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Abstract  

Preparations, characteristics, and applications of dimeric fullerene oxides and well-

aligned multi-walled carbon nanotube (MWCNT) arrays – both being carbon-based 

nanostructured materials – are reported.  

Directed and specific syntheses and isolations of preparative amounts of dimeric 

fullerene oxides using conventional laboratory methods are presented. Oxidative and 

thermal properties, electronic absorption properties, and electron acceptor strength of 

dimeric fullerene oxides are given. The application of dimeric fullerene oxides to 

organic photovoltaics is reported.  

Synthesis and electrochemical induced purification of well-aligned MWCNT arrays is 

presented. Capacitive and electron transfer (faradaic) properties of well-aligned 

MWCNT array electrodes are given. The application of well-aligned MWCNT array 

electrodes to non-enzymatic glucose detection is reported. 
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Kurzzusammenfassung  

Es wird über Herstellungen, Eigenschaften und Anwendungen von dimeren 

Fullerenoxiden und von Anordnungen senkrecht ausgerichteter, mehrwandiger 

Kohlenstoffnanoröhren – beides nanostrukturierte Kohlenstoffmaterialien – berichtet.  

Direkte und spezifische Synthesen sowie Isolationen von dimeren Fullerenoxiden in 

präperativen Mengen werden beschrieben. Oxidative und thermische Stabilität, 

elektronische Absorptionseigenschaften und Elektronenakzeptorstärke von dimeren 

Fullerenoxiden werden erörtert. Die Verwendung von dimeren Fullerenoxiden in 

Plastiksolarzellen wird beschrieben.  

Die Herstellung und elektrochemische Reinigung von Anordnungen senkrecht 

ausgerichteter, mehrwandiger Kohlenstoffnanoröhren werden erläutert. Kapazitive 

Eigenschaften und Elektronenübertragungseigenschaften von Elektroden basierend 

auf solchen Anordnungen werden erörtert. Die nicht-enzymatische Glukosedetektion 

mittels solcher Kohlenstoffnanoröhren-Elektroden wird beschrieben.  
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1. Introduction  

Nanoscience and nanotechnologies have huge potential to bring benefits in areas such 

as electronics, optoelectronics, information technology, biotechnology, and medicine. 

Nanoscience and nanotechnologies are attracting rapidly increasing investments from 

governments and from businesses in many parts of the world. The total global 

investment in nanotechnologies is currently around €5 billion, €2 billion of which 

comes from private sources. The worldwide market for nanotechnologies is predicted 

to be $1 trillion by 2015 [Roy04].  

Nanoscience and nanotechnologies encompass a wide range of materials, tools, 

techniques, approaches, and potential applications that cut across many scientific 

disciplines, from chemistry and physics to biology, engineering, and medicine. 

Although there is no sharp distinction between them, nanosciene and 

nanotechnologies are commonly defined as follows [Roy04]:  

• Nanoscience is the study of phenomena and manipulation of materials at 

atomic, molecular and macromolecular scales, where properties differ 

significantly from those at a larger scale.  

• Nanotechnologies are the design, characterization, production, and application 

of structures, devices, and systems by controlling shape and size at the 

nanometer scale.  

Two principal factors cause the properties of nanostructured materials to differ 

significantly from other materials. Firstly, nanomaterials have a relatively larger 
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surface area compared to the same mass of material produced in a larger form. This 

can make materials more chemically reactive and affect their mechanical or electrical 

properties. Secondly, quantum effects can begin to dominate the behavior of matter at 

the nanoscale affecting the optical, electrical, and magnetic characteristics of 

materials [Roy04].  

Nanostructured materials can be nanoscale in all three dimensions, in two dimensions 

or in one dimension. Examples for three dimensional nanomaterials are nanoparticles, 

quantum dots, dendrimers, and fullerens. Two dimensional nanomaterials are for 

instance biopolymers, nanowires, inorganic nanotubes, and carbon nanotubes (CNTs). 

Finally, organic thin films as well as engineered layers and surfaces are examples for 

one-dimensional nanomaterials [Bon03, Roy04].  

In this work, preparations, characteristics, and applications of dimeric fullerene oxides 

as well as well-aligned multi-walled carbon nanotube (MWCNT) arrays – both 

carbon-based nanostructured materials – were developed:  

• Dimeric fullerene oxides were synthezised and isolated, physicochemically 

characterized, and applied to organic photovoltaics. In chapter  1.1, the area of 

research is introduced. Experimental procedures are explained in chapter  2. 

Finally, in chapter  3.1, research results are discussed in detail.  

• Well-aligned MWCNT array electrodes were fabricated, electrochemically 

characterized, and applied to electrochemical non-enzymatic glucose detection. 

In chapter  1.2, the field of research is presented. Experimental procedures are 

given in chapter  2. Finally, research results are extensively considered in 

chapter  3.2. 
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To put this work into context, structures, properties, and potential applications of 

fullerenes and carbon nanotubes are briefly summarized in the following paragraphs.  

Fullerenes  

Fullerenes are a family of carbon allotropes, molecules composed entirely of carbon, 

in the form of hollow spheres. Fullerenes are built up of fused pentagons and 

hexagons. The pentagons provide curvature. The smallest stable, and almost abundant 

fullerene is C60 (Figure  1.1). The next stable homologue is C70 (Figure  1.1) followed 

by the higher fullerenes C74, C76, C78, C80, C82, C84, and so on. The building principle 

of fullerenes is a consequence of the Euler theorem, which says that for the closure of 

each spherical network of n hexagons, 12 pentagons are required, with the exception 

of n = 1.  

C60 C70  

Figure  1.1. Chemical structures of the fullerenes C60 and C70 [Roy04].  

Production routes to fullerenes include vaporization of graphite (e.g. by resistive or 

arc heating), sooting flames, and pyrolysis of hydrocarbons. Besides a fullerene 

fraction, the raw product of fullerene productions contains by-products such as soot, 

slag, and further carbon structures. Fullerene fractions can be isolate from product 
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mixtures either by sublimation or by extraction. To separate fullerenes from a 

fullerene fraction, chromatographic methods are used.  

Fullerene chemistry is exceedingly rich and comprises nucleophilic-, electrophilic-, 

radical-, and cyclo-additions, polymerization, hydrogenation, halogenation, as well as 

the formation of transition metal complexes, heterofullerens and endohedral 

fullerenes.  

Due to their intrinsic properties, fullerenes have great potential as building blocks for 

nanotechnological applications. Fullerenes show an extremely high hardness, which is 

attractive for protective coatings. Fullerenes are chemically reactive and can be linked 

to polymer structures to create new copolymers with specific physical and mechanical 

properties. Fullerenes can also be used as polymer additive to make composites and 

modify physical properties and performance characteristics of polymers. Fullerenes 

are powerful antioxidants, react readily and at a high rate with free radicals, and 

consequently have potential in physiological and non-physiological applications, 

where oxidation and radical processes are destructive (e.g. cell damage, food spoilage, 

plastics deterioration, and metal corrosion). The size of C60 is similar to many 

biological active molecules, including drugs, which gives C60 potential as a 

foundation for creating a variety of biologically active variants for medical 

applications (such as drug delivery or enzyme/protein blocker). Fullerenes have 

shown considerable potential as catalysts, non-metallic magnetic and superconductive 

material. Due to their intrinsic electrical properties, fullerenes have significant 

potential for use in fuel cells, batteries, photodetectors, and organic electronics such 

as organic field effect transistors (OFETS) and organic photovoltaics (OVP).  



1. Introduction  

 

5

Structures, production, chemical and physical properties, as well as potential 

applications of fullerenes have been comprehensively summarized in well-written text 

books [Kad00, Hir05, Fow07, Lan07A, Lan07B].  

Carbon Nanotubes  

Carbon nanotubes (CNTs) are molecular-scale tubes of graphitic carbon. There are 

two types of CNT: single-walled carbon nanotubes (one tube) and multi-walled 

carbon nanotubes (several concentric tubes). Both of these are typically a few 

nanometers in diameter and several micromeres (10-6 m) to centimeters long.  

Figure  1.2 illustrates single-walled nanotubes (SWCNTs) and multi-walled nanotubes 

(MWCNTs) [Roy04].  

SWCNT MWCNT  

Figure  1.2. Schematic of a single-walled carbon nanotube (SWCNT) and a multi-walled 

carbon nanotube (MWCNT) [Roy04].  

CNTs can be produced by chemical vapor deposition (CVD), arc discharge and laser 

ablation techniques. Each method allows the synthesis of bulk amounts of CNT 

material consisting of entangled, bundled, and crystalline CNT structures. Self-
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assembled, vertically aligned CNT architectures directly grown on substrates with 

control on the nanometer scale can only be synthesized with CVD techniques [Bra09].  

As-synthesized CNTs contain carbonaceous impurities and catalyst residue. 

Purification methods of CNTs can basically be classified into two categories, namely 

chemical and physical. The chemical method purifies CNTs based on selective 

oxidation, wherein carbonaceous impurities are oxidized at a faster rate than CNTs, 

and the dissolution of metallic impurities by acids. Chemical oxidation includes the 

most frequently used gas phase (using air, O2, Cl2, H2O, etc.) and liquid phase 

oxidation (using acid treatment and refluxing, etc.), as well as the rarely applied 

electrochemical oxidation. The physical method separates CNTs from impurities 

based on the differences in their physical size, aspect ratio, gravity, and magnetic 

properties. Predominantly, the merits of chemical and physical purification are 

combined in multi-step purifications [Hou08].  

CNTs are characterized by low density, large aspect ratio, high tensile strength, high 

elastic modulus, and high heat conductivity. In addition, CNTs are chemically 

modifiable (e.g. by covalent tip, sidewall and defect functionalization, endohedral and 

non-covalent functionalization) and electrocatalytically active. Depending on the 

helicity of the tubes, single CNTs are either electrically conducting or semi-

conducting. For statistical reasons, in MWCNTs electrical conductivity normally 

dominates. 

Due to their intrinsic properties, CNTs are attractive for various applications 

including electronics, field emitter, composites, sensors, probes, energy storage, and 

biomedicine [Bra09].  
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Structures, production, chemical and physical properties, as well as possible 

applications of CNTs have been well summarized in excellent text books [Sai98, 

Dre01, Sma01, Rei04, Mey05, Rot05, Con06, Loi06, Hie08, Jor08, Har09].  
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1.1. Dimeric Fullerene Oxides  

In this chapter, the research area of dimeric fullerene oxides is briefly discussed and 

the preparations, characteristics, and applications of dimeric fullerene oxides 

developed in this work are elucidated and put into context.  

Dimeric fullerene oxides can be classified as fullerene dimers. In a stricter sense, 

fullerene dimers are molecules, in which two fullerene cages are directly covalently 

linked. Examples of C60-based dimers are shown in Figure  1.3 and include:  

• the cyclobutane-like bridged dimer C120 [Kom98],  

• heteroatom-bridged dimers sharing a five-membered ring such as the furan-like 

bridged, dimeric fullerene oxide C120O [Leb95, Smi95], the methylene-bridged 

dimer C120CH2 [Smi95], the silicon bridged-dimer C120SiPh2 (Ph = phenyl, 

C6H5) [Fuj02A], or the germanium-bridged dimer C120GePh2 [Mur03],  

• heteroatom-bridged dimers sharing a cyclobutane ring and two indirect 

intercage links (that is, the dimers share two five-membered rings) such as the 

bis-furanoid bridged dimer C120O2 [Gro97A, Gro98], the bis-methylene-bridged 

dimer C120C2H4 [Dra00A], or the furan-cyclobutane-thiophene bridged dimer 

C120OS [Gie99],  

• exo- and endohedral functionalized C120 dimers such as R-C61-(1,3 Ph)-C61-R 

(R = (OC6H3)2) or 3He@C120C(CO2C2H5)2, [Fuj01A, Fuj01B, Fuj02B, Kno00, 

Kom00A], as well as  
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• single-bonded dimers such as RC60C60R (R = H, halo, alkyl, fluoroalkyl) 

[Sch95, Osa96, Yos99] and aza[60]fullerenyl dimers [Nub96].  

c)a) b)

f)d) e)

i)g) h)

k) l) m)

GeGe

SS

≡ 3He≡ 3He

 

Figure  1.3. C60-based dimers: a) C120, b) C120O, c) C120CH2, d) C120SiPh2 (Ph = C6H5), 

e) C120GePh2, f) C120O2, g) C120C2H4, h) C120OS, i) R-C61-(1,3 Ph)-C61-R (R = (OC6H3)2), 

k) 3He@C120C(CO2C2H5)2, l) (C60-Morpholine)2, m) aza[60]fullerenyl dimer.  
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Examples of C70-containing dimers are shown in Figure  1.4 and comprise:  

• the cyclobutane-like bridged dimers C130 [Kom00B, Tag02] and C140 [Leb00A, 

Leb00B, For02],  

• the furan-like bridged, dimeric fullerene oxides C130O [Eis98A, Tak98, Tak01] 

and C140O [Kud02], as well as  

• single-bonded dimers like aza[70]fullerenyl dimers [Has97].  

O O

a) b)

c) d)

e)

 

Figure  1.4. C70-containing dimers: a) C140, b) C130, c) C140O, d) C130O, 

e) aza[60]fullerenyl dimer.  

The interest manifested in fullerene dimers is related to their utilization in fullerene 

polymer science [Ekl00] and organic electronics (this work), to their use as systems 

for investigating intra-molecular charge transfer [Bal96] and interaction between 
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electron spins in molecules [Zha06], and to their exploitation as precursor for further 

fullerene based materials [Gro97B, Gro97C]. 

The relatively simple material class of fullerene dimers proved to be rather difficult to 

study owing, in general, to the low solubility of fullerene dimers. The extensive 

fundamental research on C60 fullerene dimers including preparation, structural 

characteristics, physicochemical properties, and chemistry of dimeric fullerens has 

been well reviewed [Shi04, Seg00]. As yet, fullerene dimers were not brought to 

applications.  

In addition to the classification as fullerene dimers, dimeric fullerene oxides can be 

regarded as fullerene oxide structures. Examples of fullerene oxide structures are 

shown in Figure  1.5 and include:  

• monomeric fullerene oxides such as C60On or C70On (n = 1-6) [Hey06],  

• dimeric fullerene oxides such as (C60)2On (n = 1-10) [Leb95, Smi95, Gro98, 

Res01], C60C70On (n = 2-3) [Eis98A, Tak98, Tak01], (C70)2On (n = 1-3) [Jaf99, 

Kud02, Zha04], 

• trimeric fullerene oxides such as (C60)3On (n = 2-6) [Den96, Gro96, Gro97C],  

• linear, un-branched oligomeric (C60O)n fullerene oxides [Bri05, Khl05],  

• highly complex and topologically disordered polymeric fullerene oxide 

networks of the type (C60)mOn [Zha03, Khl05, Win06], as well as  

• odd- and even-numbered fullerene oxide structures with probably modified cage 

structures such as C58On (n = 1, 2) [Den95, Pen97, Res01], C59On (n = 1-4) 

[Den95, Pen97, Res01], C68On (n = 1-3) [Den96], C118On (n = 1, 3) [Gro96, 



1. Introduction 

 

12 

Gro97C], C119On (n = 2-4) [Res01], C178O3 [Gro96], and C179O2 [Gro96, 

Gro97C].  

