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Abstract in English:

This bachelor thesis discusses the possibilities and limits of extending the widely-used Molec-
ular Dynamics program LAMMPS (the Large Scale Atomic/Molecular Massive Parallel Sim-
ulator) in order to accelerate simulations by making use of modern graphic processing units
in the framework of NVIDIA’s Cuda technology. An own implementation serves as basis
for the discussion. The first chapters summerizes selected aspects of Molecular Dynamics,
LAMMPS’ design and the Cuda technology for graphics card programming. On that basis,
details of the above mentioned implementation are discussed, comparing different force cal-
culation strategies and showing methods to avoid frequent data transfers from and to the
graphics card. The following part of the work deals with benchmarks and the influence of
factors like numerical precision and system size in typical Molecular Dynamics simulations,
always comparing the results to the original version of LAMMPS with no graphics card sup-
port. Finally, conclusions of this work are presented and the implementation is compared
with other similar projects.
The document is written in English.

Zusammenfassung in Deutsch:

Diese Bachelorarbeit diskutiert die Möglichkeiten und Grenzen einer Erweiterung des weit
verbreiteten Molekulardynamik-Programms LAMMPS (dem Large Scale Atomic/Molecu-
lar Massive Parallel Simulator), in welcher Simulationen durch das Einbeziehen moderner
Grafikkarten - im Rahmen von NVIDIAs Cuda Technologie - beschleunigt werden. Eine
eigene Implementierung dient als Grundlage der Diskussion. Die ersten Kapitel wieder-
holen ausgewählte Aspekte der Molekulardynamik, Lammps und der Cuda Technologie zur
Grafikkartenprogrammierung. Darauf aufbauend werden Details der vorgenannten Imple-
mentierung diskutiert, wobei verschiedene Strategien zur Kraftberechnung verglichen wer-
den und Methoden zur Vermeidung eines häufigen Datentransfers von und zur Grafikkarte
aufgezeigt werden. Der darauf folgende Teil der Arbeit beschäftigt sich mit Geschwindigkeit-
stests und dem Einfluss von Faktoren wie numerischer Genauigkeit und Systemgröße in typ-
ischen Simulationen der Molekulardynamik, wobei die Ergebnisse immer mit jenen der ur-
sprünglichen LAMMPS-Version verglichen werden, die über keine Grafikkartenunterstützung
verfügt. Abschließend werden Schlussfolgerungen aus dieser Arbeit vorgestellt und die Im-
plementierung wird mit anderen, ähnlichen Projekten verglichen.
Die Arbeit ist in englischer Sprache verfasst.
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Lists and Definitions

List of symbols

Symbol Meaning, if not explicitly differently declared
R the set of real numbers
Z the set of integers
~E electric field
~F force
~r position or distance
~v velocity
d dimensionality
I number of instructions
kB Boltzmann constant
m mass
N the number of processes
n total number of particles
Φ virial
p pressure
q charge
S speed-up
T temperature
t time
U potential
V volume
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List of abbreviations

Abbreviation Meaning
2D two-dimensional
3D three-dimensional
API Application Programming Interface (set of documented functions)
approx. approximately
CPU Central Processing Unit
C the programming language C
C++ the programming language C++
CUDA NVIDIA’s Compute Unified Device Architecture
FSB Front Side Bus
GiB GigaByte, 1 GiB = 1024 MiB
GiB / s GigaByte per second
GPU Graphics Processing Unit
KiB KiloByte, 1 KiB = 1024 Byte
LJ Lennard-Jones
LAMMPS Large Scale Atomic/Molecular Massive Parallel Simulator
MiB MegaByte, 1 MiB = 1024 KiB
MD Molecular Dynamics
MP MultiProcessor
MPI Message Passing Interface (a communication API)
NL Neighbour List
PC Personal Computer
PCI Peripheral Component Interconnect (computer interface for peripherals)
PCIe PCI Express
PPPM Particle-Particle, Particle-Mesh
prec. precision
RAM Random Access Memory
RDF Radial Distribution Functions
SIMD Single Instruction, Multiple Data
SIMT Single Instruction, Multiple Thread
SISD Single Instruction, Single Data
STL Standard Template Library (part of the C++ standard)
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List of mathematical definitions

To avoid potential misunderstandings, some (mathematical) conventions used in this work
should be repeated.

(a) N are the natural numbers, as defined by the Peano axioms, starting with 0.

(b) N+ := N \ {0} are the natural number except 0.

(c) Consistent with the C programming language, the elements of a set M , |M | = N , and
components of a vector ~x, ~x ∈ RN , are indexed from 0 to N − 1.

(d) The notation 〈·, ·〉 defines the usual scalar product.

〈~x , ~y〉 :=
d−1∑
i=0

xi yi

(e) Unless explicitly defined otherwise, for any vector ~x ∈ RN , the same symbol without
arrow, x, should denote its Euclidean norm.

x := |~x| :=
√
〈~x , ~x〉

(f) In this work, the big-O notation is defined as follows:
if f and g are functions f, g : N→ R, then:

f ∈ O(g) :⇔ ∃ c ∈ R : 0 ≤ lim sup
n→∞

∣∣∣∣f(n)
g(n)

∣∣∣∣ ≤ c .
The usual conventions for this notation are used, e.g., a program is said to “consume
O(n2) memory”, if the function f : N → N describing the memory amount needed
(depending on an n clearly defined by the context) is f ∈ O(g), g : N→ N, g(n) = n2.

(g) The symbol ∝ means “directly proportional”.
If f and g are functions f, g : Df → R, Df ⊆ R, then

f ∝ g :⇔ ∃ c ∈ R : ∀t ∈ Df : f(t) = c g(t) .

(h) The operation mod means modulo. Let a, b,m ∈ N, then

amodm = b :⇔ ∃ z ∈ Z : a = b+ z ·m.

(i) The notation dre denotes the ceiling function. If r ∈ R, then dre := min{z ∈ Z|z ≥ r}.

(j) When an item is indexed by multiple indices, this work sometimes denotes the tuple
~i ∈ Nd with an vector arrow, knowing Nd is not a vector space in the mathematical
sense of the term.
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Chapter 1

Introduction

“Given for one instant an intelligence which could comprehend all forces by which
nature is animated and the respective situation of the beings who compose it - an
intelligence sufficiently vast to submit these data to analysis - it would embrace
in the same formula the movements of the greatest bodies of the universe and
those of the lightest atoms; for it, nothing would be uncertain and the future, as
the past, would be present to its eyes.”

Pierre-Simon Laplace in 1814 [1]

Molecular Dynamics (MD) is a method of computational physics which allows to study
properties and behaviour of complex systems like gases, liquids and solids by calculating the
motion of every particle in the system over a given time. While the atomistic idea to solve the
many-body problem numerically following Newton’s equations is not exactly new, the wide
range of applications and systems approachable by MD has gained new attention with the
availability of modern powerful computers. On the one hand, MD aids fundamental studies
of statistical physics concerning, e.g., kinetic theory, fluid dynamics, transport theory or
phase transitions by providing an “experiment on the computer”. On the other hand, more
applicative scenarios in material sciences, polymer physics, biology or chemistry are also
feasible by means of MD. As there are established theories for solids and delude gases, MD
is usually used for dense systems, such as liquids or glasses. There is no known experimental
method which could present that level of microscopic detail for all particles in a studied
system at once.

Since MD is a rather straight-forward method that - for a defined interaction - does not
rely on simplifications or an abstracted model, there are also limitations of this method
that come along with the advantages. Because of the limited computer memory, calculation
speed and time one is willing to wait for the result, systems accessible by MD are limited in
size (typically 105 . . . 106 particles) and time (typically pico or nano seconds). Therefore, it
is always interesting to find ways to accelerate the computational-intensive MD simulation.
A usual approach to do so is to involve more processors into the calculation and parallelise
the simulation. While it may be expensive to set up a cluster of multiple computers, the
last years have revealed another alternative of parallelization, namely to make use of the
processors of a graphics card (GPUs). Graphics cards have not only turned into powerful
computational units being able to generate high quality three-dimensional images in real
time, their potential is also wasted most of the time while the computer is not running a
graphic-intense application. That is why this work aims at discussing the possibilities and
limits of accelerating an MD program by graphics cards’ processors. While there are quite
a few programs which already use the GPU for special MD purposes, the more specialised
those programs are, the more they lack the possibility to extend their scope of approach-
able scenarios into the wide range of general MD problems. Therefore, the discussion in
this document will be based on own (already published [2]) implementation extending an
existing full-featured program. The programming part was developed in a team consisting
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of Christan Müller and myself (Lars Winterfeld). A list of modules is given along with their
main contributor in the appendix. Nevertheless, this work will describe all parts of the
programming project.

The MD program chosen is LAMMPS, the Large Scale Atomic/Molecular Massive Par-
allel Simulator - key aspects of it are described in the second chapter after a repetition of
main ideas and algorithms of MD being relevant for this work. A special programming
interface is needed to access a GPU; this document limits itself to one such interface: the
Compute Unified Device Architecture (CUDA) introduced by the company Nvidia (a chipset
and graphics card producer). While programming details on the level of interface specifica-
tions are less interesting for this work, the third chapter will give an overview of concepts of
GPU programming serving as a basis for the following discussion. A reader already familiar
with the topic could skip those preceding chapters. The fourth chapter will then combine
the ideas of the preceding chapters to explain the implementation decisions, also discussing
the effects on performance. A more detailed benchmark in different scenarios is given in the
fifth chapter also investigating the influence of different calculating precisions, right before
the sixth chapter compares the implementation to other GPU MD projects and the seventh
chapter sums up the conclusions of this work. Finally, the appendix lists some algorithm
remarks and other facts, which would have interrupted the text flow in the main part.
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Chapter 2

Molecular Dynamics Simulation

2.1 The method of MD

As mentioned in the introduction, Molecular Dynamics (MD) is a method of computational
physics which solves the classical n-body problem numerically in discrete time steps. Ideally,
a complete MD simulation requires three steps [3]:

(1st) model an initial start scenario,

(2nd) compute the movements of the individual particles and

(3rd) analyse the simulation data for the desired physical properties.

Since the aim of this work is the acceleration of MD, the discussion is generally focused
on the second step (the simulation itself). In particular, this chapter intends to repeat
some aspects of MD simulations which are relevant for the later discussion, starting with
typical pair forces. Afterwards, integration algorithms and the idea of neighbour lists are
explained, followed by some words on parallelization and communication in MD programs.
Finally, elements of the structure of the MD program LAMMPS are outlined, because the
already mentioned implementation is based on it.

2.2 Typical forces and force calculation methods

2.2.1 Typical pair forces

In every time-step the forces of the particles on each other need to be calculated in order to
get the desired interacting system. Forces can be categorised into bounded and non-bounded
interactions. Bounded forces are introduced to bring the quantum mechanical bond of a
molecule into the classical simulation scheme, while non-bounded forces, in contrast, can be
understood more classical - they are not depending on a specific bounding direction. For non-
bounding forces, short-range interactions are set apart from long-range interactions, because
of a different treatment in MD simulations. In a system of dimensionality d (usually d = 3),
a potential U , depending on the distance r := |~r|, should be called short-range, if and only
if ∫ ∞

0

U(r) rd−1 dr <∞ , (2.1)

and long-range otherwise.
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A typical example for a long-range interaction is the Coulomb potential Ucol of a particle
with the charge q1. Another particle with charge q2 in distance ~r in the field of of the first
one will see Ucol (with ε0 and εr being constants):

Ucol(r) = −4π ε0εr q1q2
1
r
. (2.2)

The gradient of the potential implies the Coulomb force ~Fcol:

~Fcol(~r) = −~∇Ucol(r) = 4π ε0εr q1q2
~r

r3
.

While the Coulomb potential Ucol decreases slowly (∝ r−1) with the distance r, there
are other forces having their main contribution only in short ranges. A typical example for
such a force on non-charged particles was proposed in 1924 by John Lennard-Jones and is
named after him. It combines the ideas of an attractive van-der-Waals force being ∝ r−6

and the repulsive force between the electron shells of the particles. The latter is approx.
∝ e−

r
r0 for some radius r0, but was approximated to be ∝ r−12, because it can be easier

calculated in computer simulations (by squaring r−6). The Lennard-Jones potential (see fig.
2.1) has two parameters, which can be fitted by experimental data or quantum mechanical
calculations: ε (an energy marking the depth of the potential) and σ (a length proportional
to the equilibrium radius):

ULJ(r) = 4ε
[(σ

r

)12

−
(σ
r

)6
]
. (2.3)

Figure 2.1: The Lennard-Jones Potential ULJ(r)

1σ 1.5σ 2σ 2.5σ 3σ

-1ε

-0.5ε

0ε

0.5ε

1ε
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Therefore, the force ~FLJ between two particles in distance ~r is obviously:

~FLJ(~r) = −~∇ULJ(r) = 4ε
[
12
(σ
r

)12

− 6
(σ
r

)6
]
~r

r2
.

To save calculation time, the influence of short-range potentials is usually neglected for
distances r greater than a cut-off radius rc:

ULJ,cut(r) =
{
ULJ(r) for r ≤ rc

0 otherwise (2.4)

~FLJ,cut(~r) =
{

~FLJ(~r) for r ≤ rc
0 otherwise

.

2.2.2 Neighbour lists

Since every of the n particles needs to interact with every other particle in a simulation step,
there are (

n

2

)
=
n(n− 1)

2
∈ O(n2)

forces to be calculated. Especially for short range potentials with cut-off radii, O(n2) inter-
actions have to be checked, but only few of them actually make a contribution. Therefore,
MD simulators usually implement a neighbour list strategy for these forces, i.e. a list of
particles within the distance rneigh (of, e.g., rneigh = 2 rc) is kept for every particle for some
time-steps. The slower the interaction sphere of the particles move out of that radius rneigh,
the longer can the neighbour list be kept. Assuming a fixed rneigh and that the macroscopic
density of the particles has an upper bound, there can only be a limited number of particles
within the neighbour list radius for each of the n particles, thus, reducing the complexity of
pure force computation to O(n). While this consumes O(n) extra memory, it is of course a
better method than the naive O(n2) one for a sufficient large number of particles.

