

Jena Research Papers in
Business and Economics

Solving symmetric mixed-model multi-
level just-in-time scheduling problems

Malte Fliedner, Nils Boysen, Armin Scholl

18/2008

Jenaer Schriften zur Wirtschaftswissenschaft

Working and Discussion Paper Series
School of Economics and Business Administration

Friedrich-Schiller-University Jena

ISSN 1864-3108

Publisher:

Wirtschaftswissenschaftliche Fakultät
Friedrich-Schiller-Universität Jena
Carl-Zeiß-Str. 3, D-07743 Jena

www.jbe.uni-jena.de

Editor:

Prof. Dr. Hans-Walter Lorenz
h.w.lorenz@wiwi.uni-jena.de

Prof. Dr. Armin Scholl
armin.scholl@wiwi.uni-jena.de

www.jbe.uni-jena.de

Solving symmetric mixed-model

multi-level just-in-time scheduling

problems

Malte Fliednera,∗, Nils Boysena, Armin Schollb

aFriedrich-Schiller-Universität Jena, Lehrstuhl für Operations Management,

Carl-Zeiÿ-Straÿe 3, D-07743 Jena, {malte.fliedner,nils.boysen}@uni-jena.de

∗Corresponding author, phone +49 3641 943100.

bFriedrich-Schiller-Universität Jena, Lehrstuhl für Betriebswirtschaftliche

Entscheidungsanalyse, Carl-Zeiÿ-Straÿe 3, D-07743 Jena, a.scholl@wiwi.uni-jena.de

Abstract The generation of leveled production schedules is of high impor-
tance for mixed-model assembly lines whose parts and materials are supplied
just-in-time by multi-level production processes. The Output Rate Variaton
problem is the standard mathematical representation of this complex level
scheduling problem and has been extensively studied by research thus far.
This work identi�es novel symmetries in solution sequences of this problem
class and shows how these insights can be used to improve exact solution
procedures presented in the literature. The e�ectiveness of the modi�cations
is evaluated by a computational study.

Keywords: Mixed-Model Assembly Lines, Level Scheduling, Output Rate
Variation Problem, Dynamic Programming

1 Introduction

Mixed-model assembly systems are employed to produce a huge variety of di�erent mod-
els of a common base product on the same assembly line. Their high technical �exibility
allows facultative production sequences at negligible setup times and cost. Due to the
high demand of diverse parts and materials, mixed-model assembly systems are often
supplied just-in-time by upstream production processes. In order to facilitate just-in-
time deliveries and keep safety stocks as small as possible, the actual output rates for all
products, parts and materials should be kept close to constant, as this avoids overpro-
portionally high demand peaks which might not be served timely. As part of the famous

1

Toyota Production System [1], it is thus proposed to �nd a �nal assembly sequence which
levels demand rates for all required materials and production processes. This sequenc-
ing problem is referred to as level scheduling and has received widespread attention in
research and practice alike and is still vividly discussed up to now (e.g., see [2], [3], [4],
[5]). A recent survey on this and other mixed-model sequencing approaches is provided
by Boysen et al. [6].
In the literature two fundamental optimization problems for level scheduling have been

proposed. The so called Product Rate Variation problem focuses on the �nal assembly
stage and aims at evenly spreading the production rates of di�erent product models.
Since in just-in-time production systems, the �nal model sequence directly pulls the
material demand of upstream production processes, such a leveled sequence should also
lead to leveled material demands whenever products require approximately the same mix
and number of parts (e.g., [7]). However, this assumption seems to be unjusti�ed for the
vast majority of real-world assembly systems (see [8]).
The more detailed Output Rate Variation (ORV) problem takes the actual bills of

material of each product into account. The problem can be summarized as follows: A
set of P product models (or products for short) is to be sequenced on an assembly line.
Each product p ∈ P is demanded in discrete quantities Dp, where each copy of a product
is assigned to exactly one distinct production cycle t, so that in total T =

∑
p∈P Dp

slots are available. The �nal assembly stage requires a number of subassemblies, parts
and materials which are supplied by a set K of preceding production processes. Each
process can be thought of as a preceding production level which supplies a set Mk of
outputs to the �nal level. For each output m ∈Mk of a process k ∈ K a constant target
rate is calculated, which corresponds to the ideal fraction of the total demand at which
a particular output m should be required at any given production cycle in an ideally
leveled schedule.
Target rates are usually generated in one of the two following fashions. Let apmk denote

the demand coe�cient of a product p for output m at process k and Amk =
∑

p∈P apmk
be the total demand for output m at process k. This total demand is either leveled over
time, so that the target rate amounts to Amk

T (see [9]) or it is leveled with respect to the

total demand for all outputs of process k, so that the target rate becomes Amk∑
m′∈Mk

Am′k

(see [10]). As the insights generated in this work are equally valid for both types of target
rates, we will instead more generally refer to the constant target quantity lpmk of output
m at process k which a product p should ideally demand to allow a completely leveled
schedule. If demand is leveled over time, then the target quantity is exactly equal to the
target rate, so that lpmk = Amk

T , and furthermore identical for all products p ∈ P . If
demand is leveled with respect to all other outputs of a process, then the corresponding
target rate is weighted with the total demand for all outputs of a process k for each prod-
uct individually, so that lpmk = Amk∑

m′∈Mk
Am′k

·
∑

m′∈Mk
apm′k ∀p ∈ P . The following

example clari�es the calculation of target rates and target quantities.

Example: Three products P = {1, 2, 3} are to be sequenced on an assembly line in the
quantities D1 = 2 and D2 = D3 = 1. The assembly is served by a single production

2

T number of production cycles (index t)
P set of products (index p)
K set of production processes (index k)
Mk set of materials produced by process k (index m)
Xpt cumulated production quantity of product p up to cycle t
xpt a copy of product p is assigned to cycle t (xpt = 1) or not

(xpt = 0)
Dp total demand for product p
apmk quantity of output m demanded by product p at process k
Amkt cumulated quantity of output m at process k induced by all

product units up to cycle t
lpmk target quantity of output m at process k induced by product

p
Lmkt cumulated target quantity of output m at process k induced

by all product units assigned up to cycle t
δmkt deviation from target quantity of material m for process k at

cycle t

Table 1: Notation

process |K| = 1 which provides two outputs |M1| = 2. Output demands are a111 = 1
and a121 = 2 for product 1, a211 = 3 and a221 = 0 for product 2 and a311 = a321 = 1
for product 3, respectively. The total demand for output 1 over all products is thus
A11 = 2 · 1 + 1 · 3 + 1 · 1 = 6 and for output 2 A21 = 2 · 2 + 1 · 0 + 1 · 1 = 5.
If output demand is leveled over time then the target quantitities amount to l111 =

l211 = l311 = 6
4 = 1.5 and l121 = l221 = l321 = 5

4 = 1.25. This means that in the ideal
schedule leveled over time, a unit of any product should require 1.5 units of output 1 and
1.25 units of output 2.
If demand is leveled with respect to all outputs of the process, the target rates for the

two outputs are 6
11 and 5

11 . Target quantities are identical for products 1 and 2, i.e.,
l111 = l211 = 6

11 · 3 = 1.64 and l121 = l221 = 5
11 · 3 = 1.36, since both products demand

the same total quantity of outputs. They di�er for product 3, i.e., l311 = 6
11 · 2 = 1.09

and l321 = 5
11 · 2 = 0.91. It follows that in the ideal level schedule with respect to the

total output demand, any unit of products 1 and 2 should require 1.64 and 1.36 units of
outputs 1 and 2, while product 3 should instead demand 1.09 and 0.91 units, respectively.

