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Abstract

The presented thesis focuses on life-long and interactive learning for
identification and categorization tasks. The fundamental and still largely
unsolved problem of life-long learning with artificial neural networks is
the so-called “stability-plasticity dilemma”. To achieve plasticity the
learning approach must be able to continuously integrate newly acquired
knowledge into its internal representation, while for the stability the
conservation of this knowledge is required.

To achieve interactive learning for difficult recognition problems the
separation into an intermediate and fast learning short-term memory
(STM) and a slower learning long-term memory (LTM) is proposed.
For the incremental build up of the STM a similarity-based one-shot
learning method was developed. Furthermore two different memory
consolidation algorithms were proposed enabling the incremental learn-
ing of LTM representations for various identification and categorization
tasks. For identification tasks different modifications to the Learning
Vector Quantization (LVQ) network architecture are proposed. The
major changes of the LVQ approach are an error-based node insertion
rule and a node dependent learning rate. Both extensions enable incre-
mental and life-long learning for identification problems. For life-long
learning of categories this extended LVQ model was combined with a
forward-feature selection method. This selection method incrementally
extracts small sets of category-specific features and therefore allows for
a compact representation of categories.

In several interactive and offline recognition experiments the efficiency
and performance of the proposed learning methods could be shown for
difficult visual recognition problems. Additionally an active vision sys-
tem was developed that utilizes the proposed learning methods. This
integrated system enables learning of visual representations based on
natural and complex-shaped objects presented in hand.
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Zusammenfassung

Die vorgelegte Arbeit beschäftigt sich mit lebenslangem und interak-
tivem Lernen von Identifikations- und Kategorisierungsaufgaben. Das
grundlegende Problem von lebenslangem Lernen mit Hilfe künstlicher
neuronaler Netze ist das sogenannte “Stabilitäts-Plastizitäts Dilemma”.
Um die Plastizität zu gewährleisten muss ein neuronales Netz in der
Lage sein, neues Wissen zu erwerben. Zusätzlich muss für die Stabilität
dieses Wissen vor dem Verlust bewahrt werden.

Um die Fähigkeit des interaktiven Lernens zu gewährleisten wurde die
Aufteilung in eine temporäres und schnell lernendes Kurzzeitgedächtnis
und ein langsamer lernendes Langzeitgedächtnis vorgeschlagen.
Zum inkrementellen Aufbau des Kurzzeitgedächtnisses wurde ein
ähnlichkeitsbasiertes und sogenanntes “one-shot learning” Verfahren
vorgeschlagen. Für die Konsolidierung dieser Repräsentation in das
Langzeitgedächtnis wurden zwei verschiedene Methoden betrachtet,
die für das Lösen von nahezu beliebigen Identifikations- und Kate-
gorisierungsaufgaben geeignet sind. Um diese Lernfähigkeit für Iden-
tifikationsprobleme zu erreichen, wurden verschiedenen Erweiterungen
für die sogenannte “Learning Vector Quantization (LVQ)” Netzwerk-
architektur vorgeschlagen. Die wichtigstens Änderungen sind die Ein-
führung einer fehlerbasierten Knoten-Einfügeregel und die Verwendung
einer knotenspezifischen Lernrate. Beide Erweiterungen ermöglichen
inkrementelles und lebenslanges Lernen für Identifikationsaufgaben. Im
Gegensatz dazu wurde für das Lernen von Kategorien dieses modifizierte
LVQ Netzwerkmodell mit einem Verfahren zur Merkmalsselektion kom-
biniert. Dieses Verfahren selektiert kategoriespezifische Merkmalsdi-
mensionen und ist daher geeignet um besonders kompakte Kategori-
erepräsentationen zu lernen.

In verschiedenen Erkennungsexperimenten konnte die Effizienz und
die Leistungsfähigkeit der vorgeschlagenen Verfahren belegt wer-
den. Zusätzlich wurde ein integriertes Erkennungssystem entwickelt,
welches die vorgeschlagenen Verfahren einsetzt. Dieses Gesamtsys-
tem ermöglicht das interactive Lernen visueller Repräsentationen von
beliebigen Gegenständen, welche, in der Hand gehalten, dem System
gezeigt werden.
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Chapter 1

Introduction

The progress in computer science and engineering was enormous in the
recent decades. This development is especially visible if you compare
the first digital computer Z3 developed by Konrad Zuse with currently
available personal computers. Together with the evolution of the com-
puter hardware also the complexity of software increased continuously.
This development started with very simple mathematical programs and
led to large integrated software systems with several billion lines of code.
Although the progress in computer hardware and software went through
dramatic changes in the past, comparably little advances has been made
with respect to the modeling of cognitive capabilities like scene under-
standing, object identification or categorization.

These abilities are so easy for humans, that we rarely notice its impor-
tance in carrying out everyday exercises. One fundamental requirement
for achieving cognitive functions is the ability to learn arbitrary repre-
sentations. With respect to visual knowledge, especially the robustness
and the capacity for memorizing countless objects and categories during
the entire life makes the human visual system superior to all currently
existing technical approaches. Furthermore also the ability to transfer
memorized information and skills to completely different situations is
an impressive capability of humans, where artificial cognitive systems
typically can only be applied to their prespecified functions.

One aspect with respect to the distinctly slower progress for creating
brain-like intelligence is that the research on artificial cognitive func-
tions only recently began to focus more on integrated systems rather
than individual functions. Nevertheless there is still the focus on in-
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dividual parts like the feature extraction or the learning with neural
networks. Although in isolated research fields a continuous scientific
progress is visible, without the combination of many of such individual
pieces from different research fields no artificial system with human-like
performance will soon be achieved. This basically is because also the
human brain utilizes different situation-dependent processing principles
and memory representations to achieve higher cognitive functions. A
further example is the development of complex humanoid robots. These
robots can perform complex movements such as walking or running, but
still are unable to learn relatively simple tasks like coffee brewing or un-
derstanding their surrounding environment.

Another reason for this slow progress is that the underlying higher cog-
nitive mechanisms in the human brain are still largely unknown. Espe-
cially with respect to the formation of new memories and the extraction
of knowledge only the basic principles are known so far. This rough un-
derstanding of the fundamental principles are a good starting point for
the development of similar cognitive functions, but for the detailed and
biologically realistic modeling further information is required. Although
the precise mechanisms of knowledge acquisition are largely unknown,
nevertheless it is one key component of many human abilities. Specifi-
cally it is important that this capability is open-ended, allowing learning
during the complete life-time of a human. Furthermore it is known that
the formation of memory is influenced by behavioral relevance. This
strongly influences when new information is acquired, but also at which
position in the representation this knowledge should be incorporated.

This learning capability inspired different scientific disciplines including
research on artificial neural networks. The most important capability of
these networks is the ability to learn arbitrary input-output mappings
and therefore can be applied to a large variety of problems. Of partic-
ular interest is the learning based on pairs of input and target vectors,
because this enables the approximation of problems where the critical
parameters and working principles are largely unknown. The learning
ability of these mathematical models is accomplished by adapting their
weights or more general their internal representation based on a given
optimization criterion. Especially this automatic adaptation of the net-
work representation makes this group of learning approaches interesting
for identification or categorization tasks. For these problems commonly
the critical parameters (e.g. the most distinctive features to discriminate
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a group of objects) of the desired input-output mapping are unknown in
advance, but artificial neural networks are able to approximately extract
these determining factors. Therefore these learning methods can in gen-
eral be utilized for the development of cognitive abilities. Nevertheless
the major drawback of neural networks is that they are commonly sep-
arated into a training and test phase. Only during the training phase
the network weights are adaptable, but in the test and operation phase
the parameters representing the learned knowledge are fixed. This is
sufficient for several engineering tasks, but for the creation of cognitive
functions often a continuous and open-ended learning is required.

In the presented dissertation we therefore focus on open-ended and con-
tinuous learning, which is commonly termed as life-long learning. We
believe that such a learning capability is one crucial requirement to
build intelligent systems with human-level performance. Also for hu-
mans these impressive recognition abilities are not innate, but can be
acquired by continuously learning and interacting with the environment.
Therefore in the following life-long learning methods are proposed that
can be utilized for arbitrary identification and categorization tasks. Ad-
ditionally we concentrate on the integration of these methods into larger
active vision systems. This integration combines learning with further
visual and motor abilities to realize functions that can not be achieved
with the individual system parts alone. Of particular interest in this
dissertation is the development of vision systems that enable interac-
tive learning in cluttered environments based on complex-shaped objects
presented naturally held in hand. Thus we emphasize that the proposed
learning algorithms are applicable in unconstrained and unpredictable
environments, which normally can not be achieved with common ar-
tificial neural networks. We suppose that the combination of life-long
learning approaches and their applicability in unconstrained environ-
ments provide the basis for the development of further cognitive func-
tions.

1.1 Problem Description

Human beings are able to acquire and maintain knowledge during their
complete lifetime. This outstanding ability is called life-long learning
(Bagnall, 1990). In contrast to this artificial neural networks are typi-
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cally only adapted during their learning phase and the weights, present-
ing the learned knowledge, are fixed afterwards. Such a fixed learning
architecture can be powerful in constrained and statical environmental
settings but may not be suitable for technical applications like assistive
robots or interactive agents. This is because these systems require a
continuous error correction and need to enlarge their knowledge base to
operate in changing and unpredictable environments.

The fundamental problem of life-long learning with artificial neural net-
works is the “stability-plasticity dilemma” (Carpenter & Grossberg,
1987). Here the term plasticity refers to the ability of a learning system
to incorporate new acquired knowledge into its internal representation.
One common solution to achieve this plasticity is the usage of incremen-
tal neural networks like the Growing Neural Gas (Fritzke, 1995). For
this neural network architecture the training process starts with a min-
imal network and iteratively increases the network size based on some
insertion criteria. Thus the final dimensionality reflects the complexity
of the current learning task. However, the already learned knowledge
should be preserved to guarantee the stability of previously acquired in-
formation. In contrast to the incorporation of new knowledge based on
incremental learning techniques the preservation of knowledge is still an
unsolved problem. This stability problem especially occurs if the net-
work model is trained with a limited and changing training ensemble,
which is common for life-long learning tasks because it is unfeasible to
store all experiences that are encountered during the complete opera-
tion time of the system. As a consequence the training with such data
ensembles typically causes the well-known “catastrophic forgetting ef-
fect” (French, 1999), which means that with the incorporation of newly
acquired knowledge, parts of the previous learned information is quickly
fading out.

Commonly life-long learning architectures are approaching the so-called
“stability-plasticity dilemma”, but the requirements for such learning
methods are also dependent on the targeted recognition task. For iden-
tification tasks, where the target is the separation of a specific instance
(e.g. a physical object) from all other instances, the combination of
incremental learning methods with stability considerations of matured
network parts are typically sufficient. In contrast to this for catego-
rization tasks the mapping from several instances to a shared attribute
(e.g. the basic shape) is learned. This means for the example of vi-
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sual categorization, where the individual objects (e.g. red-white car)
typically belong to several different categories, a decoupled represen-
tation for each category (for category “red”, “white” and “car”) has
to be learned. This disengagement leads to a more condensed repre-
sentation and a higher generalization performance compared to object
identification architectures and can be achieved with additional metri-
cal adaptation or feature selection methods. However, due to the fact
that exemplars of a category are incrementally presented, considerable
changes to feature weighting and selection can occur. Therefore for
categorization tasks a balance between the stability of knowledge and
the correction of wrong category representations must be found, which
complicates the learning of such representations compared to identifi-
cation tasks. Finally for feature weighting and selection methods no a
priori knowledge with respect to the extracted feature modalities should
be used to allow learning of arbitrary categories based on the optimal
feature combinations.

1.2 Definition of Common Terms

In the following the most commonly used terms are defined. These defi-
nitions are especially important because some of these terms are widely
used in literature. Therefore it is necessary to clarify their meaning in
the presented dissertation.

• Online Learning: This term or its synonym real-time learning
is used for the ability of fast learning and immediately recognizing
trained stimuli. This capability mainly applies to “one shot learn-
ing” methods like the Adaptive Resonance Theory (ART) (Car-
penter et al., 1991). A special property of online learning is the
possibility of active learning with an interactive correction of er-
rors during the training process.

• Interactive Learning: We use the term interactive learning for
the ability of an recognition system to acquire knowledge in direct
interaction with a human tutor. To achieve this property a fast
learning algorithm is essential to allow a rapid incorporation of
newly acquired information into the overall knowledge. In general
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this capability can be achieved with online learning methods but
also fast iterative learning approaches are possible.

• Incremental Learning: This term refers to the ability of a net-
work architecture to allocate increasing numbers of neurons, depen-
dent on the complexity of the current task. Such network archi-
tectures are normally initialized with a minimal number of neurons
and are able to add resources based on some node insertion criteria
using the training error.

• Life-Long Learning: We define life-long learning as the ability
to continuously acquire new knowledge. This property of a neural
network can be achieved by combining incremental learning with
additionally considering the stability of already learned knowledge.
Specifically the maintenance of the long-term stability is a fun-
damental problem of artificial neural networks that is still largely
unsolved. This problem especially occurs if a changing and non-
stationary training set is used, where only a portion of data is
visible to the learning method.

In the presented dissertation we propose life-long learning methods for
different recognition tasks. Therefore in the following a short definition
of the terms identification and categorization task is given.

• Identification Tasks: For identification tasks several one-to-one
stimulus response mappings are learned, where all entities (e.g. an
object view) of an instance (e.g. a physical object) are mapped to
a certain class label. Every time a new entity arrives the highest
activated output neuron is selected in a one-out-of-n fashion and
the new entity is assigned to the corresponding label of this neuron.

• Categorization Tasks: In contrast to identification, for catego-
rization tasks the learning of a group of instances to a common re-
sponse (many-to-one mapping) is required. Typically these group
of instances share several common properties (e.g. a visual simi-
larity or a similar behavior response). New entities are therefore
assigned to an arbitrary number of properties. These properties
are called categories in the following.
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1.3 Inspiration from Biology

One inspiration from biological findings that influenced the presented
work comes from several studies (Palmeri & Gauthier, 2004; Tarr &
Bülthoff, 1998) showing strong evidence in favor of view-dependent and
appearance-based representations in the human brain, as opposed to a
strongly structuralist representation using three-dimensional primitives
(Biederman, 1987). In the following a short review of further related
findings from psychology and neuroscience is given with respect to in-
sights in memory formation and life-long learning.

1.3.1 Memory and Learning in the Human Brain

There is still an ongoing debate about the brain regions and mechanisms
that are essential for the short-term (STM) and the long-term memory
(LTM) system in human brains (Ranganath & Blumenfeld, 2005). Nev-
ertheless the separation of memory into STM and LTM is an established
concept (Izquierdo et al., 1999) in psychology and neuroscience. LTM
and STM, being optimized for different tasks, can be distinguished with
regard to the level of detail, the number of items that can be stored and
the time span the information can be memorized. The storage capacity
of the STM is limited to a few items and the information can be mem-
orized only for a relatively short period compared to the LTM, which
can represent an enormous amount of information for long periods.

Furthermore there is a common distinction with regard to the learn-
ing speed in different brain regions. The defining property of the medial
temporal lobe (MTL), including the hippocampus, is the ability to learn
fast and immediately recognize a once presented stimulus, even if this
stimuli was completely unknown before (O’Reilly & Norman, 2002). In
technical applications this capability is often called “one shot learning”.
Recently it also has been affirmed that the MTL is not only important
for spatial memory, but also for a non-spatial task of object recogni-
tion (Broadbent et al., 2004). In contrast to this the neocortex learns
much slower, but the consolidation process between MTL and neocortex
results in a reduction of the representational effort and a more general-
ized structure of the presented stimuli is extracted (O’Reilly & Norman,
2002). The primary questions concerning this separation are (McClel-
land et al., 1995):
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• What is the benefit of the separation into MTL and neocortex?

• Why is new information not directly encoded into the neocortex,
especially because most tasks crucially rely on these representa-
tions?

• Why is the learning process in the neocortex so slow compared to
the MTL?

One opinion regarding this questions comes from the research on arti-
ficial neural networks, where the combination of a fast learning STM
and a slow learning LTM is considered to be one solution to avoid the
“catastrophic forgetting effect” (McClelland et al., 1995; French, 1999).
We also consider this memory separation important for life-long learning
with artificial neural networks, therefore in the following the memory
consolidation process for the information transfer between these differ-
ent memory systems is discussed in more detail.

1.3.2 Memory Consolidation

Already more than a century has passed since Müller & Pilzecker (1900)
proposed the memory consolidation hypothesis. They found that mem-
ory of newly learned information is initially in an unstable state that can
easily be destroyed. Another fundamental work of this early research on
memory consolidation was done by the psychologist Ribot who first sug-
gested that memories might be gradually reorganized over time (Ribot,
1881). He found out that the memory loss following a brain damage
typically effects recent memories more than distantly acquired mem-
ory. This time-dependent effect became later known as Ribots gradient
(Frankland & Bontempi, 2005).

A large body of experimental evidence beginning from classical work of
Scoville & Milner (1957) shows, that the medial temporal lobe (MTL)
is involved in the transfer of information from STM to LTM, with first
changes due to learning occurring in the hippocampus (Wirth et al.,
2003). However, based on studies of patients with temporally-graded
retrograde amnesia the role of the medial temporal lobe and especially
the hippocampus is assumed to be only temporary. After successful
storing of contents in the neocortex, the LTM becomes gradually inde-
pendent of the MTL structures (Squire & Zola-Morgan, 1991).
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Neocortex
Time

Medial Temporal Lobe

Synaptic SystemMemory Trace
ConsolidationConsolidation Representation

Stable Memory

Figure 1.1: Standard Memory Consolidation Model. Starting point of the memory

consolidation process is a memory trace in distributed neocortical regions. This trace

is based on synaptic consolidation encoded and maintained in the medial temporal lobe

(MTL), where especially the hippocampus plays a crucial role. This consolidation phase

is commonly considered to be quite fast compared to the system consolidation that can

take days to weeks to finish. During the system consolidation successive reactivation of the

hippocampal-cortical network occurs that gradually leads to a strengthening or establishing

of new cortical-cortical connections. Furthermore this successive reactivation causes the

memory to become over time more stable and also independent from the MTL.

The current standard model of memory consolidation (Frankland &
Bontempi, 2005) is illustrated in Fig. 1.1 and can at least be divided
into two different phases (Medina et al., 2008). The first phase is called
synaptic consolidation, which is considered to last minutes up to a few
hours. Several studies have investigated this synaptic consolidation and
there is increasing evidence that the creation and maintenance of hip-
pocampal long-term potentiation (LTP) during this first phase is a pre-
condition for memory consolidation in the neocortex (McGaugh, 2000).
The second phase is called system consolidation and requires a much
broader time scale to finish. It is assumed that reactivation of hip-
pocampal memory traces are required for the reinstatement of neural
activity patterns in the cortex. This reinstatement leads to a sub-
sequent stabilization and refinement of the cortical traces (McGaugh,
2000). These processes have the effect that the internal structure of
cortical connections are changed over time and after this reorganization
process the memory becomes gradually independent of hippocampus
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and related structures (Bontempi et al., 1999). This consolidation pro-
cess necessarily requires the synthesis of different structure proteins and
also transcription factors, which is most probably one reason for the
slow learning progress in the neocortex. Additionally it is known that
several modulatory mechanisms influence the formation of memory like
the emotional arousal that is connected to a part of the subcortical brain
region amygdala.

Finally it can be stated that the early memory consolidation mecha-
nisms in the hippocampus are partially understood, but the knowledge
about how this information is transformed into life-long memories in
cortical networks is much weaker (Frankland & Bontempi, 2005). This
is due to the fact that system consolidation can take several weeks or
longer. Therefore it is difficult to distinguish changes in the metabolism
of the brain due to new experiences from the final stages of the system
consolidation process. Furthermore with respect to memory consolida-
tion there is evidence that for some kind of memories sleep is beneficial
for memory formation in the neocortex (Maquet, 2001; Buzsáki, 1996).

1.3.3 The Cholinergic System

The cholinergic system is one of the phylogenetically old modulatory
systems that influences the brain by a diffuse projection of acetylcholine
(ACh) into the extracellular space of many brain regions. In general it
is known that the concentration of ACh increases with attention and
novelty of sensory stimuli (Hasselmo & McGaughy, 2004). Although
there are many effects assigned to the cholinergic system (Sarter et al.,
2003) in the following we concentrate on the effect of this system to the
memory formation and its modulatory influence on synapses.

It is known that cholinergic modulation enhances long-term potentiation
(Patil et al., 1998) and therefore high ACh concentrations are beneficial
with respect to the temporary storage of new information in the MTL.
On the contrary a low concentration of ACh enables the consolidation
process by a disinhibition of cortico-cortical connections. As a conse-
quence this substance influences the memory formation by switching be-
tween modes of acquisition and consolidation (Hasselmo & McGaughy,
2004). Furthermore this modulatory influence is known to reduce the
interference of new representations with already stored knowledge by
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stronger suppressing previously potentiated synapses compared to naive
synapses (Linster et al., 2003). In technical terms this effect can be in-
terpreted as a modulation of the learning rate for each synapse with
the effect that the stronger a synapse was potentiated in the past the
smaller the learning rate gets. Therefore this modulatory effect of the
cholinergic system supports life-long learning by reducing the so-called
“catastrophic forgetting effect” in the neocortex.

1.4 The Scope of this Dissertation

We are targeting for interactive learning that requires fast algorithms
and an efficient storage of information. However, the interactive learning
and the targeted ability to solve complex recognition tasks is contradic-
tory. Therefore we propose an intermediate and fast learning short-term
memory (STM) representation to relax this conflict. The learning of the
STM representation utilizes a similarity-based one-shot learning method
and is combined with a previously developed feature extraction hierar-
chy. Based on this combination we could show interactive learning of
many different natural objects under full 3D rotation. Although good
recognition performance can be achieved with this learning method the
high representational costs for storing a large number of representatives
is the major drawback.

Therefore two different life-long learning approaches are proposed en-
abling the memory consolidation from the limited and continuously
changing STM into a condensed long-term memory (LTM) represen-
tation. The proposed memory consolidation methods are the major
contribution of the presented dissertation and can in general be applied
to arbitrary identification and categorization tasks. For both recognition
tasks different modifications to the Learning Vector Quantization (LVQ)
(Kohonen, 1989) network architecture are suggested. For the identifi-
cation tasks we propose a novel rule for incrementally allocating LVQ
prototype nodes to efficiently adapt the network size to the difficulty
of the recognition task. Furthermore a node-dependent learning rate is
suggested to maintain the stability of matured network parts. Based on
these modifications we could show incremental and life-long learning of
many complex-shaped objects with a good identification performance.

For the more challenging task of incremental learning of multiple cat-
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egories we propose to combine an LVQ-based learning method with a
category-specific feature selection. The vector quantization part utilizes
similar modifications as suggested for the identification problems. Ad-
ditionally the feature selection enables several metrical “views” on the
representation space of each individual prototype node. This capabil-
ity is important to efficiently separate cooccuring categories, because
natural objects commonly belong to different categories. Similar to the
allocation of new prototype nodes also the category-specific features are
incrementally learned based on a dynamic feature weighting procedure.
The incremental acquisition of categories therefore requires a balance
between the correction of wrong representations and the stability of
the learned knowledge. This makes the incremental learning of cate-
gories distinctly complicated compared to identification problems with
respect to approaching the “stability-plasticity dilemma”. Nevertheless
we could demonstrate the efficiency of our approach for a challenging
categorization tasks, where the learning is applied for several complex-
shaped and rotated objects.

With respect to the learning capabilities of our proposed methods we
also focused on the scalability with regard to the overall feature di-
mensionality and the difficulty of the learning task. This scalability is
especially important for the integration of the proposed learning meth-
ods into active vision systems. Therefore we suggest to integrate further
visual and motor functionalities to enable learning based on complex-
shaped objects held in hand as illustrated in Fig. 1.2. Based on this
integration we could show high-performance object identification and
learning of visual categories in unconstrained and changing environmen-
tal conditions. Interactive learning under such experimental conditions
is typically more challenging, whereas research on life-long learning nor-
mally concentrates on offline learning only. We suggest that the possibil-
ity of life-long learning in such unconstrained environments is one major
step with respect to the development of artificial cognitive systems with
human-level performance.

