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Zusammenfassung  

Alternatives Spleißen (AS) ist ein Mechanismus, durch den ein Multi-Exon-Gen verschiedene 

Transkripte und damit verschiedene Proteine exprimieren kann. AS trägt wesentlich zur 

Komplexität und Vielfalt eukaryotischer Transkriptome und Proteome bei. Die Bioinformatik 

hat in den vergangenen zehn Jahren entscheidenden Beiträge zu unserem Verständnis des 

AS in Bezug auf Verbreitung, Umfang und Konservierung der verschiedenen Klassen, 

Evolution, Regulierung und biologische Funktion geliefert. Zum Nachweis des AS im großen 

Maßstab wurden meist Verfahren zur Genom- und Transkriptom-weiten Alignierung von 

EST- und mRNA-Daten sowie Microarray-Analysen eingesetzt, die weitestgehend auf 

bioinformatischen Methoden basieren. Diese wurden durch rechnergestützte Verfahren zur 

Charakterisierung und Vorhersage von AS ergänzt, die zeigen, wie sich konstitutive und 

alternative Spleißorte sowie Exons unterscheiden. 

Die vorliegende Dissertationsschrift beschäftigt sich mit bioinformatischen Analysen 

ausgewählter Aspekte des AS. Im ersten Teil habe ich Verfahren zur Vorhersage des AS 

entwickelt, ohne dabei auf Datensätze exprimierter Sequenzen zurückzugreifen. 

Insbesondere habe ich Ansätze zur Vorhersage von Kassetten-Exons mittels Bayessches 

Netze (BN) weiterentwickelt und neue diskriminierende Merkmale etabliert. Diese 

verbesserten deutlich die Richtig-Positiv-Rate von publizierten 50% auf 61%, bei einer 

stringenten Falsch-Positiv-Rate von nur 0,5%. Ich konnte zeigen, dass Exons, die als 

konstitutiv gekennzeichnet waren, denen aber durch das BN eine hohe Wahrscheinlichkeit 

zugeweisen wurde, alternativ zu sein, in der Tat durch neueste Expressionsdaten als 

alternativ bestätigt wurden. Bei gleichen Datensätzen und Merkmalen entspricht die 

Leistungsfähigkeit eines BN der einer publizierten Support-Vektor-Maschine (SVM), was 

darauf hinweist, dass verlässliche Ergebnisse bei der Klassifikation mehr von den 

Merkmalen als von der Wahl des Klassifikators abhängen. 

Im zweiten Teil habe ich den BN-Ansatz auf eine umfangreiche und evolutionär weit 

verbreitete Klasse von AS-Ereignissen ausgeweitet, die als NAGNAG-Tandem-Spleißstellen 

bezeichnet werden und bei denen die alternativen Spleißorte nur 3 Nukleotide (nt) 

voneinander getrennt sind. Die sorgfältige Zusammenstellung der Trainings- und Test-

Datensätze bei der Vorhersage des NAGNAG-AS trug zu einer ausgewogenen Sensitivität 

und Spezifität von 92% bei. Vorhersagen eines auf dem vereinigten Datensatz trainierten BN 

konnten in 81% (38/47) der Fälle experimentell bestätigt werden. Im Rahmen dieser Studie 

wurde damit einer der gegenwärtig umfangreichsten Datensätze zur experimentellen 

Verifizierung von Vorhersagen des AS generiert. Ein BN, trainiert anhand menschlicher 

Daten, erzielt ähnliche gute Ergebnisse bei vier anderen Wirbeltier-Genomen. Nur leichte 

Einbußen bei Vorhersagen für Drosophila melanogaster und Caenorhabditis elegans weisen 

darauf hin, dass der zugrunde liegende Spleißmechanismus über weite evolutionäre 
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Distanzen konserviert zu seien scheint. Schließlich verwendete ich die 

Vorhersagegenauigkeit der experimentellen Validierung, um die Zahl der noch unentdeckten 

alternativen NAGNAGs abzuschätzen. Die Ergebnisse deuten darauf hin, dass der 

Mechanismus des NAGNAG-AS einfach, stochastisch und konserviert ist - unter Wirbeltieren 

und darüber hinaus. Des weiteren habe ich den BN-Ansatz zur Charakterisierung und 

Vorhersage von NAGNAG-AS in Physcomitrella patens, einem Moos, eingesetzt. Dies ist 

eine der ersten Studien zur Vorhersage von AS in Pflanzen, ohne dabei auf Datensätze von 

exprimierten Sequenzen zurückzugreifen. Wir erreichten ähnliche Ergebnisse, wie in 

unseren anderen Arbeiten zur Vorhersage NAGNAG-AS. Eine unabhängige Validierung 

mittels 454-NextGen-Sequenzdaten zeigte Richtig-Positiv-Raten von 64%-79% für gut 

unterstützt Fälle von NAGNAG-AS. Damit scheint der Mechanismus des NAGNAG-AS bei 

Pflanzen dem der Tiere zu ähneln. 

Im dritten Teil habe ich mich an Analysen zur phylogenetischen Konservierung des 

subtilen AS beteiligt, um die Frage zu beantworten, wieviele subtile AS-Ereignisse von 

funktioneller Bedeutung sind. Dabei konzentrierten wir uns auf Tandems mit einem Abstand 

von 3-9 nt. Wir konnten frühere widersprüchliche Ergebnisse zur Konservierung von 

alternativen und konstitutiven Tandem-Motiven auflösen, indem wir diese auf ein 

statistisches Paradox (Simpsons Paradox) zurückführten. Anhand von Methoden, die 

entsprechende Verzerrungen berücksichtigen, wurde gezeigt, dass alternative 

Tandemmotive stärker konserviert sind als konstitutive. Aus diesen Analysen konnten wir 

eine konservative Abschätzung der Zahl von Tandem-Spleißorten unter reinigender 

(negativer) Selektion ableiten. 

Schließlich war ich in der Aktualisierung und erheblichen Ausweitung der Tandem-

Spleißstellen-Datenbank (TassDB2) beteiligten, die eine umfassende Informationsquelle für 

Forscher im Bereich des subtilen AS darstellt. TassDB2 enthält sowohl vermeintliche als 

auch experimentell bestätigte Tandem-Spleißstellen in einer Entfernung von 2-12 nt. Nutzer 

können nach verschiedenen Kriterien, einschließlich Gen-Namen, Leserahmen-Erhaltung, 

Anzahl der Transkripte, experimentelle Bestätigung, Isoform-Verhältnis und Konservierung 

des Tandemmotivs in Maus, Hund, Huhn oder Zebrafisch, suchen. 

Insgesamt habe ich in dieser Arbeit sowohl konservierte Kassetten-Exons in Mensch und 

Maus sowie NAGNAG-AS in fünf Wirbeltier-Genomen, Fliege, Wurm und der Pflanze 

Physcomitrella vorhergesagt als auch Verbreitung und Konservierung des subtilen AS 

untersucht. 
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Summary 

Alternative splicing (AS) is a mechanism by which a multi-exonic gene can produce 

different transcripts and thereby different proteins. AS is a major contributor to the complexity 

and diversity of eukaryotic transcriptomes and proteomes. Bioinformatics has made 

significant contributions to research in AS over the past decade. Computational methods 

have been critical for AS in respect to its abundance, the frequency and conservation of 

different classes of AS, the evolution of AS, regulation of AS, and its functional impact on 

various biological processes. Large-scale detection of AS has mostly been performed using 

alignment of EST and mRNA data to genomes, or microarray data, both of which extensively 

use bioinformatics methods. These have been complemented by computational methods of 

characterization and prediction of AS, which show how to distinguish between constitutive 

and alternative splice sites and exons.   

This thesis concerns itself with bioinformatics analyses of selected aspects of AS. In the 

first part, I predict AS without using expressed sequence information. Specifically, I extend 

previous studies on predicting conserved cassette exons by using Bayesian Networks (BNs), 

and several novel discriminative features. This significantly improved the true positive rate 

from a previously reported 50% to 61%, at a stringent false positive rate of 0.5%. I show that 

exons which are labelled constitutive but receive a high probability of being alternative by the 

BN, are in fact alternative exons according to the latest transcript data.  When using the 

same dataset and the same set of features, the BN matches the performance of a support 

vector machine (SVM) in earlier literature, indicating that good classification depends more 

on features than on the choice of classifier. 

In the second part, I extend the BN approach to AS prediction to an evolutionarily 

widespread class of AS, the so called “NAGNAG AS”, involving tandem splice sites 

separated by 3 nucleotides (nt). Careful construction of training and test datasets helped 

achieve a balanced sensitivity and specificity of  92% in predicting NAGNAG AS. 

Predictions by a BN trained on the combined dataset could be experimentally verified in 81% 

(38/47) of the cases. This constitutes one of the largest sets of experimentally verified 

predictions of AS to date. A BN learned on human data achieves similar performance on four 

other vertebrate genomes, while there is only a slight drop for Drosophila and worm, which 

indicates conservation of the underlying splicing mechanism. Lastly, I use the prediction 

accuracy according to experimental validation to estimate the number of yet undiscovered 

alternative NAGNAGs. The results suggest that the mechanism behind NAGNAG AS is 

simple, stochastic, and conserved among vertebrates and beyond. I then applied the BN 

approach to characterize and predict NAGNAG AS in Physcomitrella patens, a moss, in one 

of the first reported studies on predicting AS in plants without using expressed sequence 
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information. We achieve similar results as in our other work on predicting NAGNAG AS, with 

and independent validation using 454 data resulted in 64%-79% of the well-supported cases 

of NAGNAG AS being correctly predicted. Thus the mechanism behind NAGNAG AS in 

plants seems to be similar to that in animals.  

In the third part, I contributed to the analyses of phylogenetic conservation to address the 

question of how many subtle AS events are functionally important. Focusing on tandems with 

a distance of 3–9 nucleotides, we resolve previous contradicting results on whether 

alternative or constitutive tandem motifs are more conserved between species by showing 

that they can be explained by a statistical paradox (Simpson's paradox). The applied 

methods took biases into account, and found that alternative tandems are more conserved 

than constitutive tandems. We estimate a lower bound for the number of alternative sites that 

are under purifying (negative) selection.  

Lastly, I was involved in the update and significant extension of the tandem splice site 

database (TassDB) to create TassDB2, a comprehensive resource for researchers interested 

in subtle AS. TassDB2 contains both putative and confirmed splice sites separated by 

distance 2-12 nt. Users can search by many different criteria, including gene name, frame-

preservation, number of supporting transcripts for each variant, the ratio of supporting 

transcripts, and conservation of the splice site pattern in mouse, dog, chicken or zebrafish. 

In summary, in this thesis I predict conserved cassette exons in human and mouse, 

predict NAGNAG AS in five vertebrate genomes, fly, worm, and the plant Physcomitrella 

patens, and study the extent and conservation of subtle AS. 
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““OOnnee  ccoonnsseeqquueennccee  ooff  tthhee  iinnttrroonniicc  mmooddeell  iiss  tthhaatt  tthhee  ddooggmmaa  ooff  oonnee  

ggeennee,,  oonnee  ppoollyyppeeppttiiddee  cchhaaiinn  ddiissaappppeeaarrss..  AA  ggeennee,,  aa  ccoonnttiigguuoouuss  

rreeggiioonn  ooff  DDNNAA,,  nnooww  ccoorrrreessppoonnddss  ttoo  oonnee  ttrraannssccrriippttiioonn  uunniitt,,  bbuutt  tthhaatt  

ttrraannssccrriippttiioonn  uunniitt  ccaann  ccoorrrreessppoonndd  ttoo  mmaannyy  ppoollyyppeeppttiiddee  cchhaaiinnss,,  ooff  

rreellaatteedd  oorr  ddiiffffeerriinngg  ffuunnccttiioonnss..””  ––  WWaalltteerr  GGiillbbeerrtt  [[11]]..  

  

IInnttrroodduuccttiioonn  
The central dogma of molecular biology deals with the directionality of transfer of sequential 

information. It states that “information cannot be transferred back from protein to either 

protein or nucleic acid” [2]. The most common transfers of sequential information are DNA to 

DNA (replication), DNA to RNA (transcription), and RNA to protein (translation). The second 

and third types of transfer are the two major steps of producing a protein from a gene – first, 

the DNA of a gene is transcribed to produce mRNA, and this mRNA is then translated into 

protein. In prokaryotic organisms, transcription occurs in the cytoplasm, and the mRNA is 

usually not modified, but directly used as a template to read off in steps of three residues 

(codons), which are then ‘translated’ into amino acids, thus eventually forming a protein. 

However, in eukaryotes, transcription takes place in the nucleus, where the primary transcript 

is processed, after which the mature form is exported to the cytoplasm for translation into a 

protein. These mRNA processing steps are 5’ capping, 3’ polyadenylation, and splicing. 

Splicing is the process of excision of intervening sequences, called introns, from the primary 

transcript, which is one of the fundamental differences between the gene architecture of 

eukaryotes and prokaryotes [3, 4]. The transcribed regions of the vast majority of genes in 

“higher” eukaryotes can be divided into introns and sequences which are retained in the 

mature mRNA, called exons. Thus, the protein-coding sequence (CDS) in such eukaryotic 

genes is mostly split across several parts of the pre-mRNA, and must be brought together 

before being translated into a protein. Instead of simply doing this in one fixed manner, often 

variable parts of the pre-mRNA are used, thus giving rise to alternative splicing (AS), a 

mechanism by which the same gene can produce different mRNAs, and hence eventually 

different proteins. Both the different mRNAs and the different proteins arising from the same 

gene are called isoforms. Thus, as foreseen by Walter Gilbert shortly after the discovery of 

introns, their existence provides an “evolutionary playground” such that new forms of a 

protein can be experimented with, while still retaining the currently functional variant [1]. AS 

is one of the ways in which the split gene architecture of eukaryotes can be exploited thus.  
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Splicing 
To understand AS, we must first appreciate the basic mechanism of splicing in general. 

Splicing is carried out by a huge ribonucleoprotein complex called the spliceosome, which 

consists of five small nuclear ribonucleoproteins (snRNPs) – U1, U2, U4, U5 and U6 - that 

are associated with a large number (~300) of proteins known as splicing factors [5-8]. While 

over 99% of eukaryotic introns are spliced out by this spliceosome, also known as the U2-

dependent spliceosome, there also exists a class of introns in higher eukaryotes which are 

spliced by another spliceosome, called the U12-dependent spliceosome [9-12]. The U12-

dependent spliceosome requires the snRNPs U11, U12, U4atac, U6atac, and U5, which is 

the only snRNP common to both U2 and U12 dependent spliceosomes. The introns spliced 

out by the two spliceosomes are also referred to as U2 introns and U12 introns. The question 

of how the spliceosome reliably locates the relatively short exons amidst the vastly larger 

introns (10-100 times larger in an average vertebrate gene [13]) has been the subject of 

intensive research for over three decades - and while much has been learned, the quest is 

far from over. The ends of introns carry signals (Figure 1, Figure 2a) which are degenerate 

yet highly conserved throughout eukaryotes [13-15]. How the spliceosome specifically 

selects a particular splice site (SS) depends on the composition of these signals and several 

other factors. The three basic splicing signals are the SS near the 5’ intron end, also called 

donor,  the SS near the 3’ intron end, also called acceptor, and the branch point, which is 

usually located about 40 nucleotides (nt) upstream of the acceptor site and has (for U2 

introns) the consensus YTRAY (Y stands for C or T, R stands for A or G, and the branch 

point adenosine is underlined) [14, 16]. The donor site in mammals has an extended intronic 

consensus sequence GTRAGT, where the first intronic dinucleotide GT is nearly invariant, as 

is the last dinucleotide AG at the acceptor or 3’ end (Figure 2a). Thus the vast majority of U2 

introns have GT-AG termini, and the only noteworthy exception seem to be U2 introns with 

GC-AG termini, which occur at a frequency of ~1% [12]. On the other hand, U12 introns 

usually show GT-AG or AT-AC termini, and lack the PPT which is characteristic of U2 

introns. The branchpoint in U12 introns has a very strict sequence composition of 

TTCCTTAAC (the underlined A is bulged adenosine which attacks the 5’ SS) and is usually 

located 10-26 nt upstream of the acceptor, while the dinucleotide at the acceptor, while most 

often AC, seems particularly diverse in comparison to the nearly invariant AG in U2 introns, 

and includes AC, AG, AA, CG and TT [17, 18]. For the remainder of this thesis, 

“spliceosome” shall refer to the U2-dependent spliceosome, unless otherwise specified. 

 

As shown in Figure 1, the splicing reaction begins with the positioning and rearrangement of 

splicing factors (e.g. SF1) on the pre-mRNA, which eventually leads to the assembly of an 

active spliceosome that carries out intron removal. The major steps of the splicing of an 

intron, as depicted (in figure 1) are the following [15, 16, 19]:  
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Figure 1. A simplified overview of spliceosome assembly. 
First, the U1 snRNA binds to the 5’ splice site (donor) via base-pairing, and splicing factor SF1 binds to the 

branchpoint in an ATP-independent manner to form the E’ complex. Then the U2 auxiliary factor (U2AF) 

heterodimer, which consists of the subunits U2AF65 and U2AF35, binds to the polypyrimidine tract (PPT) and 

the 3’ AG, and the ATP-independent E complex is formed.  Replacement of SF1 by the U2 snRNP at the 

branchpoint converts and the ATP-independent E complex into the and the ATP-dependent A complex. This is 

followed by the recruitment of the U4/U6-U5 tri-snRNP and the formation of the B complex, containing all 

spliceosomal subunits involved in pre-mRNA splicing. Following extensive conformational changes and 

remodelling, the C complex is formed, which is the active spliceosome. Figure taken from [15]. 

 

(1) the U1 snRNP binds to the donor site by specific base pairings and SF1 to the 

branch point, 

(2) the protein heterodimer U2AF binds to the polypyrimidine tract and acceptor site 

[20], 

(3) the U2 snRNP binds to the branch site by base pairings and replaces SF1 [21], 

(4) the tri-snRNP consisting of U4, U5, and U6 enters the spliceosome, 
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(5) the U6 snRNP replaces U1 by binding to the donor site, and U1 and U4 are 

released from the spliceosome, 

(6) the mRNA is cleaved at the donor site and the 5’ intron end is attached to the 

branch point adenosine forming a lariat structure, 

(7) the mRNA is cleaved at the acceptor site, the upstream exon is ligated to the 

downstream exon, and the intron is released. 

Alternative splicing 
AS, as the name implies, refers to different ways of splicing primary transcripts of a given 

gene, resulting in different mature transcripts from the same gene. Put another way, splicing 

may result in a particular donor splice site being used in conjunction with different acceptor 

splice sites and vice versa. This violated the classical ’one gene, one polypeptide chain’ rule. 

AS was first reported in 1980 [22], but was considered a relatively rare event, affecting only 

5-10% of all genes, for nearly two decades. Bioinformatics, and in particular the analysis of 

expressed sequence tags (ESTs), has played a big role in sharp upward revisions of 

estimates of the frequency of AS in the last decade. At first, such EST analyses raised the 

estimates to 35%-59% [23-25]. Then microarray-based analysis raised the estimate to 74% 

[26], and the latest estimates, based on data from the latest sequencing platforms such as 

Illumina/Solexa, are that 92-94% of human genes are alternatively spliced [27, 28].  

 

Their frequency of inclusion in mature transcripts distinguishes constitutive from alternative 

splice sites. A constitutive splice site is one which is always used in the mature transcripts, 

while an alternative splice site can be omitted sometimes.  The terms constitutive and 

alternative are similarly applied to exons and to the splicing process in general. 

 

Most alternative splice events can be classified into the following basic types (Figure 2b): 

• the inclusion or exclusion of one (or more) exons (denoted exon skipping), 

• the usage of alternative donor or acceptor sites, 

• the mutual exclusion of exons, 

• the retention of an intron.  

 

The frequency of occurrence of these splicing patterns varies across phyla – exon-skipping is 

the most frequent in mammals, while intron-retention is the most frequent in plants, with 

alternative acceptors and alternative donors falling in between the two types for both [25, 29-

32]. These elementary events consist of binary alternatives. On the other hand, transcript 

isoforms often represent rather complex splicing patterns, which are combinations of the 

elementary events and characterized by more than two possible outcomes. Based on full-

length cDNA data, as much as 20%-30% of all AS outcomes might be complex [33-35]. 
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Nonetheless, such events remain under-studied and under-appreciated to date, due to a lack 

of enough transcript data for detailed characterization. Another reason is that complex events 

are difficult to model, and analysis is simplified when we assume that the splice sites up- and 

downstream of an AS event with binary alternatives remain unaffected. Transcript coverage 

of a given locus can be another limiting factor - high coverage is needed to reliably interpret 

rare and/or complex events. For example, if we consider that the sequences representing 

each of two splice variants are sampled from the underlying transcriptome according to the 

binomial distribution and with probabilities corresponding to their relative abundance, then at 

least 29 sequences containing the respective exon boundaries are required to detect a minor 

variant occurring at a relative frequency of 10%, with ≥ 95% confidence [36, 37]. This shows 

that even when we restrict ourselves to events with binary alternatives, things are not 

necessarily simple, and many events may escape detection. Bioinformatics can play a role 

by predicting likely AS events which have not yet been detected using transcript data. 

Furthermore, AS can be coupled to transcript variation by alternative promoter or 

polyadenylation site usage. Since complex processes/phenomena are not addressed in this 

thesis, whenever I refer to alternative splice events, it means the types described in Figure 

2b, unless otherwise mentioned. 
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Figure 2. The major splicing signals and most common alternative splicing events. 
(a) Conserved motifs at or near the intron ends. The nearly invariant GU and AG dinucleotides at the intron ends, 

the polypyrimidine tract (Y)n preceding the 3' AG, and the A residue that serves as a branchpoint are shown in a 

two-exon pre-mRNA. The sequence motifs that surround these conserved nucleotides are shown below. For each 

sequence motif, the size of a nucleotide at a given position is proportional to the frequency of that nucleotide at 

that position. Nucleotides that are part of the classical consensus motifs are shown in blue, except for the branch-

point A, which is shown in orange. The vertical lines indicate the exon–intron boundaries. (b) Five common 

modes of alternative splicing. In each case, one alternative splicing path is indicated in green, the other path in 

red. In the last example, the alternative pathway corresponds to no splicing. In complex pre-mRNAs, more than 

one of these modes of alternative splicing can apply to different regions of the transcript, and extra mRNA 

isoforms can be generated through the use of alternative promoters or polyadenylation sites. Figure taken from 

[16]. 
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The mechanism of splicing is dependent on the exon-intron architecture of the given gene – 

when introns are short, splicing seems to proceed via an “intron definition” mechanism, with 

initial spliceosome assembly occurring around the intron (Figure 1) [38]. However, this mainly 

seems to happen when introns are shorter than 200 nt – when introns are longer, as is the 

case with the vast majority of introns in humans and other mammals [13, 39], splicing 

proceeds via an “exon definition” mechanism (Figure 1) [40, 41]. In this case, the 

spliceosome first assembles around exons, and later on a conversion to intron definition 

occurs via cross-intron interactions between the U1 and U2 snRNPs [42, 43]. When both 

introns and exons are long, the incidence of exons-skipping increases [40], which is also true 

of cases where exons are very short (say < 30 nt). Splicing in plants proceeds via intron-

definition in the majority of cases, and via exon-definition in the majority of cases for 

vertebrates, which agrees with the findings that while intron-retention is the most common 

type of AS event in plants, exon-skipping is the most common among vertebrates [25, 29-32, 

34, 44-48]. 

 

The recognition and utilization of splice sites depends on many factors. The three primary 

signals – the 5’ SS, the branchpoint, and the 3’ SS (including the PPT) – are very important, 

but seem to contribute only about 50% of the information needed to discriminate between 

introns and exons [49]. Therefore the remaining information necessary for the accurate 

splicing observed in vivo must be contained in exonic and intronic regions. Indeed exons and 

introns contain binding sites for splicing protein factors that activate or repress splicing. 

Depending on location (exon/intron) and activity (activation/repression – enhancers activate, 

while silencers repress), such elements are broadly divided into four categories: exonic 

splicing enhancers (ESEs), exonic splicing silencers (ESSs), intronic splicing enhancers 

(ISEs) and intronic splicing silencers (ISSs). There is, however, overlap between the 

categories, especially between ESSs and ISSs, which are commonly bound by 

heterogeneous nuclear RNPs (hnRNPs) [50, 51]. ESEs are usually bound by members of the 

SR (Ser-Arg) protein family [52-54], whereas ISEs are not as well-characterized as the other 

three categories, though a few proteins such as hnRNP F, hnRNP H, neuro-oncological 

ventral antigen 1 (NOVA1), NOVA2, FOX1 and FOX2 (also known as RBM9), have been 

shown to bind ISEs and to stimulate splicing [55-58].  

 

The impact of alternative splicing 
The importance of a biological phenomenon is usually interpreted in terms of its functional 

impact.  AS can result in protein isoforms that differ in various physiological aspects including 

ligand binding affinity, signalling activity, protein domain composition and sub-cellular 
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localization among others [59]. The ability to produce multiple isoforms with differing 

properties means that AS has great potential to cause far-reaching changes within the 

transcriptome and proteome of an organism. To demonstrate this experimentally, a 

promising beginning has been made by several studies focussed on a small number of 

proteins, which have shown that AS produces functionally distinct proteins [16, 60-69] (to cite 

a few). However, large scale demonstrations of functionally different protein isoforms 

produced by AS are as yet infeasible, though a start has been made recently, based on the 

analysis of high quality peptide catalogs from the Drosophila melanogaster proteome [70]. In 

the meantime, large-scale bioinformatics studies have given several interesting pointers. 

They have shown that AS events have a tendency to remove certain protein domains like 

protein-protein interaction or DNA binding domains, and tend to insert/delete complete 

functional units instead of affecting parts of a unit [71, 72]. Computational analyses also 

found that 40-50% of the proteins with one transmembrane helix have a splice form that 

specifically removes the single transmembrane domain [73, 74], thus creating a soluble 

protein variant encoded in the exon skipping splice variant and a membrane-bound protein 

encoded in the exon-inclusion variant. Alternative splice events plays a role in several 

biological processes such as the formation and function of synapses [75], axon guidance in 

the fruit fly Drosophila melanogaster [76], and T-cell activation [77]. Moreover, AS in the UTR 

regions can have an effect by influencing mRNA stability or translation efficiency [78]. 

Bioinformatics analyses have also indicated that alternative exons tend to evolve faster than 

constitutive exons, which means that AS can provide a means of tinkering with novel 

isoforms, trying them out before they are kept or discarded during evolution. When mapped 

onto protein structures, AS events tend to have deleterious effects on protein structure, 

which has led to debate over whether such events really result in proteins, or merely 

transcripts which are degraded before translation [79]. The counterargument is that AS 

events may play a role in protein structure evolution by facilitating transitions between 

different folds in the protein sequence-structure space [80]. It has also been shown that 

nearly a third of AS events result in a premature termination codon, and about 75% of these, 

or a fourth of all splicing events, are putative targets of a pathway which degrades transcripts 

with premature stop codons and prevents them from giving rise to deleterious truncated 

protein isoforms, known as the nonsense-mediated decay (NMD) pathway [81, 82]. Thus, the 

extent of functional AS is a matter of much healthy debate [83]. 

 

Another fact which makes AS very important and interesting is its strong association with 

disease. Defects in alternative and constitutive splicing are associated with a number of 

human diseases [16, 84]. Moreover, splicing mutations have been suspected to be the most 

frequent cause of hereditary diseases [85]. For example, a polymorphism in the PTPRC 
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gene that is associated with multiple sclerosis destroys an exonic splicing silencer and 

abolishes the skipping of exon 4 [86]. Also, changes in the normal splicing pattern are 

thought to contribute to cancer development [87, 88]. Thus, manipulation of AS to counter 

disease-causing effects is also of therapeutic interest, and an emerging area of research 

focuses on treatments which change AS [89-92]. 

 

 

Non-EST based prediction of alternative splicing 
When my research for this doctoral thesis started, large scale detection of AS was usually 

done using ESTs [23, 25] or microarrays (reviewed in [93-95] ). Since AS can be highly 

specific for tissues or developmental stages, these methods can only detect splice events 

that occur in the underlying probe samples, turning the comprehensive characterisation of 

the transcriptomes of a complex organism into a challenge exceeding by far the task of 

determining the respective genome sequence. Moreover, as these approaches were 

expensive and labour intensive, the data resources are in most cases insufficient, limiting the 

detection of AS to events with rather high frequencies. Limited transcript coverage also 

makes it difficult to detect splice events where the minor isoform has a low abundance, even 

though such events can be of biological importance [96]. In the case of microarrays, the data 

output is further limited by the array design. Furthermore, at that time Whole Genome 

Shotgun (WGS) sequencing projects were churning out genomic data at a higher rate than 

corresponding transcriptome data – the number of ESTs in GenBank Release 161 had 

increased by 19% in one year, compared to a gain of 39% in the number of contigs in the 

WGS GenBank division [97]. Thus it was expected that in the foreseeable future, we shall 

have several genomes without the level of corresponding extensive transcript coverage 

required to reveal the extent of AS, and hence transcriptomic and proteomic variability. 

Accordingly, there was a need for in silico methods of detecting AS.  

More recently, the emergence of new sequencing platforms such Illumina/Solexa, 

Roche/454, and ABI/Solid has revolutionized the field of molecular biology [98, 99], and 

splicing is no exception. These technologies enable studies of transcriptomes at an 

unprecedented level of depth and detail [27, 28]. However, since AS can be specific to 

tissues, developmental stages, and external stimuli, the number of combinations of situations 

in which AS can occur is still too large to be exhaustively captured by any existing 

technology. Furthermore, these technologies are still expensive enough to be out of the 

reach of many researchers. Thus the need for in silico methods of detecting AS, to 

complement other large-scale methods, remains. Moreover, such methods can provide 

further stimuli for understanding the mechanisms of AS. 
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Exon skipping 
The most frequent form of AS in humans is exon skipping, whereby an entire exon is either 

included in, or excluded from the mature transcript  [32, 35, 45] – exons which undergo exon-

skipping are called skipped, cassette or alternative exons. It has been shown that alternative 

conserved exons (ACEs) [100] in human and mouse differ from conserved constitutive exons 

in several ways [100, 101]: 

• most ACEs are frame-preserving (also called “symmetrical”, or “peptide cassettes”), 

that is their length is a multiple of 3, and they do not encode an in-frame stop codon; 

skipping such an exon only shortens the protein without changing the reading frame; 

• both the ACEs as well as their flanking intronic regions tend to show a much higher 

sequence conservation than their constitutive counterparts: 

• ACEs are shorter on average than constitutive exons. 

 

This suggests that features derived from the exon and its flanking introns can be used to 

predict skipping of exons that are conserved between human and mouse and alternatively 

spliced in both species (denoted conserved exon skipping events) – an early attempt at such 

classification used a rule-based classifier and achieved a very high specificity (less than 

0.3% false-positive rate), at the cost of a relatively low sensitivity (20%-32%) [101]. The 

authors also managed to experimentally validate AS in 60% (9/15) of tested exons, including 

skipping in 40% (6/15) of them. Later, the same authors used more features, including the 

frequency of dinucleotides and trinucleotides in exonic and flanking intronic sequences, 

composition of the 5’SS and strength of the PPT, along with a support vector machine 

(SVM), to achieve a sensitivity of 50% at a false-positive rate of 0.5% [102]. Similar 

properties were exploited in a genome-wide classification of ACEs  using a regularized least-

squares classifier [100], and 70% (21/30) of tested predictions were also experimentally 

validated. SVMs were also successfully used to predict exon skipping in worm, using similar 

features, but without using sequence conservation [103]. Other approaches to AS prediction 

used protein domain information [104] and evolutionary conservation [105-107] to detect 

alternative splice events. 

 

In the first work of my thesis, titled “Improved identification of conserved cassette exons” 

[108], I used Bayesian networks (BNs), a state-of-the-art machine learning method, to predict 

conserved exon skipping events. BNs are an increasingly popular machine learning 

approach to data modeling and classification [109-111]. The ability of BNs to cope with 

features of various value ranges and to learn dependencies between features makes them 

especially versatile and suited to a large variety of applications. BNs allow multiple 

dependencies between variables, impose no fixed ordering of variables, allow integration of 
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arbitrary features, and the network structure can be automatically learned. This makes BNs a 

flexible choice for biological sequence data analysis [112-116]. I introduced several novel 

features that distinguish alternative exons from constitutive exons, including features based 

on the single-strandedness of ESEs and ESSs, and features involving intronic splicing 

regulatory elements (ISRE). By validating our classifiers on various datasets, I identified 

features which are discriminative irrespective of dataset-specific biases, and provide 

independent measures of the predictive power of the BNs.  

Even though conservation based features have proved to be among the most discriminative 

features for predicting exon skipping, it is desirable to be able to predict AS using only 

information from a single genome. Importantly, I could show that our approach can still 

predict exon skipping without using conservation-based features. 

 

Accurate prediction of NAGNAG alternative splicing 
Alternative acceptors are the second most common kind of AS in human, after exon skipping 

[32, 45, 117]. NAGNAG AS (N stands for any of A,C,G or T), involving tandem acceptors 

separated by three nucleotides, is a common type of AS, contributing almost half of all cases 

of conserved alternative acceptor usage [35, 118, 119]. NAGNAG splicing results in two 

possible splice variants—splicing after the first AG results in the E (exonic, also known as 

proximal) isoform, whereas splicing after the second AG results in the I (intronic, also known 

as distal) isoform (Figure 3)—accordingly, we refer to constitutively spliced NAGNAG 

acceptors as the E- or I-class, and to usage of both acceptors, or AS, as the EI-class. Since 

the difference between the two isoforms is an inclusion/exclusion of 3 nt, NAGNAG AS does 

not change the reading frame, and only very rarely results in a premature termination codon 

(PTC) [118]. Thus, the predominant effect of NAGNAG AS is to produce isoforms which differ 

from each other in only a single amino acid [118]. The corresponding event at the donor SS, 

involving donors separated by 3 nt, is called GYNGYN AS (Y = C or T) [120]. The Tandem 

Splice Site DataBase (TassDB)  was the first AS database to extensively characterize 

NAGNAG and GYNGYN AS in seven genomes [121]. According to the data present in 

TassDB, 16% (1,815 of 10,740) of human NAGNAG acceptors were alternatively spliced. 