Apparently the actual output demands apmk of products in the example di�er from the
ideal target quantities. As a consequence any feasible production schedule will deviate
from the ideal level schedule to a certain extent. The objective of the ORV problem is
hence to minimize the total deviations between actual and target demands. The ORV
problem is usually stated on the basis of cumulated quantities. Let Xpt be the cumulated
production quantity of product p up to cycle t then the cumulated demands for outputs
induced by the �nal assembly sequence up to cycle t amount to Amkt =

∑
p∈P apmkXpt

and the cumulated target quantities Lmkt =
∑

p∈P lpmkXpt, respectively.
Making use of the additional notation of Table 1 the general ORV problem can be modeled

3

as follows:

[P1] Minimize H (F (Dev (Amkt − Lmkt))) (1)

Amkt =
∑
p∈P

apmkXpt ∀k ∈ K,m ∈Mk, t = 1, . . . , T (2)

Lmkt =
∑
p∈P

lpmkXpt ∀k ∈ K,m ∈Mk, t = 1, . . . , T (3)

XpT = Dp ∀p ∈ P (4)

0 ≤ Xpt −Xp,t−1 ≤ 1 ∀p ∈ P, t = 2, . . . , T (5)∑
p∈P

Xpt = t ∀t = 1, . . . , T (6)

Xpt ∈ N0 ∀p ∈ P, t = 1, . . . , T (7)

Equations (2) and (3) de�ne the cumulated output demands and target quantities as
a result of the �nal assembly sequence. Equations (4) ensure that the �nal product
demand Dp is met for each product. Constraints (5) force the cumulated production to
monotonically increase over time. Together with (6) and (7) they additionally guarantee
that one and only one copy of a product model is assigned to each cycle t. Note that if
demand is leveled over time, lpmk is the same for all products p and due to (6) cumulated

target quantities could more readily calculated by Lmkt = Amk
T · t.

Objective function (1) evaluates and aggregates all deviations to yield a single ob-
jective value per production schedule. We decompose the total objective into three
separate functions. First, positive and negative deviations per output m, process k and
cycle t are consolidated by deviation function Dev(·). The typical deviation functions
proposed in the literature are unimodal, convex and axisymmetric around zero, so that
Dev(a) = Dev(−a), since positive deviations are usually considered as being as unwanted
as negative ones. In the vast majority of cases either absolute Dev(·) = | · | or squared
Dev(·) = (·)2 deviations are considered.
The consolidated deviations per output m, process k and cycle t are in a next step

aggregated over all outputs and processes by aggregation function F (·). Usually, the
sum of deviations F (·) =

∑
k∈K

∑
m∈Mk

(·) or the maximum deviations per output and
process F (·) = maxk∈K,m∈Mk

{·} are considered, however, also a combination such as
F (·) = maxk∈K

∑
m∈Mk

{·} is possible. F (·) can additionally consider output or process
speci�c weights to normalize deviations or express the relative importance of parts (see
[10]).
The resulting deviations per cycle are �nally aggregated by H(·). Since deviations are

usually not weighted di�erently with regard to the time slot they occur, H(·) is a commu-
tative function, so that H(a, b) = H(b, a), such as the sum over all cycles H(·) =

∑T
t=1(·)

or the maximum deviation per cycle H(·) = maxt=1,...,T {·}. On the basis of these func-
tions, we can line out the scope of this paper according to the following de�nition.

4

De�nition: The Symmetric Output Rate Variation (SORV) problem is the problem
de�ned by [P1], with an axisymmetric deviation function Dev = (·), so that Dev(a) =
Dev(−a) and a commutative function H = (·), so that H(a, b) = H(b, a), which aggre-
gates deviations over all production cycles.

As was mentioned above, the vast majority of (multi-level) mixed-model just-in-time
sequencing problems covered in literature and practice is in line with the above de�-
nition, so that the insights generated in this paper are highly relevant for all reported
applications.
In the remainder of the work we will analyze the structure of SORV problems and show

how these structural insights can strengthen exact solution algorithms. This potential
was already mentioned by Bautista et al. in [9] for a special version of the ORV problem,
but has not been considered in subsequent research (e.g. [4], [10]). We generalize and
proof their conjecture and show how to implement the necessary extensions for di�erent
objectives. For this purpose the paper is organized as follows. In Section 2 we will inves-
tigate important subproblems of SORV and identify symmetries in its solution sequences.
Section 3 will demonstrate how this knowlendge can be used to improve exact solution
methods. Section 4 hence evaluates the approach by a computational experiment.

2 Symmetric Output Rate Variation Problem

2.1 Formalization of Subproblems

Before we investigate the solution structure of SORV instances more closely, we will �rst
di�erentiate two relevant subproblems which will be useful in the subsequent discussion.
In contrast to the integer program [P1] based on cumulated quantities (Xpt), we will
chose an equivalent binary representation where variables xpt decide whether product p
is assigned to cycle t (xpt = 1) or not (xpt = 0). Let D∗p ≤ Dp ∀p ∈ P be a partial
production plan of a corresponding instance of [P1]. Assume that these products have
to be assigned to the �rst t∗ =

∑
p∈P D

∗
p production cycles, then the optimal partial

production schedule can be computed as follows

[P2] Minimize H0 (F (Dev (δmkt))) (8)

δmkt = δmk,t−1 +
∑
p∈P

(apmk − lpmk)xpt ∀k ∈ K,m ∈Mk, t = 1, . . . , t∗ (9)

δmk0 = 0 ∀k ∈ K,m ∈Mk (10)
t∗∑
t=1

xpt = D∗p ∀p ∈ P (11)∑
p∈P

xpt = 1 ∀t = 1, . . . , t∗ (12)

xpt ∈ {0, 1} ∀p ∈ P, t = 1, . . . , t∗ (13)

5

where δmkt is the deviation caused by material m of process k from the target quantity
at cycle t. Equations (9) de�ne this deviation at cycle t as equal to the deviation of
the previous cycle t − 1 increased by the di�erence between the demand coe�cient and
the target demand induced by the model p assigned at cycle t. Equations (11) make
sure that the product demand is met, while constraints (12) and (13) enforce that only
a single product model is assigned to each cycle t.
This formalization requires the de�nition of an initial deviation δmk0 for all outputs

and processes. Aggregation function H(·) is thus extended to H0(·), which is supposed to
consider all deviations from cycle 0 to t∗, e.g. H0(·) =

∑t∗

t=0(·), if the sum of deviations
is considered. Due to (10), this extension does not a�ect the objective value of [P2], so
that by recursively inserting for δmk,t−1 in equations (9), it can be readily shown that
the calculated deviations are identical for [P1] and [P2] if D

∗
p = Dp ∀p ∈ P and that

both mathematical programs are equivalent formalizations of the same ORV problem in
that case.
On the basis of [P2], we can further introduce a more general problem where deviations

δmk0 at cycle 0 of each output and process are allowed to vary:

[P3] Minimize (8)
(9), (11)− (13)

δmk0 = Smk ∀k ∈ K,m ∈Mk (14)

where Smk denotes the initial deviation of output m at process k.
As we will see in Section 3 instances of [P2] and [P3] are of special relevance in the

solution process of exact procedures for the ORV problem.

2.2 Symmetries of Solution Sequences

On the basis of the mathematical programs presented in Sections 1 and 2.1, we will
investigate structural aspects of SORV problems in this section. Instead of representing
the production schedule by integer or binary variables, we will make use of a sequence
representation, where π = (p1, p2, ..., pT) denotes the production sequence up to slot T
and π(t) = pt yields the product pt ∈ P which is assigned to time slot t.
Let Aπmkt =

∑t
τ=1 aπ(τ),mk be the cumulated demand for outputm of process k induced

by sequence π up to slot t and Lπmkt
∑t

τ=1 lπ(τ),mk be the respective cumulated target
quantity, the actual deviations from target quantities at each slot t of sequence π can be
calculated as follows

δπmkt = δπmk,t−1 + aπ(t),mk − lπ(t),mk

= δπmk0 +Aπmkt − Lπmkt ∀k ∈ K,m ∈Mk, t = 1, . . . , T
(15)

where initial deviations δπmk0 are zero for all outputs in problems [P1] and [P2] and can
vary for [P3].

6

We will start out with some simple observations on the structure of a solution sequence
to the ORV problem. The following statements (16) to (19) are true

Aπmkt = Amk −
T∑

τ=t+1

aπ(τ),mk ∀k ∈ K,m ∈Mk, t = 1, . . . , T − 1 (16)

Lπmkt = Amk −
T∑

τ=t+1

lπ(τ),mk ∀k ∈ K,m ∈Mk, t = 1, . . . , T − 1 (17)

AπmkT = Amk ∀k ∈ K,m ∈Mk (18)

LπmkT = Amk ∀k ∈ K,m ∈Mk (19)

which follows directly from the de�nition of the actual and targeted cumulated demands
Aπmkt and Lπmkt. We can directly conclude from (18) and (19) that for any solution
sequence π the observed deviation is zero at the last slot T

δπmkT = δπkm0 +Aπmk − Lπmk = 0 ∀k ∈ K,m ∈Mk (20)

We can use these statements to proof the following two lemmas:

Lemma 1: For any solution sequence π and its inverted sequence π′, with π(t) = π′(T −
t+ 1) for t = 1, . . . , T it holds that −δπmkt = δπ

′
mk,T−t ∀k ∈ K,m ∈Mk, t = 0, . . . , T .