1.5 Structure of this Thesis

The presented dissertation is structured in the following way (see Fig. 1.3).
In the next Chapter 2 a brief outline over standard neural network archi-
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Figure 1.2: Interactive Learning of Visual Representations. The interactive learn-

ing of different visual representations is based on complex-shaped and hand-held objects

presented in the near range of an active vision system. Furthermore the corresponding

class hypothesis of the current presented object is communicated based on speech phrases,

while a human tutor can confirm or correct this hypothesis based on the integration of a

speech recognition system into a state-based user interface.

tectures is given, where we concentrate on the basic functionality and
their applicability to life-long and interactive learning problems. The
major contribution of this dissertation is the proposal of novel life-long
learning approaches for different learning tasks. In Chapter 3 we first
concentrate on life-long learning for identification tasks. The proposed
learning model is based on the interaction between an online learning
STM and a memory consolidation process for the learning of the cor-
responding LTM representation. In the following Chapter 4 a life-long
learning categorization algorithm is proposed that combines incremental
learning of an exemplar-based neural network with category-specific fea-
ture extraction. This proposed learning method enables the extraction
of a category-specific LTM representation based on the object-specific
STM model proposed in Chapter 3.

After the introduction of the different life-long learning methods for
identification and categorization tasks we concentrate in Chapter 5 on
the integration of these methods into a larger vision system. Besides the
different building blocks that are required to allow interactive learning
in unconstrained environments, we also investigate the scalability of the
proposed learning methods with respect to the overall feature dimen-
sionality and the difficulty of the learning task. Finally the achieved
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Figure 1.3: Structure of this Thesis. The presented dissertation is roughly subdivided

into three parts. The first part relates standard neural network models to the requirements

of life-long and interactive learning. In the second part we concentrate on life-long learning

methods to solve identification and categorization tasks that is the major contribution

of this dissertation. After the introduction of the learning approaches in the last part a

vision system was realized that allows identification or categorization of hand-held objects

in direct interaction with a human tutor.

results are summarized in Chapter 6, where additionally an outlook is
given.
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Chapter 2

Life-Long Learning with Standard

Neural Network Architectures
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Learning
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Figure 2.1: Requirements for Life-Long and Interactive Learning. In the fol-

lowing chapter the capabilities of standard neural network architectures are discussed with

respect to their usability for life-long and interactive learning tasks.

The topic of this dissertation is life-long learning for identification and
categorization tasks. Before the proposed approaches are described in
the next chapters we give a brief overview over standard neural network
models. The selected models are commonly used neural networks and
therefore can be applied to various learning tasks. For this overview we
compare the network topology and the basic learning principles. Addi-
tionally we discuss the usability of these network models with respect
to life-long learning, which requires the consideration of the so-called
“stability-plasticity dilemma” (Carpenter & Grossberg, 1987). Besides
life-long learning we are also targeting for fast and interactive learning.
Therefore an additional important aspect of this overview is the required
training time. Finally we constitute the selected artificial neural net-
work model that is the foundation of the proposed life-long learning
methods.
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Figure 2.2: Single Layer Perceptron. The Single Layer Perceptron (SLP) is composed

of an input and an output layer. The network output of neuron o is calculated based on

an activation and transfer function. As activation function typically the scalar product

between the weights w and the input vector xi is used, where commonly a Fermi function

is used as transfer function. Based on this network topology an SLP is able to learn any

linearly separable problem, which is illustrated on the right for a two-class problem.

2.1 Single Layer Perceptron

The Perceptron or Single Layer Perceptron (SLP) is the simplest form
of a neural network (Haykin, 1994) that can learn arbitrary linear func-
tions (Minsky & Papert, 1969). Such an SLP consists of an input layer
and an output layer as illustrated in Fig. 2.2. The biologically inspired
Perceptron (Rosenblatt, 1958) was proven to converge to a hyperplane
if the classes are linear separable (Rosenblatt, 1962). Based on a theo-
retical investigation it is known that the percentage of linear separable
functions with respect to the total number of possible functions rapidly
decays if the number of input neurons is increased (Wassermann, 1989).
Nevertheless for high-dimensional and sparse feature representations a
good generalization performance can be experimentally achieved com-
pared to more complex learning models (Kirstein et al., 2008). The
output pi

o for each neuron o in the output layer is calculated based on
scalar product activation and a transfer function Φ (e.g. a Fermi func-
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tion) in the following way:

pi
o = Φ(xiwo). (2.1)

Here xi = (xi
1, . . . , x

i
F ) is the training vector corresponding to input

pattern i with an overall feature dimensionality F . Furthermore wo =
(w1o, . . . , wFo) are the network weights from the input layer to the output
neuron o. Commonly SLP networks are trained with a gradient descent
method based on the generalized delta learning rule (Rumelhart et al.,
1986):

∆wfo = Θ (tio − pi
o) Φ′(pi

o) xi
f , (2.2)

where Θ is the learning rate and tio is the teach signal for input pattern
i and output neuron o. Additionally the Φ′(pi

o) is the first derivative of
the transfer function and xi

f is the feature activation of feature f .

The major advantage of SLP networks is the fast learning ability. Thus
the SLP architecture is applicable for interactive learning tasks, espe-
cially if sparsely activated features are used (Wersing et al., 2008). Nev-
ertheless with respect to life-long learning problems, were typically the
training set is limited and continuously changing, this network model
is unsuited. Basically this is caused by the fact that at each learning
step all network weights wo are modified. This has the effect that the
SLP is adapted to the current training ensemble, but already learned
knowledge is quickly fading out. Therefore SLP networks suffer from
the well-known “catastrophic forgetting effect” (French, 1999).

2.2 Multi Layer Perceptron

The Multi Layer Perceptron (MLP) is a cascade of SLP networks (Reed
& Marks II, 1998) and therefore can be seen as the generalization of the
simpler Single Layer Perceptron. In contrast to the SLP these networks
are composed of an input, an output layer and an arbitrary number of
hidden layers. Although the number of hidden layers can in principle be
large, Lippmann (1987) showed that already networks with two hidden
layers are sufficient to create arbitrary decision functions. Therefore
MLP are considered to be universal function approximators (Reed &
Marks II, 1998). The basic requirement for this multi-layered networks
was the development of the error back-propagation algorithm. This
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Figure 2.3: Multi Layer Perceptron. The Multi Layer Perceptron (MLP) is composed

of an input, an output layer and an arbitrary number of hidden layers. Similar to SLPs,

the output of each neuron is calculated based on an activation and a transfer function.

Furthermore it was shown that already two hidden layers are sufficient to learn any decision

function. Therefore MLPs are considered as universal function approximator.

method was originally proposed by Werbos (1974) and was popularized
based on the book of Rumelhart et al. (1986).

In general MLPs are multi-layered and fully connected networks as
shown in Fig. 2.3. The output of each neuron is calculated, analogous
to the SLP, based on scalar product activation and a transfer function
Φ. The fundamental difference is the propagation of the network error
back through the different hidden layers. The weight update of neu-
ron m connected to neuron n in the previous layer is calculated in the
following way:

∆wi
nm = Θ δi

m pi
n. (2.3)

The pi
n is the output activity of neuron n for the input pattern xi.

Furthermore the local gradient δi
m is defined as:

δi
m =

{

Φ′(pi
m) (tio − pi

o) : for output neurons
Φ′(pi

m)
∑

k δi
k wmk : for hidden neurons

, (2.4)

where k are all neurons that get input from node m. Additionally (tio −
pi

o) is the difference between the desired network output tio and the
network output pi

o for class o.
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Similar to the SLP in each training step all network weights are adapted.
As a consequence also MLP networks can not maintain the long-term
stability of learned knowledge if the training ensemble is limited and
continuously changing. In contrast to the previous network model, MLP
networks can be utilized for arbitrary learning tasks. Nevertheless the
selected size of the hidden-layers considerably effects the generalization
performance (Haykin, 1994). Therefore typically several networks are
trained to find the optimal compromise, but this is not applicable for
life-long learning tasks. Furthermore the back-propagation algorithm is
known to converge very slowly (Fahlman & Lebiere, 1990). Therefore
several modifications to overcome this limitation were proposed like the
Momentum Term (Rumelhart et al., 1986), Quickprob (Fahlman, 1988)
or the Resilient Propagation (Riedmiller & Braun, 1993). Nevertheless
even with these modifications MLP networks can only be applied to
offline learning tasks.

2.3 Cascade Correlation

Cascade Correlation (Fahlman & Lebiere, 1990) was originally de-
veloped to overcome limitations and drawbacks of the popular back-
propagation learning algorithm (Rumelhart et al., 1986). The basic idea
of the Cascade Correlation approach (see Fig. 2.4) is that single hidden
units are incrementally added to the network until the given stopping
criterion is reached. This allows a self-adaptation of the network to the
difficulty of the learning problem, whereas commonly the network size
have to be prespecified. Furthermore the training of the input connec-
tions to the hidden unit is separated from the output weights. This
separation was proposed to avoid the moving target problem of MLP
networks (Fahlman & Lebiere, 1990). This problem occurs because each
neuron is trying to achieve a useful function in the overall network. Typ-
ically this is very difficult if all other neurons are also changed, so that
often many neurons learn similar detectors and therefore worsen the
convergence speed.

The learning method begins with a similar network architecture like
the SLP networks, so that first the direct input-output connections are
trained. For the training of these connections the same learning proce-
dures as proposed for the MLP networks can be utilized (see Section 2.2).
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Figure 2.4: Cascade Correlation. The Cascade Correlation is an incremental learning

method, where hidden neurons wk are added until the predefined stopping criterion is

reached. For each new hidden unit first the input connections are updated based on a

gradient ascent method to maximize the magnitude of correlation between the candidate

units output and the residual network output error. After the convergence of this gradient

ascent the units input connections are frozen and all connections to the output layer are

updated. The outcome of this iterative learning procedure is a narrow but deep neural

network. Due to the incremental learning of hidden neurons Cascade Correlation can be

applied to nonlinear learning problems. Furthermore the complexity of the learnable decision

function is dependent on the total number of wk. For our simple two-class problem we

consider that after the insertion of the first hidden unit the learning procedure converges.

Therefore the decision function consists only of two linear functions.

If after several iterations no significant error reduction has occurred the
remaining error is calculated over the entire training set. If the perfor-
mance is already sufficiently well the learning is stopped. Otherwise a
new hidden unit wK+1 is created with connections to all input and all
pre-existing hidden units. The input connections of this new hidden unit
are updated to maximize Π, the magnitude of the correlation between
the units output pK+1 and the residual error Eo of each output node o
and input pattern xi = {x1, . . . , xF , p1, . . . , pK}:

Π =
∑

o

∣

∣

∣

∣

∣

∑

i

(pi
K+1 − ¯pK+1) (Ei

o − Ēo)

∣

∣

∣

∣

∣

. (2.5)

Here ¯pK+1 and Ēo are the averages of pK+1 and Eo. In order to maximize
Π a gradient ascent is used. The derivative of Π with respect to the m-th
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incoming weight wK+1
m is defined as:

∂Π

∂wK+1
m

=
∑

o

∑

i

σo (Ei
o − Ēo) Φ′(xi) xi

m, (2.6)

where σo is the sign of the correlation between the candidate units output
pi

K+1 and and the network output o. Additionally Φ′(xi) is the derivative
for pattern xi of the candidate units activations functions with respect
to the sum of its inputs. Finally xi

m is the input that the candidate
unit receives from unit m. After the convergence of this gradient ascent
the unit’s input weights are frozen and all connections to the output
layer are trained again. Afterwards it is considered if a further node is
inserted or whether the learning procedure stops.

The self-adaptation capability of the network dimensionality makes this
model interesting for life-long learning tasks, because an efficient adap-
tation to the difficulty of the learning problem can be achieved. Ad-
ditionally also the fixation of the input connections of each hidden
node guarantees the stability of the feature detectors. Compared to
SLP and MLP this at least alleviate the “catastrophic forgetting effect”
(Tetewsky et al., 1995; French, 1999). Nevertheless due to the continu-
ous adaptation of the connection to the output layer long-term stability
can not be guaranteed. Although compared to MLPs Cascade Correla-
tion learns quickly (Fahlman & Lebiere, 1990; Reed & Marks II, 1998)
it is still to slow too enable learning in direct interaction with a human
tutor.

2.4 Vector Quantization Networks

Vector quantization methods like the Learning Vector Quantization (Ko-
honen, 1989), Self Organizing Maps (Kohonen, 1990) or Growing Neural
Gas (Fritzke, 1995) are a group of neural network architectures that gen-
erate the decision function based on representative prototypes wk with
k = 1, . . . , K, where K denotes the total number of nodes. The training
of all these network types is based on a distance computation (e.g. Eu-
clidean distance) between the representatives wk and the current feature
vector xi. Additionally also the learning rules are similar for this group
of neural networks. The major difference between these learning meth-
ods is whether a topology between the different nodes is predefined, is
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Figure 2.5: Learning Vector Quantization. The Learning Vector Quantization (LVQ)

belongs to the group of vector quantization networks. The network consists of an input

layer and a predefined number of prototype nodes wk, where each wK is assigned to a

class label o. The winning node wkmin for a given input xi is calculated based on a distance

measurement (e.g. Euclidean distance). Afterwards the wkmin is modified based on the

correctness of the network output. This means if the class label of the winning node

matches with the label of the training vector then wkmin is shifted into the direction of xi

and otherwise in the opposite direction. The prototype nodes subdivide the input space

into smaller subregions, where for each region exactly one wk becomes the winning node.

Therefore LVQ networks can be applied to arbitrary nonlinear learning problems.

acquired during the learning or is not considered at all. Furthermore
these network architectures are different with respect to the capabil-
ity of dealing with unsupervised or supervised learning problems, while
Growing Neural Gas (GNG) also enables incremental learning. In the
following we use the Learning Vector Quantization (LVQ) method as
an example to illustrate the working principles of this group of neural
networks (see Fig. 2.5).

LVQ networks are typically trained in a supervised manner based on a
predefined number of representatives wk that are adapted according to
a stream of randomly selected feature vectors xi. The actual training
method is based on a distance computation between these xi and all
representatives wk, where commonly the Euclidean distance is used for
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this network type:

d(xi,wk) = ||xi − wk|| =
∑

f

(xi
f − wk

f)
2. (2.7)

As the next step the so-called winning node wkmin with the smallest
distance to the current xi is determined:

kmin = arg min
k

d(xi,wk) ∀k . (2.8)

Only this winning node wkmin is adapted based on the following learning
rule, while all other nodes remain unchanged:

wkmin := wkmin + µ Θ(xi − wkmin), (2.9)

where µ = 1 if the class label of the feature vector xi and the class label
of the winning node wkmax matches, otherwise µ = −1 and the winning
node will be shifted into the opposite direction of xi. Finally Θ is the
learning rate that controls the shift to and away from the current in-
put vector. Furthermore several extensions of this basis algorithm were
proposed with respect to the convergence speed like LVQ3 (Kohonen,
1990) or Optimized LVQ (Kohonen, 1992). Also with respect to the rel-
evance weighting of the feature dimensions different modifications are
proposed like the Relevance LVQ (Bojer et al., 2001), the Generalized
Relevance LVQ (Hammer & Villmann, 2002) or the Generalized Matrix
LVQ (Schneider et al., 2007).

These learning methods are better suited for life-long learning, due to
the fact that commonly only a single or a small group of prototype
nodes is adapted during one learning step. Nevertheless especially the
incremental learning Growing Neural Gas can not maintain the stabil-
ity of the learned knowledge if the training set is continuously changing
(Hamker, 2001; Furao et al., 2007). The learning speed of LVQ networks
is considered to be faster compared to the back-propagation approach
(Hawickhorst et al., 1995), but strongly depends on the overall network
size and the initialization of the prototype nodes. Therefore incremen-
tal node insertion as proposed for the GNG is beneficial to find a good
compromise between the overall network size and the accuracy of rep-
resentation.
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Figure 2.6: Radial Basis Function Networks. The Radial Basis Function network

model (RBF) consists of an input, a hidden and an output layer. It combines prototype

based representations similar to vector quantization methods with gradient descent re-

lated to the Single Layer Perceptron. The combination of the RBF hidden layer with the

connections to the output layer make RBF in general applicable for nonlinear problems.

2.5 Radial Basis Function Networks

Radial Basis Functions (RBF) were first introduced to solve multivariate
interpolation problems, where the early work on this topic was reviewed
by Powell (1985). The first attempt to utilized these functions for the
design of neural networks was done by Broomhead & Lowe (1988). Fur-
ther major contributions with respect to the early development of RBF
networks include papers by Moody & Darken (1989) and Poggio & Girosi
(1989). Compared to the previously described neural network architec-
tures RBF networks can be seen as a combination of prototype-based
representations and gradient descent learning. In general RBF networks
are composed of an input, a hidden and an output layer as illustrated in
Fig. 2.6. The hidden layer of this network model is composed of so-called
RBF-centers with Gaussian receptive fields. Similar to the MLP, RBF
networks are known as universal function approximators and therefore
can be applied to any learning problem (Park & Sandberg, 1991).

The activation of a single RBF-center is similar to the LVQ networks
based on the Euclidean distance between the input vector xi and all
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RBF-nodes wk
rbf :

d(xi,wk
rbf) = ||xi − wk

rbf ||. (2.10)

In contrast to the LVQ, the output activity pk
rbf of the RBF-center k is

then computed based on a Gauss function:

pk
rbf = exp

(

(

d(xi,wk
rbf)
)2

2(σk)2

)

. (2.11)

The variance (σk)2 controls the response range of the hidden unit wk
rbf

that together with the determination of the prototype weights wk
rbf (e.g.

based on k-means clustering) are the most important parameters for the
generalization capability of these kind of neural networks. Finally the
network output pi

o for each class o is calculated similar to the SLP in
the following way:

pi
o =

∑

k

wk
o pk

RBF , (2.12)

where the corresponding weights wo are trained based on a gradient-
descent learning method. The corresponding error function E is similar
to the back propagation algorithm defined as:

E =
1

2

∑

o

∑

i

(tio − pi
o)

2, (2.13)

where tio is the target value for neuron o and input pattern xi. Further-
more pi

o is the corresponding network output.

Due to the gradient based learning between the RBF and output layer
this model has the same drawbacks with respect to life-long learning
as mentioned for the SLP and MLP networks. In contrast to back-
propagation RBF networks require shorter training time, but require a
higher storage capacity (Hawickhorst et al., 1995). Furthermore RBF
networks can be extended to allow fast and incremental learning as
proposed by Fritzke (1994a). This allows an automatic adaptation to
the complexity of the recognition task, so that no a priori knowledge is
required to select an appropriate network dimensionality.

2.6 Fuzzy ARTMAP

The Fuzzy ARTMAP (Carpenter et al., 1992) architecture belongs to the
ART network family (Grossberg, 1976; Carpenter & Grossberg, 1988;
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Carpenter et al., 1991) that allows supervised learning. This archi-
tectures is composed of two different ART-networks, ARTa and ARTb

interconnected by a so-called Map field as illustrated in Fig. 2.7 after
(Zell, 1994). The ARTa network is the part of the architecture that
is responsible for the clustering of the training vectors xi. The ARTb

network is utilized for the clustering of the different classes, using the
teach vectors ti = (tii, . . . , t

i
O) as input. The Map field refers each ARTa

output node to a ARTb node, so that each ARTa node is assigned to a
class in ARTb.

Each of the two ART networks is composed of a comparison and a
recognition layer. The activation in the recognition layer of each ART
network is defined for each node k in the following way:

pk(xi) =
|xi ∧ wk|

α + |wk|
, (2.14)

where α > 0 is the so-called choice parameter. Furthermore ∧ is the
fuzzy AND operator that is defined as:

(xi ∧ wk)f = min(xi
f , w

k
f). (2.15)

Based on these calculated node responses pk(xi) the winning neuron
wkmax is calculated as follows:

kmax = max
k

(pk(xi)). (2.16)

In the next step, based on the match function, it is checked whether the
winning wkmax neuron matches the similarity criterion that is defined by
the vigilance parameter ρ:

|xi ∧ wkmax|

|wkmax|
≥ ρ. (2.17)

If this criterion is not fulfilled node wkmax is reseted and the next higher
activated neuron is tested. Otherwise the ART network reaches the
resonance state.

Based on resonance state of the selected ARTa and ARTb winning nodes
the correctness of the recognition result is checked. This is the case when
both network parts activate the same neuron in the so-called map field.
If this is the case the Fuzzy ARTMAP network reaches the final network
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Figure 2.7: Fuzzy ARTMAP. The Fuzzy ARTMAP belongs the ART network family.

It enables supervised learning based on the combination of two ART networks ARTa and

ARTb that are inter-connected based on a so-called Map field. For this network architecture

the ARTa is typically utilized to cluster the input vectors xi, where the ARTb clusters the

label vectors ti. For Fuzzy ARTMAP complement coding is typically used to prevent the

undesired property that too many weights converge to zero. If complement coding is used

the learned representation can be geometrically interpreted as hypercubes, as illustrated

on the right side of this figure.

state for the current xi and in both network parts the weights of the
winning neurons wkmax are adapted in the following way:

wkmax := xi ∧ wkmax. (2.18)

Otherwise an inter-art-reset is triggered, where the winning nodes in
both network parts are reseted and additionally the vigilance parameter
ρ is increased. The increase is done in a way that the actual winning
nodes can not become again the winning node for the input vector xi.
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Fuzzy ARTMAP was designed to approach the “stability-plasticity
dilemma”. Therefore this method is a candidate for solving life-long
learning tasks, but Fuzzy ARTMAP is known to be very sensitive to the
selection of the vigilance parameter, to the noise level and the presenta-
tion order of the training data (Polikar et al., 2001). Additionally Fuzzy
ARTMAP tends to have problems with complex decision boundaries,
which results in worse performance compared to vector quantization
methods like the Growing Neural Gas (Heinke & Hamker, 1998). The
major advantage of this learning approach is the fast one-shot learning
mode that is beneficial for interactive learning tasks.

2.7 Discussion

Based on this review of standard artificial neural networks, we believe
that local learning methods like the Fuzzy ARTMAP or the vector quan-
tization networks are better suited for life-long learning tasks compared
to global learning methods, because only small portions of the network
are adapted. In contrast to this for global learning methods like the
SLP or MLP all network weights are updated, so that the stability of
learned knowledge is more difficult to achieve. Furthermore Cascade
Correlation and RBF networks are a compromise between local and
global learning, because the learning of the input connections of hidden
neurons are separated from the learning of the output connections.

For our targeted life-long learning tasks the different classes are incre-
mentally presented and after their storage in the network model do
not reappear again. Therefore the learning method should be able to
find nearly optimal solutions for many tasks based on arbitrary starting
conditions and a broad range of network parameters. For all local learn-
ing approaches this requirement can be better achieved with prototype-
based vector quantization networks rather than Fuzzy ARTMAP. Out
of the group of prototype-based methods the Learning Vector Quan-
tization (LVQ) network model was selected as basis for our proposed
life-long learning methods, because of its simplicity compared to the
Growing Neural Gas (GNG) and its applicability for supervised learn-
ing problems.

With respect to interactive learning a one shot-learning method like the
Fuzzy ARTMAP is beneficial. Therefore we propose to store the knowl-
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edge into an intermediate and fast learning short-term memory (STM)
representation. Based on this STM representation a memory consolida-
tion into a long-term memory is proposed using extended LVQ networks.
This combination relaxes the constraints on the learning speed for the
memory consolidation, especially if the STM storage capacity is large
enough. Nevertheless if the overall network size and the effectively used
feature dimensionality (e.g. sparsity of the feature representation) is
small enough LVQ networks can be utilized for fast interactive learning.
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Figure 3.1: Life-Long Learning for Identification Problems. In the following

chapter we concentrate on interactive and life-long learning for identification tasks. The

proposed memory model is composed of an intermediate short-term memory that is build

up based on a one-shot learning method. Additionally a memory consolidation into a more

condensed long-term memory is proposed that is one of the major contributions of the

presented dissertation.

In the following chapter an object identification architecture is proposed
that allows life-long learning of complex-shaped objects. The develop-
ment of this memory model started with the proposal of a short-term
memory (STM) representation (Kirstein, 2004; Kirstein et al., 2005b).
This learning method is based on a feature extraction hierarchy (Wers-
ing & Körner, 2003) that was motivated by the ventral pathway of
the human visual system. This combination enables fast interactive
learning of many complex-shaped objects as was shown in (Kirstein
et al., 2005b; Kirstein et al., 2008). Although this method achieves
good generalization performance the representational costs for storing
many high-dimensional feature vectors is the major drawback. There-
fore we assume a limited STM and proposed a memory consolidation
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into a long-term memory (LTM) representation (Kirstein et al., 2005a;
Kirstein et al., 2008). The target of this combined memory model is
to obtain a flexible representation that is capable of high-performance
appearance-based object identification. In several experiments we could
show that the desired targets could be reached. The presented results
in this chapter are basically based on (Kirstein et al., 2008).

