
 
 
 
Information Technology and Electrical  
Engineering - Devices and Systems, Materials  
and Technologies for the Future 
 
 
 
 
 
 
 

Faculty of Electrical Engineering and 
Information Technology 

 
 
 
Startseite / Index:  
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089 

54. IWK 
Internationales Wissenschaftliches Kolloquium 

International Scientific Colloquium 

07 - 10 September 2009 PROCEEDINGS 



Impressum 
 
Herausgeber: Der Rektor der Technischen Universität llmenau 
 Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. 

Peter Scharff 
 
Redaktion: Referat Marketing  
 Andrea Schneider 
 
 Fakultät für Elektrotechnik und Informationstechnik 
 Univ.-Prof. Dr.-Ing. Frank Berger 
 
Redaktionsschluss: 17. August 2009 
 
Technische Realisierung (USB-Flash-Ausgabe): 
 Institut für Medientechnik an der TU Ilmenau 
 Dipl.-Ing. Christian Weigel 
 Dipl.-Ing. Helge Drumm 
 
Technische Realisierung (Online-Ausgabe): 
 Universitätsbibliothek Ilmenau 
  
 Postfach 10 05 65 
 98684 Ilmenau 
 

Verlag:  
 Verlag ISLE, Betriebsstätte des ISLE e.V. 
 Werner-von-Siemens-Str. 16 
 98693 llmenau 
 
 
© Technische Universität llmenau (Thür.) 2009 
 
 
Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind 
urheberrechtlich geschützt. 
 
 
ISBN (USB-Flash-Ausgabe): 978-3-938843-45-1 
ISBN (Druckausgabe der Kurzfassungen): 978-3-938843-44-4 
 
Startseite / Index: 
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089 
 



NEURO-FUZZY ELMAN NETWORK FOR  
SHORT-TERM ELECTRIC LOAD FORECASTING 

 

Ye. Bodyanskiy1 / P. Otto2 / S. Popov1 / T. Rybalchenko1 

 

1Kharkiv National University of Radio Electronics 

2TU Ilmenau 

 

 

ABSTRACT 

 
The problem of short-term electric load forecasting 
(STLF) is considered. A modified architecture of 
Elman-type recurrent neural network is proposed. It 
utilizes a special fuzzification layer to deal with 
quantitative as well as ordinal and nominal data. The 
second hidden layer of the network consists of 
standard Rosenblatt-type neurons with sigmoidal 
activation functions. The context layer is formed by 
delay units and feeds the output signals of the second 
hidden layer back to its inputs. The output layer 
contains a single neuron with sigmoidal activation 
function. Several modifications of a learning 
algorithm for this architecture are derived based on 
Widrow-Hoff, Levenberg-Marquardt, and Chan-
Fallside procedures. The proposed approach was 
tested on historical electric load data from several 
energy systems and showed promising results with 
respect to forecasting accuracy and speed of learning 
in comparison to feedforward neural and neuro-fuzzy 
systems. 
 

Index Terms - Short-term electric load forecasting, 
recurrent neural networks, Elman network, learning 

1. INTRODUCTION 

In the context of the global economic crisis, the task 
of accurate electric load forecasting becomes even 
more important for power systems operation 
planning, power distribution, and operational control 
of the energy sector of the economy as a whole. 
Inaccurate electric load forecasting leads to 

significant economic losses. For example, in [1, 2] it 
is indicated that for the UK economy over the period 
of 1985-2000 improvement of the forecasting 
accuracy by 1% could lead to additional profits for 
energy companies of about 100 million pounds per 
year. This is because overestimation of future load 
leads to unnecessary fuel overexpenditure, and its 
underestimation – to the quality of power supply 
decrease. Both situations incur economic losses. In 
this regard, increasing the accuracy of electric load 
forecasting is indeed an urgent problem that requires 
efficient methods for its solution. 

Among the multitude of approaches used in this 
task, it is possible to mark out [3] traditional methods 
of time series analysis, i.e. Box-Jenkins approach, 
Kalman filtering, adaptive systems theory, regression, 
correlation and spectral algorithms and as the most 
effective – methods of computational intelligence 
and, above all, artificial neural networks (ANNs). The 
success of ANNs in this problem is due to the 
nonlinear nature of the processes under investigation, 
high level of uncertainty (structural and parametric) 
about their properties, their stochastic and chaotic 
nature. All this hinders the effective use of traditional 
methods of statistical analysis and adaptive 
forecasting. 

At present, it can be noted a large number of 
successful examples of ANNs use in the task of 
electric load forecasting in different countries [4-11]. 
The vast majority of cases is based on the “workhorse 
of neural networks” [3] – multilayer perceptron with 
all its modifications, united by a common feedfoward 
architecture. All these ANNs in terms of the random 
processes theory are “non-linear autoregressive 
models with exogenous inputs“ (NARX-models), 
which is a special case of more general structures 
containing moving average components, and known 
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as NARMAX-models with greater flexibility and 
potentially higher accuracy. Theoretically, predictive 
NARMAX-model can be based on the conventional 
multilayer perceptron with global feedback [12], but 
training of such a system is characterized by a low 
speed of convergence, the need for training by 
epochs, inability to work with nonstationary signals. 
An alternative to feedforward neural networks in the 
tasks of forecasting could be recurrent neural 
networks [13], incorporating into their architecture 
both global and local (layer-level) feedback 
connections and trained by specialized procedures. 
There is a number of known examples of the use of 
recurrent ANNs in electric load forecasting tasks in 
Brazil, South Africa, Japan, the United States, 
Taiwan, the Czech Republic [3, 12, 14-17] with a 
sufficiently high accuracy, however, we must note 
quite regular nature of signals, describing the electric 
load in these countries. 

