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1. Introduction

A complex linear space H with a hermitian sesquilinear form [-,—] is
called a Krein space if there exists a fundamental decomposition

H=H, &H (1)

with subspaces H4 being orthogonal to each other with respect to |-, —] such
that (Hy,£[-, —]) are Hilbert spaces. If H_ or H is finite dimensional, then
(H,[,—]) is called a Pontryagin space. To each decomposition (1) there
corresponds a Hilbert space inner product (-, —) and a selfadjoint operator
J (the fundamental symmetry) with JJ* = I, J = J* such that

[z,y] = (Jx,y) for z,y € H, (2)

see, e.g. [2, 5, 13].
Conversely, every bounded and boundedly invertible selfadjoint operator
G in a Hilbert space (H, (-, —)) defines an inner product via

[ =)=(G =) (3)

and (H,[-,—]) becomes a Krein space. In particular, if the spectrum of G
consists on the positive (or negative) semiaxis only of finitely many isolated
eigenvalues of finite multiplicity, then (H,[-,—]) is a Pontryagin space.

Equation (3) is the starting point for various generalizations. E.g., if G
is a bounded selfadjoint operator (but no more boundedly invertible) in H
such that o(G) N (—o0,¢) consists of finitely many eigenvalues of G with fi-
nite multiplicities for some € > 0, then (H,[-,—]), where [-, —] is defined by
(3), is called an Almost Pontryagin space, see [9]. Observe that in this case
zero is allowed to be an eigenvalue of G with finite multiplicity. Almost Pon-
tryagin spaces and operators therein were considered in various situations,
we mention only [1, 9, 10, 11, 12, 16, 20, 26, 27]. The more general case
that GG is a bounded selfadjoint operator in H such that zero is an isolated
eigenvalue of G with finite multiplicity gives rise to Almost Krein spaces,
see [3]. Spaces with an inner product given by an arbitrary bounded selfad-
joint operator were studied, e.g., in [15, 21, 22]. For applications we refer to
4,6, 8,9, 10, 11, 12, 14, 16, 17, 18, 19, 26, 27].

In all the above-mentioned generalizations of (3) the selfadjointness of
the operator GG in ‘H is maintained and the bounded invertibility is dropped.
Obviously, this is the same as generalizing (2) by dropping JJ* = [ and
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preserving J = J*. From this point of view, it seems natural to generalize
(2) the other way: dropping selfadjointness and preserving unitarity of J.
The inner product space (H,[-,—]), where [-,—] is defined by (2) with a
unitary operator J is called an S-space, cf. [23] and also Definition 2.1 below.
Moreover, the pair ((-,—),J) is called a Hilbert space realization of the S-
space (H,[-,—]). Evidently, by definition every Krein space is a special case
of an S-space.

In this paper we continue the study of S-spaces and operators therein
started in [23, 24]. It is known from [24] that the inner products of two Hilbert
space realizations ((-,—)1,U;) and ((-,—)2,Us) define the same topology.
Here, we show in particular that U; and U, are similar operators with re-
spect to this topology, cf. Proposition 2.4. In Section 3 we introduce the
notion of selfadjoint operators in S-spaces. We show that their spectrum is
symmetric with respect to the real axis. As a main result we prove that to
each selfadjoint operator A in an S-space (&, [, —]) with p(A) # 0 we find
an inner product (-, —) on & such that (&, (-, —)) is a Krein space with
the same topology as (&, [+, —]) and A is a selfadjoint operator in the Krein
space (&, (-, —)), cf. Theorem 3.13.

Moreover, if (( -, —), U) is a Hilbert space realization, we show in Theorem
3.13 below that each spectral subspace of U related to a Borel subset A of the
unit circle which is symmetric with respect to the origin (i.e. x € A implies
—z € A) is invariant under A. Hence, in this paper we obtain the rather
unexpected result: Each selfadjoint operator in an S-space with p(A) # 0
is a selfadjoint operator in a Krein space with many invariant subspaces,
provided the spectrum of the operator U from some Hilbert space realization
((-,=),U) of (&,[-,—]) is sufficiently rich, i.e., if it consists of more than
two points.

