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Chapter 1

Introduction

1.1 Scientific Background

In recent years, applications based on organic electronics have become common as can be seen

from displays based upon organic light emitting diodes (OLEDs) [1–3]. Organic semiconduc-

tors have also been used in organic electronic devices such as organic field effect transistors

(OFETs) [4–9], organic thin film transistors (OTFTs) [10, 11], or organic solar cells [12–14].

Besides π-conjugated polymers, in particular organic molecular crystals (OMCs) have at-

tracted strong experimental and theoretical interest since the long-range order in these mate-

rials allows for the study of fundamental questions in physics and chemistry [8, 15–19]. This

includes especially investigations of underlying elementary processes and interactions that

lead to their specific optical and transport properties, which can be markedly different from

those in conventional covalent or ionic crystals such as the traditional semiconductors Si and

GaAs.

The charge transport in OMCs has been under strong debate ever since the pioneering

experimental work of Karl et al. [20] who spent decades preparing and measuring high quality

organic crystals. Many of these results are still a benchmark today. Karl even succeeded

to demonstrate hot carrier effects in naphthalene crystals. [21] Despite such outstanding

experimental achievements, a recent review article states that the “understanding of charge

transport ... remains limited.” [8] Similarly another recent review expects that comprehensive

understanding will arise in the future from several improvements in the theoretical modeling

and description of transport. This includes the number of computational studies that has

to be increased but more importantly the required higher level of the theoretical treatment.

[22] The dominating impression from such conclusions in the most recent reviews and books

is that many fundamental questions are not satisfactorily answered.

The natural question arises what is actually understood so far about the charge trans-

1



2 CHAPTER 1. INTRODUCTION

port in OMCs and why is the situation by far more complex than in traditional inorganic

semiconductors. An excellent indicator of the difficulties in understanding and describing

charge transport in organic crystals can be found in a monograph by Silinish and Čápek.

[23] They speak of a “mobility puzzle” which is that “on one hand, the mean free path l0

of the carrier ... from room temperature to down to 150 K is actually of the order of lattice

constant a0 (l0 ≈ a0) and strongly suggests a hopping model approach. On the other hand, the

typical µ(T ) dependences ... µ ∝ T−γ are often supposed to speak in favor of some band-type

carrier transport.”1 [23] Thereby hopping or band transport in organic crystals are assumed

to be the exclusive transport mechanisms for either localized or delocalized charge carriers,

respectively.

In fact, the bare electronic bandwidth of organic molecular crystals can reach 500 meV

[24–26] or even more [27]. In comparison to the thermal energy this is large and a supporting

argument for band-like transport similar to the case of conventional inorganic semiconductors.

A large bare bandwidth, however, is not a sufficient criterion for this mode of transport in

organic semiconductors and can only serve as an indicator for high mobilities. This is different

to the traditional inorganic semiconductors. The reason is that, due to thermal (vibrational)

disorder, the bandwidth (i.e. the electronic coupling) is on average smaller than the value

obtained for fixed geometry at zero temperature [28]. The effect is known as band narrowing

and can be rationalized by means of the polaron concept. [25, 29, 30] Such polaron effects

may trigger a transition from band transport to hopping motion.

The formation of polarons has been studied in the past but the influence on carrier motion

is by far not sufficiently described and understood. In fact, so far there was only one single

paper applying a sophisticated (non-perturbative) transport theory along with state-of-the-

art ab initio calculations for material parameters. [31] In contrast thereto, several model

studies appeared during the last decades [32–37] which, however, do not easily facilitate

direct and systematic computational investigations for real materials. Other studies, based

on the propagation of electron wave packets using a one-dimensional Schrödinger equation,

are limited to high temperatures and might be too demanding for studies of three-dimensional

crystals. [28, 38] As a result of these studies the community has seemingly come to a common

belief that, at least for the high temperature regime, the incoherent hopping dominates in

organic crystals. The contribution of coherent band transport is still under debate and

depends strongly on the temperature. In particular, the influence of the common assumption

of narrow bands on the description is poorly understood. [34] The above quotations from

various reviews show that the accurate modeling of both transport mechanisms remains an

important task to obtain a deeper understanding of charge transport in organic crystals.

1µ is the charge carrier mobility.
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Apart from these fundamental questions about the transport mechanism which are not

satisfactorily answered, there is also the issue of the anisotropy of the carrier mobility in real

crystals, which has been rarely studied theoretically so far, even though many experiments

exist. [16, 20, 39–43] The anisotropy is of special interest because it allows to study the

relationship between molecular orientation and transport efficiency. Such an analysis must

necessarily go beyond the various model studies which have been carried out in literature. It

has also not been addressed so far by the methods based on the propagation of the Schrödinger

equation, presumably because it is computationally too expensive in higher dimensions than

1D.

In order to investigate the mobility anisotropy for a real crystal, a combination of a

sophisticated transport theory on the one hand and a complete set of first principles material

parameters on the other hand is required. A visualization of the transport channels in real

space would also be helpful to improve the basic understanding of the mobility anisotropy

and its relation to the stacking motif of the molecules in OMCs.

1.2 How This Work Contributes

This work deals with the transport of charges in crystalline organic semiconductors. In view

of the above-mentioned “mobility puzzle” it aims at providing a deeper understanding and

improved description of the relevant processes for charge transport in these materials. This

is done from two aspects: (1) a theoretical analysis and (2) computational studies of various

organic crystals.

In the first part of this thesis, a novel theory is developed which describes the motion

of dressed charge carriers (i.e. charge carriers with their accompanying lattice polarization

cloud2) including the full anisotropy and temperature dependence. Since the modeling of

charge transport is essentially the modeling of the scattering of charge carriers, I have devel-

oped a transport theory based on the Holstein Hamiltonian for electron-phonon scattering.

The carrier mobility is derived from a non-perturbative evaluation of the Kubo formula and

represents a generalization of the original Holstein model. [29]

A schematic representation how this new theory is related to other approaches is depicted

in Fig. 1.1. The Holstein model (black frame) is based on the assumptions of purely local

electron-phonon coupling and narrow electronic bands. Previous extensions of the Holstein

model were focused on the inclusion of additional non-local electron-phonon interaction [44]

but were still restricted to narrow bands. In the present theory (red frame in Fig. 1.1)

2With lattice polarization the polarization based on the change of geometry (electron-phonon interaction)
is meant in contrast to the electronic polarization based on electron-electron interaction.
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Figure 1.1: Schematic illustration of the development of the present theory (red frame) in relation to
the previous theory by Hannewald and Bobbert [44] (blue frame) and Holstein’s small polaron model
[29] (black frame).

the assumption of narrow bands is dropped and a generalization towards the full electronic

bandwidth is derived.

Within the applied framework one can describe the electron-phonon interaction micro-

scopically and take other scattering mechanisms (impurity, electron-electron scattering, etc.)

implicitly into account. As an important finding of this part of the thesis, the carrier mobility

is interpreted in terms of contributing scattering events, which nicely illustrates the different

transport mechanisms. Although originally designed for organic molecular crystals, where

the lattice polarization dominates, the developed theory is valid for arbitrary bulk semicon-

ductors, because the temperature dependence of the mobility in the traditional inorganic

semiconductors is also governed by the lattice polarization. [45]

The second part of the thesis is an ab initio investigation of organic materials with poten-

tially high carrier mobilities. It is focused on the understanding of the relationship between

transport anisotropy and underlying geometric structure. This second part includes basic ge-

ometry and electronic structure simulations from first principles and, on top of these studies,

an investigation about the transport characteristics including the simulation of the tempera-

ture dependent mobility tensor of the charge carriers. The mobility formula of the first part

is applied hereby to naphthalene crystals and the structure/property relationship is studied

for durene and guanine crystals, which serve as representatives for two different classes of

OMCs. Similarities and differences are discussed in detail.

1.3 Goals of This Work

• To derive an analytical expression for the charge carrier mobility.
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• The mobility formula should be usable directly with ab initio parameters for arbitrary

crystalline materials and shall provide a starting point for computational studies from

first principles.

• To analyze the mobility with respect to coherent band transport and incoherent ther-

mally activated hopping, in particular, the crossover point and the relative importance

of both contributions.

• To gain more insight into the temperature dependence of the mobility. The T−γ power

law dependence of the mobility and the role of the parameter γ deserve particular

attention.

• To establish the connection between polaron transport theories and the Boltzmann

transport equation.

• To study a diverse set of molecular crystals which might be good charge-transport

materials.

• To investigate the relationship between mobility anisotropy and molecular geometry.

• To improve the understanding of the mobility anisotropy by an intuitive visualization

tool.

1.4 Outline

In Chapter 2 an introduction to the concept of polarons is given. This includes a general

discussion of polaronic effects along with an example from experiments as well as an intro-

duction of basic terms like electronic coupling and electron-phonon coupling. An analytical

description of the polarons is given in Chapter 3. This chapter introduces the formalism and

notation developed previously [25], but its presentation is adapted to the present needs in the

thesis. Chapter 4 presents a novel polaron transport theory which I have developed in the

course of my studies. The derivation is accompanied by a comprehensive discussion of the

underlying physical concepts. The relation of limiting cases to other theories is analyzed as

well. The transport theory is illustrated in Chapter 5 with a detailed discussion of its features

which is based on numerical studies of a model crystal. Chapter 6 compiles the findings from

the computational studies of the organic crystals naphthalene, durene, and guanine, which are

obtained with ab initio material parameters of these crystals. It covers results on structural,

vibrational, and electronic properties as well as the description of charge transport based on

the carrier mobilities. The discussion of the mobilities includes its temperature dependence

and anisotropy. A summary and an outlook in the last chapter complete the thesis.



Chapter 2

Introduction to Polarons

2.1 What is a Polaron?

A polaron is a dressed charge carrier and is therefore always based on two ingredients: a

charge carrier (electron or hole) and a polarization cloud that is bound to this charge carrier.

The polarization cloud can be an intrinsic one or an extrinsic one as can best be seen with an

example. Consider the DNA molecule with its famous double helix form in aqueous solution

and consider one of the DNA bases being charged. This electron or hole will cause a reaction

of the molecule upon charging which is seen in its deformation (intrinsic polarization). On

the other hand it will cause a reorientation of surrounding water molecules owing to their

dipoles moments (extrinsic polarization). Intrinsic or extrinsic reactions can be described as

polarization effects which occur because the nuclei degrees of freedom couple to the charge.