Figure 2.2:

Figure 2.2 illustrates the neighbour list for one
of all particles (crossed red) drafted in 2D: the in-
teraction sphere is coloured in vertically striped /
blue, the additional neighbour particles are horizon-
tally striped / green.
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2.2.3 PPPM and Ewald sum

For long-range potentials, the influence of particles in any distance should be taken into
account, while it is still desired to avoid the direct calculation of every particle pair (needing
O(n2)). One method to solve this dilemma is the Ewald summation, whose main idea is
to rearrange the sum over all interactions into concentric spherical shells, for which charge
neutrality is assumed. The interactions within a chosen radius are calculated directly, while
the sum over all interactions outside that radius is Fourier-transformed (this implicitly as-
sumes periodicity of the system). In reciprocal space, this sum converges more quickly and
can be calculated in a chosen accuracy. This ansatz reduces the computational complexity
to O(n1.5). [4]

Another method to handle long-range potentials is the Particle-Particle Particle-Mesh
(PPPM) algorithm. Like the Ewald sum, it splits the interaction into a short-distance (PP)
and a long-distance part (PM). However, the long-distance interactions are transformed from
the current particle positions onto a regular grid - e.g. for Coulomb interactions this means
to create a Cartesian mesh of effective charges. Each charge is distributed along a specific
number of closest mesh point in each direction (conserving the total charge). While this
approximation is associated with some calculation error [5], the regular periodic grid allows
to do a fast Fourier transformation (FFT), which is used to calculate the electric field ~E, for
which the force is straight-forward to calculate. When choosing the internal parameters of
this algorithm right, the run-time complexity reduces to O(n · log(n) ) [6] and is therefore
faster than the Ewald summation (relying on the analytical Fourier transformation). [7]

2.3 Typical integration algorithms

The fundamental equations of mechanics d~v
dt = ~F

m and d~r
dt = ~v are used to numerically

integrate the forces ~F to velocities ~v and positions ~r in every timestep for each particle of
mass m. From the various possible numerically methods, MD simulators usually pick the
(velocity-)Verlet algorithm [8], whose numerical truncation error varies as the fourth power
of the timestep ∆t and is therefore said to be a third order method:

~r(t+ ∆t) := 2~r(t)− ~r(t−∆t) +
~F

m
∆t2 (2.5)

~v

(
t+

∆t
2

)
:=

~r(t−∆t)− ~r(t)
∆t

(2.6)

Although of rather low order, the verlet algorithm has some advantages over multi-step
Runge-Kutta methods or predictor-corrector algorithms concerning runtime and memory
usage: it does neither require to evaluate the forces more than once per timestep nor must
positions and velocities be kept over a number of timesteps. In compliance with Newton’s
equations, the Verlet algorithm is also non-variant under time reversion. To justify the
numerical inaccuracy of the Verlet algorithm in comparison to other methods, the errors
could be alleged to be a wanted representation of uncontrolled fluctuations occurring in real
systems, such as small mechanical vibrations in a lab.
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The above algorithm keeps the total energy of the system constant, which models an
micro-canonical ensemble (NV E) in case the total volume of the system V and the number
of particles N are also kept constant. When modelling different ensembles, other quantities
than the energy (like temperature T for the canonical NV T ensemble, pressure p or enthalpy
H) are desired to be conserved. In MD, this can be achieved by rescaling the velocities after
every timestep, which can be viewed as part of the integration algorithm. However, the
rescaling is usually not implemented to be abrupt, but follows an own smooth dynamic
instead.

Other integration techniques e.g. use nested loops of different step sizes to respect the
different time scales of e.g. intra- and inter-particle movements.

2.4 Other computational conventions

2.4.1 Periodic boundary conditions

In order to avoid edge and wall effects on a molecular system, it is possible to simulate
a system with periodic boundary conditions, i.e. the particles of a system are put into a
box, which is treated as if it is surrounded by identical translated images of itself. Particles
moving out of one site of that box are translocated back to the opposite site, and short ranged
pair forces are only considered for the closest duplicate image of every pair of particles. [9]

2.4.2 Pressure and temperature calculation

In case of atoms, all particles are assumed to have no other degrees of freedom than their
translational movements in every dimension, so that the equi-partition theorem can be used
to calculate the temperature T in a d-dimensional system (usually d = 3) of n particles.

1
n

n−1∑
i=0

mi

2
v2
i =

d

2
kBT

⇒ T =
1

d kB n

n−1∑
i=0

miv
2
i (2.7)

Knowing the positions ~r and forces ~F of all n (identical1) particles, the virial Φ is defined
as:

Φ :=
n−1∑
i=0

n−1∑
j=i+1

〈~ri − ~rj , ~F (~ri − ~rj)〉 . (2.8)

Using this virial Φ, the current pressure p in a system of dimensionality d with volume
V can be calculated by [10]:

p =
1
V

(
nkBT +

Φ
d

)
(2.9)

1“Identical” means all particles are the same type. In the general case, the force ~F may additionally
depend on the particle types.
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2.5 Parallelization and Communication

To overcome the limited memory and calculation speed available to one processor, many MD
programs are designed to be parallelizable. There are different methods to do parallelization:
one could run different (non-interacting) scenarios on independent processors, e.g. with
different start configurations. While that2 is always possible, this thesis will only consider
the parallelization of one execution scenario. In this case, the parallel processors either have
access to a shared memory or they execute on independent memory and need to communicate
data and results among themselves. In the former case, special memory access patterns
have to be considered to avoid interference of different processors on the same memory.
Since shared memory is harder to realise on a large scale in hardware, the communication-
based parallelization is more common. The simplest way for such communication is data
replication, i.e. to copy all data to every processor. Obviously, this requires much memory
and communication time. Therefore, one tries to find a way for data partitioning which
aims at providing every processor only with the minimum data it needs for the calculation.
In the case of short-range potentials, such a method is domain decomposition (or spatial
decomposition), which geometrically divides the whole simulation area into sub-domains
(cells) [11]. That way, every processor only needs to be aware of the particles of its own cell
and the particles close to the border of the neighbouring cells. Communication is limited to
the particles moving in and out of a cell and possibly forces acting on border particles.

To calculate an estimate for the expected speed-up S by using N processors, one can
assume the same calculation speed for every processor, so that the time needed can by mea-
sured by just counting the number of instructions I (or similarly: the number of processor
clock cycles).

S :=
tnormal

tparallelized
=

Inormal
Iparallelized

Let ϕ denote the fraction of parallelizable instructions, so that there are ϕ · Inormal N -times
parallelizable instructions and (1 − ϕ) · Inormal non-parallelizable instructions. Accounting
an overhead time Ioverhead for initialisation, synchronisation and communication of the
parallelization (seen as the number of instructions that could have been executed during
those operations), results in:

S =
Inormal

(1− ϕ) · Inormal + 1
N · ϕ · Inormal + Ioverhead

=
1

(1− ϕ) + ϕ
N + Ioverhead

Inormal

=
1

(1− ϕ) + ϕ
N + τ

, (2.10)

where τ := Ioverhead

Inormal
denotes an overhead ratio. For τ = 0 the last equation is also known as

Amdahl’s law [12] in computer sciences. It implies e.g. that even if the overhead is neglected,
a ϕ = 90%-parallelizable program can never run more than S = 1

1−ϕ = 10 times faster by
parallelization, no matter how many processors are involved.

2pejoratively called “embarrassing parallelization”
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2.6 LAMMPS

As MD is an established method, there are existing, highly developed MD simulation pro-
grams. The program considered here is LAMMPS [10], the Large-scale Atomic/Molecular
Massive Parallel Simulator, which is written in the programming language C++ and freely
available under the GNU Public Licence. In 2009 alone, more than 250 scientific papers,
published that year, have referred to Lammps in their quotations, making it de facto one of
the MD standard simulators.

Lammps does not require to compile own code for different MD scenarios and has instead
invented an own scripting language to describe settings (e.g. concerning neighbour lists),
initial configurations (like atom positions, geometrical sizes and periodicity), algorithms to
be computed (including forces and integration algorithm) and which data to output (like
positions, velocities, pressure or temperature) and when to do so. The wide range of pos-
sible setups given by Lammps’ input scripts goes far beyond the scope of the discussion of
this work, but the above mentioned pair forces, neighbour lists strategies, integration algo-
rithms and the possibility for periodic boundary conditions are of course part of Lammps’
functionality. Lammps is able to use a single processor as well as multi-processors and even
multiple PCs, which are linked through an ethernet network. It follows the spatial decom-
position strategy and uses a Message Passing Interface (MPI) library for communication.
Each Lammps process calls the particles in its own cell local, those in the neighbour cells
within the interaction radius ghost. The number of particles is referred to as nlocal and
nghost, respectively. Furthermore, nall := nlocal + nghost.

In order to achieve its flexibility, Lammps faces the problem to make many decisions at
run time (based on the user’s input script). Since these decisions take time, they should be
avoided in often executed code parts. To do this in an elegant manner, Lammps makes use
of object oriented C++ features like inheritance: a parent class (like Pair for pair forces)
defines an interface of member variables and methods (like compute()) common to all pair
forces. Lammps than initially constructs other objects with pointers to instances of derived
classes (like PairLJCut for the Lennard-Jones force with cut-off radius). This idea is also
known as the (abstract) factory paradigm in software engineering. That way, the perpetual
evaluation of many conditions in code can be avoided by initially storing the addresses of
exactly the (e.g. force computation) functions which had been chosen by the user. During
the later program execution, the code can unconditionally jump to that address.
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Chapter 3

GPU Programming and the
Nvidia Cuda Technology

Graphics cards are designed to render high-quality 3D images in real time. The very com-
petetive market in this field has turned modern graphics cards into powerful computational
units at comparatively low cost. It is therefore interesting to find a way to make use of
this computational power also for other purposes than graphics rendering. Traditionally,
this general-purpose computing on graphics processing units (GPGPU) was rather difficult,
since programming tasks had to be implemented into the rendering work-flow of the graphics
card. Becoming popular in 2003, freely programmable parts (vertex and fragment shaders)
were added to it in order to allow more realistic effects and could also be used e.g. to accel-
erate movie editing. In November 2006, the NVIDIA® company, a well-known producer of
chip-sets and GPUs, introduced it’s Compute Unified Device Architecture (CUDA™) aimed
at general-purpose parallel computing. Because of the historical background in graphics
rendering and the differences from serial to parallel program execution, GPU programming
has some major differences to usual CPU programming. Those should be explained in this
chapter based on Nvidia’s CUDA, starting with an introduction to GPU architectures in
comparison to CPUs. Based on this overview, the programming model and the memory
access patterns introduced by CUDA are described, finishing with a list of technological
limits which need special considerations.

The information in this chapter can also be found in the literature, like the Nvidia Cuda
Programming Guide [13]. Therefore, this chapter aims at summarising the main aspects
of the CUDA technology, not focusing on programming details. Vocabulary and concepts
within the field of CUDA programming should be described, in order to have a basis for the
discussion in the later chapters.
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3.1 GPU Architecture

NVIDIA’s graphics cards contain a number of multiprocessors (MPs), were each such MP
consists out of eight processors. The following table shows a selection of NVIDIA’s devices.

Release Date1 Product Name Number of MPs
December 2008 GeForce 9200M GS 1
October 2007 Quadro FX 3700 2
April 2007 GeForce 8600 GTS 4
September 2009 Quadro FX 2700M 6
February 2008 GeForce 9600 GT 8
April 2007 Quadro FX 4600 12
July 2008 GeForce 9800 GT 14
May 2007 GeForce 8800 Ultra 16
June 2008 Quadro FX 4800 24
June 2008 GeForce GTX 280 30
March 2009 Quadro FX 4700 X2 2×14
November 2006 Tesla D870 2×16
January 2009 GeForce GTX 295 2×30
November 2008 Quadro Plex 2100 D4 4×14
October 2008 Tesla S870 4×16
June 2008 Tesla S1070 4×30

Each single MP is clocked with about 1.5 GHz, which - combined with the large number
of MPs - underlines the above claimed computational potential, compared to dual or quad
core CPUs nowadays being clocked between 2 GHz and 4 GHz. It is, however, misleading
to directly compare GPUs to CPUs just by the product of the processor clock frequency
and the number of processors, because those two architectures work fundamentally different
and a so-calculated number does not correspond to the actual speed at which an arbitrary
program would perform on a CPU and GPU, respectively.

A CPU is able to run completely different tasks on each of its cores in parallel, which
requires advanced instruction flow control and makes it hard for a CPU producer to design a
new CPU with more cores. CPUs also spent a lot of effort in sophisticated caching strategies
allowing them to temporally buffer the values of often used memory addresses to which each
of the executed processes has random read and write access to. This is done to reduce the
latency of a memory access.

GPUs on the other hand are designed to run the same calculation on many data elements
in parallel. Historically, an example for such a calculation would be to apply a graphical
effect to many objects in a virtual scene or pixels on the screen. Since the same instructions
are carried out by all cores, no advanced flow control is required and if the number of
arithmetic instructions is much higher than the number of memory accesses, then the lack
of sophisticated caching strategies has only a weak influence on the total execution time.

Besides these differences, both the CPU and the GPU cores have sub-units to read
and write memory addresses, registers to internally store values and an instruction units
supporting the same basic instruction set (like add value B to register A, copy the contents
of register A to register B or compare the value of register B to 0 ). This made it possible
for Nvidia to develop a programming interface compatible with an existing programming
language, which later gets compiled to low-level GPU instructions, adapting already existing

1These dates vary in different sources.

21



compiler work-flows and programming language features. Choosing the already established
programming language C, they made it easier for programmers to start writing their own
GPU programs, also facilitating the commercial success of CUDA-enabled graphics cards.

3.2 Cuda Programming Model

3.2.1 Kernels

In order to use the parallel computing power mentioned in the last section, CUDA extends
the C language by so-called kernels. A kernel is a special function, whose instructions can
be executed N times in parallel on the graphics card. One such execution is called a CUDA
thread and current graphics cards can run up to 1024 threads per MP concurrently. To
differentiate between code executed on the CPU and the GPU, the main CPU program and
the computer’s main memory (RAM) is called the host, while the GPU part is generally
called device.

In order not to execute the same calculation on the same data more than once, each of
the N threads gets one individual index at the beginning, which can be used by the kernel
e.g. to tell which item of an array it should run its instructions on. The following code gives
an example of a complete and valid kernel definition.