The most stable fullerene oxide structures show [6,6] closed ring junctions and intact 

fullerene moieties. The most stable monomeric fullerene oxides are methanofullerenes 

showing [6,6] closed epoxide structures (epoxyfullerenes, Figure  1.5 a) and c)-g)) 

[Hey06]. The proposed structures of the most stable oligomeric and polymeric 

fullerene oxides show intact fullerene cages connected by furanoid oxo-bridges 

(Figure  1.5 h), l), and m)) [Leb95, Smi95, Den96, Gro97A, Eis98A, Eis98B, Gro98, 

Kra98A, Kra98B, Kud02, Bri05, Khl05] and potentially additionally functionalised 

by epoxide groups (Figure  1.5 i) and k)) [Gro98]. Fullerene oxide structures showing 

open [5,6] ring junctions (homofullerenes, fulleroides, Figure  1.5 b)) are less stable 

and can be transformed to fullerene epoxides by irradiation [Hey06, Tsy04].  

The interest manifested in fullerene oxides is related to their utilization as precursor 

for further fullerene based materials [Elv93, Bec95, Gro97B] and to their promising 

thermal, electronic, and optical properties. Potential applications of fullerene oxides 

include quantum information processing (QIP) [Zha06], energy storage [Kaw97], and 

photosensitive systems (this work). The extensive fundamental research on 

preparation and characterization of fullerene oxide structures has been well reviewed 

[Hey06].  

In the following paragraphs, preparations, characteristics, and applications of dimeric 

fullerene oxides developed in this work are briefly elucidated. 
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a) c) d)

e) f) g)

h) i) k)

l) m)

o) p)n)

O
O

O

OO
O O

O

O
O O

O

O

O O

O
O

O

O

O

b)

 

Figure  1.5. Fullerene oxide structures: a) C60O: [6,6]-closed epoxide, b) C60O: [5,6]-open 

oxidoannulene (fulleroid), c) and d) isomers of C70O, e) C60O2, f) and g) isomers of C60O3, 

h), i), and k) isomers of C120O2, l) and m) isomers of C180O2, n) fullerene oxide network, 

o) and p) isomers of C59O2.  
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Preparations of Dimeric Fullerene Oxides  

In this work, the dimeric fullerene oxides C120O, C130O, and C140O were synthesized 

in preparative amounts by solid-state thermolysis of fullerene/fullerene-oxide mixed 

powders. Figure  1.6 exemplifies the two-step synthesis of theses dimeric fullerene 

oxides using the synthesis of C120O.  

O+
O1h, 200°C

N2

OOzone

Toluene, RT

a)

b)

C60O3

C120O

O
O

O

C60O

-O2

 24h, RT

 

Figure  1.6. Synthesis route to dimeric fullerene oxides: a) fullerene-oxidation using ozone, 

b) solid-state thermolysis of fullerene/fullerene-oxide mixed powder.  

For C120O, directed and specific preparations of preparative amounts are reported in 

the literature. C120O can be synthesized by solid-state thermolysis [Leb95] and 

thermolysis in solution [Smi95] of C60/C60-oxide mixed powders and separated from 

the resulting product mixtures nearly quantitatively by preparative flash 

chromatography [Smi95, Kom98, Leb98] or precipitation [Gro96, Gro97B]. As a 

consequence, the structure-properties relationship of C120O has been characterized 

rather comprehensively. In addition to comprehensive spectroscopic studies [Leb95, 

Smi95, Eis98A, Eis98B, Kra98A, Kra98B, Leb98, Sol99, Fuj01C, Yam02, Wan08], 

which include the structure determination, the characterization of C120O contains the 

specification of electrochemical [Bal96, Dun03] and thermal properties [Gro96, 
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Tay98A, Gar03, Zha06], a study on crystals containing C120O [Olm99], as well as 

theoretical studies [Fow97, Tia00]. Semi-empirical calculations predict C120O to have 

one energy minimized structure with C2V symmetry [Fow97], and a 13C-NMR-based 

study [Smi95] has clearly shown that the C60 cages in C120O are connected by a 

furanoid (C4O) bridge and that C120O has C2V symmetry. Figure  1.7 shows the 

structure of C120O.  

OO

 

Figure  1.7. Chemical structure of C120O (C2V  symmetry).  

In this work, C120O was synthesized by solid-state thermolysis of C60/C60-oxide mixed 

powder and isolated from the product mixture by precipitation yielding C120O 

material of 85 % purity. This C120O material was used as precursor to prepare well-

soluble C120O derivatives. To characterize C120O by mass- (MS), infra-red- (IR-), and 

ultraviolet-visible- (UV-vis-) spectroscopy (see Appendix), as well as by cyclic 

voltammetry (CV), and thermogravimetric analyses (TGA), highly pure C120O was 

prepared by semi-preparative high pressure liquid chromatography (HPLC).  

Dimeric C70 fullerene oxides were first detected in MALDI-TOF analyses of the 

epoxyfullerene C70O [Jaf99] and thereafter synthesized with poor yields of 2-3 % by 

hydrothermal treatment and solid-state thermolysis of C70/C70O mixed powders 

[Kud02]. Three isomers of C140O were separated from the product mixture using 

HPLC and characterised by mass-, UV-vis-, IR-, Raman-, and 13C-NMR-

spectroscopy, but not definitely assigned structurally [Kud02]. In addition, C140O was 
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synthesized by neutron irradiation of C70/C70O mixed powder and assigned by HPLC 

and mass spectroscopy, but the yields of the synthesis were not specified in the 

literature [Zha04]. Finally, semi-empirical calculations predict C140O to have seven 

isomers, whereof three have nearly equal low energies (Figure  1.8) [Fow97].  

a) C2V b) C2V c) CS

d) C1 e) C1 f) CS

g) C2

OO

OO

OO

OO

OO

OO

OO

 

Figure  1.8. Isomeric structures and corresponding symmetries of C140O,  

the isomers a)-c) show nearly equal low energies [Fow97].  

In this work, a solid-state thermolysis of C70/C70-oxide mixed powder yielding a 

product mixture containing as main product 35 % C140O as well as a separation of this 

product mixture by precipitation resulting in C140O material of 97 % purity were 

developed. The obtained C140O material was characterized by HPLC, mass-, IR-, and 

UV-vis-spectroscopy (see Appendix), as well as by CV, and TGA.  

C130O was extracted from fullerene soot [Tak98] and synthesized by solid-state 

thermolysis [Eis98A] and hydrothermal treatment [Tak01] of fullerene mixed 

powders, but the yields of these production methods were not specified in the 
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literature. C130O was characterized by mass-, IR- [Tak98] and Raman [Eis98A] 

spectroscopy. Semi-empirical calculations predict C130O to have three isomers 

(Figure  1.9) [Fow97] and three isomers of C130O were experimentally proven 

[Eis98A].  

a) CS b) CS c) C1

OO

OO

OO
 

Figure  1.9. Isomeric structures and corresponding symmetries of C130O [Fow97].  

In this work, a solid-state thermolysis of a fullerene (C60 and C70)/fullerene-oxide 

(C60- and C70-oxide) mixed powder yielding a product mixture containing 20 % C130O 

was developed. Highly pure C130O was prepared by semi-preparative HPLC and 

characterized by analytical HPLC, mass-, IR-, and UV-vis-spectroscopy 

(see Appendix), as well as by CV, and TGA.  

Furthermore, highly pure, well-soluble mono-, bis-, and tris-adducts of a diazoalkane 

addition reaction and a Bingel cyclopropanation reaction on C120O were prepared in 

this work using conventional laboratory methods. Figure  1.10 illustrates the 

diazoalkane addition reaction and the Bingel cyclopropanation reaction on C120O. 

Figure  1.11 illustrates the prepared mono-, bis-, and tris-adducts. As yet, 

functionalization of dimeric fullerene oxides was not reported in the literature.  

The diazoalkan addition reaction was performed on C120O to make a dimeric analogue 

of the well-known methanofullerene [60]PCBM (C60R´ in Figure  1.12) [Hum95], 

which is most frequently used as electron acceptor in fullerene-based organic 
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photovoltaics [Hop04]. In addition, the bis-adduct of the diazoalkane addition 

reaction is a dimeric analogue of bis[60]PCBM, which is the bis-adduct analogue of 

[60]PCBM and has shown to be a more efficient electron acceptor compared to 

[60]PCBM [Len08]. The Bingel cyclopropanation reaction was chosen to 

functionalize C120O because of its mild reaction conditions providing high yields and 

the exclusive formation of [6,6]-bridged adducts [Bin93].  

O O
OCH3O

C6H4C2

Ph OCH3
N2 O

multi-adducts+

a)

1 (C120OR´)

O Br CO2C6H13
CO2C6H13 O

CO2C6H13

CO2C6H13

2 (C120OR´´)

 multi-adducts+

b)
C9H16N2

C6H4C2

R´´

OCH3
O

R´

CO2C6H13

CO2C6H13

c)

 

Figure  1.10. Syntheses of C120O adducts: a) diazoalkane addition reaction and b) Bingel 

cyclopropanation reaction on C120O. c) Side chain labeling used throughout this work.  

All C120O adducts were characterized by analytical HPLC and mass spectroscopy. 

The mono-adducts 1 (C120OR´) and 2 (C120OR´´) were additionally characterized by 

1H-NMR-, IR-, and UV-vis-spectroscopy (see Appendix), as well as by CV, and 

TGA. In addition, the mono-adducts 1 and 2 were applied to organic photovoltaics.  
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Figure  1.11. Chemical structures of mono-, bis-, and tris-adducts of C120O obtained by 

diazoalcane addition reaction (left) and Bingel cyclopropanation reaction (right).  
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Finally, a multi-step synthesis route to regio-controlled mono- and bis-functionalized 

dimeric fullerene oxides using solid-state thermolysis was developed in this work. 

Figure  1.12 illustrates the multi-step synthesis route, which allows controlling the 

functionalization of the cages of dimeric fullerene oxides.  
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Figure  1.12. Synthesis route to regio-controlled functionalized dimeric fullerene oxides: 

a) diazoalkane addition reaction on C60, b) synthesis of a functionalized epoxy-fullerene, 

c) Bingel cyclopropanation reaction on C60, and d) solid-state thermolysis of a functionalized 

epoxy-fullerene and a functionalized fullerene yielding a regio-controlled bis-functionalized 

dimeric fullerene oxide.  
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In particular bis-functionalized dimers with different side chains are interesting. Bis-

functionalized dimers with appropriate functionalities might be polymerized to block 

co-polymer chains or might self-assemble due to the mutual attraction of the side 

chains.  

Moreovwe, the synthesis route is an attractive alternative to derivatizing hardly 

soluble dimeric fullerene oxides. Avoiding hardly soluble intermediate products, the 

synthesis concept has potential for making higher, soluble oligomeric fullerene 

oxides.  

Characterization of Dimeric Fullerene Oxides  

Oxidative and thermal stability, electronic absorption properties, and electron 

acceptor strength of the dimeric fullerene oxides C120O, C130O, and C140O, and the 

C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) were determined by TG analyses, 

UV-vis-spectroscopy, and CV studies. Comparisons were made with C60, C70, 

equimolar C60/C70 mixtures, C60R´, and C60R´´ (Figure  1.12).  

A series of dimeric fullerenes was comprehensively characterized for the first time in 

this work.  

Application of Dimeric Fullerene Oxides  

Polymer solar cells are promising alternatives to the existing crystalline silicon-based 

technology. The light weight, semi-transparency, mechanical flexibility, and tunable 

properties of organic materials, as well as the low-cost fabrication already well 

developed for all kinds of plastic thin film applications, and the easy integration of 
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such thin films in a wide variety of devices make polymer solar cells interesting 

alternatives for the future generation of photovoltaic devices.  

At present, the typical device structure of bulk-heterojunction (BHJ) polymer solar 

cells consists of two disordered, interpenetrating networks consisting of a semi-

conducting polymeric donor and an organic acceptor making the photovoltaic active 

layer sandwiched between two asymmetrical work function (metal) electrodes 

[Hop04]. The two networks have the following two functions. Firstly, upon 

irradiation, opposite charges are generated in each network. Secondly, each network 

transports only one type of charge to the corresponding electrode [Hum04].  

Among currently available acceptors, soluble fullerene derivatives have proven to be 

most efficient materials for solar cell applications [Sen04]. The most frequently used, 

best investigated, and probably not least therefore currently best available 

representative of fullerene based acceptor materials is [60]PCBM (C60R´ in Figure 

 1.12) [Hop04, Hop06]. Fullerene derivatives are most efficient acceptor materials 

especially because of the high asymmetry between the ultrafast, photo-induced 

electron transfer from optically excited p-type hole conducting polymers onto the 

rather n-type electron conducting fullerenes and the nine orders of magnitudes slower 

backward electron transfer [Sen04]. This asymmetry allows the use of cell 

architectures with only one photoactive composite layer instead of donor-acceptor bi-

layer devices. The advantage of a photoactive composite layer is an increased donor-

acceptor interface and a shortened distance for photoexcitation diffusion to reach this 

interface [Ibr05].  

Today, the power conversion efficiencies of polymer solar cells are low compared to 

inorganic semiconductor devices [Hop06]. Concepts for improvement include the 
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optimization of the device structure especially with respect to the electrode contacts, 

the adjustment of the absorption range of the cell to the terrestrial solar spectrum, the 

optimization of the band gap between the acceptor and the donor, and an 

improvement of the morphology of the photoactive blend [Hop04].  

through-space orbital overlap

a) b)

 

Figure  1.13. Contour plots of a) HOMO and b) LUMO of C122H4, determined by semi-

empirical molecular orbital calculations [Dra00A].  

Well-soluble dimeric fullerenes are valuable compounds to study the impact of well-

defined oligomeric fullerene derivatives on the performance of fullerene-based 

organic electronics and in particular fullerene-based BHJ solar cells. For instance, the 

fullerene dimers C120O, C122H4, C120SiPh2, and C120GePh2, in which the fullerene 

cages are directly covalently linked (Figure  1.3), show intercage electronic interaction 

(For dimers without direct intercage bonds, intercage electronic interaction was not 

observed.). This intercage electronic interaction can likely be related to a through-

space orbital overlap existing in HOMO/LUMO for dimers with direct intercage 

bonds (Figure  1.13) [Dra00A] and should improve the electron transport properties 

(electron mobility) of fullerene-based organic electronics. Moreover, the longish 

shape of fullerene dimers offers the possibility to introduce anisotropy to fullerene-

based organic electronics and – for instance – to make fullerene-based photoactive 
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layers with ordered interpenetrating networks, preferably directed towards the 

electrodes. Fullerene-based photoactive layers with regularly interpenetrating 

networks should show improved charge transport properties and a lowered 

percolation threshold of the fullerene component, which does not significantly 

contribute to the absorption of light by the photoactive blend [Hum04]. Finally, 

dimeric fullerenes should stabilize the original morphology of fullerene-based organic 

blends – mostly achieved by post-processing heat treatment – by delaying the aging 

process of fullerene aggregation leading to a degradation of the original blend 

morphology and consequently to a decrease of the performance of the blend.  

In this work, the well soluble C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) were 

applied as electron acceptor in BHJ polymer solar cells together with the semi-

conducting polymer P3HT (Figure  1.14) as electron donor. In addition, photo-induced 

intermolecular electron transfer was proven for photoactive blends made of 1 as 

electron acceptor and the semi-conducting polymer M3EH-PPV [Kie06] (Figure  1.14) 

as electron donor.  

 

Figure  1.14. Chemical structures of the semi-conducting polymers P3HT and M3EH-PPV.  

