subspace of A0 corresponding to ∆1. Moreover, H∆1×∆ is a
Hilbert space with respect to the inner product [., .]. Since H∆1×∆ is invariant with
respect to both N and N+, the [., .]-orthogonal complement

H
[⊥]

∆1×∆ =
{

y ∈ H : [y,x] = 0 for all x ∈ H∆1×∆
}

is also N- and N+-invariant and (H [⊥]
∆1×∆ , [., .]) is a Krein space, see e.g. [15]. More-

over, we have (
N|H∆1×∆

)+ = N+|H∆1×∆ .

2. Let Q := ∆1 ×∆ ⊂ U be a rectangle as in step 1. By Qi (∆ i) we denote the
complex (real, respectively) interior of the set Q (∆ , respectively). In this step of the
proof we shall show that the subspaces HQ and H

[⊥]
Q , defined in the first step, have

the following properties.
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(a) σ (N|HQ) ⊂ σ(N)∩Q.
(b) If M ⊂ H is a subspace which is both N- and N+-invariant such that

σ(N|M ) ⊂ Q,

then M ⊂ HQ.
(c) If HQ = {0} then Qi ⊂ ρ(N).

(d) σ
(

N|H [⊥]
Q

)
⊂ σ(N)\Q.

(e) If the bounded operator B commutes with N then both HQ and H
[⊥]

Q are B-
invariant.

(f) HQ is the maximal spectral subspace of N corresponding to Q.

By Lemma 2.2 and (9) we have

σ(Im(N|HQ)) = σ(B0|HQ) ⊂ σ(B0) ⊂ ∆ .

In addition,
σ(Re(N|HQ)) = σ(A0|HQ) ⊂ ∆1.

From this and Lemma 2.1 we obtain

σ(N|HQ) ⊂ Q.

Since the spectrum of a normal operator in a Hilbert space coincides with its approx-
imate point spectrum, (a) follows.

Let M ⊂ H be a subspace as in (b). By Lemma 2.1 we have

σ(ImN|M ) ⊂ ∆ and σ(ReN|M ) ⊂ ∆1.

As L∆ is the maximal spectral subspace of ImN corresponding to ∆ , we conclude
from the first relation that M ⊂ L∆ . From the second relation we obtain (b) since
HQ is the maximal spectral subspace of ReN|L∆ corresponding to the interval ∆1,
cf. Theorem 3.6.

Let us prove (c). By definition of HQ it follows from HQ = {0} that ∆ i
1 ⊂

ρ(ReN|L∆ ). Hence, by Lemma 2.1 we have

∆ i
1 ×R ⊂ ρ(N|L∆ ). (13)

Let J be a closed interval which contains σ(ImN) and let δ1 and δ2 be the two
(closed) components of J \∆ i. By Lδ1 and Lδ2 denote the maximal spectral sub-
spaces of ImN corresponding to the intervals δ1 and δ2, respectively. Set

L∆ c := Lδ1 u Lδ2 .

Obviously, we have
σ(ImN|L∆ c) ⊂ δ1 ∪δ2. (14)

And by [18, Chapter II, Theorem 4] and [18, Chapter I, §4.4] we have

H = L∆ + L∆ c . (15)
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It is an immediate consequence of (b) that ker(N−λ )⊂HQ = {0} for λ ∈Qi. Hence,
due to (13) and (15), it remains to show that Qi ⊂ ρ(N|L∆ c). But this follows directly
from (14) and Lemma 2.1.

Set Ñ := N|H [⊥]
Q . In order to show (d) we prove

C\
(

σ(N)\Q
)
⊂ ρ(Ñ). (16)

Since

C\
(

σ(N)\Q
)

= ρ(N)∪Qi ∪{λ ∈ ∂Q : @(λn) ⊂ σ(N)\Q with lim
n→∞

λn = λ},

and ρ(N) ⊂ ρ(Ñ) by Lemma 4.1, it suffices to show

Qi ∪{λ ∈ ∂Q : @(λn) ⊂ σ(N)\Q with lim
n→∞

λn = λ} ⊂ ρ(Ñ). (17)

Let λ be a point contained in the set on the left hand side of this relation. Then there
exists a compact rectangle R = ∆ ′

1 ×∆ ′ ⊂ U with λ ∈ Ri, ℓ(∆ ′) < τ and

σ(N)∩R ⊂ Q.

