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Abstract

We provide a proof of a claim made by Sholander (Trees, lattices, order, and be-
tweenness, Proc. Amer. Math. Soc. 3, 369-381 (1952)) concerning the representability
of collections of so-called segments by trees. Furthermore, we strengthen Burigana’s ax-
iomatic characterization of so-called betweennesses induced by trees (Tree representations
of betweenness relations defined by intersection and inclusion, Mathematics and Social
Sciences 185, 5-36 (2009)) and provide a short proof.
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1 Introduction

Trees are one of the most simple yet important classes of graphs with countless applications ranging
from data structures and VLSI design over mathematical psychology to gardening. Here we pick up
two previous and closely related papers on trees. One [11] relatively old by Sholander in 1952 and
one [3] quite recent by Burigana in 2009. Both papers propose axiomatic characterizations of so-called
betweennesses which are very natural ternary relations associated with trees.

Let V be a finite set. Let B ⊆ V 3 be a ternary relation on V . B is strict if (x, y, z) ∈ B implies that
x, y, and z are pairwise distinct. Let T = (V,E) be a tree, i.e. a finite, simple, undirected, connected
graph without cycles [8]. The tree betweenness of T is

B(T ) =
{

(x, y, z) ∈ V 3 | y belongs to the path in T between x and z
}

(1)

and the strict tree betweenness of T is

Bs(T ) =
{

(x, y, z) ∈ V 3 | y is an internal vertex of the path in T between x and z
}

. (2)

The reasons for reconsidering Sholander’s [11] and Burigana’s [3] work are as follows. Sholander
actually does not really consider trees in the graph-theoretical sense. Instead he studies collections of
so-called segments which are subsets of V indexed by ordered pairs of elements of V . He considers
such a collection to be a tree if it satisfies certain axioms and claims without proof that “Trees in our
sense which are finite are trees in König’s sense.” (cf. [11], p. 370). While collections of segments
derived from trees are easily seen to be trees in Sholander’s sense — which proves one direction of this
claim, we present as our first result the non-trivial proof of the other direction in Section 2. Only in
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conjunction with such a result, Sholander’s axiomatic characterization of the betweennesses associated
with his trees yields an axiomatic characterization of tree betweennesses as defined above.

Burigana characterizes the strict tree betweennesses in terms of five axioms (cf. Theorem 1 in [3]).
In Section 3, we strengthen his result and provide a proof which is considerably shorter than his proof
in [3]. Furthermore, we extend his result to non-strict tree betweennesses.

Before we proceed to our results, we want to mention some related research in order to clarify the
context. The axiomatic study of betweenness as a mathematical concept goes back to Huntington and
Kline [7] in 1917. Tree betweennesses are a special case of those induced by metrics which were first
studied by Menger [9] in 1928. Also partially ordered sets naturally induce betweennesses which were
first studied by Birkhoff [2] in 1948. While Altwegg [1] provided a complete axiomatic description of the
latter kind of betweennesses which was generalized by Sholander in [11] and recently by Düntsch and
Urquhart [6], a similar result is unknown for the former kind (see Chvátal [4] for a detailed discussion).
Therefore axiomatic descriptions of betweennesses induced by special metrics such as graph metrics
are of interest. Next to Sholander and Burigana another characterization of tree betweennesses was
obtained by Defays [5]. A general result in this context is the characterization of the interval function
of a graph by Mulder and Nebeský (cf. [10] and the many references given there).

2 Finite Sholander Trees are Trees

For a set V , Sholander considers a collection S of so-called segments which are subsets of V indexed
by ordered pairs of elements of V . The segment indexed by the ordered pair (u, v) ∈ V 2 will be
denoted by [u, v]. Sholander defines a “tree” as a collection S of segments which has the following
three properties (S1), (S2), and (S3).

(S1) ∀u, v, w ∈ V : ∃x ∈ V : [v, x] = [u, v] ∩ [v, w]
(S2) ∀u, v, w ∈ V : [u, v] ⊆ [u, w]⇒ [u, v] ∩ [v, w] = {v}
(S3) ∀u, v, w ∈ V : [u, v] ∩ [v, w] = {v} ⇒ [u, v] ∪ [v, w] = [u, w]

Let T = (V,E) be a tree. For u, v ∈ V let [u, v]T denote the set of vertices on the path in T between
u and v and let S(T ) = {[u, v]T | u, v ∈ V }. The next result shows that Sholander’s notion of a tree
is equivalent to the graph-theoretical notion of a tree.

