
 
 
 
Information Technology and Electrical  
Engineering - Devices and Systems, Materials  
and Technologies for the Future 
 
 
 
 
 
 
 

Faculty of Electrical Engineering and 
Information Technology 

 
 
 
Startseite / Index:  
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089 

54. IWK 
Internationales Wissenschaftliches Kolloquium 

International Scientific Colloquium 

07 - 10 September 2009 PROCEEDINGS 



Impressum 
 
Herausgeber: Der Rektor der Technischen Universität llmenau 
 Univ.-Prof. Dr. rer. nat. habil. Dr. h. c. Prof. h. c. 

Peter Scharff 
 
Redaktion: Referat Marketing  
 Andrea Schneider 
 
 Fakultät für Elektrotechnik und Informationstechnik 
 Univ.-Prof. Dr.-Ing. Frank Berger 
 
Redaktionsschluss: 17. August 2009 
 
Technische Realisierung (USB-Flash-Ausgabe): 
 Institut für Medientechnik an der TU Ilmenau 
 Dipl.-Ing. Christian Weigel 
 Dipl.-Ing. Helge Drumm 
 
Technische Realisierung (Online-Ausgabe): 
 Universitätsbibliothek Ilmenau 
  
 Postfach 10 05 65 
 98684 Ilmenau 
 

Verlag:  
 Verlag ISLE, Betriebsstätte des ISLE e.V. 
 Werner-von-Siemens-Str. 16 
 98693 llmenau 
 
 
© Technische Universität llmenau (Thür.) 2009 
 
 
Diese Publikationen und alle in ihr enthaltenen Beiträge und Abbildungen sind 
urheberrechtlich geschützt. 
 
 
ISBN (USB-Flash-Ausgabe): 978-3-938843-45-1 
ISBN (Druckausgabe der Kurzfassungen): 978-3-938843-44-4 
 
Startseite / Index: 
http://www.db-thueringen.de/servlets/DocumentServlet?id=14089 
 



DESIGN OF CLOSED-LOOP CONTROLLERS 
FOR ELECTROMAGNETIC BEARINGS 

 
Dipl. Ing.(FH) Ringo Lehmann, Prof. Dr. Ing. Lutz Zacharias 

 
EAAT GmbH Chemnitz, Westsächsische Hochschule Zwickau; GERMANY 

 
ABSTRACT 

 
For many applications it is important to use 
magnetic bearings. The paper begins by expounding 
briefly the existing designs and fields of application 
for electromagnetic bearings. The levitation of the 
rotor within the stator is achieved by way of closed-
loop control. This paper presents electromagnetic 
and magneto mechanical laws as the basis for 
detailed systematic and mathematical modeling of 
the control loop. The derived system describes the 
characteristic, inherently instable system behaviour. 
A cascaded controller structure is applied to achieve 
the desired control dynamics. Especially the master 
position controller will be parameterized using the 
root-locus method. Computer-aided optimization of 
the controller parameters utilizes simulation and 
provides reliable forecasts of the control loop 
behaviour. Furthermore the analogue control 
algorithm is discretised for implementation on a 
microprocessor based target hardware. 

1. DIFFERENCES BETWEEN 
CONVENTIONAL AND MAGNETIC 

BEARINGS 

Conventional roller) bearings consist of two 
combined movable components. Between these 
components there are solid rolling figures (rollers, 
balls). Lubricants reduce friction between these 
mechanical components. Mechanical influences 
affect all movable parts. In magnetic bearings the 
rolling figures will be replaced by magnetic forces 
so, that there aren’t any moving solid parts 
inbetween.. Consequential there are following 
advantages: 

• no soiling caused by wear 
• no lubricants 
• few vibration transfer between the rotor 

and stator 
• available to use under extremely 

requirements (vacuum, clean-room, 
very high speeds) 

But there are some disadvantages too: 
• system needs additional electrical 

energy 
• difficult construction 

 
 
 

1.1. Construction of electromagnetic bearings 
There are different types of magnetic bearings for 
technical application. These types are called 
homopolar, heteropolar and unipolar. Additionally 
these types are divided in radial, axial and 
permanent magnetic bearings. The structure 
determines the behaviour of the magnetic field in 
stator and rotor as well as size and magnetic losses. 
There is no explicit relation between construction 
and kind of closed-loop controller [1]. 
 
a)                                          b) 
 
 
 
 
 
 
 
c)                                          d) 
 
 
 
 
 
 
 
 

a) heteropolar electromagnetic bearing 
b) homopolar electromagnetic bearing 
c) axial electromagnetic bearing 
d) unipolar electromagnetic bearing 

(S=stator, R=rotor, Z=direction, F=flux lines of 
electromagnetic field) 

Figure 1 Kinds of electromagnetic bearings 
 

2. CONTROLLED SYSTEM 

To design the closed-loop controller a first step is 
the mathematic derivation of the controlled system. 
No real component is absolutely linear, so it is 
necessary to use the behaviour of a linearised model 
instead. This mostly allows an easier handling of the 
system. That’s why it is worth considering certain 
approaches of model downsizing, adaptation and 
order reduction. 

