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Chapter 1
Introduction

The coherent interaction of the electromagnetic field with a single atom, placed
in a resonator, is a basic system which has attracted the attention of many physicists
over the past decades, due to its conceptual importance to the fundamental aspects
of quantum physics. The roots of this interaction go back to the discovery of the
spontaneous emission of an atom in free space, which, being genuinely a quantum ef-
fect, was phenomenologically described by Einstein in terms of statistical rates [1]. A
quantum-mechanical description of the spontaneous emission, for a two-level atom,
was later given by Weisskopf and Wigner [2]. Within the framework of quantum
electrodynamics (QED), the description of non-commuting field quantities implies
non-vanishing moments giving rise to fluctuations of field quantities. The quantum
fluctuations of the electromagnetic field induce an interaction with the atom, which
among others leads to spontaneous emission. As it was then first proposed by Pur-
cell [3] in the context of nuclear spins, the presence of material bodies changes the
structure of the electromagnetic field and therefore may, in particular, influence the
emission rate of an atom. In addition, there is a wide variety of phenomena demon-
strating the changes in QED effects, for example, dispersion forces (for a review, see
Refs. [4, 5]).

On the basis of this intuition, it was first suggested by Bloembergen and Pound [6]
that the use of a resonator cavity can enhance the rate of spontaneous emission, and
therefore, an atom placed in a resonator cavity may induce generation of radiation.
Indeed, a resonator system features sharply peaked electromagnetic field resonances.
The presence of the cavity introduces a characteristic time scale related to the co-
herent exchange of excitation between the atom and the field. In the case, when the

atomic transition frequency is in the vicinity of a resonance line of a resonator cavity,
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the characteristic time of the atom-field interaction can become much shorter than
the inverse width of the resonance line and the inverse spontaneous rate of the atom
in free space. In other words, the strength of the atom-field interaction can extremely
increase, and thus, this regime is commonly referred to as strong atom-field coupling
of cavity QED (for a review see [7, 8]).

Since these seminal works, the study of cavity QED has been the subject of
intense research, which has led to a number of different implementations of strong
atom-field coupling (see the review [9]). In the microwave domain, the strong coupling
regime has been achieved by injecting a beam of highly excited Rydberg atoms into
superconducting resonators with very long decay times [10]. The strong coupling
regime is well-established due to the large magnitude of the relevant electric dipole
transition elements. The atomic beam serves not only to manipulate the field inside
the resonator cavity, but also to measure it, while the atoms can be detected beyond
the interaction region. The major obstacle in this realization is the lack of control
over the interaction time of the atoms with the field.

In the context of the optical domain, the strong coupling regime has been achieved
by establishing the interaction of neutral atoms with optical cavities. In contrast to
microwave resonators, the smaller inverse width of the cavity resonance line, specific
for optical resonator cavities, implies the necessity to establish tiny volumes of the
resonators to enable the strong coupling. This requirement, obviously, leads here
to technical difficulties, related to injecting of the atoms into the resonator cavities
and controlling over their exact location [11, 12].) On the other hand, the large
width of a resonance line leads to various applications related to the input-output
coupling. Here, the cavity losses represent not a detrimental decoherence process,
but rather the wanted outgoing radiation of the cavity. In particular, it enables
further related studies as, for example, quantum feedback and control over quantum
dynamics [14, 15].

The cavity QED in the strong coupling regime offers an ideal platform for the
realization of protocols and systems related to quantum information science [16]. In
this context, the implementation of cooling and trapping techniques in cavity QED
has been a milestone in the ideas of quantum communication [17]. The ability to

localize an atom and individually address long-lived internal states of the atom by

'We omit here the description of a number of other realizations of strong coupling regime in
cavity QED, for example, the usage of the linear ion traps in the cavities of bigger size. For further
reading, see Ref. [13].
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laser fields, makes them one of the leading candidates for accessible preparation and
robust storage in quantum information science [18]. The coherent coupling of an atom
to the electromagnetic field in a resonator cavity promises a realization of quantum
communications, where the atom plays the role a node in a quantum network, and
the emitted radiation may be regarded as flying qubits [19] for long-distant quantum
communication [20].

Specifically, the basic ingredient in these schemes is the quantum control of the
emitted radiation for generation and extraction of single-photon Fock states [17]. The
essential requirement of quantum communication protocols is the emission of indis-
tinguishable light pulses of the known quantum state and the known spatio-temporal
profile on demand. Single-photon sources on demand have been realized in optical
high-@Q cavities [21, 22]. Moreover, employing the idea of stimulated Raman adiabatic
passage [23], the generation of single-photons with known circular polarization has
been realized [24].

The constitutional work of Jaynes and Cummings [25], which provides the first
theoretical description of the strong-coupling regime, until today has been widely
applied to describe the strong atom-field interaction. In the simplest case of the reso-
nant interaction of a two-level atom with the field, on a time scale sufficiently short in
comparison with characteristic dissipation time, the atom-field coupling is modeled
by the Jaynes-Cummings interaction term between the atom and a normal mode of
a perfect cavity. The main result of this model is the description in terms of the
"dressed” eigenstates of the coupled atom-field system, which consists of a ladder of
doublet states where the splitting represents the Rabi frequency—the rate of energy
exchange between the atom and the field. Clearly, for longer times, the atom-cavity
system can no longer be regarded as being a closed system, and the eigenstates of
the system will gradually differ from those, given by the Jaynes-Cummings Hamilto-
nian [26]. For this reason, and in the context of the applications mentioned above,
the losses of any realistic cavity must be properly taken into account by means of the
study of the input-output problem for the cavity.

It is a widely accepted approach to tackle the input-output problem of a resonator
cavity by treating the leaky cavity as an open quantum system [27]. In other words,
the fields inside and outside the cavity are regarded as the ones representing inde-
pendent degrees of freedom. Accordingly, two separate Hilbert spaces for the field
are introduced, based on discrete and continuous mode expansions of the fields inside

and outside the cavity, respectively. In order to a posteriori take into account the
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input-output coupling, owing to the fractionally transparent mirrors of the resonator
cavity, the formalism of the quantum noise theory (QNT) [28] is applied. Namely, the
radiation field modes of the idealized lossless cavity are regarded as a ”"small” system
that is linearly coupled to the continuum of the external field modes, which plays
the role of a "large” reservoir (dissipative system). The influence of the reservoir on
the internal modes is treated in the Markov approximation, i.e., the field variables
inside the cavity have a short "memory”, in the sense that fluctuations of the sys-
tem variables are smoothed out over the time scale of the cavity mode decay time.
This approximation leads to quantum Langevin equations for the cavity mode vari-
ables, where the incoming external field gives rise to operator Langevin forces therein.
Equivalently, the effect of dissipation can be described by using the concept of master
equations [29, 30, 31], or quantum trajectory methods (see, e.g. Refs. [26, 32, 33]).
In order to find the field escaping from the cavity, the quantum Langevin equations
are then complemented with input-output relations, which relate the output field to
the input field and the intracavity field [34, 35].

We emphasize, that the standard approach to describe the atom-field interaction
by means of the Jaynes-Cummings Hamiltonian complemented with QNT approach
of a leaky cavity is phenomenological in nature, relies on certain assumptions and does
not give a physical description of the involved parameters, and, therefore, the question
of whether it has an intrinsic physical origin has to be answered. The true, concep-
tually fundamental and physically sound theory describing the atom-field interaction
in a resonator cavity should be based on the quantum theory of the (macroscopic)
electromagnetic field on the basis of the corresponding macroscopic Maxwell equa-
tions [36]. The first quantum-theoretical description of a leaky cavity was given by
Lang et al. [37], based on the field expansion in terms of the modes of the "universe”,
i.e., the (orthogonal) normal modes of the closed system formed by the resonator
cavity and the region outside the cavity. In an alternative approach [38], the normal
modes of a closed resonator cavity are complemented by the penetrating outgoing
waves outside the cavity, leading to the expansion in terms of Fox-Li modes [39],
where the adjoint modes necessarily should be introduced to achieve completeness.
In an analogous way, starting with the normal modes for the region outside the cav-
ity, the external Fox-Li modes and their adjoints are introduced. It is shown that
the interaction energy between the cavity modes and the external modes vanishes,
and the input-output coupling arises from the non-vanishing commutation relation

between the modes inside and outside the cavity. Note, however, that although the
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expansion in terms of the Fox-Li modes reproduces the fields at the input-output
coupling mirror, it does not allow the consideration of only the input or output fields
outside the cavity. In a more rigorous approach [40, 41, 42| the electromagnetic
field in the presence of non-absorbing linear media is expanded in terms of the or-
dinary continuous modes, which extend over the whole space. In a coarse-grained
approximation, a description of the fields inside and outside a high-() cavity in terms
of quantum Langevin equations and input-output relations, respectively, as used in
quantum noise theories, is given. In another version of QED [43, 44|, the modes of
the universe are separated into two contributions, accounting for the fields inside and
outside the cavity by using Feshbach’s projection formalism [45]. In this way, the
separation of the field Hilbert space is performed, and consequently, by choosing ap-
propriate boundary conditions, the inside and outside modes are defined, which form
complete bases in the respective regions, making it possible to establish a consistent
relation with the description of the cavity system within the framework of quantum
noise theory. In fact, these modes violate the surface boundary conditions of the
electromagnetic field, and the (non-pointwise) convergence of the expansion is slow
in the vicinity of the coupling mirror even in the limit of the idealized lossless cavity,
and, thus, the individual modes defined for the fields inside and outside the cavity
have limited physical meaning and applicability.

Despite the tremendous progress in the practical realization of cavity QED, which
has led to an explosion in the rapidly growing field of quantum communication, the
desire to reduce a complex system to simpler models may create the false impression
that the theoretical description of the system is well understood. While such a re-
duction is often possible to carry out on the classical level, on the quantum level it
may fail. We would like to emphasize, that despite its success and appealing simplic-
ity, the traditionally accepted description of the atom-field interaction in a resonator
by means of the Jaynes-Cummings Hamiltonian, together with the quantum noise
theory, may fail to describe the quantum features crucial for ideas of quantum infor-
mation science. This refers, specifically, to the separation of the field Hilbert space in
the realm of this conventional approach, and, in particular, the division of the time
scales that lies beyond—the process of preparation of the quantum state of the field
inside the resonator, governed by the Jaynes-Cummings Hamiltonian, is regarded to
be separated in time from the further evolution of the field variables described by the
input-output relations.

The current work aims to develop an exact theory of the atom-field interaction in
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resonator cavities based on macroscopic QED and to study the limits and the scope
of application of theories based upon the ideas of QN'T. Even though the various for-
malisms developed within macroscopic QED plausibly cover numerous aspects related
to the study of leaky cavities, they all suffer from the same limitation. Namely, the
absorption losses, necessarily observed in any linear media, are typically disregarded.
However, even if from the point of view of classical optics these absorption losses are
very small, so that they effectively do not influence classical light, they can lead to a
drastic degradation of nonclassical light features (see, e.g., Ref. [46]). In this thesis,
we shall give a consistent description of the cavity input-output problem, including
the effect of unwanted losses, such as absorption losses, thereby extending standard
QNT. Next, we shall study atom-field interaction in a resonator cavity and analyze
features of emitted radiation renouncing the approximation of separate Hilbert spaces
for the fields inside and outside a cavity.

This thesis is organized as follows. The standard approach to model the medium
absorption, presented in Chapter 2, is to introduce a bilinear interaction Hamiltonian,
in accordance with the phenomenological quantum noise theory. We shall give a
detailed description of the Langevin equation and input-output relation for this case,
which reveals, that whereas the dynamics of the cavity mode variables is subject to
additional damping term and corresponding fluctuation force, associated with the
absorption, the input-output relations effectively remain unchanged. Therefore, the
absorption losses necessarily occurring in the processes of the coupling of the fields
inside the cavity with the incoming and outgoing fields through the coupling mirrors
are disregarded in this approach. This is obviously an important issue, and must be
thoroughly investigated in a definitive manner, especially in view of the applications
in quantum information science, where in the considered schemes, related to the
extraction of the cavity quantum state, the ad hoc assumption of nearly perfect
extraction is often made [47]. Thus, a more exact theory needs to be established to
describe the absorption losses, associated with the coupling mirror.

Chapter 3 is devoted to developing a quantum theory for leaky cavities in disper-
sive and absorbing media, in the framework of macroscopic QED [MK3]. We start
by recalling the quantization scheme [48] of the electromagnetic field in the pres-
ence of locally responding, linear dielectric media characterized by a coordinate- and
frequency-dependent complex permittivity. The spatial and spectral structure of the
electromagnetic field is determined in terms of the Green tensor of the associated

Maxwell equations. Applying the quantization scheme to a resonator cavity, we can
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specify the Green tensor, which determines the characteristic resonant frequencies
and the corresponding widths of the cavity. In this way, we shall derive the electric
field operators inside and outside the cavity. In particular, as we shall show, the
electric field inside the cavity can be expanded in terms of nonmonochromatic modes
corresponding to the resonant frequencies of the cavity. The form of the dynamical
equations of the cavity mode operators suggests that the Hamiltonian used in the
quantum noise theories standard QNT to describe the time evolution of the cavity
mode, should be complemented with bilinear interaction energies between the cavity
modes and appropriately chosen dissipation channels, in order to model the unwanted
absorption losses. The calculations for the electric field outside the cavity allow us
to generalize the standard input-output relation to include into the consideration the
absorption losses associated with the coupling mirror. This generalization to consis-
tently include absorption losses in the input-output relation cannot be obtained on
the basis of interaction energies, commonly introduced in standard QNT to model
the absorption losses. However, we shall prove, that to model the absorption losses
in the coupling mirror, a more sophisticated scheme with a system of beam splitters
can be introduced [MK5, MK6].

In order to study the quantum state of the outgoing field in detail, on the basis of
the obtained general operator input-output relation we shall derive the input-output
relations for phase-space functions in the case, when the quantum state of the field
inside the cavity is known at some initial time [MK2, MK3, MK4]. In the case, when
the time of the preparation of the cavity field is sufficiently short on the time scale of
the inverse width of the cavity resonance, we introduce an assumption of factorization
of the characteristic functions of the cavity field and the input fields, which in fact
corresponds to the separation of the field Hilbert space. In this way, we shall calculate
the quantum state of the relevant outgoing mode. To illustrate the results, the general
condition on the extraction efficiency of realization of a nearly perfect extraction of
the quantum state of the cavity mode, will be discussed considering some typical
examples.

With the aim to generalize the approach based on macroscopic QED, we devote
Chapter 4 to the dynamical description of the atom-field interaction [MK9]. Specifi-
cally, to develop an exact theory we renounce the postulate—the major assumption
of QNT—to introduce separate Hilbert spaces for the fields inside and outside the
cavity, but rather we treat the electromagnetic field in the whole space as an entity.

Moreover, to go beyond the regime of short-time preparation of the electromagnetic
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field, we include in the theory the process of field generation by means of active
sources. For the sake of clarity, we consider a simple model system of quantum me-
chanics, allowing an outright study of the matter-light interaction on a fundamental
level—namely, the strong coupling regime of interaction of a two-level atom placed
in a high-Q) cavity with the cavity-assisted electromagnetic field. We assume that the
atom is initially excited to its upper energy eigenstate and study the emitted outgo-
ing radiation in the electric dipole approximation. We shall show, that the excited
outgoing mode can be determined, and the Wigner function of the quantum state of
this mode can be given. The calculations of the spatio-temporal shape imply, that
the wave packet, corresponding to the excited outgoing mode, extends in the regions
both inside and outside the cavity. We shall then compare the results with the ones,
obtained within QNT in order to study the limits of applicability of QNT [MK10].

The main results of this thesis are summarized in Chapter 5.



Omnia disce, videbis postea nihil esse superfluum.
(Learn everything, you will find nothing superfluous.)
Hugh of St Victor

Chapter 2

Leaky High-() Cavities: QNT
Approach

The main idea of the Quantum (and Classical) Noise Theory, roots of which go
back to the study of the Carnot cycle, is to consider the interaction of a rather
small system with a large reservoir heath bath. The general assumption is that the
reservoir has many degrees of freedom and is large enough, so that in the case when
the interaction is sufficiently weak, the reservoir is effectively not influenced by the
small system. The influence of the bath on the system can be described by including
random noise forces into the equations of motion for the system variables. Within the
frame of the Markovian damping theory, when the correlations between the system
and the reservoir decay very rapidly on the time scale of the dynamics of the system,
the equations of motion will no longer contain time integrals with system variables.
In other words, the probability distribution of system variables for future times is
determined by its value at the present time.

In this chapter we illustrate that the concept of the Markov process provides a
simple description of a leaky optical cavity. We present an intuitive extension of the

formalism, which allows one to take into account the unwanted losses of the cavity.