The fullerene oxide C120O was chosen as skeletal backbone for the preparation and 

application of well-soluble dimeric fullerenes mainly for three reasons. Firstly, C120O 

shows intercage electronic interaction [Bal96], which is expected to improve the 

electron transport properties (electron mobility) of fullerene-based organic 
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electronics. Secondly, C120O is stable upon illumination [Leb00A], [Fuj01C], 

chemical [Fuj01C], photochemical [Fuj01C], and electrochemical [Bal96] one-

electron reduction, as well as upon heating (up to 200°C) [Zha06], which is essential 

for the photovoltaic application itself, for post processing like thermal annealing, and 

for a stable morphology of the photovoltaic blends in general. Finally, simple, 

reliable, and efficient syntheses, as well as methods of isolation of C120O are available 

ensuring the disposability of preparative amounts of C120O.  
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1.2. Well-aligned MWCNT Array Electrodes  

In this chapter, the research field of CNT-based electrochemistry is briefly introduced 

and the fabrication, characteristics, and application of well-aligned MWCNT array 

electrodes developed in this work are explicated and put into context.  

Carbon nanotubes are excellent electrode materials due to their high electrical 

conductivity, high aspect ratio, light mass, and mechanical strength, as well as being 

biocompatible, and relatively chemically inert in most electrolyte solutions, yet 

retaining a high electrochemical activity, and a wide operational potential window. 

CNTs are therefore extremely attractive for electrochemical applications such as 

capacitors, batteries, and (bio-)sensors.  

The extensive fundamental research on the electrochemistry of CNTs has been well 

reviewed under various foci [Mau03, Bal04, Fra04, Laz04, Lin04, Gon05, Mer05, 

Mou05, Wan05, Bal06, Sin06, Wil06, Tro06].  

CNT-based electrodes have been realized from SWCNTs and MWCNTs. The most 

common types of CNT-based electrodes studied up to now are listed below [Bal04]:  

• Powder electrodes were fabricated by filling CNT powder into a microcavity, 

which was in contact with a metal wire.  

• Paste electrodes were fabricated by dispersing CNTs in an organic liquid 

containing an appropriate binder and filling the mixture into a capillary.  

• Composite electrodes were made by coating CNTs with polymers such as 

polypyrrole [Che01], polyaniline [Gao00], Teflon, or Nafion.  
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• Film electrodes were made by depositing films of CNTs on glassy carbon (GC) 

or metal supports. Typically, the CNTs were cast from an aqueous dispersion 

with or without a surfactant, or from a dispersion in N,N-dimethylformamide.  

• Paper electrodes were made from “bucky” paper, which was prepared by 

vacuum filtration of CNT suspensions through a membrane filter. “Bucky” 

paper was composed of sheets of entangled CNT bundles held together by van-

der-Waals interaction and probably some adhesive impurities.  

• Single-nanotube electrodes have been constructed with single CNTs by 

attaching them to a sharpened platinum wire.  

• Microbundle electrodes were made by attaching single CNT bundles to the end 

of a metal wire.  

• CNT-based nanoelectrode arrays were fabricated by growing arrays of well-

separated (low-density) CNT bundles or single CNTs on catalyst islands created 

on a substrate by electron beam lithography [Bal06, Tan08] or electrochemical 

deposition [Koe04, Tu03, Tu05].  

• High-density, vertically aligned CNT array electrodes were made by directly 

growing forests of high-density vertically aligned CNTs on substrates.  

CNT-based electrodes were modified by chemically (chemisorption) and physically 

(physisorption) linking modifiers to the CNTs, by intercalating modifiers into the 

CNTs, and by inserting/incorporation modifiers into the framework of the electrodes 

[Mau03, Bal04, Gon05, Mer05, Mou05, Wan05, Bal06, Wil06].  

The CNT-based electrodes used in most of the up to now reported electrochemical 

studies were film and paste electrodes [Gon05]. Although those CNT-based 
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electrodes have been demonstrated to be useful for practical electrochemical 

applications, they have some drawbacks. Firstly, such electrodes are not suitable for 

fundamental investigations causing difficulties in determining the contributions of the 

CNTs to the electrochemical properties of the electrode. Moreover, in film electrodes, 

the CNTs are mechanically and electrically loose, and in paste electrodes, the binder 

brings impurities into the electrode and degrades the electrochemical performance of 

the CNTs. Finally, film and paste electrodes show a high contact resistance between 

the active material (CNTs) and the current collectors (graphite foil or metallic 

substrates).  

Self-assembled, aligned and ordered CNT architectures directly grown on substrates 

by CVD are an attractive alternative to film and paste electrodes. Such architectures 

can be controlled on the nanometer scale, allow the exploitation of the whole CNT 

surface and an elegant electrode construction, require no binder, and show a low 

contact resistance.  

The great potential of aligned and ordered CNT architectures for use in 

supercapacitors [Che02, Che04, Hon07A, Hon07B, Wei08, Ye05A, Ye05B, Zha08A], 

electrochemical (bio)-sensors [Ye03, Ye04, Roy06, Tan06, Ye06, Yun06, Pun08, 

Tan08], direct methanol fuel cells [Tan05], and nanoelectrode ensembles [Koe04, 

Tu03, Tu05] has been impressively demonstrated. In addition, basic electrochemical 

properties [Li02, Zha08B] and the electrochemical modification of CNT array 

electrodes were studied [Ye06].  

However, the structure-properties relationship of CNT array electrodes was not 

systematically studied up to now. In this work, intrinsic electrochemical 

characteristics of high-density, vertically aligned MWCNT array electrodes were 
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determined in dependence on the deposit thickness of the arrays. The characteristics 

include capacitance, active surface area, internal resistance, as well as electron 

transfer resistance and were determined by cyclic voltammetry (CV) and 

electrochemical impedance spectroscopy (EIS). Figure  1.15 shows a typical 

morphology of a MWCNT array used in this work and a single MWCNT of such an 

array.  

10 µm

a)

5 nm

b)
 

Figure  1.15. a) SEM image of a well-aligned MWCNT array and b) TEM image of a single 

MWCNT of such an array.  
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In addition, the great potential of aligned and ordered CNT architectures for 

electrochemical sensing was demonstrated in this work by applying well-aligned 

MWCNT array electrodes to non-enzymatic voltammetric and amperometric glucose 

detection. Enzyme-based electrochemical glucose detection is well established and 

shows high sensitivity and selectivity, but lacks stability due to the intrinsic unstable 

nature of enzymes. Furthermore, enzymatic glucose sensing is limited to a low 

oxygen concentration because the electron-mediating sites of the sensors compete 

with oxygen dissolved in the solution. Finally, enzymatic glucose sensors require 

enzyme immobilization, which lacks reproducibility and results in a complex 

electrode design. Possible applications of non-enzymatic glucose sensors include 

continuous monitoring in bio-chemical (fermentation) processes and human bodies 

(implants), as well as the use in clinical diagnostics [Par06] and lab-on-chip 

applications [Cho08].  

CNT-based, non-enzymatic glucose detection has been studied at film [Kan07, 

Wan07], paste [Xie07, Xie08], and array electrodes [Ye04, Cui06, Cui07, Tan08].  

The structure-properties relationship of MWCNT array electrodes determined in this 

work associated with the potential of such electrodes for non-enzymatic glucose 

detection demonstrated in this and other works contribute to the developing of non-

enzymatic glucose sensors.  
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2. Experimental Section  

In this chapter, experimental procedures used to prepare and apply dimeric fullerene 

oxides and well-aligned MWCNT array electrodes considered in this work are 

specified.  

2.1. Preparations  

Preparation of Monomeric C60 and C70 Derivatives  

The monomeric fullerene derivatives shown in Figure  2.1 were prepared as precursors 

for synthezising regio-controlled functionalized dimeric fullerene oxides and 

comparing physicochemical characteristics of functionalized monomeric and dimeric 

fullerenes.  

a) C60R´

CO2C6H13

CO2C6H13
OCH3

O

c) C60R´´

CO2C6H13

CO2C6H13

OCH3
O

b) C70R´ d) C70R´´  

Figure  2.1. Chemical structures of monomeric C60 and C70 derivatives.  
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C60R´ ([60]PCBM or C60C12H14O2) and C70R´ ([70]PCBM or C70C12H14O2) were 

prepared according to literature procedures [Hum95, Wie03] via diazoalkane addition 

reactions using 4-benzoyl-methylbutyrate p-tosylhydrazone as diazo compound 

precursor and sodium methoxide as activating base. Figure  1.12 a) illustrates the 

synthesis of C60R´.  

C60R´´ (C60C(COOC6H13)2) and C70R´´ (C70C(COOC6H13)2) were prepared according 

to the method of Bingel [Bin93] using dihexyl bromomalonate as active methylene 

compound and DBU (1,8-diazabicyclo [5.4.0]undec-7-ene) as activating base. Figure 

 1.12 c) illustrates the syntheses of C60R´´.  

Monomeric C70 derivatives were obtained as isomeric mixtures and used as such. 

Figure  2.2 exemplifies three regio-isomers of C70R´.  

a) b) c)
 

Figure  2.2. Regio-isomers of C70R´([70]PCBM, C70C12H14O2) [Wie03]. 
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Preparation of C120O  

C120O was produced according to a literature procedure [Leb95] by solid-state 

thermolysis of C60/C60-oxide mixed powder. The C60/C60-oxide mixture was prepared 

by HPLC-controlled oxidation of C60 dissolved in toluene using ozone as oxidizing 

agent (Figure  1.6). The oxidation was carried out by purging an oxygen/ozone gas 

mixture, which was produced by an ozone generator, through a stirred solution of C60 

in toluene. The C60 ozonides initially formed by ozonization were allowed to 

dissociate into C60On epoxyfullerenes and molecular oxygen overnight [Hey06]. 

Subsequently, the solution was carefully filtered to remove precipitating reaction 

products. According to MS analyses, these precipitating reaction products were C60 

fullerene oxides C60On (n = 1-7). After filtration, the solvent was evaporated to obtain 

the C60/C60-oxide mixed powder containing approximately C60 (~90 %), C60O 

(~10 %), and traces of C60O2, as determined by HPLC (Figure  2.3) and MS.  

The solid-state thermolysis was carried out by heating the solid C60/C60-oxide mixture 

in air at 200 °C for 1 h. As determined by HPLC (Figure  2.3) and MS (Figure  2.4), 

the product mixture of the thermolysis contained C120O (~30 %), unreacted C60, as 

well as traces of C120On and C180On (n = 2, 3) as by-products. 

By adding n-hexane to a saturated ortho-dichlorobenzene (ODCB) solution of the 

product mixture, dimeric and trimeric reaction products were precipitated and 

separated from un-reacted C60 [Gro96, Gro97B]. As determined by HPLC (Figure 

 2.3) and MS, the precipitate contained up to 85 % C120O. 
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Figure  2.3. HPLC charts of a) C60/C60-oxide mixed powder, b) the reaction product of the 

thermolysis, c) and d) the reaction product after removing un-reacted C60 (analytical 

Cosmosil Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with a), b), and c) toluene, 

and d) toluene/ODCB (7/3, v/v), detection at 330 nm).  

The precipitate was used as starting material for the diazoalkane addition and the 

Bingel cyclopropanation reaction without further purification. To characterize C120O 

by mass-, IR-, UV-vis-spectroscopy, as well as by TGA and CV, highly pure C120O 

was prepared by semi-preparative HPLC using a Cosmosil Buckyprep column 

(250 x 20 mm²) eluted at 18 mL/min with toluene/ODCB (7/3, v/v).  

1000 2000 3000
m/z

C120O

C180On

C120On

x 10

 

Figure  2.4. Detail of the mass spectrum of the reaction product of the C60/C60O thermolysis. 
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Preparation of C140O  

In analogy to the C120O synthesis, C140O was produced by solid-state thermolysis of 

C70/C70-oxide mixed powder. Figure  1.5 shows the chemical structure of C70O 

isomers.  

The C70/C70-oxide mixture was prepared by ozonolysis of C70 dissolved in toluene 

and contained C70 (~85 %), C70O (~13 %), and C70On (~2 %, n = 2, 3), as determined 

by HPLC (Figure  2.5) and MS. After filtration, the solvent was evaporated to obtain 

the solid C70/C70-oxide mixture.  
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Figure  2.5. HPLC charts of a) C70/C70-oxide mixed powder, b) the reaction product of the 

thermolysis, and c) the reaction product after removing un-reacted C70 (analytical Cosmosil 

Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with a) toluene, 

b) and c) toluene/ODCB (7/3, v/v), detection at 330 nm).  
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The solid-state thermolysis was carried out by heating the solid C70/C70-oxide mixed 

powder under nitrogen atmosphere at 200 °C for 1 h. As determined by HPLC 

(Figure  2.5) and MS (Figure  2.6), the product mixture of the thermolysis contained 

C140O (~35 %), un-reacted C70 (~60 %), as well as traces of dimeric and trimeric C70 

fullerene poly-oxides of the form C140On (n = 2-5) and C210On (n = 2, 3). 

The product mixture was worked off by precipitation caused by adding n-hexane to a 

saturated ODCB solution of the mixture. As determined by HPLC (Figure  2.5) and 

MS, the precipitate contained up to 97 % C140O, 2 % C70, as well as traces (~1 %) of 

dimeric and trimeric C70 poly-oxides (C140On (n = 3-5) and C210On (n = 2, 3)).  

The precipitate was used without further purification to characterize C140O by 

analytical HPLC, mass-, IR-, UV-vis-spectroscopy, as well as by TGA and CV. 
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Figure  2.6. Detail of the mass spectrum of the reaction product of the C70/C70O thermolysis.  
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Preparation of C130O  

C130O was produced by solid-state thermolysis of a mixed powder containing C60 and 

C70 (each 45 %), as well as C60-oxide and C70-oxide (each 5 %) (Figure  2.7). To 

obtain such a solid mixture, C60/C60-oxide and C70/C70-oxide solutions were 

separately prepared by HPLC-controlled oxidation of C60 and C70 dissolved in toluene 

using ozone as oxidizing agent. C60 and C70 were separately oxidized because 

dissolved C60 oxidizes easier upon exposure to ozone than dissolved C70 [Elv93]. The 

C60/C60-oxide (C70/C70-oxide) solution approximately contained 90 % non-oxidized 

C60 (C70), 10 % C60O (C70O), and traces of higher epoxies of the form C60On (C70On) 

(n = 2-3). The solutions were carefully filtered and then united. Thereafter, the solvent 

was evaporated in order to obtain the solid fullerene mixture. The solid-state 

thermolysis was carried out by heating the solid mixture under nitrogen atmosphere at 

200 °C for 1 h.  

As determined by HPLC (Figure  2.7) and MS (Figure  2.8), the product mixture of the 

thermolysis contained the dimeric fullerene oxides C130O (~20 %), C120O (~20 %) and 

C140O (~8 %), un-reacted C60 (~30 %) and C70 (~22 %), as well as traces of dimeric 

and trimeric fullerene poly-oxides of the form C130On (n = 2-5), C120On (n = 2-5), 

C140On (n = 2-4), C180On (n = 2, 3) and C190On (n = 2). By adding n-hexane to a 

saturated ODCB solution of the product mixture, the dimeric and trimeric reaction 

products were precipitated and separated from un-reacted C60 and C70.  
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Figure  2.7. HPLC charts of a) C60/C60-oxide/C70/C70-oxide mixed powder, and b) the reaction 

product of the thermolysis of such a powder (analytical Cosmosil Buckyprep column 

(4.6 x 250 mm²) eluted at 1 mL/min with a) toluene, and b) toluene/ODCB (7/3, v/v), 

detection at 330 nm).  