Theorem 1 Let V be a finite set and let S = {[u, v] | u, v ∈ V } ⊆ 2V . There is a tree T = (V,E)
with [u, v] = [u, v]T for all u, v ∈ V if and only if S satisfies (S1), (S2), and (S3).

Proof: Since for every tree T , S(T ) obviously satisfies (S1), (S2), and (S3), the “only if”-part of the
statement is clear and we proceed to the “if”-part. Therefore, let S satisfy (S1), (S2), and (S3).

Claim 1 For all u, v ∈ V , u, v ∈ [u, v] and {u} = [u, u].

Proof of Claim 1: Since [u, u] ⊆ [u, u], (S2) implies [u, u] ∩ [u, u] = {u} and hence [u, u] = {u}.
Similarly, since [u, v] ⊆ [u, v], (S2) implies [u, v] ∩ [v, v] = {v} and hence v ∈ [u, v]. By (S1), there is
some x ∈ V with [u, x] = [u, u] ∩ [u, v]. Now, by the previous observations,

{x} ⊆ [u, x] = [u, u] ∩ [u, v] ⊆ [u, u] = {u}.

Hence u = x ∈ [u, x] ⊆ [u, v], i.e. u ∈ [u, v]. 2

Claim 2 For all u, v ∈ V , [u, v] = [v, u].
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Proof of Claim 2: Clearly, we may assume that u 6= v. By symmetry, it suffices to prove [v, u] ⊆ [u, v].
By (S1), there is some x ∈ V with [v, x] = [u, v] ∩ [v, u]. By Claim 1, we have u, v, x ∈ [v, x]. Since
|[v, x]| ≥ 2, Claim 1 implies v 6= x. Since [v, x] ⊆ [v, u], (S2) implies [v, x] ∩ [x, u] = {x}. Since, by
Claim 1, x, u ∈ [v, x] ∩ [x, u], this implies x = u. Now [v, u] = [v, x] = [u, v] ∩ [v, u] which implies
[v, u] ⊆ [u, v]. 2

Claim 3 If x ∈ [u, v] for u, v, x ∈ V with u 6= x 6= v, then u 6= v, [u, v] = [u, x] ∪ [x, v] and
[u, x] ∩ [x, v] = {x}.

Proof of Claim 3: Since |[u, v]| ≥ 2, Claim 1 implies u 6= v and hence |[u, v]| ≥ 3. We prove
[u, v] = [u, x] ∪ [x, v] and [u, x] ∩ [x, v] = {x} by induction on |[u, v]|.

First, let |[u, v]| = 3, i.e. [u, v] = {u, v, x}. By Claim 2 and (S1), there is some y ∈ V with
[u, y] = [v, u] ∩ [u, x] = [u, v] ∩ [u, x]. By Claim 1, y ∈ [u, y] ⊆ [u, v], i.e. y ∈ {u, x, v}. By Claim 1,
u, x ∈ [u, y] = [u, v] ∩ [u, x]. Hence |[u, y]| ≥ 2 and, by Claim 1, y 6= u. If y = v, then (S2) applied to
[u, v] = [u, y] = [u, v]∩ [u, x] ⊆ [u, x] implies [u, v]∩ [v, x] = {x}. Since, by Claim 1, v, x ∈ [u, v]∩ [v, x],
this implies the contradiction x = v. Hence y = x. Since [u, x] = [u, y] = [u, v] ∩ [u, x] and hence
[u, x] ⊆ [u, v], (S2) implies [u, x] ∩ [x, v] = {x} and (S3) implies [u, x] ∪ [x, v] = [u, v], i.e. the claim
holds in this case.