3.1 Related Work

Most research on trainable and model-free object identification algo-
rithms has so far focused on learning based on large data sets of images
recorded beforehand and then performing offline training of the corre-
sponding classifiers. In these approaches learning speed is not a primary
optimization goal, so that the offline training times typically last many
hours. This is usually caused by the natural high dimensionality of vi-
sual sensorial input, which poses a challenge to most current learning
methods. Another problem is that most powerful classifier architectures
such as the Multi Layer Perceptrons (MLP) or Support Vector Machines
(SVM) do not allow online training with the same performance as for
offline batch training.

3.1.1 Online Learning and Man-machine Interaction

To cope with the dimensionality problem one approach is to reduce the
complexity of the sensorial input to simple blob-like stimuli (Jebara &
Pentland, 1999), for which only positions are tracked. Based on the po-
sitions, interactive and online learning of behavior patterns in response
to these blob stimuli can be performed. A slightly more complex rep-
resentation was used by Garcia et al. (2000), who have applied the
coupling of an attention system using features like color, motion, and
disparity with a fast learning of visual structure for simple colored geo-
metrical shapes like balls, pyramids, and cubes. They represent shape as
low-resolution feature maps computed based on convolutions with Gaus-
sian partial derivatives. Using shape and color map representations the
system can learn to direct attention to particular objects.

Histogram-based methods are another common approach to tackle the



3.1. RELATED WORK 33

problem of high dimensionality of visual object representations. Steels
& Kaplan (2001) have studied the dynamics of learning shared object
concepts based on color histograms in an interaction scenario with a dog
robot. The object representation allows online learning using the limited
computational resources of the pet robot, but lacks a stronger concept
of shape discrimination. A model of word acquisition, that is based on
multidimensional receptive field histograms (Schiele & Crowley, 2000)
for shape and color representation was proposed by Roy & Pentland
(2002). The learning proceeds online by using a short-term memory for
identifying reoccurring pairs of acoustic and visual sensory data, that
are then passed to a long-term representation of extracted audio-visual
objects.

Arsenio (2004) has investigated a developmental learning approach for
humanoid robots based on an interactive object segmentation model
that can use both external movements of objects by a human and inter-
nally generated movements of objects by a robot manipulator. Using a
combination of tracking and segmentation algorithms the system is ca-
pable of learning objects online by storing them using a geometric hash-
ing (Rigoutsos & Wolfson, 1997) representation. Based on a similarity
threshold, objects are separated into different classes using color and
pairwise edge histograms. The discriminatory power, however, seems to
be limited to a small number of objects and still strongly depends on
color. What is more important is the integration of the online object
learning into a model for tracking objects and learning task sequences
and to recognize objects employed on such tasks from human-robot in-
teractions.

An interesting approach to supervised online learning for object recog-
nition was proposed by Bekel et al. (2004). Their classification architec-
ture consists of three major stages. The two feature extraction stages
are based on vector quantization and a local Principal Component Anal-
ysis (PCA) measurement. The final stage is a supervised classifier using
a Local Linear Map architecture. The image acquisition of new object
views is triggered by pointing gestures on a table, and is followed by a
short training phase, which takes some minutes. The main drawback
is the lack of an incremental learning mechanism to avoid the complete
retraining of the architecture.

Online learning has also been investigated for robotics in domains of
behavior and movement control. In this field the dimensionality of the
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representation space can be still quite large for robotic systems with
many degrees of freedom although it does not reach the full complexity
of visual input. As an important example that particularly focuses on
incremental online learning we would like to mention Vijayakuma et al.
(2005), who propose a locally weighted projection regression (LWPR)
algorithm, which is especially used for learning robot movements. The
advantage of this method is the possibility to train complex robot move-
ments online with only a few trials. The basic idea of the LWPR algo-
rithm is to reduce the high number of possible input dimensions (up to
90 joints) to the essential ones necessary for the particular movement.
The proposed method works well, if such a low dimensional distribution
in the input space exists.

3.1.2 Network Architectures for Incremental and Life-Long

Learning

One established neuronal network architecture that is able to learn on-
line with the same performance as for offline training is the Adaptive
Resonance Theory (ART) and especially Fuzzy ARTMAP (Carpenter
et al., 1992). The relation of this network architecture to our short-term
memory model will be discussed later (see Section 3.2.1) in more detail.
In recent years the ART network family was applied to several problems
including recognition of handwritten digits (Carpenter et al., 1992) and
a sensorimotor anticipation architecture for robot navigation (Heinze
et al., 2001). An overview of several other ART-based applications can
be found in (Carpenter & Grossberg, 1998).

Incremental Radial Basis Function (RBF) networks (Fritzke, 1994a) and
the Growing Neuronal Gas (GNG) model (Fritzke, 1995) were suggested
with a focus on incremental learning. Although it is possible to train
these networks with a slowly changing training set, these architectures
are mainly designed for offline training. Typically these networks cannot
be trained on a limited training set without significantly losing gener-
alization performance, because of a permanent increase in the number
of neurons and the drift of nodes to capture the current training data
(Hamker, 2001).

Furao & Hasegawa (2006) propose several improvements to the unsu-
pervised version of the GNG and especially target the life-long learning



3.2. LIFE-LONG LEARNING MODEL FOR OBJECT IDENTIFICATION 35

of non-stationary data for problems like clustering of faces or topology
learning of images. They use a two-layered network, where the first
layer is used to generate a topology structure of the input data and the
second layer is used to determine the number of clusters. Furthermore
they propose several utility estimation measurements for evaluating the
insertion of nodes or to decide which nodes can be removed. Addition-
ally they use an individual learning rate for each node, which strongly
improves the life-long learning capability. A related approach was pro-
posed by Hamker (2001), who introduced a neuronal network archi-
tecture for supervised learning, called life-long learning cell structures
(LLCS). The LLCS networks are based on the Growing Cell Structures
(Fritzke, 1994b) and provide several extensions, like the calculation of
an individual node learning rate, the definition of an insertion rule and
the use of several measurements to detect useless nodes. The LLCS
networks are also able to detect regions in low dimensional data where
points of different classes overlap. This avoids an unlimited insertion of
neurons in those areas.

Other approaches to the “stability-plasticity dilemma” where proposed
by Polikar et al. (2001) and Ozawa et al. (2005). Polikar et al.
(2001) proposed the “Learn++” approach that is based on the boosting
(Schapire, 1990) technique. This method combines several weak classi-
fiers to a so-called strong classifier based on a majority-voting schema,
where the weak classifiers are incrementally added to the network and
afterwards are kept fixed. The proposed “Learn++” can therefore be
used for life-long learning tasks, but for more complex tasks a large
amount of such weak classifiers is required to represent the different
classes. In contrast to this Ozawa et al. (2005) proposed to store repre-
sentative input-output pairs into a long-term memory for stabilizing an
incremental learning Radial Basis Function (RBF) like network.

3.2 Life-Long Learning Model for Object Identifi-

cation

In the following we consider life-long learning at different time scales
to represent arbitrary objects. The corresponding memory model (see
Fig. 3.2) is motivated by the functional differentiation in the two STM
and LTM systems of human brains. Our target is to perform super-
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Figure 3.2: Illustration of the Life-Long Learning Model for Object Identifica-

tion Tasks. Based on a stream of input views and a similarity calculation representatives

are stored into a limited short-term memory (STM). The overall number of representatives

is typically only a subset of all presented input views and depends on the complexity of

the object itself. In the next step these representatives are transferred into a long-term

memory (LTM) based on a life-long learning vector quantization approach. This LTM

model learns much slower compared to the STM but considerably reduces the amount of

required network resources resulting in a compact prototype-based representation wk.

vised and online learning of object views using the STM, which has the
ability to incrementally build up an object representation without de-
stroying already learned knowledge. This STM provides fast learning,
but also has a limited capacity. For the buildup of the LTM we propose
an incremental Learning Vector Quantization (iLVQ) method. This ap-
proach realizes the transfer from the fast learning STM into the slower
learning LTM, which results in a more integrated and condensed ob-
ject representation. Furthermore we define for our LTM model different
extensions to Learning Vector Quantization (LVQ) networks (Kohonen,
1989) that are necessary for our target of an incrementally and life-long
learning system. We demonstrate the technical realization of the pro-
posed approach in an interactively trainable online learning system that
can robustly recognize several objects.
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3.2.1 Online Vector Quantization to Build a Short-Term Mem-

ory

The online vector quantization (oVQ) model provides fast appearance-
based learning of three-dimensional objects, which can immediately be
recognized. Therefore oVQ enables interactive learning, so that continu-
ously new objects can be learned, while already represented objects can
be refined. The proposed model stores template-based representatives
rl in a so-called short-term memory. The number of representatives rl

for a specific object is related to the complexity of the object and is
not specified beforehand. The learning process is based on the similar-
ity to already stored representatives rl of the same object. Therefore
this online vector quantization model reduces the number of represen-
tatives rl in contrast to a naive approach where every feature vector
xi = (xi

1, . . . , x
1
F ) is stored in memory. Especially already seen views or

very similar views are not collected into the short-term memory.

The labeled feature vectors xi are stored in a set of L representatives rl,
l = 1, . . . , L, that are incrementally collected, and labeled with class o
with o = 1, . . . , O assigned to xi. The acquisition of templates is based
on a similarity threshold ǫstm. New views of an object are only collected
into the short-term memory (STM) representation if their similarity to
the previously stored views is less than ǫstm. The parameter ǫstm is crit-
ical, characterizing the compromise between representation resolution
and computation time needed for one training or validation step. We
denote the similarity between feature vector xi and representative rl by
Ail:

Ail = exp

(

−
||xi − rl||

σ

)

. (3.1)

Here, σ is chosen for convenience such that the average similarity in
a generic recognition setup is approximately equal to 0.5. We use the
exponential function just to obtain an intuitive notion of similarity, any
other monotonous transformation of the Euclidean distance would also
be possible.

We define Ro as the set of representatives rl that belong to object o. For
one learning step the similarity Ail between the current training vector
xi, labeled as object o and all representatives rl ∈ Ro of the same object
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o is calculated and the maximum value is computed as:

Ai
max = max

l∈Ro

Ail. (3.2)

The training vector xi with its class label o is added to the object rep-
resentation, if Ai

max < ǫstm. If L representatives were collected before,
then xi is added as representative L + 1 with rL+1 = xi and is labeled
with class o attached to xi. Otherwise we assume that the vector xi

is already sufficiently well represented by one rl, and do not add it to
the representation. We call this basic template-based representation on-
line vector quantization (oVQ). Due to the non-destructive incremental
learning process, online learning and recognition can be done at the
same time, without a separation into training and testing phases. To
model a limited STM capacity, in the simulations an upper limit can be
set on the number of objects that can be represented. This means that,
when too many objects are presented, representatives belonging to the
oldest learned object are removed from the STM.

For the online recognition of a new and unclassified feature vector xi a
nearest neighbor search on the set of all representatives stored in the
short-term memory is performed. The nearest neighbor search selects
the best matching node rlmax, where lmax satisfies:

lmax = arg max
l

(Ail). (3.3)

The class label olmax of the winning representative rlmax is then assigned
to the current unclassified test view xi.

The oVQ algorithm can handle the used high-dimensional feature rep-
resentation proposed by Wersing & Körner (2003) in an efficient way. It
is especially suited for the sparsity of this feature representation, which
allows us to store ten thousands of representatives, while keeping the
ability to train and validate new occurring feature vectors online. The
similarity threshold ǫstm, the only critical parameter in our STM model,
controls the tradeoff between a more detailed and exhaustive object view
sampling and the amount of representatives in the STM.

Based on the description of our oVQ algorithm the relation to Fuzzy
ARTMAP (Carpenter et al., 1992) and Fuzzy ART (Carpenter et al.,
1991) will be discussed in the following. Both architectures have the
common feature that they can immediately recognize a specific object
view after a single occurrence (“one shot learning”), which makes them
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suitable for online learning. It is also possible to incrementally add new
objects without destroying already learned capabilities and the learn-
ing process in both algorithms is based on a similarity condition called
vigilance ρ for ART networks.

Besides the drawbacks summarized in Section 2.6 the more complex
Fuzzy ARTMAP architecture is not suitable for our object identifica-
tion task. This is related to the sparsity of the feature vectors, which
essentially requires complement coding to avoid that too many adaptive
weights become zero. A large amount of zero weights is an unattractive
condition for Fuzzy ART networks that should be prevented (Carpen-
ter et al., 1992), because in such a case the “choice function” used for
calculating the winner node always results in nearly perfect matches,
which results in choosing a winner node independent of the input. Ad-
ditionally the already very high-dimensional feature vectors are doubled
in size by this coding schema. Based on the complement coding and the
vigilance parameter ρ, input vectors are assigned to hypercubes around
the representative vectors with the size inversely proportional to ρ. This
vigilance parameter ρ is, similar to the ǫstm in our model, a critical pa-
rameter. The ρ parameter should therefore similar to ǫstm chosen as
small as possible, to avoid the allocation of an enormous amount of re-
sources. On the contrary, small vigilance parameters (ρ < 0.9) cause
other problems, because it allows the creation of large hypercubes during
the learning process. This leads to the undesired convergence of many
adaptive weights to zero as a consequence of strong intra-class variations
of the sparse feature vectors xi. These intra-class variations are caused
by appearance changes of objects during rotation. This together with
relatively closely located vectors of related objects in similar poses will
most probably result in many partially overlapping hypercubes. If such
hypercubes are belonging to different classes and validation vectors are
located in these areas, then the generalization ability of the network will
be reduced. This is because the “choice function” results in the same
optimal value for all nodes involved in this overlap and the selection of
the winner is dependent on the search order.

3.2.2 Incremental LVQ to Build a Long-Term Memory

The STM model provides fast learning and achieves good recognition
performance, as we will demonstrate in the results section. Neverthe-
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less the large amount of memory for storing the high-dimensional feature
vectors of all objects is the main disadvantage and is also biologically
not plausible. Therefore we propose a transfer from the STM into the
LTM, inspired by the transfer from medial temporal lobe into the Neo-
cortex in biological vision. To build up such an LTM model we use an
incremental LVQ algorithm (iLVQ). This network architecture described
in the following section should strongly reduce the representational ef-
fort of objects without reducing the generalization performance of the
identification system. Additionally the LTM model is approaching the
life-long learning problem, which allows learning of objects during the
complete history of the iLVQ network.

The labeled STM representatives rl in the high-dimensional feature
space provide the input ensemble for our proposed long-term mem-
ory (LTM) representation, which is optimized and built up incremen-
tally. The main reason for training the long-term memory based on the
collected STM representatives rl is that the STM already rejects very
similar object views and reduces the number of training views for the
long-term memory. This reduction causes a reduced training time in
contrast to the case where every input view is used. Additionally we
assume a limited STM capacity with only the most recently shown ob-
jects being represented. Therefore an algorithm is needed that is able
to incrementally add new objects or even refine object representations
without destroying already learned object knowledge, thereby taking
into account the “stability-plasticity dilemma”.

The Learning Vector Quantization (LVQ) networks proposed by Koho-
nen (1989) are a well known neuronal network architecture for super-
vised learning. The single-layered LVQ networks are typically trained
with a fixed number of nodes; therefore the number of nodes for each
class must be selected before the training phase starts. It is quite difficult
to accurately determine the necessary number of nodes for a particular
class. If the number of nodes is too large convergence is slow, whereas a
too low number only provides a poor generalization performance of the
network. Additionally the number of necessary nodes is related to the
complexity of a particular class itself. To take care of this fact a lot of
a priori knowledge must be available to select an appropriate number of
LVQ nodes. To avoid this problem we use an incremental approach for
the LTM model, which is able to automatically determine the necessary
number of nodes, based on the complexity of the object and the diffi-
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culty of the learning task. We also extend the basic LVQ networks with
respect to the “stability-plasticity dilemma” of life-long learning tasks.
All extensions of the basic LVQ network architecture will be described
in the following.

For the training of our incremental LVQ (iLVQ) network, a stream of
randomly selected input STM training vectors rl is presented and clas-
sified using the labeled iLVQ representatives in a Euclidean metric. The
training classification errors are collected, and each time a given suffi-
cient number of classification errors has occurred, a set of new iLVQ
nodes will be inserted. The addition rule is designed to promote inser-
tion of nodes at the class boundaries. During training, iLVQ nodes are
adapted with standard LVQ weight learning that moves nodes into the
direction of the correct class and away from wrong classes. An impor-
tant change to the standard LVQ method is an adaptive modification of
the individual node learning rates to deal with the “stability-plasticity
dilemma” of incremental learning. The learning rate of winning nodes is
more and more reduced to avoid too strong interference of newly learned
representatives rl with older parts of the object long-term memory.

We denote the set of iLVQ representative vectors wk with k = 1, . . . , K,
where K is the current number of nodes. The training of the iLVQ
nodes is based on the current set of labeled STM nodes rl that serve as
input vectors for the LTM. Each iLVQ node wk obtains an individual
learning rate:

Θk = Θ0 exp

(

−
ak

d

)

, (3.4)

where Θ0 is an initial value, d is a fixed scaling factor, and ak is an
iteration-dependent age factor. Furthermore the age factor ak is incre-
mented every time the corresponding wk becomes the winning node.

New iLVQ nodes are inserted, if a given number Gmax of training vectors
are misclassified during the iterative presentation of the rl. We choose
a value of Gmax = 30, since a high Gmax value guarantees an optimal
representation of objects with a minimal number of LVQ nodes, but also
slows down the convergence speed of this learning algorithm. Within
this error history, misclassifications are memorized with input rl and the
corresponding winning iLVQ node wkmin(rl). We denote So as the set of
previously misclassified rl within this error history that belong to class
o. For each nonempty So a new node wm is added to the representation,
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independent of the number of entries in So. This insertion technique
limits the insertion of nodes, if many views of a particular class are
wrongly classified. The iLVQ insertion rule is illustrated in Fig. 3.3. New
nodes are initialized to the element of rl ∈ So with minimal distance to
its corresponding but wrong winning iLVQ node wkmin(rl) and is labeled
with class o. This rule adds new nodes primarily near to class borders,
where typically most classification errors occur. This node insertion rule
can be related to boundary classifiers like Support Vector Machines (see
(Burges, 1998) for an introduction to SVM), where so-called support
vectors at the classification border are selected to form the decision
boundary. In contrast to this the iLVQ algorithm forms Voronoi clusters,
where the cluster centers can be quite far apart from the classification
border.

A test view xi is classified by determining the winning iLVQ node wkmin

with smallest distance to the current feature vector xi and is assigned
to the corresponding label o attached to wkmin as the output class.

The formal definition of the iLVQ learning algorithm will be described
in the following:

1 Choose randomly a representative rl from the set of current STM
nodes. Calculate the Euclidean distance between the rl and all
iLVQ nodes wk and select the winning node with minimal distance
to the rl:

kmin = arg min
k

(||rl − wk||). (3.5)

After this selection process the winning node wkmin is adapted using
the common LVQ learning rule:

wkmin := wkmin + µΘkmin(rl − wkmin), (3.6)

where µ = 1 if the class label of the representative rl and the class
label of the winning node wkmin are identical, otherwise µ = −1
and the winning node will be shifted into the opposite direction as
the input representative rl. The learning rate Θkmin for the winning
node wkmin at time step t is calculated according to Eq. 3.4.

2 After the adaptation of the winning node wkmin the age factor akmin

of this node will be incremented:

akmin := akmin + 1. (3.7)
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Figure 3.3: Illustration of the iLVQ Node Insertion Rule. Wrongly classified

training views rl of class o are collected into So, which contains all wrongly classified

views of the given class o. These views rl ∈ So are shown with small circles, whereas the

iLVQ nodes are shown as large filled circles. Additionally the distance of the rl to their

corresponding but wrong winning iLVQ node is shown (dashed lines). The insertion rule

determines the wrongly classified rl with minimal distance to the iLVQ node wkmin(rl).

This training view (the small filled circle) is then used for initializing a new iLVQ node with

class label o assigned to rl.

This increment of akmin results in a slightly smaller learning rate if
the wkmin iLVQ node becomes in a further training step again the
winning node.

3 If the current representative rl was misclassified, then the number
G of misclassified training vectors will be increased (G := G + 1)
and rl will be added to the current set of misclassified views So of
the corresponding object class o attached to rl.

4 Every training step it will be checked if G = Gmax, if so we insert
for each So 6= ∅ a new iLVQ node. If more than one representative
rl of class o was wrongly classified, it must be decided which rl
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is used to initialize the new iLVQ node. For the initialization of
the new iLVQ node of class o we determine the index of the iLVQ
representative lmin with minimal distance to the wrongly classified
elements in So according to:

lmin = arg min
l|rl∈So

||rl − wkmin(rl)||, (3.8)

where wkmin(rl) is the winning iLVQ node for view rl. Insert a new
iLVQ node with wK+1 = rlmin. Reset G = 0 and So = ∅ for all o.

5 Start a new training step (goto step 1) until sufficient convergence
is reached.

Our proposed LTM model defines extensions to the LVQ network archi-
tecture, which are necessary to fulfill the given incremental and life-long
learning object recognition task. Especially the definition of an indi-
vidual node learning rate or the definition of a node insertion rule are
methods also used by Hamker (2001) and Furao & Hasegawa (2006).
They propose node insertion based on accumulated errors of each in-
dividual node, whereas we only observe the wrong classification itself.
If some classification errors occur, nodes are inserted for every wrongly
classified object class. Also the initialization of the new nodes differs, we
add nodes near class borders but based on a wrongly classified training
vector, whereas Hamker and Furao & Hasegawa insert a new node in
the neighborhood of an already existing node, for which activation does
not occur necessarily. On the contrary, this slows down the learning
algorithm, because such a node may not contribute to the representa-
tion. Based on the proposed node deletion criteria of both authors the
detection of such useless nodes requires several training steps.

3.3 Experimental Results

In the following we describe experiments on using the coupled STM and
LTM architecture in a recognition scenario for freely rotated objects.
We describe the resulting image ensemble shown in Fig. 3.5 and specify
how we do the preprocessing for segmenting the objects.
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Figure 3.4: Experimental Setup. Objects are rotated freely by hand in front of a

camera. Additionally we use a black glove and show the objects in front of a black table to

simplify the foreground-background separation, which is not the focus of this chapter. Using

our short-term memory model the recognition system can be trained online to recognize

50 different objects.

3.3.1 Experimental Setup

For our experiments we use a setup, where we show objects, held in
hand and freely rotate them around three axes (see Fig. 3.4). To ease
figure-ground segmentation we use a black glove and rotate the objects
in front of a black background. The color images are taken with an ana-
log camera and are segmented with a simple local entropy-thresholding
(Kalinke & von Seelen, 1996) method. In Chapter 5 a larger integrated
system is introduced that relaxes the strong constraints on the back-
ground using more advanced segmentation methods (Steil et al., 2007;
Denecke et al., 2009), allowing object identification based on hand-held
objects in cluttered office environments.

After the segmentation of the object view we normalize it in size (64x64
pixels). For collecting the database we rotated every object freely by
hand for some minutes, such that 750 training views Ji for each object
are collected. Another independently taken set of 750 images for each
of the objects is recorded as validation database. Figure 3.5 shows
all 50 different objects of our HRI50 database. The difficulty of this
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Object Ensemble Rotation Examples

Segmentation Errors

Slight Occlusions

Figure 3.5: HRI50 Object Ensemble. On the left side all 50 freely rotated objects

are shown, taken in front of a dark background and using a black glove for holding.

Additionally some rotation examples, some segmentation, and minor occlusion effects are

shown. The main difficulties of this training ensemble are the high appearance variation

of objects during rotation around three axes, and shape similarity among cans, cups and

boxes, combined with segmentation errors, and slight occlusions.

database results from the high appearance variation of objects during
rotation around three axes. The database also contains a lot of objects
which are similar in shape or color, e.g. the different cups, boxes or
cans. Furthermore some rotation examples for different objects, some
segmentation errors and minor occlusion effects are shown in Fig. 3.5.

