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VISUAL QUALITY INSPECTION OF TEXTURED MATERIAL SURFACES
WITH ASSISTANCE OF SELF-ORGANIZING MAPS
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ABSTRACT

This paper represents recent results concerning deve-
lopment of a software framework for time and effort-
saving implementation of diagnostic programs for vi-
sual inspection of textured material surfaces. The ex-
planations conclude with the presentation of first prac-
tical applications.

Index Terms— image processing, Kohonen map,
neural network, SOM, surface inspection, texture ana-
lysis

1. INTRODUCTION

This project aimed at the development of a basic con-
ceptual programming structure (framework), allowing
a rapid implementation of diagnostic routines for visual
inspection of flat, textured material surfaces. Frame-
work includes a combination of image processing al-
gorithms and soft computing techniques. For the lat-
ter, integration of Neural Networks (NN) were pre-
ferred. NN model types Multilayer Perceptron (MLP)
and Self-Organizing Map (SOM) were taken into con-
sideration.

For the implementation of the framework some
conditions were set:

• Preferably, diagnostic programs must be execu-
table under the MS Windows R© operating sys-
tems. Considering the increased security and
reliability of alternative OS, a porting to Linux
should come along with a minimum of time in-
vestment. Therefore, platform specific features
must be avoided.

• Online inspection requires the interpretation of
textural attributes, which should be calculated
with low computational costs.

To satisfy this conditions, software framework was im-
plemented in C++, which allows high execution speed
and good portability. Additionally, a sub-goal is a mi-
nimum amount of preliminary work, which must be in-
vested to prepare NN for inspection tasks.

The preliminary process provided by the frame-
work is structured in:

• Database generation: Database consists of textu-
ral features, extracted from digital images. Op-
tionally, images can be preprocessed for quality
reasons.

• Network training phase: Test data presentation,
associated with an iterative self-modification of
the NN.

• Network recall phase: NN will be confronted
with unknown datasets.

• Network rating: If a reasonable quality of trained
NN cannot be achieved, training and recall will
be repeated after adapting NN configuration pa-
rameters.

After successful rating NN can be considered as ready
for practical operation.

2. DATA PROCESSING

2.1. Image preprocessing

Matrix cameras were considered as sensor devices. To
cope with rough conditions an optical inspection sys-
tem is confronted with, several basic algorithms for im-
age enhancement were implemented: Gray value varia-
tions, caused by inhomogeneous illumination, can e.g.
be compensated by histogram equalization.

After capturing textured material surfaces with
varying quality levels, resulting images were parti-
tioned into tiles (sub-images). Their size depends on
occurence of possible defects. Sub-image size speci-
fies as well the area a texture defect can be localized
within.

2.2. Image feature extraction

With respect to formerly mentioned restrictions con-
cerning calculation costs, a range of textural attributes
is calculated for every sub-image. Texture analysis is
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limited to statistical approaches. Some basic attributes,
like the scope of gray values, can be derived from his-
togram. A range of widely used textural attributes can
be compiled from

• Gray-level Cooccurence Matrix (GLCM), which
is derived from pairwise pixel intensity statistics
(see Haralick et al. [1]),

• Gray-tone Difference Matrix (GTDM), which
is computed by measuring the difference be-
tween gray value of a pixel and averaged gray
value over a squared window centered at it (see
Amadasun & King [2]).

Furthermore, the Local Binary Pattern (LBP), intro-
duced to the public by Ojala et al. [3], is calculated
for every sub-image as a gray-scale invariant texture
attribute.

All calculated feature values are collected in a data-
base. The relevance of a feature to the good/bad rating
of material surface varies in dependence on the inspec-
tion task.

2.3. Inclusion of expert knowledge

Expert knowledge has to be added to the database to
fulfill all conditions for training and recall of a NN.
Therefore, every sub-image has to be examined by an
expert, who assigns the categorical attributes ”good” or
”bad” due to the quality of the pictured surface. The
possibility to set such simple attributes supports the
human habit of decision-making during inspection by
manpower. Nevertheless, influence of subjectiveness
can be reduced as far as possible.