2. Definition and Basic Properties

The following definition is taken from [23].

Definition 2.1. A complex linear space & with an inner product -, —|, that
1s a mapping from & x & into C which is linear in the first variable and
conjugate linear in the other, is said to be an S-space if there is a Hilbert
space structure in & given by a positive definite inner product (-, —) and if
there is a unitary operator U in the Hilbert space (&, (-, —)) such that

(f,9] = (Uf,g) forall f,g€&.



We refer to [-,—| as the inner product of &. The pair ((-,—),U) is called a
Hilbert space realization of (S,[-, —]).

Note, that the inner product [-,—] is not Hermitian, in general. An
S-space is a Krein space if and only if the operator U in Definition 2.1 is
in addition selfadjoint in the Hilbert space (&, (-,—)). For the theory of
operators in Krein spaces we refer to [2, 5].

Proposition 2.2. Let & be a complex linear space with an inner product
[-,—=]. Then the pair (S,[-,—]) is an S-space if and only if there exists
a Hilbert space inner product (-,—) on & and a bounded and boundedly
invertible normal operator T in (&, (-, —)) such that

[f.9]=(Tf.g) forallf.ge6.
Proof. We define the operator U := T(T*T)~'/? and the inner product
(,y) = ((T"T)x,y), x,y€6.

Since T is bijective, this is a Hilbert space inner product on &. From the
relation (T(T*T)~Y/?T*)? = TT* it follows that

(TT*Y? = (T*T)V? = T(T*T)~/*T™. (4)
Hence, for z,y € G we obtain

(Uz,y) = (T"T)*T(T"T) " a,y) = (T(T*T) " PTT(TT) " e, y) = [, y]

and
(Uz,Uy) = (T"T)"*T(T*T) "¢, T(T"T)2y)

— (T(T*T)" V2T T(T*T) " 22, T(T*T)~V/2y)

= (T2, T(T*T)?y) = (T*T)"*T* Tz, y)

= ((T"T)"2,y) = (z,y),
which shows that U is unitary in (&, (-,-)) and (&, -, —]) is an S-space. [J
Lemma 2.3. Let (&,[-,—]) be an S-space. Then there exists a uniquely
defined linear operator D : & — & such that

[z,y] = [y, Dx]  for all z,y € &. (5)

If ((-,—),U) is a Hilbert space realization of (&,[-,—]), then D = U?.
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Proof. Let ((-,—),U) be a Hilbert space realization of (&,[-,—]). Then it
is easily seen that U? satisfies the relation (5) (with D replaced by U?). Let
D : & — & be a linear operator satisfying (5). Then from [y, Dz] = [y, U?x]
for all z,y € & we conclude (Uy, Dx — U?x) = 0 for all x,y € &. And since

U is bijective, it follows that D = U?. O

The topology of an S-space (&, [+, —]) is given by the topology induced
by the Hilbert space inner product (-, —) of some Hilbert space realization
of (&,[,—]). The following proposition states in particular that it does not

depend on the choice of the Hilbert space realization, see also [24].

Proposition 2.4. Let (&,[-,—]) be an S-space and assume that there are
two Hilbert space realizations ((-,—)1,Ur) and ((-, —)2, Us) with

(f, g9l = (Uif,9)1 = (Usaf,g)2 forall f,g € .

Then (-, —)1 and (-, =) are equivalent and the Gram operator S, defined by

(f’g)QZ(Sfag)l fO’f’f,gGG,

is bounded, boundedly invertible and selfadjoint with respect to (-,—); and
with respect to (-, —)s. Moreover, the following statements holds.

(i) Ut =U3.

(ii) The spectral measures of S in (&, (-,—)1) and (S,(-,—)a) coincide
and we have

S=U,U'=U;'Uy, and U'SU, =S '=U;'SU,. (6)
Hence, the operator S is unitarily equivalent to its inverse.
(iii) The operators Uy and Uy are similar. We have
Uy = S0, 8712,

Hence
o(Uy) = o(Uy).



