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Introduction

The global atmospheric tracer model TM3 is a three-dimensional transport model that
solves the continuity equation for an arbitrary number of atmospheric tracers. It uses
meteorological output fields from an atmospheric general circulation model or from a
weather forecast model.

The tracer advection is calculated using the ”slopes scheme” of Russell and Lerner
[Russel and Lerner, 1981]. Vertical transport due to convective clouds is computed using a
cloud mass flux scheme by Tiedke [Tiedke, 1989]. Turbulent vertical transport is calculated
by stability dependent vertical diffusion according to Louis [Louis, 1979].

The model is coded in Fortran 95 and available as source code. For a quick start see
section 3.1 on page 20.
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Chapter 1

Model Description

1.1 Meteorological Input Data

TM3 solves the continuity equation based on given time-dependent two- or three-dimen-
sional meteorological fields of the surface pressure, wind velocity, air temperature, specific
humidity and geopotential. Additionally, evaporation fluxes are needed in order to calcu-
late the sub-gridscale transport by cumulus clouds (see section 1.2.3 and appendix A.2).

These forcing fields may be obtained either from meteorological analyses or from the
output of an atmospheric general circulation model. For a realistic representation of
synoptic time scale transport processes the meteorological fields have to be available with
a timestep of 12 hours or shorter.

1.2 Model Physics

The model equations of TM3 are formulated in Eulerian coordinates. For their derivation
in this section a Cartesian coordinate system {ex, ey, ez} is used for simplicity. The actual
model coordinate system is displayed in section 2.2.

1.2.1 Continuity Equation

The atmospheric tracer model TM3 solves the continuity equation for a tracer in flux form

∂

∂t
ρχ + ∇ · ρ�uχ = Q (1.1)

on an Eulerian three-dimensional grid spanning the entire globe. χ denotes the tracer
mixing ratio (in kg tracer mass per kg air mass), ρ the air density, �u the wind velocity and
Q the volume source/sink of the tracer. Denoting time-space averages over the model grid
elements and model timestep by overbars and deviations from these averages with primes,
we obtain the equation for the averaged quantities:

∂

∂t
ρ̄χ̄ + ∇ · ρ̄�̄uχ̄ + ∇ · ρ̄�u′χ′ = Q̄ (1.2)

where we have neglected density variations within the averaging volumes. Separating the
horizontal and vertical directions we get

∂

∂t
ρ̄χ̄ + ∇h · ρ̄�uhχ̄ +

∂

∂z
ρ̄w̄χ̄ + ∇h · ρ̄�u′

hχ′ +
∂

∂z
ρ̄w′χ′ = Q̄ (1.3)
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1.2. MODEL PHYSICS

where w is the vertical wind velocity and the subscript h refers to horizontal vectors.
The second and third term on the left hand side of equation (1.3) correspond to trans-

port scales that are resolved on the model grid and are termed “advection” (see sec-
tion 1.2.2). The fourth and fifth term represent the effect of the unresolved scales on the
volume averaged tracer mixing ratio. Assuming that no cross correlation exists between
vertical and horizontal deviations from the volume averaged quantities we treat these
terms independently. In the troposphere, for which the model is primarily designed, this
assumption is justified, but it may not be appropriate in the stratosphere. The fourth
term, called “horizontal diffusion”, represents changes induced by correlations between
the horizontal deviations of wind and tracer concentration from their grid averages (see
section 1.2.4 on page 14). The last term on the left hand side of equation (1.3) represents
sub-gridscale transport in the vertical direction and is termed “vertical convection”. It
is parameterized in the model by transport induced by cumulus clouds and by turbulent,
stability dependent vertical diffusion (see section 1.2.3 on page 9).

The model numerically solves the continuity equation (1.3) in flux form and splits the
transport operator in time. Formally, we may view the tracer masses in all the gridboxes
as the components of a large vector, n(t). The discrete version of equation (1.3) is then
written as

n(t + ∆t) = LvconvecLhdiffLadvec (n(t) + Q(t)∆t) (1.4)

where the discrete operators Ladvec, Lhdiff and Lvconvec, corresponding to the transport
processes as described above, operate sequentially on n. Because the advection operator
is represented in an explicit form, the length of the base time step, ∆t, is limited by the
CFL criterion1. Q(t)∆t is the vector of tracer mass increments resulting from source-sink
processes which is added to the tracer vector during ∆t.

1.2.2 Advection

Advection, i.e. tracer transport by the three-dimensional airmass fluxes resolved on the
model grid, is calculated using the “slopes scheme” developed by Russell and Lerner
[Russel and Lerner, 1981]. In this scheme each tracer is represented within the Eulerian
gridboxes by the tracer mixing ratio, χ, and and the components of the spatial gradient
of the tracer mixing ratio within the gridbox, (∂χ

∂x , ∂χ
∂y , ∂χ

∂z ).
For program efficiency the primary variables in the model are not the mixing ratios

but the tracer masses, n, and the “slopes” of the tracer mass (nx,ny,nz) in the gridboxes.
Assuming no variations of the air density within a particular gridbox the tracer mass is
given by

n = χm = χρ∆x∆y∆z, (1.5)

where m denotes the airmass in the gridbox. For efficiency of the program the tracer mass
“slope” in the x-direction is defined as

nx = m
∂χ

∂x

∆x

2
(1.6)

and analogously in the y- and z-direction.
1The size of the airmass fluxes determines the maximum permissible value of ∆t: The total amount

of air moved out of any gridbox during ∆t must not exceed the airmass present in the gridbox at the
beginning of the timestep (Courant-Friedrichs-Levi criterion).
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CHAPTER 1. MODEL DESCRIPTION

With the additional information on slopes, the scheme exhibits much less numerical
diffusion than e.g. a simple upstream formulation. This advantage is however obtained at
the expense of storage and computational resources since four arrays are required for the
representation of each simulated tracer.

For certain tracers, negative concentrations are inacceptable. In regions with steep
concentration gradients the calculated tracer mass slopes may become so large that nega-
tive tracer masses emerge. If this is deemed unacceptable, this behaviour may be inhibited
by limiting the absolute size of the tracer mass slopes (logical input variable limits). This,
however, effectively implies a larger numerical diffusion of the advection scheme, but in
contrast to some other schemes the transport remains linear.

The slopes scheme requires the airmasses in each gridbox as input data together with
the airmass fluxes, i.e. the amount of air crossing the borders of the gridboxes during each
time step. For a meteorological dataset (meteorological analyses or climate model output),
the fields of airmasses and airmass fluxes are computed on a TM3 model grid during a
preprocessing stage (see page 44), stored on disk and then read during tracer model runs.

The three-dimensional advection process is subdivided into one-dimensional transport
in longitudinal, meridional and vertical direction. Because of the different typical sizes of
the mass fluxes in the three directions the one-dimensional advection steps of length ∆t
are further subdivided and performed sequentially in a so-called spatial leap-frog pattern:

1. zonal advection lasting 1
4∆t,

2. meridional advection lasting 1
2∆t,

3. zonal advection lasting 1
4∆t,

4. vertical advection lasting ∆t,

5. zonal advection lasting 1
4∆t,

6. meridional advection lasting 1
2∆t,

7. zonal advection lasting 1
4∆t

With this particular setup the effective advective time step in the longitudinal direction
is 1

4 and in the meridional direction 1
2 of the base time step ∆t.

Close to the polar regions, where the zonal extent of the gridboxes becomes small, the
zonal advection step is further subdivided in order to meet the CFL criterion. The grid-
dependent widths of these bands around south and north poles are hardwired as lat248
in a Fortran source file. It has great influence on the achievable length of the integration
timesteps.

During a one-dimensional advection time step, the slopes scheme performs the following
operations for a particular grid box (the mathematical formulae are given in Russell and
Lerner [Russel and Lerner, 1981]):

1. Calculate the new airmass in the gridbox based on the old airmass and the airmass
fluxes crossing the borders.

2. Calculate the amount of tracer that crosses the borders of the gridbox, based on the
masses and slopes of the tracer in the gridbox and its adjacent neighbours.
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1.2. MODEL PHYSICS

3. Calculate the new tracer mass in the gridbox.

4. Calculate the new slopes of the tracer in the gridbox. The new slope in the transport
direction under consideration is calculated by a “hardwired” least squares fit to the
displaced tracer mass distribution. The new slopes in the two other spatial directions
are calculated using an upstream formula.

1.2.3 Vertical Convection

Sub-gridscale vertical transport is parameterized in the model by two processes: vertical
diffusion and cumulus cloud transport.

The vertical diffusion coefficients are calculated based on the stability of the air using
the formulae given by [Louis, 1979] (listed in appendix A.2).

Tracer transport by sub-gridscale cumulus clouds is calculated using the massflux
scheme of Tiedke [Tiedke, 1989]. Formally this scheme defines a statistical stationary
cloud containing an updraft and a downdraft in each vertical grid column. The magni-
tude, entrainment and detrainment rates of these up- and downdrafts are computed based
on the horizontal below-cloud divergence of moisture, and on the buoyancy of the in-cloud
air relative to the air outside of the cloud. Tracer mass is entrained into the up- and
downdraft, mixed with the air inside the up- and downdraft and detrained into the sur-
rounding air. Furthermore, the net vertical airmass flux of the up- and downdrafts induces
a sub-gridscale subsidence flux of surrounding air outside the cloud. Figure 1.1 shows a
schematic sketch of this sub-gridscale transport parametrization.

Downdraft Updraft Subsidence Diffusion

l

l-1/2

l+1/2

l=lm

l=1

z=zsurf

z=ztop

Figure 1.1: Vertical subgridscale processes(“vertical convection”), computed in TM3
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CHAPTER 1. MODEL DESCRIPTION

In a preprocessing stage, both the vertical diffusion coefficients and the parameters
for the cumulus cloud transport are computed from the background meteorological fields
(see appendix A.2). In a tracer model simulation those coefficients and parameters are
read from disk at each meteorological time step ∆tmet. One consequence of this setup
is that the cloud transport processes operate during the entire meteorological time step
∆tmet. Formally, the statistical cloud extends through all grid levels of the model. In
practice the cloud extends only through the levels as computed in the cloud model, with
the appropriate en- and detrainment fluxes of the other layers set to zero.

Discretization

Since the tracer transport is linear, the effect of the sub-gridscale transport processes
on the tracer masses on the different model levels during one base time step ∆t can be
represented simply by the multiplication of the vector of tracer masses in a vertical grid
column by a “convection matrix” C. The element [C]lk of this matrix represents the
fraction of the tracer mass of the gridbox at level k, which ends up in the gridbox at level
l after the “convection process”. The elements of the convection matrix are determined
from the discretized representation of the subgrid-scale transport processes. They are
recomputed each time the diffusion coefficients and cumulus cloud transport parameters
(en- and detrainment rates of the up- and downdraft) are read from disk.

Considering only the vertical convection process alone, we have to discretize and solve
the following equation:

∂

∂t
ρ̄χ̄ = − ∂

∂z
ρ̄χ′w′ (1.7)

during the timestep ∆t. The right hand side of equation (1.7) is represented by the diver-
gence of the sub-gridscale tracer fluxes Fvsub (defined positive in the upward direction):

∂

∂t
ρ̄χ̄ = − ∂

∂z
Fvsub = − ∂

∂z
(Fu + Fd + Fs + Fvdiff ) (1.8)

where Fu and Fd denote the tracer mass flux in the up- and downdraft, respectively, Fs

the tracer mass flux by subsidence and Fvdiff the tracer mass fluxes by turbulent vertical
diffusion.

Integrating equation 1.8 over a gridbox at height level l gives

d

dt
nl = (Fvsub,l− 1

2
− Fvsub,l+ 1

2
) (1.9)

where nl denotes the tracer mass in the box. The sub-gridscale fluxes Fvsub,l± 1
2

at the

lower, (l− 1
2), and upper, (l+ 1

2), border of the box can be represented as a linear function
of the grid average tracer mixing ratios throughout the vertical column and hence of the
tracer masses in each of the boxes in the vertical grid column:

Fvsub,l+ 1
2

=
lm∑

k=1

fl+ 1
2
,knk. (1.10)

The coefficient fl+ 1
2
,k thus represents the fraction of the tracer mass of layer k, which

crosses the layer boundary l + 1
2 by means of sub-gridscale vertical transport processes
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1.2. MODEL PHYSICS

per unit time. It is further split into components representing the tracer mass fractions
crossing the layer boundary due to each individual sub-gridscale vertical transport process:

fl+ 1
2
,k = fu

l+ 1
2
,k

+ fd
l+ 1

2
,k

+ f s
l+ 1

2
,k

+ f vdiff

l+ 1
2
,k

. (1.11)

Explicit forms of fx
l+ 1

2
,k

for each of the different vertical sub-gridscale processes are derived
in the following subsections.

Equation (1.9) thus can be written for the entire column in matrix form2

d

dt
n = M · n, (1.12)

where the elements of matrix M are given as

[M]l,k = fl− 1
2
,k − fl+ 1

2
,k. (1.13)

For reasons of stability equation (1.12) is integrated in implicit form:

n(t + ∆t) = n(t) + ∆tM · n(t + ∆t). (1.14)

The tracer masses after the convection step are therefore related to the tracer masses
before the convection step by

n(t + ∆t) = (I − ∆tM)−1 · n(t) = C · n(t), (1.15)

where I denotes the identity matrix. C is the convection matrix.
Sub-gridscale transport also affects the slopes of the tracer mass within the gridboxes.

The horizontal tracer mass slopes nx and ny are transported like the tracer mass, i.e. they
are updated by

nx(t + ∆t) = C · nx(t) (1.16)

and
ny(t + ∆t) = C · ny(t). (1.17)

The vertical slopes are treated differently. It is assumed that the sub-gridscale processes
tend to reduce the tracer mass slopes in the vertical direction. In the present version the
vertical slopes are reduced to the fraction of tracer mass that remains at a particular level.
These fractions are the diagonal elements of the convection matrix, hence for level l we
have

nz,l(t + ∆t) = [C]ll nz,l(t). (1.18)

Transport by cumulus clouds

Sub-gridscale transport induced by cumulus clouds is represented by the three components

Fu + Fd + Fs = Muχu + Mdχd − (Mu + Md)χ̄ (1.19)

corresponding to the tracer flux in the updraft (subscript u), in the downdraft (subscript
d) and induced by subsidence (subscript s). Mu denotes the updraft airmass flux, Md the
downdraft and −(Mu + Md) the mass flux by subsidence, all expressed in kg m−2 s−1.

2In this section the symbol n refers to the vector of tracer masses of a particular grid column only.
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CHAPTER 1. MODEL DESCRIPTION

Entrainment and detrainment rates (expressed in kg m−3 s−1) into the updraft (Eu(z),
Du(z)) and into the downdraft (Ed(z),Dd(z)) are given as functions of height, z, from the
physical cloud model (see appendix A.2). Updraft and downdraft mass fluxes and their
in-cloud tracer mixing ratios are obtained by solving the discrete version of the following
set of equations for the updraft:

∂

∂z
Mu = Eu − Du (1.20)

∂

∂z
Fu = Euχ̄ − Duχu (1.21)

and for the downdraft:

∂

∂z
Md = Ed − Dd (1.22)

∂

∂z
Fd = Edχ̄ − Ddχd (1.23)

where we have denoted the fluxes of tracer in the up- and downdraft by

Fu = Muχu (1.24)
Fd = Mdχd (1.25)

The appropriate boundary conditions are

Mu = Fu = 0 at z = zsurf

Md = Fd = 0 at z = ztop
(1.26)

where zsurf and ztop are the geopotential height of the bottom and the top of the grid
column, respectively.

The continuity of mass also requires that∫ ztop

zsurf

(Eu − Du)dz = 0 (1.27)
∫ ztop

zsurf

(Ed − Dd)dz = 0 (1.28)

Using 1.24 and 1.25, the equations for the updraft and downdraft tracer fluxes (1.21)
and (1.23) can be expressed as

∂

∂z
Fu = Euχ̄ − Du

Fu

Mu
(1.29)

∂

∂z
Fd = Edχ̄ − Dd

Fd

Md
(1.30)

Updraft

The discretized form of the equation for the updraft airmass flux, (1.20), is obtained by
integrating over a gridbox at height level l

Mu,l+ 1
2
− Mu,l− 1

2
= Eu,l − Du,l (1.31)
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1.2. MODEL PHYSICS

where Eu,l and Du,l denote the airmass entrainment and detrainment, respectively (in units
of kg s−1), and Mu,l+ 1

2
denotes the updraft airmass flux at the model layer boundary zl+ 1

2

(in units of kg −1). Similarly the discrete version of the equation for the updraft tracer
mass flux, (1.29), becomes

Fu,l+ 1
2
− Fu,l− 1

2
= Eu,lχ̄l − Du,l

Fu,l+ 1
2

Mu,l+ 1
2

(1.32)

where we have used an implicit formulation on the right hand side, for stability reasons.
Solving for Fu,l+ 1

2
and using (1.31) we obtain

Fu,l+ 1
2

= (Fu,l− 1
2

+ Eu,l
nl

ml
)(1 − Du,l

Mu,l− 1
2

+ Eu,l
) (1.33)

where we have substituted the grid averaged tracer mixing ratio χ̄ by the ratio of tracer
mass nl divided the airmass ml in the gridbox.

Equations (1.31) and (1.33) represent recursive relations that may be solved by starting
from the surface using the boundary conditions (1.26) and working upwards. It is easily
seen that, using this procedure, Fu,l+ 1

2
at any layer boundary is a linear function of the

tracer masses nl, l = 1, . . . , lm of all the gridboxes in the grid column under consideration,
in the form of equation (1.10).

Explicitly, the coefficients fu
l+ 1

2
,k

are determined by the recursion formula:

fu
1
2
,k

= 0 ∀ k = 1, . . . , lm

fu
l+ 1

2
,k

= (fu
l− 1

2
,k

+ δk,l
Eu,l

ml
)(1 − Du,l

Mu,l− 1
2

+ Eu,l
) (1.34)

where

δk,l =

{
1 if k = l
0 otherwise

(1.35)

Downdraft

The derivation of the coefficients fd
l+ 1

2
,k

for the downdraft tracer fluxes are derived analo-
gous to the updraft as given in the previous section. We obtain the recursion formula

fd
lm+ 1

2
,k

= 0 ∀ k = 1, . . . , lm

fd
l− 1

2
,k

= (fd
l+ 1

2
,k
− δk,l

Ed,l

ml
)(1 +

Dd,l

Md,l+ 1
2
− Ed,l

) (1.36)

Subsidence

The sub-gridscale flux induced by the subsidence air mass flux −(Mu +Md) outside of the
cloud is given by

Fs = −(Mu + Md)χ̄ (1.37)
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CHAPTER 1. MODEL DESCRIPTION

Using an upstream formulation this flux is written at the model layer boundaries as

Fs,l+ 1
2

= −(Mu,l+ 1
2

+ Md,l+ 1
2
)
nl+1

ml+1
(1.38)

Hence the coefficients f s
l+ 1

2
,k

result in

f s
l+ 1

2
,k

= −
Mu,l+ 1

2
+ Md,l+ 1

2

ml+1
δl+1,k (1.39)

Vertical diffusion

The diffusive flux through the upper boundary of a gridbox at height level l is

Fvdiff = −AρK
∂χ̄

∂z
(1.40)

where A denotes the horizontal area of the gridbox, ρ the air density and K the diffusion
index. Rewritten in discretized form as functions of the tracer and air masses in the
adjacent boxes this becomes

Fvdiff,l+ 1
2

= −A
ρl+ 1

2

zl+1 − zl
Kl+ 1

2
(
nl+1

ml+1
− nl

ml
) (1.41)

and the coefficients f vdiff

l+ 1
2
,k

are thus given by

f vdiff

l+ 1
2
,k

= −A
ρl+ 1

2

zl+1 − zl
Kl+ 1

2
(
δl+1,k

ml+1
− δl,k

ml
) (1.42)

Global tuning of convection parametrization

For testing purposes the parametrization of vertical convection can be “tuned” by scaling
the ent- and detrainment fluxes with a global scaling parameter ζcu and the vertical
diffusion coefficients with a global scaling parameter ζK .