To characterize C130O by analytical HPLC, mass-, IR-, UV-vis-spectroscopy, as well 

as by TGA and CV, highly pure C130O was prepared by semi-preparative HPLC using 

a Cosmosil Buckyprep column (250 x 20 mm²) eluted at 18 mL/min with 

toluene/ODCB (7/3, v/v).  
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Figure  2.8. Mass spectrum of the reaction product of the C130O synthesis.  
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Diazoalcane Addition and Bingel Reaction on C120O  

In a typical procedure, the diazoalkane addition reaction on C120O was carried out by 

heating a stirred solution of C120O (100 mg, 0.07 mmol) in ODCB (200 mL) under 

nitrogen atmosphere to 70 °C, and thereafter adding a suspension of 4-benzoyl-

methylbutyrate p-tosylhydrazone (52.5 mg, 0.14 mmol, 2 equiv.) and sodium 

methoxide (7.6 mg, 0.14 mmol, 2 equiv.) in pyridine (5 mL) to the stirred solution. 

The homogeneous reaction mixture was stirred under nitrogen at 70 °C for 24 h. 

Subsequently, the reaction mixture was concentrated by evaporating the volatile 

components under vacuum. Figure  1.10 illustrates the diazoalkane addition reaction 

on C120O.  
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Figure  2.9. HPLC chart of the product mixture of the diazoalkane additon reaction on C120O 

(analytical Cosmosil Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with toluene, 

detection at 330 nm).  

As determined by HPLC (Figure  2.9) and MS (Figure  2.10), the product mixture of 

the diazoalkane addition reaction contained mono-adduct (~40 %, C120OR´), bis- and 
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tris-adducts (~20 %, C120OR´m, m = 2, 3), un-reacted C120O (~40 %), as well as traces 

of dimeric and trimeric fullerene poly-oxides of the form C120OnR´m  

(n = 2, 3; m = 0-3) and C180OnR´m (n = 2-4; m = 0-2). The reaction product was 

separated by preparative flash chromatography using silica gel. Elution with carbon 

disulfide yielded un-reacted C120O followed by the mono-adduct. Subsequent elution 

with cyclohexane/toluene (1/1, v/v) yielded the bis-adducts. Further elution with 

toluene yielded the tris-adducts.  
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Figure  2.10. Mass spectrum of the reaction product of the  

diazoalkane addition reaction on C120O.  

In a typical procedure, the Bingel cyclopropanation reaction on C120O was performed 

by adding dihexyl bromomalonate (35.1 mg, 0.1 mmol, 1.5 equiv.) and 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU, 19.8 mg, 0.13 mmol, 2 equiv.) to a stirred 

solution of C120O (100 mg, 0.07 mmol) in ODCB (200 mL) and thereafter stirring the 

reaction mixture at room temperature for five hours. Figure  1.10 illustrates the Bingel 

reaction on C120O. As determined by HPLC (Figure  2.11) and MS (Figure  2.12), the 

product mixture of the Bingel reaction contained mono-adduct (~40 %, C120OR´´), 

bis- and tris-adducts (~35 %, C120OR´´m, m = 2, 3), un-reacted C120O (~25 %), as well 
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as traces of dimeric and trimeric fullerene poly-oxides of the form C120OnR´´m  

(n = 2-3; m = 0-3) and C180OnR´´m (n = 2-4; m = 0-2).  
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Figure  2.11. HPLC chart of the product mixture of the Bingel reaction on C120O (analytical 

Cosmosil Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with toluene,  

detection at 330 nm).  

The product mixture of the Bingel reaction was separated in analogy to the product 

mixture of the diazoalkane addition reaction.  

According to MS analyses, both the reaction product of the diazoalkane addition 

reaction and that of the Bingel reaction occasionally contained traces of tetra-adducts.  

1000 1500 2000 2500 3000
m/z

C120O

C180O2R´´

C120OR´´2

C120OR´´3

C180O2R´´2

C120OR´´
x 15

 

Figure  2.12. Mass spectrum of the reaction product of the Bingel reaction on C120O.  
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Regio-controlled Functionalized Dimeric Fullerene Oxides  

Regio-controlled mono- and bis-functionalized fullerene dimers were synthesized by 

solid-state thermolysis of mixtures containing the functionalized epoxy-fullerene 

R´C60O or R´C70O and a reactant fullerene. Figure  1.12 illustrates the synthesis route 

to regio-controlled functionalized fullerene dimers. In Table  2.1, the converted 

mixtures and the resulting regio-controlled functionalized dimers are summarized. 

Figure  2.13 illustrates the used functionalized epoxy-fullerenes and Figure  2.1 shows 

the used reactant fullerene derivatives.  

OCH3

O

O

a)  R´C60O b)  R´C70O
O

OCH3

O

 

Figure  2.13. Functionalized monomeric epoxy-fullerenes.  

Table  2.1. By solid-state thermolysis converted mixtures containing the functionalized epoxy-

fullerene R´C60O or R´C70O and a reactant fullerene as well as molar masses of the resulting 

regio-controlled functionalized dimers. 

No. Epoxide Reactant Dimer (M [g/mol]) 

a) R´C60O C60 R´C60OC60 (1646) 

b) R´C60O C60R´ R´C60OC60R´ (1836) 

c) R´C60O C60R´´ R´C60OC60R´´ (1916) 

d) R´C60O C70 R´C60OC70 (1766) 

e) R´C60O C70R´ R´C60OC70R´ (1956) 

f) R´C60O C70R´´ R´C60OC70R´´ (2036) 

g) R´C70O C70 R´C70OC70 (1886) 

h) R´C70O C70R´ R´C70OC70R´ (2076) 

i) R´C70O C60R´´ R´C70O C60R´´ (2136) 

k) R´C70O C70R´´ R´C70O C70R´´ (2156) 
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To prepare the solid mixtures, the fullerene derivatives C60R´ and C70R´ were 

dissolved in toluene and subsequently partly oxidized using ozone as oxidizing agent. 

According to MS analyses (Figure  2.14), the side chain R´ was not affected by the 

oxidation. After the oxidation, the solutions were filtered and then united according to 

Table  2.1 with solutions of the reactant fullerenes. Thereafter, the solvent of the 

prepared solutions was evaporated to obtain the solid fullerene mixtures. The solid-

state thermolysis was carried out by heating the solid mixtures under nitrogen 

atmosphere at 200 °C for 1 h.  
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Figure  2.14. Mass spectra of a) R´C60O (926 g/mol) and b) R´C70O (1046 g/mol).  
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Preparation of Well-aligned MWCNT Arrays  

Well-aligned MWCNT arrays were directly grown on silica substrates (~0.3 or 1 cm²) 

by thermal chemical vapor deposition (CVD) at 900 °C using ferrocene as catalyst 

source and benzene as carbon source. Figure  2.15 shows a schematic of the CVD 

process and Figure  2.16 illustrates the experimental set-up used for the CVD process. 

In brief, the growth process was carried out in a horizontal quartz tube 

(diameter: 3 cm, length: 70 cm) housed in a muffle furnace. The silica substrates were 

placed in the middle of the quartz tube. The quartz tube was constantly fed with argon 

(5 L/h) and gradually heated to 900 °C. After reaching 900 °C, a solution of ferrocene 

in benzene (2 wt. %) was added to the argon flow through a nozzle using a syringe 

pump and a flow rate of 10 mL/h. The solution was added for six (1 mL solution) or 

twelve minutes (2 mL solution). After adding the solution, the quartz tube was slowly 

cooled down to room temperature under constant argon feed. A detailed description of 

the synthesis is given in the literature [Kap08].  
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Figure  2.15. Schematic of the CVD process.  
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Figure  2.16. a) Experimental set-up used to make well-aligned MWCNT arrays, b) nozzle 

used to spray the ferrocene/bencene solution into the tube, c) detail of the nozzle.  
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2.2. Device Fabrication and Measurement  

Bulk-heterojunction Solar Cell Devices  

The well-soluble C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) (Figure  1.10) 

were applied as electron acceptor in BHJ polymer solar cells together with the 

semiconducting polymer P3HT (Figure  1.14) as electron donor.  

The BHJ solar cell devices were prepared using inidium tin oxide (ITO) glass 

substrates which were cleaned in an ultrasonic bath successively using methanol, 

acetone and isopropanol. To supplement these front (bottom) electrodes, hole 

transport layers of poly(3,4-ethylenedioxythiophene) doped with poly(styrene 

sulfonic acid) (PEDOT-PSS) were spun from aqueous dispersion solutions, before 

drying the substrates at 150 °C for 5 min. Next, photoactive layers consisting of 

P3HT:1 or P3HT:2 (1:0.8, w/w) were spin-coated from filtered chlorobenzene 

solutions on top of the PEDOT:PSS layers. The thicknesses of the photoactive layers 

typically were in the range of 100-150 nm. To complete the solar cell devices, 

aluminum (back electrode) cathodes were thermally deposited (80 nm) through a 

shadow mask, which defined a device area of 25 mm². The substrates were annealed 

for three minutes in a glove box at 150 °C. Except for the annealing, the cells were 

prepared under ambient conditions. 

Current density versus voltage characteristics of the solar cells were recorded under 

AM1.5 conditions by illuminating the cells from the ITO side with 100 mW/cm² 

white light. All measurements were performed under ambient conditions.  
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MWCNT Array Electrodes  

MWCNT array electrodes were made by attaching as-grown MWCNT arrays to 

platinum wires using conductive silver paint and insulating the splice with nail 

enamel. Figure  2.17 shows a photo of a MWCNT array electrode. To remove metal 

catalyst residue and carbonaceous by-products, the MWCNT array electrodes were 

electrochemically purified in aqueous 0.1 M HCl solutions by repeated potential 

cycling between -0.7 and 1.5 V vs. 3 M KCl-Ag/AgCl.  

To analyze the capacitive characteristics of the MWCNT electrodes, CV and EIS 

measurements were carried out in aqueous 0.1 M KCl solutions. To study the electron 

transfer (faradaic) characteristics of the MWCNT electrodes, CV and EIS 

measurements were performed on aqueous 0.1 M KCl solutions containing 

5 mM K4Fe(CN)6 as redox probe.  

Non-enzymatic glucose detection using MWCNT array electrodes was studied by 

cyclic voltammetry and amperometry in aqueous 0.1 M NaOH solutions containing  

2-5 mM glucose.  

1 cm

Pt-wirenail enamelMWCNT array

 

Figure  2.17. Photo of a MWCNT array electrode.  
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3. Results and Discussion  

In this chapter, research results achieved in this work are discussed in detail. Results 

concerning dimeric fullerene oxides are regarded in chapter 3.1. Results regarding 

well-aligned MWCNT arrays are considered in chapter 3.2.  

3.1. Dimeric Fullerene Oxides  

In this chapter, preparations, characteristics, and applications of dimeric fullerene 

oxides developed in this work are extensively discussed.  

3.1.1. Preparation of Dimeric Fullerene Oxides  

Following, the preparations of C120O, C140O, C130O, soluble mono-, bis-, and tris-

adducts of C120O, as well as the synthesis of regio-controlled functionalized dimeric 

fullerene oxides are considered in detail.  

Preparation of C120O  

The solid state-thermolysis of C60/C60-oxide mixed powder described in the 

experimental section of this report yielded a product mixture containing C120O as 

main product, un-reacted C60, as well as traces of dimeric and trimeric C60 poly-

oxides of the form C120On (n = 2-5) and C180On (n = 2, 3) (Figure  2.3 and Figure  2.4).  
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In general, the formation of dimeric and trimeric fullerene oxides can be related to 

thermal [3 + 2] cycloaddition reactions. Here, epoxyfullerenes react via epoxide ring-

opening with an adjacent fullerene to form a rigid furan-type bridge linkage between 

the reactants [Tay98]. Figure  3.1 illustrates the reaction mechanism using the 

formation of C120O.  

1h, 200h

 

Figure  3.1. Conjectured [3 + 2] cycloaddition mechanism for the formation of C120O from 

C60 and C60O [Tay98].  

The occurrence of dimeric and trimeric C60 poly-oxides was explained by the linking 

of two or three C60On (n = 0 - 3) monomer units, which were present in the reacting 

system. Figure  1.5 illustrates chemical structures of monomeric, dimeric, and trimeric 

C60 poly-oxides.  

C120O was dark brown to black as a solid. A solution of C120O in ODCB or toluene 

was brown-orange. By preparing saturated solutions, subsequently evaporating the 

solvent, and thereafter weighting the residue, the solubility of C120O was determined 

to be about 0.8 mg/mL in ODCB and 0.2 mg/mL in toluene.  
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Preparation of C140O  

The solid-state thermolysis of C70/C70-oxide mixed powder described in the 

experimental section of this report yielded a product mixture containing 35 % C140O 

as main product. This yield was determined by HPLC analysis using a Cosmosil 

Buckyprep column eluted with 1 mL/min toluene/ODCB (7/3, v/v) (Figure  2.5). 

According to the literature [Kud02], converting chemically pure C70/C70O mixed 

powder by hydrothermal treatment or by solid state-thermolysis yielded a product 

mixture containing a total of 2-3 % dimeric C70 oxides. The yield of 2-3 % dimeric 

C70 oxides declared in the literature was based on a HPLC analysis using a Cosmosil 

Buckyprep column eluted with 1 mL/min toluene. To verify the origin of the 

significant difference in the yields of the syntheses, the product mixture of this work 

was additionally analyzed by HPLC using 1 mL/min toluene elution (Figure  3.2). 

This HPLC analysis resulted in a total of only 10 % dimeric C70 oxides. Therefore, the 

significant difference in the yields of dimeric C70 oxides declared in the literature and 

achieved in this work was ascribed to the different eluents used for the HPLC 

analyses. Different eluents lead to different results because larger fullerenes tend to be 

less soluble and as the solubility of fullerenes is far better in an ODCB/toluene 

mixture than in pure toluene. 

The HPLC analysis of the product mixture using toluene elution showed four C140O 

peaks (Figure  3.2) and accordingly confirmed the formation of four C140O isomers. In 

this work, C140O was characterized as isomeric mixture. 
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Figure  3.2. HPLC chart of the reaction product of the C70/C70-oxide thermolysis (analytical 

Cosmosil Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with toluene),  

detection at 330 nm).  

The product mixture obtained in this work contained C140O as the main product, as 

well as traces of dimeric and trimeric C70 poly-oxides of the form C140On (n = 2-5) 

and C210On (n = 2, 3) (Figure  2.5 and Figure  2.6). The occurrence of theses 

compounds was explained by the linking of two or three C70On (n = 0-3) monomer 

units, which were present in the reacting system. Trimeric C70 fullerenes were 

unknown up to now.  

C140O was dark brown to black as a solid. A solution of C140O in ODCB or toluene 

was brown-orange. The solubility of C140O in ODCB amounted at least 0.25 mg/mL. 

In toluene, the solubility clearly was lower than in ODCB.  
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Preparation of C130O  

The C130O synthesis described in the experimental section of this report yielded a 

product mixture containing the dimeric fullerene oxides C130O (20 %), C120O (20 %) 

and C140O (8 %), un-reacted C60 (30 %) and C70 (22 %), as well as traces of dimeric 

and trimeric fullerene poly-oxides of the form C130On (n = 2-5), C120On (n = 2-5), 

C140On (n = 2-4), C180On (n = 2, 3) and C190On (n = 2), as determined by HPLC 

(Figure  2.7) and MS analyses (Figure  2.8). The occurrence of dimeric and trimeric 

poly-oxides was explained by the linking of two or three monomeric fullerenes of the 

form C60On and C70On (n = 0-3), which were present in the reacting system. Trimeric 

fullerenes such as C190O2, in which C60 and C70 cages are linked, were unknown up to 

now.  