3.3.2 Feature Extraction

As a feature representation for the incremental learning of complex-
shaped objects a feed-forward feature extracting hierarchy (Wersing &
Körner, 2003) is used. This feature extraction method illustrated in
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C2 LayerC1 Layer
S2 LayerS1 Layer

Figure 3.6: Feature Extraction. For our object identification task a feed-forward feature

extraction hierarchy is used. This hierarchy is composed of a succession of feature detection

and pooling layers. The output of the final C2 layer are 50 topographically organized feature

maps, where a single feature responds to a local patch in the input image. Furthermore for

some experiments coarse color information is added, based on down-sampled RGB maps.

Fig. 3.6 is a model of the human ventral pathway and is based on weight-
sharing and a succession of feature-sensitive and pooling stages (see Ap-
pendix A.1.1 for details). Wersing & Körner (2003) could show that this
feature extraction method allows robust object recognition that is com-
petitive with other state-of-the-art models on benchmark data sets. The
used hierarchy is composed of four layers. The first feature extraction
layer S1 is composed of four orientation sensitive Gabor filters. Based on
these filter responses a winners-take-most operation between features at
the same position is applied to suppress submaximal responses. This ac-
tivity is then passed through a threshold function. Afterwards a pooling
operation is performed in the second layer C1 to increase the invariance
of feature responses. In layer three feature combinations like corners
and T-junctions are detected. Overall 50 different detectors are used in
the S2 layer that were determined through a sparse coding method. The
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final C2 layer again performs a pooling operation. The output of this
feature extraction hierarchy are 50 different topographically organized
C2 feature maps, while a single C2 feature responds to a local patch in
the input image. For our life-long learning method these feature maps
are concatenated into a high-dimensional but sparsely activated feature
vector xi(Ji). Typically only about 10-30% of all C2 features are active
for a given input stimulus allowing an efficient handling of these high-
dimensional vectors xi. For some experiments additional coarse color
information is added to the feature vector xi, based on three down-
sampled RGB maps, where each map has the same dimensionality as
one of the C2 shape feature maps.

3.3.3 Online Vector Quantization to Build a Short-Term Mem-

ory

In the first experiment we investigate the time necessary for training
the template-based oVQ short-term memory with up to 50 objects, and
evaluate the recognition performance. The training speed is limited by
i) the frame rate of the used analog camera for image capturing (12.5
Hz), ii) the computation time needed for the entropy segmentation, iii)
the extraction of the corresponding sparse C2 feature vector xi with
3200 shape dimensions and 192 optional color dimensions, and iv) the
calculation of similarities Ail (see Section 3.2). As a good compromise
between the representational accuracy and the required learning time
the similarity threshold was set to ǫstm = 0.85 for this experiment with
the HRI50 database. Additionally there was no limit imposed on the
number of STM representatives. Altogether we achieve an average frame
rate of 7 Hz on a 3GHz Xeon processor. Figure 3.7 shows how long it
takes until a newly added object can be robustly separated from all other
objects. For the shown curves of a cup and a can from our database we
trained 9 and 49 objects, respectly, and incrementally added the cup or
can as an additional object. Every three seconds (≈ 20 training views)
the correct classification rate of the current object is computed using
the 750 views from the disjoint test ensemble. Additionally we show the
learning curves, averaged over 20 randomly chosen object selections. On
average, training of one object can be done in less than 2 minutes, with
rapid convergence.
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Figure 3.7: Identification Performance Related to the Training Time. Classifi-

cation rate of two selected objects dependent on the training time for learning the 10th and

50th object, and the same learning curves averaged over 20 object selections. While train-

ing proceeds, every three seconds (≈ 20 training views) the classification rate is measured

based on all 750 available test views of the current object. Good recognition performance

can be achieved within two minutes, also for the 50th object.

To evaluate the quality of the feature representation obtained from the
visual hierarchy, we performed a systematic comparison with three dif-
ferent types of feature vectors. The first kind of feature vectors contains
only shape information of the objects and has 8x8x50 dimensions (8x8
activations for each of the 50 extracted shape feature maps). The sec-
ond type of vectors with a dimension of 8x8x(50+3) features contains
shape and additional coarse color information. Finally we used plain
64x64x3 pixel RGB images as input vectors xi for the oVQ model. Due
to the high dimensionality and lack of sparsity we can only represent
up to 17.000 representatives in this case, otherwise the memory limit
of the used operating system was exceeded. This plain image setting
also captures the baseline similarity of this ensemble, and can serve as a
reference point, since there are currently no other established standard
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methods for online learning available. Additionally we varied the sim-
ilarity threshold ǫstm to investigate the tradeoff between representation
accuracy and classification errors. The results are shown in Fig. 3.8.
Each symbol of the STM graphs in Fig. 3.8 corresponds to a particular
threshold ǫstm. For a given ǫstm we let our short-term memory model
decide, which training vectors are necessary and calculate the classifica-
tion rate based on the selected representatives. For a fair comparison,
error rates for roughly equal numbers of chosen representatives should
be compared. Using the hierarchical shape features reduces the error
rates considerably, compared to the plain color images, especially for
small numbers of representatives. The addition of the three coarse RGB
feature maps additionally reduces error rates by about one third. For
a complete training of all 50 objects with a real camera, accomplished
within about three hours, the remaining classification error is about 6%
using color and shape features and 8% using only shape information.

3.3.4 Incremental LVQ to Build a Long-Term Memory

The performance of the proposed iLVQ long-term memory model is
shown in Fig. 3.8 in relation to the results obtained from the STM
model. We compare the effect of using only a limited STM memory
history (limited to the recent 10 objects) for the transfer into the LTM
representation, compared to the usage of unlimited STM. For the experi-
ments with the iLVQ networks we used a similarity threshold ǫstm = 0.85
for the STM model and applied this threshold to the STM training with
shape features and also combined shape and coarse color features. This
threshold was chosen as a compromise between the resulting general-
ization performance for both feature representations and the number of
selected STM representatives.

With our LTM model we are able to strongly reduce the necessary num-
ber of representatives from about 27000 STM representatives to less than
3800 LTM iLVQ nodes using shape and color features. However this is
achieved at the price of a slightly reduced performance of 91.1% correct
classification, compared to the performances of the STM representatives
which reaches a classification performance of 94.2% at the given value
of ǫstm. If we compare the STM setting, where the classification rate
matches approximately 91%, which corresponds to a lower similarity
threshold of ǫstm = 0.7, the number of representatives is still three times
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Figure 3.8: Comparison of the STM and LTM Model. Comparison of object

identification performance of the STM and LTM model for the HRI50 database. The per-

formance measurements of the STM model are calculated for different similarity thresholds

ǫstm and different feature sets, whereas the LTM model was trained with limited or un-

limited STM using shape and coarse color information. It can be seen that the use of the

visual hierarchy shape features reduces the error rate, compared to the plain color images.

The additional use of coarse color features again reduces the error rates of the STM model

considerably. For the LTM model tests a similarity threshold of ǫstm = 0.85 was used for

training the STM model, where its representatives rl serve as input for the LTM. It can

be seen that the LTM model reduces the required resources from about 27000 STM rep-

resentatives to less than 3800, with a slightly reduced classification performance. Further

it should be mentioned that the iLVQ reaches nearly the same classification performance

for the limited STM compared to the unlimited case.

larger than for the LTM, as can be seen in Fig. 3.8.

For a better comparison of our LTM model to other state-of-the-art
approaches, experiments with the well-known COIL-100 database (Na-
yar et al., 1996) are performed. This database consists of 100 different
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objects rotated around one axis, where the 72 different views for each
object are taken at pose intervals of 5o. For our experiments we resized
the original images to 64x64 pixels to allow a better comparison to our
own HRI50 database. For all experiments with the COIL-100 database,
36 object views (10o apart) are used for training and the remaining views
for testing.

Additionally we compare our architecture to a Single Layer Perceptron
(SLP) and the SNOW (Roth et al., 2002) approach. The SLP network
architecture consists of an input and an output layer, without hidden
layers. For every object o we used one output node, whereas the output
pi

o of each node for feature vector xi is calculated based on a linear scalar
product activation and a Fermi transfer function:

pi
o =

1

1 + exp(−wo ∗ xi)
, (3.9)

where wo are the weights of node o. The SNOW approach is specially
designed for a sparse feature representation as used in our experiments.
It is also better suited for incremental and life-long learning compared
to the SLP due to its conservative learning schema. The SNOW model
is based on a multiplicative Winnow update rule (Littlestone, 1988),
which is applied to wrongly classified training vectors only. Furthermore
exclusively weights of currently activated input dimensions are modified
at a training step, which theoretically provides more life-long learning
stability than sigmoidal networks where typically all weights are updated
at each learning step. For SNOW we used the same network size as for
the sigmoidal networks, i.e. one output node for each object.

For the comparison of the iLVQ, SLP and SNOW approach we per-
formed a systematic analysis using all available training data of the used
image ensemble, compared to the use of the proposed STM model and a
limited STM, where only the recent 10 objects are available for training.
For the build up of the corresponding STM representation we have cho-
sen for the COIL-100 database a similarity threshold of ǫstm = 0.9, while
for the HRI50 image ensemble ǫstm = 0.85 was selected. These values
where opted as a compromise between the total number of representa-
tives and the identification performance of each database. Furthermore
we compare the results achieved with two different feature ensembles
based on the C2 shape features and the use of additional coarse color
features. The results of this comparison are shown in Table 3.1 for the
COIL-100 database and Table 3.2 for the HRI50 database.
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shape shape and coarse color

all STM lim. STM all STM lim. STM

iLVQ 98.6% 97.9% 96.0% 99.5% 99.3% 98.4%

SLP 99.9% 99.5% 28.0% 99.9% 99.8% 27.6%

SNOW 96.5% 94.2% 59.2% 97.6% 96.7% 50.0%

Table 3.1: Comparison of the iLVQ, SLP, and SNOW Identification Perfor-

mance Using the COIL-100 Database. Classification rates of all three approaches

are shown based on C2 shape features and the combination of shape and coarse color

features. Additionally we compare the results using all available training data, the use of

the proposed STM with ǫstm = 0.9 and a capacity limited STM (restricted to the recent

10 objects).

For the COIL-100 database (see Table 3.1) it can be seen that the Single
Layer Perceptron achieves better classification results as our proposed
iLVQ method for the cases where no limit on the training data was im-
posed. The SNOW network is slightly worse than iLVQ and SLP, but the
classification rate is still comparable to other state-of-the-art approaches
applied to this database. It should be noted that the performance we
achieved with our C2 shape features representation is superior to the re-
sults published by (Roth et al., 2002) (one-against-all: 90.52%), which
highlights the quality of the hierarchical feature representation. For all
three models, the introduction of the STM model with approximately
30% reduction of training data causes only minor increase in errors.
For the experiments using only a limited STM of 10 objects, it can be
seen that only the iLVQ method can handle this with almost no perfor-
mance loss. Although the performance decrease of the SNOW approach
is distinctly less than for SLP, both methods quickly fail to distinguish
objects from earlier training phases, resulting in low recognition rates.
This is the well-known “catastrophic forgetting effect” (Hamker, 2001).

The results obtained with the HRI50 database are shown in Table 3.2. In
comparison to the COIL-100 results, the iLVQ method achieves better
results on this more difficult database than the SLP approach, which is
most distinct for the use of shape features only. This better performance
is mainly caused by the incremental learning of the iLVQ approach al-
lowing an adaptation to the difficulty of the identification task, while
the SLP approach does not allow incremental learning. It can also be
seen that the SNOW approach cannot capture the higher appearance
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shape shape and coarse color

all STM lim. STM all STM lim. STM

iLVQ 88.5% 86.9% 85.8% 91.6% 91.1% 90.2%

SLP 84.1% 80.7% 21.9% 91.2% 91.1% 21.7%

SNOW 52.8% 51.9% 20.3% 55.6% 54.2% 20.7%

Table 3.2: Comparison of the iLVQ, SLP, and SNOW Identification Perfor-

mance Using the HRI50 Database. Classification rates of all three approaches are

shown based on C2 shape features and the combination of shape and coarse color fea-

tures. Additionally we compare the results using all available training data, the use of the

proposed STM with ǫstm = 0.85 and a limited STM.

variation of the HRI50 database, which results in poor identification
performance. For the training with the limited STM the iLVQ also
achieves good results on the HRI50 database. In contrast to the COIL-
100 database the SNOW approach is also worse than SLP for the limited
STM experiments, which is mainly due to the overall poor performance
of SNOW on the HRI50 database.

3.4 Discussion

In this chapter we have proposed a biologically motivated approach for
the learning of visual object representations. It is based on a hierarchical
feature extraction model serving as the input for a coupled short-term
and long-term memory. Our main focus was to demonstrate the capa-
bility of online learning of many complex-shaped objects in combination
with a model for a consolidation of the fast but limited short-term mem-
ory into a condensed long-term memory representation. In the following
we discuss the components of our model with reference to related work.

Our feature detection approach is different from most of the related work
on online learning for object recognition (Garcia et al., 2000; Steels
& Kaplan, 2001; Roy & Pentland, 2002; Arsenio, 2004; Bekel et al.,
2004), because the representation is not based on a dimension reduction
of the high-dimensional visual input. Due to the receptive-field-based
topographical representation of the used C2 features, we obtain multiple
shape feature-map representations with a resulting dimensionality that
is of the same order as the visual input. Within the maps, however, only
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sparse activation is present, which is caused by the coding strategy in
the hierarchical network.

The short-term memory model is defined as a template-based represen-
tation that adds new object representatives using a Euclidean metrics
within the high-dimensional space of shape and color feature map re-
sponses. Due to the purely incremental nature of this learning method
we can perform online learning of objects by capturing sufficient appear-
ance variation of the object under investigation. Adaptive resonance
(ART) networks are another common approach to perform one-shot
and online learning. Many applications of ART and its relative Fuzzy
ARTMAP have so far concentrated on representation spaces with much
lower dimensionality (Carpenter et al., 1992). The necessity of comple-
ment coding (see discussion in Section 3.2.1), doubling the input space
dimensionality, and problems with sparse vectors make ART networks
not very suitable for representing the feature activations of the visual
hierarchy we use here.

For the application to online learning, using only the STM model
achieved good generalization in combination with a large storage ca-
pacity of 50 objects, compared to other work on online learning of ob-
jects, which usually did not consider more than 10-12 objects (Bekel
et al., 2004; Arsenio, 2004). This capacity is a direct consequence of the
high-dimensional representation space, and is also achieved if only shape
representations are used. The STM model enables learning in direct in-
teraction with a human teacher, whereas the long training time of most
current recognition architectures does not allow this user interaction.
However, the representational effort of storing a large number of high
dimensional feature maps can be large. To overcome this limitation we
introduced a long-term memory model.

Our long-term memory model has to satisfy the two main requirements:
It has to incrementally add and consolidate representational resources
dependent on the complexity of the objects to be learned. Furthermore
it has to care for the “stability-plasticity dilemma” caused by using
only a limited STM memory of the previous object presentations. Due
to the problems of standard architectures like MLPs, which suffer from
catastrophic forgetting in such a scenario, most previous work on on-
line object learning does not consider incremental learning, but rather
collects the training data and then performs a standard batch learning
procedure (Bekel et al., 2004).
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As a demonstration of the “catastrophic forgetting effect” we performed
experiments with the SLP and SNOW approach and could show a strong
degradation of classification performance for our desired interactive and
life-long learning task. Additionally we performed experiments with the
COIL-100 database for a better evaluation of our HRI50 image ensemble.
We could show that the LTM model can reach state-of-the-art recog-
nition performance for the COIL-100 database. In direct comparison
the HRI50 image ensemble is more challenging due to distinctly lower
classification rates. The difficulty of the HRI50 database is caused by
object rotation around three axes, whereas the COIL-100 objects are
only rotated around one axis. This results in much higher appearance
variations, which pose problems for the SNOW approach, while the
iLVQ approach automatically scales to the difficulty of the recognition
tasks resulting in good recognition rates for more challenging databases.

We have based our LTM architecture on a Learning Vector Quantization
(LVQ) model, which we have extended by methods of incremental node
insertion, and flexible adaptation of the local node learning rates. Our
approach can be compared to recent work on life-long learning for incre-
mental neural architectures (Hamker, 2001; Furao & Hasegawa, 2006),
targeting learning for non-stationary distributions without destruction
of previously learned representations (see Section 3.2.2). Our iLVQ al-
gorithm differs from the work of Hamker and Furao & Hasegawa mainly
in the node insertion rule. We insert neurons only if classification errors
during the training phase occur and do not utilize the accumulated error
of the nodes themselves. We assume that this leads to a smaller number
of allocated resources compared to the distance-based insertion mecha-
nism, especially in high-dimensional spaces. Hamker has demonstrated
the efficiency of his proposed LLCS networks based on several low di-
mensional non-stationary benchmark datasets. How this network archi-
tecture performs on more realistic problems with high-dimensional input
spaces can, however, only be speculated until now. Furao & Hasegawa
(2006) applied the proposed method to a setting of face clustering, but
it seems that the unsupervised learning method is not efficient in high-
dimensional input spaces with strong variation. This may be the reason
for the use of smoothed input images in their experiments.

Hamker and Furao & Hasegawa propose utility measurements to detect
rarely activated nodes or to decide if the insertion of a node was inef-
fective and does not cause a decreasing error rate. The drawback of the
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proposed methods is that they tend to delete nodes representing rarely
occurring data with only very few feature vectors, which are typically
quite important in our scenario where objects are rotated freely by hand.
Especially the LLCS (Hamker, 2001) utility measurements delete nodes
that are not supported by other nodes in their direct neighborhood.
The deletion of such nodes slows down the learning process and can
also destroy parts of the representation, which infrequently occur again.
Although we did not care for an explicit node deletion procedure in our
iLVQ model, we think that similar mechanisms of utility measurements
could be advantageous for reducing the representational effort in the
LTM model.
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Figure 4.1: Life-Long Learning for Categorization Problems. In this chapter a

life-long learning method for interactive learning of categories is proposed. This learning

method enables the memory consolidation from the object-specific short-term memory

proposed in Chapter 3 into a category-specific long-term memory. The basic idea of the

incremental build up of the LTM representation is to combine an extended LVQ network

with a category-specific feature selection.

In Chapter 3 we proposed a memory model for life-long learning of ar-
bitrary identification tasks. In the following chapter we concentrate on
more challenging categorization tasks. Therefore based on the previ-
ously developed STM (see Chapter 3) a memory consolidation from
an object-specific STM into a category-specific LTM representation
(Kirstein et al., 2008b; Kirstein et al., 2009) is proposed. The pro-
posed LTM learning model combines an incremental exemplar-based
neural network with a dynamic feature scoring and selection technique
to enable life-long learning of arbitrary categories. The target of this
learning method is a flexible category representation that is capable to
deal with complex-shaped objects with high appearance variations. The
presented experimental results are based on (Kirstein et al., 2009), where



60 CHAPTER 4. LIFE-LONG LEARNING FOR CATEGORIZATION TASKS

fast learning combined with good generalization performance could be
shown.

4.1 Comparison between Identification and Cate-

gorization Tasks

The major target when dealing with categorization tasks is to achieve a
higher generalization performance compared to identification tasks. For
identification tasks commonly the mapping from all entities (e.g. object
views) of an instance (e.g. a physically object) to a given class label is
learned. Furthermore the learning algorithm tries to optimally separate
each instance from all other classes as illustrated in Fig. 4.2. Therefore a
well trained identification system normally can generalize to unseen en-
tities of the learned instances, but typically the generalization to similar
but novel instances is very limited. In contrast to this for categorization
tasks normally a group of instances with common properties (e.g. the
basic shape ) are assigned to a single label. To achieve this mapping
the learning method must be able to extract the reoccurring properties
to decide if a category is present in the current entity or not. This
means that instance-specific information should be neglected, whereas
for identification tasks typically these details are used to distinguish the
different classes. Due to the extraction of reoccurring activation pat-
terns categorization architectures enable good generalization to other
instances sharing the properties of the corresponding category.

4.2 Related Work

For the life-long learning of arbitrary categories we combine an exemplar-
based neural network with a category-specific feed-forward feature selec-
tion method, where the incremental and life-long learning of both parts
is the major novelty of our proposed method. Although our approach is
applicable to any kind of categories we concentrate in this chapter on a
challenging visual categorization task, where we apply our methods to
rotated and complex-shaped objects. Besides incremental and life-long
learning we are additionally targeting for fast interactive learning that
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Figure 4.2: Comparison between Identification and Categorization Tasks. For

identification tasks commonly the mapping from all entities of a physical instance (e.g. an

object) to a given class label is learned. Additionally each instance is separated from all

other instances. Therefore learning methods for identification problems try to extract the

most distinctive features to achieve this learning target. In contrast to this for categoriza-

tion tasks normally a group of instances, sharing common properties, are assigned to a label.

For such learning tasks therefore the extraction of these reoccurring properties is targeted.

Due to the suppression of instance-specific characteristics, for categorization problems a

higher generalization performance compared to identification tasks can be achieved.

allows learning in direct interaction with a human tutor. In the follow-
ing, related work addressing life-long learning, feature selection, visual
categorization, and online learning is discussed in more detail.

4.2.1 Life-Long Learning Architectures

Life-long learning architectures (Hamker, 2001; Polikar et al., 2001;
Kirstein et al., 2008), as discussed in Section 3.1 are typically based
on exemplar-based learning techniques like the Learning Vector Quan-
tization (LVQ) (Kohonen, 1989) or the Growing Neural Gas (GNG)
(Fritzke, 1995). Such neural architectures are beneficial for life-long
learning, because for a specific input vector the learning methods mod-
ify only small portions of the overall network. Thus stability can be
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better achieved compared to the Multi Layer Perceptron (MLP), where
all weights are modified at each learning step. Furthermore the learning
of exemplar-based networks is commonly based on a similarity measure-
ment (e.g. Euclidean distance), where the chosen metric has a strong
impact on the generalization performance. To relax this dependency,
metrical adaptation methods can be used that individually weight the
different feature dimensions as proposed for the Generalized Relevance
Learning Vector Quantization (GRLVQ) (Hammer & Villmann, 2002)
algorithm.

A common strategy for life-long learning architectures is the usage of a
node specific learning rate combined with an incremental node insertion
rule (Hamker, 2001; Furao & Hasegawa, 2006; Kirstein et al., 2008).
This permits plasticity of newly inserted neurons, while the stability
of matured neurons is preserved. The major drawback of these archi-
tectures is the inefficient separation of co-occurring visual categories,
because typically the complete feature vectors are used to represent
the different classes and no assignment of feature vector parts to dif-
ferent classes is considered. To overcome this limitation we propose a
category-specific feature selection that enable an efficient separation of
co-occurring categories.

4.2.2 Feature Selection Methods

In the context of text categorization, feature selection methods are
a common technique to enhance the performance (Yang & Pedersen,
1997), while for visual categorization tasks feature selection gained dis-
tinctly less interest. One exception are approaches based on boosting
(Viola & Jones, 2001), where the feature selection is an integrated part
of the learning method. In contrast to this, category-specific feature
selection is considered to be an important part for our categorization
approach. This is because commonly only a small subset of extracted
features is relevant for a specific category, while the other features are
irrelevant or even can cause confusions. Furthermore small category-
specific feature subsets are beneficial with respect to the computational
costs to allow fast interactive learning. Therefore in the following a brief
overview of different feature selection techniques is given.

There are basically three groups of feature selection methods, namely
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filter, wrapper and embedded methods (Guyon & Elissee, 2003). Fil-
ter methods (see Forman (2003) for an overview) are independent of
the used classifier and commonly select a subset of features as a pre-
processing step. The corresponding feature selection is typically based
on some feature ranking method (Furey et al., 2000; Kira & Rendell,
1992), but also the training of single variable classifiers is used. The sec-
ond group of feature selection methods are wrapper methods (Kohavi
& John, 1997). Similar to the filter approaches these wrapper methods
are independent of the underlying recognition architecture but they use
the learning algorithm as a “black box” to weight different feature sub-
sets (e.g. based on the training error). Due to the incorporation of the
learning method to guide the feature selection process and to evaluate
the different feature subsets, wrapper methods are considered to select
more class-specific features sets compared to filter methods (Guyon &
Elissee, 2003). Wrapper methods furthermore can be categorized into
backward and forward selection methods, where the backward selection
starts with a full set of features and iteratively eliminates irrelevant
features. In contrast to this, forward selection methods start with an
empty set of features and incrementally add new features. Such methods
are beneficial with respect to interactive learning, because they enable
fast learning. Therefore we propose a novel forward selection wrapper
method for our categorization task. The last group of feature selection
methods are the so-called embedded methods. Here the feature selection
is an integrated part of the recognition architecture and is optimized to-
gether with the network parameters, so that these methods usually can
not be transferred to other learning approaches. One strategy of this
group is to add sparsity constraints to the error function (Perkins et al.,
2003) resulting in a pruning of irrelevant features.