Proof. Denote by || - |1 and || - ||2 the norms induced by (-,—); and (-, —)a,
respectively, and set By := {y € & : ||y||; = 1}. Then, for y € B; the linear
functional

Fy:=[,yl = (Ui, yh = (U2, 9)2
is continuous on both (6 (-,—)1)and (&, ( . —) ). For its corresponding op-
erator norms || Fy||z¢s (- —)),0) and || Fy|lz(s,(-,-)s),0)» respectively, we obtain
| Fyllzes.- )00 = 1 and HF llz¢s,(-=)2)0) = ||CUH2 For all z € & we have

sup,ep, |Fy(7)| < |lz[li < oo. Due to the pr1nc1ple of uniform boundedness
there exists some ¢ € (0, 00) with

sup [|Fyllze.(-—))0) < ¢
yeB

This yields ||ly|la < ¢||y||y for all y € &. By interchanging the roles of || - ||;
and || - || we obtain that these two norms are equivalent. Hence, by the well-
known Lax-Milgram Theorem there exists a unique bounded linear operator
S, selfadjoint in (&, (-, —)1), such that

(f,9)2=(Sf,g9)1 for f,ge6.

It is boundedly invertible since ||Sf,|l1 — 0 and ||f.]i = 1 would imply
I fall3 = (Sfn, fu)1 — 0 which contradicts the above proven fact that | - ||
and || - || are equivalent. For f,g € & we have

(Sf.9)2=(S*f.9)1 = (5f,59)1 = (f, S9)a.

Thus, S is also selfadjoint with respect to (-, —),. Moreover, as (-, —); and
(-, —)2 are positive definite, the operator S is uniformly positive.

Now we will show (i)-(iii). Statement (i) follows directly from Lemma
2.3. The equality of the spectral measures E; and Fy of S in (&, (-, —);)
and (&, (-, —)2) follows from the equivalence of the norms || - ||; and || - |2
and Stone’s formula (see, e.g., [7, XII.2]),

b—4d
Ey(ab) = lim m —— [ ((S— O te) " —(S—(A—d)) ") dr

6—0+ e—0+ 27T1 at+5
= EQ((aa b))

(Sf.9)1=(f,9)2=(UUs " f,9)2 = [Us " f, 9] = (LLU5 " f, 9)1,
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where the limit is taken in the strong operator topology. we have S = U;U;*
and, with (i), we conclude S = U 'UU," = U;'U,. We will denote the
adjoint with respect to (-, —); by the symbol *; and the adjoint with respect
to (-, —)2 by *o. For f,g € & we have

(Uaf,9)2 = (SUsf,g)1 = (Uaf,Sg) = (f,U3"Sgh
= (S_1f7 U;159)2 = (f7 S_lUglsg)Qa

thus
Uy> =S~ 'US. (7)
This implies

S =5 = (U U = (U YU = (SUS™H) MU = SULSTHUY,

hence, with S = U U, ' we get S™' = U; 'SU;. Replacing U; by Uy and Us
by U; also S™' = U, 'SU, holds and formula (6) and (ii) are proved.

By (ii) the square roots of S in (&, (-, —)1) and (&, (-, —)2) coincide. We
denote this operator by S'/2. Since, by (6), (U;* S™Y2U,)2 =U; ' S71 U, =
S, we have the relation

51/2 — Ufl 571/2 Ula
which yields
51/2 U2 571/2 — 51/2 Sfl[]1 571/2 — 571/2 Ul 371/2 — Ul

and (iii) is proved. O

3. Linear Operators in S-spaces

For the rest of this paper let (&,[-, —]) be an S-space and let ((-,—),U)
be a fixed Hilbert space realization of (S, [-,—]). In the following all topo-
logical notions are related to the Hilbert space topology given by (-, —). Its
topology is independent of the particular choice of a Hilbert space realization
(see Proposition 2.4).

The adjoint with respect to the Hilbert space inner product (-, —) will
be denoted by *.