The formation of C120O and C140O as by-products of the C130O synthesis was 

inevitable. However, the C130O yield of 20 % was satisfactory. Due to the similar 

solubility of C120O, C130O, and C140O, an isolation of C130O by precipitation, which 

was used to isolate C120O and C140O, was not possible. C130O had to be separated 

from C120O and C140O by preparative HPLC. 

To verify the number of formed C130O isomers, C130O was analyzed by analytical 

HPLC using 1 mL/min toluene elution (Figure  3.3). This HPLC analysis showed 

three C130O peaks and accordingly verified three C130O isomers. The verification of 

three C130O isomers was in agreement with the literature [Eis98A]. In this work, 

C130O was characterized as isomeric mixture.  

C130O was dark brown to black as a solid. A solution of C130O in ODCB or toluene 

was brown-orange.  
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Figure  3.3. HPLC chart of C130O (analytical Cosmosil Buckyprep column (4.6 x 250 mm²) 

eluted at 1 mL/min with toluene, detection at 330 nm). 

Diazoalkane Addition and Bingel Cyclopropanation Reaction on C120O  

The diazoalkane addition reaction and the Bingel reaction on C120O yielded product 

mixtures containing mono-, bis-, and tris-adducts of C120O, un-reacted C120O, as well 

as traces of dimeric and trimeric fullerene poly-oxides of the form C120OnRm and 

C180OnRm (R represents R´ or R´´) (Figure  2.9, Figure  2.10, Figure  2.11, and Figure 

 2.12). Figure  1.11 illustrates the obtained mono-, bis-, and tris-adducts. The 

occurrence of dimeric and trimeric C60 poly-oxides and adducts of these poly-oxides 

in the product mixtures was due to the impurity of the C120O starting material by 

C120On and C180On. The detection of functionalized trimeric fullerene oxides 

(C180OnRm) is remarkable because these derivatives are the first functionalized 

trimeric fullerenes and indicate the possibility to synthesize higher, soluble fullerene 

oligomers.  

The separation of the product mixtures by column chromatography yielded mono-, 

bis-, and tris-adduct fractions. Figure  3.4 and Figure  3.5 show mass spectra of the 

isolated mono-, bis-, and tris-adducts. Figure  3.4 exemplarily shows the HPLC 
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analyses of the isolated fractions of the diazoalkane addition reaction. The mass 

spectra of the isolated fractions indicated a successful separation. Concluding, the 

separation method enables isolating preparative amounts of highly pure, 

functionalized fullerene dimers using conventional laboratory methods.  

0 10 20
Retention time [min]

a)

0 10 20
Retention time [min]

b)

0 10 20
Retention time [min]

c)

1000 2000 3000
m/z

1000 2000 3000
m/z

1000 2000 3000
m/z

 

Figure  3.4. HPLC charts (top, analytical Cosmosil Buckyprep column (4.6 x 250 mm²) eluted 

at 1 mL/min with toluene, detection at 330 nm) and mass-spectra (bottom) of a) the mono-, 

b) the bis-, and c) the tris-adduct fraction of the diazoalkane addition reaction on C120O.  

To verify the number of formed isomers, the isolated C120O adducts were analyzed by 

analytical HPLC using 0.1 mL/min toluene/cyclohexane (1/1, v/v) elution. Figure  3.5 

exemplarily shows the HPLC analyses of the Bingel adducts. The analyses revealed 

five isomers for the mono-adduct (retention times [min]: 354, 368, 384, 416, 448) and 

seven isomers  for the bis-adduct (retention times [min]: 93, 100, 107, 114, 121, 154, 

167) of the diazoalkane addition reaction. For the Bingel-adducts, four mono-adduct 

isomers (retention times [min]: 242, 246, 255, 266) and ten bis-adduct isomers 
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(retention times [min]: 86, 90, 98, 107, 111, 122, 130, 235, 142, 152) were confirmed. 

The resolution of the method was not high enough to indicate the number of formed 

tris-adducts (Figure  3.5).  
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Figure  3.5. HPLC charts (top, analytical Cosmosil Buckyprep column (4.6 x 250 mm²) eluted 

at 0.1 mL/min with toluene/cyclohexane (1/1, v/v), detection at 330 nm) and mass-spectra 

(bottom) of a) the mono-, b) the bis-, and c) the tris-adduct fraction  

of the Bingel reaction on C120O.  

The mono-adducts 1 (C120OR´) and 2 (C120OR´´) were characterized and applied as 

isomeric mixtures. The mono-adducts 1 and 2 were brown as solids and readily 

soluble in toluene, chlorobenzene, or ODCB. A solution of 1 in these solvents was 

orange to brown, a solution of 2 was wine red. After evaporation of the solvent of 

such a solution, 1 and 2 remained as homogeneous films.  
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Regio-controlled Functionalized Dimeric Fullerene Oxides  

Figure  3.6 shows mass spectra of regio-controlled, mono- and bis-functionalized 

fullerene dimers synthesized by solid state-thermolysis of mixtures containing a 

functionalized epoxy-fullerenes and a reactant fullerene (Figure  1.12, Figure  2.1, 

Figure  2.13, and Table  2.1).  
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Figure  3.6. Mass spectra of regio-controlled functionalized fullerene dimers.  

Characters a) to k) refer to Table  2.1.  
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The results showed that the synthesis route allows controlling the functionalization of 

the cages of the dimeric fullerene oxides C120O, C130O, and C140O. Yields of over 

10 % were achieved without optimizing the syntheses. Figure  3.7 exemplarily shows 

the HPLC analyses of the product mixtures of the reactions a), b), and e) specified in 

Table  2.1.  
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Figure  3.7. HPLC charts of the product mixtures of the reactions a), b), and e)  

specified in Table  2.1.  

Remarkably, the synthesis route worked as well using the functionalized epoxy-

fullerenes R´´C60O and R´´C70O illustrated in Figure  3.8.  
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Figure  3.8. Chemical structures and mass spectra of the functionalized monomeric epoxy-

fullerenes a) R´´C60O (1002 g/mol) and b) R´´C70O (1126 g/mol).  
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3.1.2. Physicochemical Characteristics of Dimeric Fullerene Oxides 

In the following, oxidative and thermal stability, electronic absorption properties, and 

electron acceptor strength of the dimeric fullerene oxides C120O, C130O, and C140O, 

and the C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) are discussed in detail.  

Oxidative and Thermal Stability  

The oxidative and thermal properties of the dimeric fullerene oxides C120O, C140O, 

C130O, 1 (C120OR´), and 2 (C120OR´´) were investigated by thermogravimetric 

analyses (TGA) using synthetic air and nitrogen atmosphere. Comparison 

measurements were made with C60, C70, an equimolar C60/C70 mixture, C60R´, and 

C60R´´. The comparisons allowed the assessment of the relative stabilities of the 

compounds.  

Figure  3.9 shows TG analyses recorded in synthetic air. The TGA traces of the dimers 

showed similar features. The traces showed a slight weight gain in the temperature 

range from 200 °C to 330 °C. This weight gain indicated the partial oxidation of the 

dimers by oxygen [Wie93]. With further increase of temperature, the weights initially 

decreased almost linearly up to about 400 °C and than still linearly but more rapidly. 

This two-stage weight loss indicated the oxidation of the compounds to CO and CO2 

[Wie93]. The comparison measurements showed qualitatively similar courses as the 

corresponding TGAs of the dimers, but the oxidation steps occured at higher 

temperatures. The partial oxidation occured in the temperature range from 300 °C to 

400 °C. The gasification to CO and CO2 started in the temperature range from 370 °C 

to 400 °C.  
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Figure  3.9. TGAs recorded in synthetic air: a) C120O and C60, b) C140O and C70, c) C130O and 

an equimolar C60/C70-mixture, d) 1 (C120OR´) and C60R´, and d) 2 (C120OR´´) and C60R´´ 

(dimeric fullerene oxides: solid lines, monomeric fullerenes: dashed lines).  

Figure  3.10 shows the TG analyses recorded under nitrogen atmosphere. In the TGA 

traces of C60, C70, and C60R´, the sample weights remained constant up to about 

600 °C and then decreased nearly exponentially. The observed weight loss was 

attributed to sublimation [Muk01]. In the TGA curve of equimolar mixed C60/C70, the 

weight remained constant up to 580 °C and then decreased in two stages with the 

stage change occurring at 800 °C. The occurrence of two stages was explained by the 

different volatility of C60 and C70 [Gal92, Muk01]. In the TGA traces of the dimers 

C120O, C140O, C130O, and 1, the sample weights remained constant up to about 

520 °C. With further increase of temperature, the weights steadily decreased with a 

distinct stage change at about 800 °C. Evidently, the compounds did not simply 

undergo a sublimation process, but also some other processes – presumably 
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dissociation and formation of larger fullerene structures by Diels-Alder-like reactions 

[Muk01] – occurred. In the TGA trace of C60R´´, the sample weight remained 

constant up to 300 °C. With further increase of temperature, the weight decreased 

with stage changes occurring at 400 °C and 800 °C. The TGA trace of 2 showed a 

qualitatively similar course as the TGA of C60R´´. In the TGA trace of 2, the sample 

weight remained constant up to 250 °C and with further increase of temperature, the 

weight decreased with stage changes occurring at 400 °C and 550 °C. The course of 

the TGAs of C60R´´ and 2 were explained by thermal decomposition of the side chain 

(R´´), sublimation, and the formation of larger fullerene structures based on the 

formation of methanofullereneradicals as intermediate products [Dra00A, Dra00B]. 

Figure  3.11 illustrates the formation of larger fullerene structures based on the 

formation of methanofullereneradicals.  

All in all, the thermogravimetric analyses showed that both the oxidative and the 

thermal stability of the dimers were lower than that of the monomeric comparisson 

substances.  
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Figure  3.10. TGAs recorded under nitrogen atmosphere: a) C120O and C60, b) C140O and C70, 

c) C130O and an equimolar C60/C70-mixture, d) 1 (C120OR´) and C60R´, and d) 2 (C120OR´´) 

and C60R´´ (dimeric fullerene oxides: solid lines, monomeric fullerenes: dashed lines).  

 

 

Figure  3.11. Formation of larger fullerene structures based on the formation of 

methanofullereneradicals (R: -H, -COOC2H5, -Br) [Dra00B].  
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To determine the stability of C120O and C140O in solution, carefully filtered ODCB 

solutions of C120O material (containing C60, C120O, and C180On) and C140O material 

(containing C70 and C140O) were stored at ambient temperature and atmosphere in 

darkness as well as under the influence of ambient light. Figure  3.12 and Figure  3.13 

show the time-dependent HPLC-determined changes of the solution compositions.  
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Figure  3.12. HPLC-determined changes of a C60/C120O/C180On mixture dissolved in ODCB: 

a) in the dark and b) under ambient light (□ C60, ♦ C120O, Δ C180On, analytical Cosmosil 

Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with toluene/ODCB (7/3, v/v), 

detection at 330 nm).  

The studied dimeric and trimeric fullerene oxides (C120O, C180On, and C140O) stored 

in the dark were stable for months (Figure  3.12 a) and Figure  3.13). For the solutions 

stored under the influence of light, the results were less definitive. Figure  3.12 b) and 

Figure  3.13 show that the concentrations of monomeric fullerenes (C60 and C70) 

increased and that those of dimeric and trimeric fullerene oxides (C120O, C180On, and 

C140O) decreased. Additionally, the solutions coated the flask surfaces with a barely 

soluble brown-yellow film. The findings were explained by light-induced attachment 

of fullerene oxide colloids/aggregates to the glass surface of the flasks. For toluene 
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solutions of the fullerene oxide C70O such attachments were observed [Hey99]. A 

further explanation was light-induced oxidation of the fullerene oxides coming along 

with precipitation of the resulting poly-oxides. Above results showed that dimeric C60 

and C70 fullerene oxides easier oxidize than C60 and C70. Fullerene poly-oxides are 

more polar and consequently less soluble in ODCB than fullerene mono-oxides.  
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Figure  3.13. HPLC-determined changes of C140O dissolved in ODCB: in the dark (filled 

symbols  and under ambient light (not filled symbols), triangles: C140O; diamonds: C70 

(analytical Cosmosil Buckyprep column (4.6 x 250 mm²) eluted at 1 mL/min with 

toluene/ODCB (7/3, v/v), detection at 330 nm). 

Electronic Absorption Properties 

Electronic absorption properties of C120O, C140O, C130O, 1 (C120OR´), and 

2 (C120OR´´) were studied by UV-vis-spectroscopy on ODCB solutions of the 

compounds. Figure  3.14 shows UV-vis spectra of the dimeric fullerene oxides C120O, 

C140O, C130O, 1, and 2. Comparison measurements were made with C60, C70, an 
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equimolar C60/C70 mixture, C60R´, and C60R´´. Molar absorption values were scaled 

for comparison of the intensities.  

In contrast to the comparison measurements, the spectra of the dimers were 

significantly broadened as the dimers were lower in symmetry than monomeric 

fullerenes. This was particularly valid for C140O and C130O.  

In the spectra of the C60 dimers C120O, 1, and 2, the characteristic C60 UV band at 

336 nm was blue shifted to 326 nm. The molar absorption of this band was 

approximately a factor two larger in the dimers than in the mononomeric C60 

comparison compounds, suggesting nearly independent, superimposed absorptions by 

the two halves of the dimers. Throughout the visible region, the absorptions of the 

dimers C120O, 1, and 2 clearly exceeded the doubled absorptions of the comparison 

compounds. This enhanced absorption was attributed to the interaction of transition 

dipole moments of the two fullerene-cages of the C120O dimers [Bac01, Fuj02B]. The 

C120O dimers showed weak peaks at about 700 nm (Figure  3.14 f)). Such weak peaks 

are typical of [6,6]-derivatized C60 species [Bac01].  

In the spectra of C140O and C130O, the prominent C70 absorption at 335 nm was 

greatly diminished. This is typical of [6,6]-derivatized C70 species [Smi96]. 

Throughout the visible region, the absorptions of C140O were approximately twice 

those of C70 and the absorptions of C130O were approximately those of an equimolar 

C60/C70 mixture. This suggested independent, superimposed absorptions by the two 

halves of the dimers. The onset in the spectrum of C140O was at a longer wavelength 

(approx. 950 nm) compared to the onset in the spectrum of C70 (approx. 700 nm). This 

indicated that C140O has a smaller HOMO-LUMO gap than C70 [Leb00A]. The other 

dimers did not show a shift of the onset.  
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Figure  3.14. UV-vis-spectra of a) C120O and C60, b) C140O and C70, c) C130O and an 

equimolar C60/C70-mixture, d) 1 (C120OR´) and C60R´, and e) 2 (C120OR´´) and C60R´´  

(dimeric fullerene oxides: solid lines; monomeric fullerenes: dashed lines), as well as 

f) details of the UV-vis-spectra of C120O, 1, and 2 (ODCB solutions).  

Electron Acceptor Strength  

The electron acceptor strength of the dimeric fullerene oxides C120O, C140O, C130O, 

1 (C120OR´), and 2 (C120OR´´) was determined by cyclic voltammetry. Figure  3.15 

exemplifies CVs of the studied dimers. For all dimers, at least one chemically 

reversible and electrochemically quasi-reversible reduction and an associated first 

half-wave reduction potential (E1
red) was proven.  