4.2.3 Visual Category Learning Approaches

In the recent years many architectures dealing with categorization tasks
have been proposed in the computer vision research field. Such category
learning approaches can be partitioned into generative and discrimina-
tive models (Fritz, 2008). Generative probabilistic models, as proposed
by Leibe et al. (2004), Fei-Fei et al. (2003), Fergus et al. (2003) or
Mikolajczyk et al. (2006), first model the underlying joint probability
P (x, tc) for each category tc and all training examples x individually



64 CHAPTER 4. LIFE-LONG LEARNING FOR CATEGORIZATION TASKS

and afterwards use the Bayes theorem to calculate the posterior class
probability p(tc|x) (Bishop, 2006). The advantages of generative models
are that expert knowledge can be incorporated as prior information and
that those models usually require only a few training examples to reach a
good categorization performance. In contrast to this, discriminant mod-
els directly learn the mapping from x to tc based on a decision function
Φ(x) or estimate the posterior class probability P (tc|x) in a single step
(Ng & Jordan, 2001). Common approaches for this group of categoriza-
tion models are based on Support Vector Machines (Heisele et al., 2001),
boosting (Viola & Jones, 2001; Opelt et al., 2004) or SNOW (Agarwal
et al., 2004). Such discriminant models tend to achieve a better catego-
rization performance compared to generative models if a large ensemble
of training examples is available (Ng & Jordan, 2001).

In general most categorization approaches are robust against partial
occlusions, scale changes, and are able to deal with cluttered scenes.
However, many models have only been demonstrated to work with data
sets restricted to canonical views of categories (e.g. side views of cars).
Thomas et al. (2006) try to overcome this limitation by training several
pose-specific implicit shape models (ISM) (Leibe et al., 2004) for each
category. After the training of these ISMs, detected parts from neighbor-
ing pose-dependent ISMs are associated by so-called “activation links”.
These links then allow the detection of categories from many viewpoints.
Additionally categorization architectures are commonly designed for of-
fline usage only, where the required training time is not important. This
makes them unsuitable for our desired interactive training. Recent work
of Fritz et al. (2007) and Fei-Fei et al. (2007) addresses this issue by
proposing incremental clustering methods, which in general allow inter-
active category learning, but still these approaches are restricted to the
canonical views of the categories.

4.2.4 Online and Interactive Learning

The development of online and interactive learning systems has become
increasingly popular in the recent years (Roth et al., 2006; Steels & Ka-
plan, 2001; Arsenio, 2004; Wersing et al., 2007a). Most of these methods
were not applied to categorization tasks, because their learning methods
are unsuitable for a more abstract and variable category representation.
The work of Skočaj et al. (2007) is of particular interest with respect
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to online and interactive learning of categories. It enables learning of
several simple color and shape categories by selecting a single feature
that describes the particular category most consistently. Finally the
corresponding category is then represented by the mean and variance of
this selected feature (Skočaj et al., 2007) or more recently by an incre-
mental kernel density estimation using mixtures of Gaussians (Skočaj
et al., 2008). Although this category learning architecture shares some
common targets with our proposed learning method, the restriction to
a single feature only allows the representation of categories with little
appearance changes. This is basically because more complex categories
typically require several features to adequately represent all category
instances. To avoid this limitation we propose a forward feature selec-
tion process that incrementally selects an arbitrary number of features
if they are required for the representation of a particular category.

4.3 Life-Long Learning of Categories

Our categorization memory architecture illustrated in Fig. 4.3 is based
on a limited and object-specific short-term memory (STM) (see Chap-
ter 3) that is transferred into a category-specific long-term memory
(LTM) representation. This LTM model is based on an exemplar-based
incremental learning network combined with a forward feature selection
method to allow life-long learning of arbitrary categories. Both parts
are optimized together to find a balance between insertion of features
and allocation of representation nodes, while using as little resources as
possible. This is crucial for interactive learning with respect to the re-
quired computational costs. In the following we refer to this architecture
as category Learning Vector Quantization (cLVQ).

To achieve the interactive and incremental learning capability the
exemplar-based network part of the cLVQ method is used to approach
the ”stability-plasticity dilemma” of life-long learning problems. Com-
monly for LVQ networks the number of nodes for each class has to
be predefined. Thus experiments normally are repeated with different
numbers of nodes to find a network size adequate for the difficulty of
the corresponding learning problem. Such a repetition of experiments is
unsuitable for interactive learning. Thus we define a node insertion rule
that automatically determines the number of required nodes. The final
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Figure 4.3: Illustration of the Life-Long Learning Model for Categorization

Tasks. For the category learning model the same limited short-term memory (STM)

representation can be used as proposed in Chapter 3. Therefore the STM is not considered

anymore in this chapter. In contrast to the previous model the proposed category Learning

Vector Quantization (cLVQ) method allows the transition from a object-specific STM to

a category-specific long-term memory (LTM). This is achieved by combining an exemplar-

based neural network approaching the “stability-plasticity dilemma” with a category-specific

feature selection. This allows the separation of co-occurring categories (e.g. if an instance

belongs to several categories) and the definition of different metrical “views” to a single

node wk. The categorization decision itself is based on the allocated cLVQ nodes wk and

the low-dimensional category-specific feature spaces.

number of allocated nodes wk corresponds to the difficulty of the differ-
ent categories itself but also to the within-category variance. Finally the
long-term stability of these incrementally learned nodes is considered as
proposed by (Kirstein, Wersing, & Körner 2008).

Additionally for our learning approach a category-specific forward fea-
ture selection method is used to enable the separation of co-occurring
categories, because it defines category-specific metrical “views” on the
nodes of the exemplar-based network. During the learning process it
selects low-dimensional subsets of category-specific features by predom-
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inantly choosing features that occur almost exclusively for a certain
category. Furthermore only these selected category-specific features are
used to decide whether a particular category is present or not. For guid-
ing this selection process a feature scoring value hcf is calculated for each
category c and feature f . This scoring value is only based on previously
seen exemplars of a certain category, which can strongly change if fur-
ther information is encountered. Therefore a continuous update of the
hcf values is required to follow this change.

4.3.1 Distance Computation and Learning Rule

Learning in the cLVQ architecture is based on a set of high-dimensional
and sparse feature vectors xi = (xi

1, . . . , x
i
F ), where F denotes the total

number of features. Additionally each vector xi is assigned to a list of
category labels ti = (ti1, . . . , t

i
C). We use C to denote the current number

of represented color and shape categories, whereas each tic ∈ {−1, 0, +1}
labels an xi as positive or negative example of category c. The third state
tc = 0 is interpreted as unknown category membership, which means
that all vectors xi with tic = 0 have no influence on the representation
of category c.

The cLVQ representative vectors wk with k = 1, . . . , K are built up in-
crementally, where K denotes the current number of allocated vectors w.
Each wk is attached to a label vector uk where uk

c ∈ {−1, 0, +1} is the
model target output for category c, representing positive, negative, and
missing label output, respectively. Each cLVQ node wk can therefore
represent several categories c. For the category-specific distance com-
putation dc we use a weighted Euclidean distance with specific weight
factors λcf similar to the Generalized Relevance Learning Vector Quan-
tization (GRLVQ) method proposed by Hammer & Villmann (2002):

dc(x
i,wk) =

F
∑

f=1

λcf(x
i
f − wk

f)
2, (4.1)

where the category-specific weights λcf are updated continuously. We
denote the set of selected features for an active category c ∈ C as Sc.
We choose λcf = 0 for all f 6∈ Sc, and otherwise adjust it according
to a scoring procedure explained later. The winning nodes wkmin(c)(xi)
are calculated independently for each category c, where kmin(c) is deter-
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Figure 4.4: Illustration of the cLVQ Learning Rule. Based on a training vector

xi and the corresponding target vector ti the winning nodes wkmin(c) are calculated for

each category c independently. For this calculation only the selected features f ∈ Sc are

used, so that the categorization decision is based on the different low-dimensional feature

subsets. If the categorization decision was correct, the winning node wkmin(c) is shifted

into the direction of the training vector. Otherwise wkmin(c) is moved into the opposite

direction. If for an xi the membership of a category is unknown (ti
c
= 0) no adaptation of

the prototype node wkmin(c) is performed.

mined in the following way:

kmin(c) = arg min
k

dc(x
i,wk) ∀k with uk

c 6= 0. (4.2)

Each wkmin(c)(xi) is updated based on the standard LVQ learning rule
(Kohonen, 1989), but is restricted to feature dimensions f ∈ Sc:

w
kmin(c)
f := w

kmin(c)
f + µ Θkmin(c)(xi

f − w
kmin(c)
f ) ∀f ∈ Sc, (4.3)

where µ = 1 if the categorization decision for xi was correct, otherwise
µ = −1 and the winning node wkmin(c) will be shifted away from xi.
This node adaptation is illustrated in Fig. 4.4. Additionally Θkmin(c) is
the node-dependent learning rate as proposed by Kirstein et al. (2008):

Θkmin(c) = Θ0 exp

(

−
akmin(c)

d

)

. (4.4)
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Here Θ0 is a predefined initial value, d is a fixed scaling factor, and
ak is an iteration-dependent age factor. Similar to the iLVQ approach
proposed in Chapter 3 the age factor ak is incremented every time the
corresponding wk becomes the winning node.

4.3.2 Feature Scoring and Category Initialization

The incremental category learning of our model is organized in training
epochs, where only a limited number of category entries (e.g. object
views) are visible to the learning method, emulating a limited short-
term memory (STM). After each epoch some of the training vectors
xi and their corresponding target category values ti are removed and
replaced by vectors of a new instance. Therefore for each training epoch
the scoring values hcf , used for guiding the feature selection process, are
updated in the following way:

hcf =
Hcf

Hcf + H̄cf

. (4.5)

The variables Hcf and H̄cf are the number of previously seen positive
and negative training examples of category c, where the corresponding
feature f was active (xf > 0). For each newly inserted object view, the
counter value Hcf is updated in the following way:

Hcf := Hcf + 1 if xi
f > 0 and tic = +1, (4.6)

where H̄cf is updated as follows:

H̄cf := H̄cf + 1 if xi
f > 0 and tic = −1. (4.7)

The score hcf defines the metrical weighting in the cLVQ representation
space. We then choose λcf = hcf for all f ∈ Sc and λcf = 0 otherwise.

For our learning architecture we assume that not all categories are
known from the beginning, so that new categories can occur in each
training epoch. Therefore if category c with the category label tic = +1
occurred for the first time in the current training epoch, we initialize
this category c with a single feature and one cLVQ node. We select the
feature vc = arg maxf(hcf) with the largest scoring value and initialize
Sc = {vc}. The training vector xi is selected as the initial cLVQ node,
where the selected feature vc has the highest activation, i.e. wK+1 = xq

with xq
vc
≥ xi

vc
for all i. The attached label vector is chosen as uK+1

c = +1
and zero for all other categories.
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Figure 4.5: Illustration of the cLVQ Optimization Loop. The basic idea of this

optimization loop is to make small modifications to the representation of categories where

categorization errors on the available training vectors occur. If the gain in categorization

performance, based on all available training examples of category c, is above the insertion

threshold the modification is kept and otherwise it is retracted.

4.3.3 Learning Dynamics

During a single learning epoch of the cLVQ method an optimization loop
is performed iteratively (see Fig. 4.5). This loop applies small changes
to the representation of erroneous categories by testing new features
and representation nodes. A single run through the optimization loop
is composed of the following steps:

Step 1: Feature Testing. The target of this step is the addition of
features for the category-specific metrics, based on the observable train-
ing vectors xi and the corresponding categorization errors. Additionally
in rare cases also the removal of already selected features is possible. For
each category c we determine the set of positive errors E+

c as:

E+
c = {i|tic = +1 ∧ tic 6= ukmin(c)

c (xi)} (4.8)

and negative errors E−
c as:

E−
c = {i|tic = −1 ∧ tic 6= ukmin(c)

c (xi)}. (4.9)
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Afterwards we compare the total number of positive errors #E+
c with

the corresponding number of negative ones #E−
c . If the total number

of #E+
c ≥ #E−

c then we compute:

e+
cf =

∑

i∈E+
c

Φltm(xi
f)/

∑

i∈E+
c

1, (4.10)

where for the category-specific LTM the Φltm is defined as a Heaviside
function.

The score e+
cf is the ratio of active feature entries for feature f among

the positive training errors of class c. We now want to add a feature to
the category feature set Sc that potentially improves the categorization
performance of category c by having a high scoring value hcf which is
also very active for the encountered error set E+

c . Therefore we choose:

vc = arg max
f 6∈Sc

(e+
cf + hcf) (4.11)

and add Sc := Sc ∪ {vc}. The added feature dimension modifies the
cLVQ metrics by changing the decision boundaries of all Voronoi clus-
ters assigned to category c, which potentially reduces the remaining
categorization errors. Therefore the change of the categorization errors
is calculated based on the newly added feature vc. If the performance
increase for category c is larger than threshold ǫ1

ltm, then vc is perma-
nently added and otherwise it is removed. An analog step is performed
if the number of negative errors is larger than the number of positive
errors (#E+

c < #E−
c ). The only difference is that a feature is removed

and then again the performance gain is computed for the final decision
on the removal.

Step 2: cLVQ Node Testing. Similarly to Step 1, we test new cLVQ
nodes only for erroneous categories. In previous work concerning iden-
tification tasks (see Chapter 3) nodes were inserted for training vectors
with smallest distance to wrong winning nodes (Kirstein et al., 2008).
In contrast to this, we here insert new cLVQ nodes based on training

vectors xi with most categorization errors tic 6= u
kmin(c)
c (xi) for all cat-

egories C, until for each erroneous category c at least one new node
is inserted (see Fig. 4.6). This leads to very compact representations,
because a single node typically improves the representation of several
categories.

Again we calculate the performance increase based on all currently avail-
able training vectors. If this increase for category c is above the thresh-
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Figure 4.6: Illustration of the Node Insertion Rule. We incrementally add new

cLVQ prototype nodes wk based on wrongly categorized training vectors illustrated with

small circles. The positions of these vectors are different in each category-specific subspace

and also the number of erroneously labeled categories varies. Thus the wrongly categorized

training vectors are labeled with a number to ease this mapping. In the following for each

erroneous category at least one new node is inserted. For the insertion we prefer training

vectors where the most categorization errors occurred. For the illustrated example only

one training vector (highlighted with the small filled circle) causes errors in three different

categories. Therefore at the corresponding vector position a new node is inserted. This

insertion rule leads to a compact representation, because a single node wk potentially

improves the representation of several categories.

old ǫ2
ltm, we make no modifications to the cLVQ node labels of the cor-

responding newly inserted nodes. Otherwise we set the corresponding
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labels uk
c of each newly inserted node wk to zero, so that node k does not

further contribute to the representation of category c. Finally we remove
nodes where all uk

c are zero, which means that no erroneous category for
which the node wk was originally inserted reached a performance gain
above ǫ2

ltm.

Step 3: Stop condition. If all remaining categorization errors are
resolved or all possible features f of erroneous categories c are tested
then start a new training epoch. Otherwise we iterate the optimization
Steps 1 and 2 to test further features and nodes.

4.3.4 Insertion Thresholds

Similar to the a priori definition of the optimal number of LVQ nodes
also the insertion thresholds ǫ1

ltm for the feature testing or ǫ2
ltm for the

node testing are difficult to predetermine. Large insertion thresholds
minimize the number of allocated resources, but the learning progress is
slow, which is unsuitable for our desired interactive learning capability.
Additionally the learning approach may even fail to learn an appropri-
ate representation for more difficult categories due to the fact that no
feature candidate or node reaches the insertion threshold and therefore
all of them are rejected. On the other hand, small insertion thresholds
considerably increase the learning speed, because it is typically much
easier to resolve small numbers of errors iteratively, but the amount of
allocated network resources is much higher. Especially for the feature
selection process this has the effect that also many irrelevant or object-
specific features are selected, so that the generalization performance to
new category instances is poor.

As a compromise between these two extremes we propose to start each
learning epoch with high insertion thresholds ǫ1

ltm and ǫ2
ltm, so that pre-

dominantly category-specific resources are allocated. During each itera-
tion of the optimization loop illustrated in Fig. 4.5 a decrement of both
thresholds is calculated based on the prespecified values ǫmax

ltm and ǫmin
ltm :

∆ǫltm =
α(ǫmax

ltm − ǫmin
ltm )

F
(4.12)

to gradually relax the insertion constraint, where F corresponds to the
total number of extracted features and α is a constant that controls
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the slope of the linear decrement. The final insertion thresholds of the
current learning iteration are calculated in the following way:

ǫltm :=

{

ǫltm − ∆ǫltm : if ǫltm − ∆ǫltm > ǫmin
ltm

ǫmin
ltm : else

. (4.13)

For the cLVQ architecture this gradual decrement of insertion thresh-
olds has the benefit that at the beginning of a learning epoch many
allocated object-specific network resources are rejected, but also allows
the representation of categories for which no category-specific features
are available. In such rare cases the categorization performance to new
category members is most probably poor, but at least already known
exemplars of such a category can be robustly detected. Furthermore
all features that where initially below the insertion threshold ǫ1

ltm are
retested if ǫ1

ltm meanwhile is below the previously measured performance
increase.

4.4 Experimental Results

In the following section our proposed cLVQ life-long learning architec-
ture is compared with a Single Layer Perceptron (SLP) and two modified
cLVQ versions cGRLVQ and cLVQ∗. The comparison of the exemplar-
based networks is done to measure the effect of the feature weighting,
and feature selection methods with respect to categorization perfor-
mance, number of allocated resources and required training time. For
this comparison the cLVQ∗ is the most simplified exemplar-based net-
work, where nodes are incrementally added and tested, but no feature
weighting and selection is performed. In contrast to this, the cGRLVQ
additionally applies a feature weighting based on the GRLVQ method
proposed by Hammer & Villmann (2002). The GRLVQ weighting is
based on the distance dco

c to the nearest correctly labeled prototype
wkco(c) and dinco

c to the nearest prototype wkinco(c) with incorrect label:

∆λcf = ΘλΦ′
G

(

dco
c

dco
c + dinco

c

(xi
f − winco

f )2 −
dinco

c

dco
c + dinco

c

(xi
f − wco

f )2

)

,

(4.14)
where Θλ is the learning rate for the λcf weighting values and Φ′

G is the
first derivative of a Fermi-function. Although similar to the proposed
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cLVQ this dynamical feature weighting enables the cGRLVQ to suppress
irrelevant features, but no explicit feature selection is performed.

The comparison with the SLP network architecture is done because this
is the simplest neural network model that fulfills the requirements of the
categorization task. Therefore SLPs are used to measure the baseline
performance. For each category one output node is used. The output
pi

c of each node is defined as:

pi
c =

1

1 + exp(−wc ∗ xi)
, (4.15)

where wc is a single linearly separating weight vector for each category
c. The training is based on standard stochastic gradient descent in the
sum of quadratic difference errors between training target and model
output. In contrast to the more commonly used Receiver Operating
Characteristics (ROC) curves, we estimate the rejection thresholds dur-
ing the learning process, based on the average activation strength of the
network output. This is necessary for interactive learning tasks to allow
categorization of new object views at any time.

4.4.1 Experimental Setup

For the comparison of our cLVQ architecture with other learning ap-
proaches we use a challenging categorization database composed of 56
different training objects and 56 distinct objects for testing (see Fig. 4.7),
which were never used during the training phase. For each object 300
color views of dimensionality 128x128 pixels were taken in front of a
black background while rotating the object around the vertical axis.

Overall our object ensemble contains ten different shape categories and
five different color categories as shown in Fig. 4.7. It should be men-
tioned that several objects are multi-colored (e.g. the cans) where not
only the base color should be detected, but also all other prominent
colors covering at least 30% of the visible object view. This multi-
detection constraint complicates the categorization task compared to
the case where only the best matching category or the best matching
category of a specified group of visual attributes (e.g. one for color and
one for shape) must be detected.

For all experiments performed with this database we trained the differ-
ent network architectures with a limited and changing training ensemble
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Figure 4.7: Object Ensemble. Examples of all training (left) and test objects (right)

used for our categorization task, where 15 different categories are trained. As color cat-

egories red, green, blue, yellow and white are trained. The shape categories are animal,

bottle, box, brush, can, car, cup, duck, phone and tool. Each object was presented in front

of a black background and is rotated around the vertical axis (bottom), resulting in 300

color images per object.

composed of a visible “window” of only three objects to test the life-long
learning ability of the different approaches. For each epoch only these
three objects are visible to the learning algorithm. At the beginning of
each epoch a randomly selected object is added, while the oldest one
is removed. This scheme is repeated until all training objects are pre-
sented once to the network architectures. Additionally all experiments
are repeated ten times with identical parameter set but random order
of object presentation. The corresponding results shown in Fig. 4.9 and
Fig. 4.10 are the average values over these runs.
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4.4.2 Feature Extraction

The proposed cLVQ life-long learning method is a general categorization
framework but we investigate the learning capabilities of our method
based on a visual categorization task. Therefore different feature ex-
traction methods are used to provide shape and color information as
illustrated in Fig. 4.8. We propose to combine all these multiple feature
cues, where for such learning tasks typically only a single feature extrac-
tion method is used (Mikolajczyk et al., 2006; Opelt et al., 2004; Fritz
et al., 2007). Furthermore this qualitative separation of the extracted
features is not given to the learning system as a priori information. For
our categorization task we are particularly interested in discovering the
structure of the categories from the high-dimensional but sparse feature
vectors by using a flexible metrical adaptation. Assume you want to
learn the category “fire engine”, where all training examples are mainly
of red color. If the learning of this category is restricted to shape fea-
tures only, it would be difficult to distinguish the category “fire engine”
from other cars and trucks, because the most distinctive feature, the
red color, is not included in the feature representation. Therefore we
let the learning algorithm decide which feature combinations are most
suitable to represent a category. As a consequence we concatenate all
extracted features of an object view into a single high-dimensional and
structureless feature vector xi.

4.4.2.1 Extraction of Color Features

In contrast to the identification task in Chapter 3, we use for the con-
sidered visual categorization tasks color histograms, which combine ro-
bustness against view and scale changes with computational efficiency
(Swain & Ballard, 1991). The histograms are used, because for the
feature selection method a representation is required, where a single
feature represents a specific color, which can not be achieved with the
previously used down-sampled RGB-maps. Furthermore for our exper-
imental setup the color histograms are commonly sufficient sparse, so
that also the sparsity constraint of the proposed cLVQ feature scoring
method is fulfilled.
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forward feature extraction hierarchy. Shape and color features are concatenated into a

single “flat” vector representation. Furthermore the target categories are represented in a

category vector ti for each feature vector xi.

4.4.2.2 Extraction of Shape Features

For the extraction of shape features two different methods are com-
bined. The first method extracts category-specific parts-based features
(see Hasler et al. (2007) or Appendix A.1.2 for details). This feature
extraction is based on a learned set of category-specific feature detec-
tors that are based on SIFT descriptors (Lowe 2004). Commonly these
descriptors are only determined around some highly structured interest
points, while the used feature extraction method applies them at all im-
age positions. This especially allows the representation of structureless
categories. For the final feature response only the maximum detector
value is selected, so that all spatial information is neglected. The second
method is the same hierarchical feed-forward feature extraction hierar-
chy (Wersing & Körner, 2003) as used for the object identification in
Chapter 3. In contrast to the parts-based features the C2 features from
this hierarchy are more general and less category-specific. Furthermore
the C2 features are topographically organized, where a single feature re-
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sponds to a local patch in the input image. We combine these different
shape features to show the ability of the category learning method to
select appropriate features out of a large amount of possible candidates.
Such feature combinations are uncommon because most categorization
methods rely on parts-features only (Willamowski et al., 2004; Agarwal
et al., 2004).

4.4.3 Categorization Performance

Although no prior information is given during the learning process with
respect to the kind of trained categories, we distinguish between color
and shape categories in the performance measurement to discuss the
different quality of extracted features and the corresponding behavior
of all network architectures. We also investigate the effect of differ-
ent shape features by performing experiments with parts-based features
only or the combination of these features with less category-specific C2
features.