Now, let |[u, v]| > 3. By Claim 2 and (S1), there is some y ∈ V with [u, y] = [v, u] ∩ [u, x] =
[u, v]∩ [u, x]. Since [u, y] ⊆ [u, v], (S2) implies [u, y]∩ [y, v] = {y} and (S3) implies [u, y]∪ [y, v] = [u, v].
If x = y, then the desired statement holds. Hence we assume that x 6= y. By Claim 2, we may assume
that x ∈ [u, y]. By induction, this implies [u, x] ∪ [x, y] = [u, y] and [u, x] ∩ [x, y] = {x}. We obtain
y 6∈ [u, x] and hence [u, x] ⊆ [u, y] \ {y}. Since, by Claim 1, {y} ⊆ [x, y] ∩ [y, v] ⊆ [u, y] ∩ [y, v] = {y},
we have [x, y] ∩ [y, v] = {y} and (S3) implies [x, y] ∪ [y, v] = [x, v]. Now

[u, x] ∪ [x, v] = [u, x] ∪ [x, y] ∪ [y, v] = [u, y] ∪ [y, v] = [u, v]

and

[u, x] ∩ [x, v] = [u, x] ∩ ([x, y] ∪ [y, v])
= ([u, x] ∩ [x, y]) ∪ ([u, x] ∩ [y, v])
⊆ {x} ∪ (([u, y] \ {y}) ∩ [y, v])
= {x} ∪ (([u, y] ∩ [y, v]) \ {y})
= {x}.

2

Claim 4 If a, b, c, d ∈ V are such that a 6= b 6= c 6= d, [a, b] ∩ [b, c] = {b}, and [b, c] ∩ [c, d] = {c}, then
a, b, c, and d are pairwise distinct and [a, c] ∩ [c, d] = {c}.

Proof of Claim 4: By (S3) and Claim 1,

a 6= c, b 6= d, [a, b] ∪ [b, c] = [a, c], and [b, c] ∪ [c, d] = [b, d]. (3)

For contradiction, we assume that [a, c] ∩ [c, d] 6= {c}. By (S1), there is some x ∈ V with

[a, c] ∩ [c, d] = [c, x]. (4)

By Claim 1, x 6= c. If x = a, then Claim 2 implies [a, c] = [x, c] = [c, x]
(4)

⊆ [c, d] and hence

b ∈ [a, b]
(3)

⊆ [a, c] ⊆ [c, d]. By Claim 1 and the assumption, b 6∈ [c, d] which is a contradicion. Hence

x 6= a. If x = d, then [c, d] = [c, x]
(4)

⊆ [a, c] = [c, a]. (S2) and (S3) imply

{d} = [c, d] ∩ [d, a] and [a, c] = [c, d] ∪ [d, a] = [a, d] ∪ [c, d]. (5)
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Since, by (3) and the assumption, b ∈ [a, c] \ [c, d], this implies b ∈ [a, d]. By Claim 3,

[a, d] = [a, b] ∪ [b, d]. (6)

Now, by Claim 1, c ∈ [b, c]
(3)

⊆ [b, d]
(6)

⊆ [a, d] but, by (5), c 6∈ [a, d] which is a contradiction. Hence
x 6= d. By (4), [c, x] ⊆ [a, c] and [c, x] ⊆ [c, d]. Now, by Claim 2, (S2), and (S3),

[a, x] ∩ [x, c] = {x}, [c, x] ∩ [x, d] = {x}, [a, x] ∪ [x, c] = [a, c], and [c, x] ∪ [x, d] = [c, d]. (7)

This implies c 6∈ [a, x], c 6∈ [x, d], and [x, d] = [c, d]\([c, x]\{x}). Since, by Claim 1 and the assumption,
b 6∈ [c, d], we have, by (7),

b 6∈ [c, x]. (8)

Furthermore, since, by Claim 1 and (3), b ∈ [a, c], we have, by Claim 1, (7), and (8), b ∈ [a, x]. By
Claim 3, this implies

[a, x] = [a, b] ∪ [b, x] and {b} = [a, b] ∩ [b, x]. (9)

Since, by (7), c 6∈ [a, x] and, by (9), [b, x] ⊆ [a, x], we have

c 6∈ [b, x]. (10)

Now

{x} ⊆ [b, x] ∩ [x, d]
(9)

⊆ [a, x] ∩ [x, d]
(7)