2.1 System-Reservoir Approach

The formalism of quantum noise theory can be applied to describe the radiation
field generated in a resonator-like cavity with input and output coupling. In this
approach, a single excited mode of the radiation field inside a leaky cavity is treated

as a dynamical system, that (weakly) interacts with the continuum of external modes

9
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of the radiation field. Consequently, a bilinear coupling Hamiltonian is introduced to
describe the interaction between the modes inside and outside the cavity [34].

Let us consider a one-dimensional high-Q) cavity bounded with a perfectly re-
flecting mirror at x =0 and an almost perfectly reflecting mirror at x =1[. Being
interested in resolving times that are large compared with the time of propagation of
light through the cavity, we expand the intracavity field in terms of standing waves
at frequencies wy, where the index k enumerates the modes of the cavity.

Let us focus on a single kth cavity-mode, that plays the role of the system with the
free Hamiltonian ﬂsys interacting with the reservoir of the external modes described
by the free Hamiltonian H,es. Assuming the interaction energy between the inside

and outside fields to be of a bilinear type, the total Hamiltonian can be given as [35]

A

H = ]:Isys + ]:Ires + ﬁsys«—»resa (21)

with
sys Z hwkakaka (22)

ﬂreszz / dwhw b (w)b(w), (2.3)
Higoorres = zhz / dw g (w bT( Jar — alb(w)]| (2.4)

where kg (w) is the system—reserv01r coupling constant, a(t) is the annihilation oper-
ator of the cavity-mode and b(w) are the annihilation operators of the outside field

that satisfy the familiar bosonic (equal time) commutation relations:
[b(w), b (w)] = §(w — ). (2.6)

Note, the assumption that the fields inside and outside the cavity represent indepen-

dent degrees of freedom yields the following commutation relation:

[a (1), b (w)] = 0. (2.7)
Here and throughout the text, the notation [ AL dw. .. is used to indicate the integra-
tion over frequencies in the interval Ay = [2(wy—1 + w), 5 (Wk + wet1)]-
The Markov approximation might be introduced by assuming that rg(w) is inde-
pendent of w over a band of frequencies around the characteristic frequency wy:

[y

Kr(w) = kr(wy) = o (2.8)
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In this case, the evolution of system quantities at an arbitrary time is now determined
by system quantities at the same time, and the cavity-mode annihilation operator

satisfies the corresponding Langevin equation [35, 40]:

ar(t) = —iQax(t) + /Trbyin (1), (2.9)

where

For a high-Q cavity, the widths Iy, of the cavity modes at frequencies wy = kme/l are
very small compared with their separation Awy = %(wkﬂ —wg_1) =mc/l, where ¢ is
the velocity of light. The second term in Eq. (2.9) is the Langevin noise force arising

from the input radiation field,

bein (t) = dw bgin (w, ) = dw b(w, ty) e~ t0) (2.11)

1 1
V21T Ja, V2T Ja,
[b(w) = b(w, to)]. Similarly, the output operator can be introduced as follows:

brous (1) = dw byin (w, ) = dw b(w, ty) e~ 4) (t <ty). (2.12)

1 1
V21 Ja, V2 Ja,
Notice that on the time scale under consideration the lower and upper integration

limits of the frequency integrals can be, without significant error, extended to —oco

and +o00, respectively. Then, using Eq. (2.6) it follows that the commutation relations

~

[biin (1), bl (£)] = 6t — 1) (2.13)

and

A~

(Dot (1), DL (F)] = 0(t — 1) (2.14)
are valid.

The output operator breu () can be related to the cavity operator a(t) and the

input operator l;kin(t) according to the input-output relation

bkout \/ ak + bkln (2 ]-5)

Here it is important to note that the term depending on l;kin(t) in the Langevin
equation Eq. (2.9) can be interpreted as a noise force, provided that the state of the
system is initially factorized with respect to the states of the cavity mode and the
input field, and that the state of l;kin(t) is incoherent. However, independent of the

state of the reservoir, the term with Z;kin(t) in Eq. (2.9) gives rise to a damping for
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ax(t), and the operators Bkin(t) and Bkout(t) can be interpreted as input and output to
the cavity mode. Importantly, we assume here, that the (time-dependent) ” causality”

commutation relations hold true:
an(t), b, ()] =0, (¢ >1). (2.16)

The interpretation is straightforward: since the solution of Eq. (2.9) for the cavity-
mode operator dy(t) is given in terms of past values of by, (t), then it is clear that the
cavity mode operator a(t) does not depend on the values of the input in the future
t' > t. Similarly,

[an(t), b, ()] =0, (' <t). (2.17)

2.2 Unwanted Losses

In the previous section the derivation of the Langevin equation has been given
under the assumption that the only damping source for the cavity field is the (wanted)
radiative damping due to the input-output coupling. However, in a real physical
experiment, there are unwanted losses such as scattering and medium absorption,
which lead to additional noise. Let us note that in a realistic situation the unwanted
losses, unavoidable for every material system, for high-() cavities appeared to be of
the same order of magnitude as the transmission losses [49, 50].

To include the unwanted losses within the phenomenological quantum noise theory
of leaky cavities, an intuitive approach can be applied introducing the coupling of the
cavity modes to an additional reservoir [43]. Then, the total Hamiltonian can now be
represented by complementing the Hamiltonian (2.1) with an additional interaction
energy:!

H = Hyy + Hiyes + Hypsores + Hagsoabs, (2.18)

where

f{sys<—>abs = ZHZ/ dw l‘fk:<w) [6T<W>dk - &Lé(&))} . (219)
ko Ak

A discussion similar to the Sec. 2.1 leads within the Markov approximation to the

quantum Langevin equation

(1) = —iQuan(t) + (%) Tibian (1) + Aga(1)] (2.20)

IThe calculations performed in this section are similar to the ones performed for a two-sided
cavity [51].
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where € is given by Eq. (2.10). The damping rate of the cavity-mode I'y can now

be presented as

'k = Vkrad + Vkabs, (2.21)

where
YVirad = o2 | Tl (2.22)
21

is the decay rate of the cavity-mode which results from the transmission losses due

to the radiative input-output coupling, and
¢ 2
Vkabs = 2_l|Ak‘ (223)

is the decay rate which results from the unwanted losses, such as the unavoidably ex-
isting material absorption and scattering. For a high-@) cavity, both the transmission
coefficient T}, and the absorption coefficient A, are very small compared with unity
(|ITx| <1, |Ag| < 1). Note, that T}, and Ay are taken at the cavity mode resonance
frequency wg. In Eq. (2.20) the term proportional to TklA)kin(t) is the Langevin noise
force arising from the input radiation field Eq. (2.11), and the term proportional to
Apcx(t) is the Langevin noise force associated with absorption,

dw é(w, t) dw é(w, ty) e t=to), (2.24)

v h =

The operators ¢(w, t) satisfy the bosonic equal-time commutation relation

ck(t) =

[e(w, 1), (W', t)] = d(w — ). (2.25)
From Egs. (2.24) and (2.25), on the time scale under consideration, we derive
[ex(t), ()] = o(t —1). (2.26)

It is not difficult to see that the solution of Eq. (2.20) can be given in the form of

() = ag(to)e (=t 4 ( QCZ> / dt! e~ (t=t) [Tkékin(t’)JrAkék(t’)]. (2.27)

to

The output operator bgeu () can be related to the cavity operator a(t) and the

input operator lA)kin(t) according to the input-output relation

A c\/2 -
b,wut(t):(a> Thiin(t) + Ribpn(t), (2.28)

where -
Ry, = T’:. (2.29)
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The derived input-output relation (2.28) can be used to calculate the correlation
functions of the outgoing field in terms of those of the cavity and input fields [35].
To conclude, the suggested phenomenological interaction energy Eq. (2.19) in-
troduces an additional damping and Langevin noise term to take into account the
effect of the unwanted losses on the cavity field. As the input-output relation (2.28)
together with Eq. (2.29) suggests, the intuitive concept disregards the effect of un-
wanted losses in the coupling mirror, that may influence the outgoing field. A simple
example of this kind of effect is the scattering and reflection of the incoming field
by the coupling mirror [note, that from Eq. (2.29) |Ry|* =1]. Thus, the suggested

concept has a limited validity, and can be applied as long as the input port is unused.

2.3 Damped Atom-Field Dynamics

Let us consider the interaction of the two-level atom with the field of a leaky cavity
within the framework of the quantum noise theory [MKS8|. The temporal evolution
of the system can be studied, among others (see, for example, Refs. [52, 53, 54]) by
means of the quantum trajectory approach [32, 33, 55].

The dynamical evolution of the reduced density operator p(t) of the atom and the

cavity field is described by the following master equation

dp(t 1~ . e o
Z(t) = [ Hing (1)) + ; % [QCLkp(t)a/L — afarp(t) — p(t)azak] (2.30)

(o0 =rad, abs). The Hamiltonian that describes the atom-cavity interaction is given,

in the rotating-wave approximation, by
gint == hg(dkgk + d;z:glg) + h(w21 — wk)ggg, (231)

where ¢ is the atom-field coupling constant, and S, = |n') (n| (n, n' = 1,2). We
consider the case, when the system is initially (at time ¢t =0) prepared in the state
12,0), i.e., the atom is in the upper state, and the cavity field is in the vacuum state.
Then, we may assume, that the Hilbert space that describes the open quantum system
under scrutiny is, in this model, spanned by the three vectors: |2,0), |1,1), i.e., the
atom in the lower level, one photon in the cavity, and the state |1,0), the atom in
the lower state and no photon in the cavity.

In quantum trajectory approach the temporal evolution of the unnormalized state

vector [t(t)), which describes the system at time ¢, is governed by the Schrodinger
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equation with a the Hamiltonian

A . r
H =H-— z’h?’“azak. (2.32)
The evolution generated by this Schrodinger equation is randomly interrupted, from
time to time, by the action of collapse, or jump, operators. If no jump has occurred
between the initial time ¢t =0 and time ¢, the system evolves via Eq. (2.32) in the

state
[¥no(t)) = c2(t) [2,0) +er(t) [1,1) . (2.33)

In this case the conditioned density operator for the atom-cavity system is given by

Do) = (Dao ()| Pao())) ™ [Eno(1)) (uo (L)) (2.34)

Here, the word ”conditioned” is used to emphasize the fact that the density operator
at time ¢ is constrained to the condition that no jump has occurred between the initial
time t=0 and time £. To be more specific, the evolution governed by the Schrodinger

equation is randomly interrupted by two kinds of jumps, Joad and Jops,

Jy =/ Vro G, (2.35)

related to the radiative input-output coupling and photon absorption, respectively.
If a jump has occurred at time tj, the wave vector is found collapsed into the state

|c) due to the action of one of the jump operators,

Tothao(t)) = ke @kl thno(ts)) — [1,0). (2.36)

It is clear that in the problem under consideration we can have only one jump. Once
the system collapses into the state |c) the system remains in that state for all times,

and the conditioned density operator at time ¢ is given by
Pyes(t) = [1,0) (1, 0], (2.37)

where the index ”yes” indicates the fact that a jump has occurred.

According to the quantum trajectory method, the density operator p(t) is obtained
by performing an ensemble average over the different conditioned density operators at
time ¢. In the present case, starting at the initial time ¢ =0 with the density operator
Po=12,0) (2,0], the ensemble average is performed over the two possible realizations
(histories):

P(t) = Pro(t) Pno(t) + Dyes () yes (t)- (2.38)
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Here ppo(t) and pyes(t) are the probability that between the initial time ¢, and time ¢ no
jump and one jump has occurred, respectively [pno(t) + pyes(t) = 1]. To evaluate pp,(t),
according to the the probability method of the delay function [33], the probability
Pno(t) is given by

Puo(t) = (thno(t)[thno(t)) = |ea(t)]” + [ea (1) *. (2.39)
Using Eqgs. (2.38) and (2.39), it is straightforward to obtain

pt) = lea(t)*12,0) (2,0 + e ()7 [1,1) (1, 1 + ea(t)ei (¢) 2, 0) (1, 1
+e3(t)er(t) [1,1) (2,00 + [y(1)]* [1,0) (1,0, (2.40)

where we have defined
les()]* = pyes(t) = 1= [[ea(®)]* + |ea (1) ] - (2.41)

Clearly, |ca(t)]?, |c1(t)|* and |e3(t)|? represent the probabilities that at time ¢ the
system can be found in the states |2,0), |1, 1) and |1, 0), respectively. Moreover, from

the master equation (2.30), together with Eq. (2.40), one obtains

Tl =T {%w) 1,0) <1,0|} = Teler (1) (2.42)

Notice, that the probability for a jump to occur in the time interval (¢, ¢+ dt] is given
by
Ppo(t) = (JEJ,), dt = o T [p(t)a,iak} dt = Yo |1 (1)[2dt. (2.43)

The physical interpretation is clear: the probability of a jump is proportional to the
probability |c;(¢)]? to find the system in the state |1, 1), i.e., the atom is in the lower
state, the photon is emitted, and [recall Eq. (2.42)] the related jump operator projects
the system into |1,0), hence producing an increment of |c3(t)|*.

By integrating equation (2.42) we obtain

pyeS<t) = ‘03(t)‘2 = prad<t) +pabs(t)7 (244)

with .
pa(t) - ’7190/ dt/|01(t/)|2. (245)
0

The function p,.q(t) represents the probability that a photon has left the cavity in
the time interval [0,¢], and p.,s(t) the probability that a photon is absorbed in the
same time interval. From Eq. (2.45) it follows that p..q(f) and pans(t) have to be
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monotonically increasing functions: the longer one waits, the larger is the probability
that a photon has leaked out of the cavity or has been absorbed. Note that the
probability amplitudes ¢;(¢) and c3(t) [cf. Eq. (4.49)] can be easily found by solving
the Schrodinger equation.

The probability density distribution of measuring the photon outside the cavity

can be given by
I(z,) = praa(8)] 6 (=, 1), (2.46)

where gz~5(z, t) is the spatio-temporal shape, that characterizes the photon which has
left the cavity. Assume that there is a detector placed at point z, and that the gz;(z, t)
does not change significantly in the detection space resolution Az. The response

probability of the detector is then proportional to

z4+Az B z+Az ~ -
[0 =) [ a3 0P 2 paali PR 4T

On the other hand, the probability to detect a signal at time ¢ in the region from z
to z + Az is equal to the probability to have a jump Jead in the time interval from

t—z/c—Az/c tot—z/c, which on using Eq. (2.43) reads
7krad|cl (t - Z/C> |2AZ/C- (248)

Comparison of Eqs.(2.48) and (2.47) yields the relation

) = Vkrad C — Z/C)|. .
3 0] = | [ et = o) (2.49)

The probability of registering of the emitted photon during the time interval [0, ¢] by

a detector placed just outside the cavity is proportional to

() = /0 T2 15 1) = prall), (2.50)

which is on its turn proportional to ppaq(t).

Thus, we have obtained the relation (2.49) between the absolute value of the
spatio-temporal shape of the outgoing field outside the cavity to the photodetection
probability. In a usual experiment a large number of photodetection events are accu-
mulated to obtain the time-dependent response probability. Note, Eq. (2.49) reveals,
that |¢(z,t)| also depends on the dynamics of the field inside the cavity.



Chapter 3

Leaky High-() Cavities: QED
Foundation and Extension of QNT

As we have discussed in Chapter 2 the conventional approach of a leaky cavity
based on QNT provides a simple description of the input-output problem of leaky
cavities. In particular, the intuitive description of unwanted losses by coupling the
cavity modes to an additional dissipative system and treating this interaction in the
Markovian approximation gives rise to the corresponding quantum Langevin noise
force leaving the input-output relation unchanged. The applicability of this concept
to describe the unwanted losses related to the coupling mirror should be examined.

As we shall discuss in the ensuing chapter, we establish here for the first time a
rigorous framework of a leaky high-() cavity to describe the dynamics of the cavity
field and the radiation field outside the cavity within the frame of exact macroscopic
quantum electrodynamics in dispersing and absorbing media [MK3|. The theory is
based on an exact quantization scheme of the electromagnetic field in causal linear
media [36]. We shall obtain the appropriate mode expansion of the field inside the
cavity and derive the quantum Langevin equations for the corresponding bosonic
operators. We shall derive the input-output relation for the cavity, with special
emphasis on the unwanted losses inside the coupling mirror. Based on the correct
input-output relation, which takes into account the unwanted losses properly, and
assuming that the quantum state of the cavity mode is known at the initial time, we
shall calculate, following Refs. [MK3, MK4], the quantum state of the outgoing field,

with special emphasis on the mode structure of the field.

18
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3.1 Macroscopic QED in Linear Media

We shall begin with presenting the quantization scheme for the electromagnetic
field in the presence of linear media [48], with special emphasis on the interaction
of the field with atomic sources. Applying the formalism to the quantized field in
presence of a dielectric multilayer system, we shall derive the input-output rela-
tions [MK1].