Proof: By considering (20), the equation certainly holds for t = 0 and t = T since
−δπmk0 = δπ

′
mk0 = −δπmkT = δπ

′
mkT = 0 ∀k ∈ K,m ∈ Mk, but it also holds for all other

cases as is shown by insertion:

δπ
′

mk,T−t = δπ
′

mk0 +Aπ
′
mk,T−t − Lπ

′
mk,T−t

= 0 + (Amk −Aπmkt)− (Amk − Lπmkt)
= −Aπmkt + Lπmkt
= −δπmkt

(21)

Lemma 2: Any solution sequence π to an instance of the SORV problem can be inverted
to yield a sequence π′, so that π(t) = π′(T − t+ 1) for t = 1, . . . , T , which has the same
objective value.

Proof: By Lemma 1 it holds that −δπmkt = δπ
′

mk,T−t ∀k ∈ K,m ∈ Mk, t = 0, . . . , T .
Since Dev(·) is axisymmetric around zero it follows that Dev(−δπmkt) = Dev(δπ

′
mk,T−t)

and thus F (Dev(−δπmkt)) = F (Dev(δπ
′

mk,T−t)) ∀t = 0, . . . , T . It �nally follows from
commutativity of H that the production cycle at which the deviation occurs does not
a�ect the objective, so that both sequences yield the same value.

This directly leads to Theorem 1.

Theorem 1: Any optimal solution sequence π to an instance of problem [P1] can be
inverted to a solution sequence π′, so that π(t) = π′(T − t+ 1) ∀t = 1, . . . , T , which is

7

π π′

t 0 1 2 3 4 0 1 2 3 4
pt 1 2 1 3 3 1 2 1

ap11 1 3 1 1 1 1 3 1
lp11 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
δ11t 0 -0.5 1.0 0.5 0 0 -0.5 -1.0 0.5 0
ap21 2 0 2 1 1 2 0 2
lp21 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25
δ21t 0 0.75 -0.5 0.25 0 0 -0.25 0.5 -0.75 0∑

k∈K

∑
m∈Mk

|δmkt| 0 1.25 1.5 0.75 0 0 0.75 1.5 1.25 0

Table 2: Comparison of SORV Solution Sequences

also optimal for the instance of [P1].

Proof: Follows immediately from Lemma 2. Since any inverted sequence π′ yields the
same objective value as π, π′ needs to be optimal if π is and vice versa.

The following example depicts this relationship.

Example (cont.): Consider sequence π = (1, 2, 1, 3), which is an optimal solution to the
problem instance introduced in Section 1 if the objective is to level the sum of absolute
deviations over time. Table 2 displays the progression of deviations for both required
outputs as compared to its inverted sequence π′ = (3, 1, 2, 1).
Note that the deviations of both solution sequences are symmetric for the outputs and
as a result also the progression of the aggregated deviation is symmetric. It follows that
both sequences have the same objective value of 3.5, so that since π is an optimal solu-
tion, so is π′.

We will now extend the discussion to partial sequences, where we refer to a partial
sequence as any sequence of length t∗ < T to which not all product copies have been
assigned yet. Such partial sequences are typically generated in the process of iterative
solution algorithms which start from the �rst cycle t = 1 and then successively assign
products to subsequent production cycles on the basis of some selection scheme until a
solution sequence has been reached. In analogy to the concepts introduced above, we
will show that the identi�ed symmetry also holds for partial sequences. For convenience
we will use the same symbols π and π′ for partial sequences.
Consider a partial sequence π with length t∗ to which D∗p copies of product p have been

assigned, so that
∑

p∈P D
∗
p = t∗. Irrespective of the exact order of models, the deviation

at the last slot t∗ of this partial sequence will amount to:

δπmkt∗ = δπmk0 +Aπmkt∗ − Lπmkt∗
= δπmk0 +

∑
p∈P D

∗
p (apmk − lpmk) ∀k ∈ K,m ∈Mk

(22)

Note that we can interpret any partial sequence for an instance of [P1] as a feasible so-

8

lution to an instance of subproblem [P2] with product demands D∗p and initial deviations
are zero or likewise as a feasible solution to an instance of [P3], where initial deviations
are allowed to vary.
In analogy to Lemmas 1 and 2 for complete solution sequences, we can prove the fol-

lowing two lemmas for partial sequences.

Lemma 3: It holds for any partial sequence π with length t∗ to which D∗p copies of
product p ∈ P have been assigned and its inverted partial sequence π′, with π(t) =
π′(t∗ − t + 1) for t = 1, . . . , t∗, that −δπmkt = δπ

′
mk,t∗−t ∀k ∈ K,m ∈ Mk, t = 0, . . . , t∗

with δπmk0 = 0 and δπ
′

mk0 =
∑

p inP D
∗
p (lpmk − apmk) ∀k ∈ K,m ∈Mk.

Proof: Due to (22) and the de�nition of initial deviations for π′, the relationship obvi-
ously holds for t = 0 and t = t∗, but likewise holds for all intermediate slots as

δπ
′

mk,t∗−t = δπ
′

mk0 +Aπ
′
mk,t∗−t − Lπ

′
mk,t∗−t

=
∑

p inP D
∗
p (lpmk − apmk) + (Aπmk,t∗ −Aπmkt)− (Lπmk,t∗ − Lπmkt)

=
∑

p inP D
∗
p (lpmk − apmk) +

∑
p inP D

∗
papmk −Aπmkt

−
∑

p inP D
∗
plpmk + Lπmkt

= −Aπmkt + Lπmkt
= −δπmkt

(23)

Lemma 4: Any feasible solution sequence π to an instance of problem [P2] can be in-
verted to sequence π′, with π(t) = π′(t∗− t+ 1) for t = 1, . . . , t∗, so that π′ is a feasible
solution to the corresponding instance of [P3] with Smk =

∑
p inP D

∗
p(lpmk−apmk) ∀k ∈

K,m ∈ Mk and the objective values of π in [P2] and π
′ in [P3] are exactly equal. Like-

wise any feasible solution sequence to such a [P3]-instance can be inverted to a solution
sequence of [P2], so that both have the same obejctive value.

Proof: In analogy to Lemma 2. If π′ is a solution to such an instance of [P3], its initial
deviation is set to δπ

′
mk0 = Smk =

∑
p inP D

∗
p(lpmk − apmk) ∀k inK,m ∈ Mk. It follows

from Lemma 3 that −δπmkt = δπ
′

mk,t∗−t ∀k ∈ K,m ∈ Mk, t = 0, . . . , t∗, so that for an

axisymmetric deviation function Dev(·) and a commutative aggregation function H0(·)
the objective value of π in [P2] is equal to the objective value of π′ in [P3].

There apparently is a duality between problems [P2] and [P3], in the sense that for any
solution to an instance of [P2] we can �nd a corresponding solution, i.e., its inversion, to
a respective instance of [P3] which yields the exact same objective value and vice versa.
This leads to the following theorem:

Theorem 2: Any optimal solution π to an instance of [P2] can be inverted to a sequence
π′, with π(t) = π′(t∗−t+1) for t = 1, . . . , t∗, so that π′ is optimal for the corresponding
instance of [P3] with Smk =

∑
p inP D

∗
p (lpmk − apmk) ∀k ∈ K,m ∈Mk.