The electron acceptor strength of a compound increases with its first half-wave 

reduction potential (E1
red). Table  3.1 shows the first half-wave reduction potentials 

(E1
red) of the dimers C120O, C140O, C130O, 1, and 2 as determined by CV. For 

comparison, the first half-wave reduction potentials of C60, C70, C60R´, and C60R´´, as 
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well as literature data are shown in Table  3.1 too. The E1
red values of C120O, C60, C70, 

C60R´, and C60R´´ measured in this work fairly agreed with the literature data.  
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Figure  3.15. CVs of a) C120O, b) C140O, c) C130O, d) 1 (C120OR´), and e) 2 (C120OR´´): ♦ first 

and ◊ subsequent half-wave reduction potentials. Experimental conditions: glassy carbon as 

working electrode, Pt-wire as pseudo reference electrode, Pt-foil as counter electrode; 

(TBA)PF6 (tetrabutylammonium hexaflourophosphate, 0.1 M) as supporting electrolyte, 

deaerated toluene/acetonitrile (4/1, v/v) as solvent, scan rate 50 mV/s,  

room temperature, ~0.2 mM analyte.  
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The E1
red potentials of the studied compounds showed only minor differences. 

However, the data indicated that the C60 derivatives (C60R´ and C60R´´) and the C120O 

derivatives (1 and 2) are less prone to reduction (i.e. show a negative shift in the E1
red 

value) compared to C60 and C120O. Such a trend is already well-known for monomeric 

fullerenes [Bal96] and here a similar trend was confirmed for C120O fullerenes.  

Table  3.1. First half-wave reduction potentials (E1
red) as determined in this work and 

corresponding literature data (experimental conditions as indicated in Figure  3.15, all data 

in V vs. Fc/Fc+), a) isomeric mixture, b) double peak, indicating the sequential addition of 

electrons to the two fullerene cages, proven after deconvolution of the CV, 
c) R´´ = C(COOC2H5)2.  

Compound C120O C140Oa) C130Oa) 1a) 2a) 

E1
red -0.95 -1.12 -1.14 -1.12 -1.16 

E1
red (literature) -0.84; -0.88 b) [Bal96] 

-1.1 [Dun03] 

- - - - 

Compound C60 C70  C60R´ C60R´´ 

E1
red -1.12 -1.13  -1.14 -1.15 

E1
red (literature) -0.77 – -1.17 [Kad00] -0.85 – -1.02 [Kad00]  -1.14 [Hum95] 

-1.08 [Koo06] 

-1.16 c) [Kad00] 

 
 

3.1.3. Application of Dimeric Fullerene Oxides  

The well-soluble C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) were applied as 

electron acceptor in bulk heterojunktion (BHJ) polymer solar cells together with the 

semiconducting polymer P3HT (Figure  1.14) electron donor.  

Figure  3.16 exemplifies current density-voltage curve of such devices. The devices 

showed normal curve progression. As determined by light optical microscopy, the 
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photoactive composite layers of the devices were homogenous and showed no 

crystallization, not at the boundary of the layer either (Figure  3.18).  
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Figure  3.16. a) Current density-voltage characteristic of a P3HT:1 (1:0.8, w/w) device under 

illumination (◊) and in the dark (♦). Device parameters: ISC [mA/cm2] = 2.54 (short circuit 

current), VOC [mV] = 544 (open circuit voltage), FF [-] = 0.41 (filling factor), 

ηAM1.5 [%] = 0.57 (power conversion efficiency). b) Current density-voltage characteristic of 

a P3HT:2 (1:0.8, w/w) device under illumination (□) and in the dark (■). Device parameters: 

ISC [mA/cm2] = 5.31, VOC [mV] = 524, FF [-] = 0.3, ηAM1.5 [%] = 0.82.  

The maximum photovoltaic power conversion efficiency of the devices was about 

0.8 %. Considering that the performance of a BHJ solar cell has to be individually 

optimized for each and every materials combination [Hop04, Hop06], the results of 

this very initial introduction of well soluble dimeric fullerenes to organic electronics 

was successful.  

Using light-induced electron spin resonance (LESR), photo-induced intermolecular 

electron transfer was proven for photoactive blends made of 1 as electron acceptor 

and P3EH-PPV (Figure  1.14) as electron donor. Figure  3.18 shows an obtained  

X-band LESR spectrum. The LESR signals indicated positive polarons (P+•) on 

P3EH-PPV chains (giso = 2.00293) and anion radicals (1-•) of 1 (gz = 1.9983) (the 
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signal with gx ≈ 2.0002 corresponded to anion radicals of [60]PCBM present in the 

sample as impurity). The comparison of the integral intensity of the P+• and the 1-• 

signal showed an effective bimolecular charge separation process. 

100 µm100 µm  

Figure  3.17. Light optical microscope image of a P3HT:2 blend (1:0.8, w/w).  

All in all, the well-soluble dimeric fullerene oxides 1 and 2 enable studying the 

impact of longish fullerene oligomers on the performance of fullerene-based organic 

electronics. In particular 1 enables a direct comparison to the most frequently used 

[60]PCBM.  

gx [60]PCBM-

giso P+

gZ 1-

1 mT1 mT
 

Figure  3.18. Light induced X-band ESR spectra of a P3EH-PPV:1 blend (1:1, w/w, film 

thickness 0.4 μm, recorded under Xe-lamp illumination (0.1 W/cm2 ) at 77 K.  
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3.2. Well-aligned MWCNT Arrays  

In this chapter, fabrication, characteristics, and application of well-aligned MWCNT 

array electrodes developed in this work are extensively discussed.  

3.2.1. Preparation of Well-aligned MWCNT Arrays  

Well-aligned MWCNT arrays were directly grown on silica substrates by thermal 

chemical vapor deposition (CVD) at 900 °C using ferrocene as catalyst and benzene 

as carbon source. The morphology of the produced MWCNT arrays was investigated 

by scanning- (SEM) and trans-electron (TEM) microscopic analyses. Figure  1.15 

shows a typical morphology of the prepared well-aligned MWCNT arrays.  

The MWCNT arrays contained by-products in the form of amorphous carbon and 

metal catalyst residue encased in the nanotube morphology as iron nanoparticles 

(Figure  3.19). The deposit thickness of the MWCNT arrays as determined by SEM 

ranged from 10-50 µm. The MWCNT were curly indicating that the tubes contained 

defects (Figure  3.20). The MWCNTs consisted of several tubes (Figure  1.15 and 

Figure  3.19 c)). The diameters of the MWCNTs as determined by TEM ranged from 

10 to 200 nm. The absolute mass of the MWCNT arrays as determined by weighting 

the substrates before and after the deposition of the MWCNTs ranged from  

0.05-0.3 mg. The specific deposit mass of the MWCNT arrays was estimated by 

putting the deposit mass of the arrays in relation to the geometric area of the silica 

substrates and ranged from about 0.5 to 3.0 mg/cm². 
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Figure  3.19. TEM images of MWCNTs indicating impurities.  
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The deposit thickness linearly depended on the deposited mass (Figure  3.21). 

Therefore, difference weighting was an easy way to estimate the deposit thickness of 

the MWCNT arrays. The deposit thickness increased with the reaction time (i.e. the 

addition time of the ferrocene solution) (Figure  3.21). A second, less quantifiable but 

also important synthesis parameter influencing the deposit thickness was the exact 

position of the substrates in the quartz tube.  

20 µm

a)

5 µm

b)

 

Figure  3.20. SEM images of a well-aligned MWCNT array exemplifying the curly, defect rich 

structure of the MWCNT arrays.  
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To remove metal catalyst residue and carbonaceous by-products, the MWCNT array 

electrodes were purified in aqueous 0.1 M HCl solution by repeated potential cycling 

(15-20 cycles) between -0.7 and 1.5 V vs. 3 M KCl-Ag/AgCl. Figure  3.22 shows a 

typical set of CVs recorded during such a procedure. The course of the CVs was fairly 

complex. Various oxidation and reduction peaks occured in the CVs. Potential and 

current of all peaks depended on the cycle number. Continuous potential cycling 

finally resulted in a stable and reproducible current response with comparatively weak 

oxidation and reduction peaks (Figure  3.22 b)).  
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Figure  3.21. Deposit thickness in dependence on the specific deposit mass of the MWCNT 

arrays: ♦ 6 min and ◊ 12 min reaction time.  

The complex course of the CVs was a result of an interaction between the oxidation 

of amorphous carbon and that of iron nanoparticles. Highly disordered carbon 

materials like amorphous carbon show a lower oxidative stability than carbon 

materials with fewer defects like CNTs. Thus, during repeated potential cycling 

carbonaceous by-products were oxidized resulting in an incremental removal or 

damage of the amorphous carbon. As a consequence, iron nanoparticles were exposed 

to the HCl solution, accordingly participated in electrochemical oxidation and 
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reduction reactions, and were finally dissolved in the solution. Figure  3.23 shows that 

the iron concentration in the HCl solutions increased with the cycle number. The 

removal of carbonaceous by-products is discussed in the literature [Fan04].  
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Figure  3.22. a) Set of CVs recorded during repeated potential cycling a MWCNT array 

electrode in 0.1 M HCl (The arrows label the course of the peak currents). b) Last cycle of the 

treatment (counter electrode: Pt-foil, sweep rate 100 mV/s).  

All in all, electrochemically induced purification of as-grown MWCNT arrays 

represented a mild and on-line controllable method of purification in one exclusive 
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step and is therefore an attractive option to commonly used wet and gas phase 

purification, in particular for electrochemical applications of MWCNT arrays.  
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Figure  3.23. Dependence of the Fe-concentration in a 0.1 M HCl solution on the cycle 

number of the CV-induced purification of a MWCNT array (determined by atomic absorption 

spectroscopy (AAS)).  

3.2.2. Electrochemical Characteristics of MWCNT Array Electrodes  

In the following paragraphs, capacitive and electron transfer (faradaic) characteristics 

of the well-aligned MWCNT electrodes are considered in detail.  

Capacitive Characteristics  

To analyze capacitive characteristics of the MWCNT electrodes, CV and EIS 

measurements were carried out in aqueous 0.1 M KCl solutions. 
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Figure  3.24. a) CV of a MWCNT electrode (0.96 mg/cm²) in 0.1 M KCl (counter electrode: 

Pt-foil, sweep rate 60 mV/s), b) sweep rate-dependent anodic and cathodic currents of a 

MWCNT electrode (0.096 mg/cm²) in 0.1 M KCl (0.5 V vs. Ag/AgCl (◊ and ♦), peaks A (▲) 

and B (Δ) indicated in Figure  3.24 a)).  

Figure  3.24 shows a typical CV of a MWCNT electrode recorded in aqueous 0.1 M 

KCl solution. The anodic and cathodic current responses of the MWCNT electrodes 

were stable, reproducible, well-separated and showed weak and broad oxidation and 

reduction waves (marked by arrows in Figure  3.24). The anodic and cathodic current 

linearly depended on the voltage sweep rate. This is exemplified in Figure  3.24 b) for 

a fixed potential of 0.5 V vs. Ag/AgCl and for the peaks A and B indicated in Figure 

 3.24 a). This linear dependence ruled out diffusion-controlled processes and indicated 

surface charging. Concluding, the weak redox waves originated from surface faradic 

reactions of redox active surface functional groups introduced during the preparation 

and from catalyst residue encased in the MWCNT morphology as iron nanoparticles 

(Figure  3.19). The currents were consequently attributed to a capacitance due to the 

formation of an ionic double-layer at the electrode/electrolytic solution interface – 

being proportional to the electrochemically active surface area – and 

pseudocapacitances due to surface faradic reactions of redox active surface 

functionalities [Li02, Che02, Bar00, Kim06].  
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At a potential of 0.5 V vs. Ag/AgCl, the capacitance C of the electrodes were 

estimated according to C = 0.5 (Ia + |Ic|)/ν), where Ia and Ic were the anodic and 

cathodic voltammetric currents and ν was the sweep rate [Kim06]. The capacitance of 

the MWCNT electrodes linearly increased with the specific deposit mass of the 

MWCNT arrays (Figure  3.25)). Concluding, the full amount of the deposited mass 

contributed to the capacitance of the MWCNT electrodes. The average gravimetric 

capacitance of the electrodes was 1.6 F/g.  
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Figure  3.25. Specific deposit mass-dependent capacitance of MWCNT electrodes in 0.1 M 

KCl: a) over-all capacitance as determined by CV (□), the low-frequency impedance data 

(▲), and the equivalent circuit A1 shown in Figure  3.29 (◊), b) capacitance as determined by 

CPE1 (◊) and CPE2 (♦) of equivalent circuit A1 shown in Figure  3.29 (0.1 M KCl).  

Using the area-related (specific) capacitance of a glassy carbon electrode 

(200 µF/cm²) as reference, the electrochemically active surface area of the electrodes 

was estimated [Sto03]. The specific active surface area of the MWCNT arrays – as 

determined by putting the active surface area of the arrays in relation to the geometric 

area of the silica substrates – was a multiple of the geometric area and increased 

systematically with the specific deposit mass and consequently with the deposit 

thickness (Figure  3.26).   
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Figure  3.26. Specific active surface area as determined by CV (Δ) and EIS (□) in dependence 

on the specific deposit mass of the MWCNT arrays.  

Figure  3.27 shows a typical Nyquist plot of the frequency depended impedance of a 

MWCNT electrode in aqueous 0.1 M KCl solution. The impedance spectra of the 

MWCNT electrodes showed the characteristic inflected form of porous capacitor 

electrodes [Bis00, Bar05].  

At high frequencies (Figure  3.27 a)), the impedance of the MWCNT electrodes gave 

a straight line with a slope of about 45°, which was characteristic (at such 

frequencies) of porous electrodes. This porous-electrode effect was associated with a 

distributed resistance/capacitance (RC) network originating from the structural 

complexity of the porous MWCNT electrodes. The high-frequency real-axis intercept 

served to calculate the resistance Rs caused by the electrolytic solution (Figure 

 3.27 a)).  

At low frequencies (Figure  3.27 b)), the impedance of the MWCNT electrodes gave 

an almost vertical line, in which almost pure capacitive behavior was manifested. 

Extrapolating the low frequency branch to the real axis gave an intercept, which 

equaled the sum of the solution resistance Rs and the effective internal resistance of 
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the distributed RC network of the porous electrodes Rint (Figure  3.27 a)) [Bar05]. The 

graphically determined internal resistance of the MWCNT electrodes decreased with 

increasing specific deposit mass and consequently with increasing deposit thickness 

of the MWCNT arrays (Figure  3.28). This indicated a deposit thickness-dependent 

morphology, which was attributed to the not finally clarifed growth mechanism of 

MWCNT arrays [Kap08].  
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Figure  3.27. a) High-frequency impedance, b) low-frequency impedance, and c) dispersion of 

capacitance with frequency of a MWCNT electrode (0.096 mg/cm², 0.1 M KCl, 0.5 V vs. 

Ag/AgCl, 10 mV amplitude sinusoidal wave, counter electrode: Pt-foil).  

The transition between the high- and the low-frequency region was characterized by a 

knee (Figure  3.27 a)). The intersection of the high- and the low-frequency branch 

defined the corresponding ‘‘knee frequency”. Above this characteristic frequency, the 

penetration depth of the modulating signal down the pore was shorter than the pore`s 

depth and the porous-electrode effect appeared. Below this frequency, the penetration 

depth of the modulating signal approached the pore`s depth, the electrode started to 

behave like a flat surface and capacitive behavior prevailed [Bar05, Bar03]. 