0: global void myKernel(float* x, float* v, float dt) {
1: int i = threadId.x;
2: x[i] = x[i] + v[i] * dt;
3: }

The above example follows the Single Instruction, Multiple Data (SIMD) pattern, which is
typical of a GPU and is opposed to the traditional CPU pattern of Single Instruction, Single
Data (SISD). Furthermore, the C code of the kernel also allows conditional (“if-then-else”)
parts. Nvidia calls the resulting concept Single Instruction, Multiple Thread (SIMT) in the
style of the just mentioned classifications. To give an example, it would be possible to run
different code whenever the index i is odd or even. However, due to the above stated hard-
ware architecture, the instruction unit of the GPU would then firstly execute all threads
whose index is odd and afterwards the threads whose index is even. This code serialisation
(also called branching) temporally freezes half of the processors and causes a serious perfor-
mance loss and should therefore be avoided where possible. If, however, all threads evaluate
an “if”-condition to the same result, the execution will not branch, therefore not causing
performance losses. To be more precise, the instruction unit of one MP always fetches in-
structions for four GPU clock cycles. Since one MP consists out of eight processors, the
decision if branching occurs, depends on whether all (8 · 4 =) 32 threads come to the same
result. This is one of the main reasons why Nvidia introduced a new term for such a group
of 32 threads: it is called a warp.
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3.2.2 Thread Hierarchy

Since computer graphics usually deals with two-dimensional (2D) or three-dimensional (3D)
data, CUDA conveniently enables the threads to be virtually grouped into a 2D or 3D grid,
resulting in a 2D or 3D index, which can e.g. be used to address 2D or 3D arrays. More
precisely, CUDA allows two different layers of such grouping: firstly, up to 512 threads may
be grouped into a thread block and secondly, the overall grid of one kernel may consist of
up to roughly four billion of such thread blocks. While one MP can execute many blocks in
parallel, one block cannot be executed on multiple MPs. A CPU program can call a kernel
similar to a usual function call in C, just additionally specifying the just mentioned grid
dimensions (together called execution configuration) with a special syntax, outlined in the
following code:

0: int main() {
1: // ...
2: dim3 blocks on grid(1000, 1000);
3: dim3 threads per block(8, 8, 8);
4: myKernel<<<blocks on grid, threads per block>>>(x, v, 0.1);
5: }

Inside the kernel function, CUDA automatically sets built-in variables to access the grid and
block dimensions the host program had specified (gridDim, blockDim) and the index - in
the range of those dimensions - of the currently executed thread (blockId, threadId).

Starting α blocks with β threads each (α, β ∈ N+) or β blocks with α threads each results
in the same number of total threads (α ·β). Between these two scenarios, there are, however,
two differences. Firstly, threads inside of one block can synchronise their execution, i.e. a
kernel can call the special function syncthreads() marking a point inside the code all
threads in the block have to reach before any of them is allowed to proceed further. Each
thread must call the same number of syncthreads() calls during its execution. Secondly,
the threads of each block can share a small amount of memory (16 KiB). The memory
handling used on a CUDA GPU is described in the next section.
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3.3 GPU Memory

3.3.1 Memory Spaces

Despite the shared memory of a thread block already mentioned above, there are additional
memory spaces on the graphic card, which are deeply influenced by concepts of traditional
GPU programming. Device code only operates on device memory.2 The understanding of
the different GPU memory spaces is crucial, since their usage has strong influence on the
overall performance. The following table shows an overview of the different memory spaces,
which will be discussed below.

memory global constant texture shared local

access read & write read only read only read & write read & write
size Ω 64 KiB Ω 16 KiB Ω
cached no yes yes no no
latency ∆ ε ≈ ∆/10 ε ∆
lifetime persistent persistent persistent block thread

The symbols Ω, ε and ∆ are explained below.

Global Memory

The global memory is the main memory of the device to which a kernel can read and write
data. New memory can not be reserved during a kernel execution, but must be allocated
before a kernel gets invoked. Its size is the total graphics card memory (an often mentioned
product feature) and covers usually several 100 MiB, above denoted as Ω. Access to it is
not cached, and has an latency of 400 to 600 clock cycles (∆) - to compare, an addition of
two numbers takes four clock cycles. In order to have reasonable performance, it is therefore
necessary to perform many arithmetic operations per memory access. The global memory is
persistent across kernel calls, i.e. subsequently called kernels can perform different operations
on the same data.

Constant Memory

The constant memory is a small (64 KiB) read-only memory, which is also persistent across
kernel calls. The host program can load any data into the constant memory, the attribute
read only applies only inside the kernel (executed on the device). Access to it is cached, so
a read is as fast as an access of a processor register (ε) after the constant memory address
has been fetched for the first time from the device memory.

Texture Memory

The texture memory is a fast read-only memory. Access to a texture element costs one read
from device memory when reading for the first time and a much smaller time to read from
the texture cache afterwards. An exact latency for an texture access is not documented and
depends on the memory access pattern of the kernel. CUDA allows the host to declare parts
of the global memory as texture, so that kernels can make use of the texture distribution
mechanisms. It is, e.g., also possible to load a texture with a discrete pixel width and access
an linearly interpolated value for any floating point index in between.

2Newer versions of Cuda may also read and write directly on a non-pageable CPU memory (called zero
copy). However, this memory is limited and using it may slow down other processes on the operating
systems. The access latency over PCIe is much greater than internally on the graphics card.
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Shared Memory

The shared memory is a small (16 KiB) memory, which does not reside in the global device
memory and is not persistent across kernel calls. The host cannot load any data into it.
However, when the host calls a kernel, it may specify a size up to 16 KB, which will be
available to each thread block as read and write memory. When a thread block starts, this
memory is allocated; while the (up to 512) threads of the block execute, they can use this
memory to share data among themselves and after the last thread has finished, the memory
is freed. Access to a shared memory element is as fast as an access of a processor register
and thus does not need to be cached.

Local Memory

The local memory has similar features as the global memory - only the lifetime and scope
of local variables are bounded to one single thread each, making them quite unattractive.
The reason why they have been introduced can be summed up as follows: Since an MP
can run up to 1024 threads concurrently and has only 16384 registers3, each thread can
use 16 registers on full load. If more different variables are needed at the same time than
there are registers available, the remaining variables are written out to the local memory.
Unfortunately, the choice of how many local memory should be used to save registers must
be done at compile time, while the number of started threads may be chosen at runtime.
This can cause a kernel to refuse to start, when too many threads are requested. Since the
local memory allows only slow access, it should be avoided where possible. This can e.g. be
done by writing simpler code, that does not require many different variables at the same
time.

3.3.2 Memory Copying

CUDA provides host functions (included in the CUDA API ) to copy data to and from the
device’ global memory, as well as functions to load data to the constant memory. Only
continuous memory blocks can be transferred - therefore, multi-dimensional arrays have to
be flattened into a one-dimensional arrays before copying. The bandwidth between host and
device memory is limited by the PCI-express interface and - moreover - the motherboard
chipset. Typically4, it lays between 2GiBs and 6GiBs . The device kernels can load textures
and constants and work either on global and shared memory explicitly, or on local memory
implicitly. However, since shared and local memory are not kept after a kernel has finished,
eventually every result of a device computation has to be copied back to the global memory.

A kernel can e.g. copy data from the global to shared memory with a simple C-assignment
in the device code.

my_shared_array[i] = my_global_array[j];

The bandwidth for such an operation inside the graphics card is quite high (about 100GiBs ),
but the above mentioned access-latencies have to be considered.

3The exact numbers have changed over time, the above mentioned are those of the latest specification
(compute capability 1.3). See the Nvidia Programming Guide for older specification details.

4Appendix 7.4 lists a bandwidth benchmark for different workstations.
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3.4 Limitations

Beside already mentioned limitations like bandwidth and latency, graphics card program-
ming has a variety of other restrictions which originate from either the parallel nature of
GPU programming or principles of GPU design. While there are a number of rather tech-
nical restrictions (e.g. concerning the number of instructions per kernel or the ranges for
a valid execution configuration), this chapter will point to Nvidia’s CUDA Programming
Guide for these specific questions and will instead focus on the description of more principle
limitations.

3.4.1 Write Conflicts

When multiple threads write different values to one single memory address while they are
executed in parallel, only one of the write-requests is guaranteed to succeed. If, e.g., N
threads want to increment an integer z in global memory by one, the result is likely not
z + N , but instead a smaller result like z + 1, because each thread first reads the same
initial value of z, adds one and writes the result back. The result may as well be z + 2 or
greater, depending on whether a thread was scheduled to start after another had finished.
Because the exact behaviour depends e.g. on the number of MPs on the GPU, it can not
be predicted while writing the program.

To overcome this limitation, Nvidia introduced a set of atomic functions allowing such
read-modify-write operations to be performed without interference from other threads on
integer (but not floating point) values. These enhanced abilities of a GPU-series are marked
with a version number Nvidia called Compute Capability - being currently 1.0, 1.1, 1.2 or
1.3. Starting from Compute Capability 1.1 atomic functions for 4-byte words are supported,
Compute Capability 1.2 and later grants for atomic operation support for 8-byte words.

3.4.2 Coalesced Access

The threads of a kernel read from or write to global memory in groups of either 32, 64 or
128 consecutive bytes. The hardware is able to transmit 64 bytes at once. When accessing
4-byte-words (like float or int), this means that a maximum of ( 64B

4B =) 16 threads can
simultaneously access memory. Such a group of 16 threads therefore got its own name
half-warp.

If all threads of half-warp simultaneously access data from a single memory segment, the
data can be transferred in one single transaction - the access is then said to be coalesced. To
see how important coalesced access is, it will be compared to a scenario where all threads
read different (4-byte) memory elements lying in the N different memory segments: each
thread then fetches 32 bytes (the minimum transaction size), but only uses 4 bytes of the
result, having wasted 7

8 of the bandwidth. The accesses are serialised and each of them has
its own latency. In practise, this causes non-coalesced access to be an order of magnitude
slower than coalesced access (for 4-byte elements). For non-coalesced access, the “efficiency
factor” of bandwidth usage increases from 4

32 = 1
8 to 8

32 = 1
4 when accessing 8-byte elements

or 16
32 = 1

2 when accessing 16-byte elements.
For completeness, it should be noted, that for devices with Compute Capability 1.0 and

1.1, the nth thread of a half-warp had to access the nth memory element in a memory
segment. Since Compute Capability 1.2 it can be any permutation as long as the accessed
elements belong to the same memory segment.
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3.4.3 Bank Conflicts

When different threads of a kernel read from or write to shared memory, the memory access
is only as fast as a register access as long as there are no bank conflicts. The memory
bandwidth to shared memory is divided into 16 equally-sized memory modules, called banks.
Memory elements are always accessed through the bank number: memory address mod 16.
Bank conflicts occur as soon as two threads of a block simultaneously try to use the same
bank. There is only one exception to this rule: if all threads simultaneously access the same
element in shared memory, a special broadcast mechanism is triggered, which avoids bank
conflicts.

3.4.4 Other

A selection of other limitations is listed below:

• Double precision is not supported for devices before Compute Capability 1.3. Cal-
culations in double precision are about four times slower than their counterparts in
single precision, because each MP has only one unit able to perform double precision
operations. If one wants to transfer an existing array in double precision to the device,
every single array element needs to be casted to single precision before the calculation
starts5. There are fast built-in implementations for elementary mathematical functions
(like sinf, expf, sqrtf), only in single precision.

• Kernels do not support external function calling. Whenever there is a function call
inside the kernel code, the function is inlined into the kernel at compile time, which is
why recursion is impossible.

• Operations like division and modulo are ten times slower than an addition.

• The device code supports C and only a small subset of C++ features: polymorphism,
default parameters, operator overloading, namespaces and function templates. Fea-
tures like exception handling, STL functions, classes and inheritance are not supported.

5The cast has do be done explictly, since float values use 1 Bit for the sign, 8 for the exponent and 23
for the significant, while double uses 1, 11 and 52, respectively.
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Chapter 4

Implementation Strategies

The aim of this chapter is to reason the decisions token in the mentioned implementation.
Where possible, it tries to do so by confronting the decisions with possible alternatives
and their implications. Firstly, the discussion will deal with the question of why porting an
existing program and how to implement Cuda there. Since it turns out that force calculations
play a major role in MD simulations, their implementation will be discussed in detail. Still,
the overall speed-up is better if other parts of the simulation are also done on the graphics
card directly. Therefore, the last section of this chapter will discus how to implement these
parts on the GPU.

4.1 Integration Strategy

4.1.1 Why port an existing program?

When trying to write an MD simulator for the GPU, there are two possibilities: either write
a completely new program or try to port an existing program to the GPU. The advantages
of inventing a new one are that there is no need to cope with old hangovers from CPU design
decisions and one could respect GPU specifics (e.g. concerning parallelization) right from
the beginning, which could result in an faster program. On the other hand, one would need
to re-invent existing concepts (like input file parsing) and it is likely to run into design flaws
(and even problems one is not thinking about) an existing program has already overcome.
Writing a new program potentially also means much more work, but if one is doing a project
based on an existing program, it is also possible to use its community (e.g. for testing or
extensions). Therefore, the decision was to port an existing program with the first goal to
keep its flexibility, i.e. being able to adapt all Lammps features, automatically accepting
that such a general-purpose program is likely to run slower than a special-purpose code,
which does not need to respect many decisions of the user at runtime.
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4.1.2 Integration of Cuda code into Lammps

As mentioned before, Lammps makes use of rather advanced C++ features, while the device
code supports mostly only C with only a small subset of C++ features. The special syntax
to invoke a Cuda kernel (<<<...>>>, see section 3.2.2) is not valid C-code and is only un-
derstood by Nvidia’s C compiler. Therefore, an interface between these two parts (Lammps
and Cuda) on the common ground C is needed. The idea was to compile the Cuda kernel
and a function which calls it (using Cuda’s syntax) with Nvidia’s compiler into an object
file, which gets linked into Lammps’ binary during compilation, so that Lammps can call
the kernel-invoking functions in its C++ code - to do so, the prototype of each such external
functions has to be declared in a header file both the Lammps and Cuda part include.