So the symmetric structure of the 
electromagnetic bearing allows a simplified 
description as a mass-spring system. A current 
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converter serves as power supply for the bearing 
coil. The current through the coils initiates an 
according electromagnetic force. A position sensor 
detects the position difference between stator and 
rotor. Furthermore it is necessary to find a 
mathematical coherence between current, force and 
air gap. 

 

 
 

Figure 2 Schematic of closed loop controlled 
system 

 

2.1. Electromechanical system part 
It can be described using the equation set below: 
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This is the general quadratic function between 
current and air gap. 
Because of (2.6) a linearization is necessary. 
 

( ) ( ) ( ) ( ) δ
δ

δδδδ ∆⋅
∂

∂+∆⋅
∂

∂+= ,,
,, 00

iF
i

i

iF
iFiF  

( ) δ
δδδ

δ ∆⋅⋅⋅−+∆⋅⋅⋅+⋅=
3

0

2
0

2
0

0
2

0

2
0 22

,
ki

i
kii

kiF  (2.7) 

With 
3

0

2
02

δ
ki

ks

⋅⋅−=   and  
2

0

0
2

0

2
0 2

δδ
kii

kki

⋅⋅+⋅=   the 

electromechanical gain-coefficient is: 
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The mechanical system is a mass-spring system. 

sDF ⋅−=  � sDsm ⋅−=⋅ &&  �  ss ⋅−= 2ω&&  � 
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‘D’ here describes the stiffness of the mechanical 
part like ‘ks’. Now it is possible to build a transfer-
function. 
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It is obvious to see, that the resulting dynamic 
system is unstable. 

2.2. Inductance 
The coil around the stator pole is like a series 
connection of resistor and inductance with the time-
constant ‘Tsp’ and a gain ‘Ksp’. They build an easy 
PT1 transfer-function (first order delay). 
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2.3. Actuation system 
The current converter is the actuator in the bearing 
system considered. Its dynamic behaviour is so fast, 
that it is possible to simulate it as a PT1 model. 
Gain ‘KSR’ is input voltage to supply voltage and 
time constant ‘TSR’ is the half of cycle duration. 
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2.4. Measurement systems 
There are two measurement parts in the controlled 
system, a current sensor and a position sensor. Their 
time-constants depend on their own cut-off 
frequency. 
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2.5. Model block diagram and simulation results 

2.5.1. Current control path 
The current control path consists of a current 
converter, coil and current sensor. For the test 
bearing, the comparison between measurements 
done and data sheets available demonstrated 
acceptable parameter conformity. 
 



 
Figure 3 Current-system 

 

 
Figure 4 Step response of currentcontrol path 

 
A step with amplitude 1 is applied to the current 
control path at time t=0. After t=T the function 
passes the desired value and after t=3*T, current 
grows up to a final static value. This part of the 
system needs to be operated with a closed loop 
current controller. 
 

2.5.2. Mechanical system 
The step response of the position controlled system 
is very important. It is possible to compare the real 
dynamic behaviour (measured position versus time 
waveform) with the step response simulated. If the 
simulated system response looks like the real curve, 
the mathematical model developed is of sufficient 
accuracy to determine the compensator parameter. 
The transient output of the block diagram model 
representing bearing’s mechanical part (without 
controller) shows figure 5, it’s nearly identical to 
measured data (refer to figure 6). 
 

 
Figure 5 Simulation model of open mechanical 
system 
 

 
Figure 6 Step response of open  mechanical system; 

Comparison of simulation and measurement 
 
Good to recognize by given illustration above is the 
monotonous instability; the measured peak at 
approximately 5.5 sec represents the collision with a 
mechanical stopper. 