9

π π′

t 0 1 2 0 1 2
pt 3 1 1 3

ap11 1 1 1 1
lp11 1.5 1.5 1.5 1.5
δ11t 0 -0.5 -1.0 1.0 0.5 0
ap21 1 2 2 1
lp21 1.25 1.25 1.25 1.25
δ21t 0 -0.25 0.5 -0.5 0.25 0∑

k∈K

∑
m∈Mk

|δmkt| 0 0.75 1.5 1.5 0.75 0

Table 3: Comparison of Partial Sequences

Proof: By contradiction. Let π be the optimal solution sequence of an instance of [P2],
then due to Lemma 4 it can be inverted to form a solution π′ for the corresponding
instance of [P3] with the same objective value. If there was a better solution to the [P3]-
instance, it could in turn be inverted to generate a second solution to the [P2]-instance,
which due to Lemma 4 had the same objective value, so that π could not be optimal.

The following example displays two partial sequences and clari�es the relationships be-
tween them.

Example (cont.) Consider the partial sequence π = (3, 1), which constitutes an optimal
solution for the instance of [P2] with t

∗ = 2, D∗1 = D∗3 = 1 and D∗2 = 0 and compare it to
sequence π′ = (1, 3), which is an optimal solution for the corresponding instance of [P3]
with S11 = 1.5− 1 + 1.5− 1 = 1 and S21 = 1.25− 1 + 1.25− 2 = −0.5. Table 3 displays
the progression of deviations, if the sum of absolute deviations is to be leveled over time.
It shows that both sequences have symmetric deviations, if initial deviations for sequence
π′ are chosen accordingly and thus also yield the same objective value of 2.25.

3 Consequences for Solution Methods

3.1 Description of the Dynamic Programming Algorithm

In this section we will demonstrate how to exploit these structural insights in order to
improve solution procedures. The best exact solution methods for the ORV problem
are Dynamic Programming (DP) algorithms which are based on an implicit enumeration
scheme of �nal assembly sequences (see [4], [9], [10]). In these approaches the solution
space of the problem is represented by an acyclic digraph G = (V,E,w) with a node set
V comprising T +1 stages, a set E of arcs connecting nodes of adjacent stages and a node
weighting function w : V → R. A stage t of the digraph contains a set Vt = {1, 2, . . .}
of vertex numbers which represent all feasible states of the production system in cycle t.
We will identify a node/state (t, i) by its stage number t, i.e., the production cycle up

10

to which model copies have already been assigned, and its vertex number i ∈ Vt. Stored
with each state is a vector Xi

t of length |P | which stores the cumulated quantities Xi
tp of

all models p ∈ P produced up to cycle t.
The following conditions de�ne all feasible states to be represented as nodes of the

graph: ∑
p∈P

Xi
tp = t ∀ t = 0, . . . , T, i ∈ Vt (24)

0 ≤ Xi
tp ≤ Dp ∀ p ∈ P, t = 0, . . . , T, i ∈ Vt (25)

The node set V0 contains a single additional starting node (initial state (0, 1)) corre-
sponding to the vector X1

0 = [0, 0, . . . , 0]. Similarly, the node set VT contains a single
node (�nal state (T, 1)) with X1

T = [D1, D2, . . . , D|P |].
Two nodes (t, i) and (t + 1, j) of two adjacent stages t and t + 1 are connected by

an arc if the associated vectors Xi
t and Xj

t+1 di�er in only one element, i.e., a copy of
exactly one model is additionally produced in cycle t+1. Due to (24) and (25) this holds
whenever Xi

tp ≤ X
j
t+1,p∀p ∈ P . The overall arc set is de�ned as follows:

E = {((t, i), (t+1, j)) | t = 0, . . . , T−1, i ∈ Vt, j ∈ Vt+1 and Xi
tp ≤ X

j
t+1,p ∀p ∈ P} (26)

The produced quantities of all models up to cycle t in a state (t, i) directly determine the
actual cumulated output demands Aitmk and target demands Litmk for all outputs and
processes:

Aitmk =
∑
p∈P

Xi
tp · apmk ∀ k ∈ K,m ∈Mk (27)

Litmk =
∑
p∈P

Xi
tp · lpmk ∀ k ∈ K,m ∈Mk (28)

As a consequence, a node weight wit can be determined for each state (t, i) on the basis of
the employed deviation function Dev(·) and aggregation function F (·). If, for instance,
the sum of absolute deviations F (Dev(·)) =

∑
k∈K

∑
m∈Mk

|·| is considered, node weights
are determined by:

wit =
∑
k∈K

∑
m∈Mk

|Aitmk − Litmk| ∀ t = 1, . . . , T ; i ∈ Vt (29)

If instead the maximum squared deviation per output F (Dev(·)) = maxk∈K,m∈Mk
{(·)2}

is to be minimized weights are calculated according to:

wit = maxk∈K,m∈Mk
(Aitmk − Litmk)2 ∀ t = 1, . . . , T ; i ∈ Vt (30)

The weight of the initial node at (0, 1) is set to w1
0 = 0. On the basis of this graph, the

optimal solution of the ORV problem reduces to �nding the shortest path from source
node (0, 1) to sink node (T, 1).

11

Figure 1: Example graph for the sum of absolute deviations

This path can be easily determined during the stage-wise construction of the graph by
aggregating node weights wit on the path up to stage t according to aggregation function
H(·). If deviatons are summed up over all cycles by H(·) =

∑T
t=1(·), the aggregated

weight (minimum path length) W i
t of node i at stage t is calculated by the following

recursion

W i
t =

{
min(t−1,h)∈P i

t
{W h

t−1}+ wit

}
∀t = 1, . . . , T ; i ∈ Vt (31)

where P it denotes the set of direct predecessors of node (t, i). If the maximum deviation
is considered the recursion becomes

W i
t = max

{
min(t−1,h)∈P i

t
{W h

t−1}; wit
}
∀ t = 1, . . . , T ; i ∈ Vt (32)

The best predecessor, i.e., the node of stage t − 1 linked to (t, i) with the minimum
aggregated weight, is stored for each state, so that the corresponding optimal sequence
can be retrieved by tracing back all predecessor nodes along the shortest path to (t, i).
As a consequence the DP-approach does not need to store the complete graph, but only
the nodes at the last two stages and those nodes which are currently part of a shortest
path. The optimal objective value is �nally given by W 1

T at sink node (T, 1).

Example (cont.): For the problem instance introduced in Section 1 the resulting graph
for the sum of absolute deviations over time is displayed in Figure 1. For each node
the cumulated production quantities are provided along with the node weight and the
aggregated weight. The shortest path is sketched in bold, so that the optimal production

12

sequence is π = (1, 2, 1, 3) resulting to a minimum total deviation of 3.5. Note that just
as predicted by Theorem 1, a second path with the same length can be identi�ed, which
results to the alternative optimal sequence of π′ = (3, 1, 2, 1).

In comparison to the total number of production sequences, the implicit enumeration
procedure reduces the number of investigated states considerable. Nevertheless, the total
number of nodes can be calculated by

Πp∈P (Dp + 1) ≤
[
D1 +D2 + . . .+D|P | + |P |

|P |

]|P |
=
[
T + |P |
|P |

]|P |
(33)

and thus increases exponentially in the problem size (see [10]).

In order to further reduce the number of nodes, Bautista et al. [9] and Kubiak et
al. [10] propose to employ upper bound �lters. For this purpose, a �rst upper bound is
calculated by a heuristic procedure prior to the execution of the DP approach. During
the node generation, lower bounds are computed for each state, so that a state can be
fathomed whenever its lower bound is equal to or greater than the upper bound. We will
brie�y outline how to compute lower bounds for ORV problems.
Let δminp denote the minimum contribution to the total deviation which is at least

caused by scheduling a copy of product p. On the basis of these values, a global lower
bound LB can be determined with regard to aggregation function H(·). If the sum of
deviations is considered, Dp is summed up over all product copies:

LB =
∑
p∈P

δminp ·Dp (34)

if the sum of deviations is considered or to

LB = maxp∈P {δminp } (35)

if the maximum deviation per time slot is minimized. In order to determine δminp we
can make use of the following observation. The contribution of scheduling a product p
at a given slot t in a sequence π apparently depends on the deviations for each material
and production level at the prior slot δπmk,t−1. For convex, axissymmetric deviation
functions and the vast majority of employed aggregation functions it can be shown that
the deviations caused by scheduling a product p at a slot t become minimal whenever

δπmk,t−1 = lpmk−apmk

2 ∀k ∈ K,m ∈ Mk, which in turn means that δπmk,t−1 = −δπmk,t (e.g.,
[9]). The minimum deviation per product can thus be determined by

δminp = F (Dev(
lpmk − apmk

2
)) (36)

This information can not only be used to calculate global lower bounds, but also
for local lower bounds for each node in the dynamic programming algorithm by only
considering the product copies which have not been scheduled yet (see [9]). For special

13

objective functions LB can be further tightened, in order not to lose generality of the
approach we will however abstain from such modi�cations.