As a consequence of the coupling, the energy level of ionization is shifted downwards upon

relaxation. The carrier is bound with the polaron binding energy Ep. Or in other words, the

polarization cloud is bound to the carrier.

Similarly, in bulk semiconductors, which are under investigation here, an intrinsic coupling

of excess charges to the atomic/molecular vibrations is observed. [23] An extrinsic effect can

also be found at crystal surfaces where the charge polarizes the medium above the surface.

[17] In this thesis I am concentrating on intrinsic polarization in crystalline bulk materials

and OMCs in particular because already the intrinsic transport mechanism is still not well

described in OMCs. [8, 22, 23]

So far, the effect of an excess charge on the material has been discussed as a response of

the host crystal leading to a polarization cloud. Another viewpoint is of equal interest. One

can ask the other way around what is the effect of vibrating atoms/molecules on a traveling

charge carrier? Taking this point of view one is at the heart of the important question how

the temperature influences the charge motion. Clearly, the effective potential felt by the

charge carrier is changed by changes in the geometry and the carrier will be scattered by

6



2.2. POLARON TRANSPORT 7

Figure 2.1: Experimental charge carrier mo-
bility in c∗ direction in naphthalene crystals
(see geometry in Fig. 2.2) reproduced from
Ref. [20]. For clarity, solid lines are guide to
the eye. Electric-field dependencies represent-
ing hot carrier effects are visible for low tem-
peratures where respective curves are split by
different electric field strengths.

such changes in the potential. Increasing temperature amplifies this effect and thus reduces

the mean free path of the carrier. Since the atomic motion always implies a potential change,

such an interaction is present everywhere, though with different strength. This important

interaction between the electronic and nuclei degrees of freedom is the basis of the polaron

concept and is called electron-phonon coupling. Hereby, the vibrations are described by

lattice phonons.

2.2 Polaron Transport

Polaronic effects in charge carrier transport are strong in organic semiconductors like organic

molecular crystals and semiconductors based on polymers. Fig. 2.1 shows the very prominent

example of carrier mobility studies by Karl and co-workers. [20, 21] These studies were carried

out at single crystals of naphthalene, the structure of which is depicted in Fig. 2.2.

Figure 2.1 shows the temperature dependence of the carrier mobilities along a specific di-

rection which exhibits some interesting features. For almost all temperatures is the mobility a

decreasing function of temperature. There are two exceptions. The first exception (indicated

by a blue bar in Fig. 2.1) is the low-T limit, where the mobilities approach a constant value.

Such a plateau is seen in all directions for electrons and holes for different applied voltages.

The second exception (red bar in Fig. 2.1), which appears in the regime between 100 K and
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(a) (b)

Figure 2.2: Naphthalene crystal structure. (a) A view along c∗ (monoclinic b axis up) shows a 2D
herring-bone stacking of molecules in planes. (b) A view in b direction exhibits the stacking of such
herring-bone planes in the perpendicular direction.

300 K, is observed for the electrons only. In this temperature range a pronounced plateau

is measured which at least allows for the possibility that the mobilities might increase for

larger T again. In between (yellow bar in Fig. 2.1), the mobility decrease follows a power-law

dependence according to T−γ with γ = 2.8 for holes and γ = 1.6 for electrons. The three

regimes indicate that different transport modes operate at different temperatures. Such a

complex characteristic cannot be explained with traditional approaches to carrier transport

such as the Boltzmann equation based on the assumption of band transport. It cannot be

modeled by hopping approaches such as the classical Marcus theory [46, 47] either. It puts

high demand on a unified theory. In particular it requires better modeling such as the intro-

duction of polarons on a quantum mechanical basis. In the present thesis I will explain the

underlying mechanisms in detail which may lead to the observed temperature dependence of

the mobility.

What is the difference to traditional semiconductors like Si or GaAs that the charge

transport in OMCs cannot be simulated by the Boltzmann equation? There is a pronounced

difference in the bandwidths and, more importantly, the strength of electron-phonon coupling.

While the bare electronic bandwidths of organic single crystals rarely exceed 700 meV [27, 48,

49] the bandwidths of traditional semiconductors are one order of magnitude larger. On the

other hand, the electron-phonon interaction is stronger in organic semiconductors than in the

technologically relevant inorganic ones. This is due to the fact that the relevant frequencies

of scattering phonons are much lower in OMCs or polymers since these materials are softer.

For instance, the weak van der Waals bonds in OMCs give rise to intermolecular vibrations

around 100 cm−1. The resulting larger vibration amplitudes lead to a larger variation of the

wavefunction overlap of adjacent sites (i.e. the variation of the electronic coupling) [50]. The

changes in the electronic coupling with varying geometry (i.e. the electron-phonon coupling)

are stronger.
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In general, however, polaronic effects are not simply present or absent. Similarly, the

strength of the electron-phonon interaction is not either weak or strong but can vary con-

tinously. This also holds for the bandwidth. Inorganic semiconductors can also have small

bandwidths like, e.g., transition-metal-based crystals with narrow d-bands or bands derived

from superlattices. As a consequence, one needs a unified theory that describes charge trans-

port not only in the two limiting cases introduced before but which also describes a seamless

transition for all intermediate materials. A theory is required which is valid for continously

varying material parameters. In particular, the interesting organic crystals like pentacene,

naphthalene, durene, or rubrene are exactly such materials for which an assignment to either

limit is not valid for all temperatures. In addition, the limit of diminishing electron-phonon

interaction of a sophisticated polaron transport theory should also cover the description of

the bare particles (undressed electrons or holes) and give the same results as obtained from

the Boltzmann equation.

2.3 Description of Polarons

2.3.1 Holstein Picture

Since Holstein’s papers on “Studies of polaron motion” half a century ago [29, 51] using a

one-dimensional molecular crystal model there is an ongoing discussion in literature about

polaron sizes in materials. This is motivated by the theoretical treatment because the size of

the polaron governs the theoretical means used to describe their transport characteristics in

most of the studies carried out so far. These methods are restricted to either small or large

polarons. In order to follow this discussion one should, as a first step, define a size to which

the polaron size is compared. This is typically a lattice constant or a few.

Holstein introduced an energy ratio between polaron binding energy Ep and electronic

coupling, namely
Ep

B , where B is the electronic bandwidth. This ratio is directly related to

the polaron size as obtained from his classical considerations about polarons. [51] For small
Ep

B the electronic coupling dominates and the electron-phonon interaction can be treated as

a perturbation. This is the limit of large polarons. In the other case of a large ratio
Ep

B ,

the electronic coupling is treated as a perturbation to localized polarons. The latter case

is closely related to the narrow-band approximation (NBA) which is expressed in B → 0.

This approximation has been assumed in all subsequent studies on polaron transport in the

tradition of Holstein’s model [32, 33, 35, 44] and has lead to the term “small polaron” in

connection to the Holstein picture. For small polarons the delocalization aspect of the elec-

tronic coupling is overcompensated by the localization aspect introduced by polaron binding.

Localized polarons are assumed to be confined to either one or a few (molecular) sites.
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Nowadays the Hamiltonian

H =
∑

MN

a†MεMNaN +
∑

MQ

a†MaM~ωQg
Q
MM

(
b†Q + b−Q

)
+

∑

Q

~ωQ

(
b†QbQ +

1

2

)
(2.1)

is denoted as Holstein Hamiltonian. [25, 30] It consists of an electronic part, a phononic part

and a coupling term between electrons and phonons. The particle annihilation (creation)

operators a
(†)
M are represented in real space (site RM ) and the phonon annihilation (creation)

operators b
(†)
Q are represented in reciprocal space (mode Q = (λ,q)). The electron transfer

integrals εMN describe the electronic coupling between orbitals at sites RM and RN and

give rise to finite bandwidth B and band dispersion in periodic systems. The on-site energies

εMM can be set to zero according to the freedom of choosing an energy zero. The diagonal

coupling constants gQMM describe the changes in the on-site energies induced by a lattice

distortion according to the mode Q. A derivation of (2.1) is given in Sec. 3.1.

2.3.2 Fröhlich Polarons

Large polarons are often identified with polarons described by the Fröhlich Hamiltonian [30]

H =
∑

p

εpa
†
pap +

∑

pQ

M

|Q|a
†
p−Qap(b†Q + b−Q) +

∑

Q

~ωQb
†
QbQ. (2.2)

The difference to the Holstein Hamiltonian is the free electron energy dispersion εp = p2

2m

and the particular form of electron-phonon coupling which is derived from the interaction of

the particles with LO phonons in the Fröhlich model. As seen from the energy dispersion,

the Fröhlich Hamiltonian (2.2) assumes an isotropic system with free electrons. This is

certainly not the case in crystals as a crystal implies a band structure but it might be a good

approximation in the proximity of a band edge when replacing the free electron mass by an

effective mass m∗. This approximation, however, is not difficult to overcome. One can replace

εp by the true band energy of the crystal. The size of Fröhlich polarons is assumed to be

large whereas that of Holstein polarons is assumed to be small. But this is not derived from

the different expressions for the Hamiltonians (2.1) and (2.2). It is due to different treatment

of the Hamiltonians like, e.g., the treatment within Holstein’s small polaron model.

Indeed, the Fröhlich model is designed for large polarons since the perturbation (LO

phonons) is present over a large spatial range (small phonon wavevector). This, however, is

to be checked for consistency, because the larger the electron-phonon interaction the smaller

the polaron. On the other hand, the Holstein model describes small polarons. [29] However,

large polarons are also possible with the Holstein Hamiltonian. This is very obvious since

both Hamiltonians differ only in the form of the electron-phonon interaction (apart from the
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here irrelevant difference in the electron-energy dispersion). While the Fröhlich Hamiltonian

is represented in k-space and the interaction term assumes a special dependence on the

phonon wavevector, the Holstein Hamiltonian is written in real space and does not assume

a particular form for the coupling constants g. Therefore, the Holstein Hamiltonian may be

regarded as a general form of the Fröhlich Hamiltonian in a different representation.

In conclusion, it depends on the treatment but not on the formal Hamiltonian whether

the description of polarons allows for small and/or large polarons. The above considerations

are of particular importance to this work because the first part of this thesis is based upon

the Holstein Hamiltonian but goes beyond Holstein’s small polaron model.