Definition 3.1. Let A be a closed, densely defined operator in an S-space.
An adjoint A% with respect to [+, —] is defined via the following relations:

dom A" := {g € & : Ih € & with [Af,g] = [f,h] for all f € dom A},
[Af, g] = [f, Ahg] for all f € dom A and ¢ € dom A%
Analogously, we define *A via
dom := {f € & : 3h € & with [f, Ag] = [h, g] for all g € dom A},
[f, Agl = [(Af,g] forallg € domA and f € domA.

In the following lemma we collect some of the properties of A% and A.
For a proof we refer to [24].

Proposition 3.2. The operators A* and "A are closed, densely defined and
satisfy

dom A" = Udom A* = dom(A*U*) and A*=UAU* (8)

and
dom“A = U*domA* = dom(A*U) and ‘A= U*A*U. 9)

Recall that for for a densely defined operator 1" and a bounded operator
X in a Hilbert space we have (see [25, Section 4.4])

(XT)* =T"X" and, if X is boundedly invertible, (T°X)* = X*T™.  (10)
Proposition 3.3. If 'A = A" then AD = DA where D = U?.
Proof. 1f "A = A% then from Proposition 3.2 and (10) we conclude
YAY) = HUA'U") = U (UAU*)'U = A,
and hence, with %4 = Af,
A=A =U*(A)'U = U*(U*A*U)*U = (U*)>AU* = D*AD.
And since D is unitary, the assertion follows. m

Corollary 3.4. If YA = A% and U has no eigenvalues, then A does not have
eigenvalues with finite geometric multiplicity.



Proof. By Proposition 3.3 we have AD = DA. Assume that \ is an eigen-
value of A with finite geometric multiplicity. From AD = DA it follows that
ker(A — A) is invariant under D. Therefore, D (and hence U) has eigenval-
ues. [

Definition 3.5. A densely defined operator A in the S-space (&,[-,—]) is
called selfadjoint if
A= A"

We have the following characterization for selfadjointness of operators in
S-spaces.

Proposition 3.6. For a densely defined operator A in & the following as-
sertions are equivalent.

(i) A=A, ie., A is selfadjoint in (S, [-,—]).
(il) U*A = A*U*.
)
v) A

(ili) UA = A*U.
(i

If one of these equivalent statements holds true we have
fedomAs U fedomA* < Uf € domA™. (11)

Proof. The equivalence of (i) and (ii) follows from (8), the equivalence of (iii)
and (iv) follows from (9).

Assume that (ii) holds. For f € dom A we conclude U* f € dom A*. This
implies for f, g € dom A:

(f,UAg) = (AU f,g9) = (U"Af,g) = (Af,Ug)

and we have Ug € dom A*, hence UA C A*U. For the other inclusion, we
observe by (ii) that dom A* = U*dom A. For Ug € dom A* and f € dom A
we have U*f € dom A* and

(U f,U"A*Ug) = (f,A"Ug) = (Af,Ug) = (U"Af,g) = (AU f, 9),

thus g € dom(A*)* = dom A. This gives U*A*Ug = Ag and A*U C UA.
This proves (iii).



Assume that (iii) holds. For f € dom A we conclude U f € dom A*. This
gives for f,g € dom A

(U*Ag, f) = (Ag,Uf) = (9. AU f) = (g, UAf) = (U"g, Af)

and we have U*g € dom A*, hence U*A C A*U*. For the other inclusion, we
observe by (iii) that dom A* = Udom A. For U*g € dom A* and f € dom A
we have Uf € dom A* and

(UfUAU"g) = (f,AU"g) = (Af,Ug) = (UAf,g) = (AU, 9),

thus g € dom(A*)* = dom A. This gives A*U*g = U*Ag and A*U* C U*A.
This proves (ii). Moreover, we have shown that (11) holds. O

Proposition 3.7. Let A be a selfadjoint operator in the S-space (&,]-,—]).
Then the spectrum of A is symmetric with respect to the real azis.