Data transfer

Some functions, which are provided by the Cuda API, can be encapsulated into C++ classes
in order to keep the advantages of object oriented programming - e.g. for memory manage-
ment a data class had been implemented. When a data object is constructed, it allocates
the necessary memory on the GPU and frees it again, whenever the class is destructed (even
without an explicit call). It provides methods to download and upload data to an from the
device - transparently converting a multi-dimensional array into a memory-block and casting
from double to single precision, if required. The compiler can produce extra byte-code for
every scenario occurring in the source code out of one single written C++ template class.

Precision

MD simulators generally prefer double precision, because it causes a smaller numerical error
(for both order of convergence and consistency). However, GPUs are generally designed to
operate on single precision numbers (float) and are known to work much slower on doubles
(see section 3.4.4). In order to leave a choice to user whether he or she prefers accuracy or
speed, and to be able to do benchmarks on this topic, a compile-time switch was introduced.
It triggers pre-processor substations and macros, which allow to use

• an own Cuda precision type (which is simply replaced by either float or double by
the pre-processor),

• different precisions for different tasks (mixed precision),

• an automated switch between the float-optimised mathematical functions (like sqrtf
or expf) and their double counter-parts (sqrt and exp),

• constants in different precision, because the compiler distinguishes between double
(1.0) and float (1.0f) constants and bases the calculation accuracy on it.
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4.1.3 Which parts to port?

Obviously, it does not make sense to port every part of Lammps to the GPU - otherwise it
would have been possible to write a completely new program. While Lammps’ MPI-based
parallelization techniques can be used to communicate between different CPU processes
(where each of them may incorporate its own GPU), it is - unfortunately - not possible to
use MPI for parallelization on the GPU, because MPI relies (besides a different API) on
independent CPU processes (with SISD architecture), while the GPU needs code based on
a SIMD (or SIMT) architecture. Therefore, appropriate parts of Lammps have to be chosen
thoughtfully. From all parts which are parallelizable on the GPU (that excludes, e.g., input
file parsing) the most computational-intensive parts are chosen, in order to achieve the
second goal of maximising the speed-up. As Lammps provides the user with time statistics
after every run1, it is easy to find out the most time-consuming parts. The pie charts in
figure 4.1 illustrate the proportions in three randomly chosen examples2.

Figure 4.1: Time proportion for sample runs on 2 CPUs
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As obvious from fig. 4.1, the force calculations take most of the time in many scenarios,
as it could have been also concluded from theoretical considerations. Therefore, their porting
is important for a GPU-based MD-simulation and will be the topic of the next section.

4.2 Force calculation on the GPU

Since force calculations are crucial for the acceleration of MD programs, they are discussed
in this section in detail. However, there are different types of forces needing a different
treatment. Therefore, this section will firstly discuss non-pair forces, afterwards short-range
and finally long-range forces.

4.2.1 Non-pair forces

Just like many MD simulators, Lammps offers the possibility to enforce global forces into
the simulation, like adding a constant force to a group of particles (e.g. to simulate a
gravitational field), or prevent particles from moving at all by resetting any force on them
to zero every timestep. This basic idea is rather trivial to implement, because one just has to
write a kernel setting the desired force and than start nlocal threads of this kernel. One single
instruction will modify multiple forces. The only problem left is choosing a good execution

1Otherwise, profiling with g++ -g and gdb -p would have been possible.
2The “Benchmark” chapter will give more details about them.
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configuration, i.e. the number of blocks on the grid and threads per block, those product
is the total number of threads. Since nlocal could be prime, the number of started threads
has to be rounded up to a number nround, e.g. to the next multiple of 64. Each thread has
to calculate its own particle-id out of the multi-dimensional index (blockId and threadId
- see section 3.2.2) - this is trivial and listed in the appendix 7.3.1. It is recommended to
start a multiple of 32 threads per block in order to always have full warps. Consequently,
starting more thread than there are memory elements implies that each thread needs to check
whether its index is still in the valid memory range. This single condition check generally
does not course performance losses by branching, since only the last nround − nlocal threads
will evaluate the condition to a different result than the other threads in their warp and the
latter number is sufficiently small for a large number of particles.

4.2.2 Short-range pair forces

Concerning pair-forces the situation is less trivial than for non-pair-forces. When using cut-
off-radii, the goal of any implementation strategy must be to avoid a full O(n2) check. The
method implemented in Lammps to solve this problem is the use of neighbour lists (NLs),
which are an accepted method, often recommended in the literature and used in highly
optimised programs like Lammps. A direct port of the already implemented code appears
to be easier, since the existing infrastructure can be kept. However, methods proved to be
efficient on the CPU may work out different on the GPU, where this rather new technology
also lacks standard literature recommending any strategy. NLs generally consume a lot of
memory and graphics cards usually have less of it than CPU architectures. Also, NLs rely
on random accesses in memory, being ten times slower than coalesced memory accesses on
the GPU. Therefore, this section will develop the idea for an alternative method. Firstly,
general implementation ideas are given, afterwards implementation details for both methods
are presented and finally a discussion will compare both strategies.

General implementation ideas

Generally, it is possible to load numbers like nlocal or force parameters (like ε and σ for the
LJ force) into the device’ constant memory (as long as they fit into 64 KiB), in order to
have fast access to this small set of often needed constants.

Lammps stores the particle positions ~ri = (xi, yi, zi) ordered by particle-id, which results
in a memory structure like the one drafted below:
x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3 x4 y4 z4 . . .

Since the forces ~F (~ri−~rj) should be calculated for many particles in parallel and a force
calculation will need to load the atom positions from global memory, the consecutive reading
of the position’s coordinates will result in non-coalesced access. However, if the positions are
re-arranged into a memory scheme ordered by dimension, each such access can be coalesced,
since in almost all cases a contiguous memory region can be read. The following scheme
illustrates the memory structure with the concurrently needed memory elements underlined
and coloured in blue.
x0 x1 x2 x3 x4 . . . y0 y1 y2 y3 y4 . . . z0 z1 z2 z3 z4 . . .

The re-ordering can be done on the CPU or on the GPU and can be seen as the more
efficient, the more often the positions are accessed afterwards.
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Implementation of neighbour lists

Since the primary aim of this section is to determine the faster force computation strategy,
the question of whether and how to build NLs on the GPU will be ignored for the moment,
because the speed comparison of pure force calculation can be done with the NLs built on
the CPU, for the moment simply uploaded the GPU.

The algorithm is straight-forward and outlined in the following 14 lines of “free C code”,
where data transfer from (�) and to (�) the global memory are marked by arrows.

0: global void LJ Kernel() {
1: int i = my particle id from(blockId, threadId); // appendix 7.3.1
2: float3 my r � ~r[i]; // coalesced access, if reordered as explained above
3: int my type � type[i];
4: float3 my F = ~0;
5: int my neigh count � neigh count[i];
6: foreach(neighbour j of i) {
7: int neigh type = type[j];
8: float3 neigh r � ~r[j]; // non-coalesced access
9: float3 ∆r2 = (my r - neigh r)2;

10: if(∆r2 ≤ r2
c) my F += ~FLJ(∆r); // both r2

c and ~FLJ depend on the
11: } // types my type and neigh type
12: my F � ~F[i]
13: }

There are three things to note about this algorithm: firstly, the global memory is often
accessed non-coalesced, as the neighbour positions and types are “randomly” distributed in
memory3. Secondly, branching will occur very often, not only because of the if-condition on
line 10, but also due to the variable number of neighbours per particle (thus, different number
of iterations for the loop starting on line 6). While leaving some processors idle can not be
avoided principally in this force calculation, the threads of a warp can be hindered to diverge
further, by demanding a synchronisation ( syncthreads()) before the end of the neighbour
loop on line 11. Since every thread must have the same number of syncthreads() calls,
either the loop has to be executed as many times as the maximum number of neighbours over
all particles, or additional (max neigh count−my neigh count) syncthreads() have to
be called after the end of the loop. Thirdly, any force between a pair of particles is calculated
twice (not using Newton’s Third Law ~Fab = −~Fba), because once ~Fab has been computed
and added to the force of particle a, it can not be subtracted from the force of particle b, as
this could cause write conflicts, since another thread might be simultaneously working on
the same particle.

Apparently, the apprehension of this section’s introduction could be confirmed: the work-
flow implicitly implied by Lammps’ NL data structures seems to be sub-optimal for GPU
parallelization.

3in the sense, that they can not be read as a continuous memory region
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Implementation of grid cell lists

Figure 4.2: cell lists,
drafted in 2D

c

The last paragraph showed a working strategy for parallel force
calculations on the GPU, albeit pointing to the discussion whether
it is worth to implement an alternative method, which does not
need neighbour lists and is based on memory structures aiding co-
alesced accesses. The idea is to continue the spacial decomposition
into a regular grid of small sub-cells, with a maximum number
of atoms per cell. This is also based on the experience, that the
density in many studied systems is homogeneous, i.e. there is an
upper bound for the number of atoms in any cell (drafted red /
striped in figure 4.2). A disadvantage of this method is the need
to re-order the existing data structures in Lammps for the GPU
calculation, which also requires to convert the data back into the

original Lammps format for every usual Lammps computation not done on the GPU. This
additional effort could be justified if the cell list method was substantially faster than the
calculation based on neighbour lists.

For this cell list approach, the data needs to be reordered into cells, which makes it
necessary to chose a geometrical cell size c (see fig. 4.2) and the maximum number of atoms
per cell ncell nmax. Afterwards, a multiple of ncell nmax bytes in GPU memory has to be
allocated (e.g. for positions, velocities and forces) and after the atom positions have been
copied into that new memory, the forces can be calculated. The cell size depends on how
the elements of the above idea are chosen to correspond with GPU programming structures.
The implementation idea was to associate every cell with a Cuda thread block and have
every thread of it calculate the forces for one particle in the cell, i.e. - in the first place -
each of the ncell nmax threads will read different positions ~ri, but will write the resulting
forces only to its ’own’ memory.

As a Cuda block can only contain 512 threads, ncell nmax ≤ 512 is required and the
geometrical size c of the cell must be chosen small enough. Additionally a certain margin is
required to ensure that - even with slightly varying particle density during the simulation -
a cell will never contain more than 512 particles. Moreover, the force calculation will look
at all particle pairs in the cell and if the cell size c was much greater than rc, the distance
between many pairs would extend rc, which would not only imply needless distance checks,
but could also support branching - i.e. to leave processors waiting for other force calculation
threads to finish. While these arguments support the idea not to grow a cell arbitrarily large,
there are also reasons not to shrink it arbitrarily small. Guided by the recommendation to
start a multiple of 32 threads, it is obvious that a cell size being too small would result in
a waste of memory, because only a few particles would be in the smallest possible cell large
enough to store 32 particles. Further on, it appears to be the easiest way to calculate the
forces first in the own cell and afterwards sequentially with each neighbour cell (see fig. 4.2),
whose number is 33− 1 = 26 (in 3D) only if c is chosen greater than rc, because in this case
only the closest neighbour cells have to be considered. Additionally, the time evolution of
the system has to be considered: the greater c is chosen, the less frequent the reordering
into cells need to be done - which supports the idea to chose c ≈ rneigh (see section 2.2.2).
Thus, this line of argument recommends to choose c ≈ 2 rc and ncell nmax as a multiple of
32 between 32 and 512 depending on the particle density.

To avoid branching, each cell can be filled up (to next multiple of 32) with “zero particles”,
whose force constants (e.g. σ, ε) are set to zero. That way, they do not influence the result,
but take care that the same instructions are executed on all data elements.

The reordering into cells itself can be done by two different methods in parallel, which
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could be described by a push and and a pull strategy. Either, as many threads are started
as there are cells and each threads loops over all n particles testing for each particle whether
it belongs to the own cell and if so, add it to the cell’s memory (thus, “pulling” it) - or, n
threads are started and the corresponding cell is determined by each particle’s position and
then “pushing” it into that cell. The latter approach (which was chosen in the presented
implementation) needs to make sure, that only one thread wants to add a particle to a cell
at once. This can be done by using atomic functions (see section 3.4.1): whenever a particle
should be added, 1 is added to the particle count of that cell ncell count i. The function
returns the old value of ncell count i, which is the memory position to write the particle.

Figure 4.3: cell update pattern

A B C

D E F

G H I

For the force calculation itself, at least two more
optimisations can be done in this cell list approach,
which are not possible for NLs. The first is to use
Newton’s Third Law ~Fab = −~Fba to save half of the
force calculation time. In 2D, this means to only
consider 4 out of 8 neighbour cells - figure 4.3 drafts
an example of such an update pattern, with the cho-
sen neighbours of cell E marked by a solid black line.
If every cell follows this pattern, the interactions be-
tween all neighbouring cells will eventually be consid-
ered exactly once, as one may verify for cell E. In 3D,
only 13 out of 26 cells are considered. Note, however,
that not every selection of 13 neighbour cells fulfils
the required periodicity. An effective algorithm for
automated generation in the 3D case is given in the
appendix 7.3.2 4.

While this sounds trivial, it must be recalled that thread blocks are allowed to be executed
in any order, in sequence or in parallel. Therefore, write conflicts may occur: in figure 4.3,
e.g. cell A and D might try to update the forces in cell B at the same time. In order to avoid
the resulting error in the calculation, the idea was to simply execute different groups of cells,
which cannot interfere, after another. In the above 2D example, there are four such groups,
with cell A, C, G and I being part of one5. This does not significantly affect performance
since N groups are executed each in approximately 1

N of the original time.
The second optimisation is the use of shared memory. Initially, the positions are stored in

global memory and need to be loaded from there. However, since multiple particles (threads)
inside a cell (block) will need the same positions, it is an obvious idea to load all positions
from the own or a neighbour cell only once from global into shared memory and re-use the
data afterwards from this local and much faster memory. In order to hinder one thread to
load positions from the next cell, while other threads are still needing the current data, a
syncthreads() can be triggered (see section 3.2.2).

As a position ~r contains three float elements - each 4 Bytes in size (or 8 Bytes for
double) - only 6 KiB (for float) or 12 KiB (for double) of shared memory are needed,
even if the maximum of 512 threads were started - this is less than the hardware limit of 16
KiB, thus not implying additional restrictions for the cell size.

With this state of development, the cell lists seem to be ready for speed comparison with
the neighbour list approach.