Observe that the normal operator Ñ in the Krein space H
[⊥]

Q satisfies the conditions
of Theorem 4.2. In particular, relation (7) holds with the same values ε and δ and
with N replaced by Ñ. Hence, there exists a subspace H̃R of H

[⊥]
Q which is N- and

N+-invariant and has the properties

(ã) σ(Ñ|H̃R) ⊂ R∩σ(Ñ),
(c̃) H̃R = {0} =⇒ Ri ⊂ ρ(Ñ).

By virtue of (b) we conclude from (ã) and Lemma 4.1 that H̃R ⊂ HQ. But since H̃R

is also a subspace of H
[⊥]

Q , we have H̃R = {0} which by (c̃) implies Ri ⊂ ρ(Ñ).
Hence, λ ∈ ρ(Ñ) and therefore (17) holds.

In order to prove (e) let Qn = ∆ ′
n×∆ ′′

n ⊂U be closed rectangles such that ℓ(∆ ′′
1 ) <

τ , Q ⊂ Qi
n for all n ∈ N and

Q1 ⊃ Q2 ⊃ . . . and Q =
∞⋂

n=1

Qn.

From (a) and (b) it follows that HQ ⊂
⋂∞

n=1 HQn . Now, it is not difficult to see that
C\Q ⊂ ρ(N|

⋂∞
n=1 HQn), and (b) gives

HQ =
∞⋂

n=1

HQn . (18)

Let E(Q) and E(Qn) be the [., .]-orthogonal projections onto the Hilbert spaces HQ
and HQn , respectively. As these spaces are invariant with respect to both N and N+,
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the projections commute with N. Let B be a bounded operator which commutes with
N and let BQ ∈ L(HQ,H ) be the restriction of B to HQ. We obtain(

N|H [⊥]
Qn

)
[(I −E(Qn))BQ] = (I −E(Qn))NBQ = [(I −E(Qn))BQ] (N|HQ) .

The spectra of N|H [⊥]
Qn

and N|HQ are disjoint by (a) and (d), and Rosenblum’s Corol-
lary (Theorem 2.3) implies (I−E(Qn))BQ = 0, i.e. BHQ ⊂HQn for every n ∈ N. By
(18) this yields BHQ ⊂ HQ. Similarly, one shows that BH

[⊥]
Qn

⊂ H
[⊥]

Q for all n ∈ N.
From

c.l.s.
{

H
[⊥]

Qn
: n ∈ N

}[⊥]
=

∞⋂
n=1

HQn

and (18) we deduce
H

[⊥]
Q = c.l.s.

{
H

[⊥]
Qn

: n ∈ N
}

.

Hence, for x∈H
[⊥]

Q there exists a sequence (xk) with each xk in some H
[⊥]

Qnk
such that

xk → x as k →∞. Since Bxk ∈H
[⊥]

Q and Bxk →Bx as k →∞, we conclude Bx∈H
[⊥]

Q .
After all which has been proved above, for (f) we only have to show that every

N-invariant subspace M ⊂ H with σ(N|M ) ⊂ Q is a subspace of HQ. Let M be
such a subspace. Then let (Qn) be a sequence of rectangles as in the proof of (e).
From (

N|H [⊥]
Qn

)
[(I −E(Qn))|M ] = [(I −E(Qn))|M ] (N|M )

and Rosenblum’s Corollary we conclude (I − E(Qn))M = {0}. Therefore, M ⊂
HQn for every n ∈ N and M ⊂ HQ follows from (18).