Proof. Since A = A" = UA*U*, cf. Proposition 3.2, the operator A is unitar-
ily equivalent to its adjoint. Hence, 0(A) = o(A*) ={A: X € d(A)}. O

Let A be a selfadjoint operator in the S-space (&, [-,—]). If (&,[-,—])
is a Krein space, then U is selfadjoint and thus o(U) = 0,(U) C {—1,1}. It
is well-known that the spectrum of A may be rather arbitrary. For example,
it can happen that o(A) = C.

Example 3.8. Assume that — in contrast to the Krein space case — o(U)
consists of two eigenvalues A\j, Ao with Ay # —Xg, e.g. o(U) = {1,i}. Then
o(U?) = {1,—1}, and since A commutes with D = U? by Proposition 3.3
the spectral subspaces of D are A-invariant. Since these coincide with the
eigenspaces of U corresponding to 1 and i, respectively, we have A = A, @ A;
and U = [ @il with respect to the decomposition & = ker(U —1)@ker(U —1i).
From the selfadjointness of A in (&,[-,—]) we conclude that both A; and
A; are selfadjoint with respect to the Hilbert space scalar product (-, —) in
ker(U —1) and ker(U —1), respectively. Hence, A is selfadjoint in (&, (-, —)).
In particular its spectrum is real.

This simple example shows that it is not necessarily "better” to know that
an operator is selfadjoint in a Krein space than in an S-space. In fact, we
will show in the following that every selfadjoint operator in an S-space is also
selfadjoint in some Krein space (if only the resolvent set of the operator is
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nonempty). However, in general (if o(U) # {e", —e} for some ¢ € [0, 7)) the
selfadjointness in the S-space gives us more information about the operator.
E.g. we automatically know a whole bunch of invariant subspaces of the
operator — namely the spectral subspaces of D.

Definition 3.9. Let G be a bounded selfadjoint operator in the Hilbert space
(6,(-,=)). A closed and densely defined linear operator T in & will be
called G-symmetric if GT C (GT)*. The operator T is called G-selfadjoint
if GT = (GT)*.

In the following we will deal with the operators

1 ,. .
G(t) :== % (e"U —e™U*), tel0,m).

It is easily seen that all these operators are bounded selfadjoint operators in
the Hilbert space (&,(-,—)). We have G(0) = ImU and G(7/2) = ReU.
Moreover, the operator G(t) can be factorized in the following way

ot _ oit . .

G(t) = — (]>k (U2 — ei2lt) = — []>|< (U — eﬂt)(U + eﬂt).

21 21
Therefore, G(t) is boundedly invertible if and only if e™, —e™* € p(U). In
this case (&, (G(t)-,—)) is a Krein space.

Proposition 3.10. Let A be a selfadjoint operator in the S-space (&,]-,—]).
Then A is G(t)-symmetric for all t € [0,7). If for some t € [0,7) we have
e it —e7t € p(U) and p(A) # 0, then the operator A is G(t)-selfadjoint.

Proof. Let t € [0, 7). Then by Proposition 3.6 we have

_i ityr L —ityr* _i it =ity
G<t)A_2i(eU e U)A—Ql_(e UA— e "U*A)
1 it Ax —it A*x7T*
:%(etAU—etAU)

C A'G(t) = (G(tH)A)".

This shows that A is G(¢)-symmetric.

Assume e 't —e™* € p(U) and p(A) # (). Then by Proposition 3.7 there
exist A\, A € p(A). In order to see that A is G(t)-selfadjoint we have to show
that dom(A*G(t)) € dom(G(t)A). To this end let g € dom(A*G(t)) and
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set f = (A—XN)"HG{t)TA*G(t) — N)g. As A is G(t)-symmetric we have
A C G(t)"'A*G(t) and thus

(GO TTA'G() = N f = (A= N f = (Gt)TA*G(t) — N)g.
Therefore
0= (Gt) T A"G1t) = N)(f —g) = Gt (A" = NG(H)(f - 9),

and thus G(t)(g — f) is in the kernel of A* —X. By A\, A € p(A), we conclude
f—g=0and g = f € domA. O

Note that in general the operator A in Proposition 3.11 is not G(t)-
selfadjoint. For example let U := il and suppose that A is unbounded.
Then G(7w/2) = 0 and G(7/2)A is the restriction of the zero operator to
dom A, whereas (G(m/2)A)* equals the zero operator on &. Hence, in this
case, A is not G(m/2)-selfadjoint.