However, 40% (3,562) of the remaining NAGNAG acceptors had less than ten ESTs each, 

thus implying that a subset of these NAGNAGs may simply lack evidence of AS due to 

insufficient sampling of the transcriptome. An accurate predictive method would give us a 

meaningful estimate of the number of yet undiscovered alternative NAGNAG acceptors. 

Previous work on predicting alternative 3' splicing, while reporting good results overall, had 

modest results for NAGNAG AS compared to cases involving larger distances [122]. On the 

other hand, another previous work reported that a simple model based on splice site strength 

was enough to explain NAGNAG and other short-distance tandem AS [123], which suggests 
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that short distance tandem AS is mostly due to the spliceosome “slipping” on occasion and 

stochastically selecting between two nearby competing alternatives – under such a model, 

subtle AS is mostly a noisy rather than functional process [123, 124].  Another way of looking 

at this issue is that noise and function are not mutually exclusive – noise is to do with the 

mechanism, whereas function is what the species makes out of the splicing event.  

 

In the second work of my thesis, titled “Accurate prediction of NAGNAG alternative 
splicing” [125], I sought to improve the prediction of NAGNAG AS, using my Bayesian 

Networks experience and TassDB [121] to carefully construct our training and test datasets. 

We achieved a high balanced sensitivity and specificity and good results in extensive 

experimental validation of predictions [125]. I showed that the performance on a dataset from 

literature [122] can be improved by a careful consideration of available transcript evidence to 

include only strongly supported NAGNAGs as constitutive or alternative. Using a BN learned 

on human data on six genomes (mouse, rat, dog, chicken, Drosophila Melanogaster and  C. 

elegans), I showed that the performance is comparable or only slightly inferior to that 

achieved in human. Our results suggest that the mechanism behind NAGNAG splicing is 

simple, and maintained in evolution. 

 
Figure 3. The possible isoforms in NAGNAG splicing. 
Splicing at the first AG results in part of the NAGNAG being in the exon, hence the isoform is called exonic; 

splicing at the second AG creates the I variant, as the entire NAGNAG is now intronic.  

 

 

Characterization and prediction of NAGNAG alternative splicing in the moss 
Physcomitrella patens 
While there have been numerous experimental as well as computational studies of AS in 

animals, the study of AS in plants is still in its early stages [31]. While AS is also common in 

plants, the overall abundance of AS seems lesser than in animals – various studies have 

estimated that between 20%-30% of plant genes undergo AS [29, 30, 126], while the most 

recent, high-end estimate based on deep coverage of the Arabidopsis transcriptome is 42%-

56% of intron-containing genes[127]. EST-based detection of AS in plants began a few years 

later in comparison to studies on animals [29, 30], and showed that intron retention appears 

to be the most common kind of AS event in plants, which is in keeping with the intron 
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definition of model that the majority of plant introns seem to be spliced according to [29, 30, 

126]. Similarly, exon-skipping, which is the most common event in animals, is much less 

frequent in plants. However, alternative acceptors and donors seem to occur at a 

comparable frequency. In particular, short distance events, or subtle AS events, seem to be 

just as common, and NAGNAG acceptors are once again widespread, and the most 

abundant among such events [30]. The model moss Physcomitrella patens, the first 

bryophyte genome to be sequenced, seems to have a distribution of AS events similar to 

other plants studied so far [128]. In the third work of my thesis "Identification and 
characterization of NAGNAG alternative splicing in the moss Physcomitrella patens" 

(manuscript submitted) we extended our previous work on NAGNAG AS by undertaking 

characterization and prediction of NAGNAG AS in the model moss Physcomitrella patens. 

We analyzed the available EST data using the PASA (Program to Assemble Spliced 

Alignments) pipeline [129] and found that of 5,031 NAGNAG tandem splice sites with Sanger 

EST coverage, 295 (5.9%) were alternatively spliced. Furthermore, 4,040 of the constitutive 

NAGNAGs were covered by < 10 ESTs each, with an average coverage of only 3 ESTs per 

NAGNAG, indicating that there were potentially many undiscovered alternative NAGNAGs in 

moss. Use of recently available 454 data increased the total number of alternative 

NAGNAGs in Physcomitrella to 664. Similar to animals, a high in-silico accuracy of over 90% 

was achieved, and independent validation of the classifier (trained sing Sanger EST data) via 

the 454 data showed that of the well-supported (≥ 2  reads per variant, ≥ 10% of the reads 

support the minor variant) cases of AS, 64% (80/125)  were predicted correctly, which 

increased to 79% (30/38) if we required ≥ 4 reads per variant while keeping the threshold of 

minor variant abundance at ≥ 10%.  When considering the well-supported additional 

NAGNAG AS events detected using the combined Sanger EST and 454 data, the 

corresponding numbers were 62% (41/66) and 75% (9/12). On the whole, our results seem 

to indicate that NAGNAG AS is just as common in Physcomitrella patens as it is in 

Arabidopsis thaliana and Oryza sativa, and the mechanism of NAGNAG AS is similar in 

plants and animals, which is also in agreement with recent work showing that NAGNAG AS 

shares common properties in land plants and animals [130]. 

 

Conservation of tandem splice sites 
Taken together, AS events involving alternative donor and acceptor splice sites occur at a 

frequency comparable to that of exon skipping in humans. The majority of these splice site 

pairs are in close proximity [35, 119, 131, 132], and thus lead to subtle changes in the mRNA 

changes. In our work involving such events, we analyzed pairs of donor or acceptor sites that 

are 3–9 nucleotides (nt) apart (Δ3–Δ9 nt) and used the term “tandem sites” to denote these 

splice site pairs. The most frequent of such subtle events is AS at NAGNAG acceptors [35, 
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118, 119]. At the donor site, Δ4 tandem splice sites are most prominent, which is to be 

expected according to the donor consensus sequence GTRAGT which has a second GT four 

nucleotides downstream [133, 134]. It is likely that the AS mechanism at most tandem sites 

is based on a stochastic selection of either splice site,  so-called “noisy splicing” [123]. It has 

been shown that the region between the branch point and the acceptor has a strong 

influence on the splicing ratio of alternatively spliced NAGNAG sites [135]. Targeted 

experimental studies have revealed functional roles for tandem splice events [136]. For 

example, AS at conserved tandem acceptors in human and mouse transcription factor genes 

(NAGNAG – or Δ3 - acceptors in PAX3 and PAX7, Δ6 acceptor in IRF2) produces protein 

isoforms that differ in their ability to activate transcription [68, 137]. Conserved Δ6 donors in 

human ALDH18A1  lead to protein variants with different sensitivities to ornithine inhibition 

[64], and produce protein isoforms of mouse Fgfr1 that cannot bind FRS2 and are thus 

unable to activate the Ras/MAPK signalling pathway [62]. A splice event at a conserved Δ6 

donor in human EDA regulates binding specificity by remodelling the properties of the 

receptor binding site, such that the longer protein binds only to the EDAR receptor, while the 

shorter variant binds only to the XEDAR receptor [65, 69]. The Δ9 donor of human WT1 exon 

9 leads to the insertion of three amino acids (KTS), with both splice forms having distinct 

transcriptional regulation properties - hetero- and homozygous mouse mutants lacking one of 

the two splice forms show severe defects in kidney development and function [63], while a 

mutation in this donor motif leads to Frasier syndrome in humans [60].  

 

Though these individual studies demonstrate that several subtle splice events are 

functionally important, the general extent of functionally relevant subtle AS events remains 

unknown. Furthermore, there was a discussion whether alternatively spliced tandem sites 

are better conserved in evolution than constitutively spliced ones [124] since seemingly 

conflicting results were published for NAGNAG acceptors [118, 123]. Since it was known that 

alternative and constitutive NAGNAG sites differ in their preferences for specific NAGNAG 

motifs [118, 138], we considered the possibility that the comparison of two heterogeneous 

groups caused a known statistical paradox, which is better known as Simpson's paradox. 

This paradox, frequently encountered in biomedical studies [139], describes a situation in 

which a trend observed between two groups is reversed when the two groups are split into 

subgroups [140]. Bickel et al. [141] describe a well-known example of Simpson's paradox, 

involving university admission data. In this case, while the overall admission rates seemed to 

indicate a significant bias against female applicants, investigating all departments individually 

seemed to indicate the opposite, namely, a bias in favor of female applicants. The 

explanation of this apparent paradox is: “The proportion of women applicants tends to be 

high in departments that are hard to get into and low in those that are easy to get into.” [141].  
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Using statistical tests, we showed in the fourth work of my thesis “Assessing the fraction of 
short-distance tandem splice sites under purifying selection” that previous conflicting 

conclusions for the evolutionary conservation of NAGNAG acceptors [118, 123] arose from 

Simpson's paradox caused by substantial conservation differences between specific 

NAGNAG motifs. Controlling for biases, we found that alternatively spliced NAGNAG 

acceptors are significantly more conserved than those that are constitutively spliced. We 

extended the analysis to human tandem donor and acceptor sites that are up to 9 nt apart, 

and estimated a lower bound for the fraction of tandem sites being under purifying selection, 

and thus expected to have an evolutionarily advantageous phenotype. 
 

  

A comprehensive resource for tandem splice sites 
Even though subtle AS events involving tandem splice sites separated by a short (2-12 

nucleotides) distance are frequent and evolutionarily widespread in eukaryotes, have been 

either omitted altogether in databases on AS, or only the cases of confirmed AS have been 

reported. Thus, a database which covers all confirmed cases of subtle AS as well as the 

numerous putative tandem splice sites (which might be confirmed once more transcript data 

becomes available), and allows to search for tandem splice sites with specific features and 

download the results, can be a valuable resource for targeted experimental studies and 

large-scale bioinformatics analyses of tandem splice sites. TassDB version 1 (Tandem Splice 

Site DataBase), which stores extensive data about alternative splice events at tandem splice 

sites separated by 3 nt, was a first effort towards building such a database [121].  

In the fifth work of my thesis “TassDB2 - A comprehensive database of subtle alternative 
splicing events” (manuscript under review) I have contributed to the substantial revision and 

extension of TassDB1 to create TassDB2, containing information about tandem splice sites 

separated by 2-12 nt for the human and mouse transcriptomes. TassDB2 offers a user-

friendly interface to search for specific genes or for genes containing tandem splice sites with 

specific features as well as the possibility to download large datasets. For example, the users 

can search for cases of AS where the proportion of EST/mRNA evidence supporting the 

minor isoform exceeds a specific threshold, or where the difference in splice site scores is 

specified by the user. The predicted impact (if any) of each event on the protein is also 

reported, along with information about being a putative target for the nonsense-mediated 

decay (NMD) pathway [82]. Links are provided to the UCSC (University of California, Santa 

Cruz) genome browser and other external resources. Available via http://www.tassdb.info, 

TassDB2 provides comprehensive resources for researchers interested in experimental 
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studies and bioinformatics analyses of short distance (2-12 nt) tandem splice sites. We 

believe that TassDB2 can be of great help in future studies of subtle alternative splicing.  
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Exon-skipping is the most prevalent form of alternative splicing (AS) in mammals. We used 

Bayesian networks in combination with discriminative features to classify orthologous 

human/mouse exons as undergoing either evolutionarily conserved AS, or constitutive 

splicing. We significantly improved the true positive rate from a previously reported 50% to 

61% at a stringent false positive rate of 0.5%. This included the first use of features based on 

intronic splice regulatory elements and mRNA secondary structure. The improved 

performance was confirmed by cross validation on an independent dataset. About half of the 

exons which are labelled constitutive but received a high probability of being alternative by 

the BN, were in fact alternative exons according to the latest transcript data. We also 

predicted exon skipping without using conservation-based features, achieving a true positive 

rate of 29% at a false positive rate of 0.5%. When using identical features, the Bayesian 

network matched the performance of a support vector machine reported in the literature, 

showing that for good classification performance, discriminative features are more important 

than the choice of classifier. 
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Abstract
Background: Alternative splicing is a major contributor to the diversity of eukaryotic
transcriptomes and proteomes. Currently, large scale detection of alternative splicing using
expressed sequence tags (ESTs) or microarrays does not capture all alternative splicing events.
Moreover, for many species genomic data is being produced at a far greater rate than
corresponding transcript data, hence in silico methods of predicting alternative splicing have to be
improved.

Results: Here, we show that the use of Bayesian networks (BNs) allows accurate prediction of
evolutionary conserved exon skipping events. At a stringent false positive rate of 0.5%, our BN
achieves an improved true positive rate of 61%, compared to a previously reported 50% on the
same dataset using support vector machines (SVMs). Incorporating several novel discriminative
features such as intronic splicing regulatory elements leads to the improvement. Features related
to mRNA secondary structure increase the prediction performance, corroborating previous
findings that secondary structures are important for exon recognition. Random labelling tests rule
out overfitting. Cross-validation on another dataset confirms the increased performance. When
using the same dataset and the same set of features, the BN matches the performance of an SVM
in earlier literature. Remarkably, we could show that about half of the exons which are labelled
constitutive but receive a high probability of being alternative by the BN, are in fact alternative
exons according to the latest EST data. Finally, we predict exon skipping without using
conservation-based features, and achieve a true positive rate of 29% at a false positive rate of 0.5%.

Conclusion: BNs can be used to achieve accurate identification of alternative exons and provide
clues about possible dependencies between relevant features. The near-identical performance of
the BN and SVM when using the same features shows that good classification depends more on
features than on the choice of classifier. Conservation based features continue to be the most
informative, and hence distinguishing alternative exons from constitutive ones without using
conservation based features remains a challenging problem.
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Background
Eukaryotic primary mRNAs consist of exons and introns.
The mature transcript as the substrate for translation is
produced by removing introns in a process called splicing.
Splicing can be either constitutive, always producing the
same mRNA, or alternative, by skipping of variable parts
of the primary transcript.

Alternative splicing is a mechanism for producing tran-
script and protein diversity [1]. It is particularly wide-
spread in higher eukaryotes, especially mammals. Various
studies have estimated that up to 74% of all human genes
are alternatively spliced. Large scale detection of alterna-
tive splicing is usually done using expressed sequence tags
(ESTs) [2] or microarrays (reviewed in [3] and [4]). Since
alternative splicing can be highly specific for tissues or
developmental stages, these methods can only detect
splice events that occur in the underlying probe samples
with sufficient frequencies and/or are limited to by the
microarray design. Furthermore, nowadays Whole
Genome Shotgun (WGS) sequencing projects are churn-
ing out genomic data at a higher rate than corresponding
transcriptome data – the number of ESTs in GenBank
Release 161 had increased by 19% in one year, compared
to a gain of 39% in the number of contigs in the WGS
GenBank division [5]. Thus it can be expected that in the
foreseeable future, we shall have several genomes without
the level of corresponding extensive transcript coverage
required to reveal the extent of alternative splicing, and
hence transcriptomic and proteomic variability. Accord-
ingly, there is a need for in silico methods of detecting
alternative splicing. Moreover, such methods can provide
further insights into the mechanisms of alternative splic-
ing.

Exon skipping, whereby a given exon in its entirety is
either included in, or excluded from the mature transcript,
is the most prevalent form of alternative splicing in
humans [6]. It has been shown that sequence-based fea-
tures, derived from the exon and its flanking introns, can
be used to predict skipping of exons that are conserved
between human and mouse and alternatively spliced in
both species; denoted conserved exon skipping events [7].
Previous studies have used such features with state-of-the-
art classifiers such as support vector machines (SVMs)
[8,9] and regularized least-squares classifier [10], and
achieved success in predicting exon skipping. Other
approaches use protein domain information [11] and
evolutionary conservation [12-14] to detect alternative
splice events.

Here, we use Bayesian networks (BNs), a state-of-the-art
machine learning method, to predict conserved exon skip-
ping events. BNs are an increasingly popular machine
learning approach to data modeling and classification

[15,16]. The ability of BNs to cope with features of various
value ranges and to learn dependencies between features
makes them especially versatile and suited to a large vari-
ety of applications. BNs allow multiple dependencies
between variables, impose no fixed ordering of variables,
allow integration of arbitrary features, and the network
structure can be automatically learned. This makes BNs a
flexible choice for biological sequence data analysis [17-
21]. We introduce several novel features that distinguish
alternative exons from constitutive exons, including fea-
tures based on the single-strandedness of exonic splicing
enhancers and silencers (ESEs and ESSs), and features
involving intronic splicing regulatory elements (ISREs).
By validating our classifiers on various datasets, we iden-
tify features which are discriminative irrespective of data-
set-specific biases, and provide independent measures of
the predictive power of the BNs.

Even though conservation based features have proved to
be among the most discriminative features for predicting
exon skipping, it is desirable to be able to predict alterna-
tive splicing using only information from a single
genome. We show that our approach can still predict exon
skipping without using conservation-based features.

Methods
Datasets and genome browser
We used the dataset of [8], henceforth called dataset D1,
consisting of 243 alternative and 1,753 constitutive exons,
kindly provided by Gideon Dror. In this dataset, constitu-
tive exons are supported by at least four ESTs each in
human and mouse with no EST evidence for exon skip-
ping, whereas alternative exons are skipped in both spe-
cies. The second dataset is the ACESCAN training set [10],
henceforth called dataset D2, which comprises 5,069 con-
stitutive and 241 alternative exons. For validation pur-
poses we use the genome builds hg18 for human and
mm9 for mouse of the UCSC Genome Browser [22] were
used.

Features for machine learning
In total, we used 365 features in this study (Table 1).
Thereof, 228 were previously used by [8]: (1) exon length,
(2) symmetry, that is, divisibility of exon length by 3; (3)
percent identity of the alignment between the exon and its
mouse ortholog; (4–7) length of and percent identity of
the best local alignment between the up- and downstream
100 nt intronic flanks and their mouse orthologs, which
are in total four features; (8–199) trimer counts for the
exon and the 100 nt flanking intronic regions, which are
a total of 64 × 3 = 192 features; (200) intensity of the poly-
pyrimidine tract (PPT) as the number of pyrimidines in
the window -19 to -4 from the 3'ss; and (201–228) nucle-
otides at the 5'ss positions -3 to -1 and +3 to +6, which are
a total of 7 × 4 = 28 features. The features (1–7), used for
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the first time in [7], were kindly provided by Gideon Dror,
along with the dataset D1.

We also used six features from [10]: the percent identity of
the global alignments between up- and downstream 100
nt intronic flanks and their mouse orthologs, lengths of
the upstream and downstream flanking introns, and the
strength of the 3' and 5' splice sites (3'ss and 5'ss) com-
puted by MAXENTSCAN [23]. We used the programs
"needle" and "water" from the EMBOSS software suite
[24] for aligning the exons and the intronic flanks with
their mouse orthologs and computing the conservation
based features.

Among the new features we added were dinucleotide
counts for the exon and the 100 nt intronic flanks, a total
of 16 × 3 = 48 features. As it has been shown that exon
skipping is more prevalent in regions of low GC content
[25], we used the GC content of the exon and the intronic
flanks as three additional features.

To use features based on ESEs and ESSs, we applied neigh-
bourhood inference (NI) scores [26]. Briefly, each hex-
amer has an NI score between -1 and 1, with negative
scores indicating a tendency towards acting as an ESS, and
a positive score, a tendency to act like an ESE. Hexamers
with a score of 1 or -1 are considered "trusted" ESEs and
ESSs, respectively, and those with a score of greater than
0.8 or smaller than -0.8 are considered to have "strong"
ESE or ESS activity. We used the density of NI scores,
defined as the number of hexamers with NI scores 1, ≥ 0.8,
> 0, < 0, ≤ -0.8, -1, normalized by the number of hexamers
in the exon (6 features). Additionally, the distribution of
ESEs and ESSs may have a bearing on splicing as well.
Therefore, we used the variance of NI scores for "trusted"
and "strong" ESEs and ESSs (2 features). Since the density
of ESEs and ESSs near splice junctions has been suggested
to be important in determining splicing outcome [4,27-
29], we also measured the densities in the first and last 50
nucleotides of the exon (for exons shorter than 50 nt, the
entire exon was used; 2 features).

Table 1: Features for machine learning used in this study

Feature subset Number of features Motivation First use

Exon: length, symmetry, and identity with 
mouse ortholog

3 Alternative exons tend to be shorter, 
frame-preserving, and more conserved 

compared to constitutive exons

[7]

Conservation of intronic flanks: length/
identity of the best local and identity of 

the global alignment

2 × 3 Alternative exons tend to have higher 
conservation in their intronic flanks

[7,10]

Conservation in a 12 nucleotide region 
spanning the 3' and 5'ss

2 As alternative exons and their intronic 
flanks are more conserved, this may in 

particular concern the exon/intron 
boundaries

This work

PPT intensity 1 Alternative exons tend to have weaker 
PPTs

[8]

Nucleotides at seven positions flanking 
the 5'ss

4 × 7 Alternative exons tend to have specific 
nucleotide preferences near the 5'ss

[8]

Frequency of di- and trimers in the exon 
and flanking introns

3 × 16
3 × 64

Motifs which are part of splice regulatory 
motifs might differ in their abundance in 

alternative and constitutive exons

[8] (trimers), this work (dimers)

Splice site strength of 3'and 5'ss 2 Alternative exons tend to have weak splice 
sites

[10]

Length of flanking introns 2 Alternative exons tend to be flanked by 
long introns

[10]

GC content of exon and intronic flanks 3 GC-poor regions tend to promote 
alternative splicing

This work

Features based on NI scores 24 Alternative exons tend to have fewer ESEs 
and more ESSs

This work

Features based on PU values 15 Single-stranded motifs are likelier to bind 
to regulators

This work

PTB-binding sites 6 PTB is a regulator alternative splicing This work
Features based on ISREs 8 Alternative exons tend to have more ISREs 

in their intronic flanks
This work

Density of various motifs 22 Several motifs are known to be associated 
with alternative splicing

This work

Combination features 7 Combining features can capture more 
information

This work

Note that the total number of features used is 365 whereas the sum of the entries here is 378, because some features have been counted in more 
than one category (for example, in PU value and NI score related features).
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We also designed features using very recently published
datasets of conserved ISREs enriched in the upstream and
downstream intron flanks of all exons, as well ISREs
enriched in upstream and downstream introns flanking
alternative exons [30]. We used the density of ISREs from
these four lists in both upstream and downstream 100 nt
flanking intronic regions, giving us eight novel features.

Secondary structure can influence alternative splicing
[31]. The single-strandedness of ESE, ESS or ISRE motifs
was characterized using PU (Probability of being
Unpaired) values [32], which represent the probability
that all the bases in the given motif are unpaired. Since
local RNA folding is influenced by the length of the
sequence context [33], we minimized potential biases by
using 11 to 30 nt symmetrical context lengths up- and
downstream of a given hexamer, and computing the aver-
age of the 20 PU values thus obtained [34]. We pre-com-
puted PU values in this manner for all the hexamers in the
exons, and combined the NI scores with PU values. Vari-
ous thresholds were used for absolute NI score value (1, =
0.8, > 0) and a PU value of 0.6. Two kinds of combina-
tions were used: (i) a "Boolean" combination, that is,
counting the number of hexamers with NI and PU values
both above the thresholds; and (ii) the product of NI and
PU values (4 features). Similarly, we used PU values in
conjunction with ISRE information to characterize the
single-strandedness of intronic splicing regulatory ele-
ments (4 features).

Mutations around the splice junctions can effect splicing.
Therefore, we designed a feature to measure how well the
immediate neighbourhood of the splice junctions was
conserved. We formed two 12-mers consisting of the bases
from positions -6 to +6 around the 3'ss and the 5'ss. The
number of identical nucleotides between the human and
mouse 12-mers result in two new features.

We also used several motifs from a recent study character-
izing conserved motifs associated with constitutive and
alternative splicing [35]. However, depending on the par-
tition, these features were either not discriminative or
weakly so, indicating that they are important only for a
small minority of the alternative exons.

To count the number of binding sites for the Polypyrimi-
dine-tract-binding protein (PTB), a well-studied repres-
sive regulator of alternative splicing [36], we counted the
simplest known motifs for its binding sites – UCUU and
CUCUCU, as well as the sum. The density of PTB binding
sites in the 100 nt intron flanks and the exon gives nine
features.

Lastly, we used novel features derived from features
already known to be discriminative. For example, while it

is known that skipped exons tend, on the average, to be
shorter than constitutive exons, it has been shown that
long exons can be skipped if flanked by very long introns
[37]. Furthermore, it is possible that the shorter the exon
is with respect to the flanking introns, the harder it is for
the spliceosome to reliably recognize it. Consequently, we
used the ratio of upstream and downstream intron length
to exon length, as well of the intron lengths, as three fea-
tures. We also used the pairwise products of human-
mouse identity of the exon and each 100 nt intron flank
as well as of the exon and both flanks, in order to capture
information about simultaneous conservation of the exon
and the intronic flanks (four features).

Information gain and information gain ratio
To compare the information content of the features, we
used information gain, and information gain ratio, which
are established measures of the usefulness of features in
the field of machine learning [38]. The formula for infor-
mation gain is:

IG(Class | Feature) = H(Class) - H(Class | Feature)

where H(Class) is the entropy of the class variable, and
H(Class | Feature) is the conditional entropy of the class
variable, given the feature. We used the WEKA package
[38] for computing information gain and information
gain ratio, in order to rank the features according to how
informative they were.

Bayesian networks
We used the algorithms for feature selection, model learn-
ing and classification as described in [17], and made avail-
able via the public webserver BioBayesNet [39].

Feature subset selection
Given a training set, we selected features in a three step
procedure. First, we use an entropy based method devel-
oped by [40] to find partitions of the feature ranges which
best separate the given classes (in the following called
"discretizer"). Features for which the entire feature range
is partitioned into at least two intervals, such that the dis-
tributions of the two classes differ significantly in these
intervals, are called "discriminative" and they are the basis
of further analysis. On the other hand, those features for
which no such intervals are found are essentially non-
informative, or "non-discriminative" features for our pur-
poses.

Once the discretization algorithm has chosen the set of
discriminative features, an optimal (in the local sense)
subset can be selected using the sequential floating feature
selection (SFFS) method [41]. Briefly, this algorithm starts
with an initially empty feature subset, and at each step,
adds the feature which most improves a specific quality
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measure. After this addition, all previously added features
are deleted from the subset, unless doing so worsens the
quality measure. This is done in order to avoid getting
trapped in local minima. The algorithm stops when nei-
ther inserting new features nor deleting existing ones
improves the quality measure provided by the subset.

Thirdly, one can enforce inclusion or exclusion of any
given feature manually. The manual feature selection con-
sists only of removing a few "weak" features (as measured
by low information gain, or negligible information loss
when they are omitted for classification purpose) as they
are unlikely to generalize well to unseen data; and addi-
tion of a few "strong" features (as measured by high infor-
mation gain), which were selected by the discretizer but
not by the SFFS algorithm.

Learning the Bayesian network
We restrict the structure of the BNs by using the so-called
tree-augmented naïve Bayes (TAN) structure [42]. In a
naïve Bayes classifier/network, the attributes are assumed
to be independent, given the class, that is, the node repre-
senting the class variable is a parent of all other nodes, and
there are no other edges in the network. A TAN classifier
augments the underlying naïve Bayes classifier by allow-
ing at most one additional parent per node, that is, each
node is the child of the class attribute node, and of at most
one more node. We use TAN classifiers because while
learning the best BN structure, given some training data, is
in general an NP-hard problem [43], for TAN networks
there exist efficient structure-learning algorithms that
reduce the problem of determining the optimal tree struc-
ture to finding a maximum-weighted spanning tree [44].
Once the structure of the network has been learned, the
(conditional) probability distributions over the feature
values of each feature (given the class label and optionally
the value of the parent feature) are estimated in a straight-
forward manner from count statistics derived from learn-
ing data. Finally, Bayesian inference of marginal
probabilities can be approximately calculated by the effi-
cient technique of variable elimination [45].

Data partition
Given a dataset (D1 or D2), we partitioned the data into
three equal parts as carried out in [8]. Then, in turn, we
used two-thirds of the data to train the BNs, and the
remaining one-third was used for testing. The test set
remained untouched while the training set was used for
discretization, feature selection, and learning the BN [39].
Finally, the BN which had been learned on the training set
was used to classify the samples in the test set. This proce-
dure was repeated twice for the other two one-thirds, and
the average of the three runs was taken as the final per-
formance. For comparing 2-fold, 3-fold, 5-fold and 10-
fold cross-validation, we used WEKA [38].

Results and discussion
Improved prediction of conserved cassette exons by 
Bayesian networks
As pointed out by [8], good performance at low false pos-
itive rates is especially important for the task of distin-
guishing alternative exons from constitutive exons on a
genome-wide scale, since the latter comprise the majority
of exons. Furthermore, a low number of false positives is
critical in case of experimental verification of predictions.
To this end, we measure the true positive rate (TP) at false
positive rate (FP) of 0.5%, and call it TP0.5. We also com-
pute the receiver operating curve (ROC) and measure the
area under the ROC curve (AUC), which is a standard
measure of the quality of a classifier [46].

We used the dataset and the cross-validation scheme
described in [8]. This dataset contains 243 alternative and
1,753 constitutive exons and is called D1 in the following.
The overall performance obtained, using novel features in
addition to those described in the literature (Table 1), was
TP0.5 = 61%, and AUC = 0.94 (Figure 1), compared to
TP0.5 = 50%, and AUC = 0.93 reported in [8] using SVMs.
This substantial improvement demonstrates that many of
the novel features are informative and discriminative for
conserved exon skipping events.

Feature selection
The number of features studied in machine learning tasks
is often very high, and many (possibly most) of them
might be irrelevant, or redundant [38]. Therefore, it is cus-
tomary to preprocess the data in order to select a useful
subset of features – this is called "feature selection". Fea-
ture selection can be carried out in three stages within the
BioBayesNet framework [39]. Firstly, a "discretizer" apply-
ing the algorithm of Fayyad and Irani [40] discards fea-
tures for which no suitable discriminative intervals are
found. Secondly, the sequential feature subset selection
(SFFS) algorithm [41] can be applied to select a subset of
the remaining features. Thirdly, one can enforce inclusion
or exclusion of any given feature manually. The manual
feature selection (on D1 and D2) typically involved the
addition and removal of 5 or fewer features each, given a
feature subset of 20–30 features obtained using the two
automated approaches.

The performance on D1 using only feature selection using
the "discretizer" was TP0.5 = 39%, and AUC = 0.93. Using
the SFFS algorithm for further feature selection resulted in
TP0.5 = 47%, and AUC = 0.94, whereas the manual inclu-
sion/exclusion of features gave the final performance of
TP0.5 = 61%, and AUC = 0.94. This illustrates that the over-
all quality of classification, as measure by the AUC, is
quite robust, and we get good performance even when
only the "discretizer" is used, but the performance at low
false positive rates is quite sensitive to small changes in
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the feature subset, so the other two methods of feature
selection result in significant improvement. We note that
manual feature selection is only needed to improve TP0.5
– if we consider more global measures of classification
performance such the AUC or balanced sensitivity and
specificity, the automated feature selection methods suf-
fice. Using only automated feature selection, we routinely
achieve AUC values in the 0.93–0.96 range, and balanced
sensitivity and specificity in the 87%–91% range.

Discriminative features
ESEs and ESSs are motifs bound by proteins which either
enhance or suppress splicing. It has been shown that alter-
native and constitutive exons differ in the density of ESEs
and ESSs [29]. We used Neighborhood Inference (NI)
scores to infer ESE and ESS activity for all hexamers [26].
We used the density of ESEs and ESSs, with various thresh-
olds for the NI scores. The constitutive exons have a
slightly higher density of ESEs than do alternative exons
(median 0.266 vs. 0.254), as well as ESSs (median 0.0694

vs. 0.0679) This was also confirmed using other ESE/ESS
datasets [27,29] and is in agreement with previous studies
[26,27,29,30]. Depending on the split, the density of ESEs
and ESSs was either not discriminative, or weakly so. Var-
ying the threshold of the NI score did not change this. On
the other hand, some of the novel features using NI scores
were discriminative on most splits – for instance, the aver-
age of all positive NI scores, as well as the average of all
negative NI scores. Similarly, the average of all "strong
ESEs" (NI score ≥ 0.8) and "strong ESSs" (NI score ≤ -0.8)
were discriminative features. However, the density of ESEs
and ESSs near the splice sites was not found to be discrim-
inative.

Splicing regulatory elements are found in introns as well
[47]. Consequently, we also designed features using very
recently published datasets of conserved intronic splicing
regulatory elements (ISREs) [30]. Similar to ESE and ESS
based features, we also used the density of ISREs in the
upstream and downstream intronic flanks. Four sets of

ROC plot showing the average performance of the 3-fold cross-validation on datasets D1 (red line) and D2 (green line)Figure 1
ROC plot showing the average performance of the 3-fold cross-validation on datasets D1 (red line) and D2 
(green line).
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ISREs (enriched in the upstream and downstream flank of
all exons as well as enriched in the flanks of alternative
exons) are given in [30]. We found three of these sets to be
discriminative (ISREs from downstream intronic flanks of
all exons were not discriminative). For these three dis-
criminative features, alternative exons have a higher den-
sity of ISREs than constitutive exons, which agrees well
with the finding that the set of ISREs has an overlap with
ESSs, and thus many of them may have silencing tenden-
cies [30].