2.4 Holstein Hamiltonian and Polaron Sizes

Since it is clarified that the form of a Hamiltonian does not influence the size of the polaron

directly, what does? The governing parameters for the polaron size are the material pa-

rameters which enter the Hamiltonian. For the Holstein Hamiltonian, these are the transfer

integrals εMN , the phonon energies ~ωQ, and the electron-phonon coupling constants gQMM .

It is therefore interesting to study the formation and motion of polarons as a function of

these parameters. If treated correctly, one identifies different sizes of polarons and different

transport mechanisms like band transport and thermally induced hopping. From the above

discussion it is clear that the use of the more general Holstein Hamiltonian (2.1) is more

appropriate for the general description of polarons.

An extended version of (2.1) should also be presented here. It additionally includes the

non-local electron-phonon interaction gQMN (with M 6= N) and is known as Holstein-Peierls

Hamiltonian

H =
∑

MN

a†M


εMN +

∑

Q

~ωQg
Q
MN

(
b†Q + b−Q

)

 aN +

∑

Q

~ωQ

(
b†QbQ +

1

2

)
. (2.3)

The Holstein-Peierls Hamiltonian is an extension to both the Holstein Hamiltonian and the

Fröhlich Hamiltonian.

2.4.1 Large Polarons

In the limiting case of vanishing electron-phonon interaction g → 0 the Hamiltonian (2.3)

reduces to non-interacting particles and phonons. In this trivial case the particles are delocal-

ized Bloch particles (waves) which can be described by a tight-binding band structure. The

motion of these bare (undressed) particles in the crystal can be characterized by an effective

mass derived from the band structure at the band edge or the band velocity.
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Switching on the interaction with the vibrational degrees of freedom, the bare particles get

dressed by phonons and become quasiparticles called polarons. The dressing can be rational-

ized with an increased effective mass, i.e., the charge carriers have to carry the phonon cloud

as well which always accompanies the carrier. This effective mass m∗ is already increased

for zero temperature because of zero point vibrational effects. With rising temperature one

has an even stronger effect since much more phonons are available that couple to the particle

with a certain strength g. From the simple Drude formula [52]

µ =
τe0
m∗ (2.4)

it is clear that an increasing effective mass hampers the charge transport. Assuming that the

coupling is not too high and that the system has high purity and crystallinity one can retain

the picture of band transport with a slightly increased mass (heavy electrons), or in other

words with a slightly reduced bandwidth. This polaronic effect is known as band narrowing.

A smaller bandwidth reduces the size of the charge carrier as well. The delocalized Bloch

particle becomes a large polaron for small electron-phonon coupling.

2.4.2 Small Polarons

With larger values for the electron-phonon interaction g the band narrowing is stronger which

has also a strong impact on the localization and on the transport mechanism. The mean free

path reduces. In particular for the naphthalene case, it can be estimated that the mean free

path of the charge carriers for temperatures above 150 K is only about one lattice constant.

[23] Therefore the concept of band transport is no longer valid for such localized states as

also seen in the experiments, where the mobility along c∗ direction in ultrapure naphthalene

crystals is constant between 100 K and 300 K (see Fig. 2.1). This is a striking discrepancy

between the experimentally measured mobilities on the one hand and the picture of polarons

as heavy electrons moving in a polaron band on the other. The reason for this is that coherent

band transport is not the only contribution to the currents in the measurements.

This gets obvious for strong electron-phonon interaction which implies strong phonon

scattering of the carriers. The reduced mean free path of the carriers and the strong cou-

pling gives rise to thermally activated carrier transport which is characterized by increasing

mobility with increasing temperature T . This thermal activation is often assumed to follow

the Boltzmann law according to e−
Ep

kT , where Ep is the polaron binding energy (see Marcus

theory [46, 47]). Here it is studied if such a temperature dependence holds also for low and

medium temperatures.



Chapter 3

Theory I. Polarons

3.1 Derivation of the Hamiltonian

The starting point for the modeling is a Bloch-Hamiltonian of non-interacting Fermions1 in

second quantization which is given in a site representation as

Hf =
∑

M,N

εMNa
†
MaN , (3.1)

where the quantities εMN are the matrix elements of the electronic coupling between states

M and N . For the representation of Hf in Eq. (3.1), a basis set is chosen which is derived

from localized states ΦM(x). In the case of one site per unit cell these states may be identified

with Wannier functions [52] located at position RM , i.e. ΦM (x) = Φ(x − RM ). As seen in

a later section, these functions have close similarity to molecular orbitals, the position of

which are defined as the center of gravity of the orbitals. RM typically corresponds to lattice

vectors or if there are more than one molecules per unit cell also to fractional lattice vectors.

In this case one may also keep the picture of localized molecular orbitals as sites in mind.

In order to keep the derivation within reasonable complexity one assumes only one orbital

per molecule. The index M can then also be used to numerate the molecules. The elements

of the matrix ε are defined as

εMN =

∫
d3xΦ∗

M (x)

(
− ~

2

2m
∆x + Veff (x)

)
ΦN (x). (3.2)

Thereby, the crystal Hamiltonian Hcryst in the parenthesis consists of the kinetic energy and

an effective potential Veff (x). The effect of the electron-electron interaction such as Hartree

and exchange and correlation terms are effectively taken into account in the potential Veff (x).

The single particle wavefunctions and the effective potential depend on the geometry of the

system.

1Explicit electron-electron interaction is not considered here since it is not the scope of the present work.

13
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In general, the matrix ε is not diagonal since the overlap of the wavefunctions at adjacent

sites gives rise to off-diagonal elements as well. This overlap is known as electronic coupling,

and the corresponding off-diagonal matrix elements (M 6=N) are denoted electron transfer

integrals. Eq. (3.2) serves also for the definition of the so-called on-site energies which are

the diagonal elements (M=N).

The transfer integrals depend parametrically on the position of each atom Rks, where k

indicates the unit cell (k = 1, . . . , NΩ) and s runs over the atomic basis with Rks = Rk + τs

giving the position of the atom (k, s).2 This is formally written as Veff (x; {Rks}).3 One can

determine the material parameters εMN at a given set of atom positions {Rks} by means of ab

initio methods and obtain the fermionic Hamiltonian Hf =
∑

M,N εMN ({Rks})a†MaN with

its parametric dependence on the geometry. In crystalline structures, where {Rk} underly a

certain translational symmetry, εMN ({R0
ks}) implies the band structure at the equilibrium

coordinates given by {R0
ks}.

The changes in the transfer integrals with respect to the nuclear positions can be expanded

in a Taylor series about the equilibrium positions. One can anticipate fast convergence and

write

Hf =
∑

M,N

[
εMN ({R0

ks}) +
∑

ks

(Rks − R0
ks)∇Rks

εMN ({Rks})
∣∣∣
Rks=R0

ks

]
a†MaN

≡
∑

M,N

[
ε0MN + ε1MN

]
a†MaN .

(3.3)

Thereby, the first order changes are written as

ε1MN =
∑

ks

uksC
ks
MN , (3.4)

where the displacement coordinate uks = Rks − R0
ks and the definition

Cks
MN = ∇Rks

∫
d3x Φ∗

M (x)Hcryst(x; {R})ΦN (x) (3.5)

have been introduced. In the case of crystals one can further introduce a mode expansion for

the displacement coordinate with mode index λ and wavevector q

uks =
1√
Ms

∑

qλ

Xλ(q)eiqRkeλ
s (q), (3.6)

where eλ
s (q) is identified with the polarization vector of the mode λ of atom s. Hereby, Xλ is

2The vectors Rks only coincide with the RM if one uses atomic orbitals. In general the number of atoms
is larger than the number of orbitals.

3Since in this work the transfer integrals εMN will not be computed according to Eq. (3.2), the actual
shapes of Veff (x) and ΦN (x) are not specified.
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the normal mode coordinate andMs denotes the mass of the atom s. The back transformation

is given (with the number of unit cells NΩ) by

Xλ(q) =
1

NΩ

∑

ks

√
Msukse

−iqRkeλ∗
s (q), (3.7)

which can be verified using the norm of eλ
s (q). The polarization vectors are eigenvectors of

the dynamical matrix and fulfill the relation

eλ∗
s (q) = eλ

s (−q) (3.8)

which also implies that

Xλ(q) = X∗
λ(−q). (3.9)

It is immediately obvious that for q = 0 the polarization vectors and the normal mode

coordinates X are real. Some general symmetries for the matrix elements Cks
MN are

(
Cks

MN

)∗
= Cks

NM

Ck+i s
M+i N+i = Cks

MN ,
(3.10)

the latter of which represents the translational symmetry. For real wavefunctions the quan-

tities Cks
MN become real and symmetric.

In order to derive the Holstein-Peierls Hamiltonian (2.3), one uses a mixed representation

with phonons being developed into normal modes (λ,q) and electrons being represented

in real space (M,N). Annihilation and creation operators for the phonons are introduced

through the quantization of the normal mode coordinate

Xλ(q) =

(
~

2ωλ(q)NΩ

)1/2 [
b†λ(q) + bλ(−q)

]
. (3.11)

Inserting Eqs. (3.6) and (3.11) into Eq. (3.4), one obtains

ε1MN =
∑

qλ

~ωλ(q)gλ
MN (q)

[
b†λ(q) + bλ(−q)

]
. (3.12)

Here, the electron-phonon coupling constants gλ
MN (q) are introduced as

gλ
MN (q) =

1√
2ω3

λ(q)~

∑

ks

eiqRk
1√
GMs

Cks
MNeλ

s (q), (3.13)
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which fulfill certain symmetries that originate from the symmetries in (3.8) and (3.10)

gλ
M N (q) =

[
gλ
N M (−q)

]∗

gλ
M+i N+i(q) = eiqRigλ

MN (q).
(3.14)

These symmetries also ensure the hermiticity of ε1MN and, hence, the Hamiltonian Hf from

Eq. (3.3). In the case of real wavefunctions, the first line in Eq. (3.14) reduces to

gλ
MN (q) = gλ

NM (q). (3.15)

Collecting the results from Eqs. (3.3) and (3.12) the fermionic Hamiltonian reads

Hf =
∑

MN

a†M


ε0MN +

∑

qλ

~ωλ(q)gλ
MN (q)

[
b†λ(q) + bλ(−q)

]

 aN . (3.16)

In the following, an index Q ≡ (q, λ) is defined as a short hand notation, and the total

Hamiltonian H, which constitutes of Hf supplemented by a pure phononic part Hph =
∑

Q ~ωQ

(
b†QbQ + 1

2

)
which describes the elastic energy of the strain field uks, becomes

H = Hel +Hel−ph +Hph

=
∑

MN

a†M


εMN +

∑

Q

~ωQg
Q
MN

(
b†Q + b−Q

)

 aN +

∑

Q

~ωQ

(
b†QbQ +

1

2

)
.

