54. IWK

Internationales Wissenschaftliches Kolloquium International Scientific Colloquium

Information Technology and Electrical Engineering - Devices and Systems, Materials and Technologies for the Future

Faculty of Electrical Engineering and Information Technology

Startseite / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=14089

Impressum

Herausgeber: Der Rektor der Technischen Universität Ilmenau Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. Peter Scharff

Redaktion: Referat Marketing Andrea Schneider

> Fakultät für Elektrotechnik und Informationstechnik Univ.-Prof. Dr.-Ing. Frank Berger

Redaktionsschluss: 17. August 2009

Technische Realisierung (USB-Flash-Ausgabe): Institut für Medientechnik an der TU Ilmenau Dipl.-Ing. Christian Weigel Dipl.-Ing. Helge Drumm

Technische Realisierung (Online-Ausgabe): Universitätsbibliothek Ilmenau <u>ilmedia</u> Postfach 10 05 65 98684 Ilmenau

Verlag:

isle

Verlag ISLE, Betriebsstätte des ISLE e.V. Werner-von-Siemens-Str. 16 98693 Ilmenau

© Technische Universität Ilmenau (Thür.) 2009

Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind urheberrechtlich geschützt.

ISBN (USB-Flash-Ausgabe): ISBN (Druckausgabe der Kurzfassungen): 978-3-938843-45-1 978-3-938843-44-4

Startseite / Index: http://www.db-thueringen.de/servlets/DocumentServlet?id=14089

MATHEMATICAL MODELING OF A SECONDARY CELL BREAKDOWN CURRENT CURVE THROUGH FIXED RESISTANCE.

E. GERASIMENKO, Dr. - Ing., YU. GERASIMENKO Prof., Dr. - Ing. Habil

South-Russia State Technical University, Novocherkassk, Russia

ABSTRACT

In the context of linear theory a pair of plates of lead -acid accumulator, discharged on dc Ohmic resistance are under consideration. Operator expression for the accumulator discharge voltage has been obtained as a result of joint studying both concentration and electric fields in electrolytic solution. Assumption for homogeneous distribution of current density along electrode surface is applied/. Representation of accumulator's discharge curve on fixed resistance has a form of a complex transcendental function. Representation reversal is performed numerically using terminal search procedure. Terminals proved to be real negative numbers, thus determining monotonous descending character of the breakdown current curve. Temporal curve of the breakdown current is represented as an infinite series replaced by a finite sum, with uncertainty calculation being given. The expected calculation technique for the breakdown current curve can be applied at the secondary cell's short-circuit current estimation.

Index Terms- mathematical modeling, electrochemical system, electrodes, current representation.

Voltage representation on a accumulator cell is defined through the following expression [1]

$$\overset{"}{U}(p) = \frac{E_0}{p} - \overset{"}{I}(p) \Big(R_3 + R^+ + R^- \Big) - \frac{g_{11} \Big(N_1 + N_2 ch \sqrt{\frac{p}{D}} l \Big) - g_{21} \Big(N_1 ch \sqrt{\frac{p}{D}} l - N_2 \Big)}{\sqrt{\frac{p}{D}} sh \sqrt{\frac{p}{D}} l}$$

where E_0 is the initial voltage ; R_3 electrolytic resistance; R^+ -positive electrode resistance; R^- -negative electrode resistance ; h -height of the cell plate; d – width of the cell plate; l –distance between electrodes of the cell; $g_{11} > 0, g_{21} < 0$ characteristics of Nernst equation approximation; $N_1 > 0, N_2 > 0$ - electrodekinetic coefficients; D- diffusion coefficient; I(p) - representation of current.