4.4.3.1 Color and Parts-based Features

The overall performance of the cLVQ architecture for this feature set-
ting is good for all categories as can be seen on the left of Fig. 4.9. For
the color categories it performs much better than the simpler cGRLVQ
and cLVQ∗. Thus for categories with a few stable and category-specific
features a feature selection method and the suppression of irrelevant fea-
tures is beneficial with respect to the generalization performance. On
the contrary for shape categories the cGRLVQ method performs at in-
termediate training epochs better than cLVQ and cLVQ∗, while at the
end of the overall learning process it is only slightly better compared
to cLVQ∗ and cLVQ. This slightly higher performance of GRLVQ and
also cLVQ∗ compared to our cLVQ approach is most probably due to
the much higher number of allocated nodes (see Fig. 4.10 for details).
Although cLVQ is slightly worse for shape categories compared to the
other tested vector quantization methods it is still able to capture most
category information even for categories with higher appearance varia-
tions.

The SLP network architecture is distinctly worse for the color categories
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Figure 4.9: Comparison of Categorization Performance for Color Categories.

For this comparison of our proposed cLVQ with cGRLVQ, cLVQ∗ and SLP we performed ten

different runs with an identical parameter set but random object order. The categorization

performance is calculated after each training epoch, based on all test objects. This means

that the performance is calculated based on the representation of the objects seen so far,

simulating an interactive learning session. Additionally different feature sets are used to

investigate their impact on the categorization performance. In general the cLVQ method

is superior for color categories compared to all other learning methods, while for the shape

categories cLVQ is slightly worse than cGRLVQ and cLVQ∗. Nevertheless the proposed

cLVQ algorithm uses much fewer memory and computational resources as shown in Fig.

4.10.

than the proposed cLVQ method. For the combination of color and
parts-based features SLP is able to suppress irrelevant features better
than cGRLVQ and cLVQ∗. Therefore the SLP achieves a distinctly
higher performance among all tested methods using every feature. For
the shape categories the SLP network architecture is only superior at
earlier learning epochs, but is worse if the learning process is continued.
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Overall the SLP performance is surprisingly good, which is in contrast
to classification tasks with a one-out-of-n class selection, where the SLP
approach is known for the “catastrophic forgetting effect” (French, 1999;
Kirstein et al., 2008). For our categorization task this effect is only
slightly visible for the shape categories, where the performance increase
for newly presented objects is distinctly less than for all other tested
approaches. We therefore would expect that the performance difference
between cLVQ and SLP increases if the learning process is continued.

4.4.3.2 Color, Parts-based and C2 Features

We also performed experiments with color histogram features, parts-
based features and hierarchical C2 features. It can be seen on the right
side of Fig. 4.9 that the cLVQ method reaches almost the same per-
formance as in the previous feature setting. In contrast to this the
performance of cGRLVQ, cLVQ∗ and also the SLP is distinctly worse
for the color categories compared to the feature set using only color
and parts-based features. Additionally for color categories the SLP is
not better anymore than cGRLVQ, so that the performance difference
to cLVQ is nearly 30%. For the shape categories the cGRLVQ archi-
tecture achieves a better performance in comparison to cLVQ even for
the final learning stages. Overall it can be said that for color categories
our proposed cLVQ is unaffected if the general but less category-specific
C2 features are added, but these features only have a minor positive
effect on the shape categories. Nevertheless we believe that C2 features
can become beneficial by contributing to the fine tuning of the category
representation if the learning process will be continued.

4.4.4 Comparison of Required Network Resources

In the following we compare the different learning approaches with re-
spect to the required network resources (see Fig. 4.10). For interactive
learning tasks the training time is most crucial. For the used vector
quantization approaches cLVQ, cGRLVQ and cLVQ∗ this training time
is basically determined by the overall feature dimensionality and the ca-
pability to iteratively solve remaining errors by allocating new prototype
nodes. Furthermore the number of used features and the total number of
these allocated nodes are important with respect to the learning speed.
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Figure 4.10: Comparison of Network Resources. The total training time of the

proposed cLVQ and also cGRLVQ, cLVQ∗ and SLP is most crucial with respect to interactive

learning. Therefore for both feature sets and all tested approaches the corresponding

training time is shown at the top of this figure. It can be seen that especially in later

learning epochs the simpler vector quantization methods cGRLVQ and cLVQ∗ require more

than two orders of magnitudes more training time compared to SLP and cLVQ, while the

cLVQ is even two times faster than the SLP. This computational efficiency of the cLVQ

method is caused by the small number of selected features, but also by the smaller number

of allocated LVQ nodes as shown at the bottom of this figure.

In contrast to this the training time of the SLP network architecture
only depends on the feature vector dimensionality and the number of
preselected iterations per training epoch (100 in our case). Additionally
we are also interested in the scalability of the different approaches with
respect to an increasing feature dimensionality.

The proposed cLVQ method theoretically has the highest computational
costs if almost all feature dimensions were used, because of the iterative
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insertion and testing of features and nodes. Effectively it is more than
two orders of magnitudes faster compared to cGRLVQ and cLVQ∗. For
the combination of all three feature extraction methods the proposed
iLVQ requires about 30 min training time to acquire the category rep-
resentation, while the iGRLVQ already need about three days for the
same task. Compared to this, the simpler cLVQ∗ requires overall five
weeks training time for this learning task, which strongly highlights the
necessity for a dynamic feature weighting. In our experiments the pro-
posed cLVQ is even more than two times faster than the simple SLP
network architecture as shown in the upper part of Fig. 4.10. This
computational efficiency is basically caused by the proposed feature se-
lection method, which typically selects less than 5% of all available fea-
ture dimensions. Also the number of allocated neurons is much smaller
compared to the other vector quantization methods as shown at the
bottom of Fig. 4.10. This is another positive side effect of this small
amount of selected category-specific and stable features. This smaller
number of nodes again enhances the learning speed and is also beneficial
with respect to the representational capacity for storing many different
categories.

4.4.5 Qualitative Evaluation of the cLVQ Feature Selection

Method

Apart from categorization performance and network resources we are
also interested in how good the feature selection method of our proposed
cLVQ learning algorithm is able to find reasonable category-specific fea-
tures. Therefore ten different training runs of the cLVQ method were
performed and all selected features for each category are saved together
with the corresponding feature scoring values. The selected features for
each category c are sorted based on the total number of occurrence in
these ten runs, where frequent features are most probably critical for
the representation of this particular category. Additionally each fea-
ture is visualized with a small patch, to allow a visual inspection of
its usefulness for the corresponding category. We use the RGB value of
the histogram bin center for color features, while for the parts-based fea-
tures the grey-value patch corresponding to the highest detector activity
is chosen (Hasler et al., 2007). We also consider the final scoring value
hcf of each selected feature. This value is identical for all learning runs
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Figure 4.11: Qualitative Evaluation of the Feature Selection Method for Color

Categories. Illustration of the selected features of three representative color categories,

where one easy, one average and one difficult category was selected. For this visualization

ten different cLVQ networks are trained and the selected features of each category together

with the scoring values are saved. The selected features of each category are sorted based

on the total number of occurrences in these ten runs, while the bar height correspond to

the feature score of these selected features. All features that occurred at least 7 times are

considered as critical for the representation of this category, while feature occurrence of

less than 3 time are probably irrelevant or even wrong. Finally features that are selected

3-6 times indicate redundant feature sets, with similar representational capacity. Besides

the occurrence of each feature the total number of selected features indicate the difficulty

of the category. This is especially visible for the worst color category “white”. Nevertheless

even for this category the correct color feature is selected in all test runs.

and provides information about the category specificity of this feature.
The results of this investigation are shown in Fig. 4.11 for three repre-
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sentative color categories and in Fig. 4.12 for three shape categories.

Due to the fact that the training objects are presented iteratively to
the cLVQ, its wrapper feature selection method can never be perfect.
This is because a certain feature at a particular learning state might
be useful, but with more experience it can become obsolete. This espe-
cially occurs for the first object presentation of a shape category, where
often a color feature is selected, because due to the object rotation it
is more stable than all shape features. As a consequence, features that
are selected only once in Fig. 4.11 and Fig. 4.12 are most probably not
category-specific and in many cases unrelated to the most exemplars of
the category. But such erroneous features often also have low scoring
values, so that the impact of these features for the category represen-
tation is minimized. Interestingly the number of features selected once
and also their total number positively correlates with the categorization
performance. Therefore both numbers indicate the difficulty of each cat-
egory. Furthermore the categorization performance over different runs is
more stable if the set of different selected features is small. In contrast
to this a larger number of selected features which occurred 3-6 times
during the different runs, indicates that several redundant feature sets
with roughly the same representational power exist.

It is somehow surprising with respect to the difficulty of categories that
the color categories are not in general easier compared to shape cat-
egories. This is especially visible for the category “white” shown in
Fig. 4.11 and the category “cup” illustrated in Fig. 4.12. Although in
all runs the correct histogram bin for white was selected, the corre-
sponding scoring value of this feature is quite low. This small scoring
value is most probably caused by reflections on glossy objects, because
such spots typically cause activations of this histogram bin that are in-
dependent of the actual color of the object. Additionally “white” is the
only color category for which only few training objects are completely
white but many of them contain smaller fractions of white. Therefore
for this category the separation from other co-occurring shape and color
categories becomes more difficult. Finally it should be mentioned that
among the most frequently reoccurring features a considerable amount
have relatively small scoring values, even if some features with higher
scoring values are available. This effect is best visible for the cate-
gory “animal” in Fig. 4.12. Basically this can occur if features with
higher scoring values are rarely activated and thus are rejected because
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Figure 4.12: Qualitative Evaluation of the Feature Selection Method for

Shape Categories. Illustration of the selected features of three representative shape

categories, analogous to Fig. 4.11. Surprisingly not all shape categories are more diffi-

cult than the color categories. This becomes clear if one compares the category “cup”

with “white” depicted in Fig. 4.11. Furthermore many stable selected features have low

scoring values, which indicate only little category specificity. This suggests that for shape

categories only the combination of several features allows a stable category representation.
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the measured performance gain is below the feature insertion thresh-
old. Additionally it is probable that at least for the shape categories
the combination of several features is important, so that a single feature
might be general and less category-specific, but in combination with
other features allows a robust category detection.

4.5 Discussion

We have proposed an architecture for interactive life-long learning of
arbitrary categories that is able to perform an incremental allocation
of cLVQ nodes, automatic feature selection and feature weighting. This
automatic control of the architecture complexity is crucial for interactive
and life-long learning, where an exhaustive parameter search is not feasi-
ble. Additionally we use our proposed wrapper method for incremental
feature selection, because the representation of categories should use as
few feature dimensions as possible. This can not be achieved with sim-
ple filter methods, where typically only a small amount of redundant
or noisy features are eliminated. The used feature selection method
enables the cLVQ to separate co-occurring categories and allows a re-
source efficient representation of categories, which is beneficial for fast
interactive and incremental learning of categories. Recently a variant of
an embedded feature selection method for LVQ networks was proposed
by Kietzmann et al. (2008) based on the GRLVQ method (Hammer
& Villmann, 2002) which was called iGRLVQ. This method iteratively
removes features with small weighting values λ. For our categorization
task this proposed backward feature selection method is not suitable be-
cause a low λ value at a certain learning epoch does not imply that this
feature can not become useful at a later learning stage. Unfortunately
a removed feature can not be readded to the corresponding iGRLVQ
network at a later learning stage, especially if the reduction of com-
putational costs is targeted. Additionally the definition of a stopping
condition for the feature pruning is difficult to determine a priori, so
that Kietzmann et al. (2008) prespecified the final feature dimension-
ality. Finally the required computational costs are considerably higher
compared to forward feature selection methods.

In contrast to many other categorization approaches our model is able
to learn multiple categories at once, while commonly the categories are
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trained individually (Fritz et al., 2005; Fei-Fei et al., 2007). We ap-
plied our learning method to a challenging categorization task, where
the objects are rotated around the vertical axis. This rotation causes
much higher appearance changes compared to many other approaches
dealing with canonical views only (Leibe et al., 2004). In contrast to
this our exemplar-based method can deal with a larger within-category
variation, which we consider crucial for complex categories. Further-
more we recently could show that our proposed cLVQ learning method
can be integrated into a larger vision system that allows online learning
of categories based on hand-held and complex-shaped objects under full
rotation (Kirstein et al., 2008a). This means our cLVQ approach does
not only scale well to higher feature dimensionalities, but also to more
complex categorization tasks in unconstrained environments.
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Interactive and Life-Long Learning

in Unconstrained Environments
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Figure 5.1: System Integration. In the following chapter we propose a modular active

vision system that utilizes the previously developed life-long learning approaches. This

integrated system enables interactive learning for identification and categorization tasks

based on complex-shaped objects held in hand. We first explain the different building

blocks of this system, before we show the applicability of the different approaches for

challenging unconstrained experimental setups.

Life-long learning is one necessary precondition for an assistive system,
acting autonomously in an unconstrained environment. Such a system
must be able to continuously update and increase its knowledge to ful-
fill useful tasks in scenarios like an office environment or the flat of
its owner. The learning capability is basically required because a pre-
training of all necessary objects and categories it may require for its
future tasks is unfeasible due to the richness and complexity of natural
environments. Therefore the following chapter considers how the pro-
posed learning methods can be integrated into a larger vision system
to allow interactive learning of hand-held objects in cluttered office en-
vironments. Unfortunately, the iLVQ method proposed as LTM model
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for object identification tasks is too slow for interactive learning, there-
fore in the following only the STM model and the cLVQ LTM model
for categorization tasks is considered. Furthermore we experimentally
show the difficulty of interactive learning in this unconstrained experi-
mental setup. We therefore compare the recognition performance of this
setup with a more restricted setting using a black background as used in
Chapter 3 and Chapter 4. For this comparison the same set of training
and test objects for both experimental setups was used.

The proposed online vector quantization (oVQ) was the first methods
that was integrated into different interactive learning systems. The
starting point was a simple learning framework that was composed
of an entropy-based segmentation, a feature extraction hierarchy and
the proposed online vector quantization (oVQ) method (Kirstein 2004).
This system already provides the capability of online learning of object-
specific STM representations. Nevertheless the experimental setting at
this stage was strongly restricted, because objects could only be learned
using a black glove and a black background. As a next development
stage we integrated the online learning approach into a brain-like active
vision system. This system allowed based on a more sophisticated figure-
ground segregation (Steil & Wersing 2006) learning of objects held in
hand (Wersing, Kirstein, Götting, Brandl, Dunn, Mikhailova, Goerick,
Steil, Ritter, & Körner 2006; Wersing, Kirstein, Götting, Brandl, Dunn,
Mikhailova, Goerick, Steil, Ritter, & Körner 2007a). For this system we
also proposed the sensory-memory concept (see Section 5.1.4.1) and the
user interaction with temporal integration (see Section 5.1.5) to enhance
the identification performance of this more challenging learning scenario.
Furthermore we developed a system that enables learning of complex-
shaped objects and faces into a single STM representation (Wersing,
Kirstein, Götting, Brandl, Dunn, Mikhailova, Goerick, Steil, Ritter, &
Körner 2007b). The proposed oVQ method was also utilized for the
humanoid robot ASIMO, where interactive online learning was coupled
with autonomous behavior generation (Goerick, Mikhailova, Wersing,
& Kirstein 2006; Goerick, Bolder, Janssen, Gienger, Sugiura, Dunn,
Mikhailova, Rodemann, Wersing, & Kirstein 2007). Finally also the
category Learning Vector Quantization (cLVQ) was integrated into an
active vision system enabling interactive learning of visual categories
based on natural and arbitrary rotated objects (Kirstein et al., 2008a;
Kirstein et al., 2009).
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In the following chapter the fundamental building blocks required for
interactive learning of visual representations are summarized in Sec-
tion 5.1. The combination of these building blocks with our proposed
learning methods enables interactive learning based on complex-shaped
objects presented by hand in unconstrained office environments. Ad-
ditionally several offline and interactive learning experiments are per-
formed in Section 5.2 and Section 5.3 to show the corresponding learn-
ing capabilities of the proposed vector quantization approaches under
this more challenging experimental setup.

5.1 An Integrated Vision Architecture for Identifi-

cation or Categorization Tasks

One of the essential problems when dealing with learning in uncon-
strained environments is the definition of a shared attention concept
between the learning system and the human tutor. Specifically it is
necessary to decide what and when to learn. In our architecture we use
the peri-personal space concept (Goerick et al., 2006), which basically
is defined as the manipulation range around the human body. We uti-
lize this concept as an attention mechanism, where everything in this
short distance range is of particular interest to the system with respect
to interaction and learning. To allow interactive learning of arbitrary
objects and visual categories in a cluttered office environment this near
range depth information and an additional foreground-background seg-
regation method are used to isolate the object from the scene. Based
on the defined foreground region robust color and shape features are ex-
tracted, which are used as input for the corresponding learning module.
Finally an user interaction is required to allow a natural communica-
tion with the human tutor. All this processing steps are illustrated in
Fig. 5.2 and are described in more detail in the following.

5.1.1 Object Hypothesis Generation

For the generation of the initial object hypothesis we use a stereo camera
system with a pan-tilt unit and parallelly aligned cameras, which deliver
a stream of image pairs. Depth information is calculated after the cor-
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Figure 5.2: Building Blocks of the Interactive Learning System. Based on an

object hypothesis extracted from the depth map a figure-ground segregation is performed.

The detected foreground is used to extract color and shape features to represent objects or

visual categories. All extracted features are concatenated into a single structureless vector

xi. This feature vector together with the label information provided by a human tutor,

is the input to the incremental and interactive learning module. Furthermore also the

recognition results are communicated to the tutor based on a state-based user interaction.

rection of lens distortions. This depth information is used to generate an
interaction hypothesis in cluttered scenes that after its initial detection
is actively tracked until it disappears from the peri-personal attention
range. Additionally we apply a color constancy method (Pomierski &
Gross 1996) and a size normalization of the hypothesis. Both opera-
tions ensure invariances, which are beneficial for any kind of recognition
system, but are essential for fast online and interactive learning in un-
constrained environments. Finally a region of interest (ROI) of an object
view is extracted and scaled to a fixed segment size of 144x144 pixel.

5.1.2 Figure-ground Segregation

The extracted segment Ji contains the object view, but also a substan-
tial amount of background clutter as can be seen in Fig. 5.3. For the
incremental build-up of visual representations it is beneficial to sup-
press such clutter, otherwise it would slow down the learning process
and considerably more training examples are necessary. Therefore we
apply an additional figure-ground segregation as proposed by Denecke
et al. (2009) to reduce this influence. The basic idea of this segregation
method illustrated in Fig. 5.3 is to train for each segment Ji a Learning
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Figure 5.3: Figure-ground Segregation. Based on the extracted segment, the cor-

responding depth mask and a skin color removal, a foreground hypothesis is generated.

This hypothesis includes a considerable amount of noise and clutter, which the applied

figure-ground segregation method strongly reduces. The noise in the foreground hypoth-

esis is a consequence of the ill-posed problem of disparity calculation, which introduces

noise mainly around the object or at textureless parts of the object. After generating this

hypothesis a Generalized Matrix LVQ network is trained, based on a predefined number

of prototypes and prototype-specific relevance factors. Based on the learned network the

refined foreground mask is calculated. Only the foreground pixels are used for feature

extraction in the following steps.

Vector Quantization (LVQ) network based on a predefined number of
distinct prototypes for foreground and background. As an initial hy-
pothesis for the foreground the noisy depth information, belonging to
the extracted segment, is used. The noise of this hypothesis is caused
by the ill-posed problem of disparity calculation and is basically located
at the edges of the corresponding object silhouette. Furthermore also
“holes” at textureless object parts are common. Due to the fact that
the objects are presented manually, skin color parts in the segment are
systematic noise, which we remove from the initial foreground hypoth-
esis based on the detection method proposed by Fritsch et al. (2002).
Therefore faces and gestures can not be learned with this preprocess-
ing. Nevertheless with a modified preprocessing as proposed in Wersing
et al. (2007a) a combined learning of objects and faces can be achieved.
For the figure-ground segregation the learning of the representing sub-
segments is based on feature maps consisting of RGB-color features as
well as the pixel positions. Instead of the standard Euclidean metrics
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for the distance computation the Generalized Matrix LVQ (Schneider,
Biehl, & Hammer 2007) approach is used. This metric adaptation is
used to learn relevance factors for each prototype and feature dimension.
These local relevance factors are adapted online and weight dynamically
the different feature maps to discriminate between foreground and back-
ground. For the purpose of figure-ground segregation such local matrices
lead to a significantly better foreground classification (Denecke et al.,
2009), which directly enhances the interactive learning process. Ad-
ditionally these local relevance factors generate more complex decision
boundaries based on a small set of LVQ prototypes allowing for figure-
ground segregation in real-time. The output of this segregation step is
a binary mask ξi defining the foreground. In the following processing
steps only foreground pixels are used to extract features.

5.1.3 Feature Extraction

For the learning of objects and visual categories we use different fea-
ture extraction methods providing shape and color information. All ex-
tracted features of the corresponding object view are concatenated into
a structureless feature vector xi, where especially for the category learn-
ing we do not give this qualitative separation of color or shape features
to the learning system as a priori information. This is done, because
in general such a priori knowledge (e.g. red is a color category) given
to the different learning methods should be minimal to make as few as-
sumptions for the learning as possible. Additionally the learning system
should make efficient use of all features, which partly also includes the
combination of color and shape features for our object identification and
categorization tasks. Finally we use for all experiments in this chapter
the same feature sets as described in Chapter 3 and Chapter 4 to allow
a better comparison of the different experimental setups.

5.1.3.1 Feature Extraction Methods for Object Identification Tasks

For all object identification tasks C2 features (Wersing & Körner 2003)
obtained with a hierarchical feed-forward feature extraction architecture
are used to provide high-dimensional but sparse shape features. Addi-
tionally coarse color features are used, which are based on downscaled
RGB-maps.
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5.1.3.2 Feature Extraction Methods for Visual Categorization Tasks

For the representation of shape features we combine the C2 features
(Wersing & Körner, 2003) with a parts-based features extraction method
(Hasler et al., 2007; Hasler et al., 2009). The feature detectors of the
hierarchical feature extraction architecture are obtained by unsupervised
learning, resulting in general and less category-specific features, while
the parts-based feature extraction methods are trained supervised with
respect to category specificity. We combine these different shape features
to show the ability of the category learning method to select appropriate
features out of a large amount of possible candidates. Additionally the
histogram binning method (Swain & Ballard, 1991) is used to provide
color information.

5.1.4 Learning of Object and Category Representations

Inspired by the human brain we use different memory concepts (see
Fig. 5.4) to interactively learn object and category representations.
These memory concepts are basically used to combine the online learn-
ing capability of the oVQ approach with iterative learning methods
that require more computational resources but are able to extract more
resource-efficient representations. Therefore labeled training vectors are
first stored into an intermediate and object-specific sensory and short-
term memory (STM) representation and are finally transferred into a
category-specific long-term memory (LTM) representation. In the fol-
lowing the basic concepts and the used learning methods are explained
in more detail.

5.1.4.1 Sensory Memory Concept

For interactive learning scenarios usually only very few object views
are seen by the system. Additionally learning systems are typically
strictly separated into a train and test phase, where commonly two dis-
tinctive sets of views are used. To relax this separation and to make
the most efficient use of object views, we introduce a sensory memory
concept (Wersing et al., 2006) for temporarily remembering views of
the currently attended object, by using the online vector quantization
(oVQ) method (Kirstein et al., 2005a). The basic assumption behind
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Figure 5.4: Memory Concepts for Interactive Learning. Object views are first

buffered into the sensory memory until label information is provided by the tutor. Due

to our assumption that only views of a single object are represented into this memory,

all collected views have the same label information, even if they are collected before the

labeling. After labeling this knowledge is transferred into the STM using the same oVQ

learning method as for the sensory memory. The object-specific STM is limited in capacity

allowing only to store few different objects. Additionally to the STM we can apply the life-

long learning cLVQ method to approach the “stability-plasticity dilemma” and iteratively

transfer the STM information into the category-specific LTM.

this memory concept (see Fig. 5.4) is, that only views of a single ob-
ject are inserted and that the memory is cleared if the object identity
changes. Therefore every time the attended object disappears from the
peri-personal space this memory is erased. The advantage of this mem-
ory concept is that object views first can be used to test the STM and
LTM representation. After providing confirmed labels the same views
can also be used to enhance both memory representations, even if these
object views were recorded before the confirmation.