(3.17)

For convenience the superscript 0 at the transfer integrals ε0MN , which denotes the electronic

coupling for the ground state geometry, has been dropped. This Hamiltonian is known as

Holstein-Peierls Hamiltonian (see Eq. (2.3)). It includes local electron-phonon coupling gQMM

according to the Holstein Hamiltonian (see Eq. (2.1)) and additional non-local coupling of

electrons and phonons gQMN .

For the computation of the material parameters gQMN , Eq. (3.13) can be used in principle.

However, one can write the coupling constants in a different way

gλ
MN (q) =

∂εMN

∂Xλ(q)

1√
2ω3

λ(q)~NΩ

, (3.18)

which suggests a direct access to these parameters from ab initio computations since the

transfer integrals εMN can be computed depending on the actual nuclear positions, as men-

tioned on page 14. Therefore the representation based on the normal mode coordinate of the

phonons in Eq. (3.18) allows for a direct determination from an accordingly deformed lattice.
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3.2 Polaron Transformation

In general, one is interested in finding the eigenenergies and eigenfunctions of the Holstein-

Peierls Hamiltonian (3.17), which is a highly non-trivial problem. The complexity arises

from the coupling part (∝ g) which prevents one from diagonalizing H. [30] However, an

approximate diagonalization can be carried out which is described in the following. Hereby,

I follow the derivation in Ref. [25].

One performs a canonical transformation

H̃ = eSHeS
†

(3.19)

into the polaron picture, where

S =
∑

MN

CMNa
†
MaN (3.20)

and

CMN =
∑

Q

gQMN

(
b†Q − b−Q

)
. (3.21)

This transformation is also denoted as Lang-Firsov transformation [53]. In accordance to the

discussion in Sec. 2.4, the transformation (3.19) is called polaron transformation throughout

this thesis. The relation

1 = e−SeS = eS
†
eS (3.22)

proves that the polaron transformation is a unitary transformation and the eigenvalues of

H and H̃ are the same. The transformation directly acts on the operators for electrons and

phonons in H and the polaron Hamiltonian (3.19) reads

H̃ =
∑

MN

ã†M


εMN +

∑

Q

~ωQg
Q
MN

(
b̃†Q + b̃−Q

)

 ãN +

∑

Q

~ωQ

[
b̃†Qb̃Q +

1

2

]
. (3.23)

The polaron Hamiltonian has the same form as H, however, the operators have changed

according to

a†M → ã†M = eSa†Me
S†
, aN → ãN = eSaNe

S†
,

b†Q → b̃†Q = eSb†Qe
S†
, bQ → b̃Q = eSbQe

S†
.

(3.24)

The operators ã† and ã are polaron operators which, according to Eq. (3.24), are functions

of basic phonon and electron operators.

In order to evaluate H̃ in (3.23) one uses the Baker-Campbell-Hausdorff formula, which
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is written here for an arbitrary quantity X:

X̃ ≡ eSXe−S = X +
1

1!
[S,X] +

1

2!
[S, [S,X]] + ... ≡

∞∑

m=0

1

m!
[S,X]m. (3.25)

Below, I employ a matrix notation with vectors a (components aM ), matrices C (matrix

elements CMN ), and a matrix-vector product Ca according to
∑

N CMNaN . It can be shown

by mathematical induction that

[S, a]m = (−C)m a
[
S, a†

]
m

= a†Cm

[S, bQ]m = a†[C, bQ]ma
[
S, b†Q

]
m

= a†
[
C, b†Q

]
m
a

(3.26)

which results in expressions for the transformed operators

ã = e−Ca, ã† = a†eC ,

b̃Q = bQ + a†DQa, b̃†Q = b†Q + a†D†
Qa,

(3.27)

with

DQ = eCbQe
−C − bQ. (3.28)

Note that eC denotes the matrix exponential
∑∞

m=0
Cm

m! , where Cm is a matrix product

according to the notation used. The form of the polaron operators ã† and ã in (3.27) represent

formally the relation between the bare particles and the polarons through the polarization,

which is expressed in the connection of the electron operators a† and a and the phonon

operators via C. This connection essentially models the dressing aspect of the polaron concept

as discussed in Chap. 2. The non-perturbative character of the inclusion of the electron-

phonon interaction is evident from the factors e−C and eC , which takes all orders of the

coupling constants g into account. By inserting the equations (3.27) into the expression

(3.23) for H̃, one can carry the transformation matrices over to the matrix elements, where

the definitions

ĝQ = eCgQe−C ,

ε̂ = eCεe−C ,
(3.29)

are used. One proceeds with the assumption
[
gQ

′
, gQ

]
= 0, which is exact for purely local

electron-phonon coupling but which constitutes an approximation if additional nonlocal con-

tributions are considered. This approximation allows to proceed in an analytical way. [25] It

implies that

DQ = −gQ, D†
Q = −g−Q. (3.30)
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As a result, one obtains

H̃ = a†ε̂a+
∑

Q

~ωQ

(
b†QbQ +

1

2

)
−

∑

Q

~ωQ

(
a†ĝQa

)(
a†ĝ−Qa

)
. (3.31)

In consistency to the neglect of electron-electron interaction from the very beginning, the

replacement a†MaNa
†
RaS → a†MaSδNR is made which directly leads to the final expression for

the polaron Hamiltonian

H̃ = a†Êa+
∑

Q

~ωQ

[
b†QbQ +

1

2

]
, (3.32)

where Ê ≡ eCEe−C is a short hand notation for ÊMN =
∑

RS(eC)MRERS(e−C)SN using the

definition

EMN = εMN − ∆MN (3.33)

of the reduced transfer integrals with the so-called polaron shift

∆MN =
∑

Q

∑

K

~ωQg
Q
MKg

−Q
KN . (3.34)

3.3 Polaronic Eigenvalues

The influence of the lattice vibrations on the original Hamiltonian H in Eq. (3.17) is obvious

from the appearance of the phonon operators b and b†. This translates to the transformed

Hamiltonian H̃, since the quantity Ê still contains phonon operators. If one is interested in

the modifications of the electronic energies εMN which are induced by the vibrations, one

may compute the eigenenergies of the polarons by tracing up H̃ over the phononic degrees

of freedom

〈H̃〉Ph = a†〈Ê〉Pha+
∑

Q

~ωQ

[
〈b†QbQ〉Ph +

1

2

]
. (3.35)

It is clear that a meaningful result for such an influence of the phonons on εMN cannot be

obtained with the original Hamiltonian H because the linear electron-phonon interaction g

would vanish after the trace. With the Hamiltonian H̃, however, this is possible and the

result includes all orders of the coupling constants g.

The calculation of the expectation value of the operator Ê in phonon space can again be

performed by means of the Baker-Campbell-Hausdorff theorem (3.25). One finally obtains
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[25]

〈Ẽ〉Ph =
∞∑

m=0

(
−1

2

)m 1

m!

∑

Qm···Q1

(1 + 2NQ1) · · · (1 + 2NQm)×

×
[
gQ1 ,

[
g−Q1 , . . . ,

[
gQm ,

[
g−Qm , E

]]
. . .

]]
,

(3.36)

where the phonon occupation number NQ =

(
e

~ωQ

kBT − 1

)−1

is defined according to the Bose-

Einstein statistics. This is where the temperature enters the formalism and allows for the

description of the T -dependence of the bandwidth and the effective mass.

The expression (3.36) could be evaluated exactly if only local electron-phonon interac-

tion was included. In the present case taking additional non-local coupling into account,

the complicated commutators can in principle be evaluated numerically until convergence.

For simplicity, however, only the largest terms from the commutators are included here to

obtain an analytical expression, i.e., one assumes that 〈ÊMM 〉Ph depends only on EKK , and

〈ÊMN 〉Ph depends on EKK and EMN . It follows that the off-diagonal matrix elements 〈ÊMN 〉
can be collected [44] to an exponential sum resulting in

ε̃MN ≡ 〈ÊMN 〉Ph = EMN exp


−1

2

∑

Q

(1 + 2NQ)GQ
MN


 (3.37)

with the effective electron-phonon coupling

GQ
MN = |gQMM − gQNN |2 +

∑

K 6=M

|gQMK |2 +
∑

K 6=N

|gQKN |2. (3.38)

For the diagonal elements one simply obtains 〈ÊMM 〉Ph = EMM .

Before I come to the discussion of the above results in the next section, the respective

result from Eq. (3.36) for purely local electron-phonon coupling gQMN → δMNg
Q
MM is given.

In this case the off-diagonal elements of the polaron shift ∆MN vanish and the quantities

EMN reduce to εMN . The effective coupling GQ
MN is reduced to the first term in Eq. (3.38)

and one obtains

ε̃MN = εMN exp


−1

2

∑

Q

(1 + 2NQ) |gQMM − gQNN |2

 . (3.39)

3.4 Discussion

A brief discussion is included to explain what makes the polaronic energies being different

from electronic energies. First, the bare quantities εMN are shifted by ∆MN according to
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Eq. (3.33). For the on-site energies εMM , the polaron shift ∆MM is positive and may be

interpreted as polaron binding energy Ep. The reason for this shift is that the linear coupling

of the lattice and electronic degrees of freedom leads to a lowering of the electronic levels

by a quadratic shift in the electron-phonon coupling constants g. In terms of physics, the

coupling leads to an additional binding energy, i.e. an energy gain due to the binding of

the charge carriers to the phonons. The modifications of the off-diagonal elements εMN is

interpreted as a deformation of the bandstructure. Second, the shifted off-diagonal quantities

EMN are additionally renormalized by the exponential factor e−
1
2

P
Q(1+2NQ)GQ

MN according

to Eq. (3.37). From Eq. (3.38) it follows that the exponent is always negative since the

phonon numbers NQ and effective coupling constants GQ are always positive which results

in a reduction of the electronic coupling matrix elements. Therefore the bandwidth, which is

derived from the electronic coupling, is also reduced. This effect is known as band narrowing.

The polaron bandwidth is therefore smaller than the electron bandwidth.