Electric load time series analysis for Ukraine has 
shown a high level of nonstationarity, the presence of 
sharp outliers and drops, irregular trends, etc. 
Therefore well-known recurrent ANN architectures 
(Elman, Jordan, Williams-Zipser, Volterra, etc.) in 
their “pure” form cannot be applied and require 
modification. In this paper, we attempt to use the 
modified Elman recurrent network [18] for solving 
the electric load forecasting problem in Ukraine at the 
level of regional power grids. 

2. ARCHITECTURE OF THE FORECASTING 
RECURRENT NEURAL NETWORK 

Architecture of the modified Elman recurrent neural 
network is shown in Fig. 1. Its use implies that the 
power consumption process can be described by the 
output signal of a nonlinear dynamic system disturbed 
by many factors (weather, time, etc.), including the 
previous system’s states. In addition to traditional 
hidden and output layers of ANN, Elman proposed to 
introduce an additional layer of feedback connections, 
called the context or the states layer. This layer 
receives signals from the output of the hidden layer 
and sends them to the previous layer through the 
delay elements 1z− , thus preserving the processed 
information from previous cycles within the network. 
Our modification concerns the first and the output 
layers of the recurrent neural network. 

The role of the architectural “building blocks” here 
play the standard neurons (elementary Rosenblatt 
perceptrons) with sigmoid-type activation functions, 
delay elements 1z−  and fuzzification blocks intended 
to convert the ordinal and nominal input variables 
characterizing the influence of the environment into a 
quantitative form. Thus, the modified ANN has an 
additional (first) hidden layer, which fully coincides 
with the first layer of the forecasting NARX neuro-
fuzzy system proposed in [19]. In addition, instead of 
an adaptive linear combiner in the output layer, we 

employ a non-linear neuron with a sigmoidal 
activation function, which improves the extrapolation 
properties of the network. 

Output signals of the first hidden layer of delays 
and fuzzification in the form of ( 1)n× -vector 

[1] [1] [1]
1( ) ( ( ), , ( ))T

no k o k o k= …  with components 
describing current electric load ( )y k , its past values 

( 1), , ( )y k y k d− −… , time and weather characteristics 
converted into a quantitative form by fuzzification 
blocks, are fed to the second hidden layer. It is 
formed by 2n  identical neurons with sigmoidal 
activation functions [2]

2, 1, 2, ,
j

j nψ = …  and 

2 2(1 )n n n+ +  tuned synaptic weights [2]
jiw . It can be 

seen from the shown architecture that the output 
signal of the j -th neuron of the second hidden layer 
can be presented as 
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(here 0,1,2,k = …  – current discrete time, [2]
0jw  – bias 

of the j -th neuron of the second hidden layer). The 
output of the whole layer can be presented in a 
vector-matrix notation 

 [2] [2] [2] [2] [2]( ) ( ( ) ( 1)),Co k W x k W o k= Ψ + −  (2) 

where [2]
2( ) ( 1)o k n− × -vector signal, which then is 

sent to the output layer in the form 
[3] [2]( ) (1, ( ))T Tx k o k= , { }[2] [2]

2 2( )jdiag n nψΨ = − × -
diagonal activation functions matrix, 

[2]
2( ( 1))W n n− × + -matrix of the tuned synaptic 

weights of the second hidden layer, 
[2] [1]( ) (1, ( )) ( 1) 1T Tx k o k n= − + × -vector of input 

signals of the second hidden layer coming from the 
first hidden layer, 2 2( )CW n n− × -matrix of the tuned 
synaptic weights of the context layer. 

The context layer is formed by 2n  delay elements 
1z− . The delayed signals [2] ( 1)jo k −  are again fed via 

the synaptic weights C
jiw  to the neurons of the second 

hidden layer. Combining all input signals of the 
second hidden layer in the aggregate vector 

[2] [1] [2]( ) (1, ( ), ( 1))T T Tx k o k o k= −�  of dimension 

2(1 ) 1n n+ + × , we can write the transform realized by 
the second hidden layer and the context layer together 
in the form 

 [2] [2] [2] [2]( ) ( ( )),Co k W x k= Ψ �  (3) 

where the matrix of tuned synaptic weights [2]CW  has 
the dimension 2 2(1 )n n n× + + . 