Secondary structure can influence alternative splicing
[31]. To the best of our knowledge, existing methods to
predict alternative splice events do not use secondary
structure related properties. Previously, we found that
functionally important splicing motifs are preferentially
located in single-stranded mRNA secondary structures
[34] and that ab initio motif finding benefits from taking
the single-strandedness of motif occurrences into account
[48]. Thus, we use features based on a measure of the sin-
gle-strandedness of ESE, ESS or ISRE occurrences, reason-
ing that single-strandedness of enhancer and silencer
occurrences influence the propensity of proteins to bind
them. Interestingly, we found that the single-strandedness
of ESE motifs is informative. The density of single-
stranded ESEs is higher in constitutive than in alternative
exons (0.0194 vs. 0.0177, using a PU value of 0.5 for sin-
gle-strandedness). Moreover, the information gain of this
feature was more than that of the ESE density feature
(0.0170 vs. 0.0096). As single-stranded motifs are
expected binding sites for splicing regulatory proteins, this
observation adds to previous evidence that mRNA sec-
ondary structures influence alternative splicing [34].

The density of PTB binding sites in the exon and the
upstream 100 nt intronic flank were weakly discrimina-
tive, indicating that they are important only for a small
minority of the alternative exons. The density of PTB bind-
ing sites in the downstream 100 nt intronic flank was not
discriminative.

The conservation around the splice site, as measured by
the number of human-mouse identical positions in a win-
dow of 12 nt (6 on either side) around the exon bounda-
ries, is a highly discriminative feature, despite other
features already capturing both conservation information
as well as splice site strength. It is interesting that while
alternative exons have weaker splice sites, they have
stronger conservation around the splice junctions. While
only 17.6% of the constitutive exons have identical
matches from positions -6 to +6 at the 3'ss, the corre-
sponding figure for alternative exons is as high as 54.7%.
At the 5'ss, the corresponding numbers are 30.0% and
60.3%, respectively. This is consistent with a previous
study [49].

The GC content of the upstream intronic flank was found
to be a useful discriminative feature, and was lower for
flanks of alternative exons than of constitutive exons
(median values 0.39 vs. 0.42), in agreement with previous
studies [25]. However, neither the GC content of the exon
nor of the downstream intronic flank was found to be dis-
criminative.

We tested if the di- and trimer (2 and 3 nt words) fre-
quency in exons and intron flanks is different for alterna-
tive and constitutive exons. We found that the frequency
of di- and trimers in exons is often much more discrimi-
native than the intronic di- and trimer frequencies. This
suggests that splice regulatory elements governing exon
skipping are more common in alternative exons than in
introns flanking them.

Apart from introducing novel features, we also used fea-
tures derived from known features. These combinations
were often more informative than the individual features.
For example, the ratios of intron lengths to exon length
were more informative than the lengths themselves. The
ratio of the length of the downstream intron to the exon
length was an especially useful feature, suggesting that
exon skipping may occur when the spliceosome finds it
difficult to accurately "spot" an exon upstream of a rela-
tively much longer intron.

Splice site strength, first used by [10], was also found be a
discriminative feature, with alternative exons having both
weaker 3'ss as well as 5'ss than constitutive exons (median
scores 7.86 vs. 8.76 and 8 vs. 8.68, respectively).

Most informative features
Next we asked which were the most informative features
using the information gain, a well established measure in
machine learning. Information gain is the reduction in
the entropy of the class variable, given the feature. While
information gain is a good measure of the quality of fea-
tures, it tends to prefer features with a large number of
possible values [38]. A measure which avoid this is the
information gain ratio, which divides the information by
the information of the feature itself, thus penalizing fea-
tures with a high inherent information. The top ten fea-
tures according to the information gain and the
information gain ratio criteria are given in Table 2. Two
features, exon identity and length of best alignment in the
upstream intron flank, appear in both lists.

Table 3 shows the top ten combination features according
to the information gain criterion. Seven of these are more
informative than any of the features that were combined
to obtain these features, while the other three (the ratio of
the intron lengths and the exon length, and the sum of the
number of the two types of PTB binding sites) are more
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informative than one of the two features, but less than the
other. Not surprisingly, the combinations of conservation
related features have a very high information gain (top
four).

Table 4 shows the ten most informative trimers in the
exon and in the intronic flanks according to information
gain. Note that the trimers in the exon have a higher infor-
mation gain, a trend which is also true when looking at all
possible 64 trimers in the exon and the intronic flanks.
This disagrees with the conclusion of the previous study
[8], which used a different feature ranking criterion.

A Bayesian network with an optimized set of 34 features
All three methods of feature selection available in the
BioBayesNet framework were used to arrive at an opti-
mized subset of 34 features. A performance of TP0.5 = 61%
(65%, 61%, and 56% for the 3-fold cross-validation), and
AUC = 0.94 (0.94, 0.94 and 0.94) was achieved using the
same subset of 34 features with each fold. The BN learned
on the entire dataset with the same features, with 34
nodes and 33 edges, can be seen in Fig. 2. We would like
to point out some interesting edges in this network which

confirm and may extend our biological knowledge of the
splicing process:

- "length of the best local alignment of the upstream intron
flank and its mouse ortholog" (node 3) and "density of intronic
splice regulatory elements (ISREs) enriched in introns flanking
AS exons, in the upstream intron flank" (node 18): Since
alternative conserved exons (ACE) tend to have longer
conserved regions and a higher density of ISREs in their
intron flanks, this is a biologically meaningful depend-
ence.

- "ratio of the lengths of the downstream intron and the exon"
(node 5) and "sum of the MAXENTSCAN scores of the 3' and
5' splice sites" (node 12): ACEs tend to have high ratios of
intron to exon lengths, and weak splice sites, when com-
pared to constitutive exons [10].

- "density of single-stranded ESEs" (node 16) and "density of
TCTT in exon" (node 20): ACEs are enriched in exons with
multiple occurrences of TCTT, which is a binding site of
the splice-repressor, PTB [36], and tend to have a lower

Table 2: Top features according to information gain and information gain ratio (excluding combination features)

Rank Feature Information Gain Feature Information Gain Ratio

1 Length of best alignment in the upstream 
intron flank

0.169 Abundance of GA in exon 0.172

2 Upstream intron flank conservation 0.169 Density of single stranded ESEs in exon 0.151
3 Identity of best alignment in the upstream 

intron flank
0.142 Exon identity 0.128

4 Downstream intron flank conservation 0.138 Average of positive NI scores in exon 0.118
5 Length of best alignment in the 

downstream intron flank
0.138 Length of best alignment in the upstream 

intron flank
0.117

6 Exon identity 0.120 Density of AC in exon 0.115
7 Identity of best alignment in the 

downstream intron flank
0.088 Average of negative NI scores in exon 0.112

8 Exon length 0.080 Density of CT in exon 0.111
9 Matches in 12-mer near 3'ss 0.066 ESE density in exon 0.104
10 Symmetry 0.042 Length of best alignment in the upstream 

intron flank
0.103

Table 3: Top combination features according to information gain

Rank Feature Information Gain

1 Product of identities of exon and both intron flanks 0.208
2 Product of identity of both intron flanks 0.196
3 Product of identities of exon and upstream intron flank 0.181
4 Product of identities of exon and downstream intron flank 0.153
5 Ratio of the downstream intron length to exon length 0.051
6 Ratio of ESE density to ESS density 0.029
7 Sum of splice site scores 0.023
8 Ratio of the upstream intron length to exon length 0.022
9 Ratio of trusted ESE density to trusted ESS density 0.010
10 Density of putative PTB binding sites in exon 0.008
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density of single-stranded ESEs when compared to consti-
tutive exons.

- "MAXENTSCAN score of the 5'ss" (node 11) and nodes rep-
resenting positions in the 5'ss region (nodes 8 and 9): The
node representing the strength of the 5'ss has an edge to
the node representing the binary variable "Gat5SSplus4",
which indicates whether the nucleotide at the position +4
is a G or not, and this node has an edge to the node repre-
senting the variable for a T at position +4. Both of these
nucleotides are different from the splice site consensus at
their respective positions, and thus contribute to lowering
the splice site score. Furthermore, it is also known that
there are dependencies among the 5'ss positions [50].

- "density of intronic splice regulatory elements (ISREs)
enriched in intronic flanks of AS exons, in the upstream intron
flank" (node 18) and "Abundance of CGG in the exon" (node
29): ISREs which are enriched in the flanks of alternative
exons tend to be CG-rich [30], so the link to CGG motifs
in the exon might indicate a subclass of alternative exons
found in CG-rich regions.

- "abundance of CCA in the exon" (node 28) and "average of
negative NI scores in exon" (node 13): These nodes corre-
spond to features representing the density of the trimer
CCA in the exon, and the average NI score of all hexamers
with negative NI scores, i.e. ESS-like tendencies. The CCA
motif is ~35-fold less frequent in ESSs than ESEs (occurs
in 71 of 979 ESEs and only 1 of 496 ESSs), so the BN cap-
tures the association of CCA abundance with the average
of negative NI scores.

- "abundance of CGG and GCA in the exon" (nodes 29 and
31) and "ratio of ESEs to ESSs in the exon" (node 18): These
nodes represent the density of the trimers CGG and GCA
in the exon, and the ratio of "trusted" ESEs and ESSs
(scores of 1 and -1, respectively). The motif CGG occurs in
7.5% (50 of 666) of the trusted ESEs, but in only 1% (4 of
386) of the trusted ESSs. Similarly, the motif CGG occurs
in 10.5% (70 of 666) of the trusted ESEs, but in only 2.1%

(8 of 386) of the trusted ESSs. Thus there is a correlation
between the abundance of the motifs CGG and GCA in
the exon, and the ratio of ESEs to ESSs.

Some of the other edges can be explained in a trivial man-
ner, for instance those involving the density of overlap-
ping motifs (e.g. nodes 28 and 21, and 28 and 34). We
note that one must be careful in interpreting the edges, as
not all of them may lend themselves to meaningful bio-
logical interpretation. While not all edges can be inter-
preted with biological knowledge, they definitely help in
our classification since a classifier omitting all edges
(naïve Bayes) performs worse [8].

Comparison of 2-fold, 3-fold, 5-fold, and 10-fold cross-
validation
We used 3-fold cross-validation in order to compare our
results to [8], who did the same. However, since it is com-
mon in machine learning to use 2-fold, 5-fold, 10-fold, or
"leave one out" (LOO) cross-validation, we compared the
performance of these different approaches on the dataset
D1, using the WEKA package [38], and the optimized set
of 34 features described above. The results for the 2/3/5/
10/LOO cross-validations were: TP0.5 = 57%/60%/57%/
58%/59%, and AUC = 0.95/0.95/0.95/0.95/0.95.

Performance using the same features as the SVM
To assess the factors behind the improved performance of
BNs, we used the same 228 features as reported in [8], and
obtained the same overall quality of prediction (AUC =
0.93) and slightly improved TP0.5 (51% vs. 50%). This
indicates that accurate classification of conserved exon
skipping depends more on the features used rather than
the choice of classifier.

Performance of Bayesian networks on a second dataset
Next, we tested our approach on a different dataset of con-
served exon skipping events, the ACESCAN training set
[10] henceforth called dataset D2, which comprises 5,069
constitutive and 241 alternative exons. Using the basic set
of 228 features [8], the BN achieved values of TP0.5 = 52%,

Table 4: Top trimers in the exon and intron flanks according to information gain

Rank Exon Trimer Information Gain Intron Trimer Information Gain

1 TCC 0.034 upstream TTC 0.016
2 ATG 0.031 downstream AGG 0.014
3 CCT 0.029 downstream GAG 0.012
4 TCG 0.028 upstream TTT 0.012
5 CAT 0.028 upstream TCT 0.012
6 AAG 0.027 downstream GGA 0.012
7 GTA 0.027 downstream TTT 0.011
8 GAC 0.026 upstream GAG 0.011
9 GAT 0.026 upstream AGG 0.011
10 CAA 0.026 upstream CAG 0.009
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34-feature Bayesian networkFigure 2
34-feature Bayesian network. Note that BN in fact has 35 nodes. The class node, which has an edge to all other nodes and 
makes the actual number of edges 67, is omitted for ease of visualization. Thus, this is just the augmenting tree in the TAN clas-
sifier. The features associated with the nodes are as follows: 1: 1 if exon length is divisible by 3, otherwise 0. 2: Length of the 
best alignment in the 3' 100 nt intronic region. 3: Length of the best alignment in the 5' 100 nt intronic region.4: Percent iden-
tity of the best alignment in the 5' 100 nt intronic region. 5: Length of the 5' intron. 6: Ratio of the lengths of the 3' intron and 
the exon. 7: Product of the identities of the exon and both 100-nt intronic flanks with their mouse orthologs. 8: 1 if G at +4 of 
the 5'ss, otherwise 0. 9: T at +4, 10: A at +6; 11: MAXENTSCAN score of the 5'ss. 12: Sum of the MAXENTSCAN scores of 
the 3' and 5'ss. 13: Average of the NI scores of all the hexamers with a negative NI score. 14: Variance of the NI scores of all 
the hexamers with a "strong" (≥ 0.8 or ≤ -0.8) score.   15: Average of the NI scores of all the hexamers with a "strong" (≤ -0.8) 
negative score. 16: Density of single-stranded (PU value ≥ 0.6), "trusted" ESEs (NI score = 1). 17: Ratio of the number of 
"trusted" ESEs (NI score = 1) to the number of ESSs (NI score = -1). 18: Density of ISREs enriched in the flanks of AS exons, in 
the 5'intron flank. 19: Density of single-stranded (PU value ≥ 0.6), intronic splice regulatory elements (ISREs) enriched in the 
flanks of AS exons, in the 5'intron flank. 20: PTB-binding site TCTT density in the exon. Dimer density in the exon:21:CC, 22: 
GA; 23: Dimer GA density in the 3' intron flank; Trimer density in the exon: 24: AAG, 25: AGG, 26: ATG, 27: CAA, 28:CCA, 
29: CGG, 30: CTC, 31: GCA, 32: GGT, 33: TAG, 34: TCC.
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and AUC = 0.92. After incorporating the novel features,
and performing feature selection as described above, the
best performance achieved on D2 was: TP0.5 = 59%, and
AUC = 0.93 (Figure 1).

Thus, we achieve a good performance, similar to that on
D1, on the dataset D2 as well. However, the number of
discriminative features is smaller than for D1. This trend
continues with the addition of novel features – of all the
365 features, typically 110–130 are discriminative on a 2/
3 split of D1, whereas only 65–80 are discriminative on a
2/3 split of D2. A possible reason for this could be the dif-
ferent criteria used in the construction of the two datasets,
resulting in possibly different extents of corruption of the
sets of constitutive exons by alternative exons, because the
dataset D1 requires 4 identical ESTs for an exon to be con-
sidered constitutive, whereas the dataset D2 does not. Fur-
thermore, D1 has more exaggerated differences among the
two classes for several features – for example, while 74%
of alternative exons preserve the reading frame compared
to 37% of the constitutive exons, the corresponding num-
bers for D2 are 67% and 39%. Thus, the subset of con-
served exon skipping events in D1 seems to be
characterized by more strongly discriminative features.

Cross-validation by training and testing on the two 
independently constructed datasets
It is usual in machine learning to divide the available data
into training and testing partitions, and optimize the clas-
sification using these. It is then assumed that similar per-
formance can be achieved on other datasets of a similar
nature. However, given that there are often differences in
the way independent datasets are prepared by different
groups of scientists, it may be optimistic to presume this.
We suggest that testing on an independent dataset is likely
to give a better indication of the level of performance that
can be expected when scaling to a genome-wide predic-
tion. To use D1 and D2 for this purpose, we removed from
D1 the exons already present in D2 – leaving 201 alterna-
tive and 1,654 constitutive exons in D1. To minimize any
biases introduced by different ratios of the numbers of
samples in each class, we then randomly sampled consti-
tutive exons from D2 to have the same ratio (8.23:1) of
constitutive to alternative exons, leaving 241 alternative
and 1,984 constitutive exons in D2. We then used the
optimal feature subsets obtained on D1 and D2 earlier to
train BNs on the respective entire datasets. When we used
the BN trained on D1 to test D2, the performance
achieved was TP0.5 = 27%, and AUC = 0.88. The corre-
sponding performance achieved with training on D2 and
testing on D1 was TP0.5 = 26%, and AUC = 0.91. While an
AUC value of 0.91 (or even 0.88) indicates good overall
classification, this is less than the 0.94 achieved when
tested on unseen data from the same source. The effect on
TP0.5 is quite dramatic. We think that these figures might

be a more accurate estimate of what to expect when a clas-
sifier is used to classify independently produced data. Per-
formance will tend to be (at least) slightly worse on
independently produced data than on unseen data from
the same source, something which is true of all classifiers
in general.

Assessing over-fitting
To assess whether our increased performance is due to
over-fitting, we randomly permutated the labels 'alterna-
tive' and 'constitutive' between the data points and
trained the BN on the relabelled datasets D1 and D2. In
case of overfitting, we would still expect a good perform-
ance, while the AUC value of a random classifier should
be close to 0.5 [38].

After relabelling, most features are no longer discrimina-
tive. In fact, only 29 features remained discriminative, and
these were the same for both datasets – symmetry, and the
28 features describing the positional biases in the 5'ss
region. The AUC achieved was 0.51 on dataset D1, and
0.49 on D2. This shows that our approach has no prob-
lems with over-fitting.

To further rule out overfitting, we used a random three
way split: 60% of the data for training, 20% for validation
and optimization, and 20% for testing. We obtained TP0.5
= 63% and AUC = 0.94 on the validation set; using the
same set of features, the performance on the test set was
TP0.5 = 59% and AUC = 0.95. Using this "train-validate-
test" approach on D2, we obtained TP0.5 = 58% and AUC
= 0.94 on the validation set, and TP0.5 = 60% and AUC =
0.93 on the test set. Since the performance on both data-
sets is very similar to the performance achieved using our
three-stage feature selection approach, we conclude that
the improvement is not mainly due to manual feature
selection. However, manual selection is not ideal, and an
automated feature selection algorithm designed to opti-
mize performance in the low false-positive region would
be more satisfying. This is one of the possible future direc-
tions of work.

As a first approach to entirely automated feature selection,
we performed the following experiment: we randomly
chose 75% of D1 for training, and 25% for testing. Feature
selection was done using only the training part, and the
test part was touched only once at the very end of the pro-
cedure. The feature selection was as follows: starting with
the full set of features, we iteratively discarded one feature
at a time, and performed 10-fold cross-validated classifi-
cation using a BN (TAN) with the remaining features. Fea-
tures were discarded in order of increasing information
gain, that is, the least informative features were discarded
first. We re-inserted a feature only if at least one of TP0.5 or
AUC decreased as a result of omitting it. This was done
Page 11 of 14
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only in one pass, and features once discarded, were not
considered again. This is clearly not an optimal strategy,
and leads to bigger feature subsets than the approach used
before, but still yields good results. Using the subset of 50
features thus obtained on D1 led to performance of TP0.5
= 54% and AUC = 0.94 on the training set, and TP0.5 =
57% and AUC = 0.91 on the test set. On D2, this approach
yielded a subset of 35 features and a performance of TP0.5
= 56% and AUC = 0.92 on the training set, and TP0.5 =
52% and AUC = 0.94 on the test set. Thus, we can also
obtain good performance on unseen data using a feature
selection strategy which, though suboptimal, is easy to
automate.

Moreover, we also used the feature sets obtained in the
"train-validate-test" setting with a naïve Bayes classifier
(NBC) and obtained TP0.5 = 47% and AUC = 0.93 for a 10-
fold cross validation on D1, and TP0.5 = 43% and AUC =
0.92 for a 10-fold cross validation on D2, which are both
better than the performance using NBC reported in [8]
(TP0.5 = 37% and AUC = 0.89). Compared to the BNs,
NBCs achieve a higher sensitivity but lower specificity.
This indicates that the novel features help in improving
classification performance, and similar improvements
should be possible using other classifiers like SVMs, Neu-
ral networks and so on.

False positives with high posterior probability are likely 
true alternative exons
Next, we carefully looked at exons that are labelled consti-
tutive but obtained a high posterior probability of being
alternative exons from the BN. Since they seemed to be
more similar to ACEs than to other constitutive exons, we
hypothesized that newer EST/cDNA data provides evi-
dence for exon skipping, or any other kind of alternative
splicing at these exons. Out of 1,753 exons in D1 that
were labelled constitutive, 14 were assigned a P(ACE) –
posterior probability of being an ACE – of 0.7 or more. A
detailed inspection using the UCSC genome browser [22]
revealed that seven have EST and/or mRNA evidence of
alternative splicing in at least one of human and mouse
(six of these seven are cassette exons) and that two of them
are alternatively skipped in both species, that is, have evi-
dence of being ACEs. Of the remaining seven exons, one
has evidence of being a cassette exon in orangutan (Addi-
tional file 1).

The results on D2 are even more impressive – there are 15
exons labelled constitutive and with P(ACE) ≥ 0.7, of
which 13 have evidence of exon skipping or another alter-
native splicing event (seven are cassette exons in at least
one of human and mouse; five are ACEs; Additional file 1).

Thus, most FP predictions with high posterior probabili-
ties of being cassette exons in both D1 and D2 datasets are
actually alternative despite being labelled constitutive at

the time the datasets were prepared. This further demon-
strates the good performance of the BN.

Predicting exon skipping without using conservation based 
features
While conservation based features have proved to be the
most discriminative, it is desirable to be able to predict
alternative splice events using only features that are avail-
able to the spliceosome. The performance on this test is
also indicative of our understanding of the process of
exon skipping. Hence, we should also aim to predict splic-
ing using only information available from a single
genome. We predicted exon skipping omitting all conser-
vation based features – the best performance achieved was
TP0.5 = 29%, and AUC = 0.86 on dataset D1 and TP0.5 =
26%, and AUC = 0.88 on dataset D2.

While this performance is noticeably poorer than that
achieved using conservation based features, we would like
to note that the datasets D1 and D2 consist of exons that
are either constitutively spliced in both human and
mouse, or cassette exons in both. Thus, we are still distin-
guishing only between conserved constitutive splicing
and conserved exon skipping, leaving out cases of species-
specific splicing, as well as of alternative splicing of spe-
cies-specific exons, which form the majority of alternative
exons [51].

Conclusion
Using Bayesian networks (BNs) and several novel features
that emerged from recent studies of alternative splicing,
we have achieved considerably improved classification of
conserved cassette exons. We were able to improve the
performance described in [8] due to the incorporation of
novel features. To the best of our knowledge, this is the
first time that features involving secondary structure and
intronic splice regulatory elements have been employed
for distinguishing alternative exons from constitutive
ones. We also compared our performance on two datasets,
and showed that the BN is able to produce accurate classi-
fication on both. However, it is worth noting that these
datasets differ with respect to discriminative properties.

One direction of future work would be to consolidate var-
ious datasets of constitutive and alternative exons, and
compile sets of features, which are discriminative over
each of them, and the intersection of these sets, which is
discriminative over all datasets. Another interesting line to
pursue is to predict other kinds of alternative splicing.
Here, we focused on exon skipping, which is the most
prevalent form of alternative splicing in human and
higher vertebrates. However, other major forms of alterna-
tive splicing such as alternative donor and acceptor sites
[52-54] are also of biological importance, and it would be
worthwhile to develop similarly accurate classifiers for
these events.
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Ideally, we should be able to predict splicing outcomes
without conservation based information, as the informa-
tion required by the spliceosome is present in the given
genome. We report our performance at this task, while it
is a promising beginning, clearly there is much work to be
done. It should be noted that we have ignored two prom-
inent subclasses of alternative exons – namely ortholo-
gous exons which are alternatively spliced in a species-
specific manner, and species-specific exons which are
alternatively spliced. Both these classes are potentially
quite important: as up to 50% of all human alternative
exons may be human-specific, and up to 60% of all con-
served exons which are alternatively spliced may be alter-
native in a species-specific manner [51]. Classifiers for
these tasks are yet to be developed.
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ABSTRACT

Alternative splicing (AS) involving NAGNAG tandem
acceptors is an evolutionarily widespread class
of AS. Recent predictions of alternative acceptor
usage reported better results for acceptors sepa-
rated by larger distances, than for NAGNAGs.
To improve the latter, we aimed at the use of
Bayesian networks (BN), and extensive experimental
validation of the predictions. Using carefully con-
structed training and test datasets, a balanced sen-
sitivity and specificity of �92% was achieved. A BN
trained on the combined dataset was then used to
make predictions, and 81% (38/47) of the experimen-
tally tested predictions were verified. Using a BN
learned on human data on six other genomes, we
show that while the performance for the vertebrate
genomes matches that achieved on human data,
there is a slight drop for Drosophila and worm.
Lastly, using the prediction accuracy according to
experimental validation, we estimate the number of
yet undiscovered alternative NAGNAGs. State of the
art classifiers can produce highly accurate predic-
tion of AS at NAGNAGs, indicating that we have iden-
tified the major features of the ‘NAGNAG-splicing
code’ within the splice site and its immediate neigh-
borhood. Our results suggest that the mechanism
behind NAGNAG AS is simple, stochastic, and
conserved among vertebrates and beyond.

INTRODUCTION

Alternative splicing (AS) is now well established as a wide-
spread phenomenon in higher eukaryotes and a major

contributor to proteome diversity. Over half of the multi-
exonic human genes are believed to have splice variants
(1,2). Large-scale detection of AS usually involves
expressed sequence tags (ESTs) or microarray analysis
(1,3). However, due to various sampling biases, not
all AS events can be detected by these methods; further-
more, exon arrays usually do not probe short distance
events. Moreover, nowadays genomic sequence data is
being churned out at a much faster rate than transcript
data, that is, several genomes have low transcript cover-
age. Thus, there is a need for independent methods of
detecting AS.
Alternative acceptors are the second most common kind

of AS in human, after exon skipping (4). NAGNAG AS,
involving tandem acceptors separated by three nucleo-
tides, is a common type of AS, contributing almost half
of all cases of conserved alternative acceptor usage (5,6).
NAGNAG splicing results in two possible splice var-
iants—splicing after the first AG results in the E (exonic,
also known as proximal) isoform, whereas splicing after
the second AG results in the I (intronic, also known
as distal) isoform (Figure 1)—accordingly, we refer to
constitutively spliced NAGNAG acceptors as the E- or
I-class, and to usage of both acceptors, or AS, as the EI-
class. According to the data present in the Tandem Splice
Site DataBase TASSDB (7), 16% (1815 of 10 740) of
human NAGNAG acceptors are alternatively spliced.
However, 40% (3562) of the remaining NAGNAG accep-
tors have less than ten ESTs each, thus implying that a
subset of these NAGNAGs may simply lack evidence of
AS due to insufficient sampling of the transcriptome. An
accurate predictive method would give us a meaningful
estimate of the number of yet undiscovered alternative
NAGNAG acceptors. Previous work on predicting
alternative 30 splicing, while reporting good results overall,
had modest results for NAGNAG AS compared to cases
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involving larger distances (8). This seems to contrast with
previous work which reported that a simple model based
on splice site strength was enough to explain NAGNAG
and other short-distance tandem AS (9).
To improve the prediction of NAGNAG AS, we used

Bayesian Networks (BN), which are probabilistic graphi-
cal models, and TassDB (7) to carefully construct our
training and test datasets. BNs are an increasingly popular
machine learning approach to data modeling and classifi-
cation (10,11). We achieved a high balanced sensitivity
and specificity and good results in extensive experimental
validation of predictions. We show that the performance
on a dataset from literature (8) can be improved by a
careful consideration of available transcript evidence to
include only strongly supported NAGNAGs as constitu-
tive or alternative. Using a BN learned on human data
on six genomes from mouse to worm; we show that the
performance is comparable or only slightly inferior to that
achieved in human. Our results suggest that the mecha-
nism behind NAGNAG splicing is simple, and maintained
in evolution.

MATERIALS AND METHODS

Before describing the materials and methods in detail, we
note that an overview of the workflow is provided as
Supplementary Data (Supplementary Data File 6).

Feature design and extraction

Feature extraction was done using data on NAGNAGs
from TassDB (7), using PHP and Perl scripts. The region
used for analysis can be seen in Figure 2. Since the com-
position of the splice site neighborhood influences splicing
in general, the base pairs at positions �20 to +3 with
respect to the NAGNAG were each used as a single fea-
ture, as were the two Ns in the NAGNAG motif. The last
three positions of the upstream exon were also included,
since they can influence both the process of splicing, as
well as reflect any influence of codon usage near the exon
boundary. Thus, we had a total of 28 features which each
represented a nucleotide, and thus had four possible
values (A, C, G, T). A weak polypyrimidine tract (PPT)
can contribute to AS, and the number of pyrimidines in
the 30 region of the intron is a measure of PPT strength.
Therefore, we designed three features related to the
pyrimidine content in the 20-bp region upstream of the

NAGNAG: ‘Y-content’, which refers to the number of
pyrimidines in this region, ‘MaxY-content’, which is the
maximal run of consecutive Ys in this region, and their
starting position, ‘MaxY-content position’. Additionally,
three more PPT-related features were derived from the
50-bp region upstream of the NAGNAG. Following
(12), we measured the maximal number of Ys in a 20-nt
window, starting from 50-nt upstream of the NAGNAG.
Since U and C are not functionally equivalent, PPTs con-
taining 11 continuous Us are the strongest, and the pres-
ence of blocks of purines can be detrimental to splicing
(13), we also tested two features called ‘T-strength’ and
‘R-strength’, which measured the longest continuous U
(Ts in genomic sequences) and R (A or G) strings, starting
from 50-nt upstream of the NAGNAG. Since the archi-
tecture of the pre-mRNA plays an important role in
constitutive and AS (14), the length of the upstream
intron (ending in the NAGNAG motif) as well the
length of the upstream and downstream exons were
taken as features. Splice site strength, being one of the
most important determinants of splicing outcome, was
also included as a feature—the strength of the two possi-
ble splice sites for each NAGNAG exon, as computed
using MAXENTSCAN (15), contributed two more fea-
tures. Lastly, since GC-content can also play a role in
splicing, we measured the GC content of the upstream
intron as well as the upstream and downstream exons,
leading to three more features. In all, 42 features were
used (Table 1).

Analyses with dataset D1

The dataset D1 used in (8) was provided by Martin
Akerman. To derive the features, we used the genomic
coordinates to find the NAGNAGs in TassDB (7), since
it contains information about all NAGNAGs in the
human genome (as of early 2006). In order to use an
SVM for comparison, since that is what was used in (8),
we used the WEKA package and the SMO implementa-
tion of SVMs therein, using a polynomial kernel. To begin
with, we used the labels as provided in D1, and then we
replaced the labels according to TassDB, and finally
we replaced the samples labeled constitutive by samples
with �10 ESTs (for one variant only) from TassDB.
Leave-one-out cross-validation was used, as in (8). For
feature selection within WEKA, we used the method
‘CfsSubsetEval’, as well as manual inclusion and exclusion
of features. We also repeated the analysis with a Bayesian
network to ensure that BNs are a good choice for this

Figure 1. NAGNAG alternative splicing. Nomenclature of NAGNAG
AS with E and I sites and isoforms.

Figure 2. Nomenclature of features used in this study. Nomenclature of
sequence features used to analyze NAGNAG splicing. The region used
to derive all 42 features is shown, along with the names given to the
positional features. Positional features, including the last three nucleo-
tides of the upstream intron, were derived using the database TassDB,
which in turn used reference annotations (RefSeq when available, else
ENSEMBL).
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task, and found that the BNs did match the performance
of the SVM.

Datasets derived from TassDB

The dataset D2 of human NAGNAG acceptors was
extracted from TassDB (7) using the criteria: (i) constitu-
tive: �10 ESTs supporting either E or I variant, 0 for the
other; (ii) alternative: �2 ESTs supporting each variant,
�10% of ESTs supporting minor variant (Supplementary
Data File 2). The remaining human NAGNAGs were
used for prediction only (Supplementary Data File 3).
NAGNAG acceptors from the mouse, rat, chicken, zebra-
fish, fly and worm genomes were extracted in the same
manner. Only NAGNAG acceptors from transcripts
with a correct exon–intron structure as well as a correct
open reading frame were used.

Validation of splicing class assignments using
next-generation sequence data

Published next-generation transcriptome sequence data
(Illumina GA II) was retrieved from the Short Read
Archive section of the GEO database at NCBI (accession
number GSE12946) (16).The dataset comprised 313
million 32-mer readings, obtained from cDNA from nine
different human tissues and five breast cell lines. For the
analysis we required exact matches of the readings to one
of the isoforms. Matches had to overlap at least 6 nt on
both sides of the exon–exon junction and were discarded if
the same sequence occurred somewhere else in the human
transcriptome (RefSeq transcripts or NAGNAG isoform
sequences).

Bayesian networks

We used the algorithms for feature selection, model
learning and classification as described in (17), and made
available via the public webserver BioBayesNet (18).
BioBayesNet restricts the structure of the BNs by using
the so-called tree-augmented naı̈ve Bayes (TAN) structure
(19). In contrast to a naı̈ve Bayes classifier/network, where
the attributes are assumed to be independent, a TAN
classifier augments the underlying naı̈ve Bayes classifier
by allowing at most one additional parent per node.
Feature selection was carried out in three stages. First, a
‘discretizer’ applying the algorithm of Fayyad and Irani
(20) discards features for which no suitable discriminative
intervals are found. Secondly, the sequential feature subset
selection (SFFS) algorithm (21) was applied. Thirdly,
we enforced inclusion or exclusion of features manually.