1.2.4 Horizontal Diffusion

Simulation experiments with earlier versions of the transport model (TM1, see Heimann
and Keeling [Heimann and Keeling, 1989]) indicated that the interhemispheric transport
on annual average was too weak, depending on the meteorological fields used to drive the
model, compared to that inferred from other tracer studies (notably 85Kr and 11F). Based
on this observation, a horizontal diffusion term was included in the model in a way similar
to the parametrization developed by Prather et al. [Prather et al., 1987]. The strength of
this additional term was controlled by a global parameter (a length scale) which provided
a tool to “fine tune” the model’s interhemispheric exchange.

With the use of meteorological datasets from the analyses after 1985 the interhemi-
spheric transport became stronger (most probably because of more realistic analyzed fields
in the tropical regions). In the present version of TM3 the code for the horizontal diffusion
has been removed.
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System Description

2.1 Overview

The TM3 model system consists of two components: The preprocessing programs MFLUX,
SUBSCALE and PASCHA, which generate the airmass fluxes and sub-gridscale transport
information on the tracer model grid from meteorological fields, and TM3, the actual
tracer model code itself. In practice the steps MFLUX, SUBSCALE and PASCHA are
performed only once for a particular meteorological dataset and transport model geometry
configuration. Figure 2.1 shows the TM3 information flow.

Meteorological Database

z, u, v, p , T, q, Fs lat

SUBSCALE

TM3 Transport
Model

Airmass Fluxes

TM3 Grid
Definitions

Tracer-specific
Input Data

Tracer Model
Output Files

MFLUX
PASCHA

Convection
Information

Figure 2.1: TM3 model information flow

The preprocessing modules are described in appendix A.1 and A.2. The following descrip-
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tion focuses on the code of the TM3 tracer transport model itself.

2.2 Coordinate Systems and Time Steps

TM3 uses an equidistant latitude-longitude grid, with im boxes in the zonal, jm boxes
in the meridional and lm layers in the vertical dimension. Currently there exist five grid
versions:

notation identifier im jm lm
coarse cg 36 24 9

fine fg 72 48 19
very fine vfg 192 96 28/31

extra fine xfg 320 161 31

In the zonal direction the longitudes φi of the grid box centers are located at

φi = −180◦ + (i − 1)∆x i = 1, .., im (2.1)

with a grid spacing of ∆x = 360◦/im.
In the meridional direction the jm grid boxes have an extent of ∆y = 180◦/(jm − 1).

They are spaced such that the latitudes Θj of the grid box centers are located at

Θj = −90◦ + (j − 1)∆y j = 1, .., jm (2.2)

The first and last (indices j = 1 and j = jm) grid box are centered on the poles itself
and have a meridional extent of ∆y/2. These polar boxes are not divided in the zonal
direction and are referenced with the zonal index i = 1. For indices j = 1 and j = jm the
elements with the zonal indices i > 1 are undefined.

The horizontal TM3 grid layouts are shown in appendix B on page 51.
In the vertical dimension TM3 uses a hybrid coordinate defined by two real coefficients a
and b per level l and the pressure equation

pl = al + bl · ps , l = 0 . . . lm,

where ps is the surface pressure. Depending on the vertical coordinate system of the
underlying meteorological forcing fields, these coefficients can be chosen so that the vertical
coordinate is purely σ-like (σ = p/psurf ) near the ground and purely pressure-like at
the top of the atmosphere. This is the case for ERA/ECMWF meteorological fields.
NCEP/NCAR fields have pure σ-coordinates, which are represented in TM3’s hybrid
coordinate system as special case with al = 0.

The vertical box boundaries in hybrid coordinates and in meters above ground are
tabulated in appendix C on page 61.

Transport is calculated using a base time step ∆t as defined in section 1.2.1. The
availability of the meteorological data defines a second time step, ∆tmet, which must be a
multiple of the base time step ∆t.
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2.3 Program Modules and Source Code Files

A standard TM3 code archive comes with the following directories and contents:

doc contains this manual, a change log and a commented tem-
plate of the control parameter input file tm3.in,

examples contains simple example user files,
src contains the TM3 Fortran sources
shared contains source files shared with the preprocessing programs

The root directory contains a Makefile, which the user can copy to his work directory and
adjust to his needs.

Generally, the files were given the name of the contained Fortran module, if possible.
These modules were named, in turn, according to their function. The individual files and
their purposes are tabulated in the following:

File Purpose optional

advection.f90 advection module
aux flux.f90 handling of surface source fluxes yes
aux grid.f90 auxiliary routines for grid calcula-

tions
yes

convection.f90 convection module
diagnostics.f90 diagnostic routines (air and tracers)
griddefs <metID> <gridID>.f90 defines constants related to grid

and meteorology
mass conservation.f90 mass conservation check
time and date.f90 date/time/calendar calculations
tm3global.f90 main global TM3 constants and

variables
tm3io flux.f90 I/O of surface flux files (unformat-

ted)
yes

tm3io flux netCDF.f90 I/O of surface flux files (netCDF) yes
tm3io mix netCDF.f90 I/O of instantaneous tracer mixing

ratios (netCDF)
yes

tm3io mix unformatted.f90 output of instantaneous tracer mix-
ing ratios (unformatted)

tm3io mixstn ascii.f90 output of mixing ratios at stations
tm3io mixstn unformatted.f90 output of mixing ratios at stations yes
tm3io prepro.f90 input of preprocessed driver fields
tm3io schedule old.f90 output of mean mixing ratios at sta-

tion locations
yes

tm3io tmass unformatted.f90 output of instantaneous tracer mas-
ses

tm3main.f90 main loop and misc.
tm3netCDF.f90 TM3 netCDF interface yes

2.4 Global Variables and Constants

The principal physical variables are defined in one single Fortran module TM3global, con-
tained in source file tm3global.f90. All physical subroutines operate on these variables,
as well as the user-specified code for sources, sinks and/or chemistry. For details see the
listing in appendix D on page 65, or the documented module src/tm3global.f90 itself.
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The runtime parameters of TM3 are combined in a Fortran namelist inputz, which
is also declared in module TM3global. At program start, TM3 tries to read a text file
tm3.in from the current directory, where these parameters have to be set according to
the Fortran namelist input rules. Defaults apply for variables not specified there. A
documented template can be found under doc/tm3.in, which is listed in appendix E on
page 71. More details are explained in section 3.4.1 on page 29.

2.5 The Model Main Loop

The file tm3main.f90 contains, among others, the main program and the subroutine main-
loop with the principal model loop. The main loop is entered after initialization actions,
and after it is exited, shut-down operations are executed. The sequence of performed tasks
is listed in Table 2.1.

Each task is controlled by variables contained in the Fortran namelist inputz. These
control parameters specify e.g. the time steps for the particular task. Since the model
simulation time is divided in increments of the base advection time step ndyn, the values
of each of these time steps must be set to a multiple of ndyn. This is checked during
program startup.

2.6 Time and Calendar Calculations

The basic time unit of the model is the second. The basic time step is defined by variable
ndyn which describes the length of an advection timestep. The counter itau contains the
current simulation time in seconds since 0:00:00 UT, January 1, iyear0. Functions are
provided to convert simulation time instants expressed in seconds to an easily readable
6-element integer vector (/year, month, day, hour, minute, second/), or to a character
string.

Four different calendar options are available, which can be selected by the control
parameter icalendo:

1. Permanent 360 day years with 12 months of 30 days each.

2. Calendar with 365/366 day years (including correct leap years).

3. Permanent 365 day year.

4. Permanent 366 day leap year.

The default is 2. The choice of the calendar kind depends on the meteorological data
to be used: (1) is appropriate with climate model output which uses 360 days per year, (2)
for simulations using multiyear meteorological analyses, (3) and (4) for simulations over
several years but by cycling repeatedly through the meteorology of a particular year.
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Subroutine Timing by Task
Variable

start - TM3 initialization
trace0 - user-specific initializations
trace1 - user-specific initializations (if istart =

10+i)
begin of main loop

read prepro nread reads meteorological fields from storage
medium

init advection nread initializes advection module
init convection nread initializes convection module
interp prepro ndyn interpolates some of the input fields in

time
chem1 nchem updates tracer fields χ by chemistry

process 1
chem2 nchem updates tracer fields χ by chemistry

process 2
source1 nsrce updates tracer fields χ by source pro-

cess 1
source2 nsrce updates tracer fields χ by source pro-

cess 2
advection step ndyn calculates horizontal advection
hdiff ndiff calculates horizontal diffusion
convec step nconv calculates vertical mixing by convec-

tion and vertical diffusion
acc diag ndiag accumulates diagnostics
inctime ndyn increments model time by one basic

time step ndyn and updates calendar
write cnsrv ndiagp1 writes out mass conservation check
write diag ndiagp2 writes out mean field diagnostics
writc ncheck writes out tracer mixing ratio χ̄ at

checkpoint locations
write mix ninst writes out instantaneous tracer mixing

ratio field χ̄
write mixstn ninststn writes out instantaneous tracer mixing

ratio χ̄ at station locations
write tmass ninsttmass writes out instantaneous tracer mass

field χ̄ · m
end of main loop

tracee - user-specific shut-down
finish - TM3 shut-down

Table 2.1: Calling Sequence in TM3
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User’s Manual

The TM3 program code is written with the endeavour to follow the Fortran 95 standard1

as much as possible. The only known portability issues concern the ”make” process using
GNU make and the use of the ”/” or ”\” character as filename separators. The program
has been successfully built and run ”as is” on numerous UNIX-, MS-Windows- and Apple
Macintosh OS-X platforms.

Since release 3.6a, the TM3 program features symmetric multiprocessing, which is
especially useful for higher resolutions. This option is selected by a special make target
(type make without any target for a complete list) and OpenMP environment variables.
When many processors are used, the performance might depend strongly on whether the
user’s routines are parallelized efficiently or not. Multiprocessing with TM3 is explained
in more detail in sec. 3.6.2 on p. 38.

If preprocessed files are transferred from one platform to another, the user has to take
care of matching integer and real data representations (width, IEEE or not, big or little
endian), as well as the sequential record structure, which is not part of the Fortran 95
standard.

All setup and run actions can take place in an arbitrary working directory. The link
to the TM3 code is made by specifying its path in the Makefile.

3.1 Building and Running TM3 - Overview

For the following, a working Fortran 95 compiler and the GNU make utility are prerequi-
site.

3.1.1 Building a TM3 Executable

The user needs three files in a working directory: Two user-supplied Fortran files and a
Makefile.

Step 1: Setting up the user Fortran source files
For building an executable, TM3 needs two user-specified Fortran source files, user-
constants.f90 and userroutines.f90. In the former, the user has to define only the
precision of certain TM3 variables and the number of tracers ntrace. In the latter

1Language constructs defined in the Fortran 95 Technical Reports (TR) are not used.
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reside the user codes for sources/sinks/chemistry, together with user variables.
Examples are given in the examples directory. The preparation of these files is de-
scribed below (sec. 3.2 and 3.3).

Step 2: Setting up the Makefile
A Makefile template resides in the root directory of the TM3 tar archive. It must
be copied to the working directory. Adjust the commented Configuration Section
inside the Makefile copy according to your needs.

Step 3: Running the GNU make command make or gmake
After adjusting the Makefile, type ”make <target>” (or ”gmake <target>”) on the
command line, where <target> is the kind of executable you want to build. A list
of possible targets (optimized/debugging, single processor/multiprocessor etc.) is
displayed when typing ”make” (or ”gmake”) without target. Normally, the make
process produces an executable named tm3.

3.1.2 Running TM3

Standard prerequisites for running TM3 are the executable, the meteorology driver files
and a runtime parameter file tm3.in, specifying the runtime parameters.

A template for the runtime parameter file tm3.in can be found in the doc directory. Not
all parameters need to be specified there, one can delete lines or leave them commented
out, if the defaults can be used. For more details see sec. 3.4.1.

Make sure that all files and directories specified really exist. Then start the executable
tm3.
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3.2 Module userconstants

The small module userconstants in file userconstants.f90 defines the numerical precisions of
the standard TM3 I/O files (pages 30 and 33), and TM3’s internal precision. By default,
everything is set to standard REAL. Furthermore, the number of tracer species is selected
here (parameter ntrace).
The user can find examples in the examples directory.

Example

!*******************************************************************************

! mandatory user-defined TM3 constants

!*******************************************************************************

MODULE userconstants

!-------------------------------------------------------------------------------

!

! Description

! -----------

!

! Only the TM3 parameters below need to be specified.

! User-variables and parameters are better defined in the file

! ’userroutines.f90’.

!

!-------------------------------------------------------------------------------

! History

! -------

!

! 06.05.2002 Initial free format version. Stefan Koerner

!

! $Id: userconstants.f90,v 1.3 2002/08/19 17:21:21 tpobw Exp $

!-------------------------------------------------------------------------------

IMPLICIT NONE

!--- Fortran kinds of real TM3 variables

INTEGER, PARAMETER :: k4 = KIND(1e0), & ! default REAL

k8 = KIND(1d0), & ! double precision

ki = k4, & ! prepro input fields

kf = k4, & ! flux input fields

kc = k4, & ! calculation

ko = k4 ! mix output fields

!--- number of tracers

INTEGER, PARAMETER :: ntrace=1

END MODULE userconstants
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3.3 Module userroutines

In the module userroutines (file userroutines.f90) the user can place his source-, sink- and
chemistry-process calculations, as well as user-defined variables and parameters. This
module can be set up almost entirely according to the user’s needs; the TM3 core modules
need access only to ten PUBLIC subroutines, to be declared without dummy arguments:

trace0 is called during program startup by subroutine start to
initialize the module, e.g. opening tracer input files,
initializing tracer fields,

trace1 is called from subroutine start after trace0, if istart =
10+i,

source1 is called every nsrce seconds for calculation of source1,
source2 is called every nsrce seconds for calculation of source2,
chem1 is called every nchem seconds for calculation of chem-

istry1,
chem2 is called every nchem seconds for calculation of chem-

istry2,
everystep is called every step (ndyn) for auxiliary operations (e.g.

reading data),
tracee is called at program end by subroutine finish for a user

shut-down,
save userstatus in case of a job continuation: called after main loop

completion instead of tracee to save the user module
status,

restore userstatus in case of a job continuation: called from subroutine
start instead of trace0 (and possibly trace1) to restore
the status of the user module.

The user can write arbitrary additional subroutines or data into the module (remember
to SAVE all variables that should retain their values across invocations). The diagnostic
routines keep track separately the tracer conservation statistics for each of the four possible
source and chemistry processes, but in principle the calculations assigned to source1/2 and
chem1/2 can be chosen arbitrarily.

The important physical fields like tracer mass, slopes, air mass etc. are all declared
and documented in the module TM3global, residing in file src/tm3global.f90 and listed
in appendix D on page 65. They can get into the current programming scope by a USE
statement. The tracer masses and slopes must be modified within userroutines according
to the processes under consideration.

The modification of the tracer slopes by emissions requires information about the
emission distribution within a grid box. With a given emission field inside a box, built up
by tracer emission during a time interval ∆ts, it is consistent with the advection scheme
to perform a least-square of a 3d linear function to the sum of old and emitted tracer
distribution. The modification of the slopes is then determined by their definition in eq.
1.6.

Some standard emissions are treated in the following.
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3.3.1 Example 1: Volume Source

Let a source strength for grid element (i, j, l) be denoted as Qijl and given in kg/s. The
tracer mass fields in kg before and after the emission are denoted by nk

ijl and nk+1
ijl . Then

the tracer mass field is updated by

nk+1
ijl = nk

ijl + Qijl∆ts,

where ∆ts is the length of the emission time step.
This update corresponds to the following line in subroutine source1:

rm(i,j,l,1) = rm(i,j,l,1) + q(i,j,l)*nsrce

In TM3, nsrce is the identifier for the source1 and source2 timestep and a runtime param-
eter.

3.3.2 Example 2: Sink Proportional to Tracer Concentration

In the case of a decay process with mass loss proportional to the mass itself, n(t + ∆t) =
n(t) exp(−λ∆t) in continuous time, like e.g. radioactove decay, the update equation for
sufficiently small timesteps ∆ts reads

nk+1
ijl = nk

ijl (1 − λ∆ts).

The slopes nx, ny and nz, defined by eq. 1.6, have to be multiplied by the same factor:

nxk+1
ijl = nxk

ijl (1 − λ∆ts)

nyk+1
ijl = nyk

ijl (1 − λ∆ts)

nzk+1
ijl = nzk

ijl (1 − λ∆ts).

In case of a large decay rate, e.g. if λ∆ts > 1
2 , an implicit discretization might be required

in order to prevent instabilities or/and negative concentrations. For the tracer mass the
implicit update equation reads

nk+1
ijl = nk

ijl /(1 + λ∆ts),

with according equations for the slopes.
The explicit update equations correspond to the following lines in subroutine chem1:

rm(i,j,l,1) = rm(i,j,l,1) * (1.-lambda*nchem)

rxm(i,j,l,1) = rxm(i,j,l,1) * (1.-lambda*nchem)

rym(i,j,l,1) = rym(i,j,l,1) * (1.-lambda*nchem)

rzm(i,j,l,1) = rzm(i,j,l,1) * (1.-lambda*nchem)

In TM3, nchem is the identifier for the chem1 and chem2 timestep and a runtime parameter.
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3.3.3 Example 3: Surface Source

Let the source strength for the surface grid element (i, j) be denoted as Qij and given in
kg/s. The tracer mass fields in kg before and after the emission are again denoted by nk

ijl

and nk+1
ijl . Then the tracer mass field is updated by

nk+1
ij1 = nk

ij1 + Qij∆ts,

where ∆ts is the length of the emission time step. Only the surface grid elements are
recomputed.

If one can assume a homogeneous emission inside the surface elements, the slopes are
not changed by this process. But if one approximates the vertical emission density to be
delta-distributed on the surface, ρ(z) = δ(z)Q∆ts, with

∫ ∞
0 δ(z)dz = 1, the new slopes

are computed by a least-square fit to the sum of old tracer distribution and the emitted
profile. This scheme is consistent with the scheme used in the advection algorithm by
Russel and Lerner [Russel and Lerner, 1981]. As result the vertical slope nz is updated
by

nzk+1
ij1 = nzk

ij1 − 3Qij∆ts.