3.1.1 Medium-Assisted Electromagnetic Field

The starting point for the electromagnetic field quantization in the presence of
dielectric bodies is the macroscopic Maxwell equations. For the electromagnetic field
components in the frequency domain,

O(r,t) = / dwe ™0(r,w) = / dwe ™'O(r,w) + H.c., (3.1)
—00 0

Maxwell’s equations in the absence free charges and currents read [48]

V. B(r,w) =0,

(
g0V - e(r,w)E(r,w) = BN(r,w), (
V x E(r,w) — iwB(r,w) = 0, (
(

o'V x B(r,w) + iwepe(r, w)E(r,w) = Jy(rw),

where E(r,w) and B(r,w) denote the electric and magnetic induction fields, respec-
tively, and €(r,w) denotes the spatially varying relative complex-valued electric per-
mitivity of the media, which satisfies the Kramers-Kronig relation due to causality
principles [56]. In the above, it is assumed that the response of the (stationary)
medium is linear, local and isotropic, and the charge BN(r,w) and current density
J N(r,w) are attributed to the presence of the medium with unavoidably occurring
losses. The noise charge p, (r,w) and noise current density j  (r,w) are related to the

noise polarization Py (r,w),
BN(I',(U) =-V 'BN(rvw)a (36)

Jy(rw) = —iwP y(r,w), (3.7)

and satisfy the continuity equation

—iwp(r,w) + V- j (r,w) =0. (3.8)
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Combining Egs. (3.4) and (3.5), it is easy to verify that the electric field operator

E(r,w) satisfies the inhomogeneous Helmholtz equation
w2
V xV xE(r,w) — — &(r,w)E(r,w) = iwpoj , (r, w). (3.9)
- J
Introducing the retarded Green tensor as the solution to the equation

2

VxVxGmﬂwyigdn@qnﬂmzawg—m, (3.10)
together with the boundary condition at infinity, G(r,r’,w) — 0 if |[r — /| — oo, the
solution of Eq. (3.9) can be represented as follows:

E(r,w) = iw,uO/d:S'r”G(r, r',w)-j (r,w). (3.11)

Note that the Green tensor is an analytic function of w in the upper complex half-

plane and has the following properties:

G*(r,r,w) = G(r,r', —w*), (3.12)
G(r,r’,w) = G'(r',r,w), (3.13)

2
% d®sIme(r,w)G(r,s,w) - G*(r';s,w) = Im G(r, ', w). (3.14)

3.1.2 Field Quantization

Once having specified the solution to Maxwell equations for the electromagnetic
field in the presence of medium in terms of noise currents and, therefore, noise po-
larization, Eq. (3.11), the field quantization is performed by replacing j N(r, w) with
the operated-valued quantity j (r,w)— j, (r,w),

2 hEQ A

Jy(tw) =w 7Im5(r,w)£(r,w), (3.15)
where f(r,w) [and f T(r, w)] are the dynamical variables of the composed system con-
sisting of the electromagnetic field and the linear medium including the dissipative

system responsible for absorption:

~

[fu(r7 w)v f;(rlv wl)] = 5HH/5<W - wl)5(3)(r B I'/), (316>
y W), fu’ /7 w

[fulr,w), fu(r' w)] = 0= [fi(r,w), fL(r' &) (3.17)
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Then, the Hamiltonian of the composed system reads
H= / d*r / dw hw fT(r,w) - f(r,w). (3.18)
0

Thus, by means of Egs. (3.11) and (3.15) the (medium-assisted) electric field operator

can be expressed in terms of the dynamical variables as:

A A

E(r) = E® () + EO(r), (3.19)

E®) (r) = / " dw E(r,w), EO@) =[ED @), (3.20)

- h w? .

B(r,w) =i/ — 2 [ @ \/Ime(r,w) G, w) - £, w). (3.21)
o7 C

Accordingly, Eq. (3.4) together with (3.15) leads to

B(r) = /00 dwB(r,w) + Hec. (3.22)

0
= O/d?"r’/ dwwy/@Ime(r,w)VxG(r,r',w)~f(r’,w). (3.23)
0 7T

It can be shown, that the electric field and the magnetic induction field operators

satisfy the fundamental equal-time characteristic commutation relation [48]:

~

[E,(x), Bu(x))] = [Bu(r), Bu(r')] =0, (3.24)
[e0E,(x), B (r')] = —ihe,,0,0(r — ). (3.25)

It is important to point out, that since the real part Ree(r,w) and the imaginary
part Ime(r,w) of the permittivity are related to each other through the Kramers-
Kronig relations, they are positive-valued for every r and w. Therefore, the imagi-
nary part of the permittivity in reality cannot vanish identically for existing media.
Clearly, Ime(r',w) can be very small, so that \/Tme(r/,w) G(r,r',w) in Eq. (3.21)
or in Eq. (3.23) is very small in certain areas of space (r’). However, the magnitude
of the total integral over the coordinate r’ would still be finite because of the inte-
gral relation (3.14) for the Green tensor. Thus, in order to include the areas of the
empty space into consideration, all the calculations are to be performed by assuming
a permittivity close to unity with a small but finite imaginary part in these areas.
Then, after performing the space integrations, the permittivity may be set equal to
unity. In practice, an experimental realization of strict (macroscopic) vacuum areas

is of course hypothetical.
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3.1.3 Atom-Field Interaction

In the previous section we have considered the medium-assisted quantized elec-
tromagnetic field in the case, when no additional sources are present. The interaction
of the field with external sources can now be included by means of the well-known

minimal or multipolar coupling schemes.

Minimal Coupling

Let us consider nonrelativistic point-like charged particles with charges ¢, and
masses My, described in terms of positions r,, and canonically conjugate momenta p,,
that interact with the medium-assisted electromagnetic field. The total Hamiltonian

in the minimal-coupling scheme reads

. 00 R . 1 . .
H= /d%/ dw hwf'(r, w) - f(r,w) + ) o [Po — GaA(E)]  + W,  (3.26)
0 o «

where A(r) is the vector potentials of the medium-assisted electromagnetic field in
the Coulomb gauge,

~

A(r) = /Ooo dwA(r,w) + He., (3.27)

and A(r,w) can be expressed in terms of the transverse part EX(r):

~

Ar,w) = (iw) "B (r,w). (3.28)

Here and in the following, the longitudinal and transverse parts of a vector field O(r)

are denoted as Oll(r) and O*(r), respectively, e.g.,

OB (r) = / rdlH(x —r') - Or'), (3.29)

with
ol(r) = -VvV(4rr)L, (3.30)
ot (r)=d(r) — &l(r). (3.31)

The scalar vector potentials of the medium-assisted electromagnetic field reads
—Vo(r) = El(r). (3.32)

Then, the total Coulomb energy

1

W= [ @ pamoat) + [ arpait) (3.33)
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is given as the sum of the Coulomb energy of the charge particles and the Coulomb

energy of interaction of the charged particles with the medium, where

= qad(r —1'), (3.34)

da(r) = / a3y O (3.35)

Ameg|r — 1|
denoting the charge density and the scalar potential attributed to the charged parti-

cles, respectively.

Multipolar Coupling

The interaction of localized atomic systems (atoms, molecules etc., referred below
to as atoms for convenience) with the electromagnetic field is commonly useful to
present in terms of the field strengths and atomic polarizations. We consider a neutral

atomic system localized at position r4.! The atomic polarization can be presented as

an Ta / dAO[r — 14 — A(Fa —14)]. (3.36)

0

The multipolar coupling Hamiltonian can be obtained from the one of the minimal

coupling form by applying the Power-Zienau transformation to the variables [58, 59]:

U-ﬁm{%/drPﬂ)A@ﬂ. (3.37)

In particular, using Eq. (3.27) together with Eqs. (3.28), (3.29), (3.30), (3.21) and
(3.16), it can be shown that

f'(r,w) = Uf(r,w)U

= f(r,w +Z,u0w~/—1m5 r,w /d3 'PLGH (Y rw). (3.38)

Then, the Hamiltonian Eq. (3.25) can be expressed in terms of the transformed

variables. After some calculations, one finds the multipolar Hamiltonian for a neutral

'Here, r4 represents a classical quantity. In the general case, to take into account also moving
atomic systems, the center-of-mass coordinate should be considered instead r4 — T4, see Ref. [57].
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atom in the form (see Ref. [57] for details of calculation):
H= /d3 / dw hw £ (r, w) - /(r, w)
* ; 2mg,

2
{15; + qa/ AAA(Bo —1a) X B'[ra + A(fa — rA)]}
0

1 . . .
+§ d*rP3(r) — /d3r P)(r) - E'(r), (3.39)
0

where the prime notation for the field operators indicates, that the operator should
be thought of as being expressed in terms of f/(r,w) and f/1(r,w). The first term in
Eq. (3.39) .
Hp = /d3r/ dw hw £ (r,w) - f'(r, w) (3.40)
0

is the Hamiltonian of the composed system of the electromagnetic field and linear
medium. The further terms can be regrouped to obtain the unperturbed atomic

Hamiltonian:
H), = ; QLp’j + 2%0 / dr P2 (r). (3.41)
Let us introduce the electric dipole moment of the atom
d = gota. (3.42)
The interaction Hamiltonian in the case of electric-dipole approximation reduces to?
Hyy = —d' - E'(r)). (3.43)

Notice, that though the field E(r) in the minimal coupling scheme has the meaning
of the medium assisted electric field operator, in the multipolar coupling scheme the
operator E(r) reads

B/(r) = B(r) + 2" P4(r) (3.44)

and, therefore, has the meaning of the displacement field with respect to the atomic
polarization. It is worth to note that the multipolar coupling scheme presented here
can be easily extended to the case of two and more atoms. In this case, the free
Hamiltonian of each atom will be given in the form of Eq. (3.41), and each atom

interacts individually by means of the multipolar coupling Hamiltonian as described.

2Note, in the case of optical radiation long wavelength approximation can be applied, i.e., the
field may be regarded as being slowly varying within the atomic volume, leading to the electric-dipole
approximation.
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3.1.4 Operator Input-Output Relations

The quantization of the electromagnetic field presented in the previous sections
is well suited to study the input-output behavior of the fields at macroscopic bodies.
Field input-output relations that describe the action of the dispersing and absorbing
bodies are useful to study, for example, the statistics of the outgoing fields in terms
of the incoming ones. Here, we shall focus on the consideration of the radiation field

propagating through a planar multilayer dielectric structure [MK1].

Planar Multilayer Structure

A planar multilayer dielectric structure consist of adjoint layers (Fig. 3.1) and can
be characterized by means of a permittivity that changes in a stepwise fashion (let

the z-direction be perpendicular to the layers):
f(w,2) = 3 N()e5 (@), (3.45)
j=0

where
1, if z € jth layer,
Aj(z) = (3.46)
0, otherwise,
and ¢;(w) is the complex permittivity of the jth layer. In the above, the index j labels
the region on the left of the structure (j =0), the region on the right of the structure
(j=n), and the layers of the planar structure (j=1,...,n —1). For simplicity, we
express the z-coordinate dependence in shifted coordinate systems introduced in each
layer separately, so that the range of the z-coordinate is taken to be —oo < z < 0 for
the region on the left of the structure (j =0), 0 < z < oo for the region on the right of
the structure (j =n), and 0 < z < d; for the jth layer of the structure with thickness
d; (j=1,...,n—1).
Exploiting the translational symmetry in the (xy)-plane, we may represent the

Green tensor as a two-dimensional Fourier integral

G(J]/) (I" I',, w) _ /de eik(p—P/) G(]jl)(Z, Z,, k’ w)’ (347)

(2m)?

where p=(z,y), and k= (k,, k,) is the wave vector parallel to the layers. Here and in
what follows, the notations GU7') (r, ', w) and GU7)(z, 2/ k,w) indicate that z varies

in the jth layer and 2’ in the j'th layer. Inserting Eq. (3.47) into Eq. (3.21), we may
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Figure 3.1: Scheme of a planar multilayer dielectric structure. The hatched regions
indicate the presence of active light sources.

write the electric-field operator ) (r,w) as a two-fold Fourier transform,

472

A 1 ) )
EV(r,w) = — / A%k e Pel) (2, k, w), (3.48)

where

E(j)(z7 k, w) = Wi Z / dz’ G(jj/)(z, z/7 k, w) . j(j/) (z/’ k, w) (3.49)
j1=0 " 17']

([7'] indicates integration over the j'th region). Here, similarly to Eq. (3.15) the

Fourier transformed current operators

~
.

iz kw)=w %Im g (w) Y9 (2, k, w) (3.50)

have been introduced, where the operators fU )(z,k,w) are the Fourier transforms of

the original bosonic field operators f D (r,w),

1

0 (r,w) = Gy

/ Ak e™P £0) (2, k, w). (3.51)

The Green tensor GU/)(z, 2’ k,w) for the planar multilayer structure may be

written as [60]

GU (2,2 k,w) = —e, # e.0(z—2) +g¥ (2 2 k w), (3.52)

J

where

g0 (2, 2 k,w) = % 3o, [5g>(z,k,w) =€, ~k,w)B (i)

q=p,s

+EI%(2,k,w) ZIEI (2, —k, w)@(j’—j)] (3.53)
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(0,=1, os=—1). Note that for j =j" one should write O(z — 2') instead of O(j — j’)
[and ©(2' —z) instead of ©(j' —j)]. In Eq. (3.53), the functions £}”(k,w, z) and
Eé<(k, w, z) denote waves of unit strength, traveling, respectively, rightward and left-

ward in the jth layer, and being reflected at the boundary,

£gj)>(z, k,w) _ eé{z(k)eiﬁj(z—dj) + r;l/neéjj (k)e—iﬁj(z—dj)’ (3_54)
9% (2 w) = e (I)e ™7 411 el )7, (3.55)
and ¢ iBd 4 5.
=i _ 1q Loy @77 Ty 7 (3.56)
q ﬁntO/n qu qu/
where
e T (3.57)
(do=d, =0). Here,
=\ -k =8+is (5.5 >0 (3.59)

(k= |k|), where
k= /o) = = K +ik! (K, K > 0), (3.59)

C

and ¢;,; and r;/; are, respectively, the transmission and reflection coefficients between
the layers j’ and j (see App. B for recursion formulae). Finally, the unit vectors egj ) (k)
in Egs. (3.54) and (3.55) are the polarization unit vectors for transverse electric (TE)
(¢=s) and transverse magnetic (TM) (¢ =p) waves,

) k

(k) = = xe., (3.60)

; 1 k
el (k) = - (;@-E + kez) . (3.61)
J
The ‘propagation constant’ 3; determines the propagation behavior in z-direction of
the waves in the jth region. Note that in case of vacuum the waves are propagating
only for 8; =73; (i.e., w/c>k). They are evanescent for 3; =if3; (i.e., w/c<k).
Input-Output Relations

Let us restrict our attention to the electric field, noting that the corresponding

expressions can be readily obtained for the magnetic induction field. Substituting
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the Green tensor (3.52) for j=0 and j=mn into Eq. (3.49), we may decompose the
field operators E© (2, k, w) and E™(z,k,w) in the form of

EO (2, k,w) = Z[ D) ED (2,k,w) + el (k) EY, (2, k,w)], (3.62)
EM(z,k,w) = Z[ W) EMN (2,k,w) + el (k) BN (2, k, w)). (3.63)

Here, the operators

£(0 fow iz [~ —iBo2’3 0
Eéir)l(z,k,w):—z—ﬁoeﬁo /Oodz'e PO Kk, w) - el (K), (3.64)

(n) Pow g [T ez (n)
Eqm(z k,w)= Ee /Z dz’ e j( )(z/,k,w)-eq_ (k), (3.65)

and
0

EY) (2 k,w) = e 2B (kW) + e P02 / dz' 5O (2 kW) - el (k), (3.66)
B (2 k,w) = B (k,w) + ¢ / dz' e 00 (2 Kk, w) - el (k) (3.67)

play the role of input and output amplitude operators, respectively. The input and
output amplitude operators at the two boundary planes of the structure (i.e., z=0"

for j=0 and z=0" for j =n; cf. Fig. 3.1) can be presented as

qun out(k w) E(E?El out(z7k7w) =0 ) (368)
E(Ylln out(k w) Eéribr)l,out(z7 k,w) a0+ . (369)
Then, the input-output relations read
~(0 0
Bjow(ew) \ [ 1o 0ew) t(ew) \ [ Ef(kw)
By (k. w) t(ew) rhplew) )\ Bl w)
[0 w) o (kw) | [ Bl w) -
j=1 (bqn-f—( ) ¢¢(1]r)z—<ka w) EA(gj—)<k7 w)
where the amplitude operators, that refer to the layers of the structure, introduced
as
B9, (kyw) = —H% [7 4 755500 (2 K w) - U (k 3.71
q<+ 7w)_ 25] <z e J (Zv 7w)'eqi( )7 ( . )
d;
~ [ /’l’ w J iB:2 2 (i .
E ) = —5% / 02 O kw) o), (37
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Ef(k,w) = B, (k,w) + EL (k,w)

prow [ .23 )
== / dz’' e 30 (2 k w) - e) (k) (3.73)
2@' 0 !
(j=1,2,...,n—1), are associated with the excitations inside the layers of the planar

structure. The ¢-coefficients in the input-output relations Eq. (3.70) are determined
only by the complex permittivities and thicknesses of the layers of the structure and

the permittivities of the surrounding media:

, 4, e¥Pid; , t!
0 0
o), = o ¢ = _5/. : (3.74)
q) q)
q  iBid; 4 iByd;
G _ e o _Lme 375
¢qn+ - D ) qn— D . rj/o . ( . )

aj
It should be pointed out that the first term on the right-hand side in Eq. (3.52), which
gives rise to a local contribution to the electric field, has been omitted in Egs. (3.62)
and (3.63). Though this contribution is irrelevant for the incoming and outgoing
fields, it must be included in the overall field operator in general, even if there are
effectively no sources at the points of observations.