Experimental validation and quantification of
splice variants

For validation and quantification of splice variants,
PCRs were performed using 200 pg cDNA templates
from the Human Multiple Tissue cDNA Panels I and II
(Clontech, Heidelberg, Germany). For each given gene,
a suitable tissue was determined from expression
data obtained from the Stanford SOURCE database
(21). PCR primers were obtained from Metabion
(Supplementary Data File 5), each sense primer labeled

with 6-carboxyfluorescein (FAM). Reactions were set up
with BioMix Red (Bioline, Luckenwalde, Germany) and
10 pmol primer in 25 ml total volume, according to the
manufacturer’s instructions. The thermocycle protocol
was 2min initial denaturation at 948C, followed by 42
cycles of 45 s denaturation at 948C, 50 s annealing at
568C, 1min extension at 728C, and a final 30min exten-
sion step at 728C. Each product was diluted 1/40, and 1 ml
of the dilution mixed with 10 ml formamide (Roth,
Karlsruhe, Germany) and 0.5 ml of GeneScan GS500LIZ
(Applied Biosystems, Darmstadt, Germany) were heated
to 948C for 3min. The mixture was than separated on an
ABI 3730 capillary sequencer and analyzed with the
GeneMapper 4.0 software (Applied Biosystems). If two
peaks with about the expected fragment sizes (with a
tolerance of �3 nt) and distance (3 nt) were visible, the
isoform ratios were calculated based on the peak areas.

Information gain

Information gain is defined as the reduction in the entropy
of the class variable, given the feature. The formula for
information gain is:

IG(Class | Feature)=H(Class)�H(Class | Feature)

where H(Class) is the entropy of the class variable, and
H(Class|Feature) is the conditional entropy of the class
variable, given the feature. Information gain is a well
established measure for feature selection in Machine
Learning (22). We used the WEKA package (22) for com-
puting information gain, in order to rank the features
according to how informative they were. We also used it
for prediction based on SVMs, as implemented in the
SMO option, and for prediction using Naı̈ve Bayes
classifiers.

The BayNAGNAG webserver

We used WEKA to implement the BNs, and C++ code
was written to enable the web browser to interact with
WEKA, using the features derived from the user’s input
along with saved BN models to produce the predicted
splicing outcome.

Estimating the number of undiscovered alternative
NAGNAGs

To estimate the number of alternative NAGNAGs which
lack transcript evidence as of now, we used the accuracy
of predictions according to the experimental validation,
as follows: We computed the average accuracy of predic-
tion in the three probability intervals f1=0.5�0.69,
f2=0.7�0.89 and f3=0.9�1.0, according to the experi-
mental results. If fi is the fraction of experimentally vali-
dated predictions in the interval i, and ni is the number
of samples in the test dataset which are currently labeled
as constitutive, but predicted to be alternative, then
the estimated number of yet undiscovered alternative
NAGNAGs is

N= n1 � f1+ n2 � f2+ n3 � f3.
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We used the validation accuracies for two different
thresholds (�1%, and �10%) of abundance of the
minor variant, leading to two estimates of the number of
yet undiscovered alternative NAGNAGs.

RESULTS

Performance on a dataset from the literature

While an SVM reported in (8) succeeded in predicting AS
for alternative acceptors separated by up to a distance of
100 nt, NAGNAG acceptors were shown to be the least
predictable (8). To understand the reasons behind that, we
obtained the underlying dataset from the authors, called
D1 in the following. However, in the following we did not
use conservation based features, because we aim at pre-
dicting AS using information only from a single genome.
Using our own set of 42 features (Table 1), we verified that
the reported performance is matched by the BN, as well as
by an SVM implementation provided in the WEKA pack-
age (22). The predicted NAGNAG class is the one which
receives the maximum score or posterior probability from
the classifier. We computed the receiver operating curve
(ROC), which is a plot of the true positive rate versus the
false positive rate, and measured the area under the ROC
curve (AUC), which is a standard measure of the quality
of a classifier (23). An ideal classifier, which makes no
errors, would achieve an AUC of 1. By means of the
SMO (Sequential Minimal Optimization) implementation
of a support vector machine in WEKA and all our fea-
tures, the AUC obtained for distinguishing EI and E cases
is 0.79, the same as reported (8). Using a subset of features

(Table 2) yielded by feature selection improves this to 0.82.
Similarly, using all 42 features, the AUC obtained for
distinguishing EI and I cases is 0.7, the same as reported
(8), and this improves to 0.77 using feature selection.

To check whether this relatively modest performance
was due to the set of constitutive NAGNAGs in D1
being in fact contaminated by alternative NAGNAGs,
we searched the Tandem Splice Site DataBase (TassDB)
(7) for the NAGNAGs in the D1 dataset, and replaced the
labels ‘alternative’ and ‘constitutive’ according to TassDB.
Indeed, this revealed that many NAGNAGs in D1 labeled
constitutive were in fact alternative according to the
transcript evidence in TassDB—119 of 397 (30%) cases
assigned to the E-class, and 104 of 177 (58.8%) cases
assigned to the I-class, are in fact alternative (EI-class)
according to TassDB. Incorporating this information
resulted in improved performance—the AUCs achieved
were 0.89 for distinguishing EI cases from E cases, and
0.85 for distinguishing EI cases from I cases (Table 2).

However, such relabeling still allows samples which
have very low transcript coverage and are thus potentially
mislabeled also in TassDB, and it also changes the ratios
of the sizes of the various classes, especially for the EI
versus I problem. Therefore, we replaced all samples
labeled constitutive in D1 by samples from TassDB
which had �10 ESTs supporting one splice site, and
none for the other. Since there are only 331 such samples
in the I-class, we randomly chose 331 (of 5032) samples
from the E-class. This new mixed dataset yielded signifi-
cantly improved performance, with AUC values of 0.97
and 0.94 for EI versus E and EI versus I, respectively.

Table 2. Performance on the dataset D1, using SVMs

Classification
problem

Original sample labels Sample labels according to TassDB

AUC Featuresa used AUC Features used

E versus EI 0.82 N1, N2, MAXENT-E,
MAXENT-I, D1, p�1,
Y-content,

0.89 N1, N2, D1, D3, U1, U2, p�8, p�5, p�2, p�1

I versus EI 0.77 N1, N2, MAXENT_E,
MAXENT_I, D1, p�2,
p�1, GC-intron,

0.85 N1, N2, D1, D2, D3, U1, U2, U3, p�19, p�18,
p�16, p�13, p�12, p�11, p�10, p�9, p�8, p�6,
p�5, p�2, p�4, p�3, p�2, p�1

aFor nucleotide nomenclature see Figure 2. Y-content: fraction of the 20-bp upstream of the NAGNAG motif that are pyrimidines, GC_intron:
G+C content of the intron ending with the NAGNAG, MAXENT_E, MAXENT_I: MAXENT scores for the É and I splice sites.

Table 1. Features for machine learning used in this study

Feature subset Number of
features

Motivation

N1, N2, D1, D2, D3 and positions in the PPT 25 NAGNAG splicing is influenced by the NAGNAG motif and its
sequence context

U1, U2, U3 3 Potential influence on protein context
Length of neighboring exons and upstream intron 3 The architecture of the pre-mRNA influences AS
GC content of neighboring exons and upstream intron 3 GC content can influence AS
Features related to the pyrimidine content of the PPT 6 Composition of the PPT influences splicing
Splice site strength of E and I splice sites 2 Alternative NAGNAGs tend to have comparable splice site strengths
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Removing all NAGNAGs containing a GAG, as done
in (8), did not affect the performance drastically, as we
obtained AUC values of 0.96 and 0.92 for EI versus
E and EI versus I, respectively. Thus, the use of strict
thresholds on EST evidence of constitutive splicing greatly
reduces the noise in the dataset, and improves the predic-
tion performance. It must be pointed out that we only
used transcript evidence for the human genome, that is,
some of the alternative cases might be human-specific.

To further validate the relabeling of samples in D1,
we analyzed next-generation transcriptome data
(Illumina/Solexa GA II), 313 million sequences, obtained
from nine different human tissues and five breast cell lines
(16) as an additional source of experimental evidence for
NAGNAG isoforms. A total of 7509 NAGNAG cases
had sequences specifically matching at least one of the
isoforms (total of 363009 sequences). We note that the
coverage of the transcriptome by these Solexa data is
not exhaustive, so there are likely more examples of AS
NAGNAGs than thereby supported. We applied stringent
filters on the number of sequences supporting an event—
these filters had been previously shown to help in the
detection of experimentally reproducible AS (24). To con-
sider a NAGNAG to be alternatively spliced, we required
at least two supporting sequences for each isoform, and at
least 10% of the total sequences to support the minor
isoform. A constitutive NAGNAG had to be supported
by at least 10 sequences for one isoform, and 0 for the
other. We then computed the intersection of this dataset
with D1 (Supplementary Data File 8), and compared the
labels of the samples. 203 cases of D1 were found in the
filtered Solexa dataset—of 142 cases labeled constitutive in
D1, 66 (46%) had evidence for being alternatively spliced.
When we repeated the comparison after replacing the
labels according to TassDB, there were 74 cases labeled
constitutive, of which only 12 (16%) were alternative
according to the Solexa data. This underscores the need
to use thresholds of transcript support for both constitu-
tive and AS as well as confirms our relabeling.

In-silico performance on a TassDB derived dataset

Having seen that sets of constitutive splice events might
in fact be significantly corrupted by (not yet detected)
alternative acceptors, we decided to take extra care in
our selection of human alternative and constitutive
NAGNAGs for training data by considering only
NAGNAGs which are strongly supported in TassDB.
Thus, a NAGNAG was considered constitutive if it had
�10 ESTs supporting one splice site, and none for the
other. To be considered alternative, there had to be �2
ESTs for each splice variant, and �10% of the ESTs must
support the minor variant. Such filtering of alternative
events was not required in D1 as another stringent
filter—of conserved AS—had already been applied.

This TassDB dataset (called D2 in the following) con-
sists of 5363 constitutive (5032 E, 331 I) and 902 alterna-
tive NAGNAGs. We also repeated the comparison with
the filtered Solexa dataset (Supplementary Data File 9) as
in the previous section—2890 cases of D2 were found in
the filtered Solexa data, and of the 2466 cases labeled

constitutive, only 37 (1.5%) had evidence of AS in the
Solexa data. The much lower number of mislabeled con-
stitutive samples in D2 when compared to the original D1,
further justified the choice of stringent filters.
D2 was partitioned into two equal parts, and then, in

turn, we used half of the data to train the BNs, and the
remaining half was used for testing. The test set remained
untouched while the training set was used for discretiza-
tion, feature selection and learning the BN. Finally, the
BN which had been learned on the training set was used to
classify the samples in the test set. This procedure was
carried out twice, using each half for training and testing
in turn, and the average of the two runs was taken as the
final performance.
We classified each candidate as belonging to one of the

three classes (EI/E/I). The BN achieved AUC of 0.96, 0.97
and 0.98 respectively for identifying EI, E and I variants,
as seen in the ROC plot (Figure 3). The balanced sensi-
tivity and specificity obtained was 92%, 95% and 93%
(EI/E/I). We would like to note that in contrast to (8),
which divided this classification into two sub-tasks,
namely predicting EI versus E, and EI versus I, we treat
it as a 3-class problem, thus covering all three possible
splicing outcomes at the same time.
Another noteworthy difference is that while (8) reported

worse performance for distinguishing between EI and
I cases, compared to distinguishing between EI and E
cases, in the 3-class problem, the highest performance is
achieved in predicting the I-class, that is, constitutive
usage of the downstream acceptor. This is intuitively
easy to grasp, since the scanning mechanism (24) implies
that the upstream acceptor is preferentially used, so that
constitutive usage of the downstream acceptor is only
likely when the upstream splice site is quite weak, for
example, when we have a GAGHAG pattern (H=A,
C or T). Previous experimental work on 30 splicing (25),
as well in-silico analyses of NAGNAG splicing (26,27)
have shown that the nucleotide preceding the AG can

Figure 3. In-silico performance of the Bayesian network. ROC
plot showing the performance achieved on the 3-class [I-class (red),
E-class (green), and EI-class (blue)] classification problem. The I-class
is relatively the easiest to predict, whereas the EI-class, or AS, is the
hardest.
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influence the choice of 30 splice site, with the following
order of preference: CAG>TAG>AAG>GAG. Con-
sistent with this, 227 of 331 I cases (68.6%) in the D2
dataset have a GAGHAG pattern. The order of prefer-
ence is also reflected in the sequence logos (28,29) con-
structed using the D2 data (Supplementary Data File 1).
Removing all NAGNAGs containing a GAG from the

training and test sets results in AUC of 0.90, 0.94 and 0.90
respectively for identifying EI, E and I variants. Removing
such NAGNAGs can be considered, as GAGs are believed
to rarely serve as functional splice sites (8,30), and there-
fore such NAGNAGs are considered ‘implausible’ for the
purposes of AS (31). However, since TassDB contains 182
alternative NAGNAGs of this kind (of which 59 have �2
ESTs supporting each variant), we decided to include
them. The BN achieves AUC of 0.83, 0.98 and 0.99 respec-
tively for identifying EI, E and I variants on the subset of
GAG-containing NAGNAG motifs and predicts 6% of
the EST-supported ones to be alternatively spliced. On
the other hand, among the currently known constitutively
spliced GAG-containing NAGNAG acceptors eight
(1.2%) are being predicted to be alternative.

Experimental validation

Having established that highly accurate predictions of
NAGNAG splicing are possible in-silico, we decided to
perform extensive experimental validation of predictions.
Experimental validation was performed using RT–PCR
followed by capillary electrophoresis with laser-induced
fluorescence detection. NAGNAG AS appears in our
experimental readout as two fluorescence peaks separated
by three nucleotides (Figure 4). To avoid false positive
results due to noise, a threshold has to be defined above

which the intensity of the minor peak is considered as a
robust signal of AS. Accordingly, we measured the accu-
racy of predictions against the threshold of the isoform
ratio, that is, the abundance of the minor transcript
(lower peak).

Candidates for experimental work were chosen from
both, the entire D2 dataset described in the previous sub-
section (termed ‘training data’), and the remaining 4475
(913 EI, 3206 E and 356 I) human NAGNAGs in TassDB
(termed ‘test data’). The BN learned on D2 uses 14 fea-
tures (Figure 5) and was applied to classify both training
as well as test data (Supplementary Data Files 2 and 3,
respectively), and candidates were chosen based on the
classification results. Besides the prediction of AS
for exons with low EST coverage, we decided to select
candidates of several different types, as explained in the
following, where P(EI) refers to the probability of being
alternative.

Class 1: NAGNAGs from the training data, labeled consti-
tutive, but given a P(EI) �0.9 by the BN. As control,
constitutive training NAGNAGs with a P(EI) �0.1 were
chosen. With these candidates, we wanted to test whether
the BN can find alternative acceptors even within the
ones which had strong transcript support in favor of
being constitutive. At a minor variant abundance thresh-
old of 4%, the validation rate is 100% for both cases (6/6;
Table 3), and controls (2/2). These results indicate that
even strong transcript support (EST coverage �10) can
miss alternative splice events and cannot ‘prove’ that an
exon is indeed constitutive. The highest number of ESTs
among these six was 36, for SNTA1 (NM_003098, exon 8)
for which we detected 4% usage of the acceptor that was
unsupported by ESTs. The highest observed splice ratio of
43% was obtained for C3ORF34 (NM_032898 exon 2)
which was originally covered by 21 ESTs confirming the
E acceptor exclusively.

Class 2: NAGNAGs from the training data, labeled alter-
native, but given a P(EI) �0.1 by the BN. As control,
alternative training NAGNAGs with a high P(EI)

Figure 5. Bayesian network to predict NAGNAG alternative splicing.
The 14-feature Bayesian network learned on the D2 dataset. Note
that the class node, which has an edge to all other nodes, is omitted
for ease of visualization. Thus, this is just the augmenting tree in the
TAN classifier.

Figure 4. Experimental validation of predictions using RT–PCR
and quantification by capillary electrophoresis. Experimental results
indicating (A) constitutive NAGNAG splicing of VPS13D exon 27
and (B) alternative NAGNAG splicing of INPP5E exon 6, minor
isoform abundance 24%.
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were also chosen. With this class, we wished to identify
constitutive NAGNAGs which had erroneous transcript
evidence of being alternative. At a minor variant abun-
dance threshold of 4%, the validation rate is 80% (4/5)
for cases being constitutive and 100% (6/6) for controls
being alternative.

Class 3: NAGNAGs from the test data, labeled constitutive,
but given a P(EI) �0.5 by the BN. Candidates were
chosen from each interval of 0.1 between 0.5 and 1. As
controls, two test acceptors, labeled constitutive and with
P(EI) �0.1 where chosen. The underlying consideration
was to test not only the ability of the BN to identify alter-
native NAGNAGs among the acceptors with low tran-
script coverage, but also to test whether a higher P(EI)
corresponded to a higher accuracy of prediction. The
results of the experiments on candidates from this class
demonstrates that for a given threshold of isoform
ratios, higher posterior probabilities result in more reliable
predictions (Table 4). The validation rate for the controls
at a minor abundance of 4% is 50% (1/2).

Class 4: NAGNAGs from the test data, labeled alternative,
but given a P(EI) �0.1 by the BN. As control, alternative
NAGNAGs with a P(EI) �0.9 were also chosen. Note that
the difference when compared to Class 2 is that these are
alternative NAGNAGs with relatively weaker transcript
support. For Class 4, the validation rates at a minor abun-
dance of 4% are 83% (5/6) for cases being constitutive,
and 50% (3/6) for controls being alternative.

In all, 63 NAGNAGs were investigated (Supplementary
Data File 4), and the experiments confirmed that the BN
can accurately predict NAGNAG-splicing outcome in
81% (38/47) of candidates. Surprisingly, the validation
rate for controls was lower with 75% (12/16).

Most informative features

Next we asked which the most informative features for
our classification problem are. By measuring the informa-
tion gain, we identified the two Ns in the NAGNAG
motif, and the splice site scores, to be by far the most
informative features (Table 5), which is also in agreement
with the literature (8,9,25–27). The downstream N (N2,
Figure 2) is the most informative feature, followed by
the splice site score of the I acceptor. The next two most
informative features are the upstream N (N1, Figure 2),
and the splice site score of the E acceptor. The nucleotides
immediately upstream and downstream of the NAGNAG
acceptor (positions �1, +1, �2 and �3) are the next four
informative features, and the nucleotide at position +3
is ranked 10, reflecting the highly localized nature
of NAGNAG splicing. The feature ranked 9 is the GC-
content of the downstream exon—NAGNAGs whose
downstream exon has a higher GC-content are enriched
in usage of the I acceptor and correspondingly in alterna-
tive NAGNAG splicing.
We note that while the splice site scores are very infor-

mative, they are not present in the 14 feature BN learned
on D2 (Figure 5)—this is because the relevant information
is already captured by N1, N2 and the immediate neigh-
borhood. The splice site scores are based on information
that also uses positions which are relatively distant from
the NAGNAG, and likely not strongly influential on the
splicing outcome. Moreover, using the splice site scores
introduces a systematic bias against the downstream
acceptor, since the ‘PPT’ (polypyrimidine tract) now con-
tains an AG dinucleotide.

Prediction on the mouse, rat, chicken, zebrafish and
fly genomes

To test how the BN trained on human performs on data
from other species, we first extracted mouse NAGNAG
data from TassDB (7), using the same EST-based filtering
criteria as for the D2 data above. The performance on
the mouse NAGNAG data was nearly identical to that
on human (Table 6, Supplementary Data File 10).
Encouraged by this, we used the same EST-based filtering
in rat, chicken, zebrafish and fly, and predicted
NAGNAG splicing using the BN. The performance
achieved for the three vertebrates was very similar to

Table 5. Top 10 features according to the information gain

Featurea Information gain

N2 0.492
MaxEntScan I 0.448
MaxEntScan E 0.252
N1 0.199
p�1 0.040
D1 0.020
p�2 0.014
p�3 0.005
G/C content of 30 exon 0.005
D3 0.004

aFor nomenclature see Figure 2.

Table 3. Accuracy of prediction against threshold of the minor splice

variant

Threshold of the minor
splice variant (%)

Experimentally confirmed predictions of AS

Class 1a (%) Class 3b (%)

10 50 60
8 50 90
6 67 90
4 100 100

aSix predictions with P(EI)� 0.9.
bTen predictions with P(EI)� 0.9.

Table 4. Accuracy of predictions against posterior probability

P(EI)a Accuracy of predictions

0.9–1 100% (10/10)
0.7–0.89 80% (8/10)
0.5–0.69 50% (5/10)

aAbundance of the minor splice variant� 4%.
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that on human and mouse, whereas the performance on
fly data, while not as high as that on the others, was still
quite good (Table 6). Investigating the cause behind the
reduction in performance on the Drosophila genome, we
found that excluding positions not in the immediate neigh-
borhood of the NAGNAG—in particular, excluding all
features except the two Ns in the NAGNAG, and the
two nucleotides immediately upstream, lead to a slight
improvement on Drosophila data. This simplified BN
trained on human D2 data with just four features, also
almost matched the performance of the previous BN with
14 features (Figure 5) on the other five genomes, as well as
when evaluated by the above outlined experimental results
(data not shown).

Prediction on the worm genome

TassDB also contains data from the worm genome, how-
ever, there are no examples of constitutive I variants
with 10 or more ESTs. We used the 3-class BN with
four features (the two Ns in the NAGNAG, and the two
nucleotides immediately upstream) trained on human
D2 data to predict NAGNAG-splicing outcomes for
Caenarhabditis elegans, and obtained AUC values of
0.93 for predicting the EI and E-classes. Only one
sample was predicted to belong to the I-class. A 2-class
BN trained on human D2 data from only the E and EI-
classes produced the same AUC values. A closer look at
the data revealed that none of the 391 NAGNAGs (369 E,
22 EI) had G as the upstream N (N1, Figure 2; which is
most often the case for constitutive I variants) in the
NAGNAG. Thus, it appears that the splice site sequence
context is different in NAGNAG splicing in C. elegans,
compared to vertebrates. This is in agreement with pre-
vious studies that identified an extended 30 splice site con-
sensus in C. elegans (28).

Performance using a minimal set of features

Since reducing the number of features lead to an improve-
ment in prediction of NAGNAG AS in Drosophila and
worm, we asked how many features we could omit with-
out a significant drop in performance on the human D2
dataset. We found that using only the two Ns in the
NAGNAG motif, or only the splice site scores (computed
by MAXENTSCAN) led to only slightly worse perfor-
mance. We also found that using a naı̈ve Bayes classifier
instead of a BN (with the same features), led to only a

minor drop in performance.In order to compare the
impact of leaving out features, we compared the error
rates of classification using different feature subsets
under a 10-fold cross-validation setting with D2. The
results show that the error rate is lowest (5.9%) when
using only N1, N2, p1, p2 and D1, that is the two Ns
in the NAGNAG, and the immediate two upstream and
one downstream positions. The error rate using only the
MAXENTSCAN scores (7.4%), is higher than that
obtained using all features (7.1%), only N1 and N2

(6.7%), or the 14-feature BN we used for the experimental
validation (6.3%). We would also like to point out that
there is practically no difference in the computational cost
of using the various models—the cost of extra features in
training the models is not much, and more importantly,
once trained, the various models take near-identical time
to classify new data.

Webserver and performance on examples from the literature

To further validate our classifier, we tested it on examples
of experimentally studied NAGNAGs from the literature
(30), which includes interesting examples of tissue-specific
variations of the isoform ratio. As shown in Table 7, the
results were promising—13/17 (76%) of the cases were
predicted to be alternative. An additional 5/7 cases from
(29) were also correctly predicted (data not shown). Thus,
the performance on these cases from the literature further
underscores the usefulness of our classifier. To enable
others to do similar experiments as well as reproduce
our results and/or predict NAGNAG AS in candidate
acceptors of their interest, we developed a webserver—
BayNAGNAG, available at: http://www.tassdb.info/
baynagnag/

A user can provide a NAGNAG motif along with the
upstream and downstream sequence context, the intron
length and the last base of the upstream exon. These are
then used to predict the class, and the posterior

Table 7. Predictions of the 14-feature BN on experimentally studied

cases from the literature (30)

Gene Isoform ratios
(E:I) in different
tissues (30)

P(EI) P(E) P(I)

DRPLA 8:2–9:1 0.76 0.22 0.02
GHRHR 2:8 0.92 0.04 0.05
BAIAP2 1:9–0:10 0.88 0.04 0.07
PTMA 0:10–1:9 0.14 0.33 0.53
IGF1R 7:3–8:2 0.56 0.43 0
PAX3 0:10-10:0 0.72 0.03 0.25
PAX7 0:10–9:1 0.69 0.13 0.18
LEP 1:9–10:0 0.61 0.38 0.02
DNMT1 (Mouse) 4:6–6:4 0.58 0.07 0.35
CAST 9:1–10:0 0.90 0.08 0.03
MAN2B1 0:10–3:7 0.23 0.67 0.10
PSEN2 7:3 0.45 0.55 0
LAP1B 0:10–10:0 0.84 0.15 0.01
NOXO1 0:10–9:1 0.08 0.91 0.01
CCL20 4:6–9:1 0.80 0.18 0.02
SGNE1 4:6–8:2 0.48 0.41 0.11
TGFA 5:5–9:1 0.93 0.04 0.03

Table 6. Area under the ROC curve for the three classes and six

organisms

Organism AUC

EI E I

Human 0.967 0.985 0.989
Mouse 0.966 0.982 0.989
Rat 0.967 0.985 0.991
Chicken 0.972 0.983 0.986
Zebrafish 0.967 0.983 0.992
Fruitfly 0.924 0.971 0.952
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probabilities of all three classes are provided as output.
Predictions using two different BNs are provided—one
which uses 14 features (Figure 5) and was used in
the experimental validation, and the other trained
on MAXENTSCAN (15) scores (of the E and I) splice
sites only. Furthermore, we also provide an additional
file (Supplementary Data File 7) with the required
information for all 10 740 human NAGNAGs used in
our study.

Estimating the number of undiscovered alternative
NAGNAGs

Using the accuracy of predictions according to the exper-
imental validation, we estimate the number of yet undis-
covered alternative NAGNAGs in the human genome
(10 740 NAGNAGs, 8925 constitutive, 1815 alternative)
to be 258–515. The corresponding estimates for mouse
(8735, 7386, 1349), fly (1589, 1411, 178) and worm (4697,
4661, 34) genomes are 214–417, 106–214 and 101–185,
respectively.

DISCUSSION

We have demonstrated that BNs can produce highly reli-
able predictions of NAGNAG-splicing outcomes. Once
transcript evidence had been carefully considered to
create a training dataset, the BN achieved high perfor-
mance, not only in-silico with a balanced sensitivity and
specificity of �92%., but also according to extensive
experimental validation. Altogether, we investigated the
AS of 63 NAGNAGs in one to two tissues and confirmed
our predictions in 81% of cases and 75% of controls
(4% threshold for the minor isoform). The surprisingly
low confirmation rate of controls is primarily due to the
50% (3/6) success rate for low expressed genes (Class 4).
Likely, some of these failures are false negatives as AS
may take place in other cell types than those tested.
In turn, this implies that also some non-confirmed case
predictions of AS are false negatives within our experi-
mental setup. Summing up cases and controls with P(EI)
�0.9, the confirmation rate is 89% (25/28) despite that the
just discussed problematic Class 4 controls are included. It
is natural to ask why ESTs failed to detect the predicted
AS in Class 1 candidates, which was successfully validated
by our experiments. In our opinion, some of these cases
are easily explained by the low minor abundance, which
implies that it is not surprising if a relatively low number
of ESTs fails to detect AS. For instance, the NAGNAG
belonging to the gene NF1 in Class I has a minor abun-
dance of 0.05, so one would expect to see, on average, 1
EST out of 20 supporting the minor variant. However,
since this NAGNAG is only covered by 10 ESTs, it is
not surprising that AS is not detected.

To the best of our knowledge, this is the first instance
of such extensive validation of in-silico predictions of
NAGNAG splicing, and is also among the most extensive
experimental validations of non-EST based methods of
predicting AS published so far.

The single biggest factor contributing to the performance
of the BN was the preparation of the training dataset.

As we showed by prediction on the dataset D1 from liter-
ature (8), judicious use of transcript evidence, especially
a threshold on the number of transcripts required to
label an exon as constitutive, makes a big difference.
A strict threshold on the EST evidence required to label
a splice site as constitutive or alternative is required to
minimize the noise inherent in EST databases, and the
performance of a classifier can only be as good as the
quality of the data that it is trained with.
The most informative features (Table 5) are the two

Ns in the NAGNAG motif, and the splice site scores.
To some extent, the scores for the upstream and down-
stream splice sites, and the upstream and downstream Ns
can be substituted by each other. The nucleotides imme-
diately neighboring the NAGNAG are the next most
important, while other features make only small contribu-
tions to the prediction performance. Thus it is evident that
most of the information required for prediction is encoded
in the immediate splice site neighborhood.
A BN trained on human data achieved near-identical

performance on the mouse, rat, chicken and zebrafish
genomes, indicating that the determinants of NAGNAG
splicing outcome are conserved among vertebrates.
Furthermore, the fact that the most informative features
were the two Ns in the NAGNAG motif, and its immedi-
ate neighboring nucleotides, suggests that the mechanism
is simple in nature and maintained in evolution. Given the
relatively low transcriptome coverage in rat, chicken and
zebrafish, one might ask whether the subset of NAGNAG
acceptors we studied for these genomes represent the
highly expressed subset of genes and thus likely enriched
in conserved alternative events. However, this would
not appear to be the case, as we obtain nearly identical
results for mouse, which has much higher transcriptome
coverage. Thus, our BN should be useful to annotate
NAGNAG splicing in animal genomes that currently
lack extensive transcript data.
The BN trained on human data was also able to predict

NAGNAG AS in the Drosophila genome, though with
a drop in performance. However, training using data
from Drosophila itself did not improve the performance,
indicating that the mechanism may well be conserved
between vertebrates and Drosophila. Furthermore, using
only four features (the two Ns in the NAGNAG, and the
two nucleotides immediately upstream), a BN trained on
human data achieved good performance on the worm
genome, which contains no instances of the I-class with
strong EST support.
This suggests that perhaps what is different in

NAGNAG splicing in C. elegans, compared to vertebrates
is not the mechanism but rather the evolutionary con-
straints on the splice site sequence context.
Simpler approaches like using only the two Ns in the

NAGNAG motif, or only the splice site scores (computed
by MAXENTSCAN), or using a naı̈ve Bayes classifier, led
to only slightly worse performance, indicating that the
other features and the corresponding dependencies
learned by the BN are weak in their discriminative
power, and in generalization to other datasets. All this
points to a simple and stochastic mechanism, at least in
as much as predicting the class (EI/E/I) of NAGNAG
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splicing is concerned. This is in agreement with (9), who
proposed a model based on the sequence context from �6
to +6 at the intron-exon boundary, that is, from �3 to
+6 with respect to the NAGNAG, or 15 positions in all.
We have shown that the class (EI/E/I) of NAGNAG spli-
cing can be predicted in the vast majority of cases with
even fewer positions, that is, �2 to +1 with respect to the
NAGNAG, or 9 positions in total. However, the predic-
tion of splice ratios and their tissue and/or developmental
stage dependent changes has to involve additional cis and/
or trans features and can not be based on a simple sto-
chastic mechanistic assumption. We note that the possi-
bility of such a mechanism does not preclude regulation or
a biological function (5,32). Stochastic splice site selection
might in fact help production of constant splicing ratios,
which have been observed in some NAGNAG sites with
clear functional implications (5). At a qualitative level, the
stronger splice site seems to correspond to the more abun-
dant variant in most cases, thus supporting a model in
which the two splice sites compete for binding to the spli-
ceosome. However, quantitative prediction of the precise
abundance is much more challenging. Since NAGNAG
AS is frame-preserving (and thus not subject to NMD),
save for the �2% of the cases which introduce an in-frame
stop codon (25), the vast majority of cases should lead to
different proteins Studies so far have found evidence of
both cases where such proteins have variations in func-
tion, as well as those in which there is no noticeable dif-
ference, and thus the AS is apparently just ‘tolerated’ by
the cell [(5) and the references therein].
We also estimated that there are up to several hundred

undiscovered alternative NAGNAGs in the human,
mouse, fruitfly and worm genomes. We note that these
numbers could be an underestimate, since we only con-
sider predictions with P(EI)� 0.5. Given the current level
of annotations of the rat, chicken and zebrafish genomes,
genomic information about a substantial fraction of
NAGNAG acceptors is likely lacking, therefore such
estimation would not be meaningful.
Despite the experimentally validated accuracy achieved

in predicting the outcome of NAGNAG splicing at the
‘ternary level’ (EI, E or I), the ‘NAGNAG-splicing code’
is not completely solved. Open questions are the isoform
ratios and their tissue specificity observed for several
NAGNAGs (25,30,33). Here, sequence features may con-
tribute to the isoform ratio although we consider them
uninformative for discrimination at the class level, consti-
tutive versus alternative. Prediction of isoform ratios
should also address the influence of the sequence context
in the intron and in particular of the branch point on the
isoform ratios (27). This is a particularly hard task since
computational identification of the branch point is an
unsolved issue in the splicing field. Finally, the current
limitation in studying isoform ratios is that the available
transcript data reflect the natural situations with low
resolution. In the future a considerably higher amount
of transcript data provided by next-generation sequencing
technologies might allow an accurate approximation of
isoform ratios and ultimately to decipher the splicing
code completely.

CONCLUSIONS

BNs can produce highly reliable predictions of
NAGNAG-splicing outcomes once transcript evidence
had been carefully considered to create training dataset.
This indicates that we have identified, on a qualitative
level, the most important features of the ‘NAGNAG-
splicing code’. As a BN trained on human data achieved
near-identical performance on other genomes from mouse
to zebrafish and most of the information needed for
prediction is encoded in the immediate splice site neigh-
borhood, we conclude that the mechanism is simple in
nature and maintained in evolution, as well as that our
BN should be useful to annotate NAGNAG splicing in
animal genomes that currently lack extensive transcript
data.
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Alternative splicing (AS) involving NAGNAG tandem acceptors is widespread in animals, and 

also common in the model plant Arabidopsis thaliana and in the crop Oryza sativa (rice). In 

one of the first studies involving sequence-based prediction of AS in plants, we performed a 

genome-wide identification and characterization of NAGNAG AS in the model moss 

Physcomitrella patens. We found 591 alternative NAGNAGs in P. patens using all currently 

available transcript evidence. A naïve Bayes classifier trained using judiciously prepared 

training data predicted NAGNAG AS with a balanced specificity and sensitivity of ≥ 89%. 