Depending on the total tracer mass in the box nij1, this update might generate negative
mixing ratios (the mixing ratio varies in the vertical between (nij1 − |nzij1|) /mij1 and
(nij1 + |nzij1|) /mij1, if zero nx and ny slopes are assumed; mij1 is the air mass). There
are two solutions: Either one uses the update formula above and corrects for negative
mixing ratios, e.g. by setting the runtime parameter limits to .TRUE., or one uses an
update that is the best achievable fit to the delta emission under the side condition not
to generate new negative mixing ratios. The latter yields

nzk+1
ij1 = nzk

ij1 − Qij∆ts.

A Commented Code for Example 3

!*******************************************************************************

! user-supplied subroutines and user-variables

!*******************************************************************************

MODULE userroutines

!-------------------------------------------------------------------------------

!

! Purpose

! -------

!

! This module reads at model startup a temporally constant source field <flux>

! from file ’foss2_fg.d’, which is supposed to contain a surface emission flux

! field in kg/year. In subroutine source1, this source emits the tracer into

! the lowest model layer.

!

!

! Description

! -----------

!

! The following module contains all user-supplied subroutines associated
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! with sources and sinks (due to chemical reactions) and possibly

! with the initial tracer fields.

!

! trace0 called from subroutine ’start’ to initialize the user

! module (e.g. opening tracer input files, possibly

! initializing tracer fields)

! trace1 called from subroutine ’start’ after ’trace0’, if

! <istart> = 10+i

! source1 called every <nsrce> seconds for calculation of source1

! source2 called every <nsrce> seconds for calculation of source2

! chem1 called every <nchem> seconds for calculation of

! chemistry1

! chem2 called every <nchem> seconds for calculation of

! chemistry2

! everystep called in every step for auxiliary operations (e.g.

! reading of user data)

! tracee called after completion of the main loop for possible

! final operations

! save_userstatus in case of a job continuation: called after main loop

! completion instead of ’tracee’ to save the user module

! status

! restore_userstatus in case of a job continuation: called from subroutine

! ’start’ instead of ’trace0’ (and possibly ’trace1’) to

! restore the status of the user module

!

!-------------------------------------------------------------------------------

! $Id: userroutines.f90,v 1.6 2003/06/11 11:24:15 tpobw Exp $

!-------------------------------------------------------------------------------

USE userconstants, ONLY: kc, & ! computational precision

ntrace ! tracer number

USE TM3global, ONLY: im, jm, lm, & ! grid dimensions

rm, rxm, rym, rzm, & ! tracer field and slopes

nsrce, & ! time interval for source calc.

path_in_s ! path to input source data

IMPLICIT NONE

PRIVATE

!--- subroutines called by the TM3 core

PUBLIC :: trace0, trace1, &

source1, source2, &

chem1, chem2, &

everystep, tracee, &

save_userstatus, &

restore_userstatus

!--- private user variables

REAL(kc), SAVE :: flux(im,jm) ! see also the module ’aux_flux’

! for useful flux routines

!--- define user parameters to be read together with the runtime

!--- parameter list (tm3.in)

!NAMELIST /userparams/ ...

CONTAINS

!----------------------------------------------------------------------------

! initialize source module
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!

! Example: read in stationary source strength field <flux>

! units: kg/year

!----------------------------------------------------------------------------

SUBROUTINE trace0

USE TM3io_prepro, ONLY: get_free_lun ! utility subroutine

IMPLICIT NONE

INTEGER :: my_unit

!----------------------------------------------------------------------------

my_unit = get_free_lun() ! get a free unit number

OPEN (my_unit,FILE=TRIM(path_in_s)//’foss2_fg.d’, STATUS=’OLD’)

READ (my_unit,*) flux

CLOSE (my_unit)

flux = flux/(365.*24.*3600.) ! transform to kg/s

END SUBROUTINE trace0

!----------------------------------------------------------------------------

! this subroutine is called at program startup after ’trace0’, if

! <istart> = 10+i

!----------------------------------------------------------------------------

SUBROUTINE trace1

IMPLICIT NONE

END SUBROUTINE trace1

!----------------------------------------------------------------------------

! this subroutine changes the tracer mass and its slopes

! source process 1

!

! Example: add tracer to first layer

! source given in kg/gridbox/year

!----------------------------------------------------------------------------

SUBROUTINE source1

IMPLICIT NONE

INTEGER :: i, j, n

REAL(kc) :: x

!----------------------------------------------------------------------------

DO n=1,ntrace

DO j=1,jm

DO i=1,im

x = flux(i,j)*nsrce ! nsrce is the emission timestep

rm (i,j,1,n) = rm (i,j,1,n) + x

rzm(i,j,1,n) = rzm(i,j,1,n) - x ! surface emission

ENDDO

ENDDO

ENDDO

END SUBROUTINE source1

!----------------------------------------------------------------------------

! this subroutine changes the tracer mass and its slopes

! source process 2

!----------------------------------------------------------------------------
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SUBROUTINE source2

IMPLICIT NONE

END SUBROUTINE source2

!----------------------------------------------------------------------------

! this subroutine changes the tracer mass and its slopes by chemistry

! process 1

!----------------------------------------------------------------------------

SUBROUTINE chem1

IMPLICIT NONE

END SUBROUTINE chem1

!----------------------------------------------------------------------------

! this subroutine changes the tracer mass and its slopes by chemistry

! process 2

!----------------------------------------------------------------------------

SUBROUTINE chem2

IMPLICIT NONE

END SUBROUTINE chem2

!----------------------------------------------------------------------------

! procedure called after every time step

!----------------------------------------------------------------------------

SUBROUTINE everystep

IMPLICIT NONE

END SUBROUTINE everystep

!----------------------------------------------------------------------------

! procedure called after completion of main loop

!----------------------------------------------------------------------------

SUBROUTINE tracee

IMPLICIT NONE

END SUBROUTINE tracee

!----------------------------------------------------------------------------

! in case of a job continuation: called after main loop completion

! instead of ’tracee’ to save the user module status

!----------------------------------------------------------------------------

SUBROUTINE save_userstatus

IMPLICIT NONE

END SUBROUTINE save_userstatus

!----------------------------------------------------------------------------

! in case of a job continuation: called from subroutine ’start’

! instead of ’trace0’ (and possibly ’trace1’) to restore the status of

! the user module

!----------------------------------------------------------------------------

SUBROUTINE restore_userstatus

IMPLICIT NONE

! The only user variable to be restored if a continuation run starts

! is flux. It’s done by reading the flux file again.

CALL trace0
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END SUBROUTINE restore_userstatus

END MODULE userroutines

Other examples of userroutines can be found in the examples directory.

3.4 Program Inputs

3.4.1 Runtime Parameter File tm3.in

In the formatted sequential (ASCII) file tm3.in the user has to specify TM3’s runtime
parameters. tm3.in is being read from the working directory during program start. It
must contain specifications for items of TM3’s namelist inputz, which compiles all TM3
runtime parameters. Defaults apply for variables not quoted there, hence only those items
need to be specified for which the defaults can not be used. The runtime parameters of
namelist inputz are defined in the module for global variables TM3global.

The user can append his own namelist with runtime parameters for his user-defined
routines to tm3.in.

A documented example with the complete list of runtime parameters, their meaning,
and default values can be found in the doc directory. It is listed in appendix E on page
71. The following paragraph describes one of the most important runtime parameters.

The Start Mode

The integer runtime parameter istart defines the startup behaviour of TM3. It can be set
to the following values:

1 Cold start
Initial tracer fields are set to 0. They can afterwards be partially or totally over-
written in subroutine trace0. No other status fields are read.

2 Cold start with initial tracer fields
Initial tracer fields are read from file
<path out>//<jobid>//’modelstatus.b’. No other status fields are read.

3 Job chain mode
The complete model status, including tracer fields, but excluding the runtime pa-
rameters of namelist inputz, is read at program start from file
<path out>//<jobid>//’modelstatus.b’. Useful for automatic job chains in time lim-
ited queues (see also sec. 3.6.3).

10+i As above, with i = 1,2 or 3. In addition the user-routine trace1 will be called after
trace0.
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3.4.2 Meteorological Input Files and their Presumed Organization

TM3 is an off-line model that reads the necessary meteorological fields for tracer transport
from a storage medium. Normally those fields are produced by a preprocessing step,
described in appendixes A.1 and A.2.

For these input files as well as for the output files, TM3 applies a naming convention,
with ”.b” as filename suffix for unformatted files and ”.d” for formatted (ASCII) files.

The unformatted ”.b”-files read by TM3 have to be of Fortran type ”sequential unfor-
matted”. Each record is of ”TM3 type”, i.e. it is written by statements like

INTEGER :: itau, idate(6)

REAL (ki):: array(dim1,dim2[,dim3])

...

WRITE (lun) itau, idate, array

itau and idate represent two reference times for the 2- or 3d array, itau in seconds since
midnight January 1, <iyear0> of the preprocessing run, and idate as 6-dimensional integer
vector (/year, month, day, hour, minute, second/) (see section 2.6). Positioning the read
pointer inside TM3 to the requested reference time is done using idate only.

Assuming 4 bytes per REAL variable, TM3 reads in particular

Field Default file-
names for
grid res. fg

Dim Size/yr in MB
for 6-hourly
meteorology

Unit

entrainment and detrainment rates for the
convection module

eu fg.b, ed fg.b,
du fg.b, dd fg.b

3 4×366 kg/m2s

vertical diffusion coefficient k fg.b 3 385 m2/s

geopotential height z.fg 3 385 m

time-staggered surface pressure and mass
flux rates in x- and y-direction (cyclic me-
teorology)

stag ps fg.b,
stag pu fg.b,
stag pv fg.b

2, 3, 3 19+2×366 Pa, kg/s

time-staggered surface pressure and mass
flux rates in x- and y-direction (continuous
meteorology)

stagc ps fg.b,
stagc pu fg.b,
stagc pv fg.b

2, 3, 3 19+2×366 do.

massflux information for adaptive integra-
tion stepwidth mode (optional)

maxndyn fg.d,
maxndync fg.d

1 0.06 s

temperature, spec. humidity (both optio-
nal)

t fg.b, q fg.b 3, 3 2×366 K, kg/kg

The files are organized per year for cg and fg, and per month for higher resolutions, to
avoid file sizes beyond 2 GB. They must reside in a single directory with the reference
year YYYY as directory name for grid resolutions cg and fg, and with reference year and
month YYYYMM as name for higher grid resolutions.

For a ”cyclic mode”, using the meteorology of a particular year for simulations over
multiple years, airmass flux fields are read in that differer from those for the continuous
mode by the record of the last reference time of the year. Their file names are stag *.b for
cyclic meteorology instead of stagc *.b for the continuous.
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Example

$ pwd

/Net/Groups/AG_Heimann/tm3/prepro/fg/NCEP

$ ls

1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000

1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001

1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002

$ ls 2001

@job0.log eu_fg.b q_fg.b stagc_pu_fg.b

@job1_fg.log k_fg.b stag_ps_fg.b stagc_pv_fg.b

dd_fg.b maxndyn_fg.d stag_pu_fg.b t_fg.b

du_fg.b maxndync_fg.d stag_pv_fg.b z_fg.b

ed_fg.b p_fg.b stagc_ps_fg.b

The path of these annually or monthly input directories must be specified in the runtime
parameter file tm3.in, namelist variable path in p, without trailing slash. The path parts
for resolution and meteorology are appended by the program. Hence, for the preceding
example the path specification in tm3.in reads

path in p = ’/Net/Groups/AG Heimann/tm3/prepro’

3.4.3 Other Standard Input Files

plandf <gridID>.d Fraction of land in each grid cell (optional)
This file is not needed by the model code itself, but this information might be useful
in the tracer specific subroutines.
Control parameters in namelist inputz: read plandf, name plandf
Default: read plandf=.FALSE. (do not read <name plandf>)

modelstatus.b Complete model status or initial tracer fields only
The complete form is always written at a normal program end. It is needed for a
model cold start with initial tracer fields (selected with istart=2), or a continuation
run (selected with istart=3).
For a user-defined startup tracer distribution (istart=2), the user needs an initial
file modelstatus.b in the directory <path out> with the following shape (TM3 record
structure):

INTEGER :: itaur, idater(6)

REAL(kc) :: rm(im,jm,lm,ntrace), rxm(im,jm,lm,ntrace), &

rym(im,jm,lm,ntrace), rzm(im,jm,lm,ntrace)

WRITE (lun) itaur, idater, rm, rxm, rym, rzm

The date idater is checked at program startup and a warning is issued, if it does not
match the program start date idatei of namelist inputz. itaur is not checked.
For an automatic job chain (istart=3) see sec. 3.6.3 or the explanations in doc/tm3.in.
Control parameters in namelist inputz: istart, nsave, jobid, path out
Default: Do not read modelstatus.b at startup (istart=1, cold start)

modelstatus.d Restart information for job chains (optional)
This formatted file contains the next model start date idatei of the form

INTEGER :: idatei(6)

as well as user service data. See sec. 3.6.3 on page 40 or the file doc/tm3.in for more
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information.
Control parameters in namelist inputz: istart, nsave, jobid, path out.

stationlist.d Station coordinates list (optional)
For output of tracer mixing ratio timeseries at station locations. It must be a text
file with one line per station of the form

name lat lon height

Here, name is a character string with up to 12 characters, lat and lon give the
horizontal coordinates in degrees north and east, and height is counted in meters
above sea level. Alternatively, height can be set to a negative integer; then its
absolute value is being taken as the model layer index l (useful to force the station
to be in the lowest layer by setting height to -1).
Lines with the token # or ! as first non-blank character are interpreted as comments.
Control parameters in namelist inputz: name stationlist
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3.5 Program Outputs

The standard output files are written to an output directory specified by the runtime
parameter path out in namelist inputz. All file names quoted here are relative to that
path.

For most output files there exists a corresponding runtime parameter in inputz, where
a different name can be specified. This section refers to the default names. They get the
value of the runtime parameter string jobid as prefix, with an underscore appended. The
default is jobid = ’’ (nothing will be prefixed).

The naming conventions and record structure of the formatted and unformatted files,
described in sec. 3.4.2, also apply for the output files.

TM3 has a convention for those runtime parameters in inputz that control output time
intervals. If such a parameter is set to an integer greater than 0, this means ”interval in
seconds since 0:00:00 UT, January 1, iyear0”. 0 means ”no output”, -1 ”daily at 0:00”,
-2 ”monthly at 1st 0:00”, and -3 ”yearly, January 1 0:00”.

3.5.1 Output to the Standard Output Device

During runtime, TM3 prints a description of the performed actions to standard output.

Example

Reading model control parameters from "tm3.in".. ok

------------------------------------------------------------------------

Global Atmospheric Tracer Model TM3, version 3.8

Max Planck Institute for Biogeochemistry, Jena

Fine grid (fg, 560 km), NCEP meteorology

Starting job: ""

------------------------------------------------------------------------

1998-Jan-01 00:00:00 opening output files:

"output/mix.b"

1998-Jan-01 00:00:00 opening met input files

1998-Jan-01 00:00:00 opening mass conservation output files:

"output/consrv_tracer.d"

"output/consrv_air.d"

1998-Jan-01 00:00:00 opening diagnostic output files:

"output/zonal_avrg.d"

"output/mmix.b"

1998-Jan-01 00:00:00 *** starting main model loop

1998-Jan-02 00:00:00 maxc: 0.461 0.242 0.515

1998-Jan-03 00:00:00 maxc: 0.396 0.216 0.483

1998-Jan-04 00:00:00 maxc: 0.350 0.207 0.481

1998-Jan-05 00:00:00 maxc: 0.425 0.209 0.424

1998-Jan-06 00:00:00 maxc: 0.471 0.242 0.582

1998-Jan-07 00:00:00 maxc: 0.592 0.471 1.233, ncflv: 0 0 12

1998-Jan-08 00:00:00 maxc: 0.608 0.268 0.500

1998-Jan-08 00:00:00 *** main model loop finished

1998-Jan-08 00:00:00 status arrays saved to "output/modelstatus.b"

------------------------------------------------------------------------
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------------------------------------------------------------------------

------------------------------------------------------------------------

------------------------------------------------------------------------

Job "" completed normally.

End condition: finish date has been reached

Number of timesteps: 252

Cumul. number of CFL violations: 12

CPU time: 0 h 1 min 4 s

CPU per step: .25 s

CPU per tracer and year: 0 h 55 min

-------------------------------------------------------------------------

-------------------------------------------------------------------------

-------------------------------------------------------------------------

-------------------------------------------------------------------------

In this example the runtime parameter ndiagp1 was set to -1, hence the daily maximum
Courant numbers2 maxc for the three space dimensions are printed. In case CFL criterion
violations happened during the last ndiagp1 time interval, then counters for Courant num-
bers > 1 are appended for the three space dimensions (ncflv). After finishing the main
loop the CPU statistics is printed, which helps in scheduling larger jobs.

3.5.2 Tracer-Related Main Output

Mixing Ratios χ̄

By default, the model writes the simulated instantaneous tracer mixing ratio fields in
the file mix.b. The output interval in seconds is given by the runtime parameter ninst of
namelist inputz. The runtime parameter idatet defines the date after which instantaneous
output shall begin; this allows for economically writing instantaneous output after some
model spin-up period.

Tracer mixing ratios written to mix.b have the unit “kg tracer/kg air”, and are multi-
plied by the scaling factor fscale(i) (runtime parameter) for tracer i. If unformatted output
is selected in the Makefile, the record structure is ”TM3 type” (sec. 3.4.2), i.e. it can be
read as:

REAL :: mix(im,jm,lm,ntrace) ! spatial grid dim. and tracer number

INTEGER :: tau, date(6)

...

OPEN (UNIT=10, FILE=..., FORM=’UNFORMATTED’, STATUS=’OLD’)

READ (10) tau, date, mix

If netCDF output is selected in the Makefile instead, instantaneous mixing ratio fields are
written to a netCDF file mix.nc. This file contains

• longitudes, latitudes, level numbers, tau (TM3 reference time),

• the vertical hybrid coordinate coefficients a and b,

• the land fraction array,
2See footnote on p. 7.
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• the grid cell area array,

• the instantaneous mixing ratios,

• the instantaneous surface source fluxes, if any,

• the instantaneous air mass, and

• the instantaneous surface pressure.

For a detailed description see the comment header of src/tm3io mix netCDF.f90.

Station Output

If TM3 finds a station list at program startup (see sec. 3.4.3), it writes time series of tracer
mixing ratios at all locations specified in the station list. Values are linearly interpolated
in 3 dimensions between the 8 surrounding grid boxes next to the station location. The
units are the same as for the 3d field output, described in the two preceding sections.

In the default case (unformatted sequential output to file mixstn.b), a matrix with the
values for all tracers for all stations is written for each reference time. It can be read as:

REAL :: mix(stations_n,ntrace) ! number of stations, tracer number

INTEGER :: itau, idate(6)

...

OPEN (UNIT=10, FILE=..., FORM=’UNFORMATTED’, STATUS=’OLD’)

READ (10) itau, idate, mix

If the Makefile is set up to produce formatted (ASCII) output instead, instantaneous
mixing ratios are written to several files mix stationname.d, one file per station. Each
reference time corresponds to one line, with itau at column 1, the reference date idate at
columns 2–7 and the mixing ratios of all tracers starting from column 8.

