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SEMI-DISCRETE ANALYSIS OF ELECTROMAGNETIC FIELDS  
FOR DIFFERRENT SHAPES OF EXCITATION 

 
Konstanty M. Gawrylczyk 
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ABSTRACT 

 
The paper deals with numerical aspects of the FE-
analysis in time domain by means of semi-discrete 
method. The method provides analytical solution in 
time, so the time-stepping may be omitted. The 
method seems to be numerically very effective, 
however, the produced matrices are dense. The well 
known time-stepping method requires a new matrix 
decomposition, while adapting the time-step. On the 
contrary, the proposed method suites very well for the 
cases of non-uniform time steps, particularly while 
using adjoint models [1]. 
The solutions utilising semi-discrete method were 
compared with ordinary time-stepping. The exemplary 
models are taken from non-destructing testing 
apparatus utilising eddy-currents. The currents 
exciting the NDT-probe take often the form of single 
sinusoidal, or rectangular impulse. For the aim of 
modelling of NDT-probes the semi-discrete solution 
for different shapes of excitation is shown. 
 

Index Terms – electromagnetic fields, time-
domain analysis. 

1. INTRODUCTION 

The proposed semi-discrete method allows us to 
obtain time-domain solution without time-stepping. 
For space discretization we use usual finite elements 
of first order. The semi-discrete method delivers 
analytical and continuous solution for any given time 
of analysis, which takes a form of exponential 
functions.  

2. FE-TS ANALYSIS 

Electromagnetic field diffusion into conducting region 
may be for two-dimensional models described 
utilizing vector magnetic potential A: 
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Approximating (1) with finite elements and applying 
time-dependent elements we bring the solution to 
commonly used Finite Element – Time Stepping 
method, leading to the following system of linear 
equations: 
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with: K – stiffness matrix, M – mass matrix, ∆t – time 
step and 0,5 ≤ Θ ≤ 1 defines the differential scheme of 
time stepping method. The effective solution of (2) is 
as long possible, as the time step ∆t remains constant. 
For example, when applying this method to adjoint 
model to calculate sensitivities of electromagnetic 
field [2], [3], the time moments, at which both, 
original and adjoint model are analyzed, should 
coincide as shown in Fig.1: 

 
Figure 1. Time-stepping for original and adjoint 

model. 

This requirement causes the large number of iterative 
steps and very long computational time. This is the 
reason, why the semi-discrete method has been 
developed.  

3.  SEMI-DISCRETE FINITE ELEMENT 
ANALYSIS 

The inhomogeneous diffusion equation we are solving 
has the form of 
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The transient component of A = As + Au results from 
homogeneous equation: 
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which solution is 
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The constant C depends on initial value A(0), which is 
zero in our case, and on the excitation shape. The 
solutions for different excitations f are shown below. 

4.  UNIT-STEP EXCITATION 

However the current owning the shape of unit-step 
1(t) can not squeeze into the coil, it is handy 
approximation of the real state.  
The steady-state response of the magnetic vector 
potential Au in this case has the form: 
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1 1
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The constant of integration C can be evaluated from 
the initial condition 

 { } { } { }s u(0) (0) (0)+ = =A A A 0  (7) 

and the semi-discrete solution for vector magnetic 
potential takes the form: 

( ){ } [ ] [ ] [ ]( )( ) [ ] { }1 1
exp ( )

− −= − − ⋅A M K Kt t t1 1 . (8) 

When the inversion of mass matrix is necessary, we 
can not apply (8) for the whole region. It has to be 
subdivided into a conductive part “1” and a non-
conductive part “2”: 
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We assume that excitation currents are located only in 
a non-conducting part of the region. Then we obtain 
the following matrix equation for the conducting 
region: 
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The similarity of (10) to (3) allows exploitation of 
solution (8). Fig. 2 shows the comparison of magnetic 
vector potential calculated by FE-TS Eqn.(2) using 
Galerkin-scheme (Θ=2/3) versus semi-discrete 
solution. The both solutions were obtained using 
simple two-dimensional model described below. 

 
Figure 2. Comparison of A in node “1” for ti. 

5. DESCRIPTION OF TEST MODEL 

For the purpose of testing a very simple model, shown 
in Fig. 3, was chosen. The model exhibits Cartesian 
symmetry. It consists of the conducting region with 
material parameters 01/6 µ =1γ⋅ ⋅  and r 1µ = . 

Excitation is produced by a line current of 1 A/m 
density. A 2D-model is driven with 0.5 A currents 
directed to nodes “21” and “22”. The element 
matrices for a 2D−case are [4]: 
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Figure 3. 2D test model. 



 

Figure 5. The solutions for rectangular excitation current shape. 

 
6. HARMONIC EXCITATION 

For harmonic excitation we have the following 
inhomogeneous differential equation: 
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The steady-state response Au may be evaluated in 
frequency-domain with standard FEM: 

 [ ]{ } [ ]{ } { }u ujω+ ⋅ =K A M A Ι , (13) 

and then, we can retrieve the time function of steady 
state response 
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Assuming zero initial condition we evaluate now the 
constant of integration C  
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So, the semi-discrete solution for transient magnetic 
vector potential with harmonic excitation takes the 
form 
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The comparison of semi-discrete solution with FE-TS 
method is shown in Fig.4. It concerns the node 
number (1), accordingly to Fig.3.  

 

Figure 4. Comparison of magnetic vector potential 
for harmonic excitation. 

7. EXCITATION WITH THE RECTANGULAR 
IMPULSE  

The solution for rectangular impulse was achieved 
as superposition of solutions for two unit-step 
impulses:  
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In the Fig. 5 the solutions obtained for the node inside 
conducting material (node 1) and for the one on the 
border to the air (node 18), are shown. The shape of 
excitation current was also placed there.  



 
Figure 6. Comparison of magnetic vector potential for single sinusoidal current impulse. 

 

8. SINGLE SINUSOIDAL PULSE 

The solution for single, sinusoidal current pulse was 
derived in the same manner, using superposition of 
two solutions given by Eqn.(16):  
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The comparison shown in Fig. 6 reveals good 
agreement of solutions obtained using semi-discrete 
method versus this from classical FE-time-stepping. 
For the node number (1) we can observe the delay of 
the response. 

9. CONCLUSIONS 

The proposed method allows the semi-discrete 
evaluation of electromagnetic fields, without time-
stepping. When using the standard FE-TS method for 
the original and adjoint model (in the backward time), 
a practically constant time step needs to be applied. 
However, if the algorithm is applied to solution of 
inverse problems by means of the gradient method 
[1], useful information is delivered not only by first 
time steps but also by advanced time points. Next, we 
have to meet a compromise between the size of time 
step and the number of steps [2]. The aforementioned 
problem vanishes when using the semi-discrete time-
domain sensitivity analysis. A drawback of this 
method is matrices which are losing their symmetry 
and are no more banded. All calculations in this work 
were carried out with fully assigned matrices.  

Comparison of the efficiency of the semi-discrete 
method with classical FE-TS [3] shows, that despite of 
high demand for memory, the described method may 
compete in relation to finite elements with the time 
stepping. 
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