Equation (3.38) shows that there are two contributions to the effective coupling constant

GQ
MN , a first one arising from local electron-phonon coupling and a second one from non-

local electron-phonon coupling. According to the Taylor series expansion in Eq. (3.3) and

its relation to the coupling constants g in Eq. (3.12), the local contribution |gQMM − gQNN |2

describes the dynamical mismatch of the changes in the electronic on-site energies expressed

by ε1MM − ε1NN ,4 which is induced by a lattice distortion due to the phonon Q. This contri-

bution is different from zero only if the on-site energies are shifted differently. There would

be no influence on the transfer integral εMN in the case of an equal shift of both on-site

energies (ε1MM = ε1NN ). As a consequence of this dynamical mismatch of the on-site energies,

the original transfer integral εMN or the transfer rate εMN

~
is reduced. The second contri-

bution,
∑

K 6=M |gQMK |2 +
∑

K 6=N |gQKN |2, from nonlocal electron-phonon coupling arises from

the changes in the transfer integrals ε1KN and ε1MK to all neighbors.

It is observed that the band narrowing already occurs for zero temperature due to zero

point vibrational effects. For T = 0 K no phonons are present (NQ = 0) and Eq. (3.37)

reduces to

〈ÊMN 〉Ph = EMN exp


−1

2

∑

Q

GQ
MN


 . (3.40)

For elevated T the dressing of the charged particle by phonons increases (NQ 6= 0) and results

in a temperature-driven bandwidth reduction.

Using the concept of an effective mass [52], the discussed band narrowing is equal to a

mass enhancement with the inverse renormalization factor. The increased polaron mass may

be interpreted as an enhancement due to the coupling to the motion of the heavy atoms

4The quantities ε1
MM were introduced in Eq. (3.3).
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(lattice polarization).

3.5 Numerical Treatment

After the discussion of the general features, I specify the above formulas to a case that allows

a straightforward numerical evaluation of Eq. (3.37). In order to evaluate Eq. (3.37), the

q-dependence of the electron-phonon interaction as well as the dispersion of the phonon

frequency ωQ is required. However, it would be a too formidable task to determine all the

parameters along with their full q dependence. A simplified approach towards evaluation of

Eq. (3.37) is the replacement of the general phonon dispersion in gQ by a standard relation

[25, 32, 33]

gQMN → 1

2

gλ
MN√
NΩ

(
eiqRM + eiqRN

)
, (3.41)

and set ωQ = ωλ, thus neglecting the energy dispersion accordingly, which also results in

NQ = Nλ. Note that there is a connection between the new quantities gλ
MN and the coupling

constants gλ
MN (q) defined in Eq. (3.18) through gλ

MN (0) = 1√
NΩ
gλ
MN , which establishes the

relation to the coupling constants at the Γ point. This will be of importance later on when

these quantities are calculated within an ab initio framework.

By replacing (3.41) in (3.38), the sum over the phonon wavevector in (3.37) can be carried

out. With the definition

GλMN =
∑

q

GQ
MN , (3.42)

one obtains

Gλ ≡ GλMN = 2
(
gλ
MM

)2
+

∑

K 6=M

(
gλ
MK

)2
, (3.43)

where the spatial indices at GλMN have been dropped since it is independent of spatial

coordinates (due to the sum over all neighborsK and the assumption of equal on-site coupling

constants gλ
MM = gλ

NN ). Equation (3.37) reads finally

ε̃MN = EMNe
− 1

2

P
λ(1+2Nλ)Gλ . (3.44)

In the case of purely local electron-phonon coupling as present in the Holstein Hamiltonian,

Eq. (3.44) reads

ε̃MN = εMNe
−

P
λ(1+2Nλ)(gλ

MM )2 . (3.45)



Chapter 4

Theory II. Charge Transport

4.1 Basic Derivation

The polaron concept as introduced in Chap. 2 is extensively used to describe transport prop-

erties in organic crystals which highlights its importance for studies of the carrier mobilities

here as well. Thereby, the size is an important property to characterize polarons in semicon-

ducting OMCs since Holstein’s small-polaron theory, or extensions inspired by it, are valid

for small polarons only. [29] More precisely, they are restricted to the narrow-band limit

where the electronic coupling between neighboring molecules is sufficiently small and the

electron-phonon coupling plays a dominant role. In the last chapter I introduced the formal

description of polarons and derived basic features like polaron binding and band narrowing.

In this chapter, a novel theory for the polaron mobility is derived, which is qualitatively dif-

ferent to the theories based on Holstein’s small-polaron model because it describes polarons

of arbitrary sizes. Consequently, the temperature range for its validity is also extended with

respect to Holstein’s description (see Fig. 1.1).

4.1.1 Kubo Formula

The conductivity σ of a system exposed to an electric field E is defined as its current response

J according to1

Jα(ω) =
∑

β

σαβ(ω)Eβ(ω). (4.1)

Within the Kubo formalism of linear response theory the dc-conductivity at a given temper-

ature T is obtained in the zero-frequency limit

σdc
αβ =

1

2kBT
lim
ω→0

∫ ∞

−∞
dt eiωt〈jα(t)jβ(0)〉H (4.2)

1Greek indices denote Cartesian components.

23
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with kB being Boltzmann’s constant. [30] A material specific quantity that is directly acces-

sible in time-of-flight experiments [22, 54, 55] is the charge carrier mobility µ = σ
e0Nc

, where

e0 is the elementary charge and Nc is the number of charge carriers. This quantity is an

intrinsic measure for the carrier velocity at a given value of E. Accordingly, it is usually

given in units of cm2

V s . The Kubo formula for the dc-mobility reads

µαβ =
1

Nce0

1

2kBT

∫ ∞

−∞
dt 〈jα(t)jβ(0)〉H . (4.3)

In order to evaluate Eq. (4.3), the current-current correlation function 〈jα(t)jβ(0)〉H has to

be known for all times t.

The thermal average over the current-current correlation function is performed using the

standard quantum-statistical average 〈A〉H = Tr

(
e
− H

kBT A

)/
Tr

(
e
− H

kBT

)
over the grand

canonical ensemble at temperature T along with the time evolution

〈jα(t)jβ(0)〉H = 〈e i
~

Htjαe
− i

~
Htjβ〉H , (4.4)

where j(0) ≡ j is the current operator at t = 0, and the Hamiltonian of the system is assumed

to be the Holstein Hamiltonian (2.1). The derivation is performed neglecting the nonlocal

electron-phonon interaction as present in the Holstein-Peierls Hamiltonian (2.3) for simplicity.

With the Hamiltonian (2.1) and the polarization operator P = e0
∑

M RMa†MaM (RM is the

position vector pointing to site M as discussed in the beginning of Sec. 3.1), the current

operator in (4.4) is given as

jα =
dPα

dt
=

1

i~
[Pα,H] (4.5)

and reads

jα =
e0
i~

∑

MN

(RMα −RNα) εMNa
†
MaN . (4.6)

In order to evaluate the correlation function (4.4) analytically, H should be diagonal.

However, the Hamiltonian (2.1) cannot be diagonalized exactly [30] due to the interaction

of particles and phonons as discussed in the previous chapter and, thus, inhibits a direct

evaluation of the thermal average for the current-current correlation function. Consequently,

one has to proceed with an approximate diagonalization of H. One idea is to find a hierarchy

of energies in the spirit of perturbation theory and neglect small terms. Such a method

requires a priori assumptions about coupling strengths and, therefore, cannot be of general

validity but gives results for limiting cases, e.g., the strong-coupling regime (large g). In this

case the electron-phonon interaction is assumed being stronger than the electronic coupling

and the latter quantity is treated as a perturbation. Alternatively, one considers the weak

coupling regime for small g. Such considerations, however, are not necessary after the polaron
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transformation as will be demonstrated in the next section.

4.1.2 Polaron Transformation

In order to proceed with the evaluation of the correlation function (4.4), I perform the polaron

transformation (3.19) with S =
∑

MQ g
Q
MMa

†
MaM (b†Q − b−Q) to get into the polaron picture.

This is analogous to Eqs. (3.19)-(3.21) but restricted to local electron-phonon coupling in

consistence to the Hamiltonian H of Eq. (2.1). It results in the polaron Hamiltonian

H̃ =
∑

MN

a†M ÊMNaN +
∑

Q

~ωQ

(
b†QbQ +

1

2

)
, (4.7)

which has been discussed in Sec. 3.2. It was found that ÊMN =
∑

RS(eC)MRERS(e−C)SN

still contains phonon operators through the quantities CMN (cf. Eq. (3.21)) which, for purely

local electron-phonon coupling reduce to diagonal elements CM =
∑

Q g
Q
MM

(
b†Q − b−Q

)
. In

this case one can further simplify ÊMN which reads then ÊMN = eCM εMNe
−CN . The polaron

transformation is also made for the current operators j̃α ≡ eSjαe
S†

, and with the definition

RMNα ≡ RMα −RNα one obtains

j̃α =
e0
i~

∑

MN

eCMRMNαεMNe
−CN a†MaN . (4.8)

While the polaron transformation does not exactly diagonalize the Holstein Hamiltonian

H, because electron and phonon operators are still coupled in the first term of the trans-

formed Hamiltonian (4.7), the two contributions in (4.7) can be regarded as a polaronic and

a phononic one, which indicates a better route towards decoupling. The advantage of the

separation between polarons and phonons over the original separation between electrons and

phonons in H is obvious. The properties of the polarons, like their temperature dependent

energy structure ε̃MN ≡ 〈ÊMN 〉, bandwidth, mass, and size have been derived in Sec. 3.3 and

discussed in Sec. 3.4. A separation between polarons (of arbitrary mass/size) and phonons

in H̃ is possible without being restricted to either weak-coupling or strong-coupling regime

if the renormalized polaron energy structure is taken into account. Strictly speaking, I intro-

duce the polarons as in previous work [30, 44] by replacing ÊMN by their expectation values

ÊMN → ε̃MN and obtain the approximate polaron Hamiltonian

H̃ =
∑

MN

a†M ε̃MNaN +
∑

Q

~ωQ

(
b†QbQ +

1

2

)
(4.9)

which is used henceforth.
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The great merit of the polaron transformation is seen in the identity

〈jα(t)jβ(0)〉H = 〈eSjα(t)eS
†
eSjβ(0)eS

†〉 eH = 〈e i
~

eHtj̃αe
− i

~
eHtj̃β〉 eH . (4.10)

because the approximate diagonalized H̃, which includes the polaron effects, can be used for

time evolution and thermal average instead of an approximate diagonalized H. In combina-

tion with the exact expression (4.8) for the current operators j̃ the approximate diagonaliza-

tion of H̃ on top of the polaron transformation is a very general way to account for arbitrary

electron-phonon coupling strength and has been used previously. [25]

4.1.3 Time Evolution

I proceed by inserting Eq. (4.8) into Eq. (4.10) and obtain

〈
jα(t)jβ(0)

〉
H

=
(e0
i~

)2 ∑

KLMN

〈
ei

eHt/~eCKRKLαεKLe
−CLa†KaLe

−i eHt/~eCMRMNβεMNe
−CN a†MaN

〉
eH .