Diagnostic mixing ratios for some gridpoints with known indices (i,j,l) can be written
directly in file check.d (see sec. 3.5.3).

Tracer Mass Fields

The model can also write the simulated instantaneous tracer mass fields in the file tmass.b
(default name). The output interval in seconds is given by the runtime parameter nin-
sttmass in namelist inputz. The runtime parameter idatet defines the date after which
instantaneous output begins. As for the mixing ratios, this allows for economically writ-
ing instantaneous output after some model spin-up period.

Tracer mixing mass written to tmass.b has the unit “kg tracer”. The record structure
is ”TM3 type” as for the mixing ratios, and can be read as:

REAL :: tmass(im,jm,lm,ntrace) ! spatial grid dim. and tracer number

INTEGER :: itau, idate(6)

...

OPEN (UNIT=10, FILE=..., FORM=’UNFORMATTED’, STATUS=’OLD’)

READ (10) itau, idate, tmass
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3.5.3 Diagnostic Output

The tracer model writes several ASCII and binary files with diagnostic information:

mmix.b Time-averaged tracer mixing ratio 3d fields (switched on by default),

zonal avrg.d Tables with zonally and temporally averaged tracer mixing ratios (switched
on by default),

consrv tracer.d Tables with conservation statistics of the tracers, and zonally averaged
tracer mixing ratios (switched on by default),

consrv air.d Tables with conservation statistics of the air mass (switched on by default),

check.d Mixing ratio timeseries at a set of check locations (switched off by default), and

debug.d Detailed protocol of the model run (switched off by default).

Time-Averaged Mixing Ratios

The model computes time averaged tracer mixing ratio fields by sampling the tracer masses
every ndiag seconds (runtime parameter), starting at idatem (runtime parameter). These
averaged fields are written in a file mmix.b by default. The time averaging interval can be
selected by the runtime parameter ndiagp2.

As with the instantaneous mixing ratios, mmix.b contains tracer fields with unit “kg
tracer/kg air”, multiplied by the scaling factor fscale(i) (runtime parameter) for tracer i.

This file has the same structure as the instantaneous mixing ratio file - see above. Note
that in this case the time/date stamp recorded with each field is the time/date when the
field is written, i.e. the first time instant after the averaging time interval. E.g. in the
case of monthly averaged fields, the recorded time/date stamp shows the beginning of the
month immediately after the averaging period.

Zonally and Temporally Averaged Tracer Mixing Ratios

The zonally averaged tracer mixing ratios are written in a set of ASCII tables with default
filename zonal avrg.d. The output interval is controlled by the value of runtime parameter
ndiagp2.

Tracer Conservation Statistics

The file consrv tracer.d contains ASCII tables of various conservation statistics for each
tracer. The instantaneous tracer masses and their changes due to the individual transport
and source/sink processes are listed here, for each latitude interval of the model grid, for
each hemisphere and for the entire globe. Furthermore, for each tracer a simple latitude-
height table of the zonally averaged tracer mixing ratio is written, with units “kg tracer/kg
air” and multiplied by the factor fscale(i) (runtime parameter) for tracer i. The runtime
parameter ndiagp1 selects the output and averaging time intervals for these tables.
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Air Mass Conservation Statistics

The conservation statistics of the air mass is written in a set of ASCII tables similar to
those for the individual tracers. The default filename is consrv air.d. The output interval
is also controlled by the value of runtime parameter ndiagp1. These tables are determined
directly from the input airmass flux fields. They can be inspected to check the conservation
of air mass.

Mixing Ratio Timeseries at Check Locations

Up to 10 check locations can be defined with the runtime parameter array indc(3,10),
which is included in namelist inputz. The triplet indc(:,k) denotes the (i, j, l) grid indices
of check location k, where k = 1,noindc (runtime parameter). Depending on the value of
the runtime parameter ncheck, time series of the mixing ratios of all tracers are written in
file check.d. The mixing ratios have the unit “kg tracer/kg air”, multiplied by the factor
fscale(i) (runtime parameter) for tracer i.

Debugging Output

If the runtime parameter debug is set to .TRUE., a detailed protocol of all tasks performed
by the model is written in file debug.d. This option is intended primarily for the debugging
of the transport model code itself and of little use during normal operation. The amount
of information written in debug.d is very large. Therefore this switch should be used only
for short test runs of length less than a few days.

3.5.4 Other Output

tm3.in complete At startup the complete list of all runtime parameters is written in a
file tm3.in complete, including those not specified in tm3.in. If such a file already
exists it will be overwritten.

ps.b An instantaneous surface pressure field for possible vertical interpolation of the mix-
ing ratio output to pressure or sigma levels in a postprocessing stage. This output is
triggered at the same time instants as the output of the instantaneous mixing ratio
fields, and consistent with the instantaneous mass and mixing ratio fields.
The output is controlled by the runtime parameter cwrtps and switched off by de-
fault.

modelstatus.b When finishing a run normally, TM3 writes its complete status, excluding
the runtime parameters, in a file modelstatus.b. The tracer fields and slopes after
the last integration time step are also contained therein. If a file of that name exists,
it will be overwritten. In conjunction with the job chain mode (istart=3, described
in sec. 3.6.3), this file can be used as input for continuation runs, or, in its abridged
form, for ”cold starts with initial tracer distributions (istart=2)”. The file structure
is described in sec. 3.4.3.

modelstatus.d If the user has selected the job chain mode with istart=3, TM3 writes
an output file modelstatus.d, after the runtime parameter time nsave has passed by
without reaching the model end date idatee. Its existence indicates the necessity
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of a continuation run. After reaching the end date idatee this file is deleted. See
sec. 3.4.3 and sec. 3.6.3 for more details.

3.6 Programming Hints

3.6.1 Useful Auxiliary Subroutines

TM3 comes with several subroutines helping the user in fulfilling his tasks:

Module File Description

aux flux aux flux.f90 subroutines for handling surface source
fluxes

aux grid aux grid.f90 auxiliary routines for grid calculations
tm3io schedule tm3io schedule.f90 subroutines for calculation/output of mean

mixing ratios measured at station locations
according to a given time schedule

time and date time and date.f90 routines for date/time/calendar calcula-
tions

In addition, the function get free lun() in module tm3io prepro provides a free logical I/O
unit number at run time.

For details see the description in the source files.

3.6.2 Multiprocessing with TM3

Since release 3.6R2, TM3 features symmetric multiprocessing with OpenMP 1.0 (see
www.openmp.org), especially useful for higher resolutions.
Remark 1 With TM3 release 3.8, the computational work is divided among the tracers.
Hence the speed gain is largest if either the number of tracers n is a multiple of the number
of processors p, or the fraction n/p is large compared to 1.
Remark 2 If running TM3 in parallel, don’t change parallelized TM3 code parts unless
having understood how the related OpenMP constructs work. The same applies for all data
involved.

Setting up a Multiprocessing Executable

The OpenMP programming interface includes source code constructs in the shape of spe-
cial Fortran comments, library calls and environment variables. Commonly, OpenMP
parallelized source code is written in a manner that retains the capability of compiling
and running the code on a single CPU, without any additional precautions.

Setting up a multiprocessing executable is platform dependent. Usually it is done
by quoting special compiler options, or by calling a special compiler. For the platforms
supported by the Makefile, this is ready-for-use. Type ”make” without targets to see what
is implemented.

Running a parallel TM3

Generally, at run time an OpenMP-instructed executable accesses environment variables
that influence the behaviour of its parallel regions. The user needs to set only one,
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OMP NUM THREADS, which specifies the number of threads (CPUs) to be used. Un-
der a UNIX shell, the command export OMP NUM THREADS=4, e.g., instructs the TM3
executable to use 4 processors. The default is platform dependent.
At start-up with OMP NUM THREADS=4, TM3 gives a note about multiprocessing
alike:

-------------------------------------------------------

Global Atmospheric Tracer Model TM3, release 3.8

Max Planck Institute for Biogeochemistry, Jena

Grid version: fine grid, NCEP meteorology

Multiprocessing with 4 threads

...

-------------------------------------------------------

TM3 presumes to have the specified number of CPUs entirely for itself. If this is not the
case, speed degradations are likely (the loop schedules are set to ”static”). The achievable
speedup depends on platform, compiler, TM3 setup parameters and the user code. Test
results with empty user-routines are shown in the figure below.
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The Influence of Serial Program Parts

Running TM3 on more than one CPU has effect only on those program parts that have
been parallelized. With more processors, the parts that are executed serially become a
performance bottleneck.

Example In serial mode, a program executes over 20 seconds in serial program regions
and 80 seconds in program regions that can also be run in parallel. I.e., 20 % of the
program’s execution time is not parallelized. When run on 4 processors the total execution
time is 40 s, assuming that the parallel parts are accelerated by a factor of 4. But 50 %
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of the execution time is now spent in the small part that is not parallelized. 3 CPUs are
idle at half of the total execution time.
To achieve a reasonable speedup even with few processors, it was necessary to parallelize
large parts of TM3. If one has serially programmed, runtime expensive user routines,
then the total speedup will be seriously restricted. The only way to achieve higher model
speedup is parallelizing these parts as well.

3.6.3 Job Chains

Job chains, i.e. a (repeated) cycle of computation and finishing with status saving, are
explicitly supported by TM3, making the work with time-limited job queueing systems
easier. The controlling runtime parameters are istart and nsave. istart needs to be set to 3
for job chains.

In TM3, the existence of a file <path out>//<jobid>//modelstatus.d is used as indica-
tor if this is a continuation run within a job chain or the start of it. The user can employ
this as end condition in a self-calling job script.

IF this file does NOT EXIST, then the start date is that of tm3.in. Initial tracer fields
are read from the file <path out>//<jobid>/modelstatus.b, if existent, or otherwise set to
0.

IF the file EXISTS, then the namelist inputz is first read from file tm3.in. Afterwards
the start date idatei is overwritten by the date stored in
<path out>//<jobid>//modelstatus.d, saved by a previous model run at time intervals of
<nsave> seconds, counted from 01-Jan-<iyear0> 00:00:00.

Initial tracer fields are read from file <path out>//<jobid>//modelstatus.b, if existent.
That file will always be written after a model run, independently of what istart is set to.

The continuation parameter file <path out>//<jobid>//modelstatus.d contains the
start date in the form YYYY MM DD hh mm ss as first line. The last line contains all
prepro directory identifiers needed by the next continuation cycle, e.g. 1999 2000 2001
or 199911 199912 200001. This is useful for getting prepro files out of an archive by shell
script commands, like shown in the jobscript example of sec. 3.6.4. After reaching the end
date idatee, TM3 deletes this file.

Furthermore, two TM3global variables support the initialization of user-defined sub-
routines with istart=3:

jobcont is set to .TRUE. at program startup if a job continuation is present, i.e., if mod-
elstatus.d exists, and to .FALSE. otherwise,

newsrun is set to .TRUE. at program startup and to .FALSE. after the first timestep.

For saving and restoring user data for the next job cycle, the subroutines save userstatus
and restore userstatus in module userroutines can be utilized. They are called instead of
trace0, trace1 and tracee in case TM3 detects a job continuation. The user can do the
saving in save userstatus by contructs like

SUBROUTINE save_userstatus

IMPLICIT NONE

INTEGER :: lun

!--- job chain: save user fields
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lun = get_free_lun() ! get a free unit number

OPEN (UNIT=lun, FILE=TRIM(path_out)//’userfields.b’, FORM=’UNFORMATTED’, &

STATUS=’REPLACE’)

WRITE (lun) <the user’s data>

CLOSE (lun)

END SUBROUTINE save_userstatusEND IF

and read the fields accordingly in subroutine restore userstatus.

3.6.4 Jobscript Example

The following example shows work-alikes of the TM3 features

• parallel processing with 4 processors,

• automatic job chaining with istart=3,

• using the service information of modelstatus.d to copy only the required meteo files
out of an archive.

Platform-dependent are the Korn shell syntax and the usage of a NQS job queueing envi-
ronment.

#@$-s /bin/ksh

#@$-c 4 # number of cpus, default is 1

#@$-lM 4GB # memory limit per request

#@$-lT 3:45:00 # time limit per request

#@$-r mylabel # job label

#@$-eo # send stderr to stdout

#

cd "$QSUB_WORKDIR"

#--- the system provides a very fast file system,

#--- where later the prepro files are copied to

ln -s $TMPDIR input

#--- set OpenMP environment

export OMP_NUM_THREADS=4

#--- get the proper prepro files from an archive

if [ ! -f output/modelstatus.d ]; then

# initial run

dirlist="199901 199902 199903"

else

# continuation run: get the necessary directory names

# from the last line of the service file ’modelstatus.d’

dirlist=‘tail -1 output/modelstatus.d‘

fi

for dir in $dirlist; do

for ppfile in eu ed du dd stag_ps ... ; do

[mf]cp my_storagedir/${dir}/${ppfile}_xfg.b input

done

done
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...

#--- Set up the TM3 runtime parameter list.

#--- For parameters not specified the defaults are ok.

#--- Fortran namelist I/O syntax is required here.

cat > tm3.in << EOD

&inputz

!

! 1st Most frequently user-changed parameters

! -------------------------------------------

!

path_in_p = ’input/’ ! path to input prepro (met.) data

path_in_s = ’input/’ ! path to input source data

path_out = ’output/’ ! path to output

idatei = 1999 1 1 0 0 0 ! for start of model run

idatee = 2000 12 31 18 0 0 ! for end of model run

...

!

! 2nd Other Adjustable Parameters

! -------------------------------

!

istart = 3 ! do job chaining

nsave = 7257600 ! 3x28 days, in seconds

...

/

EOD

#--- Start TM3.

#--- Output is already redirected by NQS.

./tm3

#--- some cleanup

rm -r input

rm tm3.in

#--- If the job hasn’t come to an end, send this

#--- script again to the queueing system.

#--- Leave an opportunity to kill this job gracefully,

#--- in case something goes wrong.

if [ -f output/modelstatus.d ]; then

cat < /dev/null > kill_me_now

sleep 20

rm kill_me_now

qsub <the_name_of_this_script>

else

(send a mail, e.g.)

fi
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3.6. PROGRAMMING HINTS

3.6.5 Migration Guidelines for Prior TM3 Releases

TM3 3.7 and older

1. Since release 3.8, the TM3 source code is written in Fortran 95 free format. The
Makefile accesses the files named userconstants.f90 and userroutines.f90, but for fixed
format code this could be changed in the Makefile to the suffix ”.f”.
Programming in free format is a lot more convenient, hence the recommendation
is to convert fixed format user code to free format. There exist many converters
around. In case of doubt the user can contact the TM3 support (see appendix G).

2. Compared to earlier releases, some files and modules are new or have been renamed.
E.g., the Fortran module containing the most important physical fields like tracer
masses etc. is now tm3global, rather than variables or tm3variables. Source code files
have the name of the module contained within, wherever possible.

3. The module encapsulation has been advanced. Previously global program entities
may now require an USE statement for the module defining that entity.

4. A log of changes can be found in doc/CHANGES.

TM3 3.8

To get the sources compiled, three empty subroutines trace1, save userstatus and re-
store userstatus need to be added to the module userroutines. Furthermore, the format
of some outputs was slightly changed - see the file doc/CHANGES.

3.6.6 CPU expense

The CPU times of TM3 runs depend largely on platform, setup parameters (e.g. number
of tracers, grid resolution, number of used processors, the user-routines, compiler options)
and runtime parameters (e.g. time steps, whether limits is set or not, usage of variable
timesteps). TM3 version 3.8a is optimized to run efficiently on the vector computer NEC
SX-6 at the Deutsches Klimarechenzentrum Hamburg, and effectivity tests yield the result
that an effective application on superscalar architectures requires code adjustments, in
particular in the advection module.

The following table shows CPU times T for one year integration period with a con-
servative setup of TM3 release 3.8a for one tracer, ERA-15 meteorology and empty user-
routines, using 1 CPU on the NEC SX-6 at the Deutsches Klimarechenzentrum Hamburg
and on a standard PC:

platform \ grid res. fg vfg xfg
NEC SX-6 9 min 2 h 50 min 12 h

PC AMD Athlon 1.3 GHz 1h 30 min 68 h .
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Appendix A

Meteorological Data Preprocessing

A.1 Airmass Fluxes

TM3 requires as input fields the horizontal airmass fluxes crossing the gridbox boundaries
during each meteorological time step. These fluxes are calculated from fields of geopo-
tential heights, horizontal wind velocities and surface pressure. The data processing is
performed in three steps described in the following subsections.

A.1.1 Interpolation/Integration of the Horizontal Mass Fluxes over the
Grid Box Sides

For each instant of time of the original meteorological analyses the horizontal massfluxes
are obtained by vertical-meridional, respectively vertical-zonal integration of ρ�uh using
trapezoidal integration formulae (program MFLUX).

A.1.2 Ensuring Mass Conservation

After interpolating the horizontal massflux fields and surface pressure the resulting fields
are not exactly mass conserving any more. To restore this fundamental property a correc-
tion procedure is applied as follows.

The conservation of mass requires that the divergence of the airmass flux density,
vertically integrated, equals the surface pressure tendency:

∂ps

∂t
= g

∫ ztop

zsurf

∇ · ρ�uhdz (A.1)

This is derived from combining the continuity equation with the hydrostatic approxi-
mation. Denoting by �F the vertically integrated airmass flux density, equation (A.1) is
reexpressed as

1
g

∂ps

∂t
= ∇ · �F . (A.2)

We split
�F = �Fobs + �Fcorr (A.3)

where �Fobs are the airmass flux densities as determined from the analyses and �Fcorr rep-
resents a correction to be determined in order to fulfil equation (A.2).
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A.2. SUB-GRIDSCALE TRANSPORT INFORMATION

For convenience, we consider a time interval t ∈ [0,∆t]. To compute a correction for
�F only, we have to assume ∂ps/∂t as known, in fact we define

∂ps

∂t

∣∣∣∣
t=∆t/2

=
ps(∆t) − ps(0)

∆t
.

To be consistent, the airmass flux densities �F are also considered from now at t = ∆t/2
by �Fobs(∆t/2) =

(
�Fobs(∆t) + �Fobs(0)

)
/2 (time staggering).

Hence the correction flux equation becomes

∇ · �Fcorr =
1
g

ps(∆t) − ps(0)
∆t

−∇ · �Fobs .

This is only the divergence of �Fcorr. The rotational part of �Fcorr is not defined by this
and set to zero in order to obtain minimal corrections. We make a potential ansatz

�Fcorr = ∇Θ (A.4)

and obtain a Poisson equation for the 2d field Θ:

∆Θ =
1
g

ps(∆t) − ps(0)
∆t

−∇ · �Fobs , (A.5)

which has to be solved for on a horizontal grid spanning the entire globe. The boundary
conditions are that the meridional component of the gradient of Θ vanish at the poles and
that Θ be periodic in the zonal direction.

The discrete version of equation (A.5) is solved efficiently using two-dimensional Fourier
transforms. This yields the vertically summed correction airmass flux field which is sub-
sequently distributed in vertical direction proportionally to the absolute values of the x-
and y-components of �Fobs.