Therefore, the knee frequency was related to the deposit thickness of the electrodes. 
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Figure  3.28 shows that the knee frequency decreased with increasing specific deposit 

mass and consequently with increasing deposit thickness of the MWCNT arrays.  
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Figure  3.28. a) Specific deposit mass-dependent internal resistance of MWCNT electrodes as 

determined graphically (♦) and by equivalent circuit A1 shown in Figure  3.29 (◊), 0.1 M KCl, 

0.5 V vs. Ag/AgCl, b) specific deposit mass-dependent knee frequency of MWCNT electrodes.  

The frequency dependence of the capacitance was evaluated from the impedance data 

according to C = -1/(ω Im(Z)) = -1/(2π f Im(Z)), where ω was the angular frequency 

and f = ω/(2 π) the frequency of a measuring point and Im(Z) represented the 

imaginary part of the complex impedance at this frequency [Bar05]. Consistent with 

the porous nature of the electrodes, a dispersion of the capacitance with frequency 

was observed (Figure  3.27c)) [Bar03, Bar05]. As the penetration depth of the 

modulation signal decreased with increasing frequency, the capacitance increased 

with decreasing frequency but reached an almost constant value below the knee 

frequency, when the penetration depth of the modulation signal approached the pore`s 

depth and the over-all capacitance of the electrodes was exhausted. The weak 

frequency dependence at low frequencies – which caused the slightly inclined line at 

low frequencies in the Nyquist plot (Figure  3.27 b)) – was a deviation from the ideal 
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capacitance behavior and was attributed to the surface roughness of the MWCNT 

arrays (Figure  3.27) and the dispersion of pseudocapcitance with frequency [Bar05].  

The over-all capacitance of the MWCNT electrodes as determined from the low-

frequency impedance data (Figure  3.27 c)) was consistent with that determined from 

the CV experiments (Figure  3.25). Consequently, the specific surface area determined 

from the impedance data agreed well with that determined by CV (Figure  3.26).  

Based on the above analyses of the CV and EIS measurements, the impedance spectra 

of the MWCNT electrodes were modeled with the equivalent circuit shown in Figure 

 3.29.  
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Figure  3.29. Equivalent circuits used to model the capacitive impedance response of MWCNT 

array electrodes: ladder (A1) and transition line model (B1) (circuit elements as explained in 

the main text).  

Equivalent circuit A1 was a ladder consisting of the following elements [Bar05]: R1 

was a faradaic resistance representing the bulk solution resistance. CPE1 was a 

constant-phase element representing the ionic double-layer and the pseudocapacity at 
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the macroscopic (external) electrode/electrolytic solution interface. R2 was a faradaic 

resistance associated with the internal resistance of the porous electrodes. CPE2 was a 

constant-phase element representing the ionic double-layer and the pseudocapacity at 

the internal surface of the porous electrodes. R3 was a potential-dependent leakage 

resistance. Constant-phase elements representing non-ideal capacitors were used to 

model ionic double-layers and pseudocapacitances to account for dispersive 

capacitance due to roughness of the electrode surface and frequency dispersion of 

pseudocapacitance. The impedance of a CPE was given by ZCPE = 1/(ω0 Q (i ω/ω0)α), 

where Q was a constant combining resistive and capacitive properties, ω0 was a 

normalization factor to enable the use of the parameter Q with the dimension ´Farad´, 

and α was the CPE power with -1< α ≤ 1 [Göh08]. For α = 1 purely capacitive 

behavior was obtained. Model A1 was fitted to the measured impedance data using 

computer-aided complex nonlinear least squares fitting (CNLS) [Göh08].  

Equivalent circuit B1 was a transition line model [Bis00]. Here, r2 was a distributed 

resistance per unit length corresponding to the whole electrode area and describing 

the resistance of the flooded pores. The interphase, at which (capacitive or 

pseudocapacitve) charge may be stored, was described by dispersive capacitance as 

given by a constant phase element (CPE). q2 was a constant which was related to a 

CPE and combined resistive and capacitive properties. The electrode impedance was 

given by: Z = R2(iω/ωL)-β/2 coth[(iω/ωL) β/2]. Here R2 = Lr2 was the total resistance 

distributed in the pores, L was the thickness of the porous layer, ωL was the knee 

frequency, and 0 < β < 1. The knee frequency ωL was defined as ωL = 1/(R2Q2)1/β, 

whereat Q2 = Lq2 was the constant of a CPE with the impedance Z = 1/(Q2)(iω)-β. 

Model B1 did not account for bulk solution resistance. Therefore, for fitting the 
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impedance data to model B1, the graphically determined series resistance was 

subtracted from the measured impedance data. The parameters of model B1 

(R2 and ωL) were also determined graphically.  

Fits of equivalent circuits A1 and B1 to the experimental data provided sufficient 

results (Figure  3.30). This indicated the correct interpretation of the impedance 

measurements as both models essentially described the same physicochemical 

phenomena.  
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Figure  3.30. Fits (solid lines) of equivalent circuit A1 (a) and b)) and equivalent circuit B1 

(c) and d)) to measured impedance data (♦), experimental conditions indicated in Figure 

 3.27.  

Using equivalent circuit A1, the different contributions to the capacitive impedance of 

the MWCNT array electrodes were analyzed in detail.  

The average value of α was 0.96 for CPE1 and 0.94 for CPE2 indicating that both 

CPEs were essentially capacitive. 

Figure  3.31 exemplifies the potential-dependence of the equivalent circuit elements of 

circuit A1 (Figure  3.29 a)). The capacitance as determined by CPE2 showed a 

potential-dependence reflecting the findings of the CV studies (Figure  3.31 a)). From 



3. Results and Discussion 

 

84 

0 to 0.4 V vs. Ag/AgCl the capacitance passed through a maximum corresponding to 

pseudocapacitance due to surface faradic reactions. In the range from 0.4 to 0.7 V 

vs. Ag/AgCl the capacitance was almost constant, which was consistent with the 

constant current observed in the CV in this potential range. Above 0.7 V vs. Ag/AgCl 

the capacitance slightly increased due pseudocapacitance originating from surface 

faradaic reactions. The capacitance as determined by CPE1 showed the same 

potential-dependent characteristics as the capacitance determined by CPE2, but the 

potential-dependence was weaker indicating that the major part of the surface 

functionalities was located at the internal surface of the electrodes (Figure  3.31 b)).  
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Figure  3.31. Potential-dependence of the equivalent circuit elements of circuit A1 (Figure 

 3.29): a) capacitance as determined by CPE2 (♦) and leakage resistance R3 (□), 

b) capacitance as determined by CPE1, internal resistance R2 (◊), and solution resistance 

R1 (□), MWCNT array electrode (0.096 mg/cm²), 0.1 M KCl, 0.5 V vs. Ag/AgCl.  

The leakage resistance R3 covered a range from 10 to 450 kOhm and showed a strong 

potential-dependence. The high values of the leakage resistance signified that the 

MWCNT electrodes basically behaved like a charge transfer blocking interface. The 

strong potential-dependence of the leakage resistance corresponded to the findings of 

the CV studies and indicated that pseudocapacitances were intimately related to and 

dependent on potential-dependent faradaic electron-transfer processes. In the potential 
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range from 0 to 0.4 V vs. Ag/AgCl, where pseudocapacitance due to surface faradic 

reactions was verified, the leakage resistance showed its lowest values. In the 

potential range from 0.4 to 0.6 V vs. Ag/AgCl, where the current basically originated 

from the formation of an ionic double-layer, the leakage resistance was almost 

constant and showed its extreme values indicating that the observed current 

essentially was of purely capacitive nature. In the potential range from 0.6 to 0.8 V 

vs. Ag/AgCl, where pseudocapacitance due to weak surface faradic reactions 

occurred, the leakage resistance slightly decreased. The bulk solution resistance R1 

and the internal resistance R2 were almost potential-independent.  

The capacitance as determined by CPE2 increased with the specific deposit mass of 

the MWCNT arrays (Figure  3.25 b)) confirming above explained results that the full 

amount of the deposited mass contributed to the capacitance of the MWCNT 

electrodes. The capacitance as determined by CPE1 initially increased with the 

specific deposit mass of the MWCNT arrays, but then reached a limiting value 

(Figure  3.25 b)). The limiting value was consistent with a constant external surface of 

the MWCNT electrodes. The initial increase indicated deposit thickness-dependent 

surface qualities which were attributed to the growth mechanism of the MWCNT 

arrays. Consistent with the porous nature of the electrodes, the capacitance attributed 

to the internal electrode surface (CPE2) clearly was the major part of the sum of the 

capacitances as determined by CPE1 and CPE2. This sum fairly agreed with the over-

all capacitance as determined from the low-frequency impedance data and the CV 

experiments (Figure  3.25 a)). The deviations were attributed to statistical uncertainty 

in the fitted parameters and to the normalization of constant phase elements. The 

internal resistance of the electrodes R2 reasonably agreed with the graphically 
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determined internal resistance (Figure  3.28). The deviations were in turn attributed to 

statistical uncertainty in the fitted parameters. The solution resistance R1 and the 

leakage resistance R3 did not show a dependency on the specific deposit mass of the 

MWCNT arrays. At 0.5 V vs. Ag/AgCl, the average leakage resistance was 

615 kOhm.  

Electron Transfer (Faradaic) Characteristics  

To study electron transfer (faradaic) characteristics of the MWCNT array electrodes, 

CV and EIS measurements were performed on aqueous 0.1 M KCl solutions 

containing 5 mM K4Fe(CN)6 as redox probe.  

Figure  3.32 a) shows a typical CV of the redox reaction of the Fe(CN)6
3-/4- redox 

couple at a MWCNT electrode. The CVs were peak-shaped and the peak currents 

linearly increased with the square root of the sweep rate (Figure  3.32 b)). This 

corresponded rather to a macro-electrode with semi-finite linear diffusion of reactants 

to the electrode surface than to a nano-electrode ensemble, for which sigmoidal-

shaped CVs due to spherical diffusion are typically. This was because the MWCNT 

electrodes had a pore size of tens of nm, which was smaller than the diffusion layer 

thickness (~√Dt, normally over microns). As a consequence, the diffusion layers at 

the individual MWCNTs overlapped and formed a diffusion layer that was linear 

(i.e. planar) to the geometric area of the MWCNT electrodes [Li02]. The absolute 

values of the anodic and the cathodic peak currents were approximately equal (Figure 

 3.32 b)). Moreover, the peak separation of the anodic and cathodic peak was large 

(0.2-0.5 V) and increased with increasing sweep rate (Figure  3.32 c)) signifying a 

high electrode resistance. This CV analysis indicated a quasi-reversible process likely 
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as a consequence of both the high charge transfer resistance at the MWCNTs (due to 

basal plane-like structure) and the slow diffusion through the pores [Li02].  
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Figure  3.32. CV studies of a MWCNT electrode (0.096 mg/cm²) in 0.1 M KCl containing 

5 mM K4Fe(CN)6: a) peak-shaped CV (100 mV/s, half-wave potential: 0.45 V vs. Ag/AgCl, 

counter electrode: Pt-foil), b) anodic and cathodic peak currents in dependence on the square 

root of the sweep rate, c) separation of the anodic and cathodic peak in dependence on the 

sweep rate.  

Figure  3.33 a) shows the dependences of the peak currents and the peak separation on 

the specific deposit mass. The peak currents increased with the specific deposit mass 

as the active surface area increased with the specific deposit mass (Figure  3.26). The 

peak separation decreased with increasing specific deposit mass as the internal 

resistance (Figure  3.33 b)) and the charge transfer resistance (see below) of the 

electrodes decreased with the specific deposit mass.  

Figure  3.34 exemplifies the frequency depended impedance of the redox reaction of 

the Fe(CN)6
3-/4- redox couple at the MWCNT electrodes. The impedance of the 

MWCNT electrodes showed the typical characteristics of an interfacial reaction in a 

pore surface [Bis00].  
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Figure  3.33. Specific deposit mass-dependent a) peak current and b) peak separation of 

MWCNT array electrodes, CV studies, 5 mM K4Fe(CN)6 in 0.1 M KCl.  

In the high-frequency region (Figure  3.34 a)), the system with faradaic reaction 

showed the same behavior as the system without (Figure  3.27 a)). The impedance 

gave a straight line with a slope of about 45°, which was associated with the 

distributed resistance/capacitance (RC) network of the porous electrodes. 

In the mid-frequency range (Figure  3.34 b)), the electron transfer resistance caused a 

depressed arc. This depressed arc was the manifestation of the interfacial reaction in 

the pore surface.  

At lower frequencies (Figure  3.34 c)), the impedance gave a straight line with a slope 

of 45°, which is characteristic (at such frequencies) of mass transport limitation of a 

charge transfer process by linear diffusion in the solution interior (that is, between 

electrode surface and solution interior).  
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Figure  3.34. a) High-, b) mid-, and c) low-frequency impedance of 5 mM K4Fe(CN)6 at a 

MWCNT electrode (0.096 mg/cm², 0.1 M KCl, 0.45 V vs. Ag/AgCl (half-wave potential), 

10 mV amplitude sinusoidal wave, counter electrode: Pt-foil).   

Based on the analyses of the CV and EIS measurements and assuming that the 

electrochemical reaction took place only in the pore surface (This assumption was 

justified as the active surface area was a multiple of the geometric surface area 

(Figure  3.26)), the impedance spectra were analyzed with the equivalent circuits A2 

and B2 shown in Figure  3.35.  
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Figure  3.35. Equivalent circuits used to model the faradaic impedance response of MWCNT 

array electrodes: ladder extended by a Warburg element (A2) and transition line model (B2) 

(circuit elements as explained in the main text).  
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Equivalent circuit A2 was an extension of equivalent circuit A1 (Figure  3.29). In 

equivalent circuit A2, the elements R1, CPE1, R2, and CPE2 had the same meaning 

as in equivalent circuit A1. R3 was a faradaic electron transfer resistance associated 

with the interfacial reaction in the pore surface. W was the Warburg diffusional 

element representing the mass transport limitations due to linear diffusion in the 

electrolytic solution. The Warburg impedance was given by ZW = W/(√(i ω)), where 

i = √(-1) and W was the Warburg parameter, which is proportional to the reciprocal of 

the electrode surface [Göh09]. Model A2 was fitted to measured impedance data 

using computer-aided complex nonlinear least squares fitting (CNLS) [Göh08].  
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Figure  3.36. Fit of equivalent circuit A2 (solid lines) to the faradaic impedance response of a 

MWCNT array electrode (♦), a) high-, b) mid-, and c) low-frequency impedance 

(experimental conditions indicated in Figure  3.34).  

In transition line model B2 [Bis00], the effect of an interfacial reaction in the pore 

surface was modeled by adding a parallel charge transfer resistance length r3 to the 

interfacial impedance of model B1 (Figure  3.29). The electrode impedance then 

admited the form: Z = [R2R3/(1 + iω/ω3) β]1/2 coth[(ω3/ωL) β/2 (1 + iω/ω3) β]1/2. Here 

R3 = r3/L was the total wall resistance, and ω3 = 1/(R3Q2)1/β is the characteristic 

frequency of the interfacial process. The quotient ω3/ωL = (R2/R3)1/β determined the 
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shape of the impedance spectra. For ωL > ω3 (or R3 > R2) a line at high frequency and 

a low frequency arc were obtained. Model B2 did not account for bulk solution 

resistance and mass transport limitations due to diffusion. Therefore, for fitting 

impedance data to model B2, the graphically determined series resistance was 

subtracted from the measured impedance data and the low frequency data 

corresponding to the mass transport limitation due to diffusion was not considered. 