If G(t) is boundedly invertible, then the space & equipped with the inner
product (G(t) -, —) is a Krein space. The following theorem follows immedi-
ately from Proposition 3.10.

Theorem 3.11. Let A be a selfadjoint operator in the S-space (S,][-,—]).
If for some t € [0,m) we have e™ —e ™ € p(U) and p(A) # 0, then the
operator A is selfadjoint in the Krein space (&, (G(t)-,—)).

If in the situation of Theorem 3.11 the operator U satisfies some additional
assumptions, more can be said about the spectrum of A.

Theorem 3.12. Let A be a selfadjoint operator in the S-space (&,[-,—])
with p(A) # 0 and assume that there is some t € [0,7) such that e™, —e™i €
p(U). Let T = T UTy be a decomposition of the unit circle, where

Ty:={e*:~t<s<—t+7} and Ty:={e*: —t+m7<s<—t+2r}.

IfTyNo(U) =0 or Tono(U) =0 then A is selfadjoint in the Hilbert space
(6,(G(t)-,—)). In particular,

o(A) CR.

If TyNo(U) or ToNa(U) consists of finitely many isolated eigenvalues of U
with finite multiplicities then the non-real spectrum of A consists of finitely
many isolated eigenvalues with finite algebraic multiplicities,

a(A)\R = {1, A1, A, Az, - Ay A} C o, (A).
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Proof. We define B .

U :=e'U.
Then +1 € p(U). The operator A is selfadjoint in the S-space (&, [-, —].),
where [+, —].) is given by

[f, gl = (Uf,g) forall f,g €.

By Theorem 3.11, A is selfadjoint in the Krein space (&, (Im[?-, ). If
T, No(U) = 0 then ImU is a uniformly negative operator in the Hilbert
space (&, (-, —)), and hence A is a selfadjoint operator in the Hilbert space
(6,—(Im U -, -)). A similar argument holds for the case Ty N o (U) = 0 and
the first assertion of the theorem is proved.

If Ty No(U) consists of finitely many isolated eigenvalues of U with finite
multiplicity then ImU is a bounded and boundedly invertible selfadjoint
operator in the Hilbert space (&, (-, —)). Moreover, the spectral subspace
of ImU corresponding to the positive real numbers is finite dimensional.
Therefore A is a selfadjoint operator in the Pontryagin space (&, (ImU -, -))
and the second assertion of the theorem follows from well-known properties
of selfadjoint operators in Pontryagin spaces, see, e.g., [5]. Similar arguments
apply if Ty N o (U) consists of finitely many isolated eigenvalues of U. O

The following theorem is the main result of this paper. It shows that for
operators with nonempty resolvent set the notions of S-space selfadjointness
and Krein space selfadjointness coincide.

Theorem 3.13. Let A be a selfadjoint operator in the S-space (S,]-,—]).
If p(A) # O then there exists a Krein space inner product (-, —) such that
A is selfadjoint in the Krein space (&, (-, —)). Moreover, if Eyy denotes the
spectral measure of U and if A is a Borel subset of the unit circle T with the
property that © € A implies —x € A, then the spectral subspace Ey(A)S is
an invariant subspace for (A — X)L, X € p(A).

Proof. We choose some ¢ € (0,7/2) and define
Ay ={e":te (—ge)fu{—e':tc(—¢c8)), Ay:=T\A.

Let G and &, be the spectral subspaces of U corresponding to A; and A,
respectively, i.e.