A.1.3 Airmass Flux processing Programs

The three preprocessing steps described above are performed using the following programs:

MFLUX Interpolation/integration of airmass fluxes
PASCHA Time staggering and adjustment for conservation of mass
SUBSCALE Interpolation of non-flux fields

Note that, for historical reasons, in SUBSCALE the direction of the vertical coordinate
grid is reversed compared to TM3, i.e. the vertical levels start at the top of the atmosphere
( l = 1) and end at the surface ( l = lsurf ).

A.2 Sub-Gridscale Transport Information

TM3 requires as input global fields the vertical diffusion coefficient and the parameters for
the cumulus cloud transport (ent- and detrainment rates into up- and downdraft). These
are calculated in the preprocessing stage from meteorological analyses of geopotential,
surface pressure, horizontal wind, temperature and specific humidity. Furthermore surface
fluxes of latent heat are needed.

All sub-gridscale transport parameters are calculated in every grid column of the orig-
inal grid of the meteorological analyses. Subsequently the parameters are averaged onto
the coarser grid of TM3.
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APPENDIX A. METEOROLOGICAL DATA PREPROCESSING

A.2.1 Vertical Diffusion Coefficients

The stability dependent vertical diffusion coefficients are calculated using the formulae
from [Louis, 1979] as implemented in the ECMWF operational model. The diffusion co-
efficient is given by

Kv = l2h

∣∣∣∣∂u

∂z

∣∣∣∣ fh(Ri) (A.6)

where Ri is the Richardson number. It is calculated at the layer boundary k + 1/2 from
the analysis variables on the adjacent level centers

Rik+1/2 = g(zk − zk+1)
cpd(Tk − Tk+1) + g(zk − zk+1)

|�u|2k+1/2cpdTk+1/2
(A.7)

lh is a mixing length which is calculated as a function of height z above ground from

lh =
kz

1 + kz
λh

(A.8)

The stability function fh(Ri) is computed according to the sign of Ri. In the stable case
(Ri > 0):

fh(Ri) =
1

1 + 3bRi
√

1 + dRi
(A.9)

In the unstable case (Ri <= 0):

fh(Ri) = 1 − 3bRi

1 + G(Ri)
(A.10)

and the function G(Ri) is given by

G(Ri) = 3bCl2h

√
−Ri

z

{
1

∆z

[(
1 + ∆z

z

)1/3 − 1
]}3

(A.11)

∆z is the distance between the adjacent model layer centers.
Numerical values for the constants appearing in equations (A.8)-(A.11) are given in

the following table:

Parameter Value
b 5.
C 5.
d 5.
k 0.4

cpd 1005.46 J kg−1 K−1

g 9.80665 m s−2

λh 438.18 m
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A.2. SUB-GRIDSCALE TRANSPORT INFORMATION

A.2.2 Cloud Transport Parameter Determination

The cloud transport parameters (ent- and detrainment rates into up- resp. downdraft) are
calculated according to the scheme described in [Tiedke, 1989]. This scheme calculates
the entrainment and detrainment rates in the sequence of steps described in the following
subsections.

The scheme detects and parameterizes three types of convective clouds: deep or pene-
trative, shallow and mid-level convective clouds. Their presence in a model grid column is
diagnosed by different conditions, and each has different cloud parameters (see table A.2).

The physical constants employed are listed in table A.1. All air properties of the
environment are defined on the model level boundaries.

Parameter Symbol Value Units
Gas constant of dry air Rd 287.05 J kg−1 K−1

Gas constant of water vapour Rv 461.51 J kg−1 K−1

ε Rd/Rv

Cp 1005.46 J kg−1 K−1

Lv 2.5008 106 J kg−1

Table A.1: Physical constants used for the cloud calculations

Cloudtype
D + ML shallow

εu 10−4 3 10−4 m−1

δu 10−4 3 10−4 m−1

εd 2 10−4 m−1

δd 2 10−4 m−1

β 0.0 0.15
γ 0.3
α 0.2
kp 2 10−3 s−1

zmin 1500 m

Table A.2: Values of the parameters in the cloud parametrization, see text. D + ML:
“deep and mid level”.

Detection of cloud base height

The base of a potential convective cloud is determined by lifting surface air dry adiabat-
ically until saturation occurs. “Surface air” thereby is defined as an air parcel with the
physical properties of the surface layer except for a tunable humidity, which can be selected
between grid average humidity (parameter α = 0) and 100% saturation (parameter α = 1).
The operational value is α = 0.2, which was determined empirically by comparisons with
cloud cover and height extent of the ERA-15 ECMWF analyses.
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APPENDIX A. METEOROLOGICAL DATA PREPROCESSING

During the ascent, the temperature of the air parcel is modified from one layer bound-
ary to the next:

Tl = Tl+1 − g(zl − zl+1)/Cp (A.12)

while the moisture remains unchanged:

ql = ql+1 (A.13)

As soon as saturation is detected (q > qsat) condensation is computed by solving the
implicit equation for the temperature Ts of the air parcel at saturation:

Cp(T − Ts) = L(q − qsat(Ts, p)) (A.14)

where T, q are temperature and moisture of the air parcel prior to condensation. The
solution of (A.14) is obtained iteratively by Newton’s method.

The buoyancy of the air parcel with respect to the environment is checked in terms of
their virtual temperature, defined as:

Tv = T (1 + q
1 − ε

ε
) (A.15)

If the parcel is buoyant, a cloud is detected, else there is no convective or shallow cloud
in that particular grid column.

Determination of the updraft air flux at the cloud base

If a cloud base exists, the vertically integrated horizontal water vapour convergence below
the cloud is computed:

CONV = −
∫ p=pcb

p=ps

∇ · ρvqdp (A.16)

where pcb denotes the pressure of the cloud base. If this convergence is positive, a pene-
trative or a midlevel convective cloud exists, else a shallow convection cloud exists.

If a cloud is detected, the water vapour flux at the base of the cloud is determined
by adding to the large scale water vapour convergence below the cloud the evaporation
from the surface. Since also the downdraft (if existing) delivers moisture to the below
cloud air volume, this contribution is included in an iterative way by computing firstly
the cloud properties without the contribution from the downdraft. In a second iteration
the moisture contribution from the downdraft is included. The airmass flux at the base of
the cloud is then determined as the ratio between the water vapour flux at the base of the
cloud and the saturation specific humidity at the temperature of the base of the cloud.

Finally, detrainment rates into the updraft below the cloud base are set to zero and
entrainment rates below the cloud are set proportional to the below cloud layer thicknesses,
such that the sum of the below cloud entrainment rates equal the massflux at the base of
the cloud.

Computation of cloud properties in up- and downdraft

Cloud temperature, moisture and liquid water content are initialized with values at the
base of the cloud. Subsequently the air parcel ascent is followed by solving the equations
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A.2. SUB-GRIDSCALE TRANSPORT INFORMATION

(8) in [Tiedke, 1989] for the updraft mass flux Fu, dry static energy su = CpTu + gz,
moisture qu and liquid water content lu:

∂Fu

∂z
= Eu − Du (A.17)

∂Fusu

∂z
= Eus̄ − Dusu + Lρ̄cu (A.18)

∂Fuqu

∂z
= Euq̄ − Duqu − ρ̄cu (A.19)

∂Fulu
∂z

= −Dulu + ρ̄cu − ρ̄Gp (A.20)

where cu is the net condensation produced in the updraft. Overbars indicate environmental
values. Inserting equation (A.17) into the equations for temperature, moisture and liquid
water content yields:

Fu
∂su

∂z
= Eu(s̄ − su) + Lρ̄cu (A.21)

Fu
∂qu

∂z
= Eu(q̄ − qu) − ρ̄cu (A.22)

Fu
∂lu
∂z

= −Eulu + ρ̄cu − ρ̄Gp (A.23)

which are solved in discretized form going from one layer boundary to the next above.
Similar equations are used for the downdraft computation (equations 17 in [Tiedke, 1989]).
In each cloud layer the following sequence is computed:

1. Air ent- and detrainment rates are set proportional to the updraft massflux with
constants εu and δu as given in table A.2:

Eu = εuFu∆z (A.24)

and
Du = δuFu∆z (A.25)

where Fu denotes the updraft massflux at the lower boundary of the layer and ∆z
the layer thickness (in m).

2. Cloud air parcel temperature, moisture and liquid water content are first adiabati-
cally lifted and then adjusted by the entrainment of environmental air. This results
in preliminary values:

Tl = Tl+1 − g∆z/Cp + εu∆z(T̄l − Tl+1) (A.26)

ql = ql+1 + εu∆z(q̄l − ql+1) (A.27)

ll = ll+1 + εu∆z(−ql+1) (A.28)

3. Condensation is computed and the parcel temperature increased to force the cloud
water vapour at saturation. This is performed with the same iteration procedure as
described above (equation (A.14)). The condensate, q − qsat(Ts, p), is added to the
liquid water content of the cloud air parcel.
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APPENDIX A. METEOROLOGICAL DATA PREPROCESSING

4. If the cloud layer is higher than zm above the cloud base, precipitation rate out of
the layer is computed from

Gp = kplFu (A.29)

and the liquid water content adjusted using an implicit formulation in order to
prevent negative liquid water values (superscript +, resp. - indicate values after,
resp. before adjustment):

l+ = l− − l−
ρ̄Gp

1 + ρ̄Gp
(A.30)

5. Check for level of free sinking (LFS) where the cumulus downdraft starts. The LFS
is assumed to be the highest model level where a mixuter of equal parts of cloud
air and environmental air (at wet bulb temperature) becomes negative byoyant with
trespect to environmental air.

6. Compute downdraft if an LFS is detected and and only if there is precipitation (i.e.
above zmin). This is performed similar to the calculations described above with an
initial downdraft mass flux at the LFS of γFu,cb. Ent- and detrainment rates are
defined by the constants εd and δd. The downdraft air parcel is forced to remain at
saturation by evaporation of liquid water. Below the cloud base, the downdraft air
mass flux is detrained in all layers proportional to the layer thicknesses.

7. The ascent of the updraft cloud parcel is continued above the LFS if the air parcel
is still buoyant.

If the cloud parcel is no longer buoyant then the remaining airmass flux is detrained in
the two layers above the cloud with a fraciton of β in the first and (1 − β) in the second
layer to simulate the effect of cloud overshoots.

A.2.3 Programs

The parameters of the sub-gridscale transport are calculated in the following programs
and subroutines:

SUBSCALE main program
louis calculates vertical diffusion coefficients
cloud calculates cloud ent- and detrainment rates

Note that, for historical reasons, within this program the direction of the vertical coordinate
grid is reversed compared to TM3, i.e. the vertical levels start at the top of the atmosphere
(l = 1) and end at the surface (l = lsurf )!
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Appendix B

Horizontal Grid Layouts

Inside the plots, the indices in x- and y-direction are for those grid boxes that have the
next left/lowest bold reference line as left/lower boundary. See the next pages.

The auxiliary subroutines coords2indices and indices2coords in the Fortran module
aux grid can be used for converting TM3 grid indices to real-world coordinates and vice
versa.
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i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦]
1 175.00 (-90.00) 10 -95.00 -23.48 19 -5.00 46.96 28 85.00
2 -175.00 -86.09 11 -85.00 -15.65 20 5.00 54.78 29 95.00
3 -165.00 -78.26 12 -75.00 -7.83 21 15.00 62.61 30 105.00
4 -155.00 -70.43 13 -65.00 0.00 22 25.00 70.43 31 115.00
5 -145.00 -62.61 14 -55.00 7.83 23 35.00 78.26 32 125.00
6 -135.00 -54.78 15 -45.00 15.65 24 45.00 86.09 33 135.00
7 -125.00 -46.96 16 -35.00 23.48 25 55.00 34 145.00
8 -115.00 -39.13 17 -25.00 31.30 26 65.00 35 155.00
9 -105.00 -31.30 18 -15.00 39.13 27 75.00 36 165.00

Table B.1: Western/southern grid box boundaries for the TM3 cg grid (36x24L9).
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i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦]
1 177.50 (-90.00) 19 -92.50 -22.98 37 -2.50 45.96 55 87.50
2 -177.50 -88.09 20 -87.50 -19.15 38 2.50 49.79 56 92.50
3 -172.50 -84.26 21 -82.50 -15.32 39 7.50 53.62 57 97.50
4 -167.50 -80.43 22 -77.50 -11.49 40 12.50 57.45 58 102.50
5 -162.50 -76.60 23 -72.50 -7.66 41 17.50 61.28 59 107.50
6 -157.50 -72.77 24 -67.50 -3.83 42 22.50 65.11 60 112.50
7 -152.50 -68.94 25 -62.50 0.00 43 27.50 68.94 61 117.50
8 -147.50 -65.11 26 -57.50 3.83 44 32.50 72.77 62 122.50
9 -142.50 -61.28 27 -52.50 7.66 45 37.50 76.60 63 127.50

10 -137.50 -57.45 28 -47.50 11.49 46 42.50 80.43 64 132.50
11 -132.50 -53.62 29 -42.50 15.32 47 47.50 84.26 65 137.50
12 -127.50 -49.79 30 -37.50 19.15 48 52.50 88.09 66 142.50
13 -122.50 -45.96 31 -32.50 22.98 49 57.50 67 147.50
14 -117.50 -42.13 32 -27.50 26.81 50 62.50 68 152.50
15 -112.50 -38.30 33 -22.50 30.64 51 67.50 69 157.50
16 -107.50 -34.47 34 -17.50 34.47 52 72.50 70 162.50
17 -102.50 -30.64 35 -12.50 38.30 53 77.50 71 167.50
18 -97.50 -26.81 36 -7.50 42.13 54 82.50 72 172.50

Table B.2: Western/southern grid box boundaries for the TM3 fg grid (72x48L19).
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i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦] i/j lon [◦]

1 179.06 (-90.00) 49 -90.94 0.00 97 -0.94 145 89.06
2 -179.06 -89.05 50 -89.06 1.89 98 0.94 146 90.94
3 -177.19 -87.16 51 -87.19 3.79 99 2.81 147 92.81
4 -175.31 -85.26 52 -85.31 5.68 100 4.69 148 94.69
5 -173.44 -83.37 53 -83.44 7.58 101 6.56 149 96.56
6 -171.56 -81.47 54 -81.56 9.47 102 8.44 150 98.44
7 -169.69 -79.58 55 -79.69 11.37 103 10.31 151 100.31
8 -167.81 -77.68 56 -77.81 13.26 104 12.19 152 102.19
9 -165.94 -75.79 57 -75.94 15.16 105 14.06 153 104.06

10 -164.06 -73.89 58 -74.06 17.05 106 15.94 154 105.94
11 -162.19 -72.00 59 -72.19 18.95 107 17.81 155 107.81
12 -160.31 -70.11 60 -70.31 20.84 108 19.69 156 109.69
13 -158.44 -68.21 61 -68.44 22.74 109 21.56 157 111.56
14 -156.56 -66.32 62 -66.56 24.63 110 23.44 158 113.44
15 -154.69 -64.42 63 -64.69 26.53 111 25.31 159 115.31
16 -152.81 -62.53 64 -62.81 28.42 112 27.19 160 117.19
17 -150.94 -60.63 65 -60.94 30.32 113 29.06 161 119.06
18 -149.06 -58.74 66 -59.06 32.21 114 30.94 162 120.94
19 -147.19 -56.84 67 -57.19 34.11 115 32.81 163 122.81
20 -145.31 -54.95 68 -55.31 36.00 116 34.69 164 124.69
21 -143.44 -53.05 69 -53.44 37.89 117 36.56 165 126.56
22 -141.56 -51.16 70 -51.56 39.79 118 38.44 166 128.44
23 -139.69 -49.26 71 -49.69 41.68 119 40.31 167 130.31
24 -137.81 -47.37 72 -47.81 43.58 120 42.19 168 132.19
25 -135.94 -45.47 73 -45.94 45.47 121 44.06 169 134.06
26 -134.06 -43.58 74 -44.06 47.37 122 45.94 170 135.94
27 -132.19 -41.68 75 -42.19 49.26 123 47.81 171 137.81
28 -130.31 -39.79 76 -40.31 51.16 124 49.69 172 139.69
29 -128.44 -37.89 77 -38.44 53.05 125 51.56 173 141.56
30 -126.56 -36.00 78 -36.56 54.95 126 53.44 174 143.44
31 -124.69 -34.11 79 -34.69 56.84 127 55.31 175 145.31
32 -122.81 -32.21 80 -32.81 58.74 128 57.19 176 147.19
33 -120.94 -30.32 81 -30.94 60.63 129 59.06 177 149.06
34 -119.06 -28.42 82 -29.06 62.53 130 60.94 178 150.94
35 -117.19 -26.53 83 -27.19 64.42 131 62.81 179 152.81
36 -115.31 -24.63 84 -25.31 66.32 132 64.69 180 154.69
37 -113.44 -22.74 85 -23.44 68.21 133 66.56 181 156.56
38 -111.56 -20.84 86 -21.56 70.11 134 68.44 182 158.44
39 -109.69 -18.95 87 -19.69 72.00 135 70.31 183 160.31
40 -107.81 -17.05 88 -17.81 73.89 136 72.19 184 162.19
41 -105.94 -15.16 89 -15.94 75.79 137 74.06 185 164.06
42 -104.06 -13.26 90 -14.06 77.68 138 75.94 186 165.94
43 -102.19 -11.37 91 -12.19 79.58 139 77.81 187 167.81
44 -100.31 -9.47 92 -10.31 81.47 140 79.69 188 169.69
45 -98.44 -7.58 93 -8.44 83.37 141 81.56 189 171.56
46 -96.56 -5.68 94 -6.56 85.26 142 83.44 190 173.44
47 -94.69 -3.79 95 -4.69 87.16 143 85.31 191 175.31
48 -92.81 -1.89 96 -2.81 89.05 144 87.19 192 177.19

Table B.3: Western/southern grid box boundaries for the TM3 vfg grid (192x96L31/L28).
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i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦]

1 179.44 (-90.00) 81 -90.56 -0.56 161 -0.56 89.44 241 89.44
2 -179.44 -89.44 82 -89.44 0.56 162 0.56 242 90.56
3 -178.31 -88.31 83 -88.31 1.69 163 1.69 243 91.69
4 -177.19 -87.19 84 -87.19 2.81 164 2.81 244 92.81
5 -176.06 -86.06 85 -86.06 3.94 165 3.94 245 93.94
6 -174.94 -84.94 86 -84.94 5.06 166 5.06 246 95.06
7 -173.81 -83.81 87 -83.81 6.19 167 6.19 247 96.19
8 -172.69 -82.69 88 -82.69 7.31 168 7.31 248 97.31
9 -171.56 -81.56 89 -81.56 8.44 169 8.44 249 98.44