4One of the reasons for writing an algorithm for that simple geometrical problem is that later on, multiple
neighbour shells are considered, where a selection of a valid updated pattern might extend simple intuition.

5Mathematically spoken, for c neighbour shells, the set of cells with indices ~k, ~l ∈ Nd is partitioned
according to the equivalence relation ∼. ~k ∼ ~l :⇔ ∀i ∈ [0, d) : (ki − li) mod c = 0
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Speed comparison

From the current state of development, the time for the pure LJ force calculation kernel is
measured for different cut-off radii on one GPU for the cell and neighbour lists approach.
In the example, n ≈ 2 · 104 particles are uniformly distributed in a box of approximately
(25 × 25 × 25)σ and the time corresponds to one initial time step, where the same results
are computed by both different methods.

Figure 4.4: Time comparison between neighbour and cell list approach
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Since the runtime of the above neighbour list algorithm is in O(nneigh), it can be un-
derstood immediately, that the time for the neighbour list based force calculation is O(r3

c ),
simply because the number of neighbours nneigh and relevant atoms can be expected to be
proportional to the volume of a sphere (ncell nmax ∝ r3

c ).
In contrast, it appears harder to explain the measured time for the cell list approach.

Being quite a surprise, the cell list approach consumes more time than the neighbour list
version and thus preforms worse! Therefore, this section will proceed to explain firstly, why
the cell lists generally take more time and afterwards the local minima and maxima in the
curve.

Even though the cell lists were specifically designed for the GPU, one has to consider
both memory access (i.e. reading the other atom’s positions) and force calculation time.
The memory access is assumed to be 10 times faster for the cell list approach (due to the
coalesced accesses). However, the calculation is done in parallel by firstly checking if the
distance r to another particle is r ≤ rc. Whenever one thread finds an atom close enough and
evaluates the force formula, the other threads have to wait (even if their distance is too high
to contribute to the force) until every thread in the warp finished the calculation. Therefore,
if ncandidates denotes the number of read atom positions ~ri, then the total execution time
ttot is in O(ncandidates).
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Figure 4.5: required mem-
ory elements, drafted in 2D

c c

Figure 4.5 illustrate the 3D situation in a 2D sketch: the
cell list approach reads (fast) all atom positions from the 27
surrounding cubes, each of edge length c = 2rc, while the
neighbour lists only contain atoms within a sphere of radius
c. The cell list approach needs to load the data of an entire
neighbour cell as soon as one atom in the own cell may inter-
act with an atom in the neighbour cell. The positions of those
atoms in the corners of the cube are fetched for nothing from
memory. To estimate whether the faster memory accesses can
compensate the huge amount of needed memory, a proportion
γ ∈ (0, 1) of the time processing a single interaction tsingle is
assumed to be spent on memory accesses.

ttotal = ncandidates · tsingle

tsingle = tsingle · γ︸ ︷︷ ︸
memory read

+ tsingle · (1− γ)︸ ︷︷ ︸
actual calculation

While the actual force calculation for one interaction is the same for both approaches,
the time for memory access and ncandidates vary: the cell list will read all neighbour cells
and thus nneighbour

candidates ∝ 33c3, while the NL will read ncell
candidates ∝ 4

3πc
3 atoms (assuming a

homogeneous density with the same proportionality factor for both ncandidates).
Not to introduce further variables, the time the cell lists need for memory access is simply

divided by 10 (because the access is 10 times faster). Since ~Fab = −~Fba is used, only 13
neighbour cells must be loaded additionally to the own cell. This results in:

tneighbour
total ∝ 4

3
πc3 · tsingle · ( γ + 1− γ)

tcell
total ∝ 14c3 · tsingle ·

( γ
10

+ 1− γ
)

If the cell list approach should be faster (i.e. tcell
tot ≤ tneighbour

tot ), then the above equations
imply that γ needs to fulfil:

γ ≥
1− 4π

14·3
1− 1

10

≈ 78% (4.1)

In other words, the cell list approach has the advantage of very fast memory accesses (≈ 10
times faster), but with the drawback to load much needless memory elements ( 14·3

4π ≈ 3.3
times more than the neighbour lists). If the memory accesses dominate the force calculation
time (consuming at least 78 % of it), the cell list can play off its advantage. However, the
practical test showed that this high ratio is not even reached for the LJ force, which is
computationally less demanding.

Now the extrema of the cell list curve in fig. 4.4 should be explained. For cutoff radii
rc ≤ 3.5σ, the smallest valid cell size of ncell nmax = 32 atoms per cell was chosen. Though,
a usual rc = 2.5σ leaves only about 9 atoms per cell, which wastes more than 2

3 of the
processor power. The smaller the cell, the less atoms are in it - which explains the negative
slope in the first part of the diagram (presumably ∝ 32

r3c
). For the next plotted point at

rc = 3.7σ, ncell nmax jumps to the next multiple of 32, which is 64. This again results in
much wasted processor power and causes a jump in the required time. For rc = 4.85σ an
optimum is reached again, i.e. there are about as many real particles in the cell as there
are threads started. By increasing rc further, one may pass plateaus, because a slightly
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varied cutoff radius may result in the same cell size and ncell nmax. With increasing rc,
the cell lists get close to the time of the neighbour lists. This can be explained by the use
of shared memory, which supports the calculation only sparsely for small cells, when little
instructions are performed on the data, but starts to play a role when the data of large cells
can often be used again. For rc = 7σ, both approaches take about the same time. However,
cut-offs that large are only of theoretical interest - at least for the LJ force (also see fig. 2.1).
Unfortunately, the crossover could not be plotted, because ncell nmax ∝ r3

c extends the limit
of 512 particles for greater cutoffs. The NL approach is also limited, but instead by the size
of the global memory. On the tested workstation, the graphics cards’ memory of 1GiB was
too small to store all neighbour lists for rc ≥ 9σ.

The cell list approach may perform better, if each cell could already be filled for rc = 2.5σ.
However, due to the repulsive part of the LJ force, the particles will not be much closer than
the equilibrium radius req = 6

√
2 σ. (The fact that both rc and req are proportional to σ

reasons to plot the above curves over multiples of σ in the first place.) Independently from
the algorithm, a higher particle density would be needed. To see an upper bound, a cube
with edge length c = 2 · 2.5σ can be filled with hexagonal closest packed spheres with radius
req. In that case

(2 · 2.5)3

6
√

2
3

π√
18
≈ 65 (4.2)

atoms could be filled into one cell. Still, this estimate ignores the margin a real algorithm
would reserve and moreover, densities being that high are seldom in usual MD simulations
of liquids or gases.

In order to avoid the principle disadvantage of the cell lists (i.e. to load to much posi-
tions), one could try to enhance the method by using multiple neighbour shells:

Figure 4.6: Multiple neighbour shells, drafted in 2D

(a) one neighbour shell (b) two neighbour shells (c) four neighbour shells

Legend: The particles are coloured as follows: red / horizontally striped marks the current cell.

Loaded and sometimes needed particles are blue / vertically striped. The loaded but not needed

particles are green / white striped. The solid black particles are neither loaded nor needed.

In that case, the cells in the corners of the above mentioned cube can be skipped during
the calculation, which gives the hope to reduce the ratio of needlessly loaded memory. That
approach can also handle larger cut-offs, since the same geometrical size is now split over
several cell, thus, the limit of 512 particles is reached later. However, a great number of
neighbours shells is needed to see an effect (see fig. 4.6) and unless unrealistic large cut-offs
are chosen, the cell again gets too small to be filled with enough atoms (at least close to 32)
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to be performant. In fact, for the above example and a usual cutoff rc = 2.5σ, the use of
two neighbour shells decreased the performance by a factor of about 10.

As a small conclusion, the cell list approach works well

• for high particle densities,

• for computationally inexpensive forces and

• for large cutoff radii when simultaneously using multiple neighbour shells.

However, for scenarios usually investigated by MD simulators, these conditions are gen-
erally not fulfilled. Even in that case, the cell lists do not seem to have a benefit great
enough to justify

• the need to re-order all data into a new structure for the GPU and copy the data back
into the old format whenever the original Lammps need it, and

• the programming effort to re-invent code parts, which could otherwise be adapted from
the Lammps code, that already uses neighbour lists.

After knowing the above explained results, the current implementation generally focused
on neighbour lists, where the later development additionally made use of a float4 structure
the texture cache, increasing the performance by a factor of 1.2.

Building neighbour lists on the GPU

Since the last section revealed NLs as the preferred alternative for force calculation, it is
desired to build them directly on the graphics card - not just to have the force calculation
completely on the GPU, but especially to avoid time-consuming data transfers to the device
and of course, in the hope to speed up the NL build by parallelization. However, the
different number of neighbours for each particle brings up some difficulties: the CPU lists
all neighbours of the first particle, and always appends a list of neighbours for the next
particle to the end of that list, remembering the starting point in this long list for every
particle (as a cumulative sum or as pointers) - see fig. 4.7.

Figure 4.7: memory structures of NLs
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If the neighbour lists should be build in parallel for every particle, each particle would try
to find and store its neighbours. For that reason, the starting point of every list already has
to be known before the number of neighbours had been calculated. There are two possible
solutions: either reserve a constant maximum number of neighbours nneigh max (potentially
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wasting memory) or firstly start a trial run of the neighbouring algorithm just to count
the number of neighbours (wasting time). In the presented implementation the decision
was to choose the former alternative, because the density in many studied systems, like
incompressible liquids, is homogeneous - thus, each particle has about the same number of
neighbours.

To solve the problem of how to choose nneigh max, an initial small value can be guessed.
If and while the succeeding procedure of building the neighbours list fails (because there
were to many particles within the neighbour radius), nneigh max can be increased. Either, it
may be increased by a fixed value, which potentially takes many steps, but will find a close
approximation - or it may be doubled each time, which will grant for a smaller number of
re-allocation steps (logarithmic complexity), but will potentially consume too much extra
memory. Since memory is rather limited on a GPU and a re-allocation occurs only seldom
in usual scenarios, the increase by a fixed value was chosen. In the current implementation,
nneigh max never decreases.

The number of checks, whether a particle is within the neighbour radius rneigh, can be
done with all other particles. Alternatively, it can be reduced by firstly sorting all particles
into a cell list - re-using the code developed in section 4.2.2. Still, only the positions are
reordered. Afterwards, the check only incorporates close neighbour cells. Just as Lammps
does, both methods are implemented and left as a choice to the user.

4.2.3 Long-range pair forces

Regarding the long-range forces, the GPU implementation is based on Lammps’ existing code
and limits itself to the PPPM algorithm, disfavouring the direct Ewald sum (see section
2.2.3). Some parts of the code can be parallelized in a straight-forward manner, e.g. by
delegating operations on every particle (or every grid node) to a Cuda thread, which had
been done inside a loop in the original Lammps code.

Thanks to Nvidia, there is a program library called CUFFT, which can compute an
important part of the PPPM algorithm - the FFT - on the GPU. Using MPI, Lammps also
parallelizes the FFT over multiple CPU processes. That topic will be dealt with in the next
section while discussing the communication. Having that said, only one detail of the PPPM
algorithm should be highlighted to the end of this section, which is the creation of the charge
grid.

A possible implementation would start a thread for every grid node and try to find all
particles within the critical distance and add the effective charge (in case of the Coulomb
potential) to its own grid data element. However, this idea is less performant, e.g. because
it would result in useless read accesses from global memory in almost all cases, since the
effective charge is only influenced by a few surrounding particles. Therefore, the alternative
idea is to stay close to the CPU implementation and start a thread for every particle and
distribute its charge over those grid nodes close to the own position. However, this emerges
to be problematic, since it potentially causes write conflicts and atomic functions are only
supported for integer values (see section 3.4.1), while effective charges are rational numbers
(float or double). To overcome this dilemma, atomic functions are used anyway by imple-
menting a fixed-point arithmetic, i.e. every rational numbers is multiplied by a large integer
L ∈ N+, in order to move prior decimal places into the computational range of integers
and after the calculation, each number is again divided by L. Furthermore, L is chosen
adaptively by determining the highest significant bit in the result.
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4.3 Avoiding data transfers between host and device

So far, the implementation of the force calculation has been parallelized. In term of Amdhal’s
Law (see 2.10), i.e. often executed code-parts were chosen in order to get a proportion ϕ of
parallelized instructions (as close as possible to 1). Since the number of processors N can
not be influenced by software development, the other critical parameter left is the overhead
ratio τ , which is mainly caused by communication between CPU and GPU. This section
will therefore discuss methods to decrease τ (and increase ϕ). Although Amdahl’s Law
oversimplifies the situation, because it was only derived for a set of equal processors, it will
be used in this discussion for CPUs and GPUs as well, because the trends are still the same.

The first overhead coming to mind is the time spent waiting for data transfers between
host and device every timestep, e.g. the GPU-calculated forces must be downloaded to
numerically integrate them to new velocities and positions and upload this data again for
the next timestep. In order to get an impression whether it is worth to do something about
these data transfers, the times spent on calculation and data transfers are compared. From
the already mentioned LJ melting example (4.2.2), the following rough estimates can be
made, which are neither exact nor general, but give an idea about the orders of magnitude.
(In that example, the force calculation takes ϕ ≈ 80% of the total time.) For further
approximations, the average time in seconds per atom and timestep (“ s

astep”) is token. It
can easily be measured that approximately 1 µs

astep is spent for the force calculation on the
CPU and 50 ns

astep on the GPU. When a PCIe transfer speed of 2GiBs is assumed, it takes
12 ns

astep to transfer 24 Bytes for positions and forces (2 vectors with each 3 components, each
4 Bytes for float). Likewise, it would take 24 ns

astep for double. Additionally, each data
transfer between GPU and CPU has a latency (caused by hardware and software delays)6

and in case of using single precision on the GPU, the time spent for the conversion between
double (Lammps) and float (Cuda) must be considered, as well. In other words, the
data transfer already takes about 30% - 50% of time for the force calculation on the GPU.
Hence, at some point it appears difficult to improve the force calculation further, but in this
situation it can be seen from Amdahl’s Law, that if the overhead τ was reduced e.g. to τ

10 ,
it would have the same speed-up effect as making the force calculation three to five times
faster.

The data (e.g. positions, velocities, forces) needs to be downloaded from the GPU to
the CPU for three purposes:

• to modify the data (e.g. do the integration),

• to extract desired (macroscopic) properties (e.g. the current pressure) out of the
microscopic data and

• to synchronise data with other CPU processes of Lammps.