⊆ [a, c] ∩ [x, d]
(7)
= [a, c] ∩ ([c, d] \ ([c, x] \ {x}))
= ([a, c] ∩ [c, d]) \ ([c, x] \ {x})
(4)
= [c, x] \ ([c, x] \ {x})
= {x},

i.e. [b, x] ∩ [x, d] = {x}. By (S3), [b, d] = [b, x] ∪ [x, d]. Since, by (10), c 6∈ [b, x] and, by (7), c 6∈ [x, d],
we obtain c 6∈ [b, d] = [b, x] ∪ [x, d]. But, by (3), c ∈ [b, d] = [b, c] ∪ [c, d] which is a contradiction. 2

In view of Claim 2, we define a graph T = (V,E) such that

∀u ∈ V : ∀v ∈ V \ {u} : uv ∈ E ⇔ |[u, v]| = 2. (11)

Let u, v ∈ V be such that u 6= v. A S-path of order l between u and v is a sequence P : u1u2 . . . ul such
that u = u1, v = ul, ui 6= ui+1 for 1 ≤ i ≤ l− 1, and [ui, ui+1]∩ [ui+1, ui+2] = {ui+1} for 1 ≤ i ≤ l− 2.

Claim 5 If P : u1u2 . . . ul is a S-path with l ≥ 2, then Pi : u1 . . . ui−1ui+1 . . . ul is a S-path for
1 ≤ i ≤ l and all elements of P are distinct.

Proof of Claim 5: Clearly, if i ∈ {1, l}, then Pi is a S-path by definition. If 2 ≤ i ≤ l − 1, one or
two applications of Claim 4 together with Claim 2 imply that Pi is a S-path. The second part of the
statement follows immediately from the definition of S-paths and the first part of the statement. 2

By Claim 5, all S-paths have order at most |V |.
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Claim 6 If the S-path P : u1u2 . . . ul between u and v is maximal with respect to inclusion, then P is
a path in T .

Proof of Claim 6: For contradiction, we assume that uiui+1 6∈ E. By (11), this implies the existence
of some x ∈ [ui, ui+1] with ui 6= x 6= ui+1 6= ui. By Claim 3, [ui, ui+1] = [ui, x] ∪ [x, ui+1] and
{x} = [ui, x] ∩ [x, ui+1]. If i ≥ 2, then, by Claim 1,

{ui} ⊆ [ui−1, ui] ∩ [ui, x] ⊆ [ui−1, ui] ∩ [ui, ui+1] ⊆ {ui},

i.e. {ui} = [ui−1, ui] ∩ [ui, x]. Similarly, if i ≤ l − 2, then, by Claim 1,

{ui+1} ⊆ [x, ui+1] ∩ [ui+1, ui+2] ⊆ [ui, ui+1] ∩ [ui+1, ui+2] ⊆ {ui+1},

i.e. {ui+1} = [x, ui+1] ∩ [ui+1, ui+2]. Hence the sequence u1 . . . uixui+1 . . . ul is a S-path between u
and v strictly containing P which is a contradiction. 2

Claim 7 T contains no cycle.

Proof of Claim 7: For contradiction, we assume that C : u0u1 . . . ul−1ul is a cycle in T , i.e. l ≥ 3, the
elements u0, u1, . . . , ul−1 are distinct, u0 = ul, and uiui+1 ∈ E for 0 ≤ i ≤ l− 1. By Claim 1 and (11),
we obtain

[ui, ui+1] ∩ [ui+1, ui+2] = {ui, ui+1} ∩ {ui+1, ui+2} = {ui+1}

for 0 ≤ i ≤ l− 2. Hence u0u1 . . . ul−1ul is a S-path and, by Claim 5, u0 6= ul which is a contradiction.
2

Since for all u, v ∈ V with u 6= v, P : uv is a S-path between u and v of order 2, Claims 6 and 7 imply
that T is a tree.

Claim 8 [u, v] = [u, v]T for all u, v ∈ V .

Proof of Claim 8: Let x ∈ [u, v]. If either x = u or x = v, then x ∈ [u, v]T . Hence, we may assume, by
Claim 1, that u 6= x 6= v 6= u. By Claim 3, [u, v] = [u, x] ∪ [x, v] and {x} = [u, x] ∩ [x, v], i.e. uxv is a
S-path between u and v. By Claim 6, a S-path P between u and v containing uxv as a subsequence
which is maximal with respect to inclusion, is a path in T . Hence x lies on the path in T between u
and v which implies x ∈ [u, v]T . We obtain [u, v] ⊆ [u, v]T .