10 -170.44 -80.44 90 -80.44 9.56 170 9.56 250 99.56
11 -169.31 -79.31 91 -79.31 10.69 171 10.69 251 100.69
12 -168.19 -78.19 92 -78.19 11.81 172 11.81 252 101.81
13 -167.06 -77.06 93 -77.06 12.94 173 12.94 253 102.94
14 -165.94 -75.94 94 -75.94 14.06 174 14.06 254 104.06
15 -164.81 -74.81 95 -74.81 15.19 175 15.19 255 105.19
16 -163.69 -73.69 96 -73.69 16.31 176 16.31 256 106.31
17 -162.56 -72.56 97 -72.56 17.44 177 17.44 257 107.44
18 -161.44 -71.44 98 -71.44 18.56 178 18.56 258 108.56
19 -160.31 -70.31 99 -70.31 19.69 179 19.69 259 109.69
20 -159.19 -69.19 100 -69.19 20.81 180 20.81 260 110.81
21 -158.06 -68.06 101 -68.06 21.94 181 21.94 261 111.94
22 -156.94 -66.94 102 -66.94 23.06 182 23.06 262 113.06
23 -155.81 -65.81 103 -65.81 24.19 183 24.19 263 114.19
24 -154.69 -64.69 104 -64.69 25.31 184 25.31 264 115.31
25 -153.56 -63.56 105 -63.56 26.44 185 26.44 265 116.44
26 -152.44 -62.44 106 -62.44 27.56 186 27.56 266 117.56
27 -151.31 -61.31 107 -61.31 28.69 187 28.69 267 118.69
28 -150.19 -60.19 108 -60.19 29.81 188 29.81 268 119.81
29 -149.06 -59.06 109 -59.06 30.94 189 30.94 269 120.94
30 -147.94 -57.94 110 -57.94 32.06 190 32.06 270 122.06
31 -146.81 -56.81 111 -56.81 33.19 191 33.19 271 123.19
32 -145.69 -55.69 112 -55.69 34.31 192 34.31 272 124.31
33 -144.56 -54.56 113 -54.56 35.44 193 35.44 273 125.44
34 -143.44 -53.44 114 -53.44 36.56 194 36.56 274 126.56
35 -142.31 -52.31 115 -52.31 37.69 195 37.69 275 127.69
36 -141.19 -51.19 116 -51.19 38.81 196 38.81 276 128.81
37 -140.06 -50.06 117 -50.06 39.94 197 39.94 277 129.94
38 -138.94 -48.94 118 -48.94 41.06 198 41.06 278 131.06
39 -137.81 -47.81 119 -47.81 42.19 199 42.19 279 132.19
40 -136.69 -46.69 120 -46.69 43.31 200 43.31 280 133.31
41 -135.56 -45.56 121 -45.56 44.44 201 44.44 281 134.44
42 -134.44 -44.44 122 -44.44 45.56 202 45.56 282 135.56
43 -133.31 -43.31 123 -43.31 46.69 203 46.69 283 136.69
44 -132.19 -42.19 124 -42.19 47.81 204 47.81 284 137.81
45 -131.06 -41.06 125 -41.06 48.94 205 48.94 285 138.94
46 -129.94 -39.94 126 -39.94 50.06 206 50.06 286 140.06
47 -128.81 -38.81 127 -38.81 51.19 207 51.19 287 141.19
48 -127.69 -37.69 128 -37.69 52.31 208 52.31 288 142.31
49 -126.56 -36.56 129 -36.56 53.44 209 53.44 289 143.44
50 -125.44 -35.44 130 -35.44 54.56 210 54.56 290 144.56
51 -124.31 -34.31 131 -34.31 55.69 211 55.69 291 145.69
52 -123.19 -33.19 132 -33.19 56.81 212 56.81 292 146.81
53 -122.06 -32.06 133 -32.06 57.94 213 57.94 293 147.94
54 -120.94 -30.94 134 -30.94 59.06 214 59.06 294 149.06
55 -119.81 -29.81 135 -29.81 60.19 215 60.19 295 150.19
56 -118.69 -28.69 136 -28.69 61.31 216 61.31 296 151.31
57 -117.56 -27.56 137 -27.56 62.44 217 62.44 297 152.44
58 -116.44 -26.44 138 -26.44 63.56 218 63.56 298 153.56
59 -115.31 -25.31 139 -25.31 64.69 219 64.69 299 154.69
60 -114.19 -24.19 140 -24.19 65.81 220 65.81 300 155.81
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i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦] lat [◦] i/j lon [◦]
61 -113.06 -23.06 141 -23.06 66.94 221 66.94 301 156.94
62 -111.94 -21.94 142 -21.94 68.06 222 68.06 302 158.06
63 -110.81 -20.81 143 -20.81 69.19 223 69.19 303 159.19
64 -109.69 -19.69 144 -19.69 70.31 224 70.31 304 160.31
65 -108.56 -18.56 145 -18.56 71.44 225 71.44 305 161.44
66 -107.44 -17.44 146 -17.44 72.56 226 72.56 306 162.56
67 -106.31 -16.31 147 -16.31 73.69 227 73.69 307 163.69
68 -105.19 -15.19 148 -15.19 74.81 228 74.81 308 164.81
69 -104.06 -14.06 149 -14.06 75.94 229 75.94 309 165.94
70 -102.94 -12.94 150 -12.94 77.06 230 77.06 310 167.06
71 -101.81 -11.81 151 -11.81 78.19 231 78.19 311 168.19
72 -100.69 -10.69 152 -10.69 79.31 232 79.31 312 169.31
73 -99.56 -9.56 153 -9.56 80.44 233 80.44 313 170.44
74 -98.44 -8.44 154 -8.44 81.56 234 81.56 314 171.56
75 -97.31 -7.31 155 -7.31 82.69 235 82.69 315 172.69
76 -96.19 -6.19 156 -6.19 83.81 236 83.81 316 173.81
77 -95.06 -5.06 157 -5.06 84.94 237 84.94 317 174.94
78 -93.94 -3.94 158 -3.94 86.06 238 86.06 318 176.06
79 -92.81 -2.81 159 -2.81 87.19 239 87.19 319 177.19
80 -91.69 -1.69 160 -1.69 88.31 240 88.31 320 178.31

Table B.4: Western/southern grid box boundaries for the TM3 xfg grid (320x161L31).
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Appendix C

Vertical Coordinate Tables

The following tables contain for each TM3 grid resolution the yearly and globally averaged
pressures and heights for the TM3 model layer midpoints and layer boundaries. l denotes
the TM3 layer number (— for a boundary), η the vertical hybrid coordinate η = a/p0 + b
(reference pressure p0 = 985 hPa), and p and h the respective time- and space-averaged
pressures and heights.

cg grid, met. fields: NCEP/NCAR reanalysis 1998

l η p/hPa h/m
— 0.000 0 81057.5
9 0.030 30 49686.0

— 0.061 60 18388.9
8 0.103 102 15914.1

— 0.146 143 13485.9
7 0.200 197 12044.5

— 0.255 251 10651.1
6 0.325 320 9357.8

— 0.396 390 8107.8
5 0.478 471 6483.0

— 0.560 552 4890.2
4 0.650 641 3726.8

— 0.740 729 2582.3
3 0.806 794 1866.2

— 0.871 858 1159.9
2 0.908 895 766.8

— 0.945 931 378.0
1 0.972 958 188.4

— 1.000 985 0.0
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fg grid, met. fields: NCEP/NCAR reanalysis 1998

l η p/hPa h/m
— 0.000 0 81058
19 0.010 10 53062
— 0.020 20 25094
18 0.030 30 22698
— 0.041 40 20317
17 0.051 50 19345
— 0.061 60 18389
16 0.081 80 17507
— 0.102 100 16641
15 0.112 111 15822
— 0.123 121 15020
14 0.146 144 14244
— 0.170 167 13486
13 0.197 194 12751
— 0.225 221 12032
12 0.256 252 11333
— 0.287 283 10651
11 0.342 336 9989
— 0.396 390 9343
10 0.436 429 8137
— 0.475 468 6944
9 0.518 510 5912
— 0.560 552 4890
8 0.605 596 4064
— 0.649 640 3246
7 0.695 684 2630
— 0.740 729 2019
6 0.785 773 1588
— 0.829 817 1160
5 0.870 857 872
— 0.910 897 585
4 0.928 914 481
— 0.945 931 378
3 0.959 945 295
— 0.973 958 213
2 0.983 968 147
— 0.992 977 82
1 0.996 981 41
— 1.000 985 0
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vfg NCEP grid, met. fields: NCEP/NCAR reanalysis 1998

l η p/hPa h/m
— 0.000 0 81058
28 0.003 3 57239
— 0.007 6 33421
27 0.010 10 30913
— 0.014 14 28404
26 0.018 18 26749
— 0.023 23 25094
25 0.029 28 23799
— 0.035 34 22504
24 0.042 41 21411
— 0.049 48 20317
23 0.058 57 19353
— 0.067 66 18389
22 0.078 77 17515
— 0.089 88 16641
21 0.103 101 15830
— 0.117 115 15020
20 0.133 131 14253
— 0.149 147 13486
19 0.168 166 12759
— 0.188 185 12032
18 0.210 207 11342
— 0.233 229 10651
17 0.259 255 9997
— 0.284 280 9343
16 0.313 308 8725
— 0.341 336 8108
15 0.372 367 7526
— 0.403 397 6944
14 0.436 429 6406
— 0.469 462 5869
13 0.502 494 5380
— 0.535 527 4890
12 0.568 560 4452
— 0.601 592 4014
11 0.633 624 3629
— 0.665 655 3246
10 0.694 684 2914
— 0.724 713 2582
9 0.751 740 2301

— 0.778 766 2019
8 0.801 789 1784

— 0.825 813 1549
7 0.846 833 1354

— 0.866 853 1160
6 0.884 871 1001

— 0.901 888 842
5 0.916 902 714

— 0.931 917 585
4 0.943 928 481

— 0.955 940 378
3 0.964 950 295

— 0.974 960 213
2 0.982 967 147

— 0.990 975 82
1 0.995 980 41

— 1.000 985 0
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vfg and xfg ERA grid, met. fields: ERA-15 reanalysis 1993

l η p/hPa h/m
— 0.000 0 75760.8
31 0.010 10 50717.5
— 0.020 20 25674.2
30 0.030 30 23481.8
— 0.041 40 21289.4
29 0.051 50 20024.3
— 0.061 60 18759.3
28 0.071 70 17876.5
— 0.081 80 16993.7
27 0.091 90 16309.1
— 0.102 100 15624.6
26 0.112 111 15045.7
— 0.123 121 14466.8
25 0.134 132 13948.0
— 0.146 143 13429.2
24 0.158 155 12949.6
— 0.170 167 12469.9
23 0.183 180 12019.4
— 0.196 193 11568.9
22 0.210 207 11142.7
— 0.225 221 10716.5
21 0.240 236 10311.5
— 0.255 251 9906.5
20 0.271 267 9520.1
— 0.287 283 9133.6
19 0.305 300 8763.2
— 0.322 317 8392.8
18 0.340 335 8036.9
— 0.358 352 7681.0
17 0.377 371 7338.7
— 0.396 390 6996.3
16 0.415 409 6667.0
— 0.435 428 6337.6
15 0.455 448 6020.7
— 0.475 468 5703.9
14 0.496 489 5399.0
— 0.517 510 5094.2
13 0.539 531 4801.1
— 0.560 552 4508.0
12 0.583 574 4226.4
— 0.605 595 3944.9
11 0.627 618 3674.9
— 0.649 640 3405.0
10 0.672 662 3146.9
— 0.695 684 2888.9
9 0.717 707 2643.6

— 0.740 729 2398.3
8 0.763 751 2167.1

— 0.785 773 1935.9
7 0.807 795 1720.7

— 0.829 817 1505.4
6 0.850 838 1308.4

— 0.871 858 1111.4
5 0.891 878 935.7

— 0.910 897 760.1
4 0.928 914 610.1

— 0.945 931 460.2
3 0.959 945 341.5

— 0.973 958 222.8
2 0.983 968 142.8

— 0.992 977 62.8
1 0.996 981 31.4

— 1.000 985 0.0
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Global Program Variables

!*******************************************************************************

! Main global TM3 constants and variables.

!

! $Id: tm3global.f90,v 1.15 2003/06/11 11:25:44 tpobw Exp $

!*******************************************************************************

MODULE TM3global

USE userconstants, ONLY: kc, ki, kf, ko, &

ntrace

USE griddefs, ONLY: im, jm, lm, TM_res_ID, met_ID, ndyn_default

IMPLICIT NONE

SAVE

!===============================================================================

! runtime parameters, collected in namelist ’inputz’

!

! Convention for output time intervals:

! >0 means "interval in seconds",

! 0 no output,

! -1 "daily at 0:00",

! -2 "monthly at 1st 0:00",

! -3 "yearly, January 1 0:00".

!

!===============================================================================

!

! 1st Most frequently user-changed parameters

! -------------------------------------------

!

CHARACTER(32) :: jobid = ’’ ! label: job ID (prefixing output file names)

CHARACTER(100) :: xlabel = ’’ ! label of model run

CHARACTER(100) :: path_in_p = ’prepro’ ! path to input prepro (met.) data

CHARACTER(100) :: path_in_s = ’input’ ! path to input source data

CHARACTER(100) :: path_out = ’output’ ! path to output

REAL(kc) :: fscale(ntrace) = 1.0_kc ! scale factor for output of mixing ratios:

! converts AmountTracer/kgAir into

! application units

!--- date (yr,month,day,hour,min,sec)

INTEGER :: idatei(6) = (/1988, 1, 1, 0, 0, 0/) ! for start of model run

INTEGER :: idatee(6) = (/1988, 1, 3, 0, 0, 0/) ! for end of model run

INTEGER :: idatet(6) = (/0, 1, 1, 0, 0, 0/) ! after which instantaneous

! output to <name_mix> is written;

! set year to 0 to write from

! the beginning of run

!--- computational time intervals in seconds (0=switched off)

INTEGER :: ndyn = ndyn_default ! length of full advection step

! (basic time step of integration)

INTEGER :: nconv = ndyn_default ! interval for convection calculation

INTEGER :: nsrce = ndyn_default ! interval for source calculations (SUBR

! ’source1’,’source2’)

INTEGER :: nchem = ndyn_default ! interval for chemistry calculations (SUBR

! ’chem1’, ’chem2’)

!--- output time intervals in seconds (convention applies)

INTEGER :: ninst = 21600 ! interval for output of instantaneous tracer

! mixing ratio on file <name_mix>

INTEGER :: ninststn = 21600 ! interval for output of instantaneous

! tracer mixing ratio at station locations
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! into file <name_mixstn>

INTEGER :: ninsttmass = 0 ! interval for output of instantaneous tracer

! mass on file <name_tmass>

!

! 2nd Other Adjustable Parameters

! -------------------------------

!

!--- mass flux input file names (relative to <path_in_p>/<TM_res_ID>/<met_ID>/<year>/)

CHARACTER(20) :: name_pu = ’stag_pu_’//TM_res_ID//’.b’ ! for repeated met. year (if iyearm/=0)

CHARACTER(20) :: name_pv = ’stag_pv_’//TM_res_ID//’.b’ ! "

CHARACTER(20) :: name_ps = ’stag_ps_’//TM_res_ID//’.b’ ! "

CHARACTER(20) :: name_maxndyn = ’maxndyn_’//TM_res_ID//’.d’ ! max. timesteps ’ndyn’

CHARACTER(20) :: name_pu_c = ’stagc_pu_’//TM_res_ID//’.b’ ! for consecut. met. years (if iyearm==0)

CHARACTER(20) :: name_pv_c = ’stagc_pv_’//TM_res_ID//’.b’ ! "

CHARACTER(20) :: name_ps_c = ’stagc_ps_’//TM_res_ID//’.b’ ! "

CHARACTER(20) :: name_maxndyn_c = ’maxndync_’//TM_res_ID//’.d’ ! max. timesteps ’ndyn’

!--- convection info input file names (relative to <path_in_p>/<TM_res_ID>/<met_ID>/<year>/)

CHARACTER(20) :: name_eu = ’eu_’//TM_res_ID//’.b’

CHARACTER(20) :: name_du = ’du_’//TM_res_ID//’.b’

CHARACTER(20) :: name_ed = ’ed_’//TM_res_ID//’.b’

CHARACTER(20) :: name_dd = ’dd_’//TM_res_ID//’.b’

CHARACTER(20) :: name_vdiff = ’k_’//TM_res_ID//’.b’

CHARACTER(20) :: name_height = ’z_’//TM_res_ID//’.b’

!--- additional (optional) files (relative to <path_in_p>/<TM_res_ID>/<met_ID>/<year>/ for t and q)

CHARACTER(20) :: name_t = ’t_’//TM_res_ID//’.b’ ! temperature

CHARACTER(20) :: name_q = ’q_’//TM_res_ID//’.b’ ! humidity

LOGICAL :: creadt = .FALSE. ! read temperature field?

LOGICAL :: creadq = .FALSE. ! read humidity field?

CHARACTER(100) :: name_plandf = ’plandf_’//TM_res_ID//’.b’ ! landfraction (with complete path)

LOGICAL :: read_plandf = .FALSE. ! read in landfraction file?

CHARACTER(100) :: name_stationlist = ’input/stationlist.d’ ! table of station coordinates

!--- output file names (relative to <path_out>/)

CHARACTER(20) :: name_mix = ’mix.b’ ! instantaneous mixing ratios

CHARACTER(20) :: name_mixstn = ’mixstn.b’ ! instantaneous mixing ratios at stations

CHARACTER(20) :: name_tmass = ’tmass.b’ ! instantaneous tracer mass field

CHARACTER(20) :: name_psout = ’ps.b’ ! instantaneous surface pressure field

LOGICAL :: cwrtps = .FALSE. ! write instantaneous surface pressure field?

!--- start/restart option

INTEGER :: istart = 1 ! 1 Cold start

! Initial tracer fields are set to 0.

! They can afterwards be partially or

! totally overwritten in subroutine

! ’trace0’.

! No other status fields are read.

! 2 Cold start with initial tracer fields

! Initial tracer fields are read from

! file

! <path_out>//<jobid>//’modelstatus.b’.

! 3 Job chain mode

! By TM3, the existence of a file

! <path_out>//<jobid>//’modelstatus.d’

! is used as indicator if this is a

! continuation run within a job chain or

! the start of it.

! The user can employ it as end

! condition in a self-calling job

! script.

! IF this file does NOT EXIST, then

! the start date is that of ’tm3.in’.

! Initial tracer fields are read from

! the file

! <path_out>//<jobid>//’modelstatus.b’,

! if existent, or otherwise set to 0.

! IF the file EXISTS, then the

! namelist ’inputz’ is first read from

! file ’tm3.in’. Afterwards the start

! date <idatei> is overwritten by the

! date in

! <path_out>//<jobid>//’modelstatus.d’,

! saved by a previous model run after

! time interval <nsave>.

! Initial tracer fields are read from

! file

! <path_out>//<jobid>//’modelstatus.b’,

! if existent.

! That file will always be written after

! a model run, independent of what

! istart is set to.

! The continuation parameter file

! <path_out>//<jobid>//’modelstatus.d’

! contains the start date in the form

! YYYY MM DD hh mm ss as first line.

! The last line contains all prepro

! directory identifiers needed by the

! next continuation cycle, e.g.
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! ’1999 2000 2001’ or

! ’199911 199912 200001’ (without

! quotes).

! This is useful for getting prepro

! files out of an archive by shell

! script commands (see the manual for an

! example).