3.2 Extended Dynamic Programming Approach

The structural insights of Section 2.2 can be used to improve the solution method intro-
duced in the previous section, if the ORV problem to be solved is symmetric, i.e. covered
by the SORV problem classs. Recall that after a stage t has been fully evaluated by the
algorithm, for any state (t, i) in this stage the following information is available:

(i) the total production quantities Xi
t up to cycle t

(ii) the objective value W i
t of the optimal partial sequence as the length of the shortest

path to the corresponding node

(iii) by recursion the optimal partial production sequence π of length t which leads to
the current state

A state (t, i) thus directly provides the optimal solution to a problem instance of [P2]
with D∗p = Xi

pt ∀p ∈ P . The remaining subproblem apparently consists of optimally
assigning the remaining model copies to the remaining number of t∗ = T − t production
cycles, while considering the current deviation for each output and process at state (t, i).
Note that this subproblem is actually an instance of [P3] with D

∗
p = Dp −Xi

pt ∀p ∈ P
and Smk = Aitmk −Litmk ∀k ∈ K,m ∈Mk. If this instance is solved to optimality, then
the partial production sequence π associated with state (t, i) can be appended by the
optimal solution sequence of the [P3]-instance. The result is a feasible solution to the
ORV problem, which furthermore constitutes the best possible solution sequence under
the condition that cumulated production quantities of Xi

pt ∀p ∈ P are to be assigned
to the �rst t cycles. It follows that if we had the solution to the [P3]-instance, we could
readily determine the best feasible solution to the ORV problem to which the partial
schedule of (t, i) would result and the state could hence be fathomed. In the following
we will show how the symmetries identi�ed in Section 2.2 can be exploited to determine
such a solution.
Assume that the DP approach has just evaluated stage t1 = dT2 e. We select an arbitrary

node of this stage (t1, i) with cumulated production quantities ofXi
pt1∀p ∈ P . We are now

interested in �nding the optimal solution of the [P3]-instance with D
∗
p = Dp−Xi

pt1∀p ∈ P
and Smk = Ait1mk − L

i
t1mk = D∗p(lpmk − apmk) ∀k ∈ K,m ∈ Mk. Recall from Theorem

2 that the optimal solution can be retrieved by solving a problem instance of [P2] with
D∗p = Dp − Xi

pt1∀p ∈ P and Smk = 0 ∀k ∈ K,m ∈ Mk and invert the obtained
solution sequence. As a matter of fact the Dynamic Programming algorithm has already
found this solution up to stage t1. As all partial production schedules are generated
and evaluated by the algorithm there has to be an already evaluated node (t2, j) with
Xj
pt2

= Dp−Xi
pt1∀p ∈ P at stage t2 = T − t1. Since t1 = dT2 e, it either holds that t

2 = t1

for even values of T , so that this node has to be in the same stage, or t2 = t1 − 1 for
uneven T , so that the node lies in the previous stage.

14

Figure 2: Example graph of extended dynamic programmin algorithm

If this complementary node (t2, j) is retrieved, its optimal partial sequence π2 can be
inverted and appended to the partial sequence π1 of state (t1, i) to yield the best possi-
ble solution π = (π1(1), π1(2), . . . , π1(t1), π2(t2), π2(t2 − 1), . . . , π2(1)) which state (t1, i)
could ever be extended to. Note that the determination of the objective value of this
solution sequence again depends on aggregation function H(·). If the sum of deviations
is considered the objective value of sequence π results toW i

t1 +W j
t2
−wit1 , since deviations

wit1 = wj
t2

at slot t1 and t2 have been counted twice in total, once in the generation of
π1 and once to determine π2. If maximum deviations are considered the objective value
can be determined by max{W i

t1 ,W
j
t2
}.

Example (cont): Consider the graph of Figure 2, which comprises all states of the
example up to stage t1 = dT2 e = 2, where four nodes have been generated and evalu-
ated. Consider the second node of stage 2 (2, 2). It has cumulated production quantities
X2

21 = X2
22 = 1 and X1

23 = 0 and an optimal partial sequence π2 = (1, 2) on the shortest
path to (2, 2) sketched in bold. Its complementary state is represented by node (2, 3)
with cumulated production quantities of X3

21 = X3
23 = 1 and X3

22 = 0 and an optimal
partial production sequence of π3 = (3, 1). Note that the weights of both nodes are iden-
tical, i.e., w2

2 = w3
2 = 1.5 and that they have been considered in the calculation of both

aggregated weights W 2
2 and W 3

2 , respectively. The optimal solution to the overall prob-
lem is retrieved by combining π2 and the inverse of π3 to π = (1, 2, 1, 3) with an optimal
objective value of W 2

2 +W 3
2 −w2

2 = 2.75 + 2.25− 1.5 = 3.5. The complementary node of
state (2, 1) is (2, 4), however the corresponding objective value of 3.75 + 3.25− 2.5 = 4.5
is inferior.

15

For each node (t1, i) exactly one complementary node (t2, j) exists. If Xi
t1p = Xj

t2p
∀p ∈

P then node (t1, i) is its own complementary node (t2, j). Note that stages t1 and t2 and
the nodes therein can be considered in an arbitrary order, since due to Theorem 1 each
obtained solution can be inverted to yield a second optimal solution.
We can conclude that for every SORV problem, the node generation process of the DP

algorithm can be stopped at stage t1. Instead of continuing the generation of nodes until
T , we can rather make use of the optimal partial sequences already generated to �nd the
global optimum solution. This can reduce the number of states up to approximately half
of the total number (especially for large values of T). Note that the necessary methods
of identifying and retrieving nodes at a stage on the basis of their cumulated production
quantities is a standard requirement of the DP algorithm, so that the additional e�ort
for implementation is fairly low. It can further be combined with pruning techniques,
such as the upper bound �lters discussed in Section (3.1). If a complementary node has
already been fathomed on the basis of an upper bound and thus cannot be retrieved, then
obviously also the actual node on hand can be discarded, since its �nal objective value
needs to be at least as high as the objective value of its complementary node. In the
following we will evaluate the actual run time performance of the considered extension
by a computational evaluation.

4 Computational Evaluation

In the computational study we seek to evaluate the e�ectiveness of the algorithmic exten-
sion introduced in the previous section. As was shown the number of states which need to
be investigated by a full implicit generation of sequences can be approximately halved.
Since the identi�cation of complementary nodes in the same or adjacent stage might,
however, consume additional computational time, the actual run time performance can
only be measured by experiment.
We thus test the performance of the Extended Dynamic Programming (EDP) algo-

rithm compared to the original version DP on a set of generated test instances. The
test bed is based on a study of Kubiak et al. [10], who consider a facility with four
production levels |K| = 4, where the �rst production level represents the �nal assembly
of products. According to the the formalization of [P1], we equivalently set M1 = P
with apm1 = 1, if p = m and apm1 = 0 otherwise. The number of products is varied
during the experiment, so that |P | ∈ {8, 10, 12}. Production levels 2 to 4 provide a �xed
number of parts with |M2| = 25, |M3| = 50 and |M4| = 75, which should re�ect typical
relative di�erences between preceeding production processes. Part coe�cients of these
lower level outputs are randomly selcted out of a set of given intervals, which Kubiak et
al. vary during the computational evaluation. Since they �nd that these variations have
no impact on solution times, we will randomly select part coe�cients out of a uniform
distribution over the same interval [0, 20]. Instead we will vary the number of production
cycles T ∈ {15, 20, 25, 30}, in order to better evaluate the performance with regard to
the actual problem size. The demands for each product are also randomly determined

16

DP EDP
|P | T time states time states
8 15 0.17 3,568 0.10 2,375

[0.13 0.20] [2,880 4,374] [0.08 0.13] [1,898 2,937]
8 20 0.89 16,384 0.48 9,309

[0.66 1.25] [12,960 20,736] [0.36 0.61] [7,326 11,826]
8 25 3.22 57055 1.88 34,921