It is not difficult to prove that the z-dependent amplitude operators (3.64)—(3.67)

obey quantum Langevin-type equations,

8 W
S Bz kw) = BB (2 k w) - % Oz, kw)-e(k),  (3.76)
0 .
5 Bions 2,k 0) = =iBo B0 (2 ko) + G20 (2 bow) - e (). (377)
Similar equations are also valid for Eén)l(z, k,w) and quut(z, k,w). These equations,

together with Eq. (3.70) make it possible to easily calculate the input and output
fields at any position outside the structure. Needless to say that other than the
boundary planes z= 0~ and z = 0% of the structure can be chosen as reference planes
for formulating the input-output relations.

The input-output relations (3.70) enable one to calculate correlation functions of
the output field amplitudes in terms of those of the input field amplitudes and the
amplitudes of the fields inside a planar structure. The simplest case is the calculation
of the expectation values of the field amplitudes. For example, in a typical scatter-
ing arrangement, the active light sources are located outside the structure, so that
the field inside the structure is the absorption-assisted random field whose thermal-

equilibrium expectation value vanishes. Application of Eq. (3.70), thus, leads to the
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expectation-value relations

(B (k,w)) =18, (ES (k,w)) + 14 (B (k,w)), (3.78)
(B (k,w)) =8, (B9 (k,w)) + 1 (B (k,w)), (3.79)

which exactly correspond to standard results in classical optics. On the other hand,
when the active sources are located (in a resonator system) inside the structure, we
find that

n—1 19

t‘ T —iBid ~(q 1
(B, (k, >:;5_2615de [6 Bits (BD (k,w)) + 77, % (B9 (k w)>}, (3.80)

n—1 449

(Bfon(k,w)) = > 2% [(BE)(kw)) + 18y (B (k,0))] (3.81)

j=1 q7
Needless to 58, that when there are no active sources inside the structure, then
the relation <E Y (k,w > 0(j=1,2,...,n—1) is valid and, thus, <E(On k,w > 0.

gout (
Clearly, higher-order correlation functions of the outgoing amplitude operators do not
necessarily vanish in this case. For example, the spectral intensity (in the k-space)
of the radiation outgoing from a plane of a multilayer planar structure in thermal
equilibrium at temperature 7', for chosen polarization, is proportional to wé%ffg (k,w),

where

<E(On)Jr k,w) E )(k' w')>

qout q out

Dikw)d(w—u)i(k—K).  (3.82)

q out

Applying Eq. (3.70) together with Eqs. (3.73) and (3.50), and making use of

(FOT (2 k,w) fD (2 K, 0)) = n(w, T) uud(w — )0k — K),  (j #0,n), (3.83)

we derive
2
n—1 t?/ eiBid;
j/n
qout(k w) (va)Z A 12
j=1 |qu|
X { gﬁZJr(k w) + ‘7‘ /0‘ aq__ (k,w) + [rj/oaé]_)Jr(k,w) + c.c.]} (3.84)
(and wqout(k w) accordingly). Here, n(w,T) denotes the Bose-Einstein distribution

function and the coefficients aqii(k w) and ozqijF(k w) are given in Egs. (A.15) and
(A.16) in App. A.1.
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Input-Output Relations in Terms of Bosonic Operators

In many applications it may be advantageous to express the incoming and the
outgoing field operators in terms of appropriately chosen bosonic operators. The
commutation relations between different amplitude operators can be obtained by
means of the basic commutation relations (3.16) and (3.17), and recalling that the
polarization unit vectors (3.60) and (3.61) are orthogonal to each other. In this way,
it is easy to verify that (i) input amplitude operators that refer to different sides of the
planar structure, commute with each other, (ii) input amplitude operators commute
with amplitude operators that refer to the layers of the structure, (iii) and amplitude
operators, that refer to different layers, also commute.

To be more specific, the bosonic input and output operators are defined as follows:

b (ko w) = (o) (k,w)] 72 B (k,w), (3.85)
with
055 (e, w), BT (K, w)] = 84 8(w — w)d(k — K). (3.86)
In the above,
(0) _mhe? By (o) (0)+
aqin<k7 w) - 5_0§ ‘ﬁO‘Qqur(k) "€yt (k)7 (387>
(n) mhe? By (n)+
aqin(k7w) - €0 C2 ‘6 |2 q (k) qf (k)7 (388)

and the coefficients %" (k ,w) are given by Egs. (A.12), (A.13), respectively, in

q out (
App. A.1. The bosonic operators that refer to the layers of the structure are defined

according to

~(4) _ 1 iB;d; £2(3) (J
cilk,w)=—— [ePYEV (kw E k,w)l, 3.89
k) = |5 Bk w) & EP (k,w)] (3.89)
so that
[ (ke w), ;’i (K,w))] = dyd(w — w)d(k — K), (3.90)
[ (k,w), e (K, w)] =0 (3.91)

(j=1,...,n—1), where the coefficients 55{2 (k,w) are given by Eq. (A.18) in App. A.1.
Substituting Egs. (3.85) and (3.89) into Eq. (3.70), we may express the input-output
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relations in terms of the bosonic operators,

Dy (k. ) R kw) Bk w) ) B (k,w)

ko) |\ L kw) 7w )\ B (kw)
+Z o0, (k,w) azgig_<k,w> E§Q<k,w> o
T\ A (kw) o) (kw) |\ b (kw)

where now the coefficients [modified in comparison with Eq. (3.70)] read

o

(‘é;n tg/n(k,w), (3.93)
qout
i
= o) ok w), (3.94)
qout
and
) Rk W) Ty )
Fion ) = 3250 [0 (kw) 203, (k)| (3.99)
gout

Let us turn to the limiting case where the space outside the structure—except for

possible active atomic sources—may be regarded as being vacuum, i.e.,

eon(w) = 0, euw) — 1, (3.96)
0 if w/e<k,
B0k, w) — (3.97)

Vwi/e2 =k if w/e>k.

For the propagating-field components observed for w/c > k, the coefficients ol )(k w)

qin

and ozqout(k w), respectively, read
Thw? 1
qln(k W) qln(k w) 5_00_2% (398)
and
qout(k w) q1n (k w) (399)

as it can be seen from Egs. (3.87) and (3.88) and Eqs. (A.20) and (A.21) in App. A.1.

Moreover, the output amplitude operators that refer to different sides of the structure
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commute [Eq. (A.19)], which implies that the associated bosonic operators commute
as well. Making use of Egs. (3.98) and (3.99), we see that Eq. (3.92) thus reduces to

bl (k) _(rg/n<k,w> tz/0<k,w>> biin (k. )
by on (I, ) 6, (k,w) 7 o(k,w) o\ Bk w)
n—1 ¢ ( ) q;(j)_ (k, w) é(j) (k, w)
+ 20t ?0) ?*) . (3.100)
i\ O ew) ol (kw) )\ & (kw)

where the transformation matrix connecting the bosonic output operators with the
bosonic input operators is exactly the same as that for the corresponding amplitude
operators in Eq. (3.70). In this case, the field operators E(O)(z, k, w) and E(")(z, k,w)
at the boundaries of the multilayer structure [see Eqs. (3.62), (3.63), (3.68), and
(3.69)] can be represented as

E(O) <07’k’ w) - ﬁoeo Z [ qln k w) + e (k)béoout<k7 w)] 7(3101)

q=p,s

E™ (0", k,w) =

gngo Z [ al") (k,w) + el (k)als,, (k, w)] (3.102)

(Bo=Pn=vw?/c?— k>, w/c>k).

For the evanescent-field components observed for w/c <k, the coefficients ol

qin
[Eq. (3.87)] and aqn)l [Eq. (3.88)] identically vanish, because of ) = ), = 0. Re-
calling Eq. (3.85), we see that bosonic input operators cannot be introduced for
the evanescent-field components. Hence, it is impossible to extend the validity of
Eq. (3.96) to the evanescent-field components. To treat them, one has to, therefore,
go back to the generally valid input-output relations (3.70) for the amplitude op-
erators. Clearly, when there are no active light sources at any finite distance from
the structure, then the input field can be regarded as being effectively a propagating
field [see Eqs. (3.64) and (3.65)], that is to say, a field that does not contain evanes-
cent input components. However, the output field may contain evanescent output

components resulting from the field that refers to the layers of the structure.

3.1.5 Dynamics of Atom-Field System

The multipolar coupling Hamiltonian described in Sec. 3.1.3 can be the starting
point for investigation of the temporal evolution of the medium-assisted electromag-

netic field and the atomic systems. In particular, the dynamical equations for the
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internal atomic variables can be employed to describe the atomic relaxation rates
and the influence of dielectric bodies on them [61] or the dynamical Casimir-Polder
forces [62]. In addition, the representation of the field quantities as the solution to
the Heisenberg equation of motion will be useful to describe the propagation of the
electromagnetic field through various kinds of passive optical systems.

In electric dipole approximation, the Heisenberg equations of motion for the dy-
namical field variables can be derived by using the multipolar Hamiltonian Eq. (3.39)
lor Egs. (3.40), (3.41), (3.43)], recalling Eq. (3.21) and the commutation relations
(3.16), (3.17):3

X 1 -~ ~
f t) = —|f t), H
(r7w7 ) ’lh[ (r7w7 )7 ]
wh( t)+\/ L me( )“’22& (t) - G*( ) (3.103)
= —jwf(r,w me(r — . ra,T )
s Wy h’ﬂ'EO elr,w C2 ~ A AT, W),
the formal solution of which reads
f(r,w,t) = free(r,w, t) + fi(r,w, 1), (3.104)
where
free(r, w, t) = e @O (r,w, 1) (3.105)
and

—>

1 2
s(ryw, t) = \/ Ime(r,w) w_2

hmeg c

«3 / At O(t—t)d () - G*(rs, T, w)e— 1), (3.106)
A

Substituting Eq. (3.104) together with Egs. (3.105) and (3.106) into Eq. (3.21), we
obtain the free-field By (r,w,t) and the source-field E,(r,w, t) parts of the electric

field in the frequency domain:

E(r,w,t) = Ep . (r,w,t) + B,(r,w, 1), (3.107)
where
. B w2 .
Eeo(r,w,t) = iy — [ &% \/Tme(r,0) G(r, 1, w) - free(r', ), (3.108)
TTEY C

3For notational convenience, we shall omit below the prime symbol, introduced earlier to identify
the multipolar coupling operators.
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and

.9
. i w
E (r,w,t)= )

> / At O(t—t")dA(t') - Im G(r 4, r,w)e @) (3.109)
A

Then, using Eqgs. (3.19) and (3.20) it is straightforward to find the source-quantity rep-

resentation of the electric field operator E(r,t). It is worth to note that Egs. (3.104)

(3.106) can be used also to find the source-quantity representations of the other

electromagnetic field operators.

3.2 Leaky Cavities with Unwanted Losses

In this section we investigate the electromagnetic field of a resonator cavity, em-
ploying the quantization scheme described in Sec. 3.1 [MK3]. We may assume, that
the active atomic are located inside the cavity and apply the multipolar scheme
Hamiltonian in the electric dipole approximation to describe the interaction with
the medium-assisted electromagnetic field. We shall show, that the source-quantity
representation of the electromagnetic field leads to the expansion of the field inside
the cavity into a set of nonmonochromatic standing waves—cavity modes. Accord-
ingly, we shall analyze the dynamics of the mode operators and derive the cavity

input-output relations.

3.2.1 Nonmonochromatic Modes of the Cavity Field

Let us consider a modified Ley and Loudon’s [63] model of a resonator cavity, i.e., a
cavity bounded by a perfectly reflecting mirror and a fractionally transparent mirror.
For the sake of transparency, we focus on a one-dimensional case and model the
cavity by a four-layer planar dielectric structure (Fig. 3.2, cf. Sec. 3.1.4). The layers
7=0 and j=2 are assumed to correspond, respectively, to mirrors which confine
the cavity (layer j=1). In particular, the layer j=0 corresponds to the perfectly
reflecting mirror with r1o=—1, while j =2 corresponds to the fractionally transparent
mirror responsible for the input-output coupling. As described in Sec. 3.1.4, we use
with respect to z, shifted coordinate systems such that 0 <z <l for j=1,0< 2z <d for
j=2,and 0 < z < oo for j =3. We assign a frequency-dependent complex permittivity
gj(w) to every layer (j=1,2,3).

To use the results of Sec. 3.1.4 here for one-dimensional case, we should perform
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Figure 3.2: Scheme of the cavity. The fractionally transparent mirror [region (2)]
is modeled by a dielectric plate. The active sources are in region 1, which can also
contain some medium.

the calculations only for the transverse electric component of the field, setting
B(r,w) — A 2E(z,w)e,, (3.110)

(A, mirror area) and keeping only the normally incident waves (k = 0). Apply-
ing the source-quantity representation (3.107) (one-dimensional case) together with
Egs. (3.108) and (3.109) to the field in the jth layer, we may write for the transverse
electric (TE) component of the field (in the Heisenberg picture)

(4 ~(7) ()

EV(z,w,t) = Ego(z,w,8) + B (2,0, 1), (3.111)
with
E(zw,t) = WMOZ / 47 G9(z,2,w)j0 ) (Fw,t)  (3.112)
and
B (2 w,1) = i ”—QZ / At O(t—t)e T d, (') Im G (24, z,w), (3.113)
- mepA 2 —

where [j'] indicates integration over the j'th layer, and the abbreviating notation

~(7)

Jiree(Zr 01 ) = @ Tme;(w) fo(2,w, ) (3.114)

T A free

is used.*

4Here and in the following we omit the index s introduced in Sec. 3.1.4 to distinguish the variables,
which refer to TE polarization.
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In order to make contact with the familiar standing-wave expansion in the ideal-
ized case of a lossless cavity, we evaluate the equations given above for the field inside
the cavity (j =1) with the aim to obtain a nonmonochromatic mode expansion. To
begin, let us first consider the free field in detail. Inserting the Green tensor (B.1)

together with Egs. (B.2) and (B.3) of a one-dimensional planar multilayer structure

into Eq. (3.112), Ege)e(z, w, t) can be represented in the form of

. 1 . . N A
Eirle)e(zv W, t) - D_ [ezﬁlz + T136_Zﬁl(z_21)} |:C(<1J)F(Z, w, t) - C(<12(Z, w, t):|

1

9 < oA
B %ﬁlz){c(l) (Z w t) + T1362Zﬁ1l0(>13_(2’ w, t)
tor e

Dy

[(7&2’ (w, 1) + ra3e224 0 (w, t)} + 3180 (w, t)} (3.115)

(dy =1, dy=d, d3=0). Here, c? (w,t) and c® (w,t) correspond to the intraplate
amplitude operator [cf. Eq. (3.73) for j = 2] and the input amplitude operator at
the boundary plane [cf. Eq. (3.69) together with Eq. (3.67) for n = 3] of the three-

dimensional consideration, respectively,

CP(w,1) = =L [ az ¥ §P (g, (3.116)
(2]

CD(w,t) = =L [ a4z a3 (2w, 1). (3.117)
[3] —liree

In Eq. (3.115) Dy is defined by Eq. (3.57), and

B = Bi(w) = /o) % = () + i (w)]

w
C

=B, +iB) (8,8 =20) (3.118)
according to Eq. (3.58). In the above relations,

/@(1)

C’Sjt(z,w,t) = —g—ﬁj y dz'@(z—z/)eijlZ lfree(z/,w,t), (3.119)
Oz w,t) = =25 [ 4z 0 —)em i) (2 0) (3.120)
1J]
and
Dj(w) =1 — ryyrze®™, (3.121)

Inspection of Eq. (3.115) shows that the function D;(w) characterizes the spectral

response of the cavity. In particular, its zeros, which correspond to the singularities of
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the Green tensor in the lower complex w half-plane, determine the complex resonance
frequencies €2y,
Dy () = 1+ 113(Q )21 @ = 0, (3.122)

Note that in the case when the coupling mirror is not a single plate but a multilayer
system, as it is common in practice, then r3(w) is the reflection coefficient of the
multilayer system and Eq. (3.122) applies as well. Decomposing ). into real and

imaginary parts according to

Q= wyy — 240, (3.123)
we can write the formal solution to Eq. (3.122) in the form of
c 1 / I1/3 "
W = T n |2mk+m—tan™! " —ni In|rs| (3.124)
and
e = S b Lo lombr— tan2( 722 )] ot 1o o (3.125)
= - mk+m—tan | —= ny ln|r .
T 1| " T3 ' v

[n1=n1(Q), ri3 =13 +irfs =r13(Q)], from which w; and I'y may be calculated by
iteration, by starting, e.g., with the resonance frequencies of the lossless cavity.