Conversely, let x ∈ [u, v]T . By definition of [u, v]T , x lies on the path P : u1u2 . . . ul in T between u
and v. By (11), P : u1u2 . . . ul is a S-path between u and v. By Claim 5, uxv is a S-path between u and
v which implies {x} = [u, x] ∩ [x, v]. Now (S3) implies x ∈ [u, v] = [u, x] ∪ [x, v]. Hence [u, v]T ⊆ [u, v]
and altogether [u, v]T = [u, v]. 2

This last claim completes the proof. 2

Note that (11) yields an efficient way of reconstructing a tree from its collection of segments.

3 Burigana’s Axioms for Strict Tree Betweennesses

Burigana considers the following five axioms for strict ternary relations B ⊆ V 3.

(B1) ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (w, v, u) ∈ B
(B2) ∀u, v, w ∈ V : (u, v, w) ∈ B ⇒ (v, u, w) 6∈ B
(B3) ∀u, v, w, z ∈ V : (u, v, w), (v, w, z) ∈ B ⇒ (u, w, z) ∈ B
(B4) ∀u, v, w, z ∈ V : (u, v, w), (u, w, z) ∈ B ⇒ (v, w, z) ∈ B
(B5) ∀u, v, w ∈ V : N(u, v, w)⇒ ∃c ∈ V : (u, c, v), (u, c, w), (v, c, w) ∈ B
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Here N(u, v, w) means (u, v, w), (v, w, u), (w, u, v) 6∈ B and u 6= v 6= w 6= u.
First, we note that for a strict relation B, (B2) is implied by (B1) and (B4). In fact, if we assume

that (u, v, w), (v, u, w) ∈ B, then (B1) implies (w, u, v), (w, v, u) ∈ B and then (B4) implies (u, v, u) ∈ B
which is impossible for a strict relation. Therefore, the axiom (B2) is superfluous.

Next, as we also consider non-strict relations, we reformulate axiom (B3) appropriately as follows.

(B′3) ∀u, v, w, z ∈ V : (v 6= w and (u, v, w), (v, w, z) ∈ B)⇒ (u, w, z) ∈ B

Note that for strict relations, (B3) and (B′3) coincide.
Finally, we consider two more axioms.

(B0) ∀u, v ∈ V : (u, u, v) ∈ B and ((u, v, u) ∈ B ⇒ u = v)
(B′5) ∀u, v, w ∈ V : N(u, v, w)⇒ ∃u′ ∈ V : u 6= u′ and (u, u′, v), (u, u′, w) ∈ B

Note that (B′5) is weaker than (B5).

Lemma 2 Let V be a finite set. If Bs ⊆ V 3 is strict and satisfies (B1), (B3), (B4), and (B′5), then
Bs satisfies (B5).

Proof: Let u, v, w ∈ V be such that N(u, v, w) holds. For contradiction, we assume that there is no
c ∈ V with (u, c, v), (u, c, w), (v, c, w) ∈ Bs.

Claim 1 If u′ ∈ V is such that (u, u′, v), (u, u′, w) ∈ Bs, then there is some u′′ ∈ V such that
(u, u′, u′′), (u, u′′, v), (u, u′′, w) ∈ Bs.

Proof of Claim 1: By our assumption, (v, u′, w) 6∈ Bs. If (u′, v, w) ∈ Bs, then (u, u′, v) ∈ Bs and
(B3) imply (u, v, w) ∈ Bs which is a contradiction. Hence (u′, v, w) 6∈ Bs. Similarly, if (u′, w, v) ∈ Bs,
then (u, u′, w) ∈ Bs and (B3) imply (u, w, v) ∈ Bs which is a contradiction. Hence (u′, w, v) 6∈ Bs

and we obtain N(u′, v, w). By (B′5), there is some u′′ ∈ V with (u′, u′′, v), (u′, u′′, w) ∈ Bs. Since
(u, u′, v), (u′, u′′, v) ∈ Bs, (B1) and (B4) imply (u, u′, u′′) ∈ Bs. Since (u, u′, u′′), (u′, u′′, v), (u′, u′′, w) ∈
Bs, two applications of (B3) imply (u, u′′, v), (u, u′′, w) ∈ Bs. 2

Claim 2 If u, u1, u2, . . . , ul ∈ V are such that (u, ui, ui+1) ∈ B for 1 ≤ i ≤ l − 1, then u1, u2, . . . , ul

are pairwise distinct.