[2.69 4.58] [48,000 76,800] [1.55 2.67] [29,342 47,365]
8 30 10.90 171,023 5.80 93,814

[7.80 14.86] [129,600 225,000] [4.19 7.88] [70,926 123,887]
10 15 0.44 6,874 0.27 4,630

[0.30 0.52] [4,608 7,776] [0.20 0.31] [3,015 5,268]
10 20 2.75 37,901 1.53 21,670

[1.77 3.52] [25,920 46,656] [1.00 1.94] [14,700 26,768]
10 25 14.43 168,579 8.35 104,413

[9.63 18.19] [120,960 207,360] [5.63 10.50] [74,222 129,091]
10 30 58.88 555,408 30.62 306,484

[37.28 95.50] [381,024 777,600] [19.05 48.42] [209,312 430,344]
12 15 1.15 13,517 0.71 9,238

[1.03 1.23] [12,288 13,824] [0.63 0.78] [8,355 9,459]
12 20 8.10 81,339 4.38 46,802

[4.69 11.22] [51,200 104,976] [2.53 5.95] [29,209 60,657]
12 25 59.19 437,933 33.93 274,257

[42.23 92.13] [331,776 559,872] [23.63 51.45] [206,309 352,439]
12 30 - - 199.41 968,840

[218.25 -] [1,244,160 -] [108.97 296.19] [688,371 1,298,234]

Table 4: Results of DP and EDP in �rst experiment

observing that the total demand for products is equal to the number of production cycles
available, i.e.,

∑
p∈P Dp = T .

In a �rst experiment we seek to investigate whether the algorithmic extension results
in a considerable improvement in solution times. We will thus not use additional �lter-
ing methods which could bias the results. Note that the performance in this experiment
hardly depends on the employed objective function, since all states need to be generated
in any case and the evaluation of di�erent objectives usually takes very similar compu-
tational e�ort. The results are thus merely presented for the sum of absolute deviations
leveled over time. Algorithms DP and EDP were both implemented in C# and run on
a Pentium IV, 1800 MHz PC, with 512 MB of memory and an upper limit on solution
time of 300 cpu seconds was imposed. Table 4 displays minimum, average and maxi-
mum solution times and the number of evaluated states

(avg.
[min. max.]

)
for each problem

instance.
As an obvious and expected result the average solution times and the number of

evaluated states increase overproportionally with the number of products and production
cycles for both algorithms. In comparison, EDP clearly performs better than DP and
is able to solve all instances to optimality within 300 cpu seconds. DP only solves one

17

out of 10 replications for |P | = 12 and T = 30, so that merely minimum times and states
are provided for this size.
We further �nd that solution times and the number of states vary considerably per

problem size for both algorithms. This is not surprising, however, since due to (33)
the total number of states depends on the actual demand values for products, which
can di�er among replications of the same size. Interestingly, the relative di�erences in
the number of states between EDP and DP are rather constant per size. It further
generally increases for larger values of T , but is considerably higher for even values of T ,
since uneven values of T require the generation of an additional stage bT2 c+ 1.
Finally, the relative di�erence in computational time is consistently higher than the

actual reduction in states. This �nding might seem somewhat surprising on �rst look,
since all algorithmic operations are performed per state only. However, this phenomenon
can be explained on the basis of two considerations. First and foremost, the actual
evaluation of nodes at stage dT2 e will require less computational time for EDP than for
DP . While EDP searches for a single complementary node for each element of this
stage, DP needs to generate and consolidate all successive nodes for each element, which
will typically take more computational e�ort. Secondly, the computer implementation
might cause additional overhead in the course of the optimization, since memory needs
to be frequently allocated, released and reallocated, which tends to consume more time
the longer the procedure runs.
We can conclude from this experiment that while the maximum relative di�erence in

the number of states is strictly bounded from above by 2, the di�erence in computational
time can be signi�cantly higher and actually exceed a factor of 2.
The considered setting is nevertheless somewhat stylized, since there is no apparent

reason why we would choose not to employ additional �ltering techniques to speed up
the procedure. If an upper bound is able to fathom nodes early in the search, this can
lead to a massive reduction of evaluated nodes at later stages. We can thus conjecture
that the traditional DP approach will bene�t more from such an upper bound �lter as
compared to EDP . In a second experiment we will therefore determine an upper bound
prior to the exact solution, which is hence used to fathom nodes whose local lower bound
is not lower than this upper bound. We consider two simple upper bound methods, a
One-Stage heuristic, which always selects and assigns the product model p at slot t that
minimizes the total deviations at this slot, and a Two-Stage heuristic, which chooses the
model p at slot t that minimizes total deviations for slots t and t+1 (see [10]). Since their
solution times are insigni�cant, both heuristics are run for each instance and the best
objective value obtained is passed as an upper bound to the exact solution procedures.
Lower bounds are determined as described in Section 3.1. Since the tightness of such

a lower bound can depend on the employed objective function, we will further consider
the following four well-known objectives:

1. [SAD]: H(F (Dev(·))) =
∑T

t=1

∑
k∈K

∑
m∈Mk

| · |

2. [SSD]: H(F (Dev(·))) =
∑T

t=1

∑
k∈K

∑
m∈Mk

(·)2

3. [MAD]: H(F (Dev(·))) = Max t,k,m{| · |}

18

4. [MSD]: H(F (Dev(·))) = Max t,k,m{(·)2}

where deviations are leveled over time in all cases. 10 replications are computed for
each problem size and objective function, so that in total 480 problem instances are
solved to optimality. Tables 5 and 6 summarize the results of the second experiment for
both algorithms separately.
Apparently, solution times and the number of evaluated states depend heavily on the

considered objective function for both algorithms. While all instances of MAD and
MSD are solved in less than a second on average, SSD and especially SAD take much
more computational e�ort. This massive di�erence can be directly explained by the
e�ectiveness of the employed upper bound �lters. If deviations are summed up over time,
the local lower bound of a node at an early stage of the DP approach will have hardly any
predictive power with regard to the �nal objective of a solution. As a consequence, nodes
can only be fathomed towards the end of the procedure. If maximum deviations per cycle
are minimized, the upper bound can be used to exclude undesirable assignments already
at early stages, which in turn results to a massive performance increase. In fact the
performance for MAD and MSD is almost identical, which suggests that the bounding
rules are tight for both objectives. In contrast to that the performance of SAD and
SSD still di�ers considerably. This can be explained by the larger variations in the sum
of squared deviations, which allow an earlier identi�cation of undesirable assignments.
Especially the DP procedure can exploit this in the later stages of its graph, while EDP
does not pro�t as much. Therefore the relative improvement is the smallest for SSD. It
nevertheless holds for all objectives, that the relative improvement tends to be the higher
the larger the problem size.
Overall it can be stated that EDP performs signi�cantly better for all instances and

that the absolute improvement is especially large whenever deviations are summed over
time. This is also underlined by a comparison to the results of Miltenburg [4], who
introduces a �Reaching� Dynamic Programming (RDP) algorithm as a variation of the
DP procedure employing a speci�c list enumeration method in order to identify and
consolidate the nodes at each stage. In his work performance results for SAD and SSD
are only presented for a comparatively small instance of Bautista et al. [9] (|P | = 5,
T = 20, |K| = 1, |M1| = 4), but the di�erence is remarkable. While the implementation
of RDP with an upper bound of the Two-Stage heuristic run on a comparable system
(Notebook with 1.8 GHz processor and 1 GB RAM) optimized SAD in 144.94 and SSD
in 45.22 seconds, EDP takes only 2.18 seconds for SAD and 0.68 for SSD, respectively.
Although a closer investigation is necessary to analyse this large discrepancy, it seems to
be fair to say that EDP constitutes the best known exact solution method for symmetric
versions of the ORV problem.