Let s(t) be a function of time whose Fourier transform is given by

s(w) = gfzi))) = /dtei“ts(t) (3.126)

and assume that S(w) is analytic in the lower half-plane. Employing the residue

theorem, we may write

slt) = / g—:e—wgfg) - Z g OB S (). (3.127)

Applying Eqs. (3.126) and (3.127) to the c-number functions [/’ 47 ze~#1=20] D=1
sin(f12)D7Y, and sin(B32)r13e?P D=1 in Eq. (3.115) and disregarding (irrelevant)
high-frequency contributions that may arise from poles other than those of D;'(w),

~(1
we may rewrite Egre)e(z, w t) as

free § Ekfree 25 W, t (3128)
with
(1) tochw ¢
E t) = — Q
kfree( w, ) 7TATL1 2n1l Sln[ﬁl( k?) ]

X /dt’emk(“'>@(t—t’) T(w)bin(w, +ZAA w)eNw, )| (3.129)
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(A=cav, +, —), where the operators ¢, (w, t) and bin (w, t) denote the bosonic amplitude

operators for TE waves and can be given according to

. TA  poc : (1)
cav (W, t) = —Qeayy | — 75— d ,w, t), 3.130
Ceay (W, 1) a e 2, /[1} z sin(fiz)g, (2w, 1) ( )
b (0,1) = g | A [eiﬁﬂé@’ (w,t) £ (v t)] (3.131)
I ,uochw + I — I I
~ 2 A
bin(w, 1) = ns| [ mA C(w, 1), (3.132)
nfy \| Hochw
with
Oeay = Qeay (W) = 2v/2|n4| [, sinh(2371) — n” sin(Zﬁ{l)r% , (3.133)
s = ax(w) = |ngle®¥? [n} sinh(BYd) + n) sin(ﬁéd)]_% , (3.134)
Acay(w) = —4i @, (3.135)
acav
t A _
Ay (w) = — 21,\/”_1 (rose®d £ 1) &, (3.136)
20+
t314/ Lo
T(w) = —2 V1 it (3.137)
]
It is straightforward to prove that the operators ¢, (w, t) satisfy the Bose commutation
relations:
~ A 1N oy —iw(t—t)
[ex(w, 1), el (W', )] = Snvd(w — w')e : (3.138)
[bin(w, 1), 0L, (', )] = 6(w — w)e 1), (3.139)

with all other commutators being zero.

To calculate the electric free field
A (1) B BN
Efl"ee<z7 t) - dw Efree<z7 W, t) + H'C'7 (314())
0

we divide the w axis into intervals Ay = [2(wp—1 4+ wk), 5(wk + wi41)] and write

B (z,t) =Y By (2,1) + He, (3.141)
k
where
E(l) _ ~ (1)
kfree<z7 t) - d(,() Efree<z7 w, t) (3142)
Ay
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(recall that the index k is used to numerate the resonances of the cavity). Substitution
of Eq. (3.128) together with Eq. (3.129) into Eq. (3.142) yields

B (20) = / dw Efpo(z,w0,6) + 3 / dw Eponeo(z,0,1). (3.143)
Ap Kk A

In the case when I'j, < Awy,, with
1
Awk = §<wk+1 — wk,l), (3144)

the second term in Eq. (3.143) can be regarded as being small compared with the

first one and may be omitted in general, leading to the expression
Bt = [ do Bt (3.145)
k
In this approximation, Eq. (3.141) reduces to

B (z,t) = /A dw Bppa2, 0, 1), (3.146)
k k

Note that within the approximation scheme used, the lower (upper) limit of integra-
tion in Eq. (3.146) may be extended to —oo (+00).
Further, the source field is given by

Es(l)(z,t):/ dw B (2, w,1) + He, (3.147)
0

together with Eq. (3.132). To evaluate the w-integration we again use the resonance
properties of the cavity response function. Performing the Fourier transformation
[see Eqgs. (3.126), (3.127)] and applying the same approximation that leads from
Eq. (3.140) to Eq. (3.146), we obtain

ED(z,t) ZE(l (z,t) + H.c., (3.148)

where

. (Q)z2]
B0 (5 4y = ks (2 /dt@t t')
ks (Za ) 5051 Qk ZA ;

o~ (t—t) A(t/) sin[31(Q)za] + H.c. (3.149)

Note that in Eq. (3.149) it is assumed that e+ d,(t) may be regarded as being an

effective slowly varying quantity.
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Thus, the full intracavity field, given as the sum of the free (3.146) and the source
(3.148) parts,
EW(z,t) = B

free

(2,1) + EM (2, 1), (3.150)

yields the desired nonmonochromatic mode expansion. To illustrate this we introduce

the operators

1
k
A 1 A
bkin<t) = E N dw bin(w,t), (3152)
k

which, on a time scale At > Aw, ', Aw, ', obviously obey [recall Egs. (3.138) and

(3.139)] the commutation relations
(e (1), ély (1] = Orrband(t — 1), (3.153)
[bkin (1), Bl ()] = Srre6(t — 1), (3.154)

Further, recalling Egs. (3.129), (3.146), (3.148), and (3.149), we obtain the non-

monochromatic mode expansion for the intracavity field (I'y < Awy),

EW(z,t) = Ep(2)a(t) + He, (3.155)

where the standing wave mode functions are defined as

hwy

Ex(z) =1 {m} sin [0 (wg) 2], (3.156)

and

ap(t) = / At ©(t—t')e *H(t—1)

« { {m} : [Tkékm(ﬂ) + ; Amém(t/)} _ % ; Ek(zA)aZA(t/)} (3.157)

[Ty, =T (wi), Arxr = Ax(wy)]. From Eq. (3.157) it is not difficult to see that aj obeys

the Langevin equation

ak(t) = —i (wp — 3i0%) ak(t) — > Ei(za)da(t)

2

Nerey]
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and it can be proved (see App. A.2) that the equal-time commutation relation
[k (t), af, (t)] = O (3.159)

holds.
The damping rate in the first term on the right-hand side of Eq. (3.158) can be
decomposed as follows (see App. B):

L'k = Ykrad + Yrabs » (3.160)
c
rad = ———|T|?, 3.161
Vkrad 2|n1(wk)|l| k| ( )
c
abs = =———— ) |Anl% 3.162
Vkab ;’YIM 2\”1(%)” ;| k)\| ( )

Here, 7iraq is the radiative decay rate describing the transmission losses due to the
input-output coupling and “gaps is the (nonradiative) decay rate describing the two
kinds of absorption losses: (i) losses inside the cavity® (term proportional to |Agcay|?)
(ii) and the losses inside the mirror (terms proportional to |A4|*). Accordingly, the
Langevin noise force as given by the third term on the right-hand side of Eq. (3.158)
consists of the contributions associated with the losses due to the input-output cou-
pling [term proportional to Tybgm(t)] and the absorption losses inside the cavity [term
proportional to AgcayCreay ()] and inside the mirror [terms proportional to Ayyéxs(t)].

At this point it is useful to note that the approximation of I'j, < Awy applied in
the derivation can be interpreted as the requirement of very small total decay rate of
the cavity mode in comparison with resonance frequency line separation Moreover,
the field expansion in terms of standing waves is obtained in a coarse-grained approx-
imation, i.e., on a time scale that is large compared with the inverse separation of two
neighboring cavity resonance frequencies. In this approximation, bosonic operators
associated with the standing waves can be introduced, so that they obey quantum
Langevin equations.

It should be pointed out that when e;(wy) can be regarded as being real, then
the second term on the right-hand side of Eq. (3.158) is nothing but the familiar

commutator term (ih) " [ay, Hin], where

Hie = =Y > Er(2a)daix + He. (3.163)
A k

5Note, in a three-dimensional description of the cavity, both absorption and scattering losses give
rise to unwanted losses. In this case, the effect of the scattering losses can be thought of as being
included in Ygaps, effectively increasing the contribution of ygaps to T'k.
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Moreover, from Eq. (3.158) together with Eqgs. (3.160)—(3.162) it is seen that the effect
of absorption losses on the intracavity field may be equivalently described within the

framework of Markovian damping theory, with

. c 7z .
Hsys<—>abs = h; ;Akdw {m} Ak)\(W)a,LCk)\(W) + H.c. (3164)

being the total interaction energy between the cavity modes and the dissipative sys-
tems responsible for absorption. Therefore, the result justifies the intuitive concept
presented in Sec. 2.2. It is fortunate, that unwanted losses such as absorption losses
can be modeled in standard Markovian damping theory by simply complementing
the phenomenological Hamiltonian by further bilinear interaction energies of the
type (3.164) between the cavity modes and appropriately chosen dissipative chan-
nels. In this outline, the radiative losses due to the input-output coupling and the
unwanted losses due to absorption can be regarded as representing independent dis-
sipative channels, each giving rise to a damping rate and a corresponding Langevin
noise force. Note that Eq. (3.164) implies that each cavity mode is coupled to its
own dissipative systems. Needless to say, that in addition to the dissipative effects,
considered here, other channels can also be included in the interaction energy. The
unwanted losses attributed to the cavity wall, which has been assumed to be perfectly
reflecting, is a typical example. As a final note, let us address the following point.
Using Eq. (3.157) together with Egs. (3.151), (3.152) and the commutation relations
(3.138) and (3.139), it is not difficult to prove that

1
A 2 T Z'efiw(tft’)
(), b (w,8)] = S | ——r k 165
[CLk( )7 k 1n<w7 ):| kk [2n1<Wk)l:| \/% o — Qk y (3 )
C % A]M ieiiw(t*t/)
(). & (w0 )] = Gewr ' N
[an(t), ey (W, )] = O [in(wk)l] Vi W=y (3.166)

Let us recall, that in quantum noise theories the cavity mode and the input field
variables are assumed to commute for all times. Thus, there exist a fundamental dif-
ference between the QED approach and the quantum noise theory to the description
of a leaky cavity, while in the latter it is a priori assumed that the cavity field and

the input field belong to two different Hilbert spaces.

3.2.2 Input-Output Relations

In the previous section we have obtained the expansion of the cavity field in

terms of nonmonochromatic modes, and the corresponding dynamical equation for
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the mode operators a(t) has been derived. To compliment the macroscopic QED
analysis of lossy cavities, we turn now to study the field outside the cavity with the
aim to discover its relation to the cavity field.

Again, let us first consider the free field. The electric field obtained by inserting the
Green tensor as given by Eq. (B.1) into Eq. (3.113) with =3 can be separated into the
parts propagating in negative and positive directions along the z axis, representing,
respectively, the incoming and the outgoing parts of the field. In particular, the

outgoing part reads

~ h 2 “
Eo i freo(2,w) = 4 Y[ ay VIme(2,w) Gouw(2, 2, W) frree(2,w),  (3.167)

meg A 2

where the index "out” in Gou(z,2',w) indicates the part of the total Green ten-
sor (B.15) that corresponds to the wave propagating in the positive direction along
the 2z axis with respect to the first z variable. Thus, we evaluate the expression on the
right-hand side of Eq. (3.167) for z=07" (cf. Fig. 3.2) using relations (B.15) together
with (B.16) to obtain

~(3) tize™h T 0 A(1
Eout,free(zv w, t) ’Z:0+ - D1 |:C(<J)r(l, w, t) — C(<z (l, w, t)]
toge®d (2) ~(2) A(3)
+ 25 [c+ (w, 1) + rooC" @,t)] 4 reCP(w, 1) (3.168)
2

Then, using Eqs. (B.13), (B.14) for the reflection and transmission coefficients, after

straightforward calculations we arrive to the following result:

. t1aet01l . .
B0 (20, 1)] g = 25 {[G&Q(z,w,w—OSla,w,t)}

~out,free 2=0+ D1

toyr et
Dy

[7‘236%52(104(3) (w, t) + OSQ) (w, t)] — 131 Gzﬂllé(}) (w, t)}

toaetP2d R )
2= [0 @) + 1P, + 1P 1), (3169)
2

where C’Sjt(l,w,t) is defined by Eq. (3.119) (for z=1), and C®(w, ) and C'¥(w, t)
are defined by Egs. (3.116) and (3.117), respectively. The first term on the right-
hand side in Eq. (3.169) is proportional to D;*(w), that characterizes the spectral

response of the cavity. Applying to this term the same procedure as that leading
from Eq. (3.115) to Eq. (3.129), we obtain

~(3) ~(3)
Eout,free<z7 W, t) ‘z:O+ = Z Ekout,free<z7 W, t) ‘z:()-H (3170)
k
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where

~(3) 1 [pochw
Ek ut free<z7w7t>}zz(]+ = 5 A

C [ gy 00 (1 ) T(w)aw, #) + 3 o
2m(Q)1 dt o @ t_t e T bin 7t A 7t
8 {2711(Qk)l /11 ¢ ( )6 (w) (w ) + - )\(W)C)(u) )

n5r3; tog [rare™d +1 ropetd —1
VTS ) e =2 T wonlb @an
# L Gy B ) - 2 )] ) am)

To give a physical interpretation to this equation, we notice that there are three
physically different contributions to the outgoing free field. The first (integral) term
is proportional to t;3 that stands for the transmission coefficient between the layers 1
and 3, i.e., respectively, inside and outside the cavity. As can be seen by comparison
with Eq. (3.129), this term represents the fraction of the cavity field transmitted
through the mirror. Obviously, the term proportional to rgllakin(w, t) represents the
reflected part of the incoming field, whereas the terms proportional to to3ék+(w,t)
describe the field attributed to the noise sources inside the mirror. To obtain the free-
field part of the outgoing electric field in the time domain we integrate Eq. (3.171)

with respect to frequency,
Eptee(2: )] ocgr = D Bt ree(5:1)] g +Hoe, (3.172)
k
where, for sufficiently high @) value of the cavity, i.e., I'y < Awy,
Bl = [ 0 Bl 0] (3173)

Starting from Eq. (3.113) with j = 3, we may rewrite the source-field part of the
outgoing electric field to obtain, in close analogy to Eqs. (3.147) and (3.149),

ES) (2, 1)| e = EP( § EP(z,1)] . + He., (3.174)
where
. ~(3) w13
E® (4 ¢ :/ dw B¢ " He —  “rtis
ks (Z7 )‘Z:()-F Ay W L g (z,w, >‘z:0+ + C 25051(Qk)l¢4

x> / At O(t—t")e Wi g | (#Y sin[By () za] + Hee..  (3.175)

Finally, the sum of the free-field part and the source-field part yields the full outgoing
field at z =07,

~

3 3
E (2 6)] _gr = ES) ez )| g + EP (2,1)] - (3.176)

out
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Further, for simplicity we restrict the considerations to the case of a cavity in free

space, i.e., n3 — 1, and define the operators

bout (w, 1) = 2 mA

~(3)
,uochw Eout(zawat)}zzmr' (3177)

Then, for the corresponding operator in the time domain

N 1 A
bout (t) = E / dw bout(w, t), (3178)

we divide the integration over frequencies in the intervals around the resonances of

the cavity, as

out Z bkout (3 1 79)

with

brout () = dw byout (w, 1), (3.180)

1
V21 Ja,
where now l;kout(w, t) is given by

T A

brout (W, 1) = 2
kout (@, ) uochw

(z, w, t)‘

z=0*

+ AL (W)ery (w, 1) + AL (W) (w, ) + R (w)bjin (@, 1). (3.181)
Here, the functions A% (w), R\”(w), and T\*)(w) are defined as follows:

t23 1+ T21€i62d

A ()= B =217 182

k:l:(w) Dé s ) (3 8 )
t 4

TO (W) = 2 ¢ibil, 3.183

k(W) N (3.183)

R (W) = r. (3.184)

To evaluate the w integration in Eq. (3.180) we recall, that for sufficiently high @ value
of the cavity, i.e., 'y < Awy, the limits of integration can be extended to —oo (+00).
Then, a comparison with Eq. (3.157) reveals that the source term in Eq. (3.181)
[cf. Eq. (3.175)] and the second (integral) term in this equation sum up to a term
proportional to the cavity-field operator ai(t). Thus, from Egs. (3.179)-(3.181) it
follows that

1

Bkoutu):{ z] T3 an(t) + R (1) + A0k () + A (1) (3.185)

277,1 (wk)
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[T,io) = T,io) (wWk), Ag = Ag(wk), R,(f) = RI(CO) (wi)]. Tt is shown in App. A.3, that on

the time scale considered, i.e., At> Aw,;l, Awl;/l, the commutation relation
[bront (£), Blooui ()] = Saed(t — 1) (3.186)

holds.