Subsequently, we made genome-wide predictions of NAGNAG splicing outcomes, and 94% 

(18/19) of the experimentally tested predictions were verified. NAGNAG AS is just as 

common in P. patens as it is in A. thaliana and O. sativa, and can be predicted with high 

accuracy. The most informative features are the nucleotides in the NAGNAG and in its 

immediate vicinity, along with the splice sites, as found earlier for NAGNAG AS in animals. 

Our results suggest that the mechanism behind NAGNAG AS in plants is similar to that in 

animals and is largely dependent on the splice site and its immediate neighborhood. 
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Abstract 

 

Background 

Alternative splicing (AS) involving tandem acceptors that are separated by three nucleotides 

(NAGNAG) is an evolutionarily widespread class of AS, which is well studied in Homo 

sapiens (human) and Mus musculus (mouse). It has also been shown to be common in the 

model seed plants Arabidopsis thaliana and Oryza sativa (rice). In one of the first studies 

involving sequence-based prediction of AS in plants, we performed a genome-wide 

identification and characterization of NAGNAG AS in the model plant Physcomitrella patens, 

a moss. 

  

Results 

Using Sanger data, we found 295 alternatively used NAGNAG acceptors in P. patens. Using 

31 features and carefully constructed training and test datasets of constitutive and alternative 

NAGNAGs, we trained a classifier to predict the splicing outcome at NAGNAG tandem 

splice sites (alternative splicing, constitutive at the first acceptor, or constitutive at the second 

acceptor). Our classifier achieved a balanced specificity and sensitivity of ≥  89%. 

Subsequently, a classifier trained exclusively on data well supported by transcript evidence 

was used to make genome-wide predictions of NAGNAG splicing outcomes. By generation 

of more transcript evidence from a next-generation sequencing platform (Roche 454), we 

found additional evidence for NAGNAG AS, with altogether 664 alternative NAGNAGs 

being detected in P. patens using all currently available transcript evidence. The 454 data also 

enabled us to validate the predictions of the classifier, with 64% (80/125) of the well-

supported cases of AS being predicted correctly. 

 

Conclusion 

NAGNAG AS is just as common in the moss P. patens as it is in the seed plants A. thaliana 

and O. sativa (but not conserved on the level of orthologous introns), and can be predicted 

with high accuracy. The most informative features are the nucleotides in the NAGNAG and in 

its immediate vicinity, along with the splice sites scores, as found earlier for NAGNAG AS in 

animals. Our results suggest that the mechanism behind NAGNAG AS in plants is similar to 

that in animals and is largely dependent on the splice site and its immediate neighborhood.  
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Background 

Eukaryotic primary mRNAs consist of protein-coding regions (exons) and intervening non-

coding regions (introns). The mature mRNA transcript, which acts as substrate for translation 

into protein, is produced by removing introns in a process called splicing. Splicing can be 

either constitutive, always producing the same mRNA, or alternative, via variable inclusion of 

parts of the primary transcript. Alternative splicing (AS) is thus a mechanism that enables 

multiple transcripts and proteins to be encoded by the same gene, thereby promoting 

transcript and protein diversity [1]. Furthermore, events of AS can provide an additional level 

of post-transcriptional gene regulation, e.g. by the production of mRNA isoforms with 

truncated open reading frames that are subject to degradation by the nonsense mediated decay 

pathway [2, 3]. It is particularly widespread in higher eukaryotes, especially in mammals – it 

has been estimated that up to 94% of all multi-exonic H. sapiens genes are alternatively 

spliced [4]. Large-scale detection of AS usually involves expressed sequence tags (ESTs), 

microarray, or RNA-Seq analysis. However, due to various sampling biases such as bias 

towards specific tissues and/or developmental stages, not all AS events can be detected by 

these methods. Furthermore, exon and splice arrays usually do not probe short distance 

events. Moreover, nowadays genomic sequence data is being churned out at a much faster rate 

than transcript data, that is, many genomes have low transcript coverage. Thus, there is a need 

for independent methods of detecting AS.  

It has been shown that AS involving alternative donors/acceptors separated by 2-12 nt, also 

called “subtle alternative splicing” (due to the small difference in length in the transcript 

isoforms), is an evolutionarily widespread class of AS among animals, and among these, 

NAGNAG AS, involving acceptors separated by 3 nt, is the most common [5-8]. The 

terminology “NAGNAG” refers to events of AS that involve two acceptors (two “AG”s) 

which are preceded by any of the four possible nucleotides (N = A, C, G or T). Hence, the 

generic pattern for such tandem splice sites is “NAGNAG”. NAGNAG AS can result in one 

of three possibilities (Fig. 1) – constitutive use of the first acceptor (the so-called exonic, or 

“E” variant), constitutive use of the second acceptor (the so-called intronic, or “I” variant), or 

use of both acceptors, that is, alternative splicing (the “EI” variant) [5]. NAGNAGs contribute 

45% of all conserved alternative acceptors in H. sapiens and M. musculus [9]. Since the 

difference between the two isoforms is 3 nucleotides, no frameshift is induced, and the usual 

impact of a NAGNAG AS event is the insertion or deletion of one amino acid. In a recent 

study, we predicted the splicing outcome at NAGNAG acceptors in seven animal genomes 

(human, mouse, rat, dog, chicken, fruit fly and nematode) with a high degree of accuracy, and 
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83% of the experimentally validated cases agreed with the predictions [10]. In agreement with 

previous studies [11, 12] the study indicated that, the mechanism behind NAGNAG AS seems 

to be simple, stochastic and conserved in vertebrates and beyond.  

While there have been numerous experimental as well as computational studies of AS in 

animals, the study of AS in plants is still in its early stages [13]. Although AS is commonly 

observed in plants, the overall abundance of AS seems to be lower than in animals. Several 

studies have estimated that between 20%-30% of plant genes undergo AS [14-17], while the 

current estimate based on deep sequencing of the Arabidopsis thaliana transcriptome is 42%-

56% of intron-containing genes [18]. In comparison to studies in animals, EST-based 

detection of AS in plants lagged a few years behind, but revealed that intron retention appears 

to be the most common kind of AS event in plants [13-16]. Exon-skipping, which is the most 

common event in animals [19], is much less frequent in plants [14, 16]. The two prevalent 

models for spliceosome assembly are intron-definition, which applies to short introns (thus to 

a majority of plant introns) and involves the intron as the initial unit of recognition during 

spliceosome assembly; and exon-definition, which applies to long introns introns (thus to a 

majority of animal introns), and involves recognition of the exon as the initial unit for splicing 

[14, 20-22]. Thus, one would expect inaccurate splicing to result in intron-retention under the 

intron-definition model, and exon-skipping under the exon-definition model [13]. Hence the 

results showing that intron-retention is the most common AS event in plants and exon-

skipping in animals are consistent with these models of splicing. However, alternative 

acceptors and donors seem to occur at a comparable frequency [16]. In particular, short 

distance or subtle AS events, seem to be just as common, and NAGNAG acceptors are 

widespread and abundant; a study on AS found 953 alternative NAGNAGs in rice and 485 in 

A. thaliana [16].  

Initial analyses of the model plant P. patens, the first sequenced bryophyte, indicated a 

distribution of AS events similar to other plants studied so far [23]. Consequently, we here 

aimed to characterize and predict the extent of NAGNAG AS in P. patens. Analysis of the 

available transcript data indicates that NAGNAG AS is just as common in the moss P. patens 

as in seed plants. We achieved a high level of performance in silico, and 64% of the cases of 

well-supported AS using independently generated 454 data could be correctly predicted. In 

agreement with a recent study comparing A. thaliana and O. sativa with mammals [24], our 

results suggest that the mechanism of NAGNAG AS is similar in plants and animals. 
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Results and discussion 

 

Identification of alternative NAGNAGs using Sanger ESTs  

Since the extent of NAGNAG occurence in P. patens had not been reported, we sought to 

identify genomic NAGNAGs. To find all genomic NAGNAGs (constitutive as well 

alternative), we looked for all annotated intron-exon boundaries which had an AG at three 

positions upstream or downstream of the annotated acceptor. This yielded 9,427 NAGNAG 

motifs, of which 5,031 were covered by Sanger ESTs. Cases where the EST evidence 

supported only one of the NAG acceptors were called constitutive, whereas cases with EST 

support for both acceptors were called alternative (here EST support means at least one EST 

from a high quality alignment, as described in the section “Material and Methods” ). 295 

(5.9%) of the detected 5,031 NAGNAGs with Sanger EST coverage were alternatively 

spliced (EI form), while 2,695 (53.6%) were exclusively spliced at the first (intron proximal) 

acceptor (E form, i.e. part of the NAGNAG is exonic) and 2,041 (40.5%) were spliced only at 

the second (intron distal) acceptor (I form, i.e. the entire NAGNAG is intronic). Thus, 

NAGNAG AS is common in P. patens. Sequence logos for all NAGNAG splice sites as well 

as for EI, E and I sites are visualized in Fig. 2. 

 

Gene ontology enrichment analysis 

To assess whether genes with NAGNAG AS in P. patens are enriched for specific functional 

categories and whether there is any similarity with A. thaliana and O. sativa in that sense, we 

analyzed Gene Ontology (GO) term annotations with GOSSIP [25]. GO terms with a FDR 

corrected p-value (q-value) less than 0.05 were considered significantly different. We found 

that 42 genes with the term plastid (GO:0009536, q-value 0.043) are statistically enriched 

(Table 1) in the set of P. patens genes with EST support for an alternative NAGNAG acceptor 

(225 genes). This could be confirmed by the GOSSIP analysis for the P. patens alternative 

NAGNAG genes supported by Sanger and 454 reads (498 genes, q-value: 8.35E-04). In 

addition, the terms organelle and mitochondrion (Table 1) were found to be enriched among 

the NAGNAG genes in P. patens. “DNA binding” (GO:0003677) which is reported for A. 

thaliana and O. sativa to be enriched in alternative NAGNAG genes [24], could not be 

observed for P. patens. To further examine this inconsistency, the supported alternative 

NAGNAG genes from A. thaliana (combined gene set from [26] and [24]) were subjected to 

GO enrichment analysis as well (Table 1). This analysis confirms the term “DNA binding” as 

overrepresented among the A. thaliana NAGNAG genes (q-value: 2.28E-04), thus consistent 
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with the analyses for A. thaliana and O. sativa [24] as well as for mouse [12]. However, 

“DNA binding” was not found to be enriched in P. patens NAGNAG genes. In contrast to the 

analyses for the seed plants and mouse, Fisher’s exact test with false discovery rate corrected 

p-values was used here, instead of a chi-square test. However, if the parent term of DNA 

binding, nucleotide binding (GO:0000166) was also subjected to a chi-square test for P. 

patens, it was found to be enriched (p = 0.02). The fact that “DNA binding” was not found to 

be enriched in P. patens NAGNAGs might be due to the current status of the P. patens 

annotation (v1.2) – e.g. in many cases the gene models lack 5’ and 3’ regions and therefore do 

not cover the whole protein sequence. On the other hand, mosses and vascular plants diverged 

more than 450 million years ago and thus P. patens alternative NAGNAG acceptor genes 

might be different. Nevertheless, the GO enrichment analysis in terms of the category 

“cellular component” reveals that A. thaliana as well as P. patens NAGNAG genes share a 

bias towards the term “intracellular organelle”, which includes “nucleus” and “plastid” (Table 

1). In addition to the enriched molecular function “DNA binding”, our analysis confirmed the 

functions “RNA binding”, “transcription factor activity” and “transcription regulator activity” 

to be also slightly enriched in A. thaliana alternative NAGNAG acceptor genes (Table 1), 

which is coherent with reports for M. musculus [12]. 

 

Evolutionary conservation of NAGNAG splicing among plants? 

Seven clusters of homologous genes with AS at NAGNAG acceptors in the same intron were 

reported to be conserved between A. thaliana and O. sativa [24]. In order to check whether 

AS NAGNAG events are conserved between A. thaliana and P. patens, a BLAST based 

single linkage clustering was performed, using all transcripts with a Sanger-supported 

NAGNAG. Altogether, 1,088 clusters containing A. thaliana and P. patens genes were 

identified, of which five clusters contained genes with a NAGNAG motif at the orthologous 

(as evidenced by numbering from the transcription start site) intron. Five out of the seven 

P.patens genes in these clusters were selected for experimental validation. In all cases only 

one of the two isoforms could be detected, which is consistent with the support by Sanger 

ESTs, which in all cases supported only one of the two isoforms. In addition, in all cases the 

NAGNAG motif itself is not conserved between A. thaliana and P. patens (table 3). In A. 

thaliana, only one of the NAGNAG motifs contains a GAG, whereas four of five in P. patens  

contain a GAG, and are therefore unlikely to represent alternative NAGNAGs ([5, 10, 12, 27], 

and section below). Given the assumption that we are looking at orthologous or at least 

homologous positions and our transcript evidence is sufficient, this observation can be 
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explained by two possible evolutionary scenarios. In the first scenario the alternative 

NAGNAG sites are ancestral and have diverged in the lineages leading to A. thaliana and P. 

patens. While they might have been inactivated by the introduction of a GAG in the moss P. 

patens, they have been retained functional in A. thaliana. In the second scenario these 

alternative NAGNAG acceptors in A. thaliana arose after the divergence of mosses and seed 

plants. Given the current scarce data, both scenarios appear equally parsimonious. In order to 

decide which scenario is true, additional taxa would have to be included into the analysis. 

Given the current data and analyzes there is evidence for conserved NAGNAG AS events 

between O. sativa and A. thaliana, but not between P. patens and A. thaliana. Thus, it appears 

as if NAGNAG AS is not conserved across several hundreds of millions of years [28] or arose 

secondarily. 

 

Prediction of NAGNAG AS in P. patens 

The most crucial prerequisite for good prediction performance is a reliable training dataset. It 

is critical that the samples are correctly labelled as far as possible. In terms of datasets of 

alternative and constitutive exons, this means that we should use the available transcript 

evidence judiciously, in order to minimise mislabelling. In other words, we want to avoid the 

contamination of the set of constitutive exons by alternative exons which currently lack 

transcript support for being alternative, as well of alternative exons by potentially erroneously 

labelled exons. Thus, we used filters on the transcript support to improve the reliability of the 

labels – as in our previous work on NAGNAG AS prediction in animals [10], a training set 

was constructed based on the following criteria: 

(i) constitutive: ≥ 10 ESTs supporting either E or I variant, 0 for the other;  

(ii) alternative: ≥ 2 ESTs supporting each variant, ≥ 10% of ESTs supporting minor variant. 

This yielded a training dataset of 833 NAGNAGs - 696 constitutive (424 E, 272 I) and 137 

EI, or alternative cases. The classifiers were trained using this dataset. The remaining 4,198 

NAGNAGs (2,271 E, 1,769 I, 158 EI) were used as a test set. It is noteworthy that the average 

coverage per constitutive NAGNAG in this set is only three ESTs (for both E as well as I 

cases), indicating that there are potentially many undiscovered alternative NAGNAGs in P. 

patens. The training data was used with a classifier (we used naïve Bayes classifiers, Bayesian 

networks, and support vector machines, all of which yielded very similar performance) in a 

cross-validation setting. Briefly, the classifier uses part of the training data to learn a model 

based on the sample labels and the features, and then uses this model to assign posterior 

probabilities (P(EI), P(E) and P(I) according to the three possible classed) to each sample. The 
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predicted NAGNAG class is the one which receives the maximum score or posterior 

probability from the classifier. We computed the receiver operating characteristics (ROC), 

which is a plot of the true positive rate versus the false positive rate, and measured the area 

under the ROC curve (AUC), which is a standard measure of the quality of a classifier [29]. 

An ideal classifier, which makes no errors, would achieve an AUC of 1.0. We used 31 

features, and achieved an in silico performance of AUC = 0.96, 0.99 and 0.98 for the EI, E 

and I forms, respectively (Fig. 3). This performance was obtained under various cross-

validation settings (2-fold, 5-fold, 10-fold, leave-one-out – where n-fold cross-validation 

means that (n-1)/n of the dataset is used to learn, and the remaining 1/n for prediction – this is 

repeated n times, and the average performance is reported). 

 

Generation of additional transcript evidence 

As mentioned above, average transcript support was found to be low. In order to generate 

more evidence for alternative acceptors, next generation sequencing was carried out. For this 

purpose, adult gametophores carrying gametangia (for review of moss tissues see: [30]) were 

grown, as this tissue was not well represented in the pre-existing ~400,000 Sanger reads. In 

addition, the cDNA was normalized in order to equalize transcript abundance and thus avoid 

redundancy. While the ~400,000 Sanger reads map to 19,186 gene models, the ~600,000 454 

reads map to 20,161 gene models. The 454 reads map to a total of 2,545 gene models that 

were not covered previously, and identified 73 alternative NAGNAGs. Even though the 454 

data cover only 75% (3,745/5,031) of the NAGNAGs evidenced by Sanger ESTs, they 

enabled detection of 371 alternative NAGNAGs – 9.9% of the covered NAGNAGs, as 

compared to 7.5% using Sanger ESTs. Of these 371, 117 were previously identified by 

Sanger ESTs. There are 42 NAGNAGs which have support for only one acceptor in the 

Sanger data, and for only the other acceptor in 454 data. Combining the results from Sanger 

and 454 data, P. patens has 664 alternative NAGNAGs. Again these results show that 

NAGNAG AS is as widespread in the moss P. patens as it is in the seed plants A. thaliana 

and O. sativa. 

 

Experimental confirmation of the NAGNAG AS 

Experiments were performed on 19 candidate NAGNAGs, 14 as controls (seven with AS 

according to transcript data, and six without AS) to see whether the splicing outcomes 

according to Sanger and 454 reads could be confirmed by a PCR based approach, and five on 

the basis of an orthologous alternative NAGNAG intron in A. thaliana (see above). Of the 
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seven candidates with support for AS from Sanger or 454 datasets, three were predicted to be 

alternative spliced with p(EI) values >0.9 (Table 2). Using Sanger sequencing of cDNA based 

PCR products, all three candidates were indeed verified as being alternatively spliced in P. 

patens protonema and gametophore tissue, respectively. Eight candidate genes were used as 

potential negative controls, as their p(EI) predictions were 0.365 and lower. All candidates 

showed support for the single predicted isoform by means of available transcript evidence and 

consequently only this single isoform could be detected during experimental validation (Table 

2). Having support for both variants from either the Sanger or the 454 datasets, but a p(EI) 

<0.9, four more candidates were chosen to be validated. NAGNAG AS could be confirmed 

for the gene product Phypa_161321 by Sanger sequencing of cDNA PCR products, although 

it has a low p(EI) of 0.181 (Table 2). The experimental validation is supported by the Sanger 

dataset, where 13 “E” variants as well as 27 “I” variants could be identified. This is the only 

case where prediction from the Naïve Bayes Classifier does not agree with the experimental 

results. In case of Phypa_74146 and Phypa_199161, only one of the two isoforms could be 

detected, reflecting the low p(EI) values.  

The sensitivity of Sanger sequencing allows detection of AS for ratios of the two isoforms of 

about 3:1 or lower, meaning that cases in which the minor isoform abundance is < 25%, AS 

may go undetected even if present. Therefore, validation using fluorescence labeled forward 

primers and fragment length detection on a capillary sequencer was used to detect the minor 

isoform abundance for two examples. In case of Phypa_161321 (Table 2) the received data 

determined by Sanger sequencing of PCR products could be confirmed by the more sensitive 

detection using the fluorescence labeled forward primers. The two isoforms with three 

nucleotides difference in length were detected using capillary separation and had a relative 

abundance of approximately 3:1 (exonic “E” versus intronic “I” variant) (Fig. 4). In case of 

Phypa_228333, only one of the two isoforms could be detected by Sanger sequencing as well 

as in the more sensitive validation using fluorescence labeled primers (Table 2). Thus, a low 

p(EI) prediction for this candidate seems to be correct as is the case for Phypa_74146 and 

Phypa_199161, for which only one of the two isoforms could be identified as predicted. 

Detection of both isoforms either in Sanger datasets (Phypa_199161) or in the 454 datasets 

(Phypa_74146 and Phypa_228333) could be explained by the higher sensitivity of sequencing 

as compared to the PCR-based approach or by the fact that adult gametophores were used to 

generate the 454 data, while the validation was carried out in the two principal tissues of the 

juvenile stage. Thus it cannot not be excluded that these candidates are indeed alternatively 

spliced.  
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GAG acceptors 

Twelve of the 19 candidate genes possess a GAG in the NAGNAG motif (Table 2). Using the 

above described methods, all of them are shown to be not alternatively spliced. Therefore, 

GAG seems not to be used as an alternative acceptor for AS in P. patens in most cases, which 

is in line with the sequence logos (Fig. 2B). Exceptions could be Phypa_199161 and 

Phypa_228333, which possess both isoforms regarding Sanger and 454 datasets. These two 

candidates may indeed use GAG as acceptors for AS, but this remains to be proven. Rare 

usage of GAGs as acceptors in P. patens is in agreement with previous work which shows 

that functional acceptors are only very rarely GAGs – the order of preference for the 

nucleotide preceding the AG in functional acceptors is C > T > A > G, which has been shown 

both by experimental work [31] as well as by in silico analyses of NAGNAG splicing [5, 12]. 

When we consider the EST and 454 evidence in P. patens, only 4.6% (149/3225) of GAG-

containing NAGNAGs are alternative – filtering by transcript support to use only well-

supported cases (as described for the preparation of training data in the “Material and 

Methods” section) further reduces this to 2.6% (14/536). Taken together, this strongly 

suggests that GAGs function only very rarely as functional acceptors in P. patens (if at all). 

 

Using 454 data for independent validation of predictions 

The classifier was trained based on previously existing Sanger evidence, the additional 454 

evidence was used for independent validation. Combining the 454 and Sanger datasets 

resulted in 296 additional NAGNAG AS events being detected – of these, 66 had strong 

support for AS in terms of satisfying the criteria used to define the training dataset (≥ 2 reads 

for each variant, ≥ 10% of the reads for the minor variant) . 62% (41/66) of these were 

predicted to be alternative by the Naïve Bayes classifier. If we require ≥ 4 reads per variant 

while keeping the threshold of minor variant abundance at ≥ 10 %, the correct predictions rise 

to 75% (9/12). When considering AS according to 454 reads alone, 64% (80/125) of the well-

supported cases of AS are predicted correctly, which increases to 79% (30/38) if we require ≥ 

4 reads per variant while keeping the threshold of minor variant abundance at ≥ 10% .  On the 

other hand, if we look at cases which are constitutive with a support of ≥ 30 transcripts , 

according to the combined transcript dataset, only 1/93 E cases and 0/65 I cases are predicted 

to be alternative. The Naïve Bayes classifier predicts 371 further cases of AS (155 of 2,549 

currently labeled E, and 216 of 1,891 currently labeled I) in P. patens – the high specificity 

shown by nearly no predicted AS in strongly supported constitutive NAGNAGs combined 
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with the sensitivity of 62% in detecting newly discovered strongly supported cases of AS 

shows that there are potentially several hundred as yet undiscovered cases of NAGNAG AS 

in P. patens. 

 

Prediction of NAGNAG AS in P. patens by a classifier trained on H. sapiens data 

We had earlier shown that a classifier trained on only H. sapiens NAGNAG data could 

predict NAGNAG splicing outcomes with near-identical accuracy on other vertebrate 

genomes (mouse, rat, dog, chicken), and with a slight drop in the case of D. melanogaster and 

Caenorhabditis elegans [10]. Therefore, we also tried to predict NAGNAG AS in P. patens 

using a Naive Bayes classifier trained on H. sapiens data and achieved an AUC of 0.90, 0.99 

and 0.97 for the EI, E and I forms, respectively. This was achieved using five features (the Ns 

in the NAGNAG, the two positions immediately upstream and the position immediately 

downstream) and is similar to that achieved on D. melanogaster earlier [10], reinforcing the 

notion that NAGNAG splicing in plants is similar to that in animals. 
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Conclusions 

We here describe the first computational prediction of alternative splicing (AS) in a non-seed 

plant and found that NAGNAG AS in P. patens, a moss, can be predicted with high accuracy. 

Since the extent of NAGNAGs in P. patens had not yet been reported, this work involved 

both characterization as well prediction of NAGNAG splicing in P. patens. Using ESTs, we 

found that NAGNAG AS is as widespread in the bryophyte P. patens as it is in the seed plants 

A. thaliana and O. sativa. Thus, NAGNAG AS is likely to be a common feature of AS in all 

land plants, just as it is in animals. Although we detected homologs with NAGNAG events 

among the two land plants P. patens and A. thaliana, NAGNAG splicing seems not to be 

conserved at the intron level. 

Using carefully constructed training and test datasets, an in silico performance of AUC = 

0.96, 0.99 and 0.98 was achieved for the EI, E and I forms, respectively. The most 

informative features (according to information gain [32]) were the nucleotides in the 

NAGNAG and its immediate vicinity, and even a relatively simple classifier like the Naïve 

Bayes classifier could match the more sophisticated Bayesian network and Support vector 

machine. The performance achieved by a Naïve Bayes classifier trained on H. sapiens data 

(AUC = 0.90, 0.99 and 0.97 for the EI, E and I forms, respectively) was similar to that 

achieved on D. melanogaster earlier [10]. This indicates that, as in animals, the mechanism 

behind NAGNAG AS in plants is simple in nature and mostly dependent on the splice site 

neighborhood. Independent validation of the predictions of the classifier (trained on Sanger 

EST data alone) using 454 data showed that 64% (80/125) of the well-supported cases of 

NAGNAG AS could be predicted correctly. 

In total, seven candidates were chosen for independent experimental confirmation of the 

Sanger and 454 evidence of NAGNAG splicing. The experimental confirmation depends on 

detection of isoforms using sequence electropherograms and is less sensitive than size 

polymorphism detection using fluorescence-labeled primers. The latter method was used on 

two of the seven examples and confirmed the results of the previous method. While there is 

transcript support for alternative use of GAG acceptors this could not be proven in our 

experimental validation. In addition, a further 12 experiments were performed – six as 

negative controls, all of which agreed with the predictions, and five to check for possible 

conserved NAGNAG AS with A. thaliana, which could not be detected. 

When additional 454 transcript evidence was used to supplement the Sanger EST data, a total 

of 664 alternative NAGNAGs were found in P. patens. Since the average coverage per 

constitutive NAGNAG was still only ~10 ESTs, this number shall likely continue to rise with 
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deeper coverage of the transcriptome. Nevertheless, the results provide the first evidence that 

NAGNAG AS is widespread in P. patens. Our findings are in agreement with a recent study 

which showed that NAGNAG AS shares common properties in A. thaliana and O. sativa and 

animals [24]. This indicates that the mechanism behind NAGNAG AS in land plants is 

similar to that in animals. The pervasiveness of NAGNAG AS suggests that it may be a 

general feature of splicing in animals and plants, and possibly in all eukaryotes. 
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Materials and Methods 

 

Identification of alternative splicing at NAGNAG acceptors using ESTs 

346,871 P. patens Sanger EST reads (available at http://www.cosmoss.org) from various 

developmental stages and tissue types (predominantly protonema and juvenile gametophores) 

were aligned using GenomeThreader [33]. EST alignments (max. intron length 20,000) with 

less than 95% identity and 90% EST length coverage were excluded from further analyses to 

obtain only reliable alternative acceptors. In addition, EST alignments matching a single exon 

as well as alignments ending at an exon boundary supporting either the E or I site were 

discarded The sequence regions used for feature extraction (Fig. 5) and EST evidence counts 

were created using the BioPerl [34] module Bio::DB::SeqFeature::Store. 

 

Sequence logos  

Sequence logos were created using the WebLogo software 

(http://weblogo.berkeley.edu/logo.cgi) [35] with the sequence regions shown in Fig. 5. 

 

Feature design and extraction; classifiers 

Feature extraction was done based on annotated data using a Perl script. The region used for 

analysis can be seen in Fig. 5. Since the composition of the splice site neighborhood 

influences splicing in general, the base pairs at positions -20 to +3 with respect to the 

NAGNAG were each used as a single feature, as were the two Ns in the NAGNAG motif. 

The last three positions of the upstream exon were also included, since they can influence 

both the process of splicing, as well as reflect influence of codon usage near the exon 

boundary. Thus, we had a total of 28 features which each represented a nucleotide, and thus 

had four possible values (A, C, G, T). A weak polypyrimidine tract (PPT) can contribute to 

AS, and the number of pyrimidines in the 3’ region of the intron is a measure of PPT strength. 

Therefore, we designed a feature called “Y-content”, which refers to the number of 

pyrimidines in the 20 bp upstream of the NAGNAG. Splice site strength, being one of the 

most important determinants of splicing outcome, was also included as a feature – the 

strength of the two possible splice sites for each NAGNAG exon, as computed using 

SpliceMachine [36], contributed two more features. In total, 31 features were used. We used 

the WEKA package and Bayesian Networks, Naive Bayes classifiers, and Support vector 

machines [32]. For feature selection within WEKA, we used the method “CfsSubsetEval”. In 

addition, we also used manual inclusion and exclusion of features. 

http://www.cosmoss.org/�
http://weblogo.berkeley.edu/logo.cgi�
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Information gain  

Information gain is defined as the reduction in the entropy of the class variable, given the 

feature [32]. The formula for information gain is: 

IG(Class | Feature) = H(Class) - H(Class | Feature) 

where H(Class) is the entropy of the class variable, and H(Class|Feature) is the conditional 

entropy of the class variable, given the feature. Information gain is a well established measure 

for feature selection in Machine Learning. We used the WEKA package for computing 

information gain, in order to rank the features according to how informative they were. We 

also used it for prediction based on SVMs, as implemented in the SMO option, and for 

prediction using Naïve Bayes classifiers.  

 

Functional annotation and GO enrichment analysis 

For every (potential) NAGNAG splicing region an overlapping P. patens gene model was 

assigned using the start and stop coordinates on the genomic scaffolds. The corresponding 

predicted protein sequences were subjected to BLAST2GO [37] GO term annotation which 

was extended by various subcellular target prediction and homology-based methods (see 

http://www.cosmoss.org/annotation/references?cosmoss_ref=1 for details). The resulting GO 

annotation was mapped to GO slim terms using the Blast2GO internal mapping function 

using the “goslim_plant.obo” ontology subset. GO enrichment analysis was performed against 

the complete P. patens with the BLAST2GO internal Fisher’s exact test/GOSSIP [38] using 

the two-tailed test, with false discovery rate (FDR) correction and a q-value cut-off < 0.05. 

The A. thaliana alternative NAGNAG splicing gene set was constructed using the alternative 

NAGNAG acceptor cases identified within the A. thaliana genome from [26] and [24]. The 

resulting alternative NAGNAG acceptor set contains 290 A. thaliana proteins. These proteins 

were subjected to a GO enrichment analysis as described above for P. patens. The A. thaliana 

GOA was downloaded from 

ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/ATH_GO_GOSLIM.txt 

(17.11.2009) and mapped to GO slim (goslim_plant.obo) with BLAST2GO. 

 

Candidate selection for evolutionary conserved NAGNAG acceptors 

P. patens cosmoss v1.2 and A. thaliana TAIR 8 proteins were subjected to a BLAST based 

single linkage clustering using BLASTCLUST [39]. The parameters were set to 70% length 

coverage and 70% alignment identity to obtain only highly conserved homologs. In total 

http://www.cosmoss.org/annotation/references?cosmoss_ref=1�
ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/ATH_GO_GOSLIM.txt�
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1,088 clusters with at least one P. patens, respectively A. thaliana, protein were found. Five  

candidates out of seven P. patens genes, each sharing a cluster with A. thaliana alternative 

NAGNAG acceptor containing genes [24, 26], were selected for experimental validation. In 

addition, these P. patens candidate genes contain a potential NAGNAG acceptor in the same 

intron as the corresponding A. thaliana homolog.  

 

Experimental confirmation of splice variants 

P. patens total RNA was isolated from protonema and gametophore tissue using the RNeasy 

Plant Mini Kit (Qiagen, Hilden, Germany). cDNA synthesis was carried out with 250ng total 

RNA using Superscript III Reverse Transcriptase (Invitrogen, Karlsruhe, Germany) according 

to the manufacturers’ instructions. For validation of different splice variants, PCR was 

performed from protonema and gametophore RNA, respectively, using native Pfu-Polymerase 

(Fermentas, St. Leon-Rot, Germany). PCR primers were obtained from Sigma (München, 

Germany). PCR reactions were carried out using 12 ng cDNA as template. Products were 

extracted using the QIAquick PCR purification Kit (Qiagen, Hilden, Germany) and directly 

sequenced (GATC, Konstanz, Germany). Sequences and chromatograms were analysed with 

ChromasPro Version 1.34. Alternatively, PCR products amplified with carboxyfluorescein 

(FAM) labeled forward primers were analysed by capillary electrophoresis, where AS was 

detected as a size difference of three nucleotides in length. PCR products were diluted as 

appropriate and subjected to capillary electrophoresis for separation and detection. For this 

purpose, 10 μL HiDi formamide (Applied Biosystems) and 0.5 μL HD400 GS internal size 

standard were added to each well, and the plate was mounted on a 3100 Genetic Analyzer 

with Foundation Data Collection software v. 2.0 and Gene Mapper ID software v. 3.2 

(Applied Biosystems, Darmstadt, Germany).  

 

Tissue culture and generation of additional transcript evidence 

Physcomitrella patens strain Gransden 2004 [23] was cultivated on solidified (1% w/v agar) 

mineral medium [250 mg L-1 KH2PO4, 250 mg L-1 MgSO4x7-H2O, 250 mg L-1 KCl, 1000 

mg L-1 Ca(NO3)2x4H2O, 12.5 mg L-1 FeSO4x7H2O, pH 5.8 with KOH] on 9 cm petri 

dishes enclosed by laboratory film in a Percival cultivation chamber (CLF, Germany) at 22° C 

with a 16h light, 8h dark regime under 70µmol*s-1*m-2 white light (long day conditions). 