3. CONTROLLER CONCEPT 

On base of equation (2.9) mechanical system is 
instable. An additional part – the controller – is 
needed to control the rotor position. The system 
contains two “large” time constants ‘TSP’, 
‘Tmech’. It offers to use a cascaded controller to 
achieve the desired control dynamics. 

3.1. Current controller 
The current controller is the secondary part of a 
cascaded control loop. Its parmeters can be 
determined according to the integral of absolute 
value of error theorem (IAE). This guarantees 
rather swift current transients at only moderate 
overshoot. The theorem is easy to apply and so it is 
popular for compensator design in quite different 
technical fields. The following equations describe 
the according parameter calculation. 
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For the test-bearing, current controller parameters 
are: 
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Now, the parameters for the closed loop current 
controller are: 
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3.1.1. Simulation of closed loop current controller 
The step response of the closed loop current 
controller shows, that the desired value was reached 
in one third of the time compared to the non-
controlled (open) system, latter shown in figure 4. 
After a small overshoot the current follows 
permanently the setpoint. 

 

 
Figure 7 Closed loop current control 

 

 
Figure 8 Closed loop current control step response 
 

3.2. Position controller 
The most proceedings in optimization are very 
universal and not well applicable for magnetic 
bearings. For the position controller it is useful to 
apply the root locus method after EVANS. 
 

 
Figure 9 Walter R. Evans (Source: Wikipedia) 

 
With this method it is possible to show, how the 
roots of the closed loop controlled system depend 
on the variable (compensator) gain. The approach 
delivers functions and curves, their shapes can be 
influenced by adding new pole ore zero roots. The 
system is only stable when all gain dependent curve 
locations are on the left side of the complex plane. 

 
Figure 10 Complex(Gaussian) plane 

 

3.2.1. Model order reduction 
It is allowed to disregard the higher orders in the 
closed loop current controller transfer function. 
Because only the large time constant is causes the 
tendency to non stable behaviour of the position 
controlled system. The replacement allows an easier 
handling with the position controller design. 
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Now the position controlled system block structure 
looks as follows: 
 

 
Figure 11 Position controlled system 

3.3. Root locus of magnetic bearings 
 

 
Figure 12 Root-locus P-controller 

 
After closing the controller loop, firstly the roots are 
situated in the right side of the complex plane. Now 
it’s the aim to modify the curves so, that they travel 
from the right into the left half plane by adding new 
poles and/or zeros and adjusting the closed-loop 



gain. The pole on the right side of the complex 
plane can’t be compensated because this part of the 
mathematical structure originates from the given 
mechanical system. Few differences between reality 
and model turns the system to become instable. It is 
only allowed to add poles and zeroes on the left side 
in the complex plane. 
The stable mechanical pole can be 
overcompensated by two zeroes. A further pole, 
added in the origin of imaginary and real axes 
delivers an integral port to the position controller 

Because the available energy in the system is 
limited, the controller’s D-Part is considered to be 
delayed. 
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Figure 13 PID-controlled position loop 

3.4. Stability analysis 
The root-locus shows, that the PID controlled 
system is stable in an operational range between 
Kmin to Kmax. These limits can be determined by 
using the ROUTH-scheme. For the test bearing 
limits are calculated as follows. 

 

 
Figure 14 Closed position control-loop 

 
 

pppp

p
pGO +⋅⋅−⋅⋅−⋅⋅−

⋅−−= −−−

−

2337412

3

)( 1031099,31027,9

103368,10
)(δ

 

 

)(1

)(
)(

)(

)(
)( pG

pG
pG

O

O
G

δ

δ
δ +

=    (3.9) 

 
( )

( ) )()(
2335410

)(
)( 63,3233,30107,891021,11081,2

63,323
)(

δδ

δ
δ

PP

P
O KpKppp

pK
pG

⋅+⋅−+⋅⋅+⋅⋅+⋅⋅
+⋅

= −−−

 
 

 
Figure 15 ROUTH scheme for tes -bearing 

 
The zeros in the rows show the limits of gain. 

Now compensator function can be writeen in the 
following form 
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3.4.1. Disturbances and limits 
Before starting simulation, in reality there are some 
disturbances we can’t ignore. Noise and disturbance 
forces appear to the system. The measured position 
signal must be filtered at the input of the PID-
controller. Another influence is the changing 
inductance because of the varying air gap. 
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Figure 16 Example of inductance variation a s a 
function of the air gap 
 
 
 



Last but not least, mechanical and electrical limits 
are: 

• Limited input voltage of current converter 
• Limited voltage source of current 

converter 
• Limited output current of current converter 
• A mechanical bearing limits the air gap 

Because of these limits, the system can’t react on 
harsh input signal changes (like steps). So a desired 
value filter reduces the energy to lift of the shaft. 