5 Conclusion

In this work we investigated the structure of solution sequences of the well-known ORV
problem and identi�ed symmetries which were subsequently exploited to strengthen ex-
act solution methods. The �ndings are especially interesting since they are equally valid

19

S
A
D

S
S
D

M
A
D

M
S
D

|P
|

T
ti
m
es

st
a
te
s

ti
m
es

st
a
te
s

ti
m
es

st
a
te
s

ti
m
es

st
a
te
s

8
1
5

0
.1
3

3
,0
1
0

0
.1
0

2
,6
0
8

0
.0
0

2
7
7

0
.0
1

2
7
7

[0
.0
9
0
.1
7
]

[2
,3
6
1
3
,9
3
8
]

[0
.0
8
0
.1
6
]

[2
,0
3
6
3
,5
7
4
]

[0
.0
0
0
.0
2
]

[7
1
5
9
8
]

[0
.0
0
0
.0
3
]

[7
1
5
9
8
]

8
2
0

0
.4
8

1
0
,3
8
6

0.
2
9

7
,5
7
3

0
.0
2

5
3
9

0
.0
2

5
3
9

[0
.3
3
0
.6
3
]

[7
,6
9
9
1
2
,9
1
0
]

[0
.2
0
0
.4
2
]

[5
,4
3
5
1
0
,0
6
1
]

[0
.0
0
0
.0
5
]

[7
1
1
,2
1
2
]

[0
.0
0
0
.0
5
]

[7
1
1
,2
1
2
]

8
2
5

1
.0
9

2
4
,9
5
4

0.
5
6

1
5
,0
7
4

0
.0
2

5
6
2

0
.0
2

56
2

[0
.8
3
1
.5
6
]

[1
9
,8
6
7
3
4
,5
4
1
]

[0
.4
2
0
.8
0
]

[1
1
,9
8
6
2
0,
8
2
3
]

[0
.0
0
0
.0
3
]

[8
5
1
,0
3
7
]

[0
.0
0
0
.0
5
]

[8
5
1
,0
3
7
]

8
3
0

2
.4
1

5
3
,0
0
7

1.
0
5

2
7
,4
9
2

0
.0
2

6
8
1

0
.0
2

68
1

[1
.6
1
3
.0
5
]

[3
7
,5
2
7
6
4
,7
6
1
]

[0
.6
9
1
.3
4
]

[1
8
,6
7
9
3
3,
7
6
3
]

[0
.0
0
0
.0
5
]

[1
4
5
1
,1
9
3
]

[0
.0
0
0
.0
5
]

[1
4
5
1
,1
9
3
]

1
0

1
5

0
.3
7

6
,4
5
5

0
.3
3

5
,9
5
5

0
.0
3

7
5
7

0
.0
3

7
5
7

[0
.2
3
0
.4
4
]

[4
,3
8
2
7
,3
6
9
]

[0
.2
2
0
.3
6
]

[4
,1
1
7
6
,7
8
2
]

[0
.0
2
0
.0
6
]

[3
1
1
1
,4
1
9]

[0
.0
2
0
.0
6
]

[3
1
1
1
,4
1
9
]

1
0

2
0

1
.8
5

2
9
,6
5
8

1.
2
3

2
2
,3
1
4

0
.0
4

8
7
8

0
.0
3

87
8

[1
.2
2
2
.4
4
]

[2
0
,5
9
0
3
7
,4
0
1
]

[0
.8
8
1
.6
1
]

[1
5
,9
9
5
2
8,
2
1
3
]

[0
.0
0
0
.0
6
]

[3
0
8
1
,3
7
9
]

[0
.0
2
0
.0
5
]

[3
0
8
1
,3
7
9
]

1
0

2
5

7
.1
2

1
0
3
,4
9
2

3
.6
4

6
3
,3
0
2

0
.0
7

1
,6
2
9

0
.0
7

1
,6
2
9

[4
.3
6
9
.4
7
]

[6
8
,6
0
7
13

2
,7
6
6
]

[2
.0
8
5
.5
2
]

[3
9,
3
3
7
9
0
,3
9
3]

[0
.0
2
0
.1
7
]

[3
2
4
4
,1
2
7
]

[0
.0
2
0
.1
7
]

[3
2
4
4
,1
2
7
]

1
0

3
0

1
8
.4
5

2
4
9
,1
6
7

7
.0
0

1
1
8
,9
6
8

0
.0
6

1
,4
0
4

0
.0
6

1
,4
0
4

[1
3
.5
2
2
7
.6
4
]

[1
91

,8
0
6
3
4
9
,2
8
4
]

[5
.4
7
9
.5
8
]

[9
5
,8
6
2
1
5
6
,5
5
4
]

[0
.0
2
0
.1
4
]

[4
2
0
3
,6
2
1
]

[0
.0
2
0
.1
4
]

[4
2
0
3
,6
2
1
]

1
2

1
5

1
.1
1

1
3
,3
7
2

1.
0
5

1
3
,1
0
5

0
.0
9

1
,7
7
5

0
.0
8

1
,7
7
5

[1
.0
0
1
.2
2
]

[1
2
,1
7
5
1
3
,7
1
7
]

[0
.9
8
1
.0
9
]

[1
2
,0
6
1
1
3,
5
4
0
]

[0
.0
5
0
.1
4
]

[1
,1
4
8
2
,7
2
5
]

[0
.0
5
0
.1
4
]

[1
,1
4
8
2
,7
2
5
]

1
2

2
0

6
.5
7

7
3
,3
1
5

4.
7
8

6
0
,3
3
9

0
.0
9

1
,8
7
6

0
.0
9

1
,8
7
6

[4
.1
1
9
.4
7
]

[4
8
,2
5
7
9
7
,1
9
6
]

[3
.3
8
6
.6
9
]

[4
3
,0
7
3
8
1,
2
2
4
]

[0
.0
2
0
.2
5
]

[5
6
0
5
,2
2
1
]

[0
.0
3
0
.2
3
]

[5
6
0
5
,2
2
1
]

1
2

2
5

3
8
.0
1

3
3
6
,3
6
3

1
9
.0
3

2
1
8
,0
4
9

0
.1
3

3
,1
7
3

0
.1
4

3
,1
7
3

[2
7
.3
9
6
1
.0
0
]

[2
60

,1
8
7
4
4
9
,5
4
8
]

[1
4
.5
6
2
9
.2
2
]

[1
7
3
,6
3
6
3
0
6
,1
7
1
]

[0
.0
5
0
.3
4
]

[1
,2
1
3
7
,6
5
3
]

[0
.0
5
0
.3
4
]

[1
,2
1
3
7
,6
5
3
]

1
2

3
0

1
6
6
.1
4

1
,0
4
5
,9
2
1

5
1
.1
4

5
1
6
,6
8
2

0
.2
1

4
,5
6
1

0
.2
0

4
,5
6
1

[1
0
1
.4
5
2
5
8
.9
4
]

[7
6
9
,0
5
2
1
,4
0
8
,9
1
7
]

[3
4
.4
8
7
3
.9
8
]

[3
7
9
,8
4
6
6
62

,5
2
8
]

[0
.0
6
0
.5
9
]

[1
,3
1
5
1
2
,6
8
8
]

[0
.0
5
0
.5
9
]

[1
,3
1
5
1
2
,6
8
8
]

T
ab
le
5:

R
es
u
lt
s
of
D
P

w
it
h
H
eu
ri
st
ic
U
p
p
er

B
ou
n
d

20

S
A
D

S
S
D

M
A
D

M
S
D

|P
|

T
ti
m
es

st
a
te
s

ti
m
es

st
a
te
s

ti
m
es

st
a
te
s

ti
m
es

st
a
te
s

8
1
5

0
.0
9

2
,2
8
7

0
.0
8

2
,0
4
6

0
.0
0

1
9
3

0
.0
0

1
9
3

[0
.0
6
0
.1
3
]

[1
,7
9
1
2
,9
3
0
]

[0
.0
5
0
.1
7
]

[1
,5
5
5
2
,8
0
4
]

[0
.0
0
0
.0
2
]

[7
1
3
8
0
]

[0
.0
0
0
.0
2
]

[7
1
3
80

]
8

2
0

0
.3
5

7
,8
3
5

0
.2
3

5
,8
0
6

0
.0
1

3
6
5

0
.0
1

3
6
5

[0
.2
5
0
.4
7
]

[5
,9
0
9
1
0
,1
0
4
]

[0
.1
6
0
.3
0
]

[4
,1
5
3
7
,4
8
3
]

[0
.0
0
0
.0
3
]

[7
1
7
3
9
]

[0
.0
0
0
.0
2
]

[7
1
7
3
9
]