Ohmic resistance voltage is determined by Ohm's law:

$$U(p) = I(p)R_{H}$$
⁽²⁾

From the correlations (1) and (2) we obtain:

$$\stackrel{\circ}{I}(p) = \frac{E_0}{p} \frac{(3)}{R_H + R_2 + R^- + R^+ + \frac{g_{11}(N_2ch\sqrt{\frac{p}{D}}l + N_1) - g_{21}(N_2 + N_1ch\sqrt{\frac{p}{D}}l)}{hd\sqrt{\frac{p}{D}}sh\sqrt{\frac{p}{D}}l}}$$

Designating
$$R_H + R_9 + R^- + R^+ = R$$
,
 $\frac{g_{11}N_1 - g_{21}N_2}{hd} = B_1 > 0, \frac{g_{11}N_2 - g_{21}N_1}{hd} = B_2 > 0,$

we receive .

$$\frac{E_0}{\sqrt{p}\left(R\sqrt{p}+B_1\sqrt{D}\frac{1}{sh\sqrt{\frac{p}{D}l}}+B_2\sqrt{D}cth\sqrt{\frac{p}{D}l}\right)}$$
(4)

Using limit theorems of operational calculus for initial and finite values of the original we find $E_{\rm opt}$

$$I(0) = \frac{E_0}{R}; I(\infty) = 0.$$

To define the original I(t) with $0 < t < \infty$ we use Mellin's inversion formula. First we find all roots of the denominator of the righthand side (4). From (4) it follows that p=0 is not an image terminal I(p). Terminals I(p)are found from the following equation

$$\sqrt{p} \left(R\sqrt{p} + \frac{B_1\sqrt{D}}{sh\sqrt{\frac{p}{D}l}} + B_2\sqrt{D}cth \sqrt{\frac{p}{D}l} \right) = 0$$

Introducing a new complex variable Z into the last equation according to the rule

$$\sqrt{\frac{p}{D}l} = jZ \qquad \text{we invert it into}$$
$$ctgZ + \frac{B_1}{B_2} \cdot \frac{1}{\sin Z} = \frac{R}{B_2 l}Z \qquad (5)$$

where $j = \sqrt{-1}$; Z = x + jy; x, y are real independent variables of a complex plane (*x*;*y*).

One can show that equation (5) has only prime real roots. To find them it is convenient to solve an equation equivalent to (5):

$$\frac{\cos x + \frac{B_1}{B_2}}{\sin x} = \frac{R}{B_2 l} x \tag{6}$$

Procedure of finding equation roots (6) is fulfilled either graphically or numerically by calculator, using iteration approach.

Graphic calculation of equation (6) proves that all its roots are prime ones. The obtained roots x_k allow recording function poles I(p) with the help of pre-introduced permutation:

$$p_k = -\frac{D}{l^2} x_k^2, \quad k = 1, 2, 3, \dots$$

Note that terminals p_k as well as x_k are prime. To apply Mellin's formula we find beforehand the residue of function $e^{\rho t} \mathring{I}(p)$ in terminals p = p.:

$$\operatorname{Res}_{pk} \left[e^{pt} \stackrel{\circ}{I}(p) \right] = \frac{E_0 e^{pt}}{\left. \frac{d}{dp} \left(\sqrt{p} \left(R \sqrt{p} + B_1 \sqrt{D} \frac{1}{sh \sqrt{\frac{p}{D}l}} + B_2 \sqrt{D} cth \sqrt{\frac{p}{D}l} \right) \right) \right|_{p=p_k}}$$

$$2E_r \sin^2 x_r e^{\frac{D}{l^2} x_k^2 t} = 2E_r l(B_r \cos x_r + B_r)^2 e^{\frac{D}{l^2} x_k^2 t}$$

$$=\frac{2E_0\sin^2 x_k e^{-t}}{R\sin^2 x_k + (B_1 + B_2)l} = \frac{2E_0l(B_2\cos x_k + B_1)^2 e^{-t}}{Rl(B_2\cos x_k + B_1)^2 + (B_1 + B_2)R^2x_k^2}$$

According to the obtained residue the current original is determined: (7)

$$I(t) = \sum_{k=1}^{\infty} \frac{2E_0 l(B_2 \cos x_k + B_1)^2}{R l(B_2 \cos x_k + B_1)^2 + (B_1 + B_2)R^2 x_k^2} e^{\frac{D}{l^2} x_k^2 t}$$

Each harmonic component of this expression represents a positive decreasing time function t, so the whole curve of discharge I(t) is a monotone decreasing function, that is the transient process in the external circuit of accumulator has a acyclic monotone character.