3.5. Simulation of the closed loop position system 
 

 
Figure 17 Desired value functions 

 
The picture shows the lift-of of the shaft. The blue 
coloured wave form represents the real answer of 
test bearing; the red curve is the simulated system 
response. 

The position changes with PT2-shaped (delayed) 
desired value. In simulation additionally a load 
operation (disturbance force) is applied at 50 msecs. 
The controller handles the disturbances well and 
puts the shaft back to desired value. 

4.  BEHAVIOUR OF THE CLOSED LOOP 

For an well adjusted controller there are two 
criterions to fulfill: Command action as well as 
disturbance reaction of the control loop. 
The elongation of the rotor increases with more 
disturbance force. To reduce this over- and 
undershoot, gain must be raised. A shorter transient 
time of movement is reached by high gain, too. 
 

 
Figure 18 Elongation to nominal force 

 

4.1. Setpoint forming/filtering 
With a suitable PT2-filter additionally applied to 
the desired value branch, the overshoot can be 
reduced. 

 
Figure 19 Overshoot time and des.-val.-filter 

 

4.2. Resume 
The optimal controller gain values are between a 
system damping coefficient from 0.7 to 1. Then the 
system then only tends to moderate oscillations. To 
reduce the influence of disturbance forces, gain 
should be near the most left branching point in the 
root-locus. 

 
Figure 20 Optimal gain, damping=1 

4.3. Fuzziness in pole compensation 
There are always differences between simulation 
model and reality. Zeros of the PID-Controller can 
miss the mechanical pole (no full pole 
compensation). Following pictures show that the 
system is stable, anyway, i.e. the controller 
developed is robust enough to ensure a good system 
dynamic also in case of plant parameter variances 



Figure 21 System robustness in case system 
parameter variations (no exact pole compensation) 

4.4. System requirements 
Not every root-locus gives a stable or even an 
optimal result. Then certain system parameters need 
to be modified. Such parameters in the current 
controlled loop are: 

• Supply voltage of current converter 
• Inductance of bearing coils 
• Pulse frequency 
• Current measurement system (cut off 

frequency) 
Further parameters can be changed in the position 
controlled system: 

• Air gap 
• Rotor mass 
• Position measurement system (cut off 

frequency) 
 

 
Figure 22 Samples for faulty pole/zero 
arrangements, system parameters to be improved. 
 

5. DIGITAL CONTROLLER 

To use programmable integrated circuits like state-
of-the-art microcontrollers or FPGA’s makes it easy 
to implement the mathematical PID-controller-
formulas on a chip. One significant advantage is the 
exact adjustment of parameters without any drifting 
by temperature or electro-magnetic influences. 

The Analogue-Digital-converter digitalizes the 
analogue signal in n-quantized steps. By a constant 
sampling frequency, at every (equidistant) sampling 
point the controller gets a new A-D-value. This 
process must be described by mathematical 
formulas. 

 

 
 

Figure 23 Sample and hold 
 

5.1. z-Transformation and digital controller 
For I-Part of the digital controller in this context it 
is fully sufficient to use the TUSTIN 
approximation: 
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Equation (5.3) reduced to first order leads to the 
TUSTIN formula: 
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For the D-part of the digital controller it’s 

possible to use following equation: 
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After these approximations the z-transformed 

terms are set into the analogue controller formula.  
After some mathematical conversions the general 
digital transfer function is: 
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The immediate on-chip controller 
implementation requires the according difference 
equation: 
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The PI current controller looks like (5.7). Only the 
D-part must be zero. The digital controller 
simulation displays nearly the same results like in 
analogue simulation. 
 

 
Figure 24 Digital controlled system answer 

 
 

6. CONCLUSIONS 

As illustrated above, a systematic, mathematical 
based and simulation aided controller synthesis, 
even for such a highly non-linear and instable 
process “magnetic bearing” could be performed 
successfully. It’s easy to see, what an important and 
powerful tool simulation could be. This technology 
–if applied competently- is able to provide early 
forecasts of static and dynamic behaviour already 
for systems and components still not exist in 
hardware.  

 
Further investigations will target to the 

application of structure optimum high gain 
controller algorithms. In addition to several state-
space approaches already wide spread, this could be 
different predictive or special robust control 
philosophies like “Principle of Localization”. 
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