3. In this step we complete the proof. Let Q1 = [a,b]×∆1 ⊂U and Q2 = [a,b]×
∆2 ⊂U such that ℓ(∆ j) < τ for j = 1,2 and assume that ∆1 and ∆2 have one common
endpoint. Then Q := Q1 ∪Q2 = [a,b]× (∆1 ∪∆2) is also a closed rectangle. Define

HQ := HQ1 +HQ2 = HQ1 [u]
(
H

[⊥]
Q1

∩HQ2

)
.

This is obviously a Hilbert space (with respect to [., .]) which is both N- and N+-
invariant. Let us prove that the statements (a)–(f) from part 2 of this proof also hold
for HQ. In step 2 the statements (d)–(f) were proved only with the help of (a)–(c).
Here, this can be done similarly. Hence, it is sufficient to prove only (a)–(c). By (a j)–
(c j) denote the corresponding properties of HQ j , j = 1,2. Statement (a) holds since
N|HQ is a normal operator in the Hilbert space (HQ, [., .]) and

σ(N|HQ) = σ(N|HQ1)∪σ(N|H [⊥]
Q1

∩HQ2) ⊂ Q1 ∪σ(N|HQ2) ⊂ Q1 ∪Q2.

For (b) let M be a N- and N+-invariant subspace with σ(N|M ) ⊂ Q. Denote by
L M

∆ j
⊂ M be the maximal spectral subspace of ImN|M corresponding to ∆ j, j =

1,2. Then, by Lemmas 2.1 and 2.2,

σ(N|L M
∆ j

) ⊂ (R×∆ j)∩ (σ(N|M )∪ρb(N|M )) ⊂ (R×∆ j)∩Q = Q j.
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From (b j) we obtain L M
∆ j

⊂ HQ j , j = 1,2. And since M = L M
∆1

+L M
∆2

(see [18,
Chapter II, Theorem 4 and Chapter I, §4.4]) we have M ⊂ HQ.

Suppose that HQ = {0}. Then HQ1 = HQ2 = {0} and hence Qi
1 ∪Qi

2 ⊂ ρ(N)
by (c1) and (c2). Let R = [a,b]× [c1,c2], where c j is the center of ∆ j, j = 1,2. Then
c2−c1 < τ . From σ(N|HR)⊂ R⊂Q and (b) it follows that HR ⊂HQ = {0}. Hence,
Ri ⊂ ρ(N) which shows (c).

Now it is clear that for Q = [a,b]× [c,d] we choose a partition c = t0 < t1 < · · ·<
tm = d of [c,d] such that tk+1 − tk < τ , k = 0, . . . ,m−1, and define

HQ := HQ1 + · · ·+HQm ,

where Qk := [a,b]× [tk−1, tk], k = 1, . . . ,m. This subspace is then a Hilbert space
with respect to the indefinite inner product [., .] with the properties (a)–(f). Moreover,
HQ is both N- and N+-invariant. Hence, N|HQ is a normal operator in the Hilbert
space (HQ, [., .]) and has therefore a spectral measure EQ. By E(Q) we denote the
[., .]-orthogonal projection onto HQ. It is now easy to see that

E(·) := EQ(·)E(Q)

satisfies conditions (i)-(iii) from Definition 3.5. The remaining conditions (iv)-(vi)
follow from (e), (a) and (d), respectively. Hence, E is the local spectral function of
positive type of N on Q. ⊓⊔

Remark 4.3 It is clear that under the conditions of Theorem 4.2 the operator N pos-
sesses a spectral function of positive type on open sets S of positive type. In or-
der to define E(W ) for W ∈ B(S), cover W with finitely many closed rectangles
Q1, . . . ,Qn ∈ B(S) and define the spectral projection E(Q) for Q = Q1 ∪ . . .∪Qn
similarly as in the last part of the proof of Theorem 4.2. Then N|E(Q)H is a normal
operator in the Hilbert space E(Q)H with spectrum in Q and spectral measure EQ,
and E(W ) can be defined via EQ(W )E(Q).

Remark 4.4 The statement of Theorem 4.2 also holds if the growth condition on the
imaginary part of N is replaced by the (local) definitizability of ImN in the sense of
P. Jonas (cf. [12]) over a complex neighborhood of [c,d].