Gametophore colonies were grown from single gametophores transferred to the dishes from 

precultured colonies. Induction of gametangia was performed by placing the dishes under 

inductive conditions [40], i.e. 20µmol *s-1*m-2 white light and 15° C with a 8h light, 16h 
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dark regime until development of gametangia. After harvesting and freezing, the material was 

ground under liquid nitrogen and total RNA isolated using the Ambion mirVana miRNA 

isolation kit (Applied Biosystems, Darmstadt, Germany). RNA isolation and subsequent 

sequencing pool creation steps were carried out by Vertis Biotechnologie (Freising, 

Germany). Poly(A)+ RNA was prepared by oligo(dT) chromatography and cDNA was 

synthesized using a N6 randomized primer. Afterwards, 454 adapters A 

(CCATCTCATCCCTGCGTGTCTCCGACTCAG) and B 

(CTGAGACTGCCAAGGCACACAGGGGATAGG) were ligated to the 5' and 3' ends of the 

cDNA. The resulting N0 cDNA was amplified using PCR (16 cycles) with a proof reading 

enzyme. Normalization was carried out by one cycle of denaturation and reassociation of the 

cDNA, resulting in N1-cDNA. Reassociated ds-cDNA was separated from the remaining ss-

cDNA (normalized cDNA) by passing the mixture over a hydroxylapatite column. After 

hydroxylapatite chromatography, the ss-cDNA was amplified with 9 PCR cycles. Finally, the 

cDNA in the size range of 500–700 bp was eluted from a preparative agarose gel and 

subjected to GS FLX Titanium sequencing (GATC, Konstanz, Germany), resulting in 

631,313 raw reads. After low quality and adapter clipping using LUCY [41] and SeqClean 

(http://compbio.dfci.harvard.edu/tgi/software/), and polyA-tail removal with trimmest [42], 

589,283 reads with a mean length of 343 nucleotides remained. The 454 reads are available at 

www.cosmoss.org and were mapped against the genome as described above for the P. patens 

Sanger ESTs.  
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Figure legends 

 

Figure 1. NAGNAG alternative splicing. Nomenclature of NAGNAG AS with E and I sites 

and isoforms. 

 

Figure 2. Sequence logos of NAGNAG splice sites – the first three positions represent the 

last 3 nucleotides (nt) of the upstream exon, followed by the 30 nt upstream of the NAGNAG, 

the NAGNAG motif itself, and the 10 nt downstream of the NAGNAG (total 49 positions). 

A: all splice sites; B: EI sites, C: E sites; D: I sites. 

 

Figure 3. ROC plot depicting the in silico performance on the 3-class [I-class (red), E-class 

(green), and EI-class (blue)] classification problem. The EI-class, or AS, harder to predict 

(AUC = 0.96) than the two constitutive variants, E and I (AUC = 0.99 for both). 

 

Figure 4. Example of the validation procedures employed. 

A: Electropherogram of the direct sequencing of a cDNA PCR product. Starting with the 

NAGNAG AS site at position 132 the two polymorphic sequence signatures are overlaid. 

B: FAM fluorescence intensity peaks of the two polymorphic isoforms (length difference 

three nucleotides). The lower peak constitutes 40% of the area (ar) of the bigger one, i.e. an 

approximate ratio of 3:1. 

 

Figure 5. Nomenclature of features used in this study 

Nomenclature of sequence features used to analyze NAGNAG splicing. The region used to 

derive all 31 features is shown, along with the names given to the positional features. 
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Tables 

# in # in
# non 
annot. # non annot.

test 
group

reference 
group test

 reference 
group

P. patens  alternative NAGNAG genes cytoplasmic part GO:0044444 0.013301 78 5407 100 11894
Sanger support plastid GO:0009536 0.042909 42 2607 136 14694

membrane-bound organelle GO:0043227 0.042909 89 6778 89 10523
intracellular membrane-bound organelle GO:0043231 0.042909 89 6778 89 10523
intracellular part GO:0044424 0.049628 105 8388 73 8913

P. patens  alternative NAGNAG genes cytoplasmic part GO:0044444 3.52E-04 168 5317 232 11762
Sanger and/or 454 support plastid GO:0009536 8.35E-04 90 2559 310 14520

membrane-bound organelle GO:0043227 8.35E-04 196 6671 204 10408
intracellular membrane-bound organelle GO:0043231 8.35E-04 196 6671 204 10408
intracellular part GO:0044424 0.003794 229 8264 171 8815
intracellular GO:0005622 8.35E-04 251 9029 149 8050
cytoplasm GO:0005737 3.78E-04 191 6312 209 10767
mitochondrion GO:0005739 0.041928 53 1553 347 15526
thylakoid GO:0009579 0.023551 12 187 388 16892
organelle GO:0043226 0.00436 207 7373 193 9706
intracellular organelle GO:0043229 0.00436 207 7373 193 9706

A. thaliana  alternative NAGNAG genes 
combined plastid GO:0009536 0.047395 50 3021 192 17594
(Iida et al., 2008 and Schindler et al., 
2008) membrane-bound organelle GO:0043227 2.28E-04 113 6959 129 13656

intracellular membrane-bound organelle GO:0043231 2.28E-04 113 6959 129 13656
intracellular GO:0005622 5.17E-05 136 8421 106 12194
organelle GO:0043226 1.73E-04 119 7287 123 13328
intracellular organelle GO:0043229 1.73E-04 119 7287 123 13328
nucleic acid binding GO:0003676 5.98E-06 71 3230 171 17385
nucleus GO:0005634 2.02E-04 51 2342 191 18273
DNA binding GO:0003677 2.28E-04 49 2250 193 18365
intracellular part GO:0044424 2.82E-04 124 7881 118 12734
cell part GO:0044464 0.002703 159 11257 83 9358
RNA binding GO:0003723 0.010001 15 506 227 20109
binding GO:0005488 0.011737 132 9231 110 11384
nucleobase, nucleoside, nucleotide
and nucleic acid metabolic process
transcription factor activity GO:0003700 0.01314 33 1646 209 18969
transcription regulator activity GO:0030528 0.043626 34 1852 208 18763

Organism/subset Name GO Term
FDR (q-
value)

195 18007GO:0006139 0.01314 47 2608

 
Table 1. GO analyses of genes with alternative NAGNAG acceptor site 
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Table 2. Summarized validation results 
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Table 3. NAGNAG motifs occuring at conserved positions 
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Figure 1. NAGNAG alternative splicing 

Nomenclature of NAGNAG AS with E and I sites and isoforms. 
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A 

 
B 

 
C 

 
D 

 
Figure 2. Sequence logos (http://weblogo.berkeley.edu/logo.cgi) of NAGNAG splice sites.   

The first three positions represent the last 3 nucleotides (nt) of the upstream exon, followed by 

the 30 nt upstream of the NAGNAG, the NAGNAG motif itself, and the 10 nt downstream of 

the NAGNAG (total 49 positions). A: all splice sites; B: EI sites, C: E sites; D: I sites. 

http://weblogo.berkeley.edu/logo.cgi�
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Figure 3. ROC plot  

Depicting the in silico performance on the 3-class [I-class (red), E-class (green), and EI-class 

(blue)] classification problem. The EI-class, or AS, harder to predict (AUC = 0.96) than the 

two constitutive variants, E and I (AUC = 0.99 for both). 
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Figure 4. Example of the validation procedures employed. 

A: Electropherogram of the direct sequencing of a cDNA PCR product. Starting with the 

NAGNAG AS site at position 132 the two alternatively spliced sequence signatures are 

overlaid. 

B: FAM fluorescence intensity peaks of the two splice variants (length difference three 

nucleotides). The lower peak constitutes 40% of the area (ar) of the bigger one, i.e. an 

approximate ratio of 3:1. 
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Figure 5. Nomenclature of features used in this study 

Nomenclature of sequence features used to analyze NAGNAG splicing. The region used to 

derive all 31 features is shown, along with the names given to the positional features. 
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ABSTRACT

Many alternative splice events result in subtle mRNA changes, and most of them occur at short-distance tandem donor and
acceptor sites. The splicing mechanism of such tandem sites likely involves the stochastic selection of either splice site. While
tandem splice events are frequent, it is unknown how many are functionally important. Here, we use phylogenetic conservation
to address this question, focusing on tandems with a distance of 3–9 nucleotides. We show that previous contradicting results on
whether alternative or constitutive tandem motifs are more conserved between species can be explained by a statistical paradox
(Simpson’s paradox). Applying methods that take biases into account, we found higher conservation of alternative tandems in
mouse, dog, and even chicken, zebrafish, and Fugu genomes. We estimated a lower bound for the number of alternative sites
that are under purifying (negative) selection. While the absolute number of conserved tandem motifs decreases with the
evolutionary distance, the fraction under selection increases. Interestingly, a number of frameshifting tandems are under
selection, suggesting a role in regulating mRNA and protein levels via nonsense-mediated decay (NMD). An analysis of the
intronic flanks shows that purifying selection also acts on the intronic sequence. We propose that stochastic splice site selection
can be an advantageous mechanism that allows constant splice variant ratios in situations where a deviation in this ratio is
deleterious.

Keywords: purifying selection; subtle alternative splicing; tandem splice site; comparative genome analysis; Simpson’s paradox

INTRODUCTION

Alternative splicing is a widespread mechanism to produce
transcript and protein diversity in animals and plants
(Campbell et al. 2006; Tress et al. 2007). Detailed studies
revealed many examples where the existence and regulation
of alternative splice variants are crucial for cellular func-
tions. For example, alternative splice variants have impor-
tant roles in the nervous (Ule et al. 2005; Licatalosi and
Darnell 2006) and immune (Lynch 2004) systems and
during sex determination in Drosophila (Black 2003).

Moreover, human and mouse splicing factor genes exten-
sively produce nonfunctional splice forms, which provides
a potential mechanism for autoregulating the protein level
(Stoilov et al. 2004; Lareau et al. 2007; Ni et al. 2007).
Misregulation of alternative splicing is a frequent cause of
disease (Pagani and Baralle 2004), and the human SFRS1
gene encoding the splicing factor ASF/SF2 was shown to be
a proto-oncogene (Karni et al. 2007).

Despite these facts, the general extent of functional
alternative splicing is unknown. Some splice forms such
as the skipping of exon 12 of human CFTR were described
to have no functional advantage (Raponi et al. 2007), and
the tissue-specific inclusion of exon 8 of mouse Psap shows
no phenotypic differences in a knockout mouse lacking this
exon (Cohen et al. 2005). Furthermore, about one-third of
the human alternative splice events lead to an early stop
codon, thus yielding truncated proteins and/or subjecting
the mRNA to the nonsense-mediated decay (NMD) path-
way (Lewis et al. 2003). Apart from their potential to
regulate the protein level by reducing the level of transcripts
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encoding the full-length protein, their function is often not
obvious.

To assess function, one usually considers sequence
conservation or the conservation of an event as an
important criterion that implies purifying (negative) selec-
tion because deviations confer a disadvantage to the
organism. Indeed, conserved exon skipping events have a
tendency to preserve the protein reading frame (Resch et al.
2004; Sorek et al. 2004; Yeo et al. 2005). These exons and
their intronic flanks also exhibit an increased sequence
conservation (Sorek and Ast 2003). Furthermore, tissue-
specific exon skipping is associated with conserved exons
and with reading frame preservation (Xing and Lee 2005).
However, genome-wide studies found only a small per-
centage (z10%–20%) of exon skipping events to be
conserved between human and mouse, with most alterna-
tive exons being either skipped in only one species or
occurring only in one genome (Modrek and Lee 2003;
Sorek and Ast 2003; Pan et al. 2004; Yeo et al. 2005). Thus,
while alternative splicing is undoubtedly frequent, most of
the splice events seem to have no functional role that is
conserved in evolution.

Apart from exon skipping, numerous human and mouse
alternative splice events occur at alternative donor and
acceptor splice sites. The majority of these splice site pairs
are in close proximity (Clark and Thanaraj 2002; Zavolan
et al. 2003; Sugnet et al. 2004), thus leading to subtle mRNA
changes. In this study, we analyze pairs of donor or ac-
ceptor sites that are 3–9 nucleotides (nt) apart (D3–D9 nt)
and use the term ‘‘tandem sites’’ to denote these splice
site pairs (Fig. 1). The most frequent of these subtle events
is alternative splicing at NAGNAG acceptors (Zavolan et al.
2003; Hiller et al. 2004; Sugnet et al. 2004). At the donor
site, D4 tandem splice sites are most prominent as dic-
tated by the donor consensus sequence (Dou et al. 2006;
Ermakova et al. 2007). For most tandem sites, it is likely
that their underlying alternative splicing mechanism is
based on a stochastic selection of either splice site, also
called ‘‘noisy splicing’’ (Chern et al. 2006). A recent study
showed that the region between the branch point and the
acceptor has a strong influence on the splicing ratio of
alternatively spliced NAGNAG sites (Tsai et al. 2007).

Targeted experimental studies have revealed functional
roles for tandem splice events. For example, conserved
tandem acceptors in human and mouse transcription factor
genes (NAGNAG acceptors in PAX3 and PAX7, D6 ac-
ceptor in IRF2) result in protein isoforms that differ in
the ability to activate transcription (Vogan et al. 1996;
Koenig Merediz et al. 2000). Conserved D6 donors lead to
protein variants of human ALDH18A1 that are insensitive
to ornithine inhibition (Hu et al. 1999) and produce
protein isoforms of mouse Fgfr1 that are unable to bind
FRS2 and thus cannot activate the Ras/MAPK signaling
pathway (Burgar et al. 2002). Furthermore, a splice event
at a conserved D6 donor in human EDA tightly controls
binding specificity by remodeling the properties of the
receptor binding site, such that the longer protein binds
only to the EDAR receptor, while the shorter variant binds
only to the XEDAR receptor (Yan et al. 2000; Hymowitz
et al. 2003). Another example is the D9 donor of human
WT1 exon 9 that leads to the insertion of three amino acids
(KTS). Both splice forms have distinct transcriptional
regulation properties, hetero- and homozygous mouse
mutants lacking one of the two splice forms show severe
defects in kidney development and function (Hammes et al.
2001), and a mutation in this donor motif leads to Frasier
syndrome in humans (Barbaux et al. 1997).

While these individual studies demonstrate that several
of these subtle splice events are functionally important,
the general extent remains unknown. Moreover, there is a
discussion whether tandem sites that are alternatively
spliced are better conserved in evolution than those that
are constitutively spliced (Hiller et al. 2006c) since con-
flicting results were published for NAGNAG acceptors
(Hiller et al. 2004; Chern et al. 2006). As alternative and
constitutive NAGNAG sites have different preferences for
specific NAGNAG motifs (Hiller et al. 2004; Akerman
and Mandel-Gutfreund 2006), we considered the possibility
that the comparison of two heterogeneous groups caused a
statistical paradox, which is often called Simpson’s para-
dox. This paradox is frequently encountered in biomedical
studies (Julious and Mullee 1994) and describes a situation
in which a trend observed between two groups is reversed
when the two groups are split into several subgroups
(Simpson 1951). A well-known example of Simpson’s para-
dox is described in Bickel et al. (1975) and refers to uni-
versity admission data. In this case, the overall admission
rates indicated a significant bias against female applications,
while investigating all departments individually provided
evidence for the opposite—a bias in favor of female
applicants. As described in Bickel et al. (1975), the expla-
nation of this apparently paradox is: ‘‘The proportion of
women applicants tends to be high in departments that are
hard to get into and low in those that are easy to get into.’’

Here, we show that previous conflicting conclusions
for the evolutionary conservation of NAGNAG acceptors
(Hiller et al. 2004; Chern et al. 2006) arose from Simpson’s

FIGURE 1. Schematic representation of the tandem sites analyzed in
this study. (Boxes) Exons; (dashed lines) splice events; (boldface) the
variable exonic parts; (GYNGYN and NAGNAG) tandem sites with
a distance of 3 nt; (D4–D9) tandem donors and acceptors that are
4–9 nt apart, respectively; (N) A, C, G, or T; (Y) C or T.
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paradox caused by substantial conservation differences
between specific NAGNAG motifs. Controlling for biases,
we found that alternatively spliced NAGNAG acceptors are
significantly more conserved than those that are constitu-
tively spliced. We extended the analysis to human tandem
donor and acceptor sites that are up to 9 nt apart and
estimated a lower bound for the fraction of tandem sites
being under purifying selection, and thus expected to have
an evolutionarily advantageous phenotype.

RESULTS

Conservation of human NAGNAG acceptors differs
between the NAGNAG motifs

First, we analyzed the sequence conservation of human
NAGNAG acceptor motifs that are located within the
protein coding sequence (CDS). Our data set consists of
1597 confirmed (at least one mRNA/EST indicates splicing
at the upstream and at least one mRNA/EST splicing at
the downstream acceptor) and 7452 unconfirmed (currently
available mRNA/EST data indicate no alternative splicing)
NAGNAG acceptors (Hiller et al. 2007). We tested the
pairwise conservation of human NAGNAG acceptors over
different evolutionary distances: rhesus (z23 million years
ago [mya] since split of the common ancestor), mouse
(z90 mya), dog (z92 mya), chicken (z310 mya), and
zebrafish and Fugu (z450 mya) (Ureta-Vidal et al. 2003).
Although the close distance human–rhesus might limit the
power to detect conservation differences, we include rhesus
to cover a large spectrum of evolutionary distances.

We used very stringent criteria to define conservation
between two NAGNAG tandems to increase the likelihood
that an orthologous tandem site, which is considered to
be conserved, has the same splicing pattern (alternative or
constitutive splicing) in the other species. Previous obser-
vations suggest that the tandem splice site motif is the
strongest factor determining the splicing pattern (Chern et al.
2006; Hiller et al. 2006a). For this reason, we considered
a human NAGNAG as conserved in another species if the
orthologous acceptor pattern is identical to the human
NAGNAG motif, except for the first N, where we allow
variation between C and T. We allow this C/T variation since
pyrimidines are the most frequent nucleotides at the �3
position of standard acceptors (Abril et al. 2005) and are not
expected to affect the splicing efficiency significantly.

We first performed a global analysis and compared the
conservation of all confirmed and all unconfirmed human
NAGNAG acceptors in each of the other species. We found
that unconfirmed NAGNAG acceptors are more conserved
than confirmed ones in the pairwise comparisons (Fig. 2,
left parts; Table 1), as previously reported for human and
mouse (Chern et al. 2006). The differences are significant
in a Fisher’s exact test (P-values <0.01 for all pairwise
comparisons). For this and the following tests, we also

computed a standard measurement in biostatistics, the
odds ratio (OR). The interpretation of an OR is as follows:
an OR > 1 indicates higher conservation for confirmed
NAGNAG tandems, an OR < 1 indicates higher conserva-
tion for unconfirmed tandems, and an OR = 1 indicates no
differences between confirmed and unconfirmed tandems.
In the global test, we observed ORs < 1 (Table 1), in-
dicating higher conservation for unconfirmed ones.

Next, we compared the conservation between confirmed
and unconfirmed tandems for each of the 16 NAGNAG
motifs individually. Strikingly, this motif-specific compar-
ison revealed for 10 of the 16 motifs a higher conservation
level for confirmed NAGNAG acceptors in mouse (Fig.
2C). Similarly, confirmed NAGNAG acceptors are more
conserved for 10 motifs in rhesus and for 11 in dog and
chicken (Fig. 2B,D,E). This apparently contradicts the
results of the global analysis. As evident from Figure 2,
motifs differ considerably in their overall conservation
levels. For example, 51% of all CAGCAG but 70% of all
CAGGAG motifs are conserved in mouse.

We hypothesized that these substantial differences in
the conservation levels are caused by constraints on the
acceptor splice site consensus YAG | G (| indicates the
intron–exon boundary; Y = C or T). While a G at the 59

exon end conforms with the acceptor consensus sequence,
a C at this position leads to a weaker acceptor. Thus,
CAGCAG acceptors without functional importance are
more likely to accept mutations of the unfavored C at
position +4 in this motif, while CAGGAG acceptors are
less likely to allow mutations of the preferred G at +4. To
further test this, we grouped NAGNAG acceptors according
to the nucleotide at the second N position and determined
the overall conservation. We found that NAGGAG (68.1%
conserved) and NAGAAG (62.3%) tandems are generally
more conserved than NAGCAG (49.5%) and NAGTAG
(56.6%) tandems, in agreement with the preferred 59-most
exon nucleotides, which are G and A followed by C and
T (Abril et al. 2005). Moreover, GAG at the 59 exon end
might also be more constrained than CAG, since GAG is
more often a core of the splicing enhancer motif identified
in Stadler et al. (2006) than CAG (14% versus 12%). Thus,
we identified the individual NAGNAG motif as a con-
founding variable that considerably affects the conservation
levels. In such a situation, a global calculation can lead to
wrong conclusions.

Higher conservation for confirmed versus
unconfirmed human NAGNAG acceptors
in rhesus, mouse, dog, and chicken

An unbiased analysis of the conservation level has to
correct for the influence of the confounding variable
NAGNAG motif. To this end, we used the Cochran–
Mantel–Haenszel (CMH) test, which is an extension of
the x2 test and commonly used in such a situation. The
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FIGURE 2. Overall and individual conservation of human confirmed and unconfirmed NAGNAG motifs. (A, left panel) Total number of
confirmed and unconfirmed NAGNAG acceptors; (right panel) the fraction of individual motifs of the total number of confirmed and
unconfirmed human NAGNAG acceptors. The numbers above the bars are absolute numbers of confirmed and unconfirmed NAGNAG
acceptors. (B–E) The conservation of human NAGNAG acceptor motifs in (B) rhesus, (C) mouse, (D) dog, and (E) chicken was analyzed in a
(left panel) global and (right panel) motif-specific comparison. As expected, the overall conservation drops with increased evolutionary distance
from rhesus to chicken. A human NAGNAG acceptor is considered to be conserved if it is identical to the orthologous mouse acceptor motif
except for an allowed variation between C and T at the first position. (Red) Motifs with a higher conservation for confirmed tandem acceptors.
Note that all NAGNAG acceptors for which no pairwise alignment block with the respective species was found were discarded in the conservation
analysis. The numbers above the bars are the absolute numbers of conserved NAGNAG sites.
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CMH test estimates an OR that is corrected for the
influence of the NAGNAG motif. As shown in the right
part of Table 1, using the CMH test, we observed ORs > 1
for rhesus, mouse, dog, and chicken. This indicates a higher
conservation for confirmed NAGNAG acceptors. However,
in zebrafish and Fugu, confirmed NAGNAG tandems have
a lower conservation even after correcting for the motif
(Table 1), and this holds for the following analyses as well.

The contradictory results of the global and the motif-
specific conservation analysis are an example of the above-
described Simpson’s paradox (Simpson 1951). Here, the
paradox occurs since (1) the conservation level (Fig. 2B–E),
and (2) the distribution of confirmed and unconfirmed
NAGNAG acceptors (Fig. 2A) vary greatly among the
different motifs. The most dramatic difference is caused
by the weakly conserved CAGCAG motif (that makes up
36% of the confirmed but only 4% of the unconfirmed
NAGNAG acceptors) and the strongly conserved motif
CAGGAG (that makes up only 5% of the confirmed but
46% of the unconfirmed NAGNAG acceptors), shaded gray
in Figure 2. Thus, confirmed NAGNAG acceptors are
enriched in weakly conserved motifs, while unconfirmed
ones are enriched in highly conserved motifs (analogous to
the above example of Simpson’s paradox). This bias causes
the misleading result of a lower conservation of confirmed
versus unconfirmed tandem acceptors in the global analy-
sis. Moreover, this bias explains previous conflicting con-
clusions because the data set used in Hiller et al. (2004)
(‘‘intronic extra AGs’’) (see Supplementary Note in Hiller
et al. 2004) contains virtually none of the strongly con-
served NAGGAG motifs, while NAGGAG motifs make up a
large fraction of all unconfirmed NAGNAG sites that were
analyzed in Chern et al. (2006).

The unequal NAGNAG motif distribution was observed
in previous studies (Hiller et al. 2004; Akerman and

Mandel-Gutfreund 2006) that showed that >90% of the
alternative NAGNAG acceptors have an HAGHAG motif
(H = A, C, T), while those tandems having a GAG are rarely
alternatively spliced (Hiller et al. 2006b). Furthermore,
standard acceptors are mostly CAG or TAG, with AAG
and especially GAG being rare. This reflects the binding
affinity of the U2AF35 splicing factor (Wu et al. 1999).
Thus, the splicing machinery may select either acceptor in
an HAGHAG motif, resulting in alternative splicing (Chern
et al. 2006).

Estimating the number of human NAGNAG acceptors
that are under purifying selection

Higher conservation of confirmed NAGNAG tandems
indicates that a certain fraction is under purifying selec-
tion, which prevents the destruction of the NAGNAG
motif in the course of evolution. Since the CMH test
does not estimate how many confirmed tandem acceptors
are under selection, we developed two simulations to answer
this question. We used unconfirmed NAGNAG tandems
to estimate the expected or background conservation that
reflects evolutionary constraints to preserve a functional
acceptor and the coding sequence that overlaps the NAGNAG
motif. The number of confirmed and conserved tandem
acceptors that exceed the expected conserved number is
considered to be subject to purifying selection, which
preserves the alternative splice event. In the following, we
use fs for the fraction of confirmed and conserved tandem
splice sites estimated to be under purifying selection.

Applying the first simulation (called the ‘‘balanced motif
distribution’’; see Materials and Methods) to the rhesus,
mouse, dog, and chicken conservation data, we estimate
that between 2.95% (rhesus) and 9.55% (chicken) of the
confirmed and conserved NAGNAG acceptors are under

TABLE 1. Pairwise NAGNAG conservation results for a global and a motif-specific analysis of human NAGNAG acceptors in six vertebrate
species

Species

Global conservation Motif-specific conservation by CMH test

Confirmed (%) Unconfirmed (%) Odds ratioa Odds ratiob Confidence intervalc P-valued

Rhesus 89.8 92.0 0.77 1.29 1.02–1.64 0.031
Mouse 56.0 64.1 0.71 1.16 1.00–1.34 0.047
Dog 62.6 72.3 0.64 1.10 0.95–1.28 0.205
Chicken 34.4 41.0 0.75 1.18 0.97–1.43 0.097
Zebrafish 17.0 33.4 0.41 0.77 0.59–1.02 0.065
Fugu 17.0 32.3 0.43 0.94 0.71–1.22 0.643

While the global analysis indicates a lower conservation for confirmed NAGNAG tandems (left part), the motif-specific analysis indicates the
opposite (right part). P-values in bold are significant at the 0.05 level.
aAn odds ratio (OR) >1 indicates higher conservation for confirmed, <1 higher conservation for unconfirmed NAGNAG tandems; OR is
computed as (ncc/ncn)/(nuc/nun), where ncc = number confirmed and conserved; ncn = confirmed and nonconserved; nuc = unconfirmed and
conserved; nun = unconfirmed and nonconserved.
bOR computed by the CMH test and corrected for the influence of the NAGNAG motif.
cConfidence interval for the OR.
dP-value (computed by the CMH test) that the OR is unequal to 1.
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purifying selection (Table 2). Furthermore, the P-values
are significant at the 0.05 level for all four comparisons.
To further support this estimation, we applied another
simulation (called the ‘‘balanced OR’’; see Materials and
Methods) and found highly similar results (Table 2).

To extend the pairwise approach, we considered as a
four-way conserved NAGNAG acceptor a human tandem
that is conserved in rhesus, mouse, dog, and chicken (237
confirmed and 1360 unconfirmed four-way conserved
sites) (Supplemental Table 1). NAGNAG sites that lack
conservation in one or more species are considered as
nonconserved in this test (1351 confirmed and 6101
unconfirmed sites). We found that confirmed NAGNAG
acceptors have a significantly higher four-way conservation
(CMH test: OR = 1.28, P = 0.014) than unconfirmed ones.
The balanced motif distribution simulation estimates an fs
of 20.3% (OR = 1.31, P < 0.0001), indicating that 48 of the
237 four-way conserved tandems are under selection. Thus,
four-way conserved NAGNAG acceptors have a stronger
tendency to be under purifying selection.

As pointed out above, CAGCAG is the motif with the
highest number of confirmed human tandem acceptors.
Confirmed CAGCAG acceptors show a slightly higher con-
servation than unconfirmed CAGCAG sites in rhesus and
chicken but not in mouse and dog (Fig. 2B–E). To further
investigate the conservation of this motif, we considered
four-way conserved CAGCAG sites and found that human
confirmed CAGCAG acceptors have a 3% higher four-way
conservation level than unconfirmed ones, suggesting that
17 CAGCAG sites are under selection.

Finally, we analyzed conservation of NAGNAG tandems
located in the untranslated region (UTR). In contrast to
NAGNAG tandems in the CDS, we found no indication
that UTR tandems are under selection (data not shown).

Conservation of human NAGNAG alternative
splicing in mouse

Confirmed NAGNAG acceptor motifs are likely to be under
purifying selection because the alternative splice event
provides an advantageous phenotype. Therefore, we con-

sidered conservation of the alternative splice event in
mouse. Of the human confirmed NAGNAG acceptors
that are conserved in mouse, we found that 59% of
the orthologous mouse NAGNAG acceptors are alter-
natively spliced in mouse. This shows that conservation
of the NAGNAG motif is associated with conservation
of the splice event. In particular, confirmed NAGNAG
sites that have no GAG acceptor have a high chance to
be confirmed in mouse (Fig. 3), presumably because
their splice variant ratio is often rather balanced so
that few ESTs can be sufficient to detect alternative splic-
ing in mouse. As the mouse transcript coverage is only
62% of the human coverage (z5 million mouse ESTs and
mRNAs versus z8 million for human), our finding that
59% of the alternative splice events are conserved is a
lower bound.

Human tandem donors and acceptors
with up to D9 nt under purifying selection

Next, we extended our conservation analysis to human
tandem donors with D3–D9 nt and tandem acceptors
with D4–D9 nt (Fig. 1) that are located within the CDS.
As for NAGNAG acceptors, we found that constraints
on the donor and acceptor consensus are one reason for
the different conservation levels of individual tandem
motifs (Materials and Methods). Furthermore, the motif
distribution differs between confirmed and unconfirmed
tandems, probably because some tandem motifs allow
selection of either splice site by the spliceosome, while in
other tandems the stronger splice site is used exclusively
(Chern et al. 2006). To exclude potential biases, we used
the balanced motif distribution simulation to assess fs in
the following.

In contrast to NAGNAG acceptors, confirmed
GYNGYN donors (Hiller et al. 2006b) are not conserved
significantly more than unconfirmed ones. Only the mouse
and chicken comparisons indicate that a few confirmed
GYNGYN tandems might be under selection (Fig. 4A, left).
However, conserved tandem donors with larger splice
site distances contain more sites under purifying selection.

TABLE 2. Pairwise estimation of fs, the fraction of confirmed and conserved human NAGNAG acceptors under purifying selection

Human
versus

Number of confirmed
and conserved tandems

Balanced motif distribution simulation Balanced OR simulation

Average
ORa P-value fs (%)

Number of tandems
under selection fs (%)

Number of tandems
under selection

Rhesus 1366 1.32 0.001 2.95 40 2.56 35
Mouse 877 1.14 0.022 5.47 48 5.82 51
Dog 984 1.11 0.027 3.63 36 3.25 32
Chicken 323 1.17 0.036 9.55 31 9.60 31

Note that the average ORs of the balanced motif distribution simulation are in good agreement with the estimations from the CMH test
(see Table 1).
aAverage of 1000 iterations.
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We observed that fs increases with the evolutionary dis-
tance and that frame-preserving donor sites are preferen-
tially under selection for large evolutionary distances
(Fig. 4A, right). Strikingly, for the human–Fugu com-
parison, fs increases to 0.75 for D6 donors, indicat-
ing that three-quarters of the confirmed tandem donors
that are conserved over z450 mya are under purifying
selection. Indeed, these cases include the functionally
important tandem donors in human EDA (Yan et al.
2000) and ALDH18A1 (Hu et al. 1999). Apart from
frame-preserving sites, frameshifting tandem donors
contain sites under selection, even in the human–fish
comparison.

While the fs estimations for individual D3–D9 acceptors
are often lower than the respective donor classes and rarely
significant, the absolute number under selection is mostly
higher due to a larger number of confirmed tandem
acceptors (Fig. 4A, left). In particular, NAGNAG sites
contribute the biggest portion. As for tandem donors, fs
increases for larger evolutionary distances. In general, D3–
D6 tandems contain more sites under selection than D7–D9
tandems. The human–rhesus comparison reveals selection
for only a few tandem site classes, which is presumably due
to the close evolutionary distance that leads to a high
background conservation rate.

Assessing purifying selection for mouse tandem
splice sites

Up to now, we have assessed fs for human confirmed
tandem sites by pairwise comparison with other species.
Apart from human, only the mouse genome has a
transcript coverage (z5 million ESTs) that allows us
to create sufficiently large sets of confirmed tandem sites.
In contrast to mouse, many human ESTs are sampled
from tumor tissue, and this might affect the above con-
clusions. To provide an independent estimation, we used
the balanced motif distribution simulation to estimate
fs for confirmed mouse tandem sites by analyzing the
conservation in human. Noteworthy, a high fraction

(70%) of the mouse confirmed and con-
served NAGNAG sites is also alterna-
tively spliced in human.

Consistently, the estimated number
of mouse confirmed tandem sites under
purifying selection is similar to the
estimations for human confirmed sites
(Fig. 4, cf. B and A). The mouse-based
analysis estimates an even higher num-
ber of D4 donors, NAGNAG, and D9
acceptors to be under selection. It
should be noted that mouse confirmed
CAGCAG sites have a 3% higher con-
servation level than unconfirmed ones,
suggesting that 13 confirmed mouse

CAGCAG sites are under selection. This is in agreement
with the estimation for four-way conserved human
CAGCAG sites (see above).