The parameters of model B2 (R2, R3 and ωL) were estimated.  
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Figure  3.37. Fit of equivalent circuit B2 (solid line) to the faradaic impedance response of a 

MWCNT array electrode (♦) (experimental conditions indicated in Figure  3.34).  

Fits of equivalent circuits A2 and B2 to the experimental data provided sufficient 

results (Figure  3.36 and Figure  3.37). This indicated the correct interpretation of the 

impedance measurements as both models essentially describe the same 

physicochemical phenomena.  

Using equivalent circuit A2, the contributions to the faradaic impedance of the 

MWCNT array electrodes were analyzed in detail.  
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The average value of α was 0.82 for CPE1 and 0.91 for CPE2 signifying that the 

CPEs were essentially capacitive. R1, CPE1, R2, and CPE2 showed the same 

dependency on the specific deposit mass of the MWCNT arrays as discussed above. 

The Warburg parameter decreased with increasing specific mass (Figure  3.38 a)) and 

consequently with the active surface area of the MWCNT arrays as the Warburg 

parameter was proportional to the reciprocal of the active electrode surface. 

The faradaic charge transfer resistance R3 decreased with the specific deposit mass of 

the MWCNT arrays (Figure  3.38 b)) as the number of surface defect sites and surface 

functional groups, which were responsible for much of the electrocatalytic activity of 

the MWCNTs [Tra08], increased with the specific deposit mass of the MWCNT 

arrays. The decrease of the electron transfer resistance and the internal resistance with 

increasing specific deposit mass of the MWCNT arrays explained the decrease of the 

peak separation with increasing specific deposit mass of the MWCNT arrays observed 

in the CV studies (Figure  3.32).  
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Figure  3.38. a) Warburg parameter and b) electron transfer resistance R3 (as determined by 

equivalent circuit A2 (Figure  3.35)) of the redox reaction of the Fe(CN)6
3-/4- redox couple at 

MWCNT array electrodes in dependence on the specific deposit mass of the MWCNT arrays 

(5 mM K4Fe(CN)6 in 0.1 M KCl, 0.45 V vs. Ag/AgCl (half-wave potential)).  
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3.2.3.  Application of Well-aligned MWCNT Array Electrodes  

Non-enzymatic glucose detection at the MWCNT array electrodes was studied by 

cyclic voltammetry and amperometry.  

Figure  3.39 a) shows CVs of the electrocatalytic glucose oxidation at a MWCNT 

array electrode in 0.1 M NaOH and increasing glucose concentration (0-5 mM). The 

glucose oxidation occured at a remarkably negative potential of about -0.6 V 

vs. Ag/AgCl. The negative oxidation potential indicated a strong electrocatalytic 

activity of the MWCNT array electrodes regarding direct glucose oxidation.  
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Figure  3.39. a) CVs of the electrocatalytic glucose oxidation at a MWCNT electrode (glucose 

concentration: 0-5 mM, dotted line: background (0 mM glucose), 0.1 M NaOH, sweep rate: 

100 mV/s, counter electrode: Pt-foil), b) dependence of the baseline corrected glucose 

oxidation peak (-0.6 V vs. Ag/AgCl) on the glucose concentration. The current density was 

estimated using the active surface area of the array electrodes (see chapter 3.2.2.). 
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The baseline corrected oxidation peak current density of the CVs linearly increased 

with the glucose concentration within the physiological range of interest (Figure 

 3.39 b)), which ranges from about 3 mM to 8 mM glucose [Pec06].  

Figure  3.40 a) shows the amperometric response of a MWCNT array electrode in 

0.1 M NaOH to the successive addition of 0.8 mM glucose. In agreement with the 

voltammetric studies (Figure  3.40 b)), the amperometric current density linearly 

increased with glucose concentration. The array electrodes showed a good sensitivity 

of 12 µA/mM/cm². In addition, the array electrodes rapidly responded to the changes 

in glucose concentration.  

All in all, well-aligned MWCNT array electrodes provide a promising opportunity to 

innovative non-enzymatic glucose sensors.  
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Figure  3.40. Amperometric response of a MWCNT array electrode in 0.1 M NaOH to the 

successive addition of 0.8 mM glucose: a) current-time response, and b) dependence of the 

current density at the MWCNT electrode in dependence on the glucose concentration (two 

electrode circuit: counter/reference electrode: Au-foil,  potential 0.1 V vs. Au).  
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4. Summary  

In this work, preparations, characteristics, and applications of dimeric fullerene oxides 

and well-aligned MWCNT arrays – both being carbon-based nanostructured 

materials – were developed. The main research results achieved in this work are 

summarized below.  

4.1. Dimeric Fullerene Oxides  

In this chapter, the preparations, physicochemical characteristics, and applications of 

dimeric fullerene oxides developed in this work are summed up.  

Preparation of Dimeric Fullerene Oxides 

Directed and specific syntheses and separations of preparative amounts of various 

dimeric fullerene oxides using conventional laboratory methods were developed:  

• C140O was synthesized by solid-state thermolysis of C70/C70-oxide mixed 

powders and isolated from the resulting product mixtures nearly quantitatively 

(97 % purity) by precipitation.  

• C130O was synthesized in yields of 20 % by solid-state thermolysis of a 

fullerene/ mixed powder containing C60, C70, C60-, and C70-oxide.  
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• Highly pure, soluble mono-, bis-, and tris-adducts of C120O were synthesized by 

a diazoalkane addition and a Bingel cyclopropanation reaction and separated 

from the resulting product mixture using preparative flash chromatography.  

• Regio-controlled mono- and bis-functionalized dimeric fullerene oxides were 

synthesized by solid-state thermolysis of mixtures containing a functionalized 

epoxy-fullerene and a reactant fullerene.  

The preparations developed in this work contribute to the utilization of dimeric 

fullerene oxides as precursors for further fullerene based materials, as materials in 

fullerene polymer science and organic electronics, and as model systems for 

investigation intramolecular charge transfer and interaction between electron spins in 

molecules.  

Physicochemical Characteristics of Dimeric Fullerene Oxides  

A series of dimeric fullerenes was comprehensively characterized for the first time. 

Oxidative and thermal properties, electronic absorption properties, and the electron 

acceptor strength of the dimeric fullerene oxides C120O, C130O, and C140O, and the 

C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) were determined and compared 

with C60, C70, equimolar C60/C70 mixtures, C60R´, and C60R´´.  

• The oxidative and the thermal stability of the dimers were lower than those of 

monomeric comparison substances.  

• Throughout the visible region, the C60 dimers C120O, 1, and 2 showed an 

enhanced absorption, which indicated the interaction of transition dipole 
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moments of the two fullerene-cages of the dimers. C140O showed a smaller 

HOMO-LUMO gap compared to C70.  

• The C120O derivatives 1 and 2 were less prone to reduction compared to C120O.  

The identified characteristics contribute to the elucidation of the structure-properties 

relationships of fullerenes.  

Application of Dimeric Fullerene Oxides  

The applicability of well-soluble, oligomeric fullerenes to organic electronics was 

verified by applying the C120O mono-adducts 1 (C120OR´) and 2 (C120OR´´) as 

electron acceptor in BHJ solar cells and by proving intermolecular electron transfer 

for photoactive blends containing 1 as electron acceptor.  

The dimeric fullerene oxides 1 and 2 enable studying the impact of longish fullerene 

oligomers on the performance of organic electronics such as organic photovoltaics, 

photodiodes, photodetectors, and field-effect transistors. In particular 1 enables a 

direct comparison with the most frequently used [60]PCBM (C60R´).  
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4.2. Well-aligned MWCNT Arrays  

In this chapter, the preparation, electrochemical characteristics, and application of 

well-aligned MWCNT array electrodes developed in this work are summarized.   

Preparation of MWCNT arrays  

Well-aligned MWCNT arrays were directly grown on silica substrates by thermal 

chemical vapor deposition and electrochemically purified by cyclic voltammetry. 

Electrochemically induced purification of as-grown MWCNT arrays represented a 

mild and on-line controllable method of purification in one exclusive step and is 

therefore an attractive option to commonly used wet and gas phase purification, in 

particular for electrochemical applications of MWCNT arrays. 

The deposit thickness of the MWCNT arrays linearly depended on the deposit mass. 

Therefore, difference weighting was an easy way to estimate the deposit thickness of 

the MWCNT arrays.  

Electrochemical Characteristics of MWCNT Array Electrodes 

Capacitive and electron transfer characteristics of well-aligned MWCNT electrodes 

were determined using cyclic voltammetry and electrochemical impedance 

spectroscopy:  

• Capacitance and active surface area of the MWCNT electrodes systematically 

increased with the specific deposit mass and accordingly with the deposit 
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thickness of the MWCNT arrays. The active surface area of the MWCNT 

electrodes was a multiple of the geometric area of the MWCNT arrays. This 

indicated that the full amount of the deposit mass of the arrays contributed to 

their capacitance.  

• The capacitance of the MWCNT electrodes was composed of a capacitance 

originating from the internal and a capacitance originating from the external 

electrode surface. The capacitance originating from the internal electrode 

surface clearly was the major part of the over-all capacitance.  

• The capacitance of the MWCNT electrodes further consisted of a capacitance 

due to the formation of an ionic double-layer at the electrode/electrolytic 

solution interface and pseudocapacitances due to surface faradic reactions of 

redox active surface functionalities.  

• The effective internal resistance of the porous MWCNT electrodes decreased 

with increasing specific deposit mass and consequently with increasing deposit 

thickness of the MWCNT arrays, indicating a deposit thickness-dependent 

morphology.  

• The MWCNT array electrodes were macro-electrode with semi-finite linear 

diffusion of reactants to the electrode surface.   

• The electron transfer resistance of the MWCNT electrodes decreased with 

increasing specific deposit mass as the number of surface defect sites and 

surface functional groups, which were responsible for much of the electro-

catalytic activity of the MWCNTs, also increased with the specific deposit mass 

of the MWCNT arrays.  
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All in all, the MWCNT array electrodes showed the typical characteristics of porous 

capacitor macro-electrodes with an electrocatalytically active surface. 

The identified characteristics elucidate the structure-properties relationship of CNT 

array electrodes.  

Application of MWCNT Arrays Electrodes  

Well-aligned MWCNT array electrodes were applied to non-enzymatic glucose 

detection. MWCNT array electrodes showed a strong electrocatalytic activity and a 

high sensitivity regarding direct glucose oxidation. MWCNT array electrodes provide 

a promising opportunity to innovative non-enzymatic glucose sensors.  
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Appendix 

Analytical Data  

In the following paragraphs, analytical data of C120O, C140O, C130O, 1 (C120OR´), and 

2 (C120OR´´) are given.  

C120O: HPLC (Buckyprep) retention times [min]: 7.15 (1 mL/min toluene/ODCB 

(7/3, v/v) elution); 22.7 (1 mL/min toluene elution). MALDI-TOF MS (DCTB matrix) 

m/z: 1456.768 (M-). IR (KBr) ν [cm-1]: 1461 (m), 1455 (m), 1424 (m), 1383 (m), 1257 

(m), 1217 (m), 1186 (m), 1179 (m), 1163 (m), 1098 (s), 1059 (w), 1031 (s), 1014 (s), 

958 (m), 848 (s), 806 (m), 763 (m), 745 (m), 709 (m), 668 (m), 605 (m), 587 (w), 572 

(s), 563 /m), 549 (s), 526 (s), 478 (s). UV-vis (ODCB) λmax [nm]: 294, 326, 418 

(shoulder), 696 (weak).  

C140O (isomeric mixture): HPLC (Buckyprep) retention times [min]: 12.95, 14.11 

(1 mL/min toluene/ODCB (7/3, v/v) elution); 60.4, 62.9, 66.7, 72.2, (1 mL/min 

toluene elution). MALDI-TOF MS (DCTB matrix) m/z: 1696.792 (M-). IR (KBr) ν 

[cm-1]: 1568 (w), 1566 (w), 1454 (s), 1429 (s), 1313 (w), 1247 (w), 1214 (w), 1151 

(w), 1122 (m), 1074 (m), 1033 (m), 1014 (m), 935 (w), 838 (w); 794 (m), 669 (m), 

658 (w), 638 (w), 576 (m), 534 (m), 469 (w), 455 (w). UV-vis (ODCB) λmax [nm]: 

284, 314, 342, 406, 462.  
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C130O (isomeric mixture): HPLC (Buckyprep) retention times [min]: 9.3, 9.7 

(1 mL/min toluene/ODCB (70/30, v/v) elution); 38.1, 40.2, 42.1 (1 mL/min toluene 

elution). MALDI-TOF MS (DCTB matrix) m/z: 1576.381 (M-). IR (KBr) ν [cm-1]: 

1732 (m), 1699 (w), 1650 (m), 1633 (s), 1496 (m), 1455 (s), 1430 (s), 1376 (w), 1261 

(w), 1201 (w), 1180 (w), 1153 (w), 1062 (s), 1027 (s), 842 (w), 794 (w), 746 (m), 698 

(s), 576 (m), 526 (s). UV-vis (ODCB) λmax [nm]: 294, 332 (very weak and broad 

shoulder).  

1 (C120OR´, isomeric mixture): HPLC (Buckyprep) retention times [min]: 12.3, 13.0 

(1 ml/min toluene elution); 352, 364, 380, 409, 446 (0.1 mL/min toluene/ cyclohexane 

(1/1, v/v) elution). IR (KBr) υ [cm-1]: 1737 (s), 1627 (m), 1598 (w), 1492 (m), 1456 

(s), 1444 (s) 1432 (s), 1371 (m), 1330 (w), 1245 (m), 1155 (m), 1101 (m), 1031 (s), 

964 (w), 848 (m), 804 (m), 765 (m), 702 (m), 547 (m), 526 (s), 478 (m), 403 (w). 

MALDI-TOF MS (DCTB matrix) m/z: 1646.836 (M-). 1H-NMR: (CDCl3/TMS, 

400 mHz): δ [ppm]: 7.0-7.52 (phenyl; 5 H), 3.61, 3.68 (OCH3; 3 H), 2.36 

(CH2CO2Me; 2 H), 1.56 (CH2CH2CO2Me; 2 H), 1.25 (PhCCH2; 2 H). UV-vis 

(ODCB) λmax [nm]: 287, 325, 368 (shoulder), 418 (shoulder), 689 (weak).  

2 (C120OR´´, isomeric mixture): HPLC (Buckyprep) retention times [min]: 9.3, 9.6 

(1 mL/min toluene elution); 243, 246, 255, 266 (0.1 mL/min toluene/cyclohexane 

(1/1, v/v) elution). MALDI-TOF MS (DCTB matrix) m/z: 1726.876 (M-). IR (KBr) υ 

[cm-1]: 1743 (s), 1456 (m), 1452 (m), 1427 (m), 1373 (w), 1267 (m), 1240 (s), 1182 

(m), 1099 (m), 1065 (w), 1034 (s), 964 (w), 849 (m), 744 (m), 577 (w), 550 (w), 526 

(s). 1H-NMR: (CDCl3/TMS, 400 mHz): δ [ppm]: 4.4, 3.54, 1.54, 1.27, 0.88. UV–vis 

(ODCB) λmax [nm]: 285, 326, 416 (shoulder), 703 (weak).  