Certain interesting conclusions are immediately apparent from form of the derived
input-output relation. Clearly, the third term and the forth term on the right-hand
side in Eq. (3.185) result from the absorption losses in the coupling mirror. Omission
of these terms would lead to the well-known input-output relation presented in Sec. 2.1
for a leaky cavity whose losses solely result from the wanted radiative input-output
coupling (notice that in this case the relation \R,(:) (wg)|=1 holds). Evidently, an anal-
ogous statement holds true also for the intuitive concept to introduce the unwanted
losses within QNT discussed in Sec. 2.2. As we have argued in Sec. 3.2.1, the QED
approach confirms that indeed the damping of the cavity modes due to unwanted
losses can be simply described by introducing into the Hamiltonian an interaction
energy of the kind (3.164) and treating its effect in Markov approximation. In con-
trast, this intuitive concept generally fails with respect to the operator input-output
relations. In fact, the above mentioned interaction energies between the cavity modes
and the dissipative channels introduced to model the mirror-assisted absorption do
not allow inclusion in the theory effects such as the influence of the coupling-mirror-
assisted absorption on the outgoing field via the incoming field. Therefore, the last
two terms in Eq. (3.164) are missing and hence \R,(CO)| =1 is set. As a matter of fact,
due to unavoidably occurring unwanted losses, in practice it is always observed that
|R,(€°)| < 1. Hence, the input-output relations which one would obtain in standard
quantum noise theories are incomplete, and, therefore, to include into the consider-
ation the unwanted losses in a general case, more advanced models based on QNT

might be needed.

3.3 Generalization of QNT Approach: Replace-

ment Schemes

As we have seen, the input-output relations suggested by the simple intuitive con-
cept within the Markovian damping theory in Sec. 2.2 are incomplete since they do

not describe the effect of unwanted losses on the output field which is induced by the
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~(2
A e )
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Figure 3.3: Replacement scheme for modeling the unwanted noise in a one-sided
cavity. The symmetrical beam splitters BS; and BSs model the unwanted noise in
the coupling mirror, and the asymmetrical beam splitter B.S3 simulates feedback.

reflected input field. The answer to the question of how one should model the effect
of the unwanted losses in quantum noise theories is not straightforward. To gener-
alize the quantum noise theory approach with the aim to describe cavity unwanted
losses in a complete and consistent way, we make use of the concept of replacement
schemes [MK5, MK6]. More precisely, we consider a cavity bounded with a perfectly
reflecting mirror and a fractionally transparent mirror, which is responsible for the
input-output coupling. Importantly, we assume, that the fractionally transparent
mirror does not give rise to the absorption losses. Thus, the Langevin equation for

the cavity mode operator reads [cf. Eq. (2.20)]
p T A e (0))2 2\] A
ar(t) = —t |wp — 505, (171 + M) | ax(?)

+ (%)é [%(C)Cikm(t) + Akékin(t)} ) (3.187)

where for simplicity we have assumed that the cavity tranmission coefficient ’];(C) is
real. In Eq. (3.187) the term proportional to dyn(t) denotes the Langevin noise force
due to input-output coupling and the term proportional to ¢, (t) corresponds to the
absorption losses inside the cavity. The corresponding input-output relation is given

as [cf. Eq. (2.28)]

dkout (t) = <2l

The absorption losses attributed to the coupling mirror can be modeled by an

)5 T4, (t) — dyn(t). (3.188)

appropriately chosen system of beam splitters in the input and the output channels,
as it is shown in Fig. 3.3. Here, BS; and B.S; denote a symmetric beam splitter—a

four-port device described by the SU(2) group, where the corresponding input-output
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relations read

dian(t) = T guan () + R E50(0), (3.189)

Grous(t) = T dpous (t) + R (1). (3.190)

Further, BS3 denotes an assymetric U(2) beam splitter with the input-output rela-
tions

brous(t) = €98 T gun(t) + €8 R gran (1), (3.191)

Orin(t) = =R Grous(8) + T, byin (1), (3.192)

We also assume, that the ”input” operators by (t), éxm(t) and é&f) (t) satisfy bosonic

commutation rules of the type

Using Eqs. (3.187) and (3.188) and the input-output relations for the beam split-
ters (3.189)—(3.192), simple algebraic transformations leads to the following equa-

tions:
dk@) = —1 (u)k — lZFk) dk(t)
C A
+ <21) [Tebianlt) + Ay (1) + Asefh) + Acn®)] . (3199)
and

7 c 3 0) A 0)71 o) ~ 0) A
brout(t) = (57) " T ear (1) + R Duaa(£) + A (1) + AR 0), (3195)

where the cavity total decay rate now reads

Re Ty c
TP 1) A 1
and .
_ C ()2 1 Ly
W —w;+2—l\77€ | R (3.197)
is the shifted resonant frequency of the cavity mode, where
T, =1-RTHTE (3.198)

The other c-number coefficients are defined as follows:
T =TT TS Ay = RO T,
Ay = _Tka)R](f)R](Cs)*T;lTk(c) RO e (R _ @)yt
=R = AP

= e TATEY (3.199)
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Note, that the forms of the Langevin equation (3.194) and the input-output rela-
tion (3.195) are identical to the Eqgs. (3.158) and (3.185), respectively, found in the
QED approach. Therefore, we can conclude that the replacement scheme sketched
in Fig. 3.3 generates the quantum Langevin equation and the input-output relation,
which completely describe the effect of unwanted losses in the coupling mirror.

Apparently, there might be different models of replacement schemes, which would
lead to quantum Langevin equations and input-output relations other than those
of Egs. (3.194) and (3.195). In this context, one might ask whether these models
are equivalent to each other and whether they completely describe the effect of the
unwanted losses. To answer, we begin with very general form of the relations. Namely,
one can consider the quantum Langevin equation

1
i = —ilwe — 3+ (57) T baalt) + O 1), (3.200)

together with the input-output relation

Drout (1) = Tk (t) + R ban (t) + C (). (3.201)

In these equations, the operators of unwanted noise, C’,gc) (t) and C’,go) (t), which com-
mute for ¢ > 0 with the input-field operator l;kin(t) and the cavity-mode operator at

the initial time t = 0, ax(0), satisfy the following commutation rules:

~ N 2

(G (1), (1)) = ‘A,(f) 3(tr — ts), (3.202)
A A 2

[C/go) (t1), /EO)T(Q)} = ’«4/(:) Ity — ta), (3.203)

(G (1), O ()] = Exd(t1 — ta). (3.204)

The set of the coefficients 'y, ws, ’Z;(C), ’];(O), ng)’ |A©@2 | AC)2 and =}, characterizes
a cavity with unwanted noise.

Clearly, the above relations (3.200) and (3.201) may correspond to a true physical
situation only when the requirement that the cavity-mode operator and the output
field operator satisfy the usual commutation relations [cf. Egs. (2.5) and (2.14),
respectively| holds. Imposing this requirement on Egs. (3.200) and (3.201) yields the

following constrains for the coefficients:

Ty = AL+ 7P, (3.205)
R+ AP =1, (3.206)

T + TR 45, = 0. (3.207)
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Figure 3.4: An example of a degenerate replacement scheme.

Therefore, the c-number coefficients describing a realistic cavity should belong to
the manifold defined by Eqgs. (3.205)-(3.207). A replacement scheme that generates
the given quantum Langevin equation and the input-output relation represenets, in
mathematical sense, a parametrization of the manifold. The paramterization covers
the whole manifold in the case when the rank of the Jacobian equals to the dimension-
ality of the manifold [64]. Otherwise, the model is degenerate since some additional
constrains—that do not follow from the requirement of preserving the commutation
rules Eqs. (2.5) and (2.14)—hold.

Let us return to the intuitive model suggested in Sec. 2.2. It is easy to check
that the quantum Langevin equation and the input-output relation suggested there
correspond to the replacement sketched in Fig. 3.3, with excluding the beam spliters
BS; and BS;. Obviously, this is an example of the degenerate scheme, since the
constrain |R.|? = 1 holds, which does not follow from the requirement of preserving
the commutation rules Egs. (2.5) and (2.14).

Yet another example of a degenerate scheme is the replacement scheme sketched
in Fig. 3.4. The corresponding quantum Langevin equation and the input-output
relation, which are special cases of Eqs. (3.200) and (3.201), read

ar = —i(wp — $iT%)a + ( ) [%(C)Bkin( )+A,€?1 EA O (3.208)

21
Drout (t) = <2l> 7;3(0 k(1) +R](€O)Z;kin( )+.»4(01) Akm( )+A,;z)2 Agjn(t). (3.209)
It is not difficult to prove that for this scheme, the additional constraint

c 7;(0) %(C)

(O)
— .21
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is satisfied, which proves that the replacement scheme is degenerate and does not
describe all possible situations.

Let us briefly return to the replacement scheme sketched in Fig. 3.3. The coef-
ficients I'y, wi, Tk, Arq), Ak), Ak, 7;(0), .A,(:()l), .,4,(:()2) and R,(:) represent the set of
characteristic parameters. This set represent a manifold with the following constrains,

which follow from the commutation relations Eqgs. (2.5) and (2.14):

c
Iy = 2l (|-Ak‘2 + ‘Ak(l)‘Q + |.Ak(2)|2 + \7}|2) , (3.211)
R + A 12 + A, P = 1, (3.212)
and
o ¢)*15 (0) c)x 4(0) )% 4(o
7;( '+ 7;( ) R’(“ + 'A;f()l)Al(f(l) + Al(e(2)-’4§g()2) = 0. (3.213)

The relation given by Egs. (3.196)—(3.199) represent a parameterization of the man-
ifold. It is easy to perform a (numerical) test, which confirms, that indeed the rank
of the Jacobian equals to the dimensionality of the manifold, and, therefore, the

replacement scheme of Fig. 3.3 is complete and nondegenerate.

3.4 Quantum State of the Outgoing Field

The operator input-output relations allow to calculate, among others, correlation
functions of the outgoing field in terms of (generally mixed) correlation functions of
the cavity field, the incoming field, and the dissipative channels [41]. In the cur-
rent section we shall not consider any of the correlation functions, but focus on the
quantum state as a whole.

In this context, we would like to note, that Eq. (3.185) as a global input-output
relation represents the relation of the electric field operators inside and outside the
cavity. However, this relation does not allow one to specify the incoming and outgoing
nonmonochromatic modes which, as a matter of fact, connected to the cavity mode

in the relevant frequency interval and, hence, carry the quantum state.

3.4.1 Nonmonochromatic Modes of the Outgoing Field

For the sake of transparency we restrict our attention to a single cavity mode and
suppose that during the interaction of atomic sources with the cavity the kth cavity

mode is prepared in some quantum state. Let us assume that the preparation time is
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sufficiently short compared with the decay time F,;l, so that the two time scales are
well distinguishable. In this case we may assume that at some time ¢y (when the atom
effectively leaves the cavity) the cavity mode is prepared in a given quantum state
and its evolution in the further course of time (i.e., for times ¢ >ty) can be treated
as free-field evolution. To specify the relevant modes, it is useful to use Eq. (3.181)
and relate therein byou(w,t) to dx(te). It can be proved (see App. C) that on the
(relevant) time scale At>> Aw, !, Eq. (3.181) can be rewritten as

Brow () = [ C } V /HAt Tem gt )+R bkin(W,to)e’iw(t’tO)
in(wk 2w to

+ A & (w, to)e ) 1 Ay (w, t)e 0, (3.214)

Note that integration of both sides of Eq. (3.214) with respect to frequency over
the interval Ay leads to the input-output relation (3.185) (ng — 1). Substituting
Eq. (3.157) (for t > t5) together with Egs. (3.151) and (3.152) into Eq. (3.214), we
derive

biout (W, 1) = Fif (w, t)ag(to) + Br(w, t), (3.215)

where the c-number function Fj(w,t) reads®

1
' 2 . — ) (t+ At —ty)] =1
F(w 1) = —— (=) porguatio @R [ZHW = BEF AL = t)] =1 g 5
V2m \ 2njl w—

and the operator By,(w, t) is a linear functional of the operators by, (w, to) and é (w, to):

A

Bu(w, t) = / dw’[ Zin(w,w’,t)l;kin(w',to)+ZGZ/\(w,w',t)ém(w’,to)]. (3.217)

Here,
Grinlw, W', ) = T(O)*T,:Uk(w, W, t) + RO 70§ (w — ), (3.218)
Greay (W, W', t) Azcavvk(w W', t), (3.219)
Gt (w, W' 1) = A’,;ivk(w W t) + AL (00§ (1 — o, (3.220)
with
vp(w, W' t) = L e

o njlw — W'

el (t+At—t0) _ i (t+A—t0)  giw(t+At—to) _ i (t+At—to)

— . 221
8 w = w— (3.221)

6Note that due to the vectorial character of the electromagnetic field a three-dimensional descrip-
tion of the cavity input-output relations in general would be rather complex. The evanescent-field
components are necessarily should be taken into account.
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Let us introduce a unitary, explicitly time-dependent transformation according to

Dout (w, 1) ZF(”* HLY (1), (3.222)
0t (1) = /A dw F (W, t)brout (w, 1), (3.223)
k

where, for chosen ¢, the nonmonochromatic mode functions F; éi) (w,t) are a complete

set of square integrable orthonormal functions:

> R (w, ) F (W 1) = 0w — o), (3.224)

/ dw N (w, ) F9"(w, t) = 6. (3.225)
Ay

Needless to say that the commutation relation

(bl (£), Bty ()] = 05 (3.226)
holds.
Let b,itut( t) be the operator attributed to the outgoing mode that is associated

to the cavity mode. As it clearly follows from the input-output relation (3.215), the

nonmonochromatic mode function of the relevant outgoing mode is given by

F t
PO,y = L@ D) (3.227)
i (t)
where the normalization (time-dependent) factor n(t) reads
(1) :/ dw | F(w, )% (3.228)
Ag
By using Egs. (3.215), (3.227) and (3.228) we may rewrite Eq. (3.223) as
Ny () axlto) + BO®) ifi=1,
Dot (1) = | (3.229)
B liz) (t) otherwise,
where
BY(t) = /A dw F (w, t) By(w, 1). (3.230)
k

Note, that using Eq. (3.230) together with Egs. (3.217) and (3.227), from Egs. (3.165)

and (3.166) we find the commutation relation

[an(to), BN ()] =0 (1> to). (3.231)



Chapter 3. Leaky High-Q) Cavities: QED Foundation and Extension of QNT 55

Inserting Eq. (3.217) in Eq. (3.230), we find

BY(t) = \/¢ih ) b (1) + > A/t e ). (3.232)

A

Here the functions C,g? (t) (o =in, \) read

0 = [ P (3.29)
Ay
where
X (w, t) = / dw’ F(W! )G (W, w, ). (3.234)
Ay

The operators ZA),(;)n(t) and é,@\(t) are defined by

bien (1) / dw Xin(,1) bkm (w, to), (3.235)
Ay

V Gin®)
/ dw Xm
A \V Ck)\

To conclude, starting with the cavity input-output relation (3.181) in the fre-

Mw, o). (3.236)

quency domain, we have derived the input-output relation in terms of the non-
monochromatic modes, Eq. (3.229). The choice of the appropriate orthogonal set
of the nonmonochromatic modes of the outgoing field is based on the determination
of the relevant outgoing mode. The relevant outgoing mode is the only nonmonochro-
matic mode in the decomposition that corresponds to the initially prepared cavity
mode. As the results of Sec. 3.2.1 establish, the cavity mode operator does not
commute with the input field operators in the frequency domain [recall Eq. (3.165)].
Using Eqgs. (3.235), (3.234), (3.218) and (3.165), it is straightforward to prove that

the commutation relation
ar(to), b ()] =0 (t >t 3.237
[ax(to), by (1)] (t > to) (3.237)

holds [cf. Eq. (3.231)]. Thus, Eq. (3.237) together with Eqs. (3.229) and (3.232)
reveals that the relevant outgoing mode is not related to the non-zero commutator

of the cavity mode and the incoming field variables, Eq. (3.165).
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3.4.2 Phase-Space Functions