A suitable codification is needed for further hand-
ling of these categorical attributes. In this case, a repre-
sentation according to the simple formula

x =
{

0 if rated GOOD
1 if rated BAD (1)

allows inclusion of expert knowledge in the database.
Usage of a higher amount of attributes is allowed

for the case, that attributes correlate with intensity/size
of appearing texture defects. Representation should be
realized by equidistant values in the range of {0 . . . 1}
(see section 6.2 for an example).

3. NEURAL NETWORKS

3.1. SOM in general

Self-Organizing Maps (SOM), which were introduced
by Kohonen [4, 5], possess a simple structure in com-
parison to other NN model types. In the simplest case,
all neurons of a SOM are arranged in a so-called com-
petitive layer with rectangular/squared shape. Every
single neuron is assigned to a reference vector W (x, y)

containing the weights, whose length is equal to the di-
mensions of training dataset.

Training utilizes competitive and unsupervised
learning. When a training dataset X is presented to
the SOM, its distance to all reference vectors is com-
puted. The neuron with shortest distance is declared as
Best Matching Unit (BMU). BMU weights and weights
of neurons in an influence radius r are adjusted to X .
Magnitude of adjustment is controlled by following
functions:

• learning function L(t), which is monotonically
decreasing with time,

• neighborhood function E(t, r), which is mono-
tonically decreasing with radius r and time.

This process is repeated several times until a conver-
gence criteria is fulfilled or an iteration limit is reached.
After training content of the training database is parti-
tioned into centroids. Further details are i. a. given in
Knieling [6] and Zeil [7].

SOM, also known as Kohonen maps, have been
successfully applied for clustering and classification
tasks, image segmentation and as a visualization tool
for high-dimensional data. The modeling approach
used for the purpose of texture quality rating is de-
scribed in the next section.

3.2. SOM modeling approach

A new interpretation scheme of the reference values
allows the full integration of expert knowledge during
training phase of the SOM:

During training phase SOM is confronted with the
attributes of texture examples along with assessment at-
tributes, paraphrasing the quality level according to ex-
pert knowledge. BMU will be chosen by the minimum
Euclidean distance between full training dataset X and
full reference vector W .

The recall phase includes comparison of expert rat-
ing with quality evaluation performed by the trained
SOM. Distance measurement is limited to x1 . . . xn−1

and w1 . . . wn−1; wn of the BMU will be interpreted as
model output y (see fig. 1). Hence, expert knowledge is
always located in the last value of all reference vectors.

Fig. 1. Scheme of a SOM structure (left) and SOM
neuron with its reference vector (right).



3.3. Evaluation criteria

Various types of errors are considered after recall phase
for the evaluation of quality:

Mean squared error eMSE as well as minimum abso-
lute and maximum absolute error indicate divergences
between expert knowledge and model response.

Quantization error equ, which is defined as

equ =
1
n
·

n∑
i=1

||Xi −WBMU(Xi)| |, (2)

where n is the number of recall data-vectors and
X stands for a single data-vector, characterizes the
achieved resolution of the quantization of data. Low
values of equ indicate a successful data representation
by SOM.

The topological error is given by the formula

etopo =
1
n
·

n∑
i=1

f (Xi) (3)

where f is defined as

f(Xi) =

{
0 if BMU1 and BMU2 adjacent
1 otherwise,

(4)

and BMU1 and BMU2 stand for first and second best
matching unit for Xi. According to the definition of
Uriarte [8], horizontal, vertical and diagonal adjacency
is considered. Topological error etopo indicates preser-
vations of topological relationships in the data. Quan-
tization and topology preservation often conflict for the
case, that dimension of X is higher than dimension of
SOM grid (see Kirk & Zurada [9]).

4. PARAMETER ANALYSIS

4.1. Goals

The configuration of a SOM mainly includes parame-
ter settings like number of neurons, initial learning rate
and map grid shape as well as the selection of initia-
lization scheme and training method. For easy usabi-
lity of the software framework, it is necessary to reduce
amount of this preliminary work. A comprehensive pa-
rameter analysis aims at the formulation of a helpful
Best Practice Guideline. Furthermore, interpretation of
the results and conclusions allow the implementation of
a semi-automated selection of suitable parameters for a
given database.