Thus, in order to avoid the data transfers, more than just the force calculation has to be done
on the GPU. Even if that implies more programming work, the above estimates promise that
it is worth the effort. This section will discuss the implementation of these three aspects.

6The appendix 7.4 lists a few latency- and bandwidth benchmarks.
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4.3.1 Modifications

The modification are discussed on the example of the different integrators that Lammps
encapsulated into C++ classes, each for the one of the ensembles like NVE or NVT (see
section 2.3). One can now easily inherit from these classes and override the computing rou-
tines with methods that call a corresponding Cuda kernel. As each thread of the kernel can
work on independent data and Lammps has already implemented each desired integration
algorithm (e.g. Verlet) in C++, the porting is straight-forward. As a side note, the resulting
new classes are always simply referred to e.g. as verlet/cuda, nve/cuda and lj/cut/cuda
in Lammps’ input scenario file.

Unfortunately, the resulting kernel is - in a manner of speaking - too simple: once the
positions, velocities and forces have been fetched from global memory, only little operations
are performed on the data, thus the long latencies can not be hidden. Nevertheless, even
if the integrators are only about five times faster on the GPU, just the avoidance of data
transfers already justifies the effort.

4.3.2 Computations

The computation of system properties is a little less trivial, since e.g. temperature and
pressure are based on a sum over all particles (see section 2.4.2), which would produce write
conflicts (see section 3.4.1) in a naive implementation. Still, a sum

s :=
N0−1∑
i=0

ai

can be parallelized using the following iterative idea: Nr+1 :=
⌈
Nr

2

⌉
threads are started in

round r, where each thread i adds ai+Nr+1 to ai. Every consecutive round, only the first
half of the remaining threads start the calculation, the others are left idle, until finally the
trivial case has been reached. In case N0 is initially rounded up to the next power of two,
this trivial case is one element (which is equal to s). Otherwise, the final iteration may also
perform a sequential summation of the last few elements.

With that algorithm, desired (macroscopic) properties can be calculated on the GPU in
O( log(N0) ) and only a few bytes must be transferred, e.g. every 10 timesteps (based on
the input file specifications), which does significantly reduce τ .

4.3.3 Communication

As mentioned before (section 2.6), Lammps uses spacial decomposition and an MPI based
parallelization to communicate between the different CPU processes of a Lammps program
run. Because one CPU process supervises one graphics card, this communication is also
needed to use multiple graphics cards. For it, a buffer is transferred to the other Lammps
processes, that contains

• positions (and forces) for those particles, which are close the border of the sub-box of
the own process (so-called ghost atoms) and

• all data from atoms moving into or out of the sub-box.

Since the current implementation generally stores all data inside the graphics card’s memory
- for the reasons explained above - it is wise to build the buffer directly on the GPU - and
afterwards only transfer this smaller set of data through to the CPU host in order to share
it with other Lammps processes.
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As usual, Lammps has a C++ class for communication (Comm). However, unlike forces
and integrators, the communication class can not be chosen by a user script and is instan-
tiated only once in a program run. Therefore, it is not possible to inherit from the original
Comm class or differently base a new class on it. Instead, the Comm class had to be modified
directly to call appropriate kernels.

The communication buffer itself is built in two steps. At first, the indices of the atoms
needing to be transferred are determined by calling a kernel for each particle and building
the list (using atomic functions - similar to the idea in section 4.2.2). Of course, the kernel
needs to be aware of the simulation box geometry - again, the constant memory can be
used. Afterwards, as many threads are started as there are items in the above list and the
needed data is copied into the buffer in parallel. Still, some particles may carry addition
information, like the charge. To let the device code know which information to include into
the buffer, new atom classes were introduced.

As mentioned in section 4.2.3, another component of Lammps communicating data is
PPPM. Even without giving further details about the PPPM method, it is clear, that the
Fourier transform of a 3D charge density ρ will be based upon the formula

F(ρk(·)) ∝
∫

R
e−2πikzz

(∫
R
e−2πikyy

(∫
R
e−2πikxxρ(x, y, z) dx

)
dy
)

dz . (4.3)

Obviously, the three integrals need to be calculated one after another - while of course, the
FFT will replace the integrals with discrete sums over the grid of effective charges.

Lammps now uses the following parallelization strategy: it simply splits the calculation
in each dimension over the number of involved processes and sends the result (generally
being a function, in this case given by all discrete values on the grid) to the other processes
so they can perform the calculation in the next dimension.

Figure 4.8:
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To give a clarifying example, four processors are assumed
and the idea is sketched in 2D (fig. 4.8). In the first step,
process (I) calculates the effective charges for all grid nodes in
the range of A, B, C and D, afterwards performing the FFT in
the x-direction. Likewise, process (II) does the same for E, F,
G, H; process (III) for J, K, L, M and process (IV) for N, O,
P, Q. Afterwards the results of this calculation is needed for
the FFT in y-direction. Hence, process (I) has to receive the
grid data from the cells E, J and N and sends the data from
B, C and D to the corresponding other processes (by the help
of an MPI library).

Recognisably, the communication overhead can be immense compared to the time needed
by the GPU-accelerated (CU)FFT - especially, since the data also needs to be transferred
from the device to the host and vice versa. Later benchmarks revealed, that - speaking in
terms of Amdahl’s Law - the overhead τ can even be large enough to reduce the speed-up
S to a value smaller than 1, i.e. PPPM would be slower when using multiple processes.
Therefore, the presented implementation does not parallelize the FFT over multiple GPUs,
but instead initially sends the complete data to every graphics card and makes each of them
calculate the complete FFT alone. In other words, data replication (see section 2.5) was
used.
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Chapter 5

Benchmark and precision
analysis

This chapter will list benchmarks of the presented implementation and start with the pre-
sumably most interesting property: the speed-up. Afterwards, the performance is inves-
tigated for multiple processes, where communication starts to matter. The speedup and
the scaling is also shown for the different parts of the program. Since the GPU-accelerated
Lammps is not only wanted to be faster, but also to produce the same results, the last part
of this chapter will compare the output of the GPU-aided version to the original Lammps
and analyse influence of different (float or double) precisions.

All benchmarks are done with code based on the neighbour list approach.

5.1 Benchmark

Three different scenarios are benchmarked, which are considered to represent different and
typical MD simulations:

1. Lennard-Jones Poisson Flow.
A two-dimensional LJ liquid is put between a fixed upper and lower wall. In the other
(x) dimension, the system is periodic. The lower wall is forced not to move, while
the upper wall is accelerated in negative x direction. The LJ liquid (rc ≈ 1.2σ) is
accelerated in x direction and its temperature is hold constant. Lammps requires an
additional function to force the system to stay in 2D. The enforcement of the these
constraints takes about 42% of the total simulation time on the CPU.

2. Lennard-Jones Melt.
A three-dimensional periodic box is started from an fcc lattice and the atoms get an
initial kinetic energy high enough to leave their lattice places. Using a LJ force with
cut-off 2.5σ and a Verlet NVE integrator, the melting of the system is studied. On
the CPU, approx. 80% of the time is used for the force calculation.

3. Silicate Buckingham.
In a three-dimensional periodic box, the transport of Lithium ions in a Si-O system
is studied. The three particle types interact with a short-range Buckingham potential
(U(r) := A exp

[
− rρ
]
− C

r6 for r < 10 Å, 0 otherwise) and a Coulomb interaction. The
parameters A, C and ρ are chosen to represent a real system. To calculate the long-
range interaction of the charged particles, the PPPM method is used, whose execution
takes roughly half of the simulation time.

The amount of time spent for each part of the simulation has already been mentioned in
section 4.1.3.
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5.1.1 Speedup

Total runtime speedup depending on system size

In the first test, the speed-up SGPU := tCPU
tGPU

for the different scenarios is plotted depending
on the system size, i.e. the factor by which the total program execution time is shrunk when
using the GPU-aided Lammps version.

Figure 5.1: Speedup for different scenarios, 1 CPU vs. 1 GPU
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(a) LJ Poisson Flow
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(b) LJ Melt
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(c) Silicate Buckingham

All CPU times are measured on workstation 7.2.1 (see appendix). (a) and (b) are done with
a GTX 280 having 1 GB global memory, while (c) is done with an Tesla C1060, because
it has the needed 4 GB RAM to test that number of particles. Both cards use the same
graphics chip with the same clock rate, while the Tesla card has slower memory access. The
shown peaks are reproducible on every system.

In the above examples - using Cuda graphics cards - the total Lammps runtime can be
reduced by a factor between 3 and 10 in double precision, and between 5 and 27 in single
precision. The factor strongly depends on the scenario and appears to be reasonable for a
general-purpose program like Lammps. Though, it should be noted that the speed-up for
pure force calculation is generally higher (up to SGPU ≈ 40 as detailed in the section below).

Because the GPU can not fully use its processor capability for small systems and due to
an O(1) overhead, the speed-up is generally better if the system is larger. The abscissa in the
above plots could not be extend much further, since the number of particles is limited by the
GPU memory (mainly needed to store the neighbour lists). Multiple GPUs can overcome
this limitation by providing more total memory, which is also one of the reasons why their
scaling is investigated in the next chapter.

Since each MP has only one unit for double precision arithmetics and because calculations
in double precision need to load about twice as much data from global memory, single
precision calculation can generally be expected to have an advantage of at least factor two.

In the Poisson Flow example, the speedup is relatively small and GPU version is even
slower than the original Lammps version for less than approx. 104 atoms. Many simple
additional constraints are required by the input script, that cause the call of many different
Cuda kernels. They perform only very few operations on the data, so that the memory
access latencies can not be hidden. Each of the short kernels has to face this problem again,
which encumbers performance. Double and single precision versions are less than a factor of
two apart, which supports the argument that the executions is neither limited by calculation
speed nor memory bandwidth, but memory access latency.

When doing the 5.1(b) benchmark on the same card as 5.1(c), the speedup drops notice-
ably (down to a factor of 2

3 ). Since both cards perform the pure calculations with the same
speed, a reasonable explanation is that the memory access again dominates the execution
time. Therefore, more computational intensive forces than LJ may see better speed-ups,
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simply because the CPU calculation time would increase and the GPU could execute some
more instructions while waiting for the next memory element.

Since the speedups for the Silicate Buckingham and the Melt example are about the
same in single precision, it can be implied that the PPPM method is accelerated roughly as
good as the LJ force calculation.

The speedup in the 5.1(c) example shows a non-monotone behaviour in the left half of
the plot, which is not explained by the pair force calculation, but by the PPPM computation
using FFT. In its common implementation, the FFT algorithm is based upon the factorisa-
tion of the grid dimensions into prime numbers. The performance may crucially depend on
the size and number of these factors, which are - in a sense - not monotone in N.

Speedup of different parts

While the last section only calculated the total runtime speedup, this section will now
investigate how much time is needed by the different parts of the GPU-aided program and
compare them against the CPU version (fig. 4.1), also to give a better explanation of the
above results.

In further diagrams, a fixed number of particles is chosen for each of the three scenarios,
where the speedup is already close to its maximum.

LJ Poisson Flow LJ Melt Silicate Buckingham
Number of atoms n 1.1 · 106 6.9 · 105 9.3 · 104

Figure 4.1 already showed the proportion for two CPUs, which is why figure 5.2 gives
a first illustration of the proportions in single precision also for two graphics cards. This
makes it possible to fairly compare communication times and give a general impression which
program parts are important.

Figure 5.2: Time proportion for sample runs on 2 GPUs in single precision
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(d) Legend

The fact that the proportion of the force calculation generally shrunk in comparison to
two CPUs (fig. 4.1) implies that the this part could be accelerated the most. While the
proportions in the Melt example look similar to those in fig. 4.1, the Silicate Buckingham
example is now clearly dominated by the time for PPPM method (with FFT). In the LJ
Poisson Flow example, the neighbour list creation now takes more than 1

3 of the time, which
means the acceleration of this part is comparably small.
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The proportions look quite similar for double precision, which can be seen from fig.
5.3 showing the speedup detailed for every program part, for the execution of 1 GPU in
comparisons with the 1 CPU:

Figure 5.3: Speedup SGPU of different program parts
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The black bars show the speedup in double and the red bars in single precision. The dashed
vertical lines mark the total runtime speedup.

As expected, the speedup is generally greater in single precision for all parts. The force
calculation and the integration (“Other”) experience the best speedup, because the paradigm
to perform a single instruction on multiple data fits best in these cases. In contrast, the
neighbour list creation performs worse, because each particle corresponds to a thread, which
loads another position for the distance check (long-latency access from global memory), but
performs only little operation on the data. Therefore, its speedup is always below the total
runtime speedup and its time proportion in fig. 5.3 grow in comparison to fig. 4.1 - most
noticeable in the LJ Poisson Flow and Melt example. Since the Melt example is dominated
by the force calculation just as the Silicate Buckingham example is by PPPM, it is logical
that the total speedup of these examples is not much different from the speedup of those
parts. As guessed above, the FFT causes the Silicate Buckingham example to perform badly
in double precision, because the dominant FFT part obviously performs much better in single
precision. The speedups for communication, neighbour lists and other are less important in
the Silicate Buckingham example, since they take only about 1% of the runtime.

Time proportion of data transfer

Preliminary considerations in section 4.3 already reasoned the decision to do more than
the force calculation on the GPU. To the end of this section, the program execution time
is benchmarked when doing the numerical integration on the CPU, which also needs data
transfers between host and device. Technically, this is achieved by simply changing “fix
nxt/cuda” back to “fix nvt” in Lammps’ input file. The program detects a required operation
which cannot be done on the GPU and therefore downloads all data (~x, ~v, ~F , atom types)
from the device, performs the operation on the CPU and uploads all data again. In the
Melt example, this procedure increases the time for the numerical integration from about
2% to 95% of the total execution time, decreasing the total speedup SGPU from 22 to 2.
If the program had known that the integration only needs to download forces and upload
positions, the additionally required time would have been about eight times smaller - thus,
having a the total speedup SGPU ≈ 10. In conclusion, it is however definitely worth having
the integration done on the GPU.
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5.1.2 Scaling

While the above benchmarks only compared the times for one process, this section will look
at the performance scaling of multiple graphics cards, also compared to multiple CPU cores.
As stated before, each graphics card is governed by one CPU process and an MPI library is
used to communicate between the processes in either case.