(4.11)

The decoupling of electron and phonon operators in (4.9) has another big advantage which

is the simplified evaluation of the time evolution of operators such as

e
i
~

eHteCK e−
i
~

eHt = eCK(t), (4.12)

where CK(t) is obtained as

CK(t) =
∑

Q

gQKKBQ(t), (4.13)

and

BQ(t) = b†Qe
iωQt − b−Qe

−iωQt (4.14)

is a time dependent linear combination of phonon operators. In this way, Eq. (4.11) is

transformed into

〈
jα(t)jβ(0)

〉
H

=
(e0
i~

)2 ∑

KLMN

〈
eCK(t)RKLαεKLe

−CL(t)ei
eHt/~a†KaLe

−i eHt/~eCMRMNβεMNe
−CNa†MaN

〉
eH .

(4.15)

The next step involves the evaluation of the time evolution of the electron operators

e
it
~

eHa†Ke
− it

~
eH . This time evolution of the electron operators could be easily computed if the

Hamiltonian H̃ would be diagonal also in the operators a and a†, i.e., if the off-diagonal

elements ε̃MN would vanish. According to Eq. (3.39), this is the case for high enough
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temperatures because of the narrowing of the band. In this case one could simply set

H̃ → H̃ ′ =
∑

M

ε̃MMa
†
MaM +

∑

Q

~ωQ

(
b†QbQ +

1

2

)
. (4.16)

In the general case, however, Eq. (4.16) is an approximation since the bandwidth is finite

also for polarons. This amounts to the so-called narrow-band approximation (NBA) which

has been used by other authors in the past. [29, 33, 44] For strong electron-phonon coupling

the NBA gives good results for elevated temperatures but fails in the T → 0 limit. Since the

NBA is not used here, its features will be discussed in a later section in detail (see Sec. 4.3.1).

In fact this approximation is not necessary and can be dropped. Alternatively, I demonstrate

another route to evaluate Eq. (4.15) which avoids the narrow-band approximation. The

central goal is to take the full bandwidth into account which vastly extends the validity range

of the final result.

The exact diagonalization of the polaronic part of the Hamiltonian H̃ from Eq. (4.9) is

performed in reciprocal space. If one introduces k-space electron creation operators a†k, one

can substitute

a†M =

√
1

NΩ

∑

k

eikRMa†k, (4.17)

where the sum runs over all wavevectors in the Brillouin zone and NΩ is the number of unit

cells. With the polaron energies in reciprocal space

ε̃(k) =
∑

N

ε̃0Ne
−ikRN (4.18)

it follows that the polaron Hamiltonian (4.9) becomes diagonal in this representation

H̃ =
∑

k

ε̃(k)a†kak +
∑

Q

~ωQ

(
b†QbQ +

1

2

)
. (4.19)

As a consequence, the time evolution of the electron operators is then easily computed with

the polaron band energy ε̃(k)

e
it
~

eHa†ke
− it

~
eH = a†ke

it
~

eε(k) (4.20)
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and Eq. (4.15) takes the form

〈
jα(t)jβ(0)

〉
H

= −
(e0

~

)2 ∑

KLMN

1

N2
Ω

∑

k1k2k3k4

eik1RKe−ik2RLeik3RM e−ik4RN

× e
it
~

eε(k1)e−
it
~

eε(k2)

〈
a†k1

ak2a
†
k3
ak4

〉

eH

×
〈
eCK (t)RKLαεKLe

−CL(t)eCMRMNβεMNe
−CN

〉

eH
.

(4.21)

4.1.4 Thermal Averages

Another great advantage of the decoupling of polarons and phonons in the approximate

polaron Hamiltonian H̃ is that electron and phonon operators are fully separated in the

correlation function (4.21). For the electron part, one can now calculate the thermal average

immediately according to Wick’s theorem

〈
a†k1

ak2a
†
k3
ak4

〉
eH = δk2

k1
δk4
k3
nk1nk3 + δk4

k1
δk2
k3
nk1(1 − nk2) (4.22)

where the Fermi-Dirac distribution

nk =

(
exp

[
ε̃(k) − ζ

kBT

]
+ 1

)−1

(4.23)

with the chemical potential ζ = ζ(T,Nc) has been introduced. Note that the polaron energies

appear in nk.

The two terms on the rhs of (4.22) are not of equal importance. The n2 term describes

density correlations and usually does not contribute to the current. In any case it is much

smaller than the n(1 − n) term if one considers low concentration as in the present work. If

the n2 term is neglected henceforth one obtains

〈
jα(t)jβ(0)

〉
H

= −
(e0

~

)2 ∑

KLMN

1

N2
Ω

∑

k1k2

eik1(RK−RN )eik2(RM−RL)e
it
~

[eε(k1)−eε(k2)]

× nk1(1 − nk2)RKLαεKLRMNβεMN

〈
eCK(t)e−CL(t)eCM e−CN

〉
eH .

(4.24)

There is still the average over the phonon degrees of freedom to evaluate which is much

more complicated. The major steps are given in the following. First consider the product

eCK(t)e−CL(t) which can be written as

eCK(t)e−CL(t) =
∞∑

l=0

1

l!

∑

Q1...Ql

(gQ1

KK − gQ1

LL)(gQ2

KK − gQ2

LL) . . . (gQl

KK − gQl

LL)

×BQ1(t)BQ2(t) . . . BQl
(t),

(4.25)

where the phonon operators BQ(t) are defined in Eq. (4.14). A product of such operators
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appears in Eq. (4.24) together with an analogous product from eCM (0)e−CN (0), which leads

directly to the expectation value of products of phonon operators of the type

Rlj =
〈
BQ1(t)BQ2(t) . . . BQl

(t)BQ′
1
(0)BQ′

2
(0) . . . BQ′

j
(0)

〉
eH . (4.26)

Since BQ is linear in the basic phonon operators b†Q and b−Q, this average vanishes for

products with odd numbers of BQ operators. For even numbers of such operators, the average

is computed using Wick’s theorem calculating all pairwise contractions. Thereby, it is possible

to contract operators at different times which is

〈BQ1(t)BQ′
1
(0)〉 eH = −δQ1,−Q′

1
ΦQ1(t) (4.27)

or of same time, which reads

〈BQ1(t)BQ2(t)〉 eH = −δQ1,−Q2ΦQ1(0)

〈BQ′
1
(0)BQ′

2
(0)〉 eH = −δQ′

1,−Q′
2
ΦQ′

1
(0).

(4.28)

The auxiliary function ΦQ(t) is defined with the phonon frequency ωQ and the occupation

number NQ according to

ΦQ(t) = NQe
iωQt + (1 +NQ)e−iωQt. (4.29)

Let r be the number of pairwise averages of BQ operators at different times and 0 ≤ r ≤
min{l, j}, the first possible contraction of Eq. (4.26) reads

〈
BQ1(t)BQ′

1
(0)

〉
eH
〈
BQ2(t)BQ′

2
(0)

〉
eH . . .

〈
BQr(t)BQ′

r
(0)

〉
eH

×
〈
BQr+1(t)BQr+2(t)

〉
eH . . .

〈
BQl−1

(t)BQl
(t)

〉
eH

×
〈
BQ′

r+1
(0)BQ′

r+2
(0)

〉
eH . . .

〈
BQ′

j−1
(0)BQ′

j
(0)

〉
eH .

(4.30)

Such a complete contraction is only non-zero if l− r and j − r are even. It can be evaluated

to

P r
l,j =

(
−δQ1,−Q′

1
ΦQ1(t)

)(
−δQ2,−Q′

2
ΦQ2(t)

)
· · ·

(
−δQr ,−Q′

r
ΦQr(t)

)

×
(
−δQr+1,−Qr+2ΦQr+1(0)

)(
−δQr+3,−Qr+4ΦQr+3(0)

)
· · ·

(
−δQl−1,−Ql

ΦQl−1
(0)

)

×
(
−δQ′

r+1,−Q′
r+2

ΦQ′
r+1

(0)
)(

−δQ′
r+3,−Q′

r+4
ΦQ′

r+3
(0)

)
· · ·

(
−δQ′

j−1,−Q′
j
ΦQ′

j−1
(0)

)
.

(4.31)

One observes that in (4.25) the summation indices Qi can be interchanged which gives an

expression equivalent to a permutation of BQ(t) operators. Hence, the evaluation of the
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average in (4.26) is a combinatorial problem and one finally obtains the expression

Rl,j =

min(l,j)∑

r=0
(l−r) even
(j−r) even

l! j!

r! 2(l−r)/2
(

l−r
2

)
! 2(j−r)/2

(
j−r
2

)
!
P r

l,j (4.32)

for the full contraction of (4.26). Putting this together with (4.25), the phonon average in

(4.24) is given by

〈
eCK (t)e−CL(t)eCM e−CN

〉

eH
=

∞∑

l,j=0
(l+j) even

1

l! j!