To calculate the quantum state of the outgoing field, we start from the multimode

characteristic functional

Cun9() 6= (oo [~ st ~Hc| ) sy

0
i.e., the characteristic functional of the Wigner functional. Dividing again the inte-

gration over frequencies in the intervals around the resonance frequencies, the char-

acteristic functional in the frequency interval Ay can be presented as
Crout[B(w), t] = <eXp [/ dw ﬁ(w)lA)Lout(w, t) — H.c} > . (3.239)
Ag

Introducing the operators ZA),(jgut(t) according to Eq. (3.222) into the characteristic
functional Eq. (3.239) and taking into account the commutation relation (3.226) we

find that the operator exponential factorizes as

exp [/ dw B(w)bl . (w, ) — H.C.:| = H exp[ ,gl)(t)i)ggit(t) - H.c.] : (3.240)
where

(1) = /A dw F7 (w, 1) 8(w). (3.241)

Let us further consider the case when the nonmonochromatic modes of the incom-
ing field and dissipative channels corresponding to B,(;) (t), i # 1 are in the vacuum
state at the initial time ¢;. Then we may assume that the resulting characteristic

function factorizes as well, with

CrowlB(1).1) = {exp B0 (b1 (1) — Hee] ) (3.242)

being the characteristic function of the relevant outgoing mode. Using Egs. (3.229)
and (3.231) we may rewrite Eq. (3.242) as

Crone 54(8), 8 = (exp [ B (1) /Dl (t0) — Hec.
X exp[ W) BY (1) —H.c.]>. (3.243)

Noting that in accodance with Eq. (3.232), Blil)f(t) is a functional of by (w, to) and
¢ea(w, tp) and recalling the assumption that the preparation time of the cavity mode

quantum state is sufficiently short comparing with the decay rate, we may assume
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that the density operator (at the initial time ¢y) factorizes with respect to the cavity

field, the incoming field and the dissipative channels:

Crout B (1), 8] = <exp [g}j)(t) me(t)al (to) — Hc]>
<eXp [ﬁk”() BV () —H.C.D. (3.244)

Inserting Eq. (3.232) into Eq. (3.244), we may express the characteristic function in
s order of the quantum state of the relevant outgoing field in terms of the charac-
teristic function of the quantum state of the initially excited cavity mode and the
characteristic functions of the quantum states of the incoming field (o =in) and the

dissipative channels (6 =\) as [ = ﬁ,gl)(t)]
Crow (B, £:5) = exp[—L1&(1)812] Ci[V/m(0)B; ' Hc,m[ GO 55|, (3.245)

where

Et) = me(t)s' + ) Co(t)s, — s. (3.246)

From Eq. (3.245) the phase-space function in s order can be then derived to be

2 1
Prowt(a, t;8) = ;ﬁk(t) /dzo/ Pr(a; s')l_[/dzoz(7 Pro(0t; o)

X exp {—% ‘ V@ + ; VG — oﬂ L (3.247)

provided that
&k(t) >0, (3.248

)
where the equality sign must be understood as a limiting process. To calculate 7y (t)
[Eq. (3.228)] and (k. (t) [Eq. (3.233)], we make use of Eqs. (3.216), (3.218)—(3.221),
(3.227), and (3.234). Straightforward calculation yields

(0)

’y Ta — —
m(t) = 1’ikd [1— e Thlrar=to)] (3.249)
(o) (0) s r(0) (0)* (o)
Virad Vkrad (0)2 c RTPTy c R
wlt Jlrad Jhrad ) 1o . (3.250
Chint — 00) = 2 + 15 o T, T 2ml Tw (3.250)
(o) A(O)A* T(O)* A 0)*A
Virad V£ 2 C ApgApgdy c ¥
t A 3.251
Galf = 00) = g | T VR ( )
’V( °) Yk
Cheav (t — 00) = —rad = (3.252)

rz
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where the damping rates Yerad, Yeabs, and g are defined according to Eqgs. (3.161)
and Eq. (3.162), and

© = TP 3.253
Vkrad 2|7’Ll|l| k | : ( : )

Note that the functions (j,(t) specify the weights of the quantum states of the input
field and the noise sources in the mixed quantum state of the relevant outgoing field.
In this context, we notice that the second term on the right-hand side of Eq. (3.250)
corresponds to the contribution of the part of the input field which is reflected at
the coupling mirror. Further, the third and the fourth terms on the right-hand side
of Egs. (3.250) and (3.251) refer to the input field and noise sources, respectively,
which are reflected from the inside of the coupling mirror. The interaction of the
input field, the noise sources inside the mirror and inside the cavity with the cavity
field give rise to the contributions to the outgoing field described by the first terms
on the right-hand side of the Eqgs. (3.250), (3.251) and Cycay (%), respectively.

To conclude, we have used the exact operator input-output relations to explicitly
calculate the quantum state of the outgoing field. We have assumed that the prepa-
ration process of the quantum state of the cavity field is sufficiently short compared
to the decay time of the cavity mode. We have expressed the s-parameterized phase-
space function of the quantum state of the relevant outgoing mode in terms of the
phase-space functions of the quantum states of the cavity mode, the relevant incoming
mode, and the dissipative degrees of freedom responsible for unwanted losses. Most
importantly, we note, that the assumption of the factorization of the characteristic
functions of the cavity field and the incoming field made above in the derivation of
the characteristic function (3.245) is equivalent to the separation of the field Hilbert
space into separate Hilbert spaces for the fields inside and outside the cavity. A gen-
eral description of cavity-assisted radiation field, renouncing this assumption, will be

throughly discussed in Chapter 4.

3.4.3 Examples of Quantum State Extraction

Let us consider the typical case of the dissipative channels being in thermal states,
ie.,
Wis(a) = 21 =2laP/(1+2,) (3.254)
w1+ 2n,
(ny, average number of thermal quanta) and calculate the Wigner function of the

quantum state of the relevant outgoing mode. Inserting Eq. (3.254) into Eq. (3.247),
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(with sy =0), performing the a, integrations, and setting s =s'= s;,=0, we derive

Wkout(a t d2 ' dQﬁ Wk Wkln(ﬁ)
< exp | VIO VBB B g o
& (1)
where
gZV(t) =1- nk( gkln + 2 ZTL)\CIM (3256)

Vacuum Noise

When the incoming field is in the vacuum state [Wyin(8) =27 e 2%°] and the
dissipative channels—in particular, the coupling mirror—are in the vacuum state as

well, then the Wigner function of the quantum state of the relevant outgoing mode
reads [MK2]

Wiout (v, t) = %1_;%(0 /dQO/ Wi (o) exp [—2| ¥ ?kjt;j;t; a ] : (3.257)

This equation reveals that almost perfect extraction of the quantum state of the

cavity mode requires the condition

Nk (t)

to be satisfied, i.e., the value of the extraction efficiency 7;(¢) must be sufficiently
close to unity. In other words, recalling Eq. (3.249) together with Eq. (3.160), the
nonradiative cavity-field decay rate must be small compared to the radiative one,
Yrabs/ 7/(;;2@ < 1—a condition that can hardly be satisfied for high-Q) cavities presently
available [49, 50]. How small this ratio should be depends on the nonclassical features
of the quantum field to be extracted. To illustrate this, let us consider a typical

nonclassical state, namely an n-photon Fock state
Wi (a) = Z(=1)"e 2oL, (4]af?), (3.259)

where L, (x) is the Laguerre polynomial of order n. Substituting Eq. (3.259) into
Eq. (3.257) and employing the integral representation of the Laguerre polynomi-

als [65],
1 efzvz/(lfz)
L,(z)=— ¢ dz2 ———, .260
() 271 fp - 21— 2) (3:260)
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Wiow 0.2 |

Figure 3.5: Wigner function of the quantum state of the outgoing mode for the
case, when the cavity mode is (initially) prepared in a single-photon Fock state.

(a) mi(t) =0.99; (b) nk(t) =0.71; (c) mi(t) =0.5.

where the contour g encloses the origin but not the point z = 1, after straightforward

calculations we obtain the Wigner function of the relevant outgoing mode as

n 2 _9lal? 4. (t)
W (a,t) = Z(=1)"e 2o 2, (8) — 1]" Ly, | — 2|2 . 3.261
k:out(a’ ) 7'('( ) € [ 77k( ) ] 2nk(t) - 1|Oé| ( )
From Eq. (3.261) it follows that the condition
1

must be satisfied to guarantee that the n-photon Fock state prevails in the mixed

quantum state. In the simplest case of a one-photon Fock state, n =1, the condition
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reduces to ng(t) >0.5. That is to say, the weight of the one-photon Fock state exceeds

the weight of the vacuum state in the mixed state of the outgoing field,

W (a,t) = [1 = n(OIW O (a) + m(HW D (a), (3.263)

only if the extraction efficiency exceeds 50%. The condition (3.262) clearly shows that
with increasing value of n the required extraction efficiency rapidly approaches 100%.
The dependence on the extraction efficiency of the quantum state of the outgoing field
is illustrated in Fig. 3.5 for the case in which a single-photon Fock state is desired to be
extracted. Figure 3.5(a) reveals that nearly perfect extraction requires an extraction
efficiency that should be not smaller than 7 (¢) =0.99, which for t — oo corresponds
to the requirement that vrans/Viraa S 0.01. As long as ng(t) > 0.5, the single-photon
Fock state is the dominant state in the mixed state, as can be seen from Fig. 3.5(b)
[ (t) = 0.71, 1.€.; Yeabs/Verad = 0.429 (t — 00)]. For np(t) < 0.5, i.e., Vrabs/Virad = 1
(t — 00)], the features typical of a single-photon Fock state are lost, Fig. 3.5(c).

Another example of typical nonclassical states are Schrodinger catlike states, e.g.,
¥) = N(|aw) + |—an)), (3.264)

with aq real, and
N = [2 (1 + 640‘3)]_1/2. (3.265)

Let us assume, that the cavity mode is initially prepared in such interference state.

Then, the Wigner function reads

_ 2V

7

Wi(«) [672|a*a°|2 + e~ 2lotaol® 4 9e=2l0l” o5 (4apima) | . (3.266)

Substitution of Eq. (3.266) into Eq. (3.257) yields the following expression for the

Wigner function of the relevant outgoing mode:

2
Wiout (0, 1) = 2N° {e—ma—\/nk(t)aoﬁ 4 e-2laty/maol

™

+2¢7 2 cos [4 i (t) cvpIm Oz} 6720[8[17%@)]} - (3.267)

From Eq. (3.267) it follows that nearly perfect extraction of the state requires the

condition

L—m(t) < (3.268)

2|
to be satisfied. Figure 3.6 illustrates the dependence on the extraction efficiency of

the quantum state of the outgoing field for a Schrodinger catlike cavity state with
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Figure 3.6: Wigner function of the quantum state of the outgoing mode for the
case, when the cavity mode is (initially) prepared in a Schrodinger catlike state with
ap=3. (a) ne(t) =0.998; (b) n(t) =0.952; (c) nk(t) =0.84.

ap=3. Comparing Fig. 3.6 with Fig. 3.5, we see that, as expected, the efficiency
for extracting such a Schrodinger catlike state is required to be substantially higher
than that for extracting a single-photon Fock state. For a nearly perfect extrac-
tion of the chosen Schrodinger catlike state, the efficiency should not be smaller
than ng(t) = 0.998, i.e., Yeabs/Verad S 0.002 for t — oo [Fig 3.6(a)]. The nonclassical

interference fringes typical of a Schrodinger catlike state can be observed, at least
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rudimentarily, as long as 7(t) >0.84, i.e., Yrabs/Vkraa <0.19 (t — 00) [Fig 3.6(b);
Ne(t) =0.952, i.e., Vrabs/Viraa = 0.05 (t — 00)]. For smaller values of the extraction

efficiency, the quantum interferences are effectively destroyed [Fig. 3.6(c)].

Role of Thermal Noise

Let us consider Eq. (3.255) together with Eq. (3.256) in the case, when the dis-
sipative channels are thermally excited. At first we assume, that the incoming field
mode with the mode function X,ﬁﬁ(w,t) according to Eq. (3.234) is in the vacuum
state. Then, as one can easily see from Eq. (3.256), the condition to ensure nearly

perfect extraction of the quantum state of the cavity field is

k(1)
L—me(t) + 2, naea(t)

The condition Eq. (3.269) strengthens even more the requirement of smallness of the

> 1. (3.269)

nonradiative cavity-field decay rate compared with the radiative one. In addition to
the requirement of 7;(t) to be close to unity, the value of >, nx(x(t) should be as
small as possible to ensure that the effect of thermal noise effectively does not play a
role. This is obviously the case when both 7y and (;,(t) are sufficiently small.

As an example, let us suppose that the cavity field is initially prepared in a
Schrodinger catlike state |1) = (Jag) + | — ao))/+v/2, which in the further course of
time is to be extracted from the cavity. A measure of how close the (mixed) quantum

state of the outgoing field might be to |¢) is the extraction fidelity
F=m / d*a Wieu (a, ) Wi (o, t). (3.270)

The result is plotted in Fig. 3.7 for ay=3 and mean numbers of thermal photonsny =
ny =0.02.The figure clearly reveals that even for small n, the fidelity can noticeably
diminish if (j,(t) are not small enough.

Needless to say that small values of n, require sufficiently low temperatures. For
cavities with high-quality mirrors [49, 50] with the finesse of several hundred thou-
sands, the second, the third and the forth terms on the right-hand side of Eq. (3.251)
are of an order smaller magnitude than the first term on the right-hand side of
Eq. (3.251), as well as Ckeay, Eq. (3.252), and may be therefore disregarded in the
sum ., 7aCra(t). That is to say, in case of unused input port dissipation due to
absorption in the coupling mirror can be effectively described by adding appropriate

Langevin noise forces in Eq. (3.158).
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Figure 3.7: Extraction fidelity F of a Schrodinger catlike state as a function of
n=mn,(t) and (= >, G (t) forny = ny =0.02.

To describe typical problems on engineering of nonclassical states of light [MK4],
let us assume, that the dissipative channels are again thermally excited and the
incoming field mode with the mode function Xl(ﬁlir)l(w,t) according to Eq. (3.234) is
prepared in some nonclassical state. Note, that this is the mode of the incoming
field, which, together with the cavity mode, contributes to the relevant outgoing
mode. Then, the quantum state of the outgoing field mode is the one of the cavity-
mode superposed with the reflected incoming field mode as well as the modes of the
(thermally excited) dissipative channels. The weights of the modes of the incoming

field and the cavity mode field in the resulting superposition are defined respectively

by the fractions’

Crin (1)
L= 1i(t) = Gein(®) + 222, maa(t) (3.271)
) (3.272)

1= (1) = Grin(t) + 232, naGi(t)

The additional noise associated with the coupling mirror reduces the fraction of the
input field in the resulting superposition, and, therefore, represents the absorption of
the incoming field mode in the coupling mirror. For high-() cavities with the finesse of
several hundred thousands [49, 50], the unwanted losses in the coupling mirror reduce
the weight of the incoming field mode by about 50%. In this way, the quantum state
of the relevant outgoing mode carries additional noise.

The idea of combining the incoming field prepared in the mode X,(Clizl(w, t) and the

cavity mode field in the relevant outgoing mode F; k(l)(w, t), can be used to perform the
reconstruction of the quantum state of the cavity field [MK5, MK6]. In this case, the

"Notice, that dropping the absorption in the coupling mirror, |R,(€O)| =1, and Eq (3.250) reduces

t0 Crin(t — 00) = [1 — n(t — o0)]?.
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)

n

input mode XS (w,t) plays the role of the mode-matched local oscillator field, and
the unbalanced homodyne measurement [66] can be realized [MK5]. That is, if the
input mode is prepared in a coherent state, measuring the photocounting statistics of
the outgoing field the phase-space function of the cavity field can be reconstructed.
The scheme can be further extended to determine the parameters of realistic cavities
in terms of reflection efficiencies of various modes of the incoming field [MKT7].
Notice, to obtain the results presented above, we have assumed, that the non-
monochromatic modes of the incoming field and the dissipative channels correspond-
ing to 3,?) (), i # 1 [the mode functions X,(;i)n(w, t), Eq. (3.234), o0 =in, ] are initially
prepared in the vacuum state. In practice, this is not necessarily the case, especially
with regard to the dissipative channels associated with the coupling mirror, due to
the finite number of thermal quanta and the impossibility to prepare the mode of a

dissipative channel. As consequence, additional noise is fed into the cavity.