Performance depending on the number of processes

The performance of the three scenarios is measured by the number of atoms and simulation
steps which can be done per execution time (“astepµs ”).

Figure 5.4: Performance for multiple GPUs and CPUs
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(a) LJ Poisson Flow
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(b) LJ Melt
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(c) Silicate Buckingham

The speedups of the last section are found again in the relation of the values at N = 1.
The trend of GPUs showing more performance than CPUs and being better in single than
in double precision generally continues for multiple processes, as well. However, example
5.4(c) scales very badly, while 5.4(a) and 5.4(b) look promising. The main difference from
5.4(c) to the other two examples is the use of PPPM, which is therefore assumed to cause
the bad scaling. The next section will analyse the different program parts in more detail.

It is difficult to extrapolate additional performance information for greater N out of the
plot (e.g. by just looking at the slope), because firstly, the performance may scale differ-
ently when off-board communication (i.e. network transfer between multiple PCs) starts to
matter and secondly, the functions do not continue linearly. To get a better impression on
the scaling, the speedup SN := tone process

tN processes
is calculated1. SN ≤ N can be expected.

SN LJ Poisson Flow LJ Melt Silicate Buckingham
2 CPUs 2.051 1.953 1.813
4 CPUs 3.512 3.782 2.995
8 CPUs 5.846 7.231 5.080
2 GPUs (single prec.) 1.895 1.865 1.051
3 GPUs (single prec.) 2.734 2.742 1.103
4 GPUs (single prec.) 3.456 3.421 1.093
2 GPUs (double prec.) 1.942 1.905 1.091
3 GPUs (double prec.) 2.776 2.786 1.127
4 GPUs (double prec.) 3.645 3.491 1.147

As expected, the benefit from using one additional process decreases with the number of
1While SGPU gave the factor by which one GPU-aided simulation is faster than one CPU simulation,

the speedup SN in this section refers to the time factor between multiple CPU cores and a single core, or,
between multiple graphics cards and only one card.
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processes. The Poisson Flow and the Melt example scale about equally on the GPU, but
still the (relative) scaling is worse than on the CPU. This may be due to the same reason
why double precision calculations seem to show a little better speedups: the overhead (e.g.
delay for cross-process data transfers) is about the same in absolute values and therefore its
influence is the larger the smaller the calculation time.

Although it was used before only to guide the discussion, this scenario now really has
equal processes, so that Amdahl’s Law (2.10) provides a fitting function. To compare the
effectiveness of CPU and GPU parallelization, the parameters ϕ and τ are extracted:

LJ Poisson Flow LJ Melt Silicate Buckingham

CPUs ϕ 94.8 % 98.4 % 98.4 %
τ 5.3 · 10−6 5.0 · 10−9 8.4 · 10−7

GPUs (single prec.) ϕ 95.0 % 94.8 % 16.1 %
τ 3.5 · 10−3 6.2 · 10−6 2.7 · 10−2

GPUs (double prec.) ϕ 95.4 % 96.6 % 17.6 %
τ 9.6 · 10−6 2.7 · 10−6 4.7 · 10−3

The two parameters, fitted by three sample points, suggest that the overhead takes only
about one millionth of the execution time and the GPU-accelerated program is able to
parallelize about 95 % of its execution, while the Silicate Buckingham example has a higher
overhead and a much smaller ϕ ≈ 1

6 . In comparison, the CPU version parallelizes up to
98%. Based on that numbers, a high performance computer with many GPUs could be up
to S∞ = 20 times faster than one GPU (which is again a factor of up to 25 faster than one
CPU), when the overhead τ is ignored. However, τ is less than the communication time
measured by Lammps’ internal timers (which report about 2 %), suggesting that the simplest
performance model given by Amdahl’s Law does not precisely describe the situation. On
the one hand, both ϕ and τ will depend on N and on the other hand, additional effects may
play a role for the scaling, e.g. if less atoms are simulated per GPU, the (texture) cache can
be used more effectively, which may even result in some SN > N . The behaviour is hard
to predict theoretically and can probably be revealed only by large scale benchmarks for
more than four graphics cards, which could also incorporate network communication, the
behaviour of τ(N), cache usage and other effects. This task is left for future studies.

Performance under load

It should also be noted that the performance of the CPU executions can be negatively
influenced by other processes running on the system, which is a typical scenario on multi-
user PC clusters. To simulate this situation, the above LJ Melt example was run on a
quad-core CPU two times: the first time while the PC was on idle and the second time with
three other identical Lammps processes running. While still every process had its own CPU
core, the program needed about twice as long (factor ≈ 2.07). Presumably, the processes had
to share their memory bandwidth over the main-board. On the over hand, the performance
of four concurrently running GPU-aided processes is not measurably influenced, since each
simulation is done on an independent graphics card with its “own” memory and memory
bus.

This effect may be smaller on modern high performance main-boards.
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Scaling of different parts

To the end of this section, the speedup SN of the different program parts are compared
between one and four GPUs, while the numbers of particles n are still the same as in section
5.1.1.

Figure 5.5: Speedup S4 of different parts on one GPU
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The black bars show the speedup in double and the red bars in single precision. The total
speedups S4 are again marked with vertical dashed lines. The maximum is predicted with
S4 = 4, while parts with speedups S4 < 1 consume even more time when using four GPUs.

Figure 5.5 shows that 3.4 ≤ SN ≤ 4 in the LJ Poisson Flow and Melt example, when
using four GPUs for all parts - except the communication, whose time grew in comparison
to the execution with one GPU. The numbers in brackets show the scaling in comparison
to two GPUs. While the latter two examples are considered to have a good scaling, the
Silicate Buckingham has not shown a significant performance boost by the use of multiple
GPUs in figure 5.4 already, for which the PPPM method can now be made responsible. The
parallelization of PPPM gets into the dilemma that on the one hand, if the FFT is done on
every GPU alone again - like in the current implementation - the factor SN ≈ 1 is clearly
no surprise, but on the the other hand the FFT gets a significant speedup when using the
GPU (at least in single precision), which is why the communication time would always be
greater than the FFT calculation time, if the FFT was parallelized over multiple GPUs.
Future research in MD may look for methods scaling better than PPPM for the calculation
of long range forces.
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5.2 Precision analysis

While the last section investigated program timings, it is also important to make sure that
the accelerated program still computes the correct results, which will be analysed in this
section. Only the LJ Melt example is detailed here, because the other examples show similar
behaviour and would not provide the reader with more information.

5.2.1 Why compare thermodynamic properties?

Unfortunately, the correctness of the implementation cannot be shown by comparing the
output byte by byte, because the microscopic data of any simulation already varies when
executing Lammps on different CPU processor configurations. Although the same mathe-
matical operations are computed, they are generally not associative, i.e. numerically e.g.
a · (b · c) 6= (a · b) · c, for floating point numbers. Therefore there is an numerical error,
which can cause the calculated trajectories of the chaotic n-body system to drift from the
results of another execution. Operations are executed in another order, e.g. when two CPUs
partition the simulation area or when the GPU adds forces in another order than the CPU.
For that reason, the position output (with eight decimal places) already differs between
CPU and GPU after a few hundred time steps. Still, MD simulators believe that despite
the microscopic differences, all simulations principally produce the same macroscopic be-
haviour. Therefore, the following discussion will only look at the evolution of macroscopic
(thermodynamic) properties over time, e.g. temperature T , pressure p or total energy Etot.

Figure 5.6: Macroscopic properties over time
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(a) Temperature T
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(b) Pressure p
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(c) Total Energy Etot
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The GPU lines are plotted in a shades of red, the CPU lines in shades of green.

Figure 5.6 shows a zoomed-in view of the above mention properties and should only
provide the following quantitative impressions:

• Both CPU and GPU programs output the same trend of the macroscopic variables.

• Different processor configurations do not produce the exactly same results.

• The deviation between GPU to CPU executions seems not to be larger than those
between different CPU runs.

While only a small interval was plotted above, these three statements hold true for every
tested number of timesteps. For the first approx. 1000 timesteps, the calculated pressure is
the same for one CPU and one GPU in double precision, when comparing all eight outputted
decimal places.
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5.2.2 Deviations

To study the differences further, it appears to be better to investigate the relative error
instead of the absolute values, taking the execution of 1 CPU as reference. As the pressure
p shows the largest deviation (also due to the way of its calculation - see 2.4.2), it is assumed
to be the most interesting property and is therefore picked to be studied in detail. In the
example, the system approaches an thermodynamic equilibrium after about 1000 timesteps.
For the following tsteps timesteps, the standard deviation of the reference data for one CPU
σref can be calculated and the deviation ∆p := pi(t)− pref(t) can be calculated2 and scaled
to σref, which is done in figure 5.7 for four different configurations. When plotted over time,
the absolute value of ∆p is always smaller than 4 σref during all tested timesteps, and does
not noticeably grow over time. However, a direct plot of ∆p(t) looks just similar to random
static, which is why histograms are plotted instead. To give a visual reference, each of the
diagrams has the same Gauß-function as background.

pref :=
1

tsteps

tsteps−1∑
t=0

pref(t) (5.1)

σref :=

√√√√ 1
tsteps − 1

tsteps−1∑
i=0

(pref(t)− pref)
2 (5.2)

Figure 5.7: Histograms of the pressure deviation ∆p
σref
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(a) 2 CPUs
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(b) 4 CPUs
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(c) 1 GPU (double precision)
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(d) 2 GPUs (single precision)

2The index i corresponds to the eight different configurations (1 CPU, 2 CPUs, 3 CPUs, 4 CPUs, 1 GPU
single prec., 2 GPUs single prec., 1 GPU double prec., 2 GPUs double prec.).
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The deviations in figure 5.7 are centred to 0 and have a width of approximately σref,
which means that the GPU calculations show no drift away from the CPU reference and
most of the differences ∆p are within [−1σref , 1σref]. In double precision, a deviation close
to zero is more frequent than in the CPU runs.

To make the above qualitative results more quantitative, the difference of the GPU data
from the reference (1 CPU) should now be compared to the deviation between the Np = 4
CPU outputs, which are considered to be correct. Therefore, each timestep t is associated
with with a one-point average pone(t) and a one-point deviation σone(t):

pone(t) :=
1
Np

Np∑
i=1

pi(t) (5.3)

σone(t) :=

√√√√ 1
Np − 1

Np∑
i=1

(pi(t)− pone(t))2 (5.4)

A trajectory deviation σi (taking the 1 CPU run as reference) can be compared to the
average deviation σ:

σ :=
1

tsteps

tsteps−1∑
t=0

σone(t) (5.5)

σi :=

√√√√ 1
tsteps − 1

tsteps−1∑
t=0

(pi(t)− pref(t))
2 (5.6)

For the pressure p in the LJ Melt example, this results in the following data:

Configuration σi / σ
2 CPUs 1.487
3 CPUs 1.508
4 CPUs 1.542
1 GPU single prec. 1.441
2 GPUs single prec. 1.551
1 GPU double prec. 1.441
2 GPUs double prec. 1.510

Obviously, the deviation σi from reference (1 CPU) is larger when using more processors,
but there seems to be no difference in the accuracy of the results comparing CPU and GPU
data - even no significant difference between single and double precision.
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5.2.3 Radial distribution function

It is also possible to compare other physical properties, like the radial distribution function3,
which is calculated out of the final positions of the particles in the LJ Melt simulation.

Figure 5.8: Radial Distribution Function of LJ Melt

0 2 4 6 8
r [σ

LJ
]

0

0.5

1

1.5

2

2.5

R
D

F
 [

1
/σ

L
J]

CPU 1
CPU 4
GPU 1 single
GPU 2 single
GPU 1 double
GPU 2 double

The computed radial distribution functions are very close to another, with almost no visible
differences.

5.2.4 Conclusion

All things considered, it can be concluded that both GPU accelerated and normal CPU
version of Lammps produce the same (macroscopic) results within an acceptable range of
microscopic fluctuations, which are in the same order of magnitude as the differences between
different CPU executions. Single precision calculations perform faster, but come with the
theoretical risk of greater numerical error. However, the precision analysis of the example
above provides no reason to prefer double precision. For this reason, an analysis of mixed
precision calculations is not done, as it is expected to produce very similar results, with
execution times between double and single precision.

While the discussion in this chapter was only focused on the LJ Melt example, the other
two mentioned examples show very similar results.

3See appendix 7.5 for the used definition.
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Chapter 6

Conclusions

This final chapter sums up the results of this GPU parallelization approach by mention-
ing virtues and drawbacks, reviewing general impressions and giving an outlook to further
development.

6.1 Virtues

The most computational intensive part of MD turned out to be the force calculation, being
well-suited for parallelization, because the same instructions are carried out on an large
array of identically structured data. Using Nvidia’s Cuda technology, the general-purpose
MD program Lammps could be extended to make use of graphics card’s processors, while
keeping its C++ design patterns and its flexibility. The principle work-flow of Lammps
could be adapted - thus, there was no need to re-invent existing procedures. At the same
time, the force calculation could be accelerated by a factor between 15 and 40 and thus, a
total runtime speed-up from factor 5 to 30 could be achieved - depending both on simulation
and PC system parameters. In double precision, the total program runtime was between
two and four times longer.

For short-range pair forces, computations based on neighbour lists were compared against
a cell list approach. Although both methods worked in principle, the neighbour list approach
was finally chosen because a benchmark revealed it to be faster in usual scenarios and the
resulting Cuda code is closer to the original Lammps design, which did not only simplify
development, but also aids future code maintenance.

Long-range pair forces needed a different treatment: the PPPM algorithm was ported
from Lammps using the Cuda library for fast Fourier Transforms (CUFFT).

Since the data transfers between CPU and GPU toke a significant amount of time com-
pared with the time spent for the GPU force calculation, much better speed-ups could be
achieved by avoiding these data transfers. This could be accomplished by doing other parts
of the MD simulation on the graphics card as well. In particular, the modifications (e.g.
the numerical integration), the computation of (macroscopic) properties (e.g. pressure or
temperature) and the construction of the synchronisation buffer for other CPU Lammps
processes, was ported to the GPU.