! 10+i As above, with i = 1,2 or 3. In

! addition the user routine ’trace1’

! will be called after ’trace0’.

!

INTEGER :: nsave = 0 ! Only with istart=3: Time interval in

! seconds since <idatei> for stopping TM3

! and writing the restart

! files

! <path_out>//<jobid>//’modelstatus.d’ (if

! the end date ’idatee’ has not been

! reached) and

! <path_out>//<jobid>//’modelstatus.b’.

! If the end date <idatee> has been

! reached,

! the program finishes having

! <path_out>//<jobid>//’modelstatus.d’

! deleted; thus that file can taken as

! indicator for the necessity of a new job

! job cycle in a recursive job script.

!--- calendar

INTEGER :: iyear0 = 0 ! base year for calendar

! calculations (time is internally

! represented as seconds since

! 01-Jan-<iyear0> 00:00:00).

! NOTE: because of overflow problems

! on a 32 bit machine, only years

! in the range <iyear0> ... <iyear0>+65

! can be represented.

! iyear0=0: use year of begin of

! run (=idatei(1)) as base year

INTEGER :: iyearm = 0 ! year whose meteorology shall be used

! iyearm=0: use true year

! else: repeatedly use <iyearm>

INTEGER :: icalendo = 2 ! calendar type

! 1 permanent 360 day year

! 2 real calendar

! 3 permanent 365 day year

! 4 permanent 366 day year

!--- diagnostics

CHARACTER(20) :: name_mmix = ’mmix.b’ ! mean mixing ratios

CHARACTER(20) :: name_tables1 = ’consrv_tracer.d’ ! diagnostic table 1: tracer conservation

CHARACTER(20) :: name_tables2 = ’consrv_air.d’ ! diagnostic table 2: air conservation

CHARACTER(20) :: name_tables3 = ’zonal_avrg.d’ ! diagnostic table 3: mean mixing ratios

CHARACTER(20) :: name_debug = ’debug.d’ ! debugging info

LOGICAL :: cdebug = .FALSE. ! write debug info (to <name_debug>)?

INTEGER :: idatem(6) = (/0, 1, 1, 0, 0, 0/) ! time for starting the computation of time

! averaged fields (files <name_mmix.b> and

! <name_tables3>); set year to 0 to start

! from the beginning of run

INTEGER :: ndiag = 21600 ! sampling interval for mean quantities

INTEGER :: ndiagp1 = -1 ! interval for output of conservation

! statistics on files <name_tables1> and

! <name_tables2>, and of the Courant

! statistics to <kmain>

INTEGER :: ndiagp2 = -1 ! interval for output of time averaged

! fields on files <name_mmix.b>,

! <name_tables3>

!--- checkpoints

CHARACTER(20) :: name_check = ’check.d’ ! output filename of mixing ratios at

! checkpoints (relative to <path_out>)

INTEGER :: ncheck = 0 ! interval for output of tracer mix ratios

! at checkpoints

INTEGER :: noindc = 0 ! actual number of checkpoints (max. 10)

INTEGER :: indc(3,10) = 0 ! indices of checkpoints (i,j,l)

!--- computational parameters

LOGICAL :: limits = .FALSE. ! prevent negative tracer masses?

REAL(kc) :: couranttarget = -1.0_kc ! If set to something between 0 and 1,

! adaptive integration stepwidth is

! switched on, which =tries= not to

! exceed <couranttarget> (preliminary

! implementation).

REAL(kc) :: czeta = 1.0_kc ! scaling factor for convection

REAL(kc) :: czetak = 1.0_kc ! scaling factor for vertical diffusion

INTEGER :: ndiff = 0 ! interval for horizontal diffusion

! (currently not implemented)

!---

NAMELIST /inputz/ &

!--- 1st part
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jobid, xlabel, &

path_in_p, path_in_s, path_out, fscale, &

idatei, idatee, idatet, &

ndyn, nconv, nsrce, nchem, &

ninst, ninststn, ninsttmass, &

!--- 2nd part

name_pu, name_pv, name_ps, name_maxndyn, &

name_pu_c, name_pv_c, name_ps_c, name_maxndyn_c, &

name_eu, name_du, name_ed, name_dd, name_vdiff, name_height, &

name_t, name_q, creadt, creadq, &

name_plandf, read_plandf, name_stationlist, &

name_mix, name_mixstn, name_tmass, name_psout, cwrtps, &

istart, nsave, &

iyear0, iyearm, icalendo, &

name_mmix, name_tables1, name_tables2, name_tables3, name_debug, &

cdebug, idatem, ndiag, ndiagp1, ndiagp2, &

name_check, ncheck, noindc, indc, &

limits, couranttarget, czeta, czetak, ndiff

!--- total: 66 variables

!------------------------------------------------------------------------------

! end of ’inputz’ runtime parameters

!------------------------------------------------------------------------------

!------------------------------------------------------------------------------

! geometrical constants

!------------------------------------------------------------------------------

REAL(kc), PARAMETER :: pi = 3.141592653589793238462643_kc, &

twopi = 2.0_kc*pi, &

dlon = twopi/im, &

dlat = .5_kc*twopi/(jm-1)

!-------------------------------------------------------------------------------

! I/O related constants

!-------------------------------------------------------------------------------

!--- I/O units for standard TM3 routines

INTEGER, PARAMETER :: kmain = 6 ! main control output

INTEGER, PARAMETER :: kdebug = 10 ! debug output

! windmassflux fields

INTEGER, PARAMETER :: kwind1 = 11, & ! fmu

kwind2 = 12, & ! fmv

kwind3 = 13, & ! ps

kmaxndyn = 14 ! max. timesteps ’ndyn’

! convection info

INTEGER, PARAMETER :: kconv1 = 15, & ! entrainment updraft

kconv2 = 16, & ! downdraft

kconv3 = 17, & ! detrainment updraft

kconv4 = 18, & ! downddraft

kconv5 = 19, & ! vertical diffusion coefficient

kconv6 = 20 ! height of level boundaries

! additional (optional) field

INTEGER, PARAMETER :: kaddt = 21 ! temperature

INTEGER, PARAMETER :: kaddq = 22 ! humidity

! output files

INTEGER, PARAMETER :: kcheck = 31 ! mix-ratios at check locations

INTEGER, PARAMETER :: kdiag1 = 32 ! diagnostic tables 1 (tracer info)

INTEGER, PARAMETER :: kdiag2 = 33 ! diagnostic tables 2 (air mass)

INTEGER, PARAMETER :: kdiag3 = 34 ! diagnostic tables 3 (mean field)

INTEGER, PARAMETER :: kmix = 35 ! instantaneous mixing ratio fields

INTEGER, PARAMETER :: kmeanx = 36 ! averaged mixing ratio fields

INTEGER, PARAMETER :: kmixstn = 37 ! mixing ratios at stations

INTEGER, PARAMETER :: ktmass = 38 ! instantaneous tracer mass fields

INTEGER, PARAMETER :: kps = 39 ! instantaneous surface pressure field

!--- I/O units for additional packages and/or user-supplied routines

INTEGER, PARAMETER :: kflux = 40 ! kflux+1 ... kflux+ntrace

! reserved for flux I/O

INTEGER, PARAMETER :: kuser = kflux+1+ntrace

! standard TM3 does not use

! unit numbers ’kuser’ or larger

! NOTE: following non-standard

! packages do use units

! above ’kuser’:

! tm3io_mixstn_ascii.f

CHARACTER(*), PARAMETER :: pathsep = ’/’ ! file path separator character
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!-------------------------------------------------------------------------------

! internal control variables

! (initialized during SUBROUTINE start)

!-------------------------------------------------------------------------------

!--- times (in seconds since 1st-jan-year0, 00:00:00)

INTEGER :: itau ! current model time

INTEGER :: idate(6) ! date corresponding to itau

INTEGER :: itaui ! time corresponding to idatei

INTEGER :: itaue ! time corresponding to idatee

INTEGER :: itaut ! time corresponding to idatet

INTEGER :: itaum ! time corresponding to idatem

LOGICAL :: newyr ! .true. if at beginning of a new year and at TM3 start

LOGICAL :: newmonth ! .true. if at beginning of a new month and at TM3 start

LOGICAL :: newday ! .true. if at beginning of a new day and at TM3 start

! (i.e. at 00Z)

LOGICAL :: newsrun ! .true. if at beginning of a new run

INTEGER :: nstep ! advection step counter

LOGICAL :: adapt_ndyn ! flag whether adaptive integration stepwidth is

! in use (set by range testing of <courant_limit>)

INTEGER :: maxndyn ! ndyn value for which the max. Courant number

! is 1 (for adaptive integration stepwidth)

REAL(kc) :: cpu0 ! process time at beginning of run (in seconds)

INTEGER :: nistep ! number of integration steps per meteo. step

INTEGER :: istep ! current integration step within meteo. step

LOGICAL :: jobcont ! .true. if a job continuation is present

! (istart=3 and saved parameter file

! ’modelstatus.d’ exists)

!-------------------------------------------------------------------------------

! main fields

!-------------------------------------------------------------------------------

!--- geometry fields

REAL(kc) :: areag ! surface of the globe

REAL(kc) :: dsig(lm) ! thickness of model layers in sigma units

! (positive numbers!)

REAL(kc) :: dxyp(jm) ! areas of grid cells (in m**2)

REAL(kc) :: sin_lon(im) ! sin(longitude)

REAL(kc) :: cos_lon(im) ! cos(longitude)

REAL(kc) :: sin_lat(jm) ! sin(latitude)

REAL(kc) :: cos_lat(jm) ! cos(latitude)

REAL(kc) :: lambda_lb(im) ! longitude of western grid cell boundaries in radian

REAL(kc) :: mu_lb(jm) ! sine of southern grid cell boundaries

REAL(kc) :: pland(im,jm) ! land fraction in each grid cell

!--- prepro input fields

REAL(ki) :: pu(im,jm,lm) ! W-E mass flux

REAL(ki) :: pv(im,jm,lm) ! N-S mass flux

REAL(ki) :: ps(im,jm) ! surface pressure

REAL(ki) :: eu0(im,jm,lm), & ! entrainment updraft [previous]

eu1(im,jm,lm) ! [next]

REAL(ki) :: du0(im,jm,lm), & ! detrainment updraft [previous]

du1(im,jm,lm) ! [next]

REAL(ki) :: ed0(im,jm,lm), & ! entrainment downdraft [previous]

ed1(im,jm,lm) ! [next]

REAL(ki) :: dd0(im,jm,lm), & ! detrainment downdraft [previous]

dd1(im,jm,lm) ! [next]

REAL(ki) :: ak0(im,jm,0:lm), & ! diffusion coefficient [previous]

ak1(im,jm,0:lm) ! [next]

REAL(ki) :: gph(im,jm,0:lm) ! geopotential height [current]

REAL(ki) :: gph0(im,jm,0:lm) ! [previous]

REAL(ki) :: gph1(im,jm,0:lm) ! [next]

REAL(ki) :: t(im,jm,lm) ! temperature (optional) [current]

REAL(ki) :: t0(im,jm,lm) ! [previous]

REAL(ki) :: t1(im,jm,lm) ! [next]

REAL(ki) :: q(im,jm,lm) ! humidity (optional) [current]

REAL(ki) :: q0(im,jm,lm) ! [previous]

REAL(ki) :: q1(im,jm,lm) ! [next]

!--- air mass field (kg)

REAL(kc) :: m0(im,jm,lm) ! previous

REAL(kc) :: m(im,jm,lm) ! current

REAL(kc) :: m1(im,jm,lm) ! next

!--- pressure values (Pascal) at hybrid level boundaries

REAL(kc) :: phlb(im,jm,lm+1), & ! current

phlb1(im,jm,lm+1) ! next timestep

!--- main model fields

REAL(kc) :: rm(im,jm,lm,ntrace) ! tracer mass (kg)

REAL(kc) :: rxm(im,jm,lm,ntrace) ! x-slope of tracer:

REAL(kc) :: rym(im,jm,lm,ntrace) ! m*(dchi/dx)*delta_x/2 (kg)

REAL(kc) :: rzm(im,jm,lm,ntrace) ! y-slope of tracer:

! m*(dchi/dy)*delta_y/2 (kg)

! z-slope of tracer:

! m*(dchi/dz)*delta_z/2 (kg)
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!--- mixing ratios

REAL(ko) :: mix(im,jm,lm,ntrace) ! instantaneous mixing ratios

! updated by call to ’get_mix’

! mix = fscale * rm/m

! despite the special grid structure

! within the fields m and rm,

! all entries of the array mix

! are well-defined

!--- temporal interpolation

REAL(kc) :: w0, w1 ! current weights

!-------------------------------------------------------------------------------

! station data

!-------------------------------------------------------------------------------

!--- as read from station list

CHARACTER(12), ALLOCATABLE :: stations_name(:) ! name

REAL(kc), ALLOCATABLE :: stations_lat(:) ! latitude (degrees N)

REAL(kc), ALLOCATABLE :: stations_lon(:) ! longitude (degrees E)

REAL(kc), ALLOCATABLE :: stations_h(:) ! height (masl)

!--- calculated in ’init_stations’

INTEGER :: stations_n ! # of stations

INTEGER, ALLOCATABLE :: stations_inw(:) ! coordinates of 4

INTEGER, ALLOCATABLE :: stations_ine(:) ! surrounding grid cells

INTEGER, ALLOCATABLE :: stations_isw(:)

INTEGER, ALLOCATABLE :: stations_ise(:)

INTEGER, ALLOCATABLE :: stations_jnw(:)

INTEGER, ALLOCATABLE :: stations_jne(:)

INTEGER, ALLOCATABLE :: stations_jsw(:)

INTEGER, ALLOCATABLE :: stations_jse(:)

REAL(kc), ALLOCATABLE :: stations_di(:) ! fractional distance from

REAL(kc), ALLOCATABLE :: stations_dj(:) ! SW grid cell

!--- mixing ratios

REAL(ko), ALLOCATABLE :: mixstn(:,:)

END MODULE TM3global

70



Appendix E

Runtime Parameters

The following commented runtime parameter template can be found under doc/tm3.in.

!===============================================================================

!

! TM3 runtime parameter template

!

! Uncomment and edit the parameters which need adjustment.

! Every parameter is listed with the initialization expression it gets in the

! Fortran source code. If uncommented, this has to be changed to NAMELIST I/O

! syntax where necessary.

!

! Convention for output time intervals:

! >0 means "interval in seconds",

! 0 no output,

! -1 "daily at 0:00",

! -2 "monthly at 1st 0:00",

! -3 "yearly, January 1 0:00".

!

!===============================================================================

&inputz

!

! 1st Most frequently user-changed parameters

! -------------------------------------------

!

! jobid = ’’ ! label: job ID (prefixing output file names)

! xlabel = ’’ ! label of model run

! path_in_p = ’prepro’ ! path to input prepro (met.) data

! path_in_s = ’input’ ! path to input source data

! path_out = ’output’ ! path to output

! fscale = 1.0_kc ! scale factor for output of mixing ratios:

! ! converts AmountTracer/kgAir into

! ! application units

! !--- date (yr,month,day,hour,min,sec)

! idatei = 1988, 1, 1, 0, 0, 0 ! for start of model run

! idatee = 1988, 1, 3, 0, 0, 0 ! for end of model run

! idatet = 0, 1, 1, 0, 0, 0 ! after which instantaneous

! ! output to <name_mix> is written;

! ! set year to 0 to write from

! ! the beginning of run

! !--- computational time intervals in seconds (0=switched off)

! ndyn = ndyn_default ! length of full advection step

! ! (basic time step of integration)

! nconv = ndyn_default ! interval for convection calculation

! nsrce = ndyn_default ! interval for source calculations (SUBR

! ! ’source1’,’source2’)

! nchem = ndyn_default ! interval for chemistry calculations (SUBR

! ! ’chem1’, ’chem2’)

! !--- output time intervals in seconds (convention applies)

! ninst = 21600 ! interval for output of instantaneous tracer

! ! mixing ratio on file <name_mix>

! ninststn = 21600 ! interval for output of instantaneous

! ! tracer mixing ratio at station locations

! ! into file <name_mixstn>

! ninsttmass = 0 ! interval for output of instantaneous tracer

! ! mass on file <name_tmass>

!

! 2nd Other Adjustable Parameters

! -------------------------------
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!

! !--- mass flux input file names (relative to <path_in_p>/<TM_res_ID>/<met_ID>/<year>/)

! name_pu = ’stag_pu_’//TM_res_ID//’.b’ ! for repeated met. year (if iyearm/=0)

! name_pv = ’stag_pv_’//TM_res_ID//’.b’ ! "

! name_ps = ’stag_ps_’//TM_res_ID//’.b’ ! "

! name_maxndyn = ’maxndyn_’//TM_res_ID//’.d’ ! max. timesteps ’ndyn’

! name_pu_c = ’stagc_pu_’//TM_res_ID//’.b’ ! for consecut. met. years (if iyearm==0)

! name_pv_c = ’stagc_pv_’//TM_res_ID//’.b’ ! "

! name_ps_c = ’stagc_ps_’//TM_res_ID//’.b’ ! "

! name_maxndyn_c = ’maxndync_’//TM_res_ID//’.d’! max. timesteps ’ndyn’

! !--- convection info input file names (relative to <path_in_p>/<TM_res_ID>/<met_ID>/<year>/)

! name_eu = ’eu_’//TM_res_ID//’.b’

! name_du = ’du_’//TM_res_ID//’.b’

! name_ed = ’ed_’//TM_res_ID//’.b’

! name_dd = ’dd_’//TM_res_ID//’.b’

! name_vdiff = ’k_’//TM_res_ID//’.b’

! name_height = ’z_’//TM_res_ID//’.b’

! !--- additional (optional) files (relative to <path_in_p>/<TM_res_ID>/<met_ID>/<year>/ for t and q)

! name_t = ’t_’//TM_res_ID//’.b’ ! temperature

! name_q = ’q_’//TM_res_ID//’.b’ ! humidity

! creadt = .FALSE. ! read temperature field?

! creadq = .FALSE. ! read humidity field?

! name_plandf = ’plandf_’//TM_res_ID//’.b’ ! landfraction (with complete path)

! read_plandf = .FALSE. ! read in landfraction file?

! name_stationlist = ’input/stationlist.d’ ! table of station coordinates

! !--- output file names (relative to <path_out>/)

! name_mix = ’mix.b’ ! instantaneous mixing ratios

! name_mixstn = ’mixstn.b’ ! instantaneous mixing ratios at stations

! name_tmass = ’tmass.b’ ! instantaneous tracer mass field

! name_psout = ’ps.b’ ! instantaneous surface pressure field

! cwrtps = .FALSE. ! write instantaneous surface pressure field?

! !--- start/restart option

! istart = 1 ! 1 Cold start

! ! Initial tracer fields are set to 0.

! ! They can afterwards be partially or

! ! totally overwritten in subroutine

! ! ’trace0’.

! ! No other status fields are read.

! ! 2 Cold start with initial tracer fields

! ! Initial tracer fields are read from

! ! file

! ! <path_out>//<jobid>//’modelstatus.b’.