Proof of Claim 2: For contradiction, we may assume u1 = ul. Since Bs is strict, this implies l ≥ 3. If
(u, u1, ui) ∈ Bs for some 2 ≤ i ≤ l− 1, then (u, ui, ui+1) ∈ Bs and (B4) imply (u1, ui, ui+1) ∈ Bs. Now
(u, u1, ui+1) ∈ Bs, (B1), and (B3) imply (u, u1, ui+1) ∈ Bs. By an inductive argument, this implies
(u, u1, ul) ∈ Bs. Since Bs is strict, this is a contradiction. 2

Applying (B′5) once yields the existence of some u1 ∈ V with (u, u1, v), (u, u1, w) ∈ Bs. Now,
by iteratively applying Claim 1, we obtain a sequence u1, u2, u3, . . . of elements of V such that
(u, ui, ui+1), (u, ui+1, v), (u, ui+1, w) ∈ Bs holds for i ≥ 1. By Claim 2, all elements of this sequence
are distinct, which contradicts the finiteness of V . 2

Theorem 3 Let V be a finite set. Let B,Bs ⊆ V 3 be such that Bs is strict.

(i) There is a tree T = (V,E) such that Bs(T ) = Bs if and only if Bs satisfies (B1), (B3), (B4),
and (B′5).

(ii) There is a tree T = (V,E) such that B(T ) = B if and only if B satisfies (B0), (B1), (B′3), (B4),
and (B′5).
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Proof: (i) Since every strict tree betweenness obviously satisfies (B1), (B3), (B4), and (B′5), the “only
if”-part of the statement is clear and we proceed to the “if”-part. Therefore, let Bs satisfy (B1), (B3),
(B4), and (B′5). By Lemma 2, Bs satisfies (B5). Clearly, we may assume that |V | ≥ 3. Let T = (V,E)
be a graph such that for all u, v ∈ V with u 6= v we have

uv ∈ E ⇔ ∀x ∈ V : (u, x, v) 6∈ Bs. (12)

Let u, v ∈ V be such that u 6= v and uv 6∈ E. A Bs-path of order l between u and v is a sequence
P : u1u2 . . . ul such that u = u1, v = ul, (ui, ui+1, ui+2) ∈ Bs for 1 ≤ i ≤ l − 2, and l ≥ 3. By (12),
there is at least one Bs-path of order 3 between u and v.

Claim 1 All elements of a Bs-path P : u1u2 . . . ul are distinct.

Proof of Claim 1: We assume, for contradiction, that ui = uj for some 1 ≤ i < j ≤ l. Since
Bs is strict, j − i ≥ 3. Since (ui, ui+1, ui+2), (ui+1, ui+2, ui+3) ∈ Bs, an application of (B3) implies
(ui, ui+2, ui+3) ∈ Bs. Now, if j − i ≥ 4, then (ui, ui+2, ui+3), (ui+2, ui+3, ui+4) ∈ Bs and another
application of (B3) implies (ui, ui+3, ui+4) ∈ Bs. Iteratively applying (B3) in this way eventually
yields (ui, uj−1, uj) = (ui, uj−1, ui) ∈ Bs which is a contradiction, because Bs is strict. 2

By Claim 1, all Bs-paths have order at most |V |.

Claim 2 If the Bs-path P : u1u2 . . . ul is maximal with respect to inclusion, then P is a path in T .

Proof of Claim 2: For contradiction, we assume that uiui+1 6∈ E some 1 ≤ i ≤ l − 1. By (12), this
implies that there is some x ∈ V such that (ui, x, ui+1) ∈ Bs. If i ≤ l − 2, then (ui, ui+1, ui+2) ∈ Bs

and (B4) imply that (x, ui+1, ui+2) ∈ Bs. Similarly, if i ≥ 2, then (ui−1, ui, ui+1) ∈ Bs, (B1), and
(B4) imply that (ui−1, ui, x) ∈ Bs. Now the sequence u1 . . . uixui+1 . . . ul is a Bs-path between u and
v strictly containing P which is a contradiction. 2

Claim 3 T contains no cycle.