Benchmarkes showed that one graphics card can already replace a modern oct-core pro-
cessor in common scenarios. The availability of high performance PCs (which can take up to
16 GPUs), the comparatively low cost of GPUs and the good scaling of the implementation
gives a strong economical argument to prefer GPUs over CPUs when setting up a computer
cluster for applications like molecular dynamics.

Core routines of the GPU-aided implementation (i.e. force calculation, neighbour list
creation and numerical integration) approved to scale very well over multiple GPUs (tested
with up to four). MD simulations are often done in computer centres, where one process has
to share resources with the programs of other users - concerning e.g. the memory bandwidth
between CPU and main memory. However, Cuda programs can explicitly lock one graphics
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card for their own execution and are therefore not influenced by other processes.

6.2 Drawbacks

The implementation also showed up some drawbacks of the presented approach.
In practise, the different memory spaces on the GPU made programming more com-

plicated, since additionally to the different access modes (e.g. read only) and concerns of
parallel programming (e.g. write conflicts), the access pattern (e.g. non-/coalesced), the
size, caching and especially the latencies have to be considered while writing the program.
It is therefore tempting to end in sub-optimal solutions.

Since the Cuda device code does not support C++, data stored inside an object had to
be copied into some C structure or variable in order to make it accessible by a Cuda kernel.

For short range forces, the GPU memory amount needed for the neighbour lists can limit
the cutoff radius and the number of particles, which can be processed on one GPU.

For long range forces, the PPPM algorithm turned out to need so much communication
time, that the overall program is faster, if every involved GPU does the FFT alone again. The
time spent on actual computation could be shrinked to a level, where the PPPM execution
time would have been dominated by communication. However, this implied a very bad
scaling of the PPPM method over multiple GPUs.

The goal to keep the modularity and flexibility of Lammps was very important - though,
this objective causes some alleviation in performance. Most clear on the example of the
numerical NVE integration, a Cuda kernel had to wait longer for one single memory fetch
from global memory than actually doing the entire computation. Whenever many different
operations were performed on the same data (e.g. computing the mean square displace-
ment, computing the virial and doing an NVT integration), the modular design implied the
execution of different independent Cuda kernels, where every of them had to deal with the
memory latencies again. It is possible to perform different often needed operation in one
kernel, but this violates the modular structure of Lammps. A program specifically compiled
for one problem may achieve better speed-ups.

6.3 Retrospection

Since known software design patterns (like divide and conquer) appear hard to be imple-
mented on parallel architectures, in that case a general recommendation seems to be a
data-driven design for three reasons:

• In order to avoid write conflicts, it turned out to be a good idea first to look at the
required result data and parallelize the algorithm in way that every thread computes
one independent memory element of the result. (This is even required, in case atomic
functions can not be used.)

• While the performance of algorithms is usually judged by complexity classes (e.g.
O( n log(n) )) referring to the number of CPU clock cycles, the number of memory
accesses emerges to be similarly important (at least on the GPU).

• When multiple parallely executed threads want to exchange data, the memory band-
width can easily become a bottleneck.
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6.4 Comparison with other GPU MD projects

LAMMPS is not the only MD program which has lately got Cuda support. By just giving
keywords, this section will compare four different projects in terms of features and scalability.
In a lack of credible and matchable benchmarks, the speedups are not compared.

• ACEMD is focused on stability, robustness and usability. It uses OpenCL and runs
under Windows and Linux. ACEMD is not published under the GPL, but a basic
version is avaliable for free.

◦ Purpose: bio-molecular dynamics

◦ Full simulation done on the GPU: yes

◦ Designed from scretch for GPU: yes

◦ Scaling: uses MPI based parallelization

◦ Features: Amber forcefields, Particle mesh Ewald (PME), Rigid and harmonic
hydrogen bonds, user-defined (non-bounded) pair-forces can be loaded from a file
with a look-up table

• GROMACS has GPU support in beta status using a library called OpenMM.

◦ Purpose: primarily for simulation of biochemical molecules like proteins, lipids
and nucleic acids

◦ Full simulation done on the GPU: no

◦ Designed from scretch for GPU: no

◦ Scaling: Multiple GPU cards are not supported.

◦ Features: basic force fields, Particle-Mesh-Ewald (PME), integration, constraints
and implicit solvent Generalized Born methods

• HOOMD shares the idea to have a full simulation done on the GPU for better
speedups, but has currently less fetures than Lammps.

◦ Purpose: general purpose

◦ Full simulation done on the GPU: yes

◦ Designed from scretch for GPU: yes

◦ Scaling: can use multiple GPUs, but only in one PC

◦ Features: basic bounded and non-bounded pair forces (8 pair, 2 bond, 2 angle, 1
dihedral, 1 improper, 1 wall); NVT, NVE, NPT integrators

• NAMD is not focused on GPU support, but can transparently enable some basic
GPU acceleration by a compile-time switch.

◦ Purpose: high-performance simulation of large biomolecular systems

◦ Full simulation done on the GPU: no

◦ Designed from scretch for GPU: no

◦ Scaling: can use multiple GPUs, recommended to have them in one PC only

◦ Features: only uses the GPU for nonbonded force evaluation and energy evalua-
tion
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• LAMMPS CUDA was introduced in this thesis and the features listed below repre-
sent the current (July 2010) state of development.

◦ Purpose: general purpose

◦ Full simulation done on the GPU: yes (overlaps bonded interactions on CPU with
nonbonded on GPU)

◦ Designed from scretch for GPU: no

◦ Scaling: scales well up to several hundred GPUs (with efficiency 80% - depending
on problem)

◦ Features: non bonded force fields (20), bonded interactions (8 bonds, 8 angle, 6
dihedral), PPPM

The GPU acceleration of Lammps clearly has competitors in other MD codes, but the project
seems to be at least on a par with them.

6.5 Outlook

Some parts of MD, like Lennard Jones force or the Verlet algorithm had been chosen in its
form so that they can be calculated easily. However, on the GPU many calculations are
memory-bounded and therefore future MD simulators with GPU-support could explicitly
use higher-order numerical integrators or do not use approximations (like, e.g., the repulsive
∝ r−12 term) at almost no extra cost. For the same reason, more computational intensive
forces show better speed-ups.

While writing this thesis, the work on the project went on and more features have been
implemented, e.g. much more pair forces than just Lennard Jones and Coulomb were added.
Currently, the project is designed as Lammps user package and we are looking forward to a
planned publication of it in one of the next Lammps releases 2010.

For the future, other approaches are planned to be tested, e.g., to do the force calculation
for less particles at the same time in order to make better use of the small GPU’s MP cache,
hoping to achieve better speed-ups. Furthermore, it may be worth to do asynchronous
data transfers, i.e. to download data of already finished calculations while other threads
are still active or uploading data and start threads on the first elements of it, while the
remaining data is still copied. Until now, this was not considered high priority, since our
approach generally minimises data transfer - it may, however, be useful when building the
inter-process communication buffer.

Finally, we are also looking forward to Nvidia’s Fermi architecture, especially since it has
full C++ support for device code (probably making the integration into Lammps easier).
Just to mention some more advantages, the Fermi graphics cards are designed for double
precision and each multi-processor possesses a full Level-Two-Cache, which could eliminate
some of the above mentioned problems caused by modularity and independent kernels.
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Chapter 7

Appendix

7.1 Contribution list

Module Main Contributor
Christian Müller Lars Winterfeld

infrastructure
compiler issues / Makefiles X
data handling X
communication X
precision X
neighborlists X
cell list neighbor list / “binning” X

pair forces
lj/cut/cuda X
lj/cut/coul/long/cuda X
buck/coul/long/cuda X
pppm/cuda X

fixes
nve/cuda X
nvt/cuda X
enforce2d/cuda X
temp/berendsen/cuda X
temp/rescale/cuda X
addforce/cuda X
setforce/cuda X
aveforce/cuda X

computes
temp/cuda X
pressure/cuda X
pe/cuda X

atom styles
atomic/cuda X
charge/cuda X
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7.2 Workstations

The benckmark of this work were done on the workstations listed below with its technical
specifications.

7.2.1 Workstations A

• Graphics cards: Two Nvidia® GeForce™ GTX 280.

◦ Chipset: GT200 (core clock rate: 602 MHz. shader clock rate: 1296 MHz, 240
stream processors).

◦ Memory: (1 GiB GDDR3, clock rate: 1107 MHz, bandwidth: 141.7 GiB/s,
interface: 512 bit).

◦ Compute capability: 1.3
◦ Other: 65 nm fab. 1.4 billion transistors.

• CPU: Intel® Core™2 Quad Q9550 at 2.83GHz.

• RAM: 8 GiB DDR2 at 800 MHz.

• Mainboard: EVGA 780i Mainboard 3xPCIe2.0 16x.

7.2.2 Workstations B

• Graphics cards: Four Nvidia® Tesla™ C1060.

◦ Chipset: GT200 (core clock rate: 602 MHz. shader clock rate: 1300 MHz, 240
stream processors).

◦ Memory: (4 GiB GDDR3, clock rate: 1600 MHz, bandwidth: 102.4 GiB/s,
interface: 512 bit).

◦ Compute capability: 1.3

• CPU: 2 x Intel X5550 at 2.66 GHz.

• RAM: 48GiB DDR3 at 1066 MHz.

• Mainboard: Supermicro X8DTG-QF R 1.0a 4xPCIe2.0 16x.

7.2.3 Workstations C

• Graphics cards: One Nvidia® GeForce™ GT240M.

◦ Chipset: GT216 (core clock rate: 550 MHz. shader clock rate: 1210 MHz, 240
stream processors).

◦ Memory: (1 GiB GDDR3, clock rate: 1600 MHz, bandwidth: 25.6 GiB/s,
interface: 128 bit).

◦ Compute capability: 1.2
◦ Other: 40 nm fab.

• CPU: Intel® Core™2 Duo CPU P7550 at 2.26 GHz.

• RAM: 4 GiB.

• FSB: 1066 MHz.
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7.3 Algorithm side notes

7.3.1 Flatting a multi-dimensional array

In many situations, a multi-dimensional array needs to be converted into a flat one-dimensional
memory array - in the context of this work, e.g., the forces (which are stored in a two-
dimensional array indexed by particle-id and space-dimension) were needed as one single
memory block for the transfer from and to the graphics card. A simliar problem is the
mapping between multi-dimensional thread block indices and the one-dimensional memory
strutrue of, e.g., particle types. In that case, a d-dimensional array can be strored as a
sequence of all (d−1)-dimensional arrays, while 1-dimensional arrays can be stored directly.
To put it as a formula, the flat index f = fd−1(~i) of a element with indices ~i ∈ Nd in a
d-dimensional array with sizes ~n ∈ Nd can be calculated by:

fk(~i) =
{

i0, for k = 0
ik + nk fk(~i), for k > 0 .

(7.1)

For instance, the element a[3][5][7] of an 3D array declared by int a[10][20][30]; would
result in element b[7 + 30 * (5 + 20 * 3)] of the flat array int b[10*20*30];.

7.3.2 Cell list indexing without modulo operations

The following code lists a short algorithm, which will produce a set of difference vectors
~D ∈ Z3, which are needed by the cell list approach (section 4.2.2) for its update pattern.
The number of neighbour shells to be considered ~s ∈ N3 in each dimension is token as
parameter - e.g. if only the closest neighbor cells should be considered, then ~s = (1, 1, 1).
The main idea is to keep updating only in a “forward direction” and a simple implementation
can waive integer division and modulo operations (which are ten times slower then additions
on GPUs).

0: void which cells(int s[3]) {
1: int c = ( (2*s[0]+1) * (2*s[1]+1) * (2*s[2]+1) - 1) / 2;
2: int D[3] = {0, 0, 0};
3: for(int i = 0; i < c; i++) {
4: if(D[2] != s[2]) ++D[2];
5: else {
6: D[2] = - s[2];
7: if(D[1] != s[1]) ++D[1];
8: else {
9: D[1] = - s[1];
10: ++D[0];
11: }
12: }
13: // process neighbour cell with relative position D
14: }
15: }
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7.4 Bandwidth and latency benchmark

The approximate values of bandwidth and latency for data transfers from and to a Cuda
graphics card were important in this work. To meassure it, two different methods are applied:

1. Upload and download different data blocks from m = 10 KiB to 100 MiB in size,
meassuring the transfer time t and by linear regression fitting it to
t(m) = latencya + m

bandwidth .

2. Upload and download 100 MiB as a whole and afterwards every byte individually.
From the difference of these times, the latencyb can be calculated.

The following tables lists some results of these two methods on different workstations.
upload download

Workstation latencya latencyb bandwidth latencya latencyb bandwidth
Workstation A (7.2.1) 181 µs 92 µs 2.07 GiB/s 204 µs 103 µs 2.07 GiB/s
Workstation C (7.2.3) 384 µs 25 µs 2.21 GiB/s 414 µs 34 µs 1.54 GiB/s

Transfers with data less than 1 MiB have lower latencies, but also lower bandwidth.

7.5 Radial distribution function

As there are different conventions in literature, the defintion for the radial distribution
function (RDF) used in section 5.2 is given and motivated below. For this purpose, the
formulas can be simplified to the use of one atom type only.

At first, the particle density ρ(~r) can be modeled from all known positions ~ri of the
atoms, in the simplest case as a sum of delta-like peak functions:

ρ(~r) :=
n−1∑
i=0

δ(~r − ~ri) . (7.2)

This density is centered on every particle and averaged.

ρ(~r) :=
1
n

n−1∑
j=0

ρ(~r − ~rj) (7.3)

The RDF g(r) should correspond to the variations of this density. Intuitivly, the number of
particles of a hollow sphere from radius r to r+ ∆r is devided by its volume and g(r) is the
limit of this fraction for ∆r → 0.

g(r) = lim
∆r→0

r+∆r∫
r

ρ(~̃r) d3r̃

4π
3 [(r + ∆r)3 − r3)]

=
lim

∆r→0

1
∆r

r+∆r∫
r

π∫
0

2π∫
0

ρ(~̃r) r̃2 sinϑ dϕ dϑ dr̃

lim
∆r→0

1
∆r

r+∆r∫
r

4πr̃2 dr̃

g(r) :=

π∫
0

2π∫
0

ρ(~r) r2 sinϑ dϕ dϑ

4πr2
(7.4)
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