 

 
Figure 1 Network architecture 

 
The output layer of the modified recurrent neural 

network is formed by a single neuron that produces 
the scalar forecast 
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where [3]
2( 1) 1w n− + × -vector of tuned synaptic 

weights of the output layer. 
In a general form, the transformation performed by 

the proposed modified Elman network can be 
expressed in the following form 
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3. LEARNING OF THE FORECASTING 
RECURRENT NEURAL NETWORK 

Learning of the proposed network will be performed 
as a step-wise minimization of the standard local 
quadratic criterion 
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where  

 [ ]
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+
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0γ >  is a parameter defining the shape of the 
activation function, which also can be tuned; 2,3s =  
– layer index. 

The learning process is based on the 
backpropagation concept and starts by tuning the 
synaptic weights of the output neuron. For the current 
time instant k , for which values of ( ), ( )y k e k  are 
available, a gradient descent procedure that minimizes 
(6) can be written in the form 
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where [3] ( )kη  is a search step parameter that is 
usually chosen empirically, 
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( ( )) ( )
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( ) ( )
u k E k
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δ
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(δ -error) of the output layer. 
Algorithm (8) can be rewritten in a compact vector 

form 
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and considering (7) – 
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Properly choosing the value of the search step 
parameter [3] ( )kη , it is possible to increase the 
learning speed. Consider a one-step modification of 
the Levenberg-Marquardt learning procedure [20]  
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(here 0ρ >  is a regularization term, 
2 1nI +  – 

2 2(( 1) ( 1))n n+ × +  identity matrix). Using simple 
transformations based on Sherman-Morrison formula 
or Moore-Penrose pseudo-inverse, (11) can be 
rewritten in a simple form 
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[3] [3]
2[3]

( ) ( )( 1) ( ) ,
( )

k x kw k w k
x k

δ

ρ
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which structurally coincides with an additive form of 
Kaczmarz identification procedure [21] and with 
Widrow-Hoff learning algorithm when 0ρ = . 

Analysis of (10) and (12) shows that the learning 
process severely decelerates on the “tails” of 
sigmoidal functions where their derivatives are close 
to zero. In this case, it is reasonable to use regularized 
procedures, e.g. of Chan-Fallside type [22] 
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[3] [3] [3] [3]

( 1) ( )
( ) ( ) ( 1),

w k w k
k x k w kη δ ρ

+ = +

+ + Δ −
 (13) 

(here [3]η  – const 0> ; 1 0ρ> > ; [3] ( 1)w kΔ − = 
= [3] [3]( ) ( 1)w k w k− − ), that successfully passes 
plateaus of the target function, which are caused by 
“tails” of sigmoidal functions. 

To accelerate convergence of (13), it is possible to 
make its hybrid with (12) in the following form [23] 
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The algorithm of simultaneous tuning of synaptic 
weights of the second hidden layer and the context 
layer can be expressed in the form 
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where [2]
2[2]

( )( ) , 1, 2, , ;
( )

C
j

j

E kk j n
u k

δ ∂
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∂

…  

20,1, ,i n n= +… .  
If we write the local error of these layers as  
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and take into account that 

 [2] [2] [2]( ) ( ( )),j j jo k u kψ=  (17) 

it is easy to obtain 
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we can rewrite (18) as 
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Then it follows 

 

[2] [2]

[2] [2]
[2] [2] [3] [3]

[2]

[2] [2] [2] [2]

( 1) ( )

( ( ))
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ),

C C
ji ji

j jC
i j

j

C C
ji i j

w k w k

u k
k x k k w k

u k

w k k x k k

ψ
η δ

η δ

+ = +

∂
+ =

∂

= +

�

�

 (21) 
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Thus the process of tuning of the neurons of the 
second hidden layer with additional inputs from the 
context layer in a general form can be written in the 
form 

 [2] [2] [2] [2] [2]( 1) ( ) ( ) ( ) ( ),C C C C
j j jw k w k k k x kη δ+ = + �  (22) 

and taking into account (14) –  
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In the process of learning of the modified recurrent 
neural network, first it is necessary to compute local 
errors [3] [2]( ), ( )C

jk kδ δ  sequentially, and search step 

parameters [3] [2]( ), ( )Ck kη η , and then proceed to 
synaptic weights tuning. 

4. CONCLUSIONS 

We proposed a modified architecture of recurrent 
forecasting neural network and its learning algorithms 
that can be used for short-term electric load 
forecasting. The first hidden layer of delays and 
fuzzification provides a unified way to deal with 
quantitative, ordinal, and nominal variables. This is 
important for maximum utilization of all available 
information about the electric load and its influencing 
factors. 

We have tested the proposed network in the task of 
short-term electric load forecasting for several 
regional power systems of Ukraine. It performed 
better in terms of learning speed than specialized 
feedforward neuro-fuzzy systems having the same 
first hidden layer of delays and fuzzification. This is 
due to smaller number of parameters needed for a 
recurrent network to capture long-term dependencies 
in data. It also performed better in terms of 
forecasting accuracy than traditional Elman recurrent 
network because of the ability to better utilize the 
information given in ordinal and nominal 
measurement scales.  

Thus, the simplicity and high processing rate of the 
proposed network provide advantages over traditional 
approaches, which are currently employed for the 
solution of the short-term electric load forecasting 
problem. 
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