In the calculations according to (7) the infinite series is substituted for a finite sum.

The number of summands M in it is set by current valuation error Δ_I . The difference

 R_M between accurate value of the current and approximate one has a form of

$$R_{M} = \sum_{k=M+1}^{\infty} \frac{2E_{0}l(B_{2}\cos x_{k} + B_{1})^{2}}{Rl(B_{2}\cos x_{k} + B_{1})^{2} + (B_{1} + B_{2})R^{2}x_{k}^{2}}e^{-\frac{D}{l^{2}}x_{k}^{2}t}$$

Let's assume that $R_M \leq \Delta_I$

Consider the flowing series:

$$I(0) = \sum_{k=1}^{\infty} \frac{2E_0 l(B_2 \cos x_k + B_1)^2}{R l(B_2 \cos x_k + B_1)^2 + (B_1 + B_2)R^2 x_k^2} e^{\frac{D}{l^2} x_k^2 t}$$

Between its residual

$$Q_{M} \equiv \sum_{k=M+1}^{\infty} \frac{2E_{0}l(B_{2}\cos x_{k} + B_{1})^{2}}{Rl(B_{2}\cos x_{k} + B_{1})^{2} + (B_{1} + B_{2})R^{2}x_{k}^{2}} =$$
$$= \frac{E_{0}}{R} - \sum_{k=1}^{M} \frac{2E_{0}l(B_{2}\cos x_{k} + B_{1})^{2}}{Rl(B_{2}\cos x_{k} + B_{1})^{2} + (B_{1} + B_{2})R^{2}x_{k}^{2}}.$$

and R_M there exists a correlation $R_M \leq Q_M$ So, condition $Q_M \leq \Delta_I$ being observed, the correlation $R_M \leq \Delta_I$ will be executed. Thus, the number of summands in the partial sum during the current calculation according to the formula (3,271) is determined under the following condition:

$$\frac{E_0}{R} - \sum_{k=1}^{M} \frac{2E_0 l(B_2 \cos x_k + B_1)^2}{R l(B_2 \cos x_k + B_1)^2 + (B_1 + B_2)R^2 x_k^2} \le \Delta_I$$

With the help of formulas (7), (8) the calculation of current in the accumulator cell circuit with the following characteristics was done:

D=2,328*10⁻⁹ m²c⁻¹; N₁=1,67 kmol*A⁻¹m⁻²; N₂=2,78 kmol*A⁻¹m⁻²; g₁₀=1,582 B; g₂₀= -0,264 B; g₁₁=0,028 B*(kmol/m³)⁻¹; g₂₁= -0,021 B*(kmol/m³)⁻¹; γ_3 =1,65 Om⁻¹*m⁻¹; h =0,143 m; d=0,125 m; 1=1,0*10⁻³ m; C₀=3,84 kmol/m³; R_H=0,1 Om; S=2,6*10⁻³ m; r=3,4*10⁻³ m; γ^+ =1,34*10⁴ Om⁻¹*m⁻¹; γ^- =5,56*10⁵ Om⁻¹*m⁻¹

The calculation and experimental results are shown in the figure 1.

References:

 Ю.Я. Герасименко. Математическое моделирование электрохимических систем. Новочеркасск: ЮРГТУ(НПИ), 2007..- 303 с.

Figure 1. Current curves of the accumulator cell breakdown through fixed Resistance RH=0,1M