61 = EU(Al)G and 62 = EU(AQ)G
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Then we have

G =06 ¢6,.
We define the sets

A= {e":t € (~26,2¢)} and AZ:=T\A?={z?:2¢€ A}

If Ep» denotes the spectral measure of U? and h : C — C denotes the
function given by h(z) = 22, then we deduce from the properties of the
functional calculus for unitary operators for j = 1,2

Er2(A7) = 1p2(U?) = (1a2 0 1)(U) = 112y (V) = Eu(4),

where 1, is the indicator function corresponding to a Borel set A and
h™'(A?) denotes the pre-image of A% under h. Therefore, the spectral sub-
space of D = U? corresponding to A? coincides with &;, j = 1,2. By Propo-
sition 3.3 we have AD = DA. Hence, for A € p(A) the operator (A — \)~!
commutes with D which implies that the spectral subspaces &; and S5 of
D are invariant under (A — \)~!. In particular, we have

dom A = (domANGS;) ® (dom AN Sy),

and &; and &5 both are invariant under A. Thus, with respect to the
decomposition & = &;BGS, the operators A and U decompose as A = AP A,
and U = U; @ Uy, where A; = A|G; and U; = U|G;, j = 1,2. It is easy
to see that A is selfadjoint in the S-space (&;,(U;-,—)) and that Ay is
selfadjoint in the S-space (&g, (Uz-,—)). And, as p(A) # 0, it follows that
also the resolvent sets of A; and A, are nonempty. Since i, —i € p(U;) and
1,—1 € p(Us), it follows from Theorem 3.11 that there are Krein space inner
products (-, —); and (-,—)2 in &; and &, respectively, such that A; is
selfadjoint in the Krein space (&;, (-, —);), 7 = 1,2. Hence, A is obviously
selfadjoint in the Krein space (&, (-, —)), where (-, —) is given by

(@, v) = (z1,y1)1 + (T2, Y2)2,
T =11+ T, Y =Y1 + Yo, T1, T2 € Gy, T2,y € Gs. [

Remark 3.14. Each Krein space is also an S-space, hence, obviously, every
selfadjoint operator in a Krein space is simultaneously selfadjoint in an S-
space. Theorem 3.13 shows that the contrary is true, as long as the resolvent
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set is nonempty. Hence, for each selfadjoint operator A in an S-space & with
p(A) # 0 we find an inner product which turns & into a Krein space and
A into a selfadjoint operator with respect to this inner product. In addition,
as revealed in the proof of Theorem 3.13, all spectral subspaces of U which
correspond to Borel sets symmetric with respect to z — —z are invariant
subspaces of A.

Example 3.15. As an illustration of Theorem 3.13 we consider a simple
example with 2 x 2 matrices. Let U be unitary in C? and choose an or-
thonormal basis of C? such that the corresponding matrix is diagonal with
entries z1, 2o € T. A matrix with entries a, b, ¢,d € C which is selfadjoint in
the S-space given by U has to satisfy

c Z1 0

LR

z1 0 a b |

0 2z c d|
cf. Proposition 3.6, Part (iii). We assume ¢b # 0. From this we see that a and
d are real, z; = +2z; and b = +¢. Hence, either the matrix is selfadjoint (in

o> R

the case z; = z5) or, if z; = —z3, we have b = —¢ and the matrix is selfadjoint
in the (finite dimensional) Krein space with fundamenal symmetry
1 0
=1 4

Concluding Remarks

S-spaces are Hilbert spaces with an additional inner product given by
an unitary Gramian U. Krein spaces are special cases of S-spaces as their
Gramian can be choosen to be selfadjoint and simultaneously unitary.

From this point of view, the class of S-spaces is larger then the class of
Krein spaces. It is the main result of this paper that the class of selfadjoint
operators in S-spaces having nonempty resolvent set is not larger than the
correponding class in Krein spaces. The nonemptiness of the resolvent set is
crucial for the proof presented here, the corresponding question for selfadjoint
operators with empty resolvent set is not considered.

Moreover, Theorem 3.13 reveals an interesting fact: A selfadjoint operator
in an S-space having a Gramian U with spectrum larger than the set {—1,1}
has invariant subspaces - a fact which is not known a priori for selfadjoint
operators in Krein spaces. An interesting, and so far unanswered, question
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is: Which class of selfadjoint operators in Krein spaces are selfadjoint in an
S-space with a Gramian U which has a spectrum larger than {—1,1} (and,
hence, gives rise to many invariant subspaces)?
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