5 Spectral sets of definite type

In this section we show that Theorem 4.2 also holds in the situation when the real
part of N is allowed to have nonreal spectrum but the set of definite type with respect
to N is a spectral set.

Lemma 5.1 Let N be a normal operator in the Krein space (H , [., .]) and let σ be a
spectral set of N with

σ ∩σap(N) ⊂ σ++(N). (19)

Then the Riesz-Dunford projection Q of N corresponding to σ is selfadjoint in the
Krein space (H , [., .]) and the corresponding spectral subspace QH is invariant
with respect to both N and N+. Moreover, we have

σap(N|QH ) ⊂ σ++(N|QH ).
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Proof Since N is normal, Q is also normal, hence it commutes with Q+. Moreover,
Q+ is the Riesz-Dunford projection corresponding to N+ and the set {λ : λ ∈ U },
so Q+ also commutes with N. Thus, the projection Q−Q+Q projects on a subspace
M which is invariant with respect to N. This subspace is neutral. Hence, from (19) it
follows that σap(N|M ) = ∅. This is only possible if M = {0}, and we conclude

Q = Q+Q,

that is, Q is a selfadjoint projection. The last statement follows from σap(N|QH ) =
σ ∩σap(N). ⊓⊔

Theorem 5.2 Let N be a normal operator in the Krein space (H , [., .]). Let σ be a
spectral set of N with

σ ∩σap(N) ⊂ σ++(N),

and let Q be the Riesz-Dunford projection corresponding to σ and N. Assume that

σ(ImN|QH ) ⊂ R (or σ(ReN|QH ) ⊂ R)

and that the growth of the resolvent of ImN|QH (ReN|QH , respectively) is of
finite order. Then the spectral subspace QH equipped with the inner product [., .]
is a Hilbert space. Hence, the restriction N|QH is a normal operator in the Hilbert
space (QH , [., .]) and, therefore, possesses a spectral function.

Proof By Lemma 5.1 the space (QH , [., .]) is a Krein space and QH is N+-invariant.
Hence (N|QH )+ = N+|QH and N|QH is normal in QH . Therefore it is no re-
striction to assume σap(N) = σ++(N), σ(ImN)⊂ R and that the resolvent of ImN is
of finite order k0 for some k0 ∈ N. For each compact interval ∆ denote the maximal
spectral subspace corresponding to ImN and ∆ (which exists due to [18]) by L∆ .

It is a consequence of Lemma 3.4 that there exist ε,δ > 0 with δ < 1 such that
for all µ ∈ K,

K := {λ + ib : λ ∈ σ(ReN), b ∈ σ(ImN)},
and all x ∈ H we have

∥(N −µ)x∥ ≤ ε∥x∥ =⇒ [x,x] ≥ δ∥x∥2. (20)

Let b∈σ(ImN). From Corollary 2.5 it follows that there exists a compact interval
∆ with center b such that∥∥∥(ImN|L∆ −b)k

∥∥∥ ≤ δ k−1εk

2k for all k = k0,k0 +1, . . . ,2k0, (21)

where k0 is the order of growth of the resolvent of ImN.
Since the subspace L∆ is hyperinvariant with respect to ImN, it is ReN-invariant.

The operator ReN|L∆ is a bounded operator in L∆ which is [., .]-selfadjoint in the
sense that

[(ReN)x,y] = [x,(ReN)y] for allx,y ∈ L∆ ,

cf. (6). We define

ε̃ := min
{

ε
2
,

δ j−2ε j

2 j(∥ ImN∥+ r(ImN)) j−1 : j = 2, . . . ,k0

}
.
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In a similar way as in step 1 of the proof of Theorem 4.2 it is shown here that from
∥(ReN − λ )x∥ ≤ ε̃∥x∥ for x ∈ L∆ , ∥x∥ = 1 and λ ∈ σ(ReN|L∆ ) it follows that
∥(ImN −b)x∥ ≤ ε

2∥x∥ and thus

∥(N − (λ + ib))x∥ ≤ ∥(ReN −λ )x∥+∥(ImN −b)x∥ ≤ ε.