8
2
5

0
.8
9

2
0
,5
7
6

0
.4
5

1
2
,1
6
8

0
.0
1

3
4
9

0
.0
1

3
4
9

[0
.6
7
1
.3
0
]

[1
6
,3
0
3
2
8
,7
6
7
]

[0
.3
4
0
.6
3
]

[9
,7
0
9
1
6
,6
7
9
]

[0
.0
0
0
.0
2
]

[8
5
6
0
0
]

[0
.0
0
0
.0
2
]

[8
5
6
0
0
]

8
3
0

1
.9
8

4
2
,8
4
4

0
.8
5

2
1
,7
0
4

0
.0
2

3
9
9

0
.0
2

3
9
9

[1
.3
4
2
.4
8
]

[3
0
,2
5
8
5
1
,8
8
7
]

[0
.5
6
1
.1
1
]

[1
4
,8
9
6
2
6
,4
0
3
]

[0
.0
0
0
.0
5
]

[1
4
5
6
9
6
]

[0
.0
0
0.
0
5
]

[1
4
5
6
9
6
]

1
0

1
5

0
.2
5

4
,6
2
3

0
.2
3

4
,4
7
6

0
.0
2

5
6
2

0
.0
3

5
6
2

[0
.1
6
0
.3
0
]

[2
,9
7
8
5
,2
6
8
]

[0
.1
4
0
.2
8
]

[2
,8
6
9
5
,1
7
7
]

[0
.0
0
0
.0
5
]

[2
2
5
9
38

]
[0
.0
2
0
.0
5
]

[2
2
5
9
3
8
]

1
0

2
0

1
.3
0

2
0
,7
9
0

0
.9
5

1
6
,7
6
9

0
.0
2

6
3
1

0
.0
3

6
3
1

[0
.8
3
1
.6
7
]

[1
3
,7
7
2
2
6
,2
3
9
]

[0
.6
3
1
.2
5
]

[1
1
,3
5
8
2
1
,5
1
0
]

[0
.0
0
0
.0
3
]

[3
0
8
1
,0
6
1
]

[0
.0
2
0
.0
5
]

[3
0
8
1
,0
6
1]

1
0

2
5

5
.6
8

8
3
,2
4
6

3
.0
3

5
2
,1
2
6

0
.0
4

9
9
8

0
.0
4

9
9
8

[3
.5
5
7
.6
9
]

[5
5
,8
1
3
1
0
7
,5
7
0
]

[1
.7
5
4
.6
4
]

[3
2
,6
7
4
7
4
,0
3
8
]

[0
.0
0
0
.0
8
]

[3
2
4
2
,3
7
3
]

[0
.0
2
0
.0
9
]

[3
24

2
,3
7
3
]

1
0

3
0

1
4
.7
6

1
9
7
,8
7
2

5
.7
1

9
6
,4
0
3

0
.0
3

8
88

0
.0
3

8
8
8

[1
0
.6
1
2
2
.7
2
]

[1
4
6
,7
2
4
2
8
2
,1
6
0
]

[4
.5
3
8
.1
4
]

[7
7
,4
1
0
1
2
9
,9
0
9
]

[0
.0
0
0
.0
9
]

[3
4
4
2,
3
2
3
]

[0
.0
2
0
.0
9
]

[3
4
4
2
,3
2
3
]

1
2

1
5

0
.6
8

9
,2
3
8

0
.6
9

9
,2
3
7

0
.0
6

1
,3
9
2

0
.0
7

1
,3
9
2

[0
.5
9
0
.7
8
]

[8
,3
5
5
9
,4
5
9
]

[0
.5
9
0
.8
3
]

[8
,3
5
2
9
,4
5
9
]

[0
.0
5
0
.0
9
]

[1
,0
1
7
2
,0
2
1
]

[0
.0
5
0
.0
9
]

[1
,0
1
7
2
,0
2
1
]

1
2

2
0

4
.1
2

4
6
,7
3
4

3
.4
7

4
2
,9
2
8

0
.0
7

1
,4
42

0
.0
6

1
,4
4
2

[2
.3
9
5
.7
2
]

[2
9
,1
8
5
6
0
,6
5
4
]

[2
.1
3
4
.9
7
]

[2
7
,3
0
8
5
8
,2
2
0
]

[0
.0
2
0
.1
6
]

[4
7
0
3
,5
8
4
]

[0
.0
2
0
.1
6
]

[4
7
0
3
,5
8
4]

1
2

2
5

2
9
.0
1

2
5
5
,6
6
1

1
5
.5
8

1
7
8
,7
5
4

0
.0
9

2
,0
5
3

0
.0
9

2
,0
5
3

[2
0
.2
0
4
7
.4
2
]

[1
9
2
,2
5
9
3
4
0
,4
9
2
]

[1
1
.7
5
2
4
.0
6
]

[1
3
8
,5
0
0
2
5
2
,1
8
4
]

[0
.0
3
0
.2
0
]

[6
5
7
4
,4
6
6
]

[0
.0
2
0
.2
0
]

[6
5
7
4
,4
6
6
]

1
2

3
0

1
2
5
.5
4

7
9
4
,9
2
2

4
1
.7
3

4
1
9,
7
0
4

0
.1
3

2
,8
9
8

0
.1
3

2
,8
9
8

[7
5
.5
6
2
0
4
.6
7
]

[5
6
6
,7
1
4
1
,0
8
9
,5
0
0
]

[2
7
.6
6
6
0
.2
2
]

[3
0
3
,5
4
8
5
5
7,
0
2
8
]

[0
.0
5
0
.3
6
]

[1
,1
2
0
7
,9
2
5
]

[0
.0
5
0
.3
6
]

[1
,1
2
0
7
,9
2
5
]

T
ab
le
6:

R
es
u
lt
s
of
E
D
P

w
it
h
H
eu
ri
st
ic
U
p
p
er

B
ou
n
d

21

for a wide range of objective functions and thus include the vast majority of multi-level,
just-in-time scheduling problems discussed in the literature. They further deepen the un-
derstanding of the considered problem and underline the fundamental symmetric struc-
ture of level scheduling problems, which has already been exploited to solve the related
Product Rate Variation problem. The experimental analysis showed that the extended
algorithm constitutes the state-of-the-art exact solution method for SORV problems. In
order to further improve the performance of the procedure, there is an imperative need
for tight lower bounds especially for problems where deviations are aggregated as the
sum over time. Progress in this direction is likely to speed up the search considerably
and is thus the logical next step for future research.

References

[1] Y. Monden, Toyota Production System, third ed., Industrial Engineering and Man-
agement Press, Institute of Industrial Engineers: Norcross, GA, 1998.

[2] A. Corominas, W. Kubiak, N.M. Palli, Response time variability, Journal of Schedul-
ing 10 (2007) 97�110.

[3] V. Lebacque, V. Jost, N. Brauner, Simultaneous optimization of classical objectives
in JIT scheduling, European Journal of Operational Research 182 (2007) 29�39.

[4] J. Miltenburg, Level schedules for JIT mixed-model production lines: characteris-
tics of the largest instances that can be solved optimally, International Journal of
Production Research 45 (2007) 3555�3577.

[5] N. Boysen, M. Fliedner, A. Scholl, Level scheduling of mixed�model assembly lines
under storage constraints, International Journal of Production Research (2008) DOI:
10.1080/00207540701725067.

[6] N. Boysen, M. Fliedner, A. Scholl, Sequencing mixed-model assembly lines: Survey,
classi�cation and model critique, European Journal of Operational Research (2009)
349�373.

[7] J. Miltenburg, Level schedules for mixed-model assembly lines in just-in-time pro-
duction systems, Management Science 35 (1989) 192�207.

[8] N. Boysen, M. Fliedner, A. Scholl, The Product Rate Variation Problem and its
relevance in real world mixed-model assembly lines, European Journal of Operational
Research, 192 (2009) 349-373.

[9] J. Bautista, R. Companys, A. Corominas, Heuristics and exact algorithms for solving
the Monden problem, European Journal of Operational Research 88 (1996) 101�113.

[10] W. Kubiak, G. Steiner, J.S. Yeomans, Optimal level schedules for mixed-model,
multi-level just-in-time assembly systems, Annals of Operations Research 69 (1997)
241�259.

22

	ADPF.tmp
	Malte Fliedner, Nils Boysen, Armin Scholl