Therefore, 25 texture datasets were derived from
the Brodatz texture database, the standard for evalua-
ting texture algorithms, which represents various kinds
of natural and synthetic surfaces. Samples are shown
in fig. 2.

Formerly mentioned texture features were calcu-
lated over all sub-images of the generated texture al-
bums to provide a data basis for training and recall of

Fig. 2. Samples from texture albums, derived from the
Brodatz texture database, containing intact surfaces (a)
and structural defects (b).

the SOM. Primary feature selection was done by redu-
cing highly correlated texture attributes. Training was
performed using the given datasets with randomly per-
mutated labels.

4.2. Results

Required functionality could be achieved by simple
SOM structures like rectangular formations of neu-
rons. Briefness of calculation during this process was
achieved by using an initialization scheme introduced
by Su et al. [10] and an in-house developed training
algorithm. For the latter the adjustment of the neuron
weights as described in section 3.1 will not be executed
for every iteration. Instead a cache algorithm is used,
which reduces the total amount of required arithmetic
operations.

Expenditure of time can be reduced by carrying out
formulated Best Practice Guidelines, containing e. g.
the following conclusions:

• A preferred application of rectangular map grids,
which was recommended by Zeil [7], can be con-
firmed. An increase of height-weight ratio comes
along with a SOM with poorer quality, indicated
by higher values of eMSE.

• It turned out that in all given cases the mini-
mization of equ takes precedence over topology
preservation.

• Neighborhood function E should be defined as
Gaussian function.

Furthermore, parallel modeling approaches turned out,
that in some cases the required functionality cannot be
achieved with MLP. Based on the results, the SOM
were firmly integrated into the framework. In addition
to this, semi-automated parameterization was realized.



5. FEATURES OF THE RESULTING
FRAMEWORK

The key features of the resulting framework can be
specified as follows:

• The framework enables Rapid Application De-
velopment for diagnostic routines.

• Teach-in part is comparatively less time-
intensive and simplified by using a minimum of
attributes for the representation of expert know-
ledge.

• Included image enhancing algorithms allow in-
creasing robustness of feature extraction.

• Calculation algorithms for the chosen texture
features have a high potential for parallelization.
In dependence on hardware architecture for exe-
cution of diagnostic routines, inspection process
can be speeded up by using full CPU capacity.

• The framework itself allows the integration of
additional functions depending on special needs
of the inspection task. Besides, portability to al-
ternative OS is given.

Nevertheless, the transparent functionality of SOM
increases acceptance for integrating Soft Computing
methods into inspection processes.

6. FIRST PRACTICAL APPLICATIONS

6.1. Inspection of reflective surfaces

As a first practical application a framework-based di-
agnostic program for inspection of highly reflecting
mirror surfaces was successfully tested under sub-
optimal light conditions. Surfaces were captured by

Fig. 3. Test device for inspection of highly reflecting
mirror surfaces.

a matrix camera in an experimental device with dark
field illumination (see fig. 3). The backside of the
non-reflecting cover plate is pictured as a homoge-
neous background on the mirror surface. Feasibility
study aimed at identification and differentiation of ir-
reparable surface defects as well as fouling (see fig.
4). Depending on the inspection results, a subsequent

Fig. 4. Sub-images of mirror surface without flaws (a),
with fouling (b) and irreparable defects (c).

treatment of objects (cleaning of the surface or com-
plete refusal) should be initiated.

As a result slight inhomogeneities of the textures,
caused by illumination, were successfully compensated
by performing histogram equalization. Functionality
can be provided by a rectangular SOM grid with 4×22
neurons, using maximum gray value (histogram-based
feature) and cluster shade (GTDM-based attribute) for
evaluation criteria.

6.2. Classification

A classification of brushed metal plates based on mi-
crographs as seen in fig. 5, was realized by replacing
assessment attributes with gradings. In this case codifi-

a)

b)

c)

Fig. 5. Microscopic sub-images of (a) soft- (b)
medium- and (c) hard-brushed metal surfaces.

cation of expert knowledge complies with the scheme

R =

 0.0 if soft-brushed
0.5 if medium-brushed
1.0 if hard-brushed.

(5)

Classification task was solved by a rectangular SOM
with 7× 9 neurons. 8 different textural attributes were
applied as distinguishing features.
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