Thus, with (20), we obtain

σap(ReN|L∆ ) ⊂ σ++(ReN|L∆ ).

Since σ++(ReN|L∆ )⊂R (see Remark 3.3) we conclude that C\R⊂C\σap(ReN|L∆ ).
But as ReN|L∆ is bounded we even have C\R ⊂ ρ(ReN|L∆ ) and thus

σ(ReN|L∆ ) = σap(ReN|L∆ ) = σ++(ReN|L∆ ).

It is now a consequence of [16, Theorem 3.1] that (L∆ , [., .]) is a Hilbert space. It is
easily seen that also the subspace L

[⊥]
∆ is invariant with respect to ImN. Consider the

operator A := ImN|L [⊥]
∆ . If ∆1 is a compact interval which is completely contained

in the inner of ∆ , then by [18] there exists a spectral subspace L∆1 ⊂ L
[⊥]

∆ of A such
that σ(A|L∆1) ⊂ ∆1. But as this implies σ(ImN|L∆1) ⊂ ∆ and L∆ is a maximal

spectral subspace, we obtain L∆1 ⊂ L∆ and thus L∆1 ⊂ L∆ ∩L
[⊥]

∆ = {0}. Hence,

b ∈ ρ(ImN|L [⊥]
∆ ) follows.

We are now ready to prove b ∈ σ++(ImN). Let (xn) ⊂ H be a sequence with
∥xn∥ = 1, n ∈ N, and (ImN −b)xn → 0 as n → ∞. Write

xn = un + vn with un ∈ L∆ , vn ∈ L
[⊥]

∆ .

From (ImN−b)xn → 0 it follows that also (ImN−b)vn → 0, and b ∈ ρ(ImN|L [⊥]
∆ )

implies vn → 0 as n → ∞. From the fact that (L∆ , [., .]) is a Hilbert space we conclude

limsup
n→∞

[xn,xn] = limsup
n→∞

([un,un]+ [vn,vn]) = limsup
n→∞

[un,un] > 0.

Since b∈σ(ImN) was arbitrary, we have σ(ImN) = σ++(ImN), and it follows from,
e.g., [16, Theorem 3.1] that (H , [., .]) is a Hilbert space. ⊓⊔

In [6] a bounded normal operator N in a Krein space is called strongly stable if
there exists a fundamental decomposition (5) such that H+ and H− are invariant
subspaces with respect to N with σ(N|H+)∩σ(N|H−) = ∅. The following Theo-
rem 5.3 provides a new characterization of strongly stable normal operators in Krein
spaces.

Theorem 5.3 Let N be a normal operator in the Krein space (H , [., .]). Then N is
strongly stable if and only if

σ(N) = σ++(N)∪σ−−(N), (22)

σ(ImN) ⊂ R (or σ(ReN) ⊂ R) (23)

and the growth of the resolvent of ImN (ReN, respectively) is of finite order.
In particlar, in this case, N is (similar to) a normal operator in a Hilbert space.
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Proof Let N be strongly stable. Then (22) follows and (23) and the growth condi-
tion follow from the fact that ImN|H± and ReN|H± are selfadjoint operators in the
Hilbert space (H+, [., .]) and (H−,−[., .]), respectively.

For the converse observe that the sets σ++(N) and σ−−(N) are open in σ(N), see
Lemma 3.4. Therefore, σ++(N) and σ−−(N) are spectral sets. Let Q+ and Q− be the
spectral projections corresponding to these sets, respectively. Then, since Q+Q− =
0, due to Theorem 5.2 the operator J := Q+ −Q− is a fundamental symmetry in
(H , [., .]) with the desired properties.

In order to show the last statement of Theorem 5.3, we denote by N∗ the adjoint
of N with respect to the Hilbert space inner product [J·, ·]. Then, from N∗ = N+ it
follows that N is a normal operator in (H , [J·, ·]). ⊓⊔
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