Conservation of the intronic flanks

To provide further support that conservation of the tandem
motif implicates conservation of the splicing pattern
(alternative or constitutive splicing), we determined the
conservation of the intronic flanking regions. Previous
studies showed that exons, which are alternatively spliced
in human and mouse, are flanked by highly conserved
intronic regions (Sorek and Ast 2003; Yeo et al. 2005), and
the same was observed for human and mouse confirmed
GYNGYN and NAGNAG tandems (Akerman and Mandel-
Gutfreund 2006; Hiller et al. 2006b). Thus, high intronic
flank conservation is a hallmark of conserved alternative
splice events. To abstract from pairwise conservation (often
human–mouse), we used the PhastCons conservation scores,
which are based on multiple genome sequences and a
given phylogeny (Siepel et al. 2005).

Analyzing the average per-position conservation score
for the 30-nt intronic flank of all tandems with D3–D9 nt,
we found that confirmed and mouse-conserved human
tandems have generally the highest intronic flank conser-
vation, indicating that purifying selection also acts on the
intronic context. In particular, D4, D6, D7, and D9 donors
and D3 and D5 acceptors have significantly higher intron
conservation (Supplemental Figs. 1,2), and this coincides
with the tandem classes that have a significant fraction under
purifying selection (Fig. 4A, mouse). These observations
indicate that confirmed and conserved human tandem sites
are associated with alternative splice events in other species.

DISCUSSION

Given the abundance of alternative splicing at tandem
sites, it is of interest to find out what fraction of these
events is biologically meaningful. Apart from experimental
investigations (Condorelli et al. 1994; Vogan et al. 1996;

FIGURE 3. Conservation of alternative NAGNAG splice events in human and mouse. Each
bar is the percentage of human confirmed NAGNAG acceptors that is also confirmed in
mouse, split into the 16 NAGNAG patterns. Absolute numbers are given above the bars. Only
those human NAGNAG sites that are conserved in mouse are considered. (Blue) Tandem
acceptors with the pattern HAGHAG (H = A, C, T); (red) acceptors with the pattern
HAGGAG; (green) acceptors with the pattern GAGHAG. Note that there is no human
confirmed GAGGAG acceptor that is conserved, hence none can be confirmed in mouse.
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Hu et al. 1999; Koenig Merediz et al. 2000; Yan et al. 2000;
Joyce-Brady et al. 2001; Burgar et al. 2002; Tadokoro et al.
2005), another approach to address this question is to
estimate the fraction of tandem sites under purifying
selection. Here, we show that the sequence conservation
level differs between tandem motifs due to constraints on
the splice site consensus and possibly on splicing enhancer
motifs as well as on the coding sequence. Together with
differences in the tandem motif distribution, this bias
seriously affects the conclusion whether confirmed tandems
are more conserved than unconfirmed ones. Applying
methods that control for this bias, we estimate the fraction
of tandem sites under purifying selection.

Interestingly, we found that frame-preserving and frame-
shifting tandems are under selection. Frameshifting tandem
splice events can have a functional role by creating trun-
cated proteins as exemplified for a D4 acceptor in the last
intron of the zebrafish pou5f1 gene (Takeda et al. 1994) or
by subjecting the mRNA to the NMD pathway. In agree-
ment with this, at least 21% of the human–mouse con-
served exon skipping events lead to an NMD-inducing
transcript, suggesting a potential role in regulating the
protein level (Baek and Green 2005). Furthermore, NMD-
inducing exon skipping and intron retention events in splic-
ing factor genes are likely to be important because these
alternative regions overlap highly or even ultraconserved

FIGURE 4. Tandem donor and acceptor sites with D3–D9 nt under purifying selection. (A) Analyzing the conservation of confirmed human
tandem sites in six vertebrate species. (Left chart, blue bars) fs; (green bars) the number of confirmed and conserved tandems under purifying
selection (numbers >0 are given above the bars). (Right pie charts) The fraction of all frame-preserving and all frameshifting tandems that are
under selection. (B) Analyzing the conservation of confirmed mouse tandem sites in human. P-values are determined by repeatedly testing the
null hypothesis that confirmed tandems are conserved according to the motif-specific background conservation level (Materials and Methods).
Significance is indicated as (***) P < 0.01; (**) P < 0.01; (*) P < 0.05.
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elements (Lareau et al. 2007; Ni et al. 2007). It is
noteworthy that experimental studies also revealed func-
tional differences for tandem sites that lack deep evolu-
tionary conservation. For example, the CAGCAG acceptor of
human IGF1R exon 14, which leads to changes in the
signaling activity and the internalization rate of the
receptor (Condorelli et al. 1994), is not conserved in
mouse, rat, dog, and chicken. Thus, similarly to the
predicted functional roles of species-specific alternative
splice events occurring at conserved exons (Pan et al.
2005), species- or lineage-specific alternative splice events at
tandem sites may have functional consequences.

It is important to note that our estimation of the fraction
of confirmed tandem sites under selection (Fig. 4) is a
lower bound. A major reason is that our set of unconfirmed
tandems is likely to be contaminated with sites that are
alternatively spliced but currently lack transcript confirma-
tion. To provide a rough estimate of how many uncon-
firmed NAGNAG acceptors might be alternatively spliced,
we determined how many of those have a local context of
3 nt upstream and downstream (N3NAGNAGN3) that is
identical to a confirmed NAGNAG. As the local sequence
context primarily determines if a NAGNAG is alternatively
spliced (Chern et al. 2006), these unconfirmed NAGNAG
sites are expected to allow alternative splicing. We found
that 10.5% of the unconfirmed human NAGNAG acceptors
have a local context identical to a confirmed tandem.
Remarkably, this fraction increases to 26% for those
unconfirmed human NAGNAG acceptors with a C or T
at the N-positions (YAGYAG), and these unconfirmed sites
have a fivefold lower EST coverage than the confirmed
ones. Requiring the identity of only 2 nt upstream and
downstream (N2NAGNAGN2), 72% of the unconfirmed
YAGYAG sites have a confirmed counterpart. Thus, a
substantial fraction of the unconfirmed NAGNAG accept-
ors is likely to be alternatively spliced, although this is not
indicated by current transcript data. Therefore, the back-
ground conservation level computed from unconfirmed
tandems is likely to be overestimated, and consequently the
real fraction under selection is underestimated. In partic-
ular, frameshifting tandem splice sites are expected to
contain many unconfirmed but alternatively spliced cases,
since NMD removes the alternative transcripts (Baek and
Green 2005; Chern et al. 2006; Lareau et al. 2007; Ni et al.
2007). If the down-regulation of the mRNA encoding the
full-length protein has functional relevance, unconfirmed
but alternatively spliced tandem sites are probably con-
served in evolution, which, in turn, leads to an over-
estimated background conservation level.

Two confirmed NAGNAG acceptors are located in
ultraconserved elements (defined as at least 200-nt-long
regions that are identical between human, mouse, and rat)
(Bejerano et al. 2004). The first is the CAGCAG in PAX2
exon 2, which leads to a ProGly-to-Arg exchange immedi-
ately upstream of the Paired box domain. Interestingly,

NAGNAG splice events within the Paired box domain in
PAX3 and PAX7 affect DNA binding (Vogan et al. 1996).
The second case is a CAGAAG in CLK4 exon 4 that leads
to the insertion/deletion of a Lys upstream of the protein
kinase domain. These two NAGNAG acceptors are also
identical between human and chicken. Both ultraconserved
elements overlap a large region of the intron–exon bound-
ary; thus it is unknown if purifying selection on the
NAGNAG acceptor and its context was the driving force
for these ultraconserved elements.

Although tissue- or cell-line-specific splicing has been
observed at tandem acceptors (Koenig Merediz et al. 2000;
Hiller et al. 2004; Xu et al. 2004; Tadokoro et al. 2005) and
tandem donors (Hu et al. 1999; Yan et al. 2000), stochastic
selection of either of the two splice sites likely explains
alternative splicing at most tandems (Chern et al. 2006).
Stochastic splice events are expected to yield similar splice
variant ratios in different tissues, and this was observed in
many cases (Vogan et al. 1996; Hammes et al. 2001; Burgar
et al. 2002; Tadokoro et al. 2005; Hiller et al. 2006b).
Noteworthy, stochastic splicing does not preclude func-
tional importance of the alternative splice event (Hiller
et al. 2006c). Especially in a situation where both protein
isoforms are required ubiquitously, stochastic splice site
selection based only on spliceosomal core components
offers the advantage of producing the two variants nearly
independent of other conditions that regulate alternative
splicing. This is likely to be the case for the functionally
relevant tandem sites in mouse Fgfr1 and human PAX3 and
PAX7 (see Introduction) that produce a constant ratio of
the two splice variants (Vogan et al. 1996; Burgar et al.
2002). Another striking example is the D9 donor of human
WT1 (see Introduction). This tandem donor site as well as
its flanking regions is perfectly conserved between verte-
brates, and the two splice variants have distinct functional
roles. The splice variant ratio is constant in human tissues
and cell lines (Barbaux et al. 1997; Davies et al. 2000) as
well as in mouse (Hammes et al. 2001) and in zebrafish
(C. Englert, pers. comm.). A deviation in this ratio is highly
deleterious and leads to pronounced phenotypes (Hammes
et al. 2001). In this case, stochastic donor selection by the
ubiquitously expressed U1 snRNP would be a probable
mechanistic basis of the constant ratio. Similar to NAGNAG
acceptors (Tsai et al. 2007), sequences in the intronic flank
might be important for the ratio of the two donor sites,
which would explain the high intronic conservation. Apart
from tandem sites, a stochastic mechanism that controls
splicing of 48 mutually exclusive exons in Drosophila DSCAM
is essential for axon guidance and is conserved over 300
mya in the insect lineage (Graveley 2005).

While we provided quantitative evidence that a fraction
of tandem sites is under purifying selection and thus
functional, their identity remains unknown. We found that
NAGNAG acceptors with a strong minor splice site are
more conserved than those with a weak one, suggesting that
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the frequency of the alternative splice event might be
important. Furthermore, deep conservation in several
species such as four-way conserved tandems (Supplemental
Table 1), conservation over large evolutionary distances
(Supplemental Table 2), and high intronic flank conserva-
tion (Supplemental Figs. 1,2) might be reasonable criteria to
select promising candidates for further experimental studies.

MATERIALS AND METHODS

Data sets

We downloaded from the UCSC Genome Browser (Kuhn et al.
2007) the human genome assembly (hg17, May 2004) as well as
RefSeq annotation (refFlat.txt.gz, November 2006). We screened
all splice sites for the presence of a tandem donor and acceptor
D3–D9 motif. Donor sites without GT or GC and acceptors
without AG intron termini were omitted. The RefSeq annotation
of the open reading frame was used to decide if a tandem site af-
fects the CDS. A tandem site was considered as confirmed if there
is at least one EST/mRNA that matches the short and at least one
EST/mRNA that matches the long transcript. For NAGNAG and
GYNGYN tandems, we downloaded EST information from TassDB
(Hiller et al. 2007). For D4–D9 tandem sites, we used BLAST
against all ESTs and mRNAs to obtain confirmation for the puta-
tive alternative splice event. BLAST was done as described in Hiller
et al. (2006b). The total size of the obtained confirmed and un-
confirmed data sets is as follows: GYNGYN: 116 confirmed and
8031 unconfirmed; D4 donors: 595 and 97,539; D5: 161 and 27,254;
D6: 161 and 40,262; D7: 89 and 33,329; D8: 63 and 31,501; D9: 160
and 34,793; NAGNAG acceptors: 1597 confirmed and 7452 uncon-
firmed; D4 acceptors: 603 and 8093; D5: 364 and 7912; D6: 266 and
11,754; D7: 118 and 12,917; D8: 100 and 11,338; D9: 156 and 14,040.

Conservation was detected by analyzing the genome-wide pair-
wise alignments downloaded from the UCSC Genome Browser
(assemblies: human hg17, rhesus rheMac2, mouse mm7, dog
canFam2, chicken galGal2, zebrafish danRer3, fugu fr1) using the
genomic locus of the human tandem sites to select the respective
alignment chain. This approach allows a highly accurate detec-
tion of true orthologous splice sites, since the alignment of the
individual exons and their splice sites is embedded in the syntenic
context of the UCSC whole-genome alignment. Furthermore,
coding exons are a class of functional elements that can be reliably
aligned between distant genomes (Thomas et al. 2003). Tandem
sites, for which no alignment chain was found, were excluded
from the pairwise analysis as it is not clear if the entire exon is
missing in the other species, if the tandem site is contained in two
different alignment chains, or if these cases are due to wrong
alignments. It should be noted that considering these tandem sites
as nonconserved leads to an even higher conservation difference in
favor of confirmed sites.

PhastCons scores for alignments of 16 vertebrate genomes with
the human hg17 assembly (phastCons17way) were downloaded
from the UCSC Genome Browser.

Statistics

The odds ratio is defined as (ncc/ncn)/(nuc/nun), where ncc is the
number of confirmed and conserved tandems, ncn is the number

of confirmed and nonconserved tandems, nuc is the number of
unconfirmed and conserved tandems, and nun is the number of
unconfirmed and nonconserved tandems. Statistical tests (Fisher’s
exact test, CMH test, Wilcoxon rank-sum test) were performed
using the R software (http://www.r-project.org/).

Different filtering and conservation criteria
for NAGNAG acceptors

Given two orthologous NAGNAG acceptor motifs, we define
‘‘conservation’’ as an identical NAGNAG motif allowing only a
variation between C and T at the first position. We tested if
the conservation results for NAGNAG tandems were affected by
this definition of conservation. Higher conservation for confirmed
NAGNAG acceptors was consistently found if we (1) consider
NAGNAG conservation as the conservation of both AGs allowing
both Ns to vary (CMH test OR: 1.26 for rhesus, 1.15 for mouse,
1.06 for dog, 1.16 for chicken) (Supplemental Fig. 3); (2) consider
NAGNAG conservation as the identity of the entire hexamer;
i.e., conservation of both AGs and both Ns (CMH test OR: 1.11
for rhesus, 1.1 for mouse, 1.01 for dog, 1.18 for chicken).

Higher conservation for confirmed NAGNAG tandems was also
observed if we (1) exclude unconfirmed NAGNAG tandems from
the analysis that have only single EST support and hence cannot
be confirmed (CMH test OR: 1.24 for rhesus, 1.15 for mouse,
1.1 for dog, 1.18 for chicken); (2) exclude confirmed NAGNAG
tandems where the minor acceptor is supported by only a single
EST (CMH test OR: 1.35 for rhesus, 1.11 for mouse, 1.07 for dog,
1.25 for chicken). As confirmed NAGNAG acceptors have an
approximately twofold higher EST coverage, we tested if the
overall EST coverage affects our results. Splitting all confirmed
and unconfirmed NAGNAG tandems into those with at most
10 and at least 10 ESTs, we found a higher conservation for
confirmed NAGNAG sites in both groups except for dog (CMH
test OR: 1.64 for at most 10 ESTs and 1.05 for at least 10 ESTs for
rhesus, 1.23 and 1.04 for mouse, 1.08 and 0.97 for dog, 1.10 and
1.12 for chicken).

We also found higher conservation for confirmed NAGNAG
acceptors, when we restrict the analysis only to those tandems that
contain no GAG site (CMH test OR: 1.39 for rhesus, 1.12 for
mouse, 1.1 for dog, 1.1 for chicken). Consistently, restricting the
analysis only to those NAGNAG sites that have a C or T at both N
positions, we also found higher conservation for confirmed ones
(CMH test OR: 1.39 for rhesus, 1.07 for mouse, 1.11 for dog, 1.07
for chicken).

Balanced motif distribution simulation
for NAGNAG acceptors

The basic idea for the balanced motif distribution simulation is
that Simpson’s paradox cannot occur if the distribution of the 16
motifs is equal between confirmed and unconfirmed NAGNAG
tandems. To correct the unequal motif distribution, we did the
following. For each NAGNAG motif, we constructed two lists
containing the confirmed and unconfirmed tandems. From the
list with the higher entry number, we randomly removed entries
so that the entry number in this list equals the number in the
other list. This procedure was repeated for all splice site motifs.
Then, we combined all confirmed and unconfirmed lists, counted
the total number of conserved confirmed and unconfirmed
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tandems, and determined the OR. Note that after correcting the
unequal motif distribution (Supplemental Fig. 4), a global analysis
provides a fair comparison; thus we can directly determine how
many confirmed tandem acceptors are under purifying selection.
The whole procedure was repeated 1000 times. Finally, we
computed the average of the 1000 odds ratios and the difference
between the average number of conserved confirmed and con-
served unconfirmed tandems. This difference divided by the
number of conserved and confirmed tandems is fs. We also tested
bootstrapping (allowing a single tandem site to be selected more
than once in one iteration) and found virtually identical results
(data not shown).

Additionally, we computed a P-value by repeatedly testing the
null hypothesis that confirmed tandems are conserved according
to the motif-specific background conservation level. To this end,
we used the motif-specific percentage p of conserved unconfirmed
NAGNAG acceptors as the background conservation level. Let n
be the number of confirmed NAGNAG acceptors with a given
motif. Then, we generated n random numbers and counted as m
the number of cases which are #p. The interval [0–p] represents
the conserved part of the background, and the interval (p–1]
represents the nonconserved part. For example, the background
conservation level in mouse for AAGAAG is 50% (Fig. 2C). Since
there are 29 confirmed AAGAAG acceptors in our data set, we
generated 29 random numbers and counted how many of those
are #0.5. We repeated that for all motifs and determined the total
sum of motif-specific m. The P-value is the fraction of 10,000
performed iterations where this sum is equal to or higher than the
actual number of confirmed and conserved tandems. This P-value
is independent of the CMH test.

Balanced OR simulation

The rationale for the balanced OR simulation is that the CMH
test should estimate an OR of 1 if there is no difference in the
conservation. Thus, we determined which fraction of the con-
firmed and conserved tandems has to be artificially considered as
nonconserved to get an OR of 1; this fraction is the estimation for
fs. Specifically, for a given fraction f, we changed the conservation
status of f � n randomly selected confirmed NAGNAG acceptors
from conserved to nonconserved, where n is the total number of
confirmed and conserved tandems. Then, we computed the OR
using the CMH test. For a given f, this was repeated 1000 times,
and we determined the average OR and the standard deviation. If
f = fs, we expect that the OR = 1. Starting from f = 0, we increased
f to obtain average ORs well below 1. The highest f for which the
average OR is still >1 is taken as an estimate of fs (Supplemental
Fig. 5).

The balanced OR simulation was only performed for NAGNAG
acceptors as the number of motifs increases for GYNGYN and
D4–D9 tandem sites, while the number of confirmed sites de-
creases. In a situation with many motifs mostly having a low case
number, the CMH test cannot reliably estimate the OR.

Definition of conservation of two tandem sites

With increasing distance between the two acceptors of a con-
firmed tandem, the sequence between the two AGs has a tendency
to contain pyrimidines (Dou et al. 2006), probably reflecting the
requirement for a second polypyrimidine tract. Furthermore, the

nucleotide downstream from the AGs, which is frequently a G
for confirmed tandems, influences the splicing pattern (Dou et al.
2006). To account for these observations, we required identity of
the +4 position (in the following, numbering starts at the first
position in a D3–D9 acceptor or donor motif). All other positions
between the first four and last three positions were required to be
either a pyrimidine or a purine for D5–D9 motifs (for example,
a CAGGCCAG is conserved to a TAGGTCAG but not to a
TAGGACAG). To fulfill these constraints, two tandem acceptors
have to be highly similar; indeed, tandem acceptors are often
identical between species as the part downstream from the first
AG overlaps with protein-coding sequence.

Previously, we found that all GYNGYN donors that are
confirmed in human and mouse are identical between both
species and that the GTAGTT donor of STAT3 exon 21 even
yields virtually identical splice variant ratios in human and mouse
(Hiller et al. 2006b). Therefore, we required identity of the first
and last three positions for D3–D9 donors. Analyzing the
nucleotide preferences for the positions between the two GYNs,
we found a preference for a purine at position +4 for D4–D9
donors, at +5 for D5–D9 donors, and at the position upstream
of the second GYN for D6–D9 donors, which is in agreement
with the general donor consensus. To account for this, we
required either a purine or an identical nucleotide at these three
positions.

Balanced motif distribution simulation
for D4–D9 tandem sites

For tandem sites that are more than 6 nt apart, each motif
basically becomes unique; thus it is no longer practical to compare
in this simulation the conservation between confirmed and
unconfirmed sites with equal motifs. Therefore, we modified the
balanced motif distribution simulation to compare confirmed
tandems with identical or highly similar unconfirmed tandems.
To this end, we constructed for each confirmed tandem motif two
lists: the first list contains all confirmed tandems with this motif,
and the second list contains all unconfirmed tandems that are
either identical or highly similar to this motif. Taking similar
unconfirmed tandems into account makes the second list contain
at least as many entries as the first one, so that this list can be used
to sample a subset of unconfirmed tandems. Random sampling of
unconfirmed tandems was repeated 1000 times.

For D4–D6 donors, we sampled only from identical uncon-
firmed tandems. D7–D9 donors were considered as similar if D7
motifs are identical in positions +1 to +5 and +7 to +10; D8
motifs are identical in positions +1 to +5 and +8 to +11; and there
is at most one mismatch at positions +6 and +7; D9 motifs are
identical in positions +1 to +5 and +9 to +12; and there are at
most two mismatches at position +6, +7, and +8. D4–D9 acceptor
motifs were considered as similar if they fulfill the conservation
definition given above.

The reason to use this simulation is that the conservation dif-
fers between the motifs and the motif distribution differs between
confirmed and unconfirmed ones. For example, the balanced
motif distribution simulation estimates that 51% of the confirmed
and 47.1% of the unconfirmed D4 donors are conserved; a dif-
ference of 3.9%. However, the global conservation is only 41.3%
for unconfirmed D4 donors; a much higher difference of 9.7%.
This indicates that unconfirmed D4 tandems are enriched in
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weakly conserved motifs that do not occur among the confirmed
ones; for example, all of the 2226 GTAAGCA donors are un-
confirmed, and this motif has an exceptionally low conservation
level of 29.6% (660 of 2226). As the balanced motif distribution
simulation compares either identical or highly similar motifs, it
gives a fair estimation of a lower bound for fs.

Correlation between motif conservation
and splice site consensus constraints

For NAGNAG acceptors, we found that constraints on the
acceptor splice site consensus are one main reason for the
motif-specific conservation differences. To further test this, we
considered D4 acceptors. As most of these acceptors are pre-
dominantly spliced at the upstream acceptor, we focused on the
+4 position, which is often the 59 exon end. The conservation level
is 62.2% for NAGGNAG sites, 61.5% for NAGANAG, 60.5% for
NAGCNAG, and 59.4% for NAGTNAG. Thus, the order G > A >
C > T exactly correlates with the preference of the +1 position
in the acceptor consensus (Abril et al. 2005), even though the
conservation differences are not as pronounced as observed for
NAGNAG acceptors.

We also determined the overall conservation level of D4 donors
with a GTNNGTN motif, focusing on the +4 position in the
tandem motif. GTNAGTN donors have the highest overall
conservation level with 45.4%, followed by GTNGGTN (40%),
GTNTGTN (35.6%), and GTNCGTN (16.9%). Again, the order
A > G > T > C correlates perfectly with the +4 position preference
in the donor consensus (Abril et al. 2005). For donors with a
GCNNGTN motif, the GTN donor is predominant in most cases;
thus the +4 position in the tandem motif represents the �1
position in the donor consensus. At the �1 position, G is
preferred over A, T, and C (Abril et al. 2005). Again, this order
correlates with the conservation level: GCNGGTN, 55.6%;
GCNAGTN, 54.8%; GCNTGTN, 46.2%; and GCNCGTN, 42.1%.
Thus, constraints on the donor and acceptor consensus are
likely to be a major reason for the observed differences in the
overall conservation levels of tandem motifs.

SUPPLEMENTAL DATA

Supplemental material can be found at http://www.rnajournal.org.
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TassDB2 - A comprehensive database of subtle alternative splicing events 
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Subtle alternative splicing (AS) events involving tandem splice sites separated by a short (2-

12 nucleotides) distance are frequent and evolutionarily widespread in eukaryotes, and 

contribute to the complexity of transcriptomes and proteomes. We have substantially revised 

and extended our database TassDB (Tandem Splice Site DataBase, version 1), which stores 

data about AS events at tandem splice sites separated by 3 nt in eight species. The currently 

available version 2 contains extensive information about tandem splice sites separated by 2-

12 nt for the human and mouse transcriptomes, including data on the conservation of the 

tandem motifs in five vertebrates. TassDB2 offers a user-friendly interface to search for 

specific genes or for genes containing tandem splice sites with specific features. The results 

provide detailed information about the subtle tandem splice sites, as well as the possibility to 

download result datasets. Links are provided to the UCSC genome browser and other 

external resources. 
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Abstract 
 

Background 

Subtle alternative splicing events involving tandem splice sites separated by a short (2-12 

nucleotides) distance are frequent and evolutionarily widespread in eukaryotes, and a major 

contributor to the complexity of transcriptomes and proteomes. However, these events have 

been either omitted altogether in databases on alternative splicing, or only the cases of 

experimentally confirmed alternative splicing have been reported. Thus, a database which 

covers all confirmed cases of subtle alternative splicing as well as the numerous putative 

tandem splice sites (which might be confirmed once more transcript data becomes available), 

and allows to search for tandem splice sites with specific features and download the results, is 

a valuable resource for targeted experimental studies and large-scale bioinformatics analyses 

of tandem splice sites. Towards this goal we recently set up TassDB (Tandem Splice Site 

DataBase, version 1), which stores data about alternative splicing events at tandem splice sites 

separated by 3 nt in eight species. 

  

Description 

We have substantially revised and extended TassDB. The currently available version 2 

contains extensive information about tandem splice sites separated by 2-12 nt for the human 

and mouse transcriptomes including data on the conservation of the tandem motifs in five 

vertebrates. TassDB2 offers a user-friendly interface to search for specific genes or for genes 

containing tandem splice sites with specific features as well as the possibility to download 

result datasets. For example, users can search for cases of alternative splicing where the 

proportion of EST/mRNA evidence supporting the minor isoform exceeds a specific 

threshold, or where the difference in splice site scores is specified by the user. The predicted 

impact of each event on the protein is also reported, along with information about being a 

putative target for the nonsense-mediated decay (NMD) pathway. Links are provided to the 

UCSC genome browser and other external resources. 
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Conclusion 

TassDB2, available via http://www.tassdb.info, provides comprehensive resources for 

researchers interested in both targeted experimental studies and large-scale bioinformatics 

analyses of short distance tandem splice sites. 



4 
 

 

Background 
 

Alternative splicing (AS), a process which enables the production of multiple mRNA 

transcripts by the same gene via the variable inclusion of parts of the primary transcript, is 

very widespread in eukaryotes – almost all multi-exonic human genes are believed to undergo 

AS [1, 2]. Thus, AS is a major contributor to the complexity and diversity of eukaryotic 

transcriptomes and proteomes. The splice variants produced can either exhibit different 

properties (e.g. half-life, translational efficiency), be translated into different protein isoforms 

with potentially different functions, or can be degraded via pathways such as the nonsense-

mediated decay (NMD) [3]. AS can often be specific to a tissue type or developmental stage, 

and the majority of human AS events are believed to be regulated in this sense [1]. The 

regulation of AS has been shown to play an important role in several developmental processes 

in various organisms, and defects in AS can lead to diseases [4]. 

Subtle AS, involving splice sites separated by a distance of 2-12 nt, is an important, 

evolutionarily widespread subclass of AS [5]. Such AS is called subtle because the resulting 

mRNA isoforms differ by only a few nucleotides. While alternative acceptors (AA) and 

alternative donors (AD) together constitute about a third of all AS events in humans, subtle 

AS events comprise about a third of AA and AD events – for example, subtle events 

constitute 1,586 (38%) out of 4,179 AA events and 774 (28%) out of 2,728 AD events in the 

“alt events” track of the UCSC genome browser [6] for a combined total of 34% 

(2,360/6,907). Another reason for treating these events separately is that the mechanisms 

behind such events are likely different from those involving splice sites separated by larger 

distances – for example, the emergence of a second polypyrimidine tract can be observed for 

alternative acceptors separated by 8 or more nucleotides, and events which result in a frame-

preserving difference of transcript length are seen to be more common than frame-shifting 

ones, once we move beyond a difference of 12 nt [7, 8].  

It is a matter of debate as to what fraction of subtle AS events are truly functional, as opposed 

to being a result of a noisy process in which the spliceosome stochastically selects between 

nearby competing alternatives [5, 9-11]. Consistent with estimations that a fraction of those 

subtle AS events is under purifying selection [12], there are several known cases where they 
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result in functionally different protein isoforms or affect the translational efficiency when 

located in the untranslated regions (UTR) [5]. Moreover, subtle AS can also have a decidedly 

unsubtle effect in cases where a premature stop codon can be created, which is especially 

likely in cases where the splice sites are separated by a distance which is not a multiple of 3. 

Mutations that create frame-preserving tandem splice sites affecting the coding region are 

selected against [13] and in the case of ABCA4 are associated with human disease [14]. In the 

following, we shall use the notation Δx to denote a subtle splice event involving sites 

separated by x nucleotides, so for example, the class Δ3 shall be used to mean all GYNGYN 

and NAGNAG AS events (Y stands for C or T; N for A, C, G, or T), and so on. 

TassDB1 (TAndem Splice Site DataBase, version 1), the first database devoted to subtle AS, 

provides large collections of Δ3 donors and acceptors in eight species [15]. We have extended 

TassDB1 considerably, to create TassDB2, which provides a comprehensive collection of all 

human and mouse donors and acceptors in the Δ2- Δ12 range.  We note that while TassDB 

provided data on 8 species, TassDB2 only includes 2 species, human and mouse. This is 

because the transcriptome coverage by ESTs/mRNAs in the remaining species was 

insufficient for detection of a non-negligible number of AS events involving the larger 

distances in the Δ2- Δ12 range. TassDB2 includes data on the conservation of the tandem 

motifs in five vertebrates (human, mouse, dog, chicken and zebrafish). Thus, TassDB2 

provides comprehensive information on 22 event types, compared to 2 (NAGNAG and 

GYNGYN) in TassDB1. Thus TassDB2 is effectively a new database rather than just a simple 

extension. A user-friendly search interface features both a “quick search” mode, in which a 

user can search using gene symbol, as well as an “advanced search” mode, in which several 

different criteria can be specified by the user, and the possibility to download result datasets. 

 

 

Database construction and content 
Data 

TassDB2 uses an annotation pipeline based on transcript-to-genome mappings taken from the 

UCSC genome browser [16]. We used the RefSeq annotation as well as the UCSC 

‘knownGene’ set for human (build hg18) and mouse (build mm9). The exon–intron structure 
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as well as the protein-coding sequence (CDS) annotation was as per the UCSC annotation. 

Alternatively spliced tandem splicing events were identified using BLAST against all ESTs 

and mRNAs from the respective species as described in [17, 18].  

For each tandem splice site and the confirmed or putative AS event, TassDB2 contains the 

following data: the splice site motif, its genomic locus, its location in the transcript (5'/3'-UTR 

or CDS with intron phase 0/1/2), the (predicted) impact of the splice event on the protein, the 

sequences and length of the up-/downstream exon and the intron, and information about the 

ESTs/mRNAs that indicate usage (if any) of the splice sites. As the strength of the splice sites 

in a tandem often helps to distinguish between alternatively and non-alternatively spliced 

tandem motifs [7, 9, 18], we also computed splice site scores for both splice sites in each 

tandem [19].  

TassDB2 holds splice site specific data as well as transcript-dependent data. Some features, 

such as the tandem motif (the two NAGs or GTNs, and the intervening sequence, if any – Δ2 

being a special case, with motifs NAGAG and GTGTN), the genomic locus and the splice site 

scores, are independent of transcript annotation. However, other features such as intron phase, 

protein impact, EST confirmation and predicted targeting by NMD depend on the CDS 

annotation and the exon–intron structure of the transcript. Targeting by NMD is predicted in 

the usual manner - we calculated the nucleotide distance between the stop position 

(corresponding to the given splice variant) and the position of the last exon-exon junction, and 

if this distance was greater than 50, targeting by the NMD pathway was predicted. 

 

Database Design 

The web-frontend to TassDB2 is created in HTML with PHP and JavaScript. The data is 

stored in a relational database, running under the MySQL database system. The data is 

primarily organized in the database tables splicesite, spliceeventdata, and transcript (Fig. 1).  

The table splicesite contains sequence-dependent information such as the genomic locus, the 

splice site pattern with its sequence context, the splice site scores, and conserved tandem 

sequences (if available) in human/mouse, chicken, dog, and zebrafish. All transcript-

dependent data is stored in table spliceeventdata: the transcripts which have the tandem site in 

their exon-intron structure, the annotated splice site, the number of ESTs  for each (potential) 
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tandem splice variant along with the two BLAST queries used to find the ESTs, the predicted 

protein impact, and the NMD prediction. The table transcript contains the information on the 

transcripts that is independent from the splice sites. The three main tables are linked through 

the ss2transcript2sed table. 

Additionally, each splice site is linked to information on its gene (table gene), and its 

conservation in other species (table splicesite_conservation; species are human, mouse, dog, 

chicken, zebrafish, representing the major vertebrate clades). The splicing events are linked to 

their supporting ESTs in the table est. The user interface contains links giving a detailed 

description of each data field. 

Summary statistics of human tandem splice sites in TassDB2 are given in Table 1. 