5.1.4.2 Short-Term Memory Concept

For the transfer from the sensory memory to the STM representation the
same oVQ model is used, which provides fast appearance-based learn-
ing of several complex-shaped objects. The proposed STM model stores
template-based representatives rl with l = 1, . . . , L. The representatives
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rl are providing a limited and changing object-specific memory by apply-
ing a kind of novelty detection. Compared to the naive approach, where
each xi is stored as representative rl, we could show that the number of
representatives rl can be considerable reduction by about 30% without
losing generalization performance (Kirstein, Wersing, & Körner 2008).

5.1.4.3 Long-Term Memory Concept for Category Learning

For the knowledge transfer from the object-specific STM to the category-
specific LTM the cLVQ learning method (Kirstein et al., 2008b) is used
that combines an incremental exemplar-based network and a forward
feature selection method. The proposed cLVQ allows life-long learning
and also enables a separation of co-occurring visual categories, which
most exemplar-based networks can not efficiently handle. Both parts
are optimized together to ensure a compact category representation that
is necessary for fast and interactive learning.

The exemplar-based network part of the cLVQ method is used to ap-
proach the ”stability-plasticity dilemma” of life-long learning problems.
It basically represents the variations of different category members (e.g.
normal car and cabriolet) and object poses (e.g. front and side view of
cars). The included forward feature selection method is used to find low
dimensional subsets of category-specific features. For the category de-
cision only these selected feature sets together with the LVQ nodes are
considered, which make the cLVQ method computationally efficient. To
achieve a high generalization performance the selection process should
predominately select features, which occur almost exclusively for a cer-
tain category. For guiding this process a feature scoring value hcf for
each category c and feature f is calculated. Similar to the development
of category concepts of children, this scoring is only based on previously
seen exemplars of a certain category and can strongly change if further
information is encountered. Therefore the hcf values are continuously
updated.

5.1.5 User Interaction

For interactively providing label information to the STM and LTM we
use a simple state-based user interface. This user interface is based on
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a list of predefined audio labels. To also allow the labeling of objects
and categories for which no specific label is defined, additionally some
wild card labels (e.g. “property one”) are included in this list. All these
labels can be provided to the system in an arbitrary order and com-
bination. In general the user interaction is composed of two operation
modes. For the default user interaction mode the learning system first
integrates the recognition decisions of detected object identities or cate-
gories over 5 seconds (≈ 20-30 segments). This temporal integration of
recognition results is beneficial, because it strongly reduces errors which
typically occur in the challenging task of object identification or catego-
rization based on hand-held objects in cluttered scenes. These individ-
ual decisions are used to generate a hypothesis of the currently present
categories or the shown object. It is communicated to the interacting
person, where additionally also a confidence value (sure, maybe, un-
known) is added based on predefined rejection thresholds. The detected
classes are repeatedly communicated to the user (in 5 second intervals),
while newly acquired segments are also used to refine the recognition
outcome. As a reaction to this communicated hypothesis the human
tutor can confirm or correct this list. After the human response new
training views are collected to enhance the object or category represen-
tation. Furthermore it is also possible for the user to directly provide
class labels, in order to label previously unknown objects and categories.

5.2 Object Identification in Unconstrained Envi-

ronments

System Integration

Online Object 
Learning

Learning

Life−Long and Interactive
Requirements for

Interactive CategoryLearning

Motivation Life−Long Learning

Identification Tasks

Categorization Tasks 

In the following section we show the learning capability of our proposed
online vector quantization (oVQ) method for several offline and inter-
active learning experiments. For the interactive learning experiment
complex-shaped objects are freely rotated by hand in front of our active
camera system. Based on the extracted segment and the corresponding
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foreground mask, features are extracted and concatenated into a single
high-dimensional but sparse feature vector xi. These xi together with
the corresponding class label o are used to interactively learn natural
objects under real-world conditions. For the offline experiments two
databases with the same objects but different experimental setups are
used. The major difference between the offline and interactive learning
experiments is that for the offline experiments no sensory memory is
required.

5.2.1 Offline Object Identification Experiments

For the offline experiments we investigate the identification performance
of our proposed online vector quantization (oVQ) approach for three dif-
ferent feature sets. As the simplest feature representation the original
RGB color images are used. This feature set is compared with hier-
archical C2 features, while for the third feature representation C2 and
coarse color features are combined. Furthermore we analyze the effect of
temporal integration that is defined as a majority voting schema. This
means the classifier responses are accumulated over a predefined num-
ber of input vectors (20 in these experiments), where the most occurred
class in this list is assigned to the current object view. This enhances
the identification performance if the total number of misclassifications
is considerably low.

5.2.1.1 Experimental Setup

The experiments in this sections are based on two different databases,
where the same training and test objects, as shown in Fig. 5.5, are
collected using different experimental setups. Overall 25 natural and
complex-shaped objects are used for both databases. The objects of the
first database are presented by hand using a black glove. Additionally
the objects are freely rotated in front of a black background, so that no
figure-ground segregation is required. Based on this experimental setup
we collected 600 views of each object. Due to the presentation of objects
in front of a black background we refer to this database in the following
as restricted database. In contrast to this for the unconstrained database

the same objects are presented held in hand in a cluttered environment.
Although the number of training views and also the object presentation
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Object Ensemble

Rotation Examples of the Unconstrained Database

Rotation Examples of the Restricted Database

Figure 5.5: Identification Database. Illustration of the 25 objects used for the offline

identification experiments. For the unconstrained database the objects views are acquired

in a cluttered office environment and are presented held in hand. In contrast to this for

the restricted database the same objects are presented in front of a black background. For

both databases the objects are freely rotated in depth as shown in the rotation examples.

Furthermore the number of collected segments and the object size (for the unconstrained

database larger segments are extracted) are nearly identical.

is nearly identical to the previous database, the unconstrained database

is more challenging. This is due to larger brightness variations that
are caused by the active movement of the camera head. Furthermore
fluctuation and errors in the foreground mask increase the difficulty
of this database. All these effects cause additional fluctuations in the
feature responses, so that the learning of the object representations is
more complicated.

Furthermore experiments based on the object and face database are per-
formed (see Fig. 5.7). These experiments were done to show the gener-
ality of the used feature representation and the proposed oVQ method
to different visual identification tasks. Therefore objects and faces are
sharing the same feature representation and are collected into a sin-
gle short-term memory. Similar to the unconstrained database, the 15
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objects of this database are presented by hand in a cluttered office en-
vironment. For the preprocessing and figure-ground segregation the
mechanisms explained in Section 5.1.1 and Section 5.1.2 are used. In
contrast to this for the views of 10 different persons we combine depth
and skin color information to generate the foreground hypothesis. Ad-
ditionally, we proposed a saliency mechanism to dynamically switch
between the identification of objects and faces (Wersing et al., 2007b).
Overall 100 training and 100 distinct test views are collected for each of
the 25 classes.

5.2.1.2 Object Identification Results

For this comparison we investigate the tradeoff between the represen-
tation accuracy and the identification performance. Therefore the sim-
ilarity threshold ǫstm of our proposed oVQ method was varied from 0.5
to 0.95, where each symbol in Fig. 5.6 corresponds to a particular ǫstm

value. The selected ǫstm influences how many representatives rl are
selected by the oVQ method. Based on these rl the corresponding clas-
sification rate is calculated. Similar to the online learning experiments
in Chapter 3.3.3 the usage of the original images leads to the worst iden-
tification performance, while for the combination of C2 shape features
and coarse color the best results are achieved. This is consistent for all
similarity thresholds and both databases.

For this investigation both identification databases use the same objects.
Additionally also the total number of training views, the overall object
size in the segment and the 3D in-depth rotation is almost identical for
both object ensembles. Nevertheless the identification performance of
the unconstrained database is distinctly worse. The fundamental differ-
ence between both image ensembles is the strongly varying background
in the unconstrained database as shown in Fig. 5.5. Therefore a figure-
ground segregation is essential to enable efficient online learning with
the proposed oVQ, because the one-shot learning method directly stores
the feature vectors as representatives. Otherwise the background would
cause strong additional fluctuations in the feature responses, so that
only very poor generalization can be achieved. The used figure-ground
segregation method already suppresses large portions of the strongly
varying background, but considerable parts of this image proportion are
still included in the foreground masks. Additionally sometimes parts of
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Figure 5.6: Comparison of the Identification Experiments. We compare the

identification performance based on three different feature sets. Based on the given feature

set and the similarity threshold ǫstm the oVQ automatically selects a set of representatives

that are used for the evaluation with the test views. Furthermore we investigate the effect

of temporal integration with respect to the overall performance. Comparing the results with

a similar number of selected representatives commonly the original images perform worse,

while the combination of C2 features with coarse color features performs best. Additionally

temporal integration enhances the identification performance for all considered test cases.

Finally it can be seen that the identification for the unconstrained database is distinctly

worse although the same objects as for the restricted database are used.
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the object views are missing in this mask. Both effects together with
stronger brightness variations most probably cause the distinctly worse
performance for the unconstrained database.

Furthermore we investigated the effect of the proposed temporal inte-
gration with respect to the identification performance. If this mecha-
nism is applied for the restricted database nearly perfect identification
performance can be achieved independent of the selected feature rep-
resentation. This high performance is furthermore also achieved for a
large variety of similarity thresholds. Although the utilization of tem-
poral integration for the unconstrained database leads to a considerable
performance increase (up to 20%) the performance gain is largely deter-
mined by the raw classifier performance. Therefore good generalization
for this difficult database can only be reached if the object views are
densely sampled, so that the stronger variations in the feature responses
are captured.

5.2.1.3 Object and Face Identification Results

Commonly for identification problems a priori knowledge is utilized in
the feature representation and learning approach. This guarantees for
this particular learning problem optimal performance, but the applica-
bility of the learning system to other tasks is strongly reduced. In con-
trast to this for the proposed learning systems as little prior-knowledge
as possible should be used. To experimentally show the generality of
the learning system the oVQ is utilized for a unified representation of
objects and faces. This means the different classes are collected using
the same feature and STM representation.

Overall also for this learning problem good classification results are
reached as can be seen in Fig. 5.7. Nevertheless the performance gain
with respect to the temporal integration of the classifier responses is
much weaker compared to the unconstrained database. This is basically
related to the coarse sampling of the different classes, where only 100
training views are used. Therefore large portions of the viewing sphere
of the presented classes is missing in the training ensemble, so that many
test views connected to such areas are consistently wrong classified.
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Figure 5.7: Combined Object and Face Identification. For the combined online

learning of objects and faces 25 different classes are used. The different objects of this

database are similar to the unconstrained database freely rotated in front of a cluttered

background. In contrast to this the different faces are basically collected in frontal poses.

Similar to the experiments shown in Fig. 5.6 a high identification performance can be

reached if the temporal integration is applied. The only difference to earlier experiments is

that for this experimental condition the performance gain is distinctly weaker. This effect

is basically caused by the low number of training views (100 per class), so that considerable

parts of the viewing sphere are not present in the training set. Therefore test views related

to such viewing regions are consistently classified wrongly.

5.2.2 Interactive Learning of Object Representations

In comparison to the previously performed offline experiments an inter-
active learning scenario has the possibility of directly correcting errors
based on tutor feedback, even if the object was already presented be-
fore. Although we do not impose any restrictions to the viewing angle
of objects the appearance variations are less compared to the uncon-

strained database. This is basically because such variations can not be
produced in a typical training session where the object is presented for
about 30 seconds. The learning system with its different building blocks
is distributed on three 3 GHz CPUs. The overall system including pre-
processing, figure-ground segregation, feature extraction, online learning
and user interaction runs roughly at the frame rate of our current digital
camera system of approximately 6-8 Hz. This is fast enough to show
the desired incremental and life-long learning ability of our active vision
system.
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Figure 5.8: Incremental Learning of Objects. The oVQ model starts from a com-

pletely blank memory and incrementally learns seven different objects in approximately five

minutes. The objects are selected in a way that they are similar in color or in shape. To

show the ability of the proposed method to recognize and refine already known objects each

of the trained objects are presented to the system immediately after the first presentation

or later in this learning session. Furthermore we plotted the allocated representatives for

the sensory memory and each object over time. It can be seen that the number of rep-

resentatives for each object is different, depending on the object complexity and on how

strong it was rotated. We also added the identification decisions of the learning system,

communicated to the user on top of the figure with sloped text. Furthermore the con-

firmed category labels provided by the user are denoted underneath. Note that ok means

the confirmation of the communicated decisions on top of the figure and that not every

time a confirmation is given.

In Fig. 5.8 a typical online learning session is shown that is trained
based on complex-shaped objects. We claimed in Chapter 3 that the
proposed oVQ can online train, refine and recognize many natural ob-
jects independent of the presentation order. This means that a new
object can be immediately identified after the first presentation, which
we shown in Fig. 5.8 for the cola can. Furthermore for the considered
learning session each object is at least presented once again to high-
light the identification capability of the learned representation, but also
to show that the presented objects can easily be refined. Although in
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the presented learning session only seven different classes are trained in
about five minutes, we selected the objects in a way that they are similar
in color or in shape. This emphasize that also visually similar objects
can be easily separated with the proposed oVQ approach. We especially
want to mention that this identification capability is achieved based on
freely rotated objects held in hand. Furthermore the average training
time per object is approximately only 30 seconds. Finally we want to
note that the proposed sensory memory is very useful to make the most
efficient use of the presented object views, because up to 100 represen-
tatives are collected until confirmed label information is provided by the
tutor. Compared to the total number of representatives of each object
in the STM (< 200 representatives) this refers to a considerable amount
of the learned object representation.

5.3 Category Learning in Unconstrained Environ-

ments
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In the following section several offline and interactive category learn-
ing experiments are performed. For the interactive learning experiment
complex-shaped objects are freely rotated by hand in front of our active
camera system. Based on the extracted segment and the correspond-
ing foreground mask, color, parts-based, and C2 features are extracted
and concatenated into a single high-dimensional but sparse feature vec-
tor xi. These xi together with the corresponding category labels ti are
used to incrementally learn the category-specific LTM representation
under real-world conditions. Similar to the object identifications exper-
iments performed in Section 5.2 we also use for the category learning
two databases with the same objects but different experimental setups.
For all offline experiments a simplified STM concept is used, where all
collected object views are stored into the limited STM, similar to the
experiments described in (Kirstein et al., 2008b).
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5.3.1 Offline Categorization Experiments

We compare the categorization performance of our proposed cLVQ
method with a Single Layer Perceptron (SLP) for different databases
and feature sets summarized in Fig. 5.10 and Fig. 5.11. We use the SLP
for comparison because it is the simplest architecture for this category
learning task, characterizing the difficulty and the baseline performance
for this learning task. Although the SLP is only a linear method, for
high-dimensional and sparse feature vectors it reaches similar results
compared to more complex learning methods, at least if the STM is not
limited in size (Kirstein, Wersing, & Körner 2008). The SLP output
for each category c is calculated according to Eq. 4.15. The SLP as de-
scribed in Section 4.4 is trained based on gradient descent. Furthermore
the rejection thresholds are estimated based on the average SLP output
of category c calculated for training vectors xi labeled with tic = +1 and
also for xi labeled with tic = −1. The rejection threshold for category c
is then set to the mean value of both calculated values.

Furthermore we investigated the effect of different shape feature sets to
the categorization performance of the proposed cLVQ approach. The
first set is composed of color and parts-based features, while for the
second set C2 features are added, obtained with the feature extrac-
tion hierarchy, so that the overall feature dimensionality is considerably
larger.

5.3.1.1 Experimental Setup

For the offline experiments two databases of the same training and test
objects shown in Fig. 5.9 are collected using different experimental se-
tups. Overall 24 objects for training and a complementary set of 24
test objects are collected for both databases. The objects of the first
database are collected in front of a black background making foreground
masks unnecessary. For each object 300 views are collected by rotating
it around the vertical axis. We refer to this database in the following
as restricted database. Although we call this a restricted database it al-
ready contains more appearance variations than databases of most other
categorization approaches where typically only the canonical views are
considered.

For the second database, called unconstrained database in the following,
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Rotation Examples of the Unconstrained Database 

Rotation Examples of the Restricted Database 

Training Objects

Figure 5.9: Categorization Database. Training and test objects used for the offline

categorization experiments based on two different databases collected under different ex-

perimental settings. The objects are aligned so that each row corresponds to one of the

five shape categories. For the unconstrained database the objects are shown in a cluttered

office environment as depicted in the upper part of this figure. All objects are freely rotated

by hand covering almost the complete viewing sphere. In contrast to this for the restricted

database the same objects where shown in front of a black background and are rotated only

around the vertical axis. Additionally some rotation examples are shown for each database,

where for the examples of the unconstrained database also the corresponding foreground

mask is applied to show the segment part used for feature extraction.

each object was freely rotated around three axes in front of our active
camera system covering almost the complete viewing sphere. For the
collection of this database we used the same preprocessing as described
in Section 5.1.1 and Section 5.1.2. In contrast to the interactive learn-
ing the objects are shown by two different persons. This additionally
increases the variability of object presentation. Overall 1200 segments
and their corresponding foreground masks are collected for each ob-
ject. Compared to the restricted database this object ensemble is more
complex because of much higher appearance variations of objects. The
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categorization task is also more challenging due to brightness variation,
segmentation errors and imprecise foreground masks. All these effects
cause additional fluctuations in the feature responses. These instable
responses combined with a very small amount of training examples pose
a considerable problem for any kind of category learning approach. We
refer to errors as segmentation errors if some foreground parts are miss-
ing in the corresponding segment, while imprecise foreground masks are
related to background parts that are assigned to the foreground. Based
on both categorization databases we incrementally learn and test five
different color (red, green, blue, yellow, and white) categories and five
different shape (rubber duck, cup, car, cell phone, box) categories.

For the offline experiments we subdivided the learning of the category-
specific LTM into learning epochs. At each epoch only the feature vec-
tors of three different objects are visible to the learning architecture,
emulating a capacity-limited STM. At the beginning of each epoch a
randomly selected object is added to the STM, while the oldest object
in the memory is removed. Based on the currently available feature vec-
tors, the learning methods are used to incorporate this STM knowledge
into the LTM by applying the learning dynamics of the cLVQ method
described in Section 4.3.3. Additionally gradient descent with a pre-
defined number of learning steps was performed for the SLP networks.
Note that the SLP is trained based on the full feature vector xi, without
any additional feature selection. After this training phase the current
categorization performance is calculated based on all test objects to
show the effect of the newly presented object to the categorization per-
formance. Finally new learning epochs are started until all training ob-
jects were presented to the learning system. Each object is shown only
once during the training epochs, and does not reappear during train-
ing. In this way we investigate the life-long learning capability of our
cLVQ architecture and its ability to approach the “stability-plasticity
dilemma”. For all experiments, the training set is changing over time
due to the incremental learning task. For evaluation, however, the cat-
egorization performance is computed on the stationary set of all test
objects with their target category labels. Additionally the categoriza-
tion performance is averaged over all individual categories belonging to
the group of color or shape categories respectly.
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5.3.1.2 Categorization Results

Restricted Database. The comparison of cLVQ and SLP for the re-

stricted database is shown in the upper row of Fig. 5.10 and Fig. 5.11.
For the evaluations, we show the categorization performance averaged
over 10 runs. It can be seen that at the beginning of the training the
SLP is superior to our proposed cLVQ method, but after presenting all
training objects the cLVQ performs distinctly better for the color cat-
egories, while for the shape categories cLVQ is slightly better than the
SLP architecture. Although the SLP performs worse than cLVQ it still
performs surprisingly well, which is consistent to earlier experiments in
Section 4.4.3. It seems that also for this categorization task the indepen-
dent representation of categories somehow weakens the forgetting effect
of SLP networks. For a larger number of shape categories and train-
ing objects the performance improvement of cLVQ over SLP is clearly
visible, as was shown in earlier experiments (Kirstein et al., 2008b).

The addition of the C2 features to the vectors xi increases the catego-
rization performance of shape categories for the cLVQ and SLP method.
Although the C2 feature representation is less category-specific, at least
some of the local and topographically organized C2 features can be
used to stabilize the representation of shape categories. However, for
the color categories C2 features have the opposite effect causing a slight
performance decrease for the cLVQ architecture. This basically results
from C2 features that are dominantly active for many views of a certain
object and therefore are selected to represent the color categories be-
longing to this object. Such general and object-specific C2 features are
most probably also the reason for the strong performance loss of about
20% for the SLP color categories.

Unconstrained Database. Also for the unconstrained database (see
lower row of Fig. 5.10 and Fig. 5.11) the SLP is superior at earlier
learning epochs where only a few objects were trained, while the cLVQ
performs better at later learning stages. The cLVQ learning method is
again distinctly better than SLP for color categories and slightly better
for shape categories. The most distinctive difference to the restricted

database experiments is the slow learning progress of shape categories
resulting in poor categorization results. This is basically caused by the
strong appearance variations of the objects under almost full in-depth
rotation. Also segmentation errors make the learning of shape categories
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Figure 5.10: Average Performance for Color Categories. The performance of

our proposed cLVQ method and the SLP networks are compared for the restricted and

unconstrained database using the same set of training and test objects (averaged over 10

runs). All results show the categorization performance on the test set, which was never

seen during the training. Additionally we tested the effect of C2 features with respect

to the categorization performance. Similar to Section 5.2 also the effect of temporal

integration with respect to the categorization results is investigated. After the presentation

of all training objects the cLVQ method performs distinctly better for the color categories

compared to the SLP networks. For all offline experiments the SLP method is superior at

earlier learning stages, while the cLVQ is better at later learning steps. Finally temporal

integration is only partially beneficial although a larger integration window (200 segments)

was used. Especially for the SLP the categorization performance is distinctly worse for the

unconstraint database and the usage of C2 features. In contrast to this, for the cLVQ

utilizing the same setting a gain of more than 5% correct categorization performance is

reached.

harder, because some parts of the objects are missing in those object
views. Additionally also imprecise foreground masks cause problems for
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Figure 5.11: Average Performance for Shape Categories. Also for the shape

categories the same experiments as shown in Fig. 5.10 are performed. For the shape

categories our proposed cLVQ approach is compared to the SLP only slightly better after

the incremental presentation of all training objects. The addition of C2 features to the

feature representation increases the performance of shape categories only for the restricted

database, while for the unconstrained database with much higher appearance variations no

performance enhancement could be measured. In contrast to the color categories, temporal

integration is at least for the final learning stages beneficial for shape categories with respect

to the categorization performance. Nevertheless the performance gain compared to the

identification experiments (see Fig. 5.6) is only minor.

the category learning, because potentially also features extracted next
to the object are used to incrementally learn the representations of cat-
egories. The appearance variations caused by full 3D object rotation
induce further strong fluctuations to the detection of shape features,
complicating the forward feature selection process. This is caused by
the fact that if there are almost no features with high scoring values the
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selection methods has to test many different features. Additionally the
feature selection tends in such cases to select color features for the rep-
resentation of shape categories, because they are the most frequent and
stable ones. This is maybe also one reason for the poor generalization
performance of shape categories. As a consequence the training takes
typically much longer compared to the experiments with the restricted

database, but also many more cLVQ nodes are allocated.

In contrast to this, the categorization performance of color categories
is equal to the experiments with the restricted database, because color
histograms as feature representation for such categories are robust with
respect to object rotation. The representation of color categories is
additionally unaffected by segmentation errors, because even if object
parts are missing in a segment the basic colors are typically still visi-
ble. For color categories the effect of imprecise foreground masks on the
categorization performance seems also to be only minor, otherwise the
performance would be considerably lower. This basically means that
the occurrence of category related color features is more stable than de-
tected features at background parts from the surrounding scene. For the
shape categories this effect is very unlikely, because of much higher vari-
ations in the extracted shape features. Therefore the effect of imprecise
foreground masks is for those categories most probable much stronger.
If selected background features are reoccurring in both positive and neg-
ative category examples, then such features are weakened by the feature
scoring mechanism or can be completely removed by the cLVQ learn-
ing dynamics. Although both mechanisms in general reduce the effect
of wrongly selected features this typically requires the presentation of
a considerable amount of additional training examples. Finally for the
unconstrained database no performance gain with respect to the shape
categories could be found by additionally using C2 features. The reason
is that a C2 feature is sensitive to a flexible shape primitive around one
particular location in the segment (Wersing & Körner 2003), while the
parts-based features are not tuned to a particular location. Therefore a
single C2 feature can not provide object or category-specific information
if the objects are rotated in depth.