Chapter 4

Leaky High-() Cavities: Exact
QED beyond QNT

As it is shown in the previous chapter, the input-output relation derived for a high-
() cavity within macroscopic QED allows to introduce the relevant outgoing mode,
i.e., the nonmonochromatic mode, that is related to the cavity mode. Furthermore,
we have expressed the phase-space function of the quantum state of the relevant
outgoing mode in terms of the phase-space functions of the quantum states of the
cavity mode, the incoming field, and the radiationless dissipative system associated
with absorption. In this consideration two major assumptions have been made. First,
it is assumed that—in the spirit of the quantum noise theory—the incoming fields and
the cavity mode can be regarded as being effectively commuting quantities. Second,
the calculations are made explicitely for the case, when the time necessary to prepare
the cavity mode in certain quantum state is sufficiently short compared to the decay
time of this mode so that the preparation process may be disregarded and instead,
an initial condition can be set for the quantum state of the cavity mode. Needless to
say that these simplifying assumptions limit the scope of the results in general.

In the ensuing chapter we would like to develop an exact theory based on macro-
scopic QED in dispersing and absorbing media, with the aim to renounce the approx-
imation that the electromagnetic fields inside and outside a cavity represent indepen-
dent degrees of freedom [MK9]. To go beyond the regime of short-time preparation
we shall include in the theory the preparation process without separating the time
scales of the excitation of the field by the (atomic) source and the extraction of field

from the cavity.

66
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4.1 Two-Level Atom in a Cavity

Consider a single atom that interacts with the electromagnetic field in the pres-
ence of a dielectric medium. The temporal evolution of the system is governed by the
multipolar coupling Hamiltonian (3.39). Let us assume that the atom is localized at
24 inside a resonator-like structure and focus on the case when only one atomic transi-
tion is involved in the resonant interaction with the medium-assisted electromagnetic
field. Then, denoting the bare atomic energy eigenvalues by F, 2 and eigenstates by
1) and |2), the atomic Hamiltonian Eq. (3.41) effectively reduces to!

Hy=Y E.Sun. (4.1)

and the dipole moment Eq. (3.43) reads

a = Z dnn/gnn/7 (42)
where
Surm = [n') (n] (4.3)

(dpw = (n|d|n'), n, w’ = 1,2). Further, let us restrict the attention to a one-
dimensional cavity in z-direction which is bounded by a perfectly reflecting mirror at
the left-hand side and a fractionally transparent mirror at the right-hand side, and
assume that electromagnetic field is linearly polarized and propagates along the z axis
(Fig. 4.1). The Hamiltonian of the combined system, which consists of the electro-
magnetic field and the cavity is given by the one-dimensional version of Eq. (3.40).

Consequently, the ground state of the combined system [{0}) is defined by
fzw){0}) =0, vz, Y, (4.4)

and, therefore, f1(z,w)|{0}) is a one-excitation quantum state of the combined field-
cavity system. Applying the rotating-wave approximation, the multipolar coupling
Hamiltonian that governs the temporal evolution of the overall system, which consists
of the electromagnetic field, the dielectric medium (including the dissipative degrees

of freedom), and the atom coupled to the field, takes the form

H= /dz/ dw hw f1(z,w) f(2,w)+E1S11+F2Spo— | doy S, B (24) + Hee. |, (4.5)

!Note, for convenience of notation we shall omit the prime sign introduced in Sec. 3.1.3 to identify
the multipolar coupling operators.



Chapter 4. Leaky High-Q) Cavities: Exact QED beyond QNT 68

~
bin

\/\/ Bt
2 3

Figure 4.1: Scheme of the cavity. The fractionally transparent mirror of the cavity

(region 2) is modeled by a dielectric plate, and the atom inside the cavity (region 1)
can be embedded in some dielectric medium.

In what follows we consider, for the sake of transparency, the case when the
atom is initially (at time ¢ =0) prepared in the upper state |2) and the rest of the
system, i.e., the combined system that consists of the electromagnetic field and the
cavity, is in the ground state |[{0}). Clearly, the relevant Hilbert space of the overall
system described by the Hamiltonian (4.5) confines just one-excitation states, such
as [2) [{0}) and [1) f(z,w)[{0}). We may therefore expand the state vector of the

overall system at a later time ¢ (¢t > 0) as

(1)) = Ca(t)e =1t 2) |{0}) + / B / " dw Cu(zyw, e 1) (2, 0) (0], (4.6)

where wy; = (Ey — F1)/h is the atomic transition frequency, and the phase exp(iE1t/h)
is introduced in the definition of |¢)(¢)). It is not difficult to prove that the Schrédinger
equation for [¢(t)) then leads to the following system of differential equations for the
probability amplitudes Cy(t) and C(z,w,t):

00 2
21 W
— dw = [ dz/Ime(z,w) Gz, 2,w)Cy (2, w, t)e @2t (4.7)
\/7Th€0A/0 2 /

Ci(z,w,t) = \/% = \/Ims (z,w) G* (24, 2,w) Co(t) @721t (4.8)

(A, mirror area). To eliminate C(z,w,t) we first formally solve Eq. (4.8) [with the
initial condition C(z,w,0)=0],

d* t ) ,
Ci(z,w,t) = \/% 2 \/Ims (z,w) G*(za, 2,w / dt’ Cy(t)elw—w2)t  (4.9)

Inserting Eq. (4.9) into Eq. (4.7) we evaluate the z integration therein using the

02:—
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integral relation Eq. (3.14) to obtain the integro-differential equation
t
Co(t) = / dt' K(t — £)Co(t), (4.10)
0

where the integral kernel K (t) reads

|don | [ dw u)—QIm G2, 24, w)e (w21t (4.11)
7Th,€0./4 0 c ’ ’ | |

K(t) = —

We now recall that the spectral response of the cavity field is determined by the
Green function G(z, 2/, w). As it is thoroughly discussed in Sec. 3.2.1, in the case of a
sufficiently high @) value of the cavity the excitation spectrum effectively turns into a
quasi-discrete set of lines of mid-frequencies w; and widths I';, according to the poles
of the Green function at the complex frequencies where the line widths I'y, are much
smaller than the line separations, Awy, Eq. (3.144). Therefore, we can again divide

the w axis into intervals Ay = [ (wy_1 +wp), 3 (wk + wk+1)] and rewrite Eq. (4.11) as

|doy | / w2 o
K(t) = — dw —ImG w—wa1)t 4.12
( ) 7Th€0./4 ; A, w 2 m (ZA7'ZA7 )6 ( )

Thus, after inserting Eq. (4.12) into Eq. (4.10), we obtain

. d
Cy(t) = 7r‘h?c‘10|.,42/dt / dw_ImG (24, 24, w)Ca(t)e 720710 (4.13)

To take into account the cavity-induced shift dw of the atomic transition frequency wsy,

we make the ansatz
Cy(t) = et Cy(t) (4.14)
and find from Eq. (4.13)
Caft) = —idwCat)

d . o ,
_71|'7:L2€10‘AZ/ dt/ dw —ImG (24, 24, w)Cy(t)e 1 @=@2)=t) (4.15)

where

(:)21 = W1 — ow. (416)

We assume that the atomic transition frequency ws; is in the vicinity of a certain, say
the kth, resonance frequency wy of the cavity, so that strong atom-field coupling may

be realized. In fact, in the off-resonant terms, i.e., all the terms with k' # & in the
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sum in Eq. (4.15), the exponential exp|—i(w — o )(t —t')] can be regarded as being
rapidly oscillating with respect to time, and the time integrals in these terms can
be evaluated in Markov approximation. That is, replacing ég(t/ ) in the off-resonant
terms with Cy(t) and confining ourselves to the times large compared to the inverse
separation of the cavity neighboring resonance frequencies, we may identify dw with

2 2
S = — 121l Z/ do - G20 0) (4.17)
Ay

mhe c? (D91 — W
oA Pt 21

Then, from Eq. (4.15) we can see that Cy(t) obeys the integro-differential equation

t
Cy(t) = / dt’' K (t — t')Cy(t)), (4.18)
0
where the kernel function K (t) reads
~ dor |? w? (o
(t) = —7T|h2€10| 7 [, dw5TmGan, 20,0 w)e WGt (4.19)

In fact, we may use Eq. (4.17) to calculate only the z4-dependent part of the
frequency shift, i.e., the cavity-induced part which arises from the scattering part of
the Green tensor [for the decomposition of the Green tensor in bulk and scattering
parts, see Eq. (B.19)]. The z4-independent part of the frequency shift which arises
from the bulk part of the Green tensor and which is not related the cavity, would
diverge, particularly since the dipole approximation has been made.? Since this
part can be thought of as being already included in the definition of the transition
frequency wq1, we can focus on the z4-dependent part. Further, the integration in
Eq. (4.17) can be approximated by a principal value integration as

5 — |d21|2 P/ 2ImG(ZA7ZA7 ) (420)

 TheoA Wy — w

Then, inserting the scattering part of the Green function as given by Eq. (B.24) in
Eq. (4.20), we derive

- wWor L'y W
F— | |? — 1 . 4.21
Z 4|u}21 — Qk’|2 |:WQ1Wk | K | 47T n(u)gl)] ( )

Here, Q) is the complex resonance frequency, Eq. (3.123), and

4| doy |?
h€0A|n1 (Qk)|2l

ap = sin?[wg |y () |24/ ¢, (4.22)

2Note, the translationally invariant part of the Green tensor yields the well-known Lamb shift [4].
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where [ is the length of the cavity (Fig. 4.1) and n;(w) is the (complex) refractive
index of the medium inside the cavity.

To calculate the kernel function K (t), Eq. (4.19), we note that, within the approx-
imation scheme used, the frequency integration can be extended to +o0o. Employing
the Green function with equal argument z4 given by Eq. (B.25), we may exclude the
off-resonant terms, which may be regarded as being small comparing to the resonant

ones to obtain
f((t) = —iakae_i(Qk_dm)t. (423)

Having solved Eq. (4.18) and calculated Cy(t), we may eventually calculate Cy(t)
according to Eq. (4.9):

d* w2 t ~ . -~ /
Ci(z,w,t) = \/ﬁgvlm e(z,w) G*(ZA,z,w)/O dt’ Cy(t)e! @220t (4.24)

4.2 Quantum State of the Outgoing Field

In the ensuing section we discuss the properties of the quantum state of the out-
going radiation. Employing the solution of the Schrodinger equation [¢(t)), Eq. (4.6)
directly, we study the multimode phase-space function and obtain inter alia the mode
structure of the outgoing field. For the sake of transparency, let us restrict our atten-
tion to the case where the cavity is embedded in free space and consider the outgoing
field, for example, at the point z =07 (cf. Fig. 4.1), given by Eq. (3.21). For this
purpose, we introduce the bosonic operators [cf. Egs. (3.85), (3.88), (3.98) and (3.99)]

- B gocm A -
bout (W) = 24/ — E o (zw) s (4.25)
where the relation
ot (@), Bl ()] = 3w — ). (4.26)

holds.

4.2.1 Wigner Function

To calculate the quantum state of the outgoing field, we evaluate the multimode

characteristic functional (3.238) now in the Schrédinger picture,

Cout[B(w), t] = (b(1)] exp Uooodw B(w)blyy (W) = Hee.| [(8)) (4.27)
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Applying the Baker-Campbell-Hausdorff formula and recalling the commutation re-
lation (4.26), we may rewrite Coy[G(w), t] as

Cunl0() 8 = exp | [ aw )]
x<w<t>\exp[ [ vt >out<w>] exp{— | B @hant)| o). (428)

To evaluate Cyy[B(w), t] for the state |1)(t)) as given by Eq. (4.6), we first note that
from Eq. (4.6) together with the relation (4.4) it follows that

Fz ) 0t)) = Cr(z, e 1) [{0}) (4.20)
Hence, on recalling Eqgs. (4.25) and (3.21), it can be seen that

bout (W) [9()) = F*(w, 1) [1) [{0}), (4.30)

where

\/;C2 /dz Vime(z,w) G ( w)Ci (2, w, t)e™", (4.31)

with C}(z,w,t) being determined by Eq. (4.24). Then, inserting Eq. (4.30) [together
with the corresponding expression for b!  (w)] into Eq. (4.28), we obtain

/ " B@) F () 1)

0

CoulB(),1] = exp {—; / T |ﬂ<w>|2] [1 -

2] L (432)

To represent Cou[B(w),t] in a more transparent form, we introduce a time-de-

pendent unitary transformation according to
=Y FO(w, )89 (1), (4.33)
B(#) = / dw PO (w, 1)3(w). (4.34)
0

Inserting Eq. (4.33) into Eq. (4.28) and assigning Cou[3(w),t] — Cou[39 (1), 1], we

derive

Cout[89(8), 1] = exp [—— 2189 ]

x<¢(t>|exp[§jﬁ“<>béﬁi ]exp[ Zﬁ ]w( ). (4.35)

i
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where

B (1) = / " FO (w, £)bous (w) (4.36)

are the operators associated with nonmonochromatic mode functions F@(w, t) of the

outgoing field, which are not yet specified. Note that
out ZF(Z w, t ) (437)

Accordingly, we may rewrite Eq. (4.32) as

C&mW“Nﬂi]zeXp[—%E:V¢”@N1

2
X |1— ) t)/ dw FO(w, t)F(w, 1) (4.38)
0
We now choose .
t
PO, ¢y = £ (4.39)
n(t)
where, within the approximation scheme used,
o) = [ wlFwoP = [ dolFor, (4.40)
0 —0o0

with F(w,t) given by Eq. (4.31). In this way, from Eq. (4.38) we obtain Cy[37(t), ]

in a ’diagonal’ form with respect to the nonmonochromatic modes:

Cout[B9(1), 1] = C1[BY (1), (] [ [ CiBY (1), 1], (4.41)
i#1
where
Cy(B,t) = e VP2 [1 — (1) 8] (4.42)
and
Ci(B,t) = e P2 (i £1), (4.43)

Hence, the quantum state of the outgoing field factorizes with respect to the non-
monochromatic modes F@(w, t).

The Fourier transform of Cyy[3%(¢),¢] with respect to the 3@ (t) then yields the
desired (multimode) Wigner function Wy (a, t),

Wt (v, 1) = —exp[ 22 |al|2] [1—2n(t)(1 - 2|aq]?)] (4.44)
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which can be rewritten as

Wout (0, t) = Wian, ) [T Wi (i, 1), (4.45)
i#£1
where
Wi(a,t) = [1— @)W (@) + n6) W (@), (4.46)

with Wi(o)(a) and VVi(l)(oz) being, as the notation suggests, the Wigner functions
of the vacuum state and the one-photon Fock state, respectively, for the ith non-
monochromatic mode. We see, that the mode labeled by the subscript ¢ =1—the
excited outgoing mode—is always in a mixed state of a one-photon Fock state and
the vacuum state, due to existence of unavoidable unwanted losses. The Wigner
function Wi (a, t) reveals that n(t) can be regarded as being the efficiency to prepare
the excited outgoing mode in a one-photon Fock state. The other nonmonochro-
matic modes of the outgoing field with i1 are in the vacuum state and, therefore,
remain unexcited. Note, that the formulae derived above refer to the case of contin-
uing atom-field interaction. In particular, the efficiency 7(t) of the excited outgoing
mode being prepared in a one-photon Fock state, as given by Eq. (4.40) together
with Eq. (4.31), refers to this case. In view of various practical applications, it might
be of interest to study also the case of short-term atom-field interaction. Thus, we
shall devote the ensuing two sections to the study of features of the excited outgoing
mode in two cases of the atom-field interaction: continuing and short-term. Note,
that the calculations of Sec. 3.4 are performed in the limiting case of the short-term
atom-field interaction, namely, when the interaction time is much smaller that the
inverse decay rate of the cavity resonance line. A detailed comparison of the results
and, in particular, the relation of the mode functions F¥(w, t) of the outgoing field
[cf. Eq. (4.36)] to the mode functions Fk(i) (w,t), Egs. (3.224) and (3.224), introduced
in Sec. 3.4 in the context of the outgoing mode relevant to the cavity mode, will be

given in Sec. 4.3.2.

4.2.2 Continuing Atom-Field Interaction

To determine the efficiency 7n(t) of the excited outgoing mode being prepared in a
one-photon Fock state in the case of the continuing atom-field interaction, Eq. (4.40),
it is required first to calculate the probability amplitude C(z,w,t), which can be
obtained from the probability amplitude Cy(t) according to Eq. (4.24). In order to
determine the probability amplitude Cy(t) we first substitute Eq. (4.23) into Eq. (4.18)
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and differentiate both sides of the resulting equation with respect to time. In this

way, we derive the following second-order differential equation for éz(t):
Co 4+ i(Qp — @91)Co + L, 0 Cy(t) = 0, (4.47)

where

Ce = pr — Sk = V(% — ©21)2 + ., (4.48)

and ay, is given by Eq. (4.22). The solution to Eq. (4.47) reads

Co(t) = e~ i(@—m)t/2 cos(gkt/2)+i%sin(§kt/2) . (4.49)

Note that when p; > %(Tk + k), then damped vacuum Rabi oscillations of the upper-
state occupation probab