 

Utility and Discussion 

 
User interface – quick search and advanced search 

We anticipate that the most frequent use of TassDB2 will be a search for tandem splice sites 

of a given gene. Therefore, TassDB2 provides a “quick search” interface where a user need 

only specify a gene symbol or a transcript accession number, and the entire information of 

both confirmed and unconfirmed tandem splicing events for this gene is displayed.  

Often, however, users might be interested in information which requires a selection of tandem 

splice sites with specific features. To address this, TassDB2 also provides an “advanced 

search interface” (Fig. 2) where the search can be restricted using one or more of the 

following features: (i) Δ - the distance between the splice sites, (ii) frame-preserving or/and 

frame-shifting, (iii) number of ESTs/mRNAs that match both splice forms, (iv) “minor 

isoform ratio”, that is the fraction of ESTs/mRNA that support the minor isoform, (v) tandem 

site conservation in any or all of five organisms (human, mouse, dog, chicken, and zebrafish) 

(vi) splice site scores for the two splice sites, (vii) the difference in the splice site scores, and 

(ix) location in the UTR or CDS. Thus, it is easy to formulate queries such as: “Show all 

confirmed Δ3 events with a minor isoform ratio ≥ 0.4 ”, “Show all tandem splice sites where 

both splice forms are represented by at least two ESTs/mRNAs and the minor isoform ratio is 
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≥ 0.15” or “Show all confirmed frame-shifting tandem donors which are located in the CDS”. 

Additionally, the search can be restricted to certain genes.  

 

User interface – reporting results 

The result of the search consists of two parts: (i) a summary table listing the affected genes 

and their number of tandem splice sites of each type, and (ii) detailed tables containing 

information regarding the individual tandem splice sites. These detailed result tables also 

provide links to the ESTs/mRNAs for both splice forms as well as links to the UCSC genome 

browser. If the transcript specific data differ between transcripts, TassDB2 shows detailed 

result tables with more than two columns. Features that differ between transcripts are shown in 

black while those that are identical in all transcripts are shown in grey color. 

 

Examples 

Searching for all confirmed tandem splice sites in the gene HHIP (hedgehog interacting 

protein) in human leads to the result page shown in Fig. 3: HHIP has one confirmed Δ4 

tandem acceptor event, with the upstream and downstream acceptor supported by 30 and 34 

ESTs/mRNAs, respectively. The event is predicted to lead to targeting by NMD according to 

one of the representative transcripts (uc003ijs.1, NM_022475), but not according to the other 

(uc003ijr.1). 

While AS has now been established as a widespread phenomenon and a substantial 

contributor to the complexity of eukaryotic transcriptomes and proteomes, it is still a matter of 

great debate as to how many AS events are truly functional [3, 20, 21]. The literature 

regarding this question is the motivation behind providing the options for searching by splice 

site score difference and minor isoform ratio in TassDB2. It has been observed that 

comparable splice site strength is often indicative of both splice sites in a tandem being used, 

whereas a higher fraction of ESTs/mRNA supporting the minor isoform is a good test of 

whether the event is likely to be genuine AS events rather than just noise [22, 23]. As an 

example, searching for all confirmed tandem splicing events with a minor isoform ratio of ≥  
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0.45 yields 300 results, and increasing the threshold of supporting ESTs/mRNAs to ≥  10 for 

each variant yields 170 results. 

 

The TassDB2 resource also includes the BayNAGNAG webserver (available at 

http://www.tassdb.info/baynagnag/), which uses Bayesian networks to predict the splicing 

outcome at NAGNAG tandem splice sites in an EST/mRNA independent way based on splice 

site features [24].  

 

Conclusions 
 

TassDB2 is a comprehensive resource for information regarding subtle AS. Users can easily 

search for individual genes, as well as by various criteria corresponding to different features 

of the tandem splice sites. Some of the criteria can be used to enrich for splicing events which 

are likely to have functional significance. The results can be downloaded for further 

exploration, and flat files have also been made available for those who wish to carry out their 

own large-scale bioinformatics studies. Thus TassDB2 should be a very useful resource for 

scientists interested in subtle AS.  

 

Availability and requirements 
 

TassDB2 is freely available for online use at http://www.tassdb.info 

TassDB2 can be used via any standard internet browser. 
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Table 1. Statistics of human tandem splice sites in TassDB2.  

 

Delta 

Donors   # %  Acceptors   # % 

Tandem splice 
sites 

Confirmed* 
alternative 

 Tandem splice  
sites 

Confirmed  
alternative 

2  9,825       1.9 164      1.7  11,135      6.7 252     2.3 

3 11,164       2.2 166      1.5       12,542      7.5 2,272   18.1 

4 130,104     25.3 955     0.7  11,852      7.1 961    8.1 

5 36,643       7.1 269     0.7  11,314      6.8 609     5.4 

6 54,142     10.5 275     0.5  16,495      9.9 396     2.4 

7 45,161       8,8 150     0.3  17,290     10.4 179     1.0 

8 42,670       8.3 150     0.4  15,386      9.2 175     1.1 

9 46,688       9.1 249     0.5  18,645     11.2 212     1.1 

10 47,092       9.1 217     0.5  17,294    10.4 160     0.9 

11 44,831       8.7 157     0.4  15,832      9.5 123     0.8 

12 46,654      9.1 267     0.6  18,819     11.3 204     1.1 

Total 514,974  100.0 3,019     0.6  166,604  100.0 5,543     3.3 

* Tandem splice sites are considered confirmed if both splice forms have at least one supporting EST/mRNA. 
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Figure 1. The database scheme of TassDB2. 
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Figure 1. The database scheme of TassDB2. 
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Figure 2.  The advanced search interface of TassDB2. 
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Figure 3.  Result page for all confirmed tandem splice sites in the gene HHIP.  
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DDiissccuussssiioonn  
Alternative Splicing (AS) has emerged as a key element of gene regulation in higher 

eukaryotes, and an important contributor to transcriptome and proteome diversity [19]. The 

focus of this thesis is on prediction of various alternative splicing events in animals and 

plants using Machine Learning and novel features, and studying the extent and conservation 

of subtle alternative splicing. Through my studies of alternative splicing, I have sought to 

understand the mechanisms involved in constitutive splicing, exon skipping, and subtle 

alternative splicing. 

 

Improved identification of conserved cassette exons 
The motivation for my first work [108] came partly from the fact that while large-scale 

detection of AS is often performed using EST data and is heavily dependent on the extent of 

coverage afforded by such data (greater the coverage, more are the AS events detected) 

[25, 36, 94], the amount of available EST data varies greatly across the organisms whose 

genomes have been sequenced to date [142, 143]. At the time that I started to work on 

conserved cassette exon prediction in 2006, there were only seven species with over a 

million ESTs in dbEST – this has now increased to 13 species (dbEST data from 

http://www.ncbi.nlm.nih.gov/dbEST/dbEST_summary.html, as of November 13, 2009), but 

the fact remains that many species have very low EST coverage. Moreover, even for a 

reasonably well characterized organism such as human, novel AS events are continually 

detected with the addition of more ESTs – for instance, while TassDB1 [121] had 1,945 

cases of confirmed NAGNAG AS in human, TassDB2 (manuscript under review)  has 2,272 

such cases . Furthermore, the majority of human ESTs have been sampled from cancer 

tissue, which means that there might be AS events (possibly even dominant ones) in normal 

tissue which are as yet undetected [88]. The number of ESTs available for different tissues 

also differs substantially – for example, the collection of ESTs for humans in dbEST [143] 

has nearly eight times as many brain-derived ESTs as heart-derived ESTs [144]. Moreover, 

EST datasets are biased towards highly expressed variants, as the expression level of a 

transcript must be sufficiently high for it to be detected within the settings of a particular EST 

sequencing effort. Thus, minor isoforms can escape detection, even though they might be 

quite important in the cell [96, 145]. The single read nature of ESTs also makes them error 

prone [146] and difficult to interpret. AS can be condition/tissue/developmental stage-specific 

[59], which means that it shall go undetected until and unless ESTs are sampled under the 

appropriate conditions. All these reasons provide a strong motivation for other methods of 

detecting and predicting AS. Microarrays are another popular experimental method of large 

scale detection of AS, which have achieved a more uniform coverage of tissues than ESTs 

[147]. However, they have limitations stemming from hybridization related artifacts [148], 
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design constraints that limit the detection of RNA splice patterns, and a limited ability to 

distinguish between closely related isoforms. Thus computational methods of AS prediction 

have much to contribute. Finally, computational predictions on species different from the 

species on which data the method was trained can give insights how conserved the 

underlying splicing mechanism between species is.  

However, it must be asked how the advent of next-generation sequencing technologies 

impacts the situation. On the one hand, these technologies make it possible to sample 

transcriptomes at unprecedented depth, enabling the discovery of novel exons and AS 

events which were not detected using ESTs derived by Sanger technology alone [27, 28, 98, 

99, 149-151]. On the other hand, shorter read length in comparison to Sanger sequencing 

means that events involving longer sequences are harder to detect using these approaches. 

This is especially true of (earlier versions of) technologies such as Illumina/Solexa and 

ABI/SOLiD, with read lengths of 25-36 nt in most studies reported to date. The situation is 

likely to change as these companies work to make longer read lengths possible, in fact it has 

already changed to some extent, with paired end reads as well read lengths of 50-100 bp 

becoming available in the latest versions of these platforms. Roche’s 454 sequencing 

platform is less limited in this sense, with current read lengths of ~250-400 nt, but few AS 

studies have been published so far using this platform due to the higher costs/nt of this 

technology. But with over 200 cell types, several developmental stages, and many other 

physiological conditions under which AS can occur, it is still infeasible to cover all the specific 

combinations via deep sequencing approaches. It must also be pointed out that next-

generation sequencing platforms are still too expensive for many laboratories and institutes, 

which means that scientists working in these places continue to use Sanger ESTs, mRNAs, 

full-length cDNAs, RT-PCR and microarrays to detect AS. Therefore, it is clear that 

computational methods of predicting AS continue to be useful. 

A quite independent reason which makes computational prediction of AS useful is that it can 

help shed further light on the mechanisms involved in AS. As an example, in our work on 

conserved cassette exon prediction, we managed to show that the majority of exons which 

were labeled constitutive but assigned a probability ≥ 0.7 of being alternative by the BN were, 

in fact, alternative according to the latest transcript evidence. But what about the exons 

which were labeled alternative, yet received a low probability of being alternative by the BN? 

These exons were clearly more like constitutive exons in terms of the features we used for 

prediction, yet they were known to be alternative – why might that be so? By examining such 

cases in the genome browser, at least two clear patterns emerged:  

(1) There were some conserved cassette exons which had predicted conserved secondary 

structure in their splice site neighborhoods. This suggested a mechanism in which exons 

which are otherwise like constitutive exons, get alternatively spliced due to secondary 
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structure which somehow interfere with the process of splicing. This view is supported by a 

recent paper which reports that conserved secondary structures promote alternative splicing 

[152].  

(2) There are exons which resemble constitutive exons in most of the features, but have an 

extremely large or small value for some important feature(s) which explain why they are 

alternatively spliced. For instance, they might have an unusually long upstream intron (say 

> 20 kb long, which is longer than 95% of human internal introns [153]). It is known that the 

exon-intron architecture of a gene plays an important role in determining whether it shall be 

alternatively spliced, and long flanking introns make AS much likelier [38, 40]. If the 

orthologous exon also has an unusually long upstream intron, it may be alternatively spliced 

as well, giving rise to conserved AS which is due to architectural constraints rather than 

conserved regulators.  

Thus, by studying where our computational method goes wrong, we pick up useful hints 

about alternative mechanisms of conserved AS.  

 

Figure 4 shows the distribution of posterior probabilities of human-mouse conserved exons 

being alternative for constitutive as well as alternative exons. Ideally, the probabilities should 

be very low for constitutive exons, and very high for alternative exons. The distribution for the 

constitutive exons is not far from the ideal case, with a clear peak in the region 0-0.25. 

However, while the main peak for alternative exons is in the region 0.75-1, there is a smaller 

peak in 0.1-0.2 region, and a plateau in the 0.25-0.65 region. These curves explain why the 

specificity of our method is quite high, but the sensitivity can be improved further. They also 

suggest that there are potentially many more undiscovered conserved cassette exons in 

human and mouse. 

 

It is also worth noting that the lessons learned from computational approaches to AS 

prediction can also be applied to study the wealth of data being produced by next-generation 

sequencing. An important recent study reported “switch-like” exons, which are alternatively 

spliced exons whose inclusion levels vary remarkably across tissues [27]. Such exons seem 

to share several properties with conserved cassette exons (also called alternative conserved 

exons, or ACEs, in [100] – we use the term "conserved cassette exon" as there are other 

kinds of alternative conserved exons, for example conserved alternative acceptors and 

donors, that we did not consider). Thus it is not unnatural to think of developing 

computational methods to identify and characterize “switch like” exons, and other kinds of 

alternative exons which are likely to be of functional importance.  
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Figure 4. Posterior probabilities of being alternative  for constitutive and alternative exons. 
The distribution of posterior probabilities of being alternative, for constitutive exons (D1 – green, D2 - blue) and 

alternative exons (D1 – red, D2- orange) of the datasets D1 (from [102]) and D2 (from [100]) used in our study 

[108].  

 

 

One of the most encouraging results in my work on predicting conserved cassette exons was 

that when I inspected the exons which were labeled as constitutive by ESTs available at the 

time of BN training but received a probability  ≥ 0.7 of being alternative, the majority (20/29) 

of them turned out be alternative according to the latest transcript evidence. This further 

strengthened the claim that our classifier was able to distinguish constitutive exons from 

alternative exons with high accuracy. This also suggests that one could devise a stringent 

test for classifiers by deliberately mislabeling a few samples, and check whether the classifier 

still classifies them correctly. 

Ideally, we should be able to predict AS without having to rely on conservation based 

features, that is, using only information which is in the given genome or transcriptome, and 

thus in principle available to the spliceosome. While we took a promising step in this direction 

by achieving TP0.5 = 29% without using conservation, this is only about half the performance 

achieved when including conservation-based features. Furthermore, while conserved AS 

events are a very important subclass of events by virtue of being enriched in likely functional 
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events, they are only a minority of AS events according to the current literature – up to 50% 

of all human AS exons may be human-specific, that is, not conserved in other species, and 

of the conserved exons, up to 60% of the AS exons may be alternative in a species-specific 

way [154]. Thus, prediction and in general further characterization of both these classes of 

AS exons is of great interest. 

 

Accurate prediction of NAGNAG alternative splicing 
Several studies in the recent years have shown that a substantial fraction of alternative 

acceptors (AA) and alternative donors (AD) are separated by a relatively small distance – 

these are instances of so-called “subtle alternative splicing” [35, 118-120]. NAGNAG AS, 

involving acceptors separated by 3 nt, is the most widespread subclass of subtle AS [35, 

119, 120]. The true extent of subtle AS is still unknown, as many regions harboring tandem 

splice sites are not well covered by ESTs – for example, while 16% (1,815 of 10,740) of 

human NAGNAG acceptors are alternatively spliced according to the data present in 

TassDB1 [121], 40% (3,562) of the remaining NAGNAG acceptors have less than ten ESTs 

each. Thus a subset of these NAGNAGs, rather than being truly constitutive, may simply lack 

evidence of AS due to insufficient sampling of the transcriptome. An accurate predictive 

method can provide a meaningful estimate of how many alternative NAGNAG acceptors 

remain to be discovered. While previous work on predicting alternative 3' splicing had 

reported good results overall,  the results for predicting NAGNAG AS were modest, in 

comparison to cases involving larger distances [122]. This is at odds with the notion that a 

simple model based on splice site strength suffices to explain NAGNAG and other short-

distance tandem AS [123]. Under such a model, NAGNAG and other short distance AS is 

mainly caused by a spliceosome which “slips” occasionally, and is the outcome of stochastic 

selection between two nearby, competing alternative splice sites. This implies that subtle AS 

at many NAGNAG AAs is a noisy rather than a regulated process [123, 124] – nevertheless, 

this does not rule out the existence of a small  subset of NAGNAG AAs where the noise is 

"cultivated" to provide stable, functionally important isoform ratios (reviewed in [136]).  

. Motivated by these reasons, I used BNs and TassDB1 to develop an approach to 

accurately predicting the splicing outcome at NAGNAG acceptors. I treated the problem of 

predicting NAGNAG splicing outcome as a 3-class prediction problem, corresponding to the 

three possible outcomes (E, I, or EI), instead of two 2-class.  problems (E versus EI and I 

versus EI), as was done earlier [122]. 42 features were derived from the NAGNAG and its 

surrounding region (positions -20 to +3), as well as the last 3 positions of the upstream exon 

(due to the possible impact on the protein context). These features included the splice site 

strengths of the two putative acceptors, the sequence composition of the region, and the 

lengths of the flanking exons and introns, as well as features capturing information about the 
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pyrimidine content of the PPT [125]. To begin with, I worked with human data, and achieved 

a balanced sensitivity and specificity of ≥ 92%. This high in-silico performance gave us the 

confidence to perform experimental validation, with 63 NAGNAGs being investigated in one 

of the most extensive validations reported to date. Our predictions agreed with 80% (50/63) 

of the cases, with the agreement rising to 89% (25/28) for cases where AS was predicted 

with a probability ≥ 90%. We also showed that a higher predicted posterior probability 

corresponds to more accurate predictions, and that relaxing the threshold on the abundance 

of the minor isoform results in higher accuracy of AS prediction, as expected.  

One of the reasons behind the success of our approach to NAGNAG AS prediction was the 

careful preparation of training and test datasets. Since it is known that EST data can contain 

artifacts [146], I took care to include only those NAGNAGs in the training set, whose 

categorization based on EST data was very likely to be correct. Specifically, to call a 

NAGNAG constitutive, we required a support of ≥ 10 ESTs for one of the splice sites in the 

tandem, and none for the other; while to label a NAGNAG as alternative, we required a 

support of ≥ 2 ESTs for each variant, and a minor abundance threshold of 10%, that i s, 

≥ 10% of the ESTs covering the NAGNAG had to support the minor isoform. These stringent 

criteria decreased the chances of erroneous inclusion of “constitutive” exons which were in 

fact alternative but merely poorly covered by ESTs, as well as exons which appeared to be 

alternative due to a single, erroneous EST, and thus significantly reduced the noise in the 

dataset. We then kept all the remaining NAGNAGs in the training set. Apart from the 

performance of AUC = 0.94, 0.98 and 0.96 for the EI, E and I forms, respectively, we were 

also able to show that our criteria could help improve the performance on a dataset from the 

literature [122]. By comparison with TassDB1, it was evident that the main reason for the 

lower performance in NAGNAG AS prediction reported in [122] was the contamination of the 

set of constitutive NAGNAGs by several NAGNAGs which were in fact alternative (as 

documented in TassDB1), but lacked sufficient transcript coverage at the time the dataset 

was compiled. This improvement was independently verified by the use of next generation 

sequencing data from the Solexa platform described in [27]. 

One of the most interesting results in my work on NAGNAG AS prediction was the high 

accuracy achieved on the mouse, rat, dog and zebrafish NAGNAGs by a BN which had been 

trained using only human NAGNAG data. Since this classifier achieved results which were 

nearly identical to those achieved on human data itself, this was a strong hint that the 

mechanism behind NAGNAG splicing is conserved for 450 My among vertebrates. This also 

shows that our classifier should be able to predict NAGNAG splicing outcomes in vertebrate 

genomes that currently lack extensive transcript data. Since the same classifier also 

achieved a good performance on fruit fly and C. elegans – albeit with a drop as compared to 
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prediction on vertebrate genomes – this suggests that the mechanism is conserved beyond 

vertebrates.  

The most informative features in NAGNAG AS prediction were the two Ns in the NAGNAG 

motif, and the splice site scores. The scores for the upstream and downstream splice sites, 

and the upstream and downstream Ns can be substituted by each other with nearly identical 

results. The next important features were the nucleotides immediately neighboring the 

NAGNAG, while other features made only small contributions to the prediction performance. 

This shows that most of the information required for NAGNAG splicing prediction is encoded 

in the immediate splice site neighborhood. Moreover, simpler approaches like using only the 

two Ns in the NAGNAG motif, or only the splice site scores (computed by MAXENTSCAN 

[155]), or using a naïve Bayes classifier, worsened performance only slightly, indicating that 

the other features and the corresponding dependencies learned by the BN are weak in their 

discriminative power as well as in generalization to other datasets. All this further strengthens 

the view that the mechanism behind NAGNAG splicing is simple in nature. Taken together, 

our results show that BNs can produce highly reliable predictions of NAGNAG splicing 

outcomes, and that the mechanism behind NAGNAG splicing is simple in nature, and 

maintained during the course of evolution. 
 

Characterization and prediction of NAGNAG alternative splicing in the moss 
Physcomitrella patens 
In contrast to the remarkable rise in the number of studies of AS in animals in the last 

decade, the study of AS in plants is still in its initial stage. This also means that some of the 

lessons learned from analyzing AS in animals can be exploited when studying AS in plants 

[31]. It appears that AS in plants, while prevalent, is only about one-third to half as frequent 

as in animals [31] – while AS in vertebrates is estimated to occur in 50%-75% of genes 

according to EST and microarray data [26, 32, 34, 45, 79], the corresponding estimates for 

plants are 20%-35% [29, 30, 126].  The estimates using deep coverage of transcriptomes by 

the RNA-seq approach using next-generation sequencing technologies is > 90% for human 

[27] and 42%-56% for Arabidopsis [127]. While it is likely that the estimates of AS abundance 

in plants will keep rising with more comprehensive characterization of the transcriptomes of 

various tissues as well as under the diverse conditions under which plants respond to 

environmental stress, the frequency of AS in plants may nevertheless be less than that in 

animals. One possible reason for this might be the tendency of plants to undergo genome 

duplication and/or polyploidization [31]. Like AS, genome duplication (followed by 

divergence) is also a potential source of proteomic diversity, and some studies have 

observed an inverse correlation between gene family size and AS frequency in animals [156, 

157]. This suggests that the higher rate of duplications in plants might be related to a lower 
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rate of AS when compared to animals [31]. It must however be noted that AS seems to have 

a more drastic effect on  protein sequence and structure than does genome duplication 

followed by divergence [158].  

While there have been papers on the detection of AS in plants in the recent years [29, 30, 

126, 127], there are has not been much work on computational prediction of AS in plants – to 

the best of our knowledge, our work on predicting NAGNAG AS in moss is one of the first 

such studies (manuscript submitted). The model moss Physcomitrella patens was the first 

bryophyte genome to be sequenced, and the distribution of AS events in it seemed similar to 

other plants studied so far [128]. Since it was known that NAGNAG AS is widespread in rice 

and Arabidopsis Thaliana [30], I sought to extend our approach to NAGNAG AS prediction to 

plants by using moss as a case study. Since the extent of NAGNAGs in moss had not been 

reported, this work involved both characterization as well prediction of NAGNAG splicing in 

moss. We found that NAGNAG AS is also widespread in moss – out of 9,427 NAGNAG 

acceptors in P. patens, 5,031 have Sanger EST coverage, with 295 (5.9%) being 

alternatively spliced (EI form), 2,695 (53.6%) constitutively spliced at the first (intron 

proximal) acceptor (E form), and 2,041 (40.5%) constitutively spliced at the second (intron 

distal) acceptor (I form). Thus, NAGNAG AS is common in Physcomitrella. Using a feature 

set similar to that used in my work on NAGNAG AS prediction in animals, an in-silico 

performance of AUC = 0.96, 0.99 and 0.99 was achieved for the EI, E and I forms, 

respectively.  In the course of our work, 454 data were generated for the moss transcriptome, 

to supplement our characterization of NAGNAGs in moss using evidence for this next 

generation sequencing platform. Even though the 454 data covers only 75% (3,745/5,031) of 

the genomic NAGNAGs covered by ESTs, it helps us to detect 371 alternative NAGNAGs – 

9.9% of the covered NAGNAGs, compared to 7.5% using ESTs. Furthermore, the 454 data 

provides support for 73 alternative NAGNAGs among gene models not covered by Sanger 

ESTs. Combining the results from ESTs and 454 data, Physcomitrella patens has 664 

alternative NAGNAGs.  

Since I trained the classifier using Sanger ESTs, I was able to use the 454 data for 

independent validation of the predictions of the classifier. When considering AS according to 

454 reads alone, 64% (80/125) of the well-supported (≥ 2 reads per variant, ≥ 10% of the 

reads support the minor variant) cases of AS were predicted correctly, which increased to 

79% (30/38) if we required ≥ 4 reads per variant while k eeping the threshold of minor variant 

abundance at ≥ 10%.  The corresponding numbers were 62% (41/66) and 75% (9/12) when I 

considered the well-supported additional NAGNAG AS events detected using the combined 

Sanger EST and 454 data. Altogether, our results show that NAGNAG AS is widespread in 

moss, and the mechanism behind NAGNAG AS in plants seems very similar to that in 
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animals. The pervasiveness of NAGNAG AS suggests that it may be a general feature of 

splicing in animals and plants, and possibly in all intron containing organisms. 

 

Assessing the conservation of tandem splice sites 
While the abundance of subtle AS events is well accepted [118-120, 132], their functional 

impact has been the matter of debate [123, 124]. Briefly, the two opposing views can be 

summarized as “Subtle alternative splicing is a means of fine-tuning the transcriptome, and 

thereby the proteome”, versus “It’s not subtle, it’s noise – the spliceosome may ‘slip’ when 

confronted with competing alternatives in close vicinity of each other” –however, both views 

can be accommodated by considering that noise refers to the mechanism, whereas function 

(or the lack thereof) depends on how the species makes use of the AS event. The fourth 

work of my thesis [159] sought to address this question by studying the conservation of 

subtle splicing. It was known that NAGNAG splicing is biased in terms of the motif [118, 138]. 

In particular, while YAGYAG (Y = C or T) motifs are often alternative, GAGHAG and 

HAGGAG (H = A, C, or T) are only very rarely alternative. This is due to the fact that GAGs 

rarely function as acceptors, while YAGs are strong acceptors, and there is a distinct order of 

preference for the nucleotide preceding the AG in the acceptor which is C > T > A > G. At the 

genomic level, HAGGAGs are by far the most common NAGNAG motif, in keeping the 3’ 

splice site motif. Thus, any analysis which does not take the biased distribution of NAGNAG 

motifs into account is heavily influenced by the dominant HAGGAGs. To control for bias, we 

looked at the conservation of the 16 different NAGNAG motifs, and found that alternative 

NAGNAGs are in fact more conserved than constitutive NAGNAGs. This is an example of 

Simpson’s paradox [140], in which splitting two groups into subgroups reverses observed 

trends. By taking biases into account, we could arrive at an estimate of the fraction of subtle 

AS events under selection. 

Interestingly, both frame-preserving as well as frame-shifting tandems are under selection, 

even though frame-shifting tandems could often have deleterious consequences, by 

introducing a PTC. One possible explanation is that frame-shifting tandems could play role in 

creating truncated proteins, another is that they could cause the transcripts to be degraded 

via the NMD pathway [82], thus regulating the protein level. The coupling of AS and NMD is 

very frequent, and the term RUST (Regulated Unproductive Splicing and Translation) [81] 

has been coined to refer to regulation of gene expression via this coupling. RUST has been 

found to occur in splicing factor genes, in highly as well as ultraconserved regions [160, 161] 

(ultraconserved regions are defined as at least 200-nt-long regions that are identical between 

human, mouse, and rat [162]), and at least 21% of conserved cassette exons also lead to an 

NMD-inducing transcript [163]. Our estimates for the fraction of tandem sites under selection 

are only a lower bound, because as shown in our work on predicting NAGNAG AS, sets of 
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constitutive exons are often contaminated by as-yet-undiscovered alternative exons. 

Therefore, such undetected alternative exons can contribute to increasing the background 

conservation level for constitutive exons, thus reducing the estimated fraction of alternative 

exons under selection. Finally, while tandem sites under selection are very likely to be 

functional, it must be noted that functional differences have also been revealed by 

experiments and/or predicted by computational approaches for tandem and other AS events 

which are species-specific [154, 164]. Thus, conserved AS events are in turn themselves a 

lower bound on the number of functional AS events. 
 

TassDB2 – a comprehensive resource on tandem splice sites 
Subtle alternative splice events involving tandem splice sites separated by a short (2-12 nt) 

distance are frequent and evolutionarily widespread in eukaryotes, and a major contributor to 

the complexity of transcriptomes and proteomes [35, 118-120, 134]. However, these events 

have been either omitted altogether in databases on alternative splicing, or only the cases of 

confirmed alternative splicing have been reported. Thus, a database which covers all 

confirmed cases of subtle alternative splicing as well as the numerous putative tandem splice 

sites (which might be confirmed once more transcript data becomes available), and allows to 

search for tandem splice sites with specific features and download the results, can be a 

valuable resource for targeted experimental studies and large-scale bioinformatics analyses 

of tandem splice sites. 

We have substantially revised and extended TassDB1 [121], which stores extensive data 

about alternative splice events at tandem splice sites separated by 3 nt, in eight species 

[121]. TassDB2 (manuscript under review) contains information about tandem splice sites 

separated by 2-12 nt for the human and mouse transcriptomes. Thus, TassDB2 provides 

comprehensive information on 22 event types, compared to 2 (NAGNAG and GYNGYN) in 

TassDB1. TassDB2 is therefore effectively a new database rather than just a simple 

extension. TassDB2 offers a user-friendly interface to search for specific genes or for genes 

containing tandem splice sites with specific features as well as the possibility to download 

search results and large datasets. For example, the users can search for cases of alternative 

splicing where the proportion of EST/mRNA evidence supporting the minor isoform exceeds 

a specific threshold, or where the difference in splice site scores is specified by the user. The 

predicted impact (if any) of each event on the protein sequence is also reported, along with 

information about being a putative target for the nonsense-mediated decay (NMD) pathway 

[82]. Links are provided to the UCSC genome browser [165] and other external resources.  

TassDB2 is a comprehensive resource for information regarding subtle alternative splicing. 

Users can easily search for individual genes, as well as by various criteria corresponding to 

different features of the tandem splice sites. Some of the criteria can be used to enrich for 
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splicing events which are likely to have functional significance. The results can be 

downloaded for further exploration, and flat files have also been made available for those 

who wish to carry out their own large-scale bioinformatics studies. Thus TassDB2 should be 

a very useful resource for scientists interested in subtle alternative splicing.  
 

OOuuttllooookk    
In my doctoral research on the bioinformatics analysis of alternative splicing, I have mostly 

focused on prediction of AS using Machine Learning and features derived from splice-

relevant regions, and subtle AS. The field of research on AS, which was already very active 

in 2006, has grown further and changed rapidly in the three-and-a-half years of my research. 

Perhaps the biggest change has come about due to the advent of next-generation 

sequencing technologies, since they readily generate vast quantities of transcript data under 

controlled conditions, thus removing several limitations associated with Sanger EST data. At 

the time I started my doctoral research in 2006, analysis of ESTs was the most common 

approach to large-scale detection of AS, and had several limitations in terms of coverage, 

data quality, knowledge about the conditions under which data was collected, and so on. The 

new sequencing technologies remove these limitations, and as read length gets longer, 

Sanger ESTs may soon become less relevant in cases where RNA-seq data with a 

comparable or even longer read length is available.  

Thus, new questions are arising in the light of new data. It would be interesting to reassess 

many of the results regarding the various properties distinguishing AS exons from 

constitutive ones, as use of the new large-scale datasets should reduce contamination of 

datasets of constitutive exons by undiscovered alternative exons, which means that more 

meaningful comparisons can be performed. We are now moving into a phase where AS is 

being analyzed at a new level, where instead of trying to characterize the transcriptome of an 

organism, we have enough data to actually study the various transcriptomes a given 

organism has, corresponding to different tissues, developmental stages, environmental 

stresses, and so on. 

The availability of ever increasing amounts of data means that the over-dependence on 

conservation as a filter for finding likely cases of functional AS is also decreasing. This is a 

welcome development, because while conservation as an indicator of function is the bedrock 

of comparative genomics, we cannot hope to understand the physiological differences 

between species without studying what is lineage-specific yet functional [166]. Since it is 

estimated that the majority of human alternative exons are not conserved in mouse, and 

further that the majority of exons which are conserved and alternative, are alternative in a 

species-specific manner [154], it is natural to expect that AS contributes to species-specific 

differences. Therefore it is critical to develop conservation-independent methods of 
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assessing the functionality of AS. A start has been made recently - for instance, deep 

coverage of transcriptomes allows us to estimate the fractions of genes and exons which are 

expressed in a tissue or condition-biased manner, which is another way of inferring 

functionality. Furthermore, predictions and studies of motifs involved in AS can also take 

advantage of the recently available and rapidly accumulating data to focus on regulation 

under specific conditions, tissues and so forth.  Recent studies have started providing “RNA 

binding maps” for important RNA-binding proteins and regulators of AS and other processes, 

thus opening doors to new areas of detailed knowledge about the regulation of transcription 

and splicing [55, 57]. 

Another exciting and emerging area concerns the coupling of various fundamental 

processes. For instance, transcription and splicing are often coupled, and the rate of 

transcription can have profound effects on splicing [167]. A recent study suggests that the 

coupling of transcription to AS might be a key feature of the DNA-damage response [168]. 

Very recent work shows that epigenetics and splicing may also be interrelated, as 

nucleosome occupancy seems to be a strong discriminator between introns and exons [169, 

170]. We are in the midst of an exciting era in biological research and research in 

transcriptional, co- and post-transcriptional regulation in particular. The quest to crack the 

splicing code, a continuing endeavour, is also a part of cracking the regulatory code itself. 

 

 

““II  ccaann’’tt  bbee  aass  ccoonnffiiddeenntt  aabboouutt  ccoommppuutteerr  sscciieennccee  aass  II  ccaann  aabboouutt  

bbiioollooggyy..  BBiioollooggyy  eeaassiillyy  hhaass  550000  yyeeaarrss  ooff  eexxcciittiinngg  pprroobblleemmss  ttoo  wwoorrkk  
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