∑

{Ql}
{Q′

j}

l∏

i=1

(gQi

KK−gQi

LL)

j∏

k=1

(g
Q′

k

MM −gQ
′
k

NN )Rl,j, (4.33)

and after some regrouping of terms one finds

〈
eCK(t)e−CL(t)eCM e−CN

〉

eH
= exp


−1

2

∑

Q

ΦQ(0)GQ
KLKL


 exp


−1

2

∑

Q

ΦQ(0)GQ
MNMN




× exp


−

∑

Q

ΦQ(t)GQ
KLMN




(4.34)

with some effective electron-phonon coupling constant squared GQ
KLMN which are defined as

GQ
KLMN =

(
gQKK − gQLL

) (
g−Q
MM − g−Q

NN

)
. (4.35)

Note that the first two exponential factors in Eq. (4.34) are of equal quality. Since ΦQ(0) =

1 + 2NQ and GQ
KLKL = |gQKK − gQLL|2, they give rise to the bandwidth narrowing known

already from Eq. (3.39) and reduce the mobility. In contrast, the third exponential factor

can amplify the mobility and explicitely describes phonon absorption and emission events as

will be demonstrated later in this thesis. Inserting Eq. (4.34) into Eq. (4.24) and using the

polaronic ε̃ from Eq. (3.39), one finds

〈jα(t)jβ(0)〉H = −
(e0

~

)2 ∑

KLMN

RKLαε̃KLRMNβ ε̃MNe
−

P
Q ΦQ (t)GQ

KLMN

× 1

N2
Ω

∑

k1k2

nk1(1 − nk2)e
ik1(RK−RN )eik2(RM−RL)e

it
~

[eε(k1)−eε(k2)].
(4.36)

Finally, shifting indices according to L→ K +L and N →M +N and M → K +M results

in an expression which, as a result of the translation symmetry, no longer depends on the

spatial index K. Subsequent summation over K gives a prefactor NΩ. With Eq. (4.3) and
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RL ≡ R0L and ε̃L ≡ ε̃0L, one finally obtains

µαβ = − 1

e0Nc 2kBT

(e0
~

)2 ∑

LMN

RLαε̃LRNβ ε̃N

× 1

NΩ

∑

k1k2

e−ik1(RM+RN )eik2(RM−RL)nk1(1 − nk2)

×
∫ ∞

−∞
dt e

it
~

[eε(k1)−eε(k2)]e−[
P

Q ΦQ(t)GQ

0L0N
e−iQRM ]

(4.37)

which is the primary result for the carrier mobility of the present derivation.2 It includes

coherent band transport and incoherent hopping as will be demonstrated in the following

section. Importantly, the general form of Eq. (4.37) allows for the application to arbitrary

phonon dispersion ωQ and arbitrary matrix elements gQMM of the electron-phonon coupling.

4.2 Mobility Contributions

4.2.1 Coherent Band Transport

I proceed in order to extract the essential physics and discuss Eq. (4.37) in terms of contribut-

ing scattering events. This is most intuitive if the zeroth order of electron-phonon interaction

(GQ = 0) is split off in the third line of Eq. (4.37):

e−
P

Q ΦQ(t)GQ

0L0N
e−iQRM

= 1 +
(
e−

P
Q ΦQ(t)GQ

0L0N
e−iQRM − 1

)
. (4.38)

In terms of physics, I separate coherent transport (no phonon-scattering) from incoherent

transport (scattering by phonons). Accordingly, one obtains

µαβ = µ
(coh)
αβ + µ

(inc)
αβ , (4.39)

where the coherent part reads

µ
(coh)
αβ = − e0

2NckBT~2

∑

LMN

RLαε̃LRNβ ε̃N

× 1

NΩ

∑

k1k2

e−ik1(RM +RN )eik2(RM−RL)

× nk1
(1 − nk2

)

∫ ∞

−∞
dt e

it
~

[eε(k1)−eε(k2)].

(4.40)

This mobility expression can be interpreted in terms of contributing scattering events from

some initial states k1 into final states k2. The sum over k1 and k2 in (4.40) includes all such

events according to the probability nk1 that an initial state is occupied times the probability

2The shorthand notation for the scalar product QRM is to be understood as qRM .
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Figure 4.1: Typical coherent (a) and incoherent (b) and (c) processes involved in carrier transport. In
(c) a third order process (one emitted and two absorbed phonons) with a resulting phonon wavevector
q = q1 + q2 − q3 is displayed

(1 − nk2) of the final state being empty (Pauli blocking factor). From the time integration

in Eq. (4.40) it gets obvious that the energy of the initial polaron ε̃(k1) has to match the

energy of the final polaron ε̃(k2) (energy conservation). Moreover, considering the real space

sum over the index M which only occurs in the exponentials gives a Kronecker delta in the

wavevectors of initial and scattered polaron δk1,k2 (momentum conservation).

Such a (maybe trivial) scattering event, where initial and final wavevectors coincide is

depicted in Fig. 4.1 (a). The momentum conservation in the polaron wavevectors in µ(coh)

reflects the coherence aspect of band transport, i.e., the moving particle does not loose its

phase coherence and its momentum relaxation length is infinite. From the momentum con-

servation it follows that ε̃(k1) = ε̃(k2) is immediately fulfilled and one observes that the

mobility µ(coh) becomes infinite, as expected for coherent transport without any scattering

mechanism. In real crystals, the mean free path (or the coherence time) can be reduced by

other scattering mechanism beyond the model (impurities, disorder, electron-electron scat-

tering ...). Such processes may be accounted for by the introduction of a disorder parameter

τ similarly to previous work. [44] Therefore, I introduce a constant limiting scattering time

and replace technically

∫
dt→

∫
dt e−( t

τ )
2

. (4.41)

More complicated expressions for the scattering time such as a k dependent form are avoided

here since these scattering mechanisms are not in the focus of the present work. The Gaussian

broadening limits the coherence time to τ . The corresponding energy ~

τ can be regarded as

a static disorder parameter which mimics different on-site energies for example.

The resulting mobility can be written as

µ
(coh)
αβ =

√
πe0τ

2NckBT

∑

k1

nk1(1 − nk1)ṽα(k1)ṽβ(k1) (4.42)
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where I have introduced the polaron band velocity

ṽα(k) =
1

~

∂ε̃(k)

∂kα
. (4.43)

The fact that the band velocity appears explicitly in Eq. (4.42) is a result of the underlying

coherence character of this transport contribution. The tilde in (4.43) is reminiscence to its

polaronic nature and therefore temperature dependence because it is affected by the band

narrowing of Eq. (3.39).

Apart from the tildes, Eq. (4.42) is a well known expression that may also be derived from

the Boltzmann transport equation [56]. However, an essential difference is that the expression

(4.42) is now generalized to polarons. In Sec. 4.3.4 the limit of small electron-phonon coupling

is discussed, where the polarons reduce to the bare particles and the expression from the

Boltzmann equation is recovered.3 Finally, I give another form of the result for the coherent

part of the mobility. If the squared velocity ṽ2
α(k) is written as ṽ2

α [ε̃(k)] one can further

introduce the polaron density of states

D(ε̃) =
∑

k

δ [ε̃− ε̃(k)] (4.44)

and write the diagonal elements of the mobility tensor as

µ(coh)
α =

√
πe0τ

2NckBT

∫ ∞

0
dε̃ D (ε̃)neε(1 − neε)ṽ

2
α(ε̃). (4.45)

Again, Eq. (4.45) is also similar to a well known textbook formula [57] with the generalization

of all quantities (DOS, energy, occupation, velocity) from electrons to polarons.

4.2.2 Incoherent Processes

The remaining contribution to the total mobility comes from incoherent scattering events

and reads

µ
(inc)
αβ = − 1

e0Nc 2kBT

(e0
~

)2 ∑

LMN

RLαε̃LRNβ ε̃N

× 1

NΩ

∑

k1k2

e−ik1(RM +RN )eik2(RM−RL)nk1(1 − nk2)

×
∫ ∞

−∞
dt e

it
~

[eε(k1)−eε(k2)]
(
e−[

P
Q ΦQ(t)GQ

0L0N
e−iQRM ] − 1

)
.

(4.46)

Similarly to the preceding paragraph, I briefly discuss the scattering events that contribute

to the incoherent part of the mobility. First, consider in Eq. (4.46) the real space sum over

M . Here, the index occurs also in the third line of Eq. (4.46). Therefore, the momentum

3An additional factor of
√

π

2
appears here due to the definition of τ as the width of a Gaussian function.
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conservation now includes phonon wavevectors and reads δk1+q,k2. Hereby, q is the sum of

all phonon vectors which contribute in the scattering process. According to the exponential

sum in the third line of (4.46), this may involve any number of phonons, because all orders of

electron-phonon interaction contribute. In Fig. 4.1 such incoherent processes are depicted in

(b) and (c). Only in the first order (Fig. 4.1 (b)) does q represent the wavevector of a single

scattered phonon. In Fig. 4.1 (c) a third order process (n = 3) is depicted as well. Also,

the energy conservation is somewhat more complicated compared to the coherent mobility.

The energy difference of initial and final polaron is no longer zero as for the coherent part

but must account for the phonon energies of created and annihilated vibrations. This is

taken care of automatically in (4.46) through the time integration. Finally, the weight of

such a scattering event is influenced by the occupation numbers of particles nk1(1 − nk2) as

was observed similarly for the coherent contribution. Such incoherent scattering processes

are to be regarded as stochastic processes since the phonon fluctuations are statistically

independent. In this way the phase coherence of the particles is destroyed in each scattering

event.

If there is no electron-phonon coupling at all, the incoherent contribution completely

vanishes. In contrast thereto, a non-zero electron-phonon interaction influences the incoherent

contribution through two counteracting effects. Of course, the increasing polaron mass with

increasing g tends to reduce the mobility. On the other hand, the stronger the electron-

phonon coupling the stronger can temperature promote charge transport.

Expression (4.46) can be simplified if one assumes that the scatterers are dispersionless

optical phonons, i.e., ωQ → ωλ, NQ → Nλ, which implies that ΦQ(t) → Φλ(t), where

Φλ(t) = Nλe
iωλt + (1 +Nλ)e−iωλt, (4.47)

and if one, accordingly, sets

gQMM =
gλ√
NΩ

eiqRM . (4.48)

As a result one obtains

µ
(inc)
αβ = − 1

e0Nc 2kBT

(e0
~

)2 ∑

LMN

RLαε̃LRNβ ε̃N

× 1

NΩ

∑

k1k2

e−ik1(RM +RN )eik2(RM−RL)nk1(1 − nk2)

×
∫ ∞

−∞
dt e

it
~

[eε(k1)−eε(k2)]
(
e−[δM

0 −δM
L −δM

−N+δM
L−N ]

P
λ Φλ(t)g2

λ − 1
)
.

(4.49)

In order to further simplify this expression, I concentrate on the most important terms in

Eq. (4.49). These terms are identified from the minimization of
[
δM
0 − δM

L − δM
−N + δM

L−N

]
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in the last exponential in (4.49). The leading terms are obtained for L = M and −N = M .