Proof of Claim 3: For contradiction, we assume that C : u0u1 . . . ul−1u0 is a shortest cycle in T . If
l = 3, then (12) implies N(u0, u1, u2) and (B5) implies a contradiction to u0u1 ∈ E. Hence l ≥ 4. By
(12) and (B5), we obtain (ui, ui+1, ui+2) ∈ Bs for 0 ≤ i ≤ l− 1 where the indices are to be understood
modulo l. Iteratively applying (B3) yields (u0, ul−1, u0) ∈ Bs which is a contradiction, because Bs is
strict. 2

By Claims 2 and 3, T is a tree.

Claim 4 Bs = Bs(T )

Proof of Claim 4: Let (u, v, w) ∈ Bs. By definition, uw 6∈ E. Since uvw is a Bs-path, Claim 2 implies
that T contains a path between u and w which contains v as an internal vertex, i.e. (u, v, w) ∈ Bs(T ).

Conversely, let (u, v, w) ∈ Bs(T ). Let P : u1u2 . . . ul with u = u1, w = ul, and v = uj for some
2 ≤ j ≤ l − 1 be a path in T between u and w which contains v as an internal vertex. By (12) and
(B5), we obtain (ui, ui+1, ui+2) ∈ Bs for 1 ≤ i ≤ l − 2. Now, applying (B1) and iteratively applying
(B3) implies (u, v, w) = (u1, uj , ul) ∈ Bs 2

This last claim completes the proof of (i).

(ii) Since every tree betweenness obviously satisfies (B0), (B1), (B′3), (B4), and (B′5), the “only if”-part
of the statement is clear and we proceed to the “if”-part. Therefore, let B satisfy (B0), (B1), (B′3),
(B4), and (B′5). Let

Bs = B \
{

(u, v, w) ∈ V 3 | u = v or u = w or v = w
}

.
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Claim 5 Bs satisfies (B1), (B3), (B4), and (B′5).

Proof of Claim 5: Bs clearly satisfies (B1).
If (u, v, w), (v, w, z) ∈ Bs, then u 6= w 6= z and (B′3) for B implies (u, w, z) ∈ B. If u = z, then (B0)

for B implies u = w which is a contradiction. Hence u 6= z and (u, w, z) ∈ Bs, i.e. Bs satisfies (B3).
If (u, v, w), (u, w, z) ∈ Bs, then v 6= w 6= z and (B4) for B implies (v, w, z) ∈ B. If v = z, then (B0)

for B implies v = w which is a contradiction. Hence v 6= z and (v, w, z) ∈ Bs, i.e. Bs satisfies (B4).
If N(u, v, w), then (B′5) for B implies the existence of some u′ ∈ V such that u 6= u′ and

(u, u′, v), (u, u′, w) ∈ B. If u′ = v, then (u, v, w) ∈ B which is a contradiction. If u′ = w, then
(u, w, v) ∈ B which is a contradiction. Hence u′ 6= v and u′ 6= w, (u, u′, v), (u, u′, w) ∈ Bs, and Bs

satisfies (B′5). 2

By the proof of (i), the tree T defined as in (12) satisfies Bs = Bs(T ). Let u, v ∈ V be such that
u 6= v. By definition of B(T ) and (B0), (u, u, u), (u, u, v) ∈ B ∩ B(T ) and (u, v, u) 6∈ B ∪ B(T ). Hence
B = B(T ) and the proof of (ii) is complete. 2

Note that (12) yields an efficient way of reconstructing a tree from its (strict) tree betweenness.
Theorem 3 (i) immediately implies Burigana’s result whose proof in [3] extends over about seven
pages. (Note that for the proof of Burigana’s result, Lemma 2 is not even needed.)

Corollary 4 (Burigana [3]) Let V be a finite set. A strict relation B ⊆ V 3 is a strict tree between-
ness if and only if it satisfies (B1), (B2), (B3), (B4), and (B5).
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