! ! 3 Job chain mode

! ! By TM3, the existence of a file

! ! <path_out>//<jobid>//’modelstatus.d’

! ! is used as indicator if this is a

! ! continuation run within a job chain or

! ! the start of it.

! ! The user can employ it as end

! ! condition in a self-calling job

! ! script.

! ! IF this file does NOT EXIST, then

! ! the start date is that of ’tm3.in’.

! ! Initial tracer fields are read from

! ! the file

! ! <path_out>//<jobid>//’modelstatus.b’,

! ! if existent, or otherwise set to 0.

! ! IF the file EXISTS, then the

! ! namelist ’inputz’ is first read from

! ! file ’tm3.in’. Afterwards the start

! ! date <idatei> is overwritten by the

! ! date in

! ! <path_out>//<jobid>//’modelstatus.d’,

! ! saved by a previous model run after

! ! time interval <nsave>.

! ! Initial tracer fields are read from

! ! file

! ! <path_out>//<jobid>//’modelstatus.b’,

! ! if existent.

! ! That file will always be written after

! ! a model run, independent of what

! ! istart is set to.

! ! The continuation parameter file

! ! <path_out>//<jobid>//’modelstatus.d’

! ! contains the start date in the form

! ! YYYY MM DD hh mm ss as first line.

! ! The last line contains all prepro

! ! directory identifiers needed by the

! ! next continuation cycle, e.g.

! ! ’1999 2000 2001’ or

! ! ’199911 199912 200001’ (without

! ! quotes).

! ! This is useful for getting prepro

! ! files out of an archive by shell

! ! script commands (see the manual for an

! ! example).
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! ! 10+i As above, with i = 1,2 or 3. In

! ! addition the user routine ’trace1’

! ! will be called after ’trace0’.

! !

! nsave = 0 ! Only with istart=3: Time interval in

! ! seconds since <idatei> for stopping TM3

! ! and writing the restart

! ! files

! ! <path_out>//<jobid>//’modelstatus.d’ (if

! ! the end date ’idatee’ has not been

! ! reached) and

! ! <path_out>//<jobid>//’modelstatus.b’.

! ! If the end date <idatee> has been

! ! reached,

! ! the program finishes having

! ! <path_out>//<jobid>//’modelstatus.d’

! ! deleted; thus that file can taken as

! ! indicator for the necessity of a new job

! ! job cycle in a recursive job script.

! !--- calendar

! iyear0 = 0 ! base year for calendar

! ! calculations (time is internally

! ! represented as seconds since

! ! 01-Jan-<iyear0> 00:00:00).

! ! NOTE: because of overflow problems

! ! on a 32 bit machine, only years

! ! in the range <iyear0> ... <iyear0>+65

! ! can be represented.

! ! iyear0=0: use year of begin of

! ! run (=idatei(1)) as base year

! iyearm = 0 ! year whose meteorology shall be used

! ! iyearm=0: use true year

! ! else: repeatedly use <iyearm>

! icalendo = 2 ! calendar type

! ! 1 permanent 360 day year

! ! 2 real calendar

! ! 3 permanent 365 day year

! ! 4 permanent 366 day year

! !--- diagnostics

! name_mmix = ’mmix.b’ ! mean mixing ratios

! name_tables1 = ’consrv_tracer.d’ ! diagnostic table 1: tracer conservation

! name_tables2 = ’consrv_air.d’ ! diagnostic table 2: air conservation

! name_tables3 = ’zonal_avrg.d’ ! diagnostic table 3: mean mixing ratios

! name_debug = ’debug.d’ ! debugging info

! cdebug = .FALSE. ! write debug info (to <name_debug>)?

! idatem = 0, 1, 1, 0, 0, 0 ! for starting the computation of time

! ! averaged fields (files <name_mmix.b> and

! ! <name_tables3>); set year to 0 to start

! ! from the beginning of run

! ndiag = 21600 ! sampling interval for mean quantities

! ndiagp1 = -1 ! interval for output of conservation

! ! statistics on files <name_tables1> and

! ! <name_tables2>, and of the Courant

! ! statistics to <kmain>

! ndiagp2 = -1 ! interval for output of time averaged

! ! fields on files <name_mmix.b>,

! ! <name_tables3>

! !--- checkpoints

! name_check = ’check.d’ ! output filename of mixing ratios at

! ! checkpoints (relative to <path_out>/)

! ncheck = 0 ! interval for output of tracer mix ratios

! ! at checkpoints

! noindc = 0 ! actual number of checkpoints (max. 10)

! indc = 0 ! indices of checkpoints (i,j,l)

! !--- computational parameters

! limits = .FALSE. ! prevent negative tracer masses?

! couranttarget = -1.0_kc ! If set to something between 0 and 1,

! ! adaptive integration stepwidth is

! ! switched on, which =tries= not to

! ! exceed <couranttarget> (preliminary

! ! implementation).

! czeta = 1.0_kc ! scaling factor for convection

! czetak = 1.0_kc ! scaling factor for vertical diffusion

! ndiff = 0 ! interval for horizontal diffusion

! ! (currently not implemented)

/
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Appendix F

Diagnostic Results

F.1 The Effects of Varying Grid Resolutions

F.1.1 Surface Point Emissions

The setup of this synthetic simulation comprised a stationary tracer emission of 1 kg/s into
a single surface pixel over a period of a month, starting at 1st January or July 1993. The
emission sites were selected according to different mean atmospheric environments: Paris,
Manaus (Brazil), Bombay, Los Angeles and Zotino (Siberia). TM3 was run in version 3.8a
and fed with ERA-15 reanalysis data of all available resolutions, i.e. cg, fg, vfg and xfg.

Surface Layer Maps of Monthly Means

The following pages 76–95 show surface-layer maps of monthly mixing ratio means χ̄
on the left doublepage, respectively, and the relative deviations compared to xfg results
(χ̄ − χ̄xfg)/χ̄xfg on the corresponding right doublepage. The resolutions are cg (top left),
fg (top right) and vfg (bottom left) versus xfg (bottom right), the finest available. In the
deviation plots the monthly mean for xfg itself is displayed, and grid cells with a mixing
ratio in the corresponding xfg cell of less than 10−4 times the global xfg maximum were
masked out. Furthermore, relative deviations greater than 2.33 were reset to this value,
or with other words, the last class in the deviation color bar is open to high values.

Surface-Layer Maps of Instantaneous Mixing Ratios

The relative deviations of instantaneous mixing ratios after the simulated month were
in the same order of magnitude (not shown). Map panels of instantaneous surface-layer
mixing ratios for the different resolutions are shown on pages 96–105.

Meridional Vertical Cut in Pressure Coordinates

For the emission location Manaus, vertical meridional cuts of instantaneous tracer mixing
ratios are shown on pages 106–107.
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F.1.2 Radon

This simulation setup comprised a stationary emission of 222Rn with 1 atom/cm2 over
land for the simulation intervals July and December 1993. One month spin-up preceded,
respectively. The ice-covered areas Antarctica, Greenland, Iceland, Baffin Island, Svalbard
and Novaja Semlia were assumed to have zero emission. TM3 was run in version 3.8 and
fed with the ERA-15 reanalysis data of all available resolutions, i.e. cg, fg, vfg and xfg.

Following results are shown on the subsequent pages:

• surface maps of the monthly mean activity, vertically integrated over the thickness
of the lowest cg layer for better comparison (pp 110–111),

• zonal averages of the monthly mean activities (pp 112–113),

• vertical cuts at the latitudes 50◦N and 0◦ (pp 114–117), and

• monthly mean budgets of 222Rn for eight different atmospheric pools: Eurasia, North
America, North Atlantic and North Pacific, with each area subdivided in the vertical
into boundary layer and free troposphere (page 118).

Within the panels the different resolution maps are placed as follows:

cg fg
vfg xfg .
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Figure F.1: Monthly mean budgets of 222Rn in kg for eight different pools: Eurasia, North
America, North Atlantic and North Pacific, with each area subdivided in the vertical into
boundary layer and free troposphere. The boundary layer has been approximated by the
collectivity of model layers with a monthly mean pressure greater than 700 hPa.
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F.1.3 Sulfur Hexafluoride SF6

The setup for this simulation followed the TransCom 2 protocol [Denning et al., 1999],
with the exception of using corrected SF6 emissions and initial mixing ratios from start
instead of applying post-adjustments to the simulation results. The year under consider-
ation was 1993 with four years spin-up, starting from a uniform SF6 mixing ratio of 1.93
pptv. TM3 was run in version 3.8 and fed with ERA-15 reanalysis data of all available
resolutions, i.e. cg, fg, vfg and xfg.

Surface Maps and Zonal Averages

The following two pages show maps of SF6 annual mean surface mixing ratios and zonal
averages of the vertical SF6 distribution in pressure coordinates, for the four experimental
resolutions, arranged in the picture panels according to resolutions like

cg fg
vfg xfg .
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Atlantic Transect

High-volume surface air spot samples were collected during an atlantic cruise of the re-
search ship Polarstern in November 1993 from 40◦N to 56◦S [Maiss et al., 1996]. Their
locations are shown in the following picture:

These measurements are compared in figure F.2 with November mean values, computed
by TM3 at the same coordinates. They show remarkably little resolution dependency.
Offsets of ∼ -1.1 ppt, estimated by weighted least-square fits to the observations, have
been subtracted from the model values. The vertical bars show the standard deviations
of the respective TM3 November time series.
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Figure F.2: Comparison of Polarstern transect measurements with TM3 November means
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Time-Series at Background Stations

In the following panel, SF6 mixing ratio time-series for three sampling sites are de-
picted and compared with modelling results, for Alert (82.45◦N 62.51◦W), Izaña (28.3◦N
16.48◦W) and Neumayer (70.66◦S 8.25◦W) (from [Maiss et al., 1996]). Offsets of ∼ 0.1
pptv were added to the modelling results, and a quadratic trend has been subtracted from
modelled and observed mixing ratios.
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Furthermore, the annual mean mixing ratio difference between the northern (arctic) back-
ground station Alert and the southern (antarctic) background station Neumayer are given
below:

obs cg fg vfg xfg
∆χ [pptv] 0.396 0.381 0.377 0.362 0.359

Interhemispheric Transport

Interhemispheric Exchange Times τ ex This quantity serves as measure for the re-
sistance of the tropical circulation system (including the intertropical convergence zone
ITCZ) to interhemispheric air mass exchange. It is derived from a linear ansatz between
the north-south tracer mass flux and the hemispheric tracer mass difference:

F̄NS =
1

τ ex

(
M̄N − M̄S

)
.
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Here, F̄NS denotes the temporally averaged mass flux from the northern to the southern
hemisphere and M̄N/S the temporally averaged hemispheric tracer masses.

For the present computational experiment, the averaging period stretches across the
year 1993. A ”two boxes” approximation was used:

τ ex = 2
M̄N − M̄S

ĒN − ĒS −
(

d(MN (t)−MS(t))
dt

) ,

where ĒN and ĒS denote the emission rate in the northern resp. southern hemisphere.
The anually averaged time derivative in the denominator was approximated by linear
regression of the time series MN/S(t), with typical regression coefficients r2 � 0.7. The
results show a resolution dependency:

resolution cg fg vfg xfg
τ ex [y] 1.18 0.951 0.878 0.865 .

Pole-to-Pole Surface Mixing Ratio Difference This quantity was computed as an-
nual average for 1993:

resolution cg fg vfg xfg
χ̄NP − χ̄SP [pptv] 0.3897 0.3865 0.3692 0.3668

F.2 Regional Transport: The ATMES-II Modelling Exer-

cise

Tracer release experiments represent an outstanding opportunity for the verification of
atmospheric transport models because of two reasons. Firstly, by controlled release of
an easily detectable agent the main disadvantage of other verification methods, the lack
of exact knowledge about flux strength and location of the tracer source, is removed.
Secondly, by organizing a dense sampling network prior to the release, the real atmospheric
tracer distribution at the surface or in 3d may be rather well known..

ETEX, the European T racer EXperiment, included two releases of cyclic perfluoro-
carbons at Monterfil in the North-West of France (48◦03’30”N, 2◦00’30”W), with westerly
flows over western and central Europe during the experiment. The first release started at
16:00 UTC on October 23, 1994, and lasted 11 hours and 50 minutes. 340 kg of PMCH
(perfluoromethylcyclohexane) were released. 168 ground-level sampling stations in west-
ern and eastern Europe established the sampling network with an average spacing between
two sampling stations of about 80 km (figure F.3). The sampling timestep was 3 hours on
average. Airborne campaigns with three aircrafts complemented the ground network.

About two years after the ETEX releases, the ATMES-II (Atmospheric Transport
Model Evaluation Study II) modelling exercise was launched. Participants were required
to calculate the concentration fields of the first ETEX tracer experiment using ECMWF
analyzed meteorological data as input of their own atmospheric transport model. The
requirement of using ECMWF data should point out the differences of the participating
models in respect of transport calculation and usage of the meteorological data. But this
requirement was not compulsory.
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Figure F.3: The ETEX sampling network with the respective station-IDs (figure taken
from [ETEX homepage]).

The TM3 simulation setup for the ATMES-II modelling exercise comprised a model
run for the concerning time interval with the highest available input data resolution for
that time, the vfg resolution of the NCEP/NCAR reanalysis data (1.875◦x1.875◦, 28 lay-
ers) with TM3 3.8a. A three-hourly concentration output at all 168 ground-level station
locations, synchronous to the reference times of the observations, constituted the data
base for the analyses in the subsequent paragraphs. The observational dataset (version
etex1 v1.1.960505) was obtained from [ETEX homepage].

Analysis of the Model Results

The following definitions of statistical indicators follow those of the ATMES-II report
[Mosca et al., 1998], in order to be comparable with other modelling results. The analysis
is subdivided into global analysis, where time- and spacial information is disregarded, spa-
cial analysis, where the time instants are fixed, and temporal analysis, where the locations
are fixed.

As one can observe in figure F.4 on p. 128, the point tracer source creates a plume
with sharp gradients on small scales. This situation makes high demands on the model’s
advection package. Furthermore, to resolve spatial structures comparable in scale with
the station mesh-width of about 80 km, a model resolution of at least 40 km would be
required1. With the available horizontal resolution of about 135 km x 210 km one cannot
expect too much.

Definitions

In the following list of computed indicators, χ denotes the tracer concentration, Pi the
prediction (model value) at time/location i, and Mi the measurement at time/location i.

1With a standard finite differences transport scheme. The situation with TM3 is slightly better, because
it uses additional sub-scale information of the tracer distribution within the grid cells.
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B Bias, the average difference between paired predictions and measurements,
B = 1

N

∑
i (Pi − Mi), is an indicator for over- or underestimation.

Fex Factor of exceedance. Let NP>M be the number of (Pi,Mi)-pairs where
the predictions exceed the measurements. The factor of exceedance is
the fraction of predictions that are too large, normalized to give zero in
case of an equal number of over- and underpredictions: Fex = NP>M

N − 1
2 .

It can take values between −1
2 (everything is underpredicted) and +1

2
(everything is overpredicted).

FA2 The FAk coefficient is the fraction of predictions within a factor k from the
measurements, FAk = prob (P ≤ k · M ∧ P ≥ M/k), for non-zero mea-
surement values. FAk can take values between 0 and 1.

NMSE The normalized mean square error NMSE is an index for the magni-
tude of the deviations between predictions and measurements:
NMSE = 1

NP̄M̄

∑
i (Pi − Mi)

2.

P̄ , M̄ Mean

� Pearson’s linear correlation coefficient, −1 ≤ � ≤ 1.

ta Arrival time of the tracer cloud at a fixed location. Earliest time instant
with χ(t) ≥ χmax/e.

td Duration time of the tracer cloud at a fixed location. Time interval with
χ(t) ≥ χmax/e.

Global Analysis

FA2 Fex P̄ M̄ � B NMSE
[ng/m3] [ng/m3] [ng/m3]

0.315 0.35 0.15 0.095 0.43 0.057 16.8

Numerical diffusion, probably induced by the comparatively coarse model resolution, leads
to overpredictions at many stations. The factor of exceedance Fex indicates 85 % overpre-
dictions. A positive bias B of 0.057 ng/m3 indicates this trend also. That the bias B does
not equal the difference of the means originates from missing values in the observational
dataset. Only 31.5 % of the predictions are within a factor of 2 around the measurements.
The correlation coefficient of �2 = 0.18 is small compared to other ATMES-II models.

Spatial Analysis

This part of the analysis is restricted to a figure of concentration contours at different
times after the release start (fig. F.4, p. 128). Probably numerical diffusion, induced
by the coarse model resolution, is the reason for comparatively small maximum tracer
concentrations on the modelling side, as well as for oversized horizontal dimensions of the
tracer cloud. The splitting into a north-western and south-eastern part, as visible in the
observations from 36 hours after release start, could not be reproduced by the model at
all.
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Temporal Analysis

The temporal analysis was carried out for 11 stations, forming approximately two arcs
perpendicular to the main cloud trajectory, the first arc at a distance of approximately
600 km, the second at a distance of about 1200-1400 km from the source (figure F.5, p.
129).

Station-ID ∆χmax ∆ta ∆td � B NMSE
[ng/m3] [h] [h] [ng/m3]

NL05 -1.35 -18 15 -0.05 0.02 6.8
B05 0.56 -15 15 0.29 0.24 16
NL01 -0.43 -12 9 0.31 0.14 5.8
D44 0.66 0 0 0.98 0.16 2.7

DK05 -1.70 -6 12 0.77 -0.19 12
DK02 -0.27 -6 9 0.78 0.02 1.2
D42 -1.01 -6 3 0.72 -0.11 2
D05 -0.18 0 3 0.94 0.02 0.27
PL03 -0.32 -3 3 0.84 -0.03 1.2
CR03 -0.05 0 3 0.92 0.03 0.64
H02 -0.36 0 12 0.76 -0.03 3.8

Underpredictions of the peak height at all stations but two characterize the scene here
(negative ∆χmax). The tracer front arrives at the first arc far too early, what might be
attributed again to numerical diffusion, as well as the high positive bias values especially
for the stations of the 1st arc. The duration of the front is too long, partially much too
long.

F.2.1 Conclusions

Underpredictions of the peak concentrations but mainly overpredictions in the ”global”
average, tracer fronts that arrive too early and overlong front durations indicate that
the used model resolution is too coarse for this kind of experiment, leading to numercial
diffusion as prominent error source. One main feature of the large-scale transport, the
splitting into two sub-clouds over the Netherlands, is not reproduced at all.

This experiment will be repeated when more highly-resolved preprocessing data from
the ECMWF ERA-40 reanalysis are available.
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Figure F.4: PMCH surface concentrations, as observed (left column) and modeled by TM3
(right column, different scale!), for 24, 36, 48 and 60 hours after release start. Contouring
method was triangular interpolation.
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Figure F.5: Location of the stations selected for temporal analysis (figure taken from
[ETEX homepage]).
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Appendix G

Getting the Code

To get the most recent TM3 sources, preprocessed meteorological input files and the up-
to-date manual please contact

Martin Heimann
Max Planck Institute for Biochemistry
P.O. Box 10 01 64
07701 Jena
GERMANY

martin.heimann@bgc-jena.mpg.de

There exists a TM3 mailing list to swap experiences and make suggestions. To sign in,
please contact Martin Heimann.
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