Temporal Integration. Similar to the identification experiments in
Section 5.2 also the effect of temporal integration was investigated with
respect to the enhancement of the categorization performance. In con-
trast to the results shown in Fig. 5.6 the required integration window
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must be distinctly larger to have a measurable effect on the categoriza-
tion performance (integration over 200 instead of 20 classifier responses).
This is basically related to fact that for categorization problems often
many succeeding input vectors are misclassified, while for identification
tasks typically only few succeeding views are wrongly identified. This
effect is also reflected in the performance gain, where compared to the
identification tasks (≈ 20 %) only up to 5% for the color categories
and up to 8% for the shape categories could be reached. Furthermore
partially also a performance decrease was measured, which is especially
visible for the color categories shown in Fig. 5.10.

5.3.2 Interactive Category Learning

Similar to the interactive learning experiment shown in Section 5.2.2
we additionally can utilize the proposed active vision system for inter-
active category learning with the developed cLVQ approach. Also for
the category learning the system runs roughly at the frame rate of our
current digital camera system of approximately 6-8 Hz, but compared to
the identification system requires one additional CPU. Still the achieved
frame rate is fast enough to show the desired ability of incremental and
life-long learning of visual categories.

In Fig. 5.12 a normal learning session is shown, where a representation
of three different color and three different shape categories is learned in
less than 8 minutes. We start with a completely empty STM and LTM
representation, therefore the system respond to the first presented ob-
ject with unknown category. After the training of the first object it only
knows the categories “yellow” and “duck” but at this state it can not
separate both categories. Thus the system responds with yellow duck to
the next presented green duck. Afterwards successively new objects are
presented and trained. Usually after the presentation of 2-3 examples
of a specific category the system can generalize to previously unseen
objects, while still being able to correctly categorize already known ob-
jects. To check this, the yellow duck was also shown at a later learning
stage, followed by two previously unseen toy cars. The presented white
toy car is labeled as toy car because the category “white” is so far not
known. It also shows that at this learning stage the different color and
shape categories are automatically separated by the learning algorithm,
which is a necessary precondition to achieve a higher generalization per-
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Figure 5.12: Incremental Learning of Visual Categories. The incremental selection

of features for each category is shown over time, while presenting different objects. The

model starts from a completely blank memory. Additionally the total number of cLVQ

representatives is plotted, which are allocated during the interactive learning session. We

also added the categorization decisions of the learning system, communicated to the user on

top of the figure with sloped text. Furthermore the confirmed category labels provided by

the user are denoted underneath. Note that ok means the confirmation of the categorization

decisions on top of the figure and that not every time confirmed labels are provided.

Additionally the intervals where new training vectors are collected into the STM are marked

with <>. The transfer of the STM to the LTM occurs gradually according to the parallely

running cLVQ and is not fully synchronized to the speech labels.

formance compared to object identification. After the presentation of
the white toy car the category “cell phone” is trained. It should be men-
tioned that the learning system responded in most cases with unknown

category, while the rejection of unknown objects typically cause major
problems for object identification systems.

5.4 Discussion

We could show that our integrated vision system can efficiently per-
form all necessary processing steps including figure-ground segregation,
feature extraction and incremental learning. Especially the ability to
handle high-dimensional but sparse feature vectors, with typically a few
thousand feature dimensions, is necessary to allow interactive and incre-
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mental learning. Commonly for such feature representations additional
dimension reduction techniques like the Principal Component Analysis
(PCA) are required to allow online learning. Furthermore the proposed
active vision system is designed in a modular fashion, so that the overall
system architecture can easily be adapted to other learning tasks and
scenarios.

With respect to the integration of the proposed oVQ approach, we could
show that also in difficult experimental settings many natural objects
can be efficiently learned online. Furthermore we showed the difficulty of
learning object representations in unconstrained environments based on
the comparison between the restricted and the unconstrained database.
This difficulty is directly reflected in the distinctly lower identification
performance for the unconstrained database although the same objects
are used. Nevertheless with the proposed temporal integration even for
such difficult learning scenarios good generalization performance can be
reached. Furthermore we could show that the underlying feature rep-
resentation and the similarity-based oVQ are general with respect to
visual identification tasks, so that our online learning system can be
easily applied also to a combined object and face recognition task. Fi-
nally the online learning system was also applied to the humanoid robot
ASIMO, where people interacting the first time with the integrated sys-
tem could successfully train arbitrary natural objects. This achievement
especially highlights the quality of the proposed system architecture.

We furthermore have presented a learning system able to interactively
learn general visual categories in a life-long learning fashion. To our
knowledge this is the first interactive learning system that allows cate-
gory learning based on complex-shaped objects held in hand. In offline
experiments we could show the difficulty of the learning of categories un-
der real-world conditions by comparing the categorization performance
of the same object set taken under different experimental setups. Fur-
thermore the high feature dimensionality is also challenging for the used
feature selection method, because of a large amount of possible feature
candidates. However, the learning system is still able to extract small
sets of category-specific features out of many possible feature candidates.
Although category learning under real-world conditions is challenging,
we are able to learn categories in an interactive and life-long learning
fashion. Comparable architectures as proposed by Skočaj et al. (2007)
or Fritz, Kruijff, & Schiele (2007) learn categories based on objects
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placed on a table, which simplifies the ROI detection and figure-ground
segregation. Additionally this constraint strongly reduces the appear-
ance variations of the presented visual stimuli and therefore makes the
category learning task much easier. We also allow different categories
for a single object, while in related work typically the categories are
trained independently.
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Chapter 6

Summary and Outlook

6.1 Summary

The major topic of this dissertation is the life-long acquisition of rep-
resentations. Therefore three different life-long learning methods were
proposed that in combination allow learning of challenging visual iden-
tification and categorization tasks. Typically artificial neural networks
are optimized for a defined function, where also the incorporation of
a priori knowledge is common. In contrast to this for life-long learning
such information is rare, because what kind of objects or categories are
acquired is a priori unknown. Therefore the learning methods are de-
signed in a way that many performance relevant parts are self-adapting
and the total number of prespecified parameters is reduced to a min-
imum. This guarantees that the proposed life-long learning learning
methods can be applied to a large variety of difficult recognition tasks.

Additionally we also targeted for fast interactive learning. This fast
learning requirement is difficult to achieve for the target of solving chal-
lenging visual recognition tasks. Commonly online and interactive learn-
ing systems have a strongly limited representational capacity. On the
other hand life-long learning approaches typically are only utilized for
offline training. To overcome this limitation we propose the usage of
high-dimensional and sparse feature representations. We could show
that based on the sparseness of the feature representations fast interac-
tive learning can be achieved. Furthermore the representational capacity
is high enough to achieve good generalization performance for difficult
experimental settings, where fully rotated and complex-shaped objects
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are presented in hand.

Another aspect with respect to interactive learning is the proposal of an
intermediate STM representation that is incrementally collected with
the similarity-based online vector quantization (oVQ) approach. This
STM representation already achieves a good generalization performance
but the limiting factor is the high representational cost for storing a large
number of high-dimensional feature vectors. This high memory require-
ments led to the development of memory consolidation models that are
able to incrementally build up a LTM representation. These proposed
life-long learning methods are the major contribution of the presented
dissertation and can in general be applied to arbitrary identification and
categorization problems.

With respect to these memory consolidation approaches we first con-
centrated on life-long learning for identification tasks and proposed the
incremental Learning Vector Quantization (iLVQ) model. The iLVQ is
able to strongly reduce the representation load by iteratively consoli-
dating the limited and changing STM into a LTM representation. This
reduction of representational resources is reached without a significant
drop in identification performance, which we could show in several ex-
periments. Although the iLVQ does not enable interactive learning, it
is still very useful for autonomous acting agents, because the memory
consolidation could be done during periods where the system is not on
duty.

To achieve the desired life-long learning capability of the iLVQ ap-
proach we proposed to extend the standard Learning Vector Quantiza-
tion (LVQ) network architecture with an incremental learning of proto-
type nodes and a node-dependent learning rate. These modifications are
the basic requirements to approach the “stability-plasticity-dilemma”.
In contrast to related life-long learning architectures, where commonly
the accumulated quantization error is utilized, we propose to incremen-
tally add new prototype nodes based on wrongly classified training vec-
tors. Especially for high-dimensional features spaces we believe that this
leads to a more compact representation. Furthermore we also could re-
duce the number of predefined parameters compared to related work of
Hamker (2001). This is especially beneficial for assistive agents operat-
ing in unconstrained environments, because typically it is unpredictable
what knowledge is required to fulfill the agents duties. Therefore an a
priori selection of optimal parameters is commonly very difficult.
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Furthermore we proposed the category Learning Vector Quantization
(cLVQ) approach for the consolidation of the object-specific STM into a
category-specific LTM. In general, this knowledge transfer is considered
to be more difficult compared to identification tasks. This is related to
the fact that natural objects typically belong to several categories. To
achieve a higher generalization performance compared to identification
problems such co-occurring categories have to be independently repre-
sented. This separation is especially difficult for exemplar-based neural
networks that are commonly used for life-long learning problems. To
overcome this limitation we proposed a category-specific feature selec-
tion method. Combined with the incremental allocation of prototype
nodes and the node-dependent learning rate this allows efficient learn-
ing of arbitrary categories. The proposed forward feature selection does
not only enable an efficient separation of categories, but also enables
fast interactive learning of categories.

In addition to the independent representation of categories also the
incremental presentation of objects causes problems for the learning
process. Basically this is because the representation of categories can
undergo fundamental changes if further examples of a category are pre-
sented. Therefore in contrast to identification tasks a balance between
the stability and the correction of erroneous representations is funda-
mental. Nevertheless we have experimentally shown that the proposed
cLVQ method is able to interactively extract compact category repre-
sentations.

To show the applicability of the proposed life-long learning methods in
changing and cluttered environments different integrated active visions
systems have been developed. All these systems combine several build-
ing blocks to enable interactive learning for object identification and
categorization in common office environments. The most important
parts of all systems are the figure-ground segregation, feature extrac-
tion, the life-long learning method and a state-based user interaction.
Overall we could show that the oLVQ and cLVQ interactive learning
approaches scale well to these more challenging and unpredictable ex-
perimental settings. Furthermore we could show that under these diffi-
cult conditions high generalization performance can be achieved, where
even many offline learning methods would fail. Finally, it should be
mentioned that the modular designed vision system enables a simple
adaptation to different learning tasks, but also to different platforms
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including the humanoid robot ASIMO.

6.2 Outlook

The proposed iLVQ approach enables a resource efficient storage of many
complex-shaped objects. It also can be applied to many different learn-
ing problems, where especially the low number of required parameters
enhances the usability of this approach. Nevertheless this method can
only be used for offline learning. Therefore one possible extension with
respect to the computational cost could be a feature selection method.
This would similar to the proposed categorization approach enable inter-
active learning. However, the feature selection process for identification
tasks is more difficult. This is basically caused by the fact that for the
distinction of many similar objects the combination of many different
features is required. To allow time efficient learning under these con-
ditions the feature selection methods must already strongly reduce the
number of possible candidate sets. Otherwise this would cause a com-
binatorial explosion of feature combinations and the effect with respect
to the required learning speed is most probably contra-productive.

The cLVQ model enables interactive learning of complex visual cate-
gories and can easily be applied to other problem domains like visually
guided driver assistance systems. Nevertheless currently all categories
are treated equally. One possible extension would be the learning of
categorization hierarchies. Such a differentiation could be inspired by
the proposed psychological distinction into superordinate, basic level,
and subordinate categories (Rosch et al., 1976). A similar hierarchical
organization could also be achieved with the proposed cLVQ method,
where at the lowest level general visual attributes like “cylindrical” or
“cubical” are represented. The next higher hierarchical level could then
be utilized to store categories like “cup” or “cell phone”, where the high-
est level could further distinguish these categories into different groups
like “tea cup” or “coffee pot”. This would allow to represent a large
number of different categories based on an efficient reuse and combi-
nation of representations. Although such representation of categories is
beneficial it is unclear how this hierarchical representation can automat-
ically evolve without an explicit assignment of categories to the desired
hierarchy level.
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Furthermore the long-term memory (LTM) representations for object
identification and categorization are currently distinct. The combina-
tion of both representations is also an interesting research direction.
Typically for visual identification tasks each object is separated from
all other trained objects. With the utilization of the category repre-
sentation this differentiation could be divided into several subproblems.
The basic idea is that based on the categorization decisions only similar
objects are distinguished (e.g. only objects belonging to the category
“cup”). We believe that this combination considerably increase the rep-
resentational capacity compared to currently available object identifica-
tion architectures. Additionally information from other visual modali-
ties could ease the learning of many similar objects. This means that
knowledge about the detected colors categories is most probably a good
cue to efficiently separate objects belonging to a specific shape category.
This combined representation would also provide the basis for many
different behavioral tasks. Such tasks can range from object search to
grasping, where in many cases coarse visual properties are sufficient.

As already mentioned the proposed life-long learning methods are not
only restricted to visual recognition tasks. Therefore also the applica-
tion to other sensory modalities or multi-modal feature representations
is conceivable. Here especially audio-visual representations or the learn-
ing of visio-motor skills are of particular interest. The combination of
the auditory and visual modality enables the learning of audio-visual
events. Furthermore this would enable a more flexible labeling of visual
representations, whereas so far these mappings are commonly prede-
fined. The visio-motor skills are interesting with respect to the acqui-
sition of task dependent representations. On research direction could
be to extract the essential visual properties to select the most efficient
grasping movement. This ability could be learning in a trial and error
fashion, where typically the grasping patterns are largely predefined.
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Appendix A

Feature Extraction Methods

A.1 Shape Feature Extraction

For the training of the incremental and life-long learning methods two
different kinds of shape feature extraction methods are used. The first
one is a feed-forward feature extracting hierarchy developed by Wers-
ing & Körner (2003), which is based on weight-sharing and a succession
of feature detection and pooling stages. The feature detectors of this
architecture are obtained by unsupervised learning, providing a set of
general but less object or category-specific features. The second extrac-
tion methods are so-called analytic features obtained by parts-based
feature detectors. In contrast to the previous feature extraction method
are the parts-based features trained in a supervised manner with respect
to object or category specificity.

The input of the feature extraction methods are RGB color segments
Ji = (Ji

R,Ji
G,Ji

B) and the corresponding foreground mask ξi. Note
that for all image ensembles with black background all pixels in ξi are
assigned to the foreground, therefore the complete segment is used for
the extraction of shape features. For the shape feature extraction Ji

is converted into gray-value intensity images, obtained by a weighted
addition of the RGB channels:

Ĵi =
1

3
Ji

R +
1

3
Ji

G +
1

3
Ji

B. (A.1)
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Figure A.1: Feed-forward feature Extraction Hierarchy. Based on a gray-scale

input image Ĵi the first feature-sensitive layer S1 performs a coarse orientation estimation

using Gabor filters. Additionally a winner-take-most mechanism and a final threshold

function is applied. The S1 features are pooled down to a quarter in each direction in layer

C1. Neurons in the S2 layer are sensitive to local combinations of the features of the C1

layer. The C2 layer again reduces the resolution by a half in each direction.

A.1.1 Feed-Forward Shape Feature Extracting Hierarchy

We use a feed-forward feature extraction architecture (Wersing & Körner,
2003) inspired by the human ventral visual pathway as one method to
extract shape features. Our feed-forward feature extraction architec-
ture is based on weight-sharing and a succession of feature detection
and pooling stages. The feature detectors are obtained through unsu-
pervised learning based on invariant sparse coding. Figure A.1 shows
an overview of this feature extracting architecture providing a high-
dimensional and sparse set of feature responses.

The first feature-matching layer S1 is composed of four orientation sen-
sitive Gabor filters zm

s1 with m = 1, . . . , 4 performing a local orientation
estimation. To compute the response qmi

s1 (x, y) of a simple cell of this
layer, responsive to feature type m at position (x, y) first the image
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vector Ĵi is convolved with a Gabor filter zm
s1(x, y):

qmi
s1 (x, y) =

{

|Ĵi ∗ zm
s1(x, y)| : ξi(x, y) > 0

0 : else
, (A.2)

Additionally a winners-take-most (WTM) mechanism between features
at the same position is performed:

rmi
s1 (x, y) =

{

0 if qmi
s1 (x,y)

T
< γs1 or T = 0,

qmi
s1 (x,y)−Tγs1

1−γs1
else,

(A.3)

where T = maxk qk
s1(x, y) and rmi

s1 (x, y) is the response after the WTM
mechanism, which suppresses sub-maximal responses. The parameter
0 < γs1 < 1 controls the strength of the competition. The activity is
then passed through a simple threshold function with a common thresh-
old ǫs1 for all cells in layer S1:

smi
s1 (x, y) = Φs1

(

rmi
s1 (x, y) − ǫs1

)

, (A.4)

where Φs1(x) = 1 if x ≥ 0 and Φs1(x) = 0 else. The smi
s1 (x, y) is the final

activity of the neuron sensitive to feature m at position (x, y) in this S1
layer.

The C1 layer subsamples the S1 features by pooling down to a quarter
in each direction (e.g. 64x64 S1 features are pooled down to 16x16 C1
features):

cmi
c1 (x, y) = tanh

(

smi
s1 ∗ zc1(x, y)

)

, (A.5)

where zc1(x, y) is a normalized Gaussian pooling kernel with width σc1,
identical for all features m, and tanh is the hyperbolic tangent function.

The S2 layer is sensitive to local combinations of the orientation selective
features extracted from layer C1. The so-called combination features of
this S2 layer (for all experiments n=1,. . . ,50 different shape features are
used) are obtained through sparse coding (see Wersing & Körner (2003)
for details). The response qni

s2(x, y) of one S2 cell is calculated in the
following way:

qni
s2(x, y) =

∑

m

cmi
c1 ∗ znm

s2 (x, y), (A.6)

where znm
s2 (x, y) is the receptive field vector of the S2 cell of feature n

at position (x, y), describing connections to the plane m of the previous
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C1 cells. Similar to the S1 layer a WTM mechanism (see Eq. A.3) and
a final threshold function (see Eq. A.4) is performed in this S2 layer.

The following C2 layer again performs a spatial integration and reduces
the resolution by half in each direction (i.e. 16x16 S2 features are down-
sampled to 8x8 C2 features). The pooling is done with the same mech-
anism as in layer C1 (see Eq. A.5).

A.1.2 Parts-based Shape Feature Extraction

The parts-based feature detection (Hasler et al., 2007) is based on a
preselected set of SIFT-descriptors (Lowe, 2004), which are designed to
be invariant with regard to rotations in the image plane. Commonly
in categorization frameworks such descriptors are only extracted at a
small number of interest points detected e.g. by the Harris detector
(Harris & Stephens, 1988) or the Kadir and Brady detector (Kadir &
Brady, 2001). These interest point detectors usually respond to highly
textured regions and typically ignore structureless regions. In contrast
to this in the used approach these SIFT descriptors are extracted at
any location in the segment Ji, with foreground mask ξi(x, y) > 0,
allowing for a greater variety of learnable objects and categories, which
also includes visually less structured classes. For each segment Ĵi the
similarity rmi

a (x, y) (m = 1, . . . , 500) between the stored feature detector

zm
a and the SIFT-response qmi

a (x, y) corresponding to the segment Ĵi at
position (x, y) is calculated using the dot product:

rmi
a (x, y) =

{

qmi
a (x, y) ∗ zm

a : ξ(x, y) > 0
0 : else

(A.7)

The final response smi
a for the feature detector wm and the current seg-

ment Ji is defined as:

smi
a = max

x,y
(rmi

a (x, y)). (A.8)

Thus for each feature only the maximum response is used, neglecting all
spatial and configurational information. Such information is commonly
included in categorization methods like in (Leibe, Leonardis, & Schiele
2004), but requires a high amount of representational resources, which
is unsuitable for representing a large amount of classes. Neglecting this
information leads to a more compact representation with an efficient
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a
the corresponding response sni

a
is calculated for each training image i. The threshold ǫn

is chosen so that all sni

a
≥ ǫn belong to the same category and are assigned to a constant

scoring value hni

a
= 3. The scoring values are used to guide the iterative selection process,

by adding the feature candidate wn

a
to the list of selected features zm

a
leading to the highest

additional gain.

reuse and combination of parts, which enhances the learning speed for
interactive category learning tasks. Another important issue is that this
parts-based feature representation is invariant with regard to rotations
in the image plane. As a final step the non-sparse feature activations
are transformed into a sparse representation, by choosing only 10% of
the features with highest detector responses for segment Ji.

A.1.2.1 Scheme for Selecting Optimal Parts-Based Feature Detectors

In the following we describe how the feature detectors za are deter-
mined. In general this offline feature selection scheme tries to find an
optimal set of detectors with respect to robust redetection of features
and class specificity (Hasler, Wersing, & Körner 2007). As a first step
of this scheme SIFT-descriptors are calculated for each location in the
training image i with ξ(x, y)i > 0. Based on these SIFT-descriptors
a k-means clustering with 100 components is applied for each image i.
This clustering step is done to improve the generalization performance
and to reduce the number of descriptors. Based on all obtained k-means
clusters used as candidate descriptors wn

a with n = 1, .., N the feature
responses P ni

a are calculated. Afterwards the minimal thresholds ǫn are
computed in a way that all segments Ji with P ni

a ≥ ǫn belong to the
same category. Each image Ji satisfying this constraint is assigned to
a constant scoring value hni

a = 3, which is illustrated in Fig. A.2 for a
single wn

a . The iterative feature selection determines a predefined num-
ber of features by selecting at each iteration the best feature candidate
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wn
a that leads to the highest additional gain. This selection is there-

fore based on the scoring values hni
a , already selected features zm

a with
m = 1, . . . , M and all remaining candidates wn

a :

n = arg max
n∈N

(

∑

i

Φ

(

hni
a +

∑

m∈M

hmi
a

))

, (A.9)

where Φ(z) is defined as Fermi function. Finally the determined candi-
date feature wn

a is added to the set of selected features zM+1
a = wn and

the collection of further candidate features wn
a is repeated until a prede-

fined number of selected features is reached. Overall this scheme selects
parts-based detectors, which describe the known classes best, while still
being general enough to represent arbitrary unknown shape classes, that
are not included in the set of training images.
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Appendix B

Learned Feature Representation for

Categorization Tasks

B.1 Selected Features of all Color and Shape Cat-

egories

In the following the selected features of all color and shape categories are
shown, where in Fig. 4.11 and Fig. 4.12 only three representative color
and shape categories are depicted. For this visualization ten different
cLVQ networks are trained and the selected features of each category
together with the scoring values are saved. The selected features of each
category are sorted based on the total number of occurrences in these
ten runs, while the bar height correspond to the feature score of these
selected features. All features that occurred at least 7 times are consid-
ered as critical for the representation of this category, while a feature
occurrence of less than 3 time are probably irrelevant or even wrong.
Finally features that are selected 3-6 times indicate redundant feature
sets, with similar representational capacity. Besides the occurrence of
each feature the total number of selected features indicate the difficulty
of the category.
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Irrelevant Features (1−2)

Redundant Features (3−6)

Critical Features (7−10)

Number of Selected Features

6 5 4 3 2 1

Category Red

F
ea

tu
re

 S
co

ri
n

g

Category Yellow

5 4 3 2 1

F
ea

tu
re

 S
co

ri
n

g

Category Blue

F
ea

tu
re

 S
co

ri
n

g

12348 69

F
ea

tu
re

 S
co

ri
n
g

9 8 3 2 1

Category Green

Category White

F
ea

tu
re

 S
co

ri
n

g

10 6 5 4 3 2 1

F
ea

tu
re

 S
co

ri
n
g

1

...

Figure B.1: Selected Features of all Color Categories (“Red”, “Yellow”,

“Blue”, “Green” and “White”).
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Figure B.2: Selected Features of Category “Bottle”, “Box”, “Brush” and

“Cup”.
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Figure B.3: Selected Features of Category “Can”, “Car”, “Duck” and

“Phone”.
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Theses:

1 The proposed learning methods automatically adapt to the diffi-

culty of the recognition task

2 Node dependent learning rates combined with error-based incre-

mental learning are substantial requirements for life-long learning

tasks

3 The proposed iLVQ enables resource efficient life-long learning for

a large variety of identification tasks

4 The cLVQ approach is suited for life-long learning of multiple cat-

egories using a single prototype memory

5 Dynamic feature weighting and selection enables fast and high per-

formance categorization

6 The online learning STM enables interactive learning and immedi-

ate identification of many complex-shaped objects

7 The developed integrated vision system allows interactive identifi-

cation or categorization of natural hand-held objects

8 The utilization of high-dimensional but sparse feature representa-

tions is beneficial for solving difficult recognition tasks

9 Exploitation of the sparsity in the feature activity allows interactive

learning even in high-dimensional spaces
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