It is confirmed numerically that contributions from all other terms are minor. Taking only

the leading terms into account one finds

µ
(inc)
αβ =

e0
Nc~

2 2kBT

∑

L

RLαRLβ ε̃
2
L

1

NΩ

∑

k1k2

nk1(1 − nk2)

×
∫ ∞

−∞
dt e

it
~

[eε(k1)−eε(k2)]
(
e2

P
λ Φλ(t)g2

λ − 1
)
.

(4.50)

At this point, one observes that the anisotropy in Eq. (4.50) results solely from the

prefactor

Ṽ pol
αβ =

(
1

~

)2 ∑

L

RLαRLβ ε̃
2
L (4.51)

which is of dimension velocity squared. It sums up all possible hoppings to neighbors in

different directions in real space. In contrast to the coherent contribution (4.42), where the

introduction of the band velocity (4.43) was possible, reflecting the delocalization aspect

of coherent transport, here the quantity Ṽ pol
αβ reflects the localization aspect of incoherent

transport. This quantity can be looked upon as a measure for the polaron hopping in real

space since it is dominated by the nearest neighbor transfer rates.

For consistency, again the time integral in Eq. (4.50) is replaced according to Eq. (4.41)

introducing the same collision time τ from impurity scattering as a disorder parameter and

one obtains

µ
(inc)
αβ =

e0
Nc 2kBT

Ṽ pol
αβ

1

NΩ

∑

k1k2

nk1(1 − nk2)

×
∫ ∞

−∞
dt e

it
~

[eε(k1)−eε(k2)]
(
e2

P
λ Φλ(t)g2

λ − 1
)
e−( t

τ
)2 .

(4.52)

4.3 Limiting Cases

In the preceding part of this chapter I have evaluated the mobility from the Kubo formula

(Eq. (4.3)) and obtained an analytical expression (Eq. (4.37)) which includes coherent and

incoherent contributions for arbitrary values of the electron-phonon coupling strength and ar-

bitrary bandwidth. The mobility in Eq. (4.37) is a generalization of Holstein’s small-polaron

model because it can also describe the motion of large polarons (small g) and covers even the

case of Bloch waves (g = 0). This was possible because the narrow-band approximation was

avoided and, instead, I incorporated the full bandwidth by means of a mixed real-space and

reciprocal-space representation. Both contributing transport modes, coherent and incoherent,

coexist and have been split for separate discussions in Sec. 4.2. The simplified expressions

are given by Eqs. (4.42) and (4.52), respectively. This section aims at illustrating the theory

in its limiting cases and compares the results to the narrow-band theory.
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4.3.1 Narrow-Band Approximation

The NBA can be obtained from the most general result Eq. (4.37) by setting ε̃(k1) = ε̃(k2) for

all wavevectors and assuming, accordingly, a constant distribution function nk → c ≡ Nc/NΩ

as well

µαβ = − 1

e0Nc 2kBT

(e0
~

)2 ∑

LMN

RLαε̃LRNβ ε̃N

× 1

NΩ

∑

k1k2

e−ik1(RM +RN )eik2(RM−RL)c(1 − c)

×
∫ ∞

−∞
dt e−[

P
Q ΦQ(t)GQ

0L0N
e−iQRM ].

(4.53)

Since the wavevectors k1 and k2 only appear in the phase factors, the sums are readily

performed and with Eqs. (4.41), (4.48), and (4.51) and one finally obtains

µ
(NBA)
αβ =

e0(1 − c)

2kBT
Ṽ pol

αβ

∫ ∞

−∞
dt e2

P
λ Φλ(t)g2

λe−( t
τ )

2

. (4.54)

This result is the narrow-band result as derived previously for the case of local electron-

phonon coupling. [30, 44] In Ref. [44] also the generalization to nonlocal electron-phonon

interaction within the NBA according to Fig. 1.1 has been successfully derived. In this case

one must replace

ε2L → (εL − ∆L)2 +
1

2

∑

λ

(
~ωλg

λ
L

)2
Φλ(t) (4.55)

in Ṽ pol
αβ which, in this case, cannot be written as a prefactor to the time integral like in (4.54)

but appears under the integral since Φλ(t) is a time dependent function. The polaron shift

∆L ≡ ∆0L has been defined in Eq. (3.34).

Here I proceed with the discussion of the mobility in (4.54) which includes only local

electron-phonon coupling. The narrow-band theory is compared to the general theory for the

full bandwidth. Equation (4.54) may also be split into a coherent and incoherent part using

the separation e2
P

λ Φλ(t)g2
λ = 1+

(
e2

P
λ Φλ(t)g2

λ − 1
)
, in the spirit of Eq. (4.38). This is similar

to Holstein’s original idea of a mobility summation µ = µ(1)+µ(2) reflecting coherent tunneling

and hopping motion, respectively. [29] Such a resolution also occurs in later theoretical work.

[22, 37, 58] However, in view of the assumed localized nature of the polarons it had not been

considered that µ(1) should be related to the band conduction as obtained from the Boltzmann

equation. This is not surprising since the resulting formulas and numerical results for µ(1)

differ strongly from the coherent mobility µ(coh), Eq. (4.42), of the present theory that

goes beyond the narrow-band limit (see also Chap. 5 for numerical studies). Consequently,

the characteristics of the contribution µ(1) from such localized quasiparticles in the narrow-
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band theory appear quite strange. One common flaw is the presence of a low-temperature

singularity T−1 which does not occur in band transport (see Sec. 4.3.2). This demonstrates

that narrow-band theories are not valid at lower T , as previously discussed by Kenkre [34].

There are two main differences between the present theory and the narrow-band theory.

First, in the present approach, there are additional scattering channels (inelastic scattering,

i.e., ε̃(k1) 6= ε̃(k2)) compared to the narrow-band theory which only take elastic scattering

into account, where the energy difference for initial and final polaron states is always zero,

ε̃(k1) = ε̃(k2). Second, the channels which were already included in the narrow-band theory

are now much better described since the actual state energy ε̃ has become a relevant quantity

and is incorporated properly. The NBA partially neglects the energy dispersion which imme-

diately leads to the incorrect matching of initial and final state energies in the narrow-band

theory.

It is clear that for high enough temperatures the above replacements, which have been

introduced to arrive at the narrow-band result, become exact and the full theory coincides

with the narrow-band theory. In contrast, for low and medium temperatures one observes

strong improvements over the NBA. This will be further discussed below and accompanied

by numerical studies in Chap. 5.

4.3.2 Low Temperatures

In order to calculate the T → 0 limit of the coherent contribution (4.42) in the full theory,

I make use of the low-temperature limit of nk(1 − nk) which can be traced back to the

energy derivative of the occupation number according to nk(1 − nk) = −kBT
∂neε(k)

∂eε(k) . The

derivative of the Fermi-Dirac distribution at zero temperature (step function) leads to the

limit limT→0
∂neε(k)

∂eε(k) = δ [ε̃(k) − ζ]. From a physical point of view, this means that only the

polarons from within a thermal layer of width ∝ kBT at the chemical potential ζ contribute to

the current. As a consequence, this kBT term exactly cancels the prefactor 1
kBT in Eq. (4.42)

resulting in a finite carrier mobility for T = 0 K. Importantly, this is a major improvement

over the NBA which involves a replacement nk(1 − nk) → c(1 − c) and results in a 1
kBT

divergence. Therefore, the correct inclusion of the Fermi-Dirac statistics in the present theory

is essential for the removal of this unphysical singularity.

In the special case of an isotropic system with a parabolic band structure one obtains the

low-T limit as

µ(coh) =

√
πe0τ

2m∗
pol

, (4.56)

which resembles the Drude expression for the mobility but generalized to polarons as charge
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carriers. The polaron effective mass is given by

m∗
pol = m∗

el/holee
P

λ g2
λ . (4.57)

This mass is increased compared to the bare electron/hole mass due to the coupling to the

phonons. As discussed in Sec. 3.4, the occurring exponential factor is the inverse of the factor

which occurs for the bandwidth in the T → 0 limit (see, e.g., Eq. (3.40)).

The low-T regime of the incoherent mobility µ(inc) from Eq. (4.52) is analyzed for a single

scatterer λ of frequency ωλ in the limit of a small phonon occupation number (Nλ ≪ 1).

Assuming ultrapure crystals where static disorder is much smaller than phonon induced

dynamic disorder, i.e. 1/τ ≪ ωλ, one finds the largest term

µ(inc) ∝ g2
λ

Nλ

T
≈ g2

λ

T
e
− ~ωλ

kBT . (4.58)

Basically, this result describes an activation law with the phonon energy as a relevant en-

ergy barrier. The process behind this leading term is a phonon absorption process, which

elevates the polaron above the Fermi energy. The frequency of occurrence of such an event

is proportional to Nλ, the number of available phonons, and the activation law should rather

be regarded as a probability than a real barrier. Finally, the T → 0 limit of Eq. (4.58) is

obtained as

µ(inc) → 0, (4.59)

i.e., the incoherent mobility vanishes.

4.3.3 High Temperatures

The effective polaron mass increases with rising temperature which is a direct consequence

of the band narrowing. Accordingly, in the T → ∞ limit, the coherent mobility behaves like

µ(coh) → 0. (4.60)

For the remaining incoherent contribution, the distribution function for polarons in Eq. (4.52)

becomes constant, nk → c, if the temperature is high enough that the bandwidth becomes

much smaller than kBT . If the bandwidth is also smaller than all relevant phonon energies,

the narrow-band limit applies and one can set ε̃(k1) = ε̃(k2) in Eq. (4.52) and obtains

µ
(inc)
αβ → e0(1 − c)

2kBT
Ṽ pol

αβ

∫ ∞

−∞
dt

(
e2

P
λ Φλ(t)g2

λ − 1
)
e−( t

τ )
2

. (4.61)

For sufficiently large temperatures (2Nλg
2
λ > 1), the −1 term in the parenthesis is negligibly

small and the right hand side of Eq. (4.61) equals the narrow-band result from Eq. (4.54).
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In fact, Eq. (4.61) corresponds to the hopping term µ(2) in Holstein’s original narrow-band

theory (see the discussion of Eq. (4.54) in Sec. 4.3.1). The final result for the high-T limit,

µ(inc) ∝ T−3/2e
− Ep

kBT , (4.62)

where Ep = 1
2g

2
λ~ωλ is the polaron binding energy, is obtained as in Ref. [44]. Since the

coherent contribution µ(coh) vanishes for high T , it follows that this activation law also holds

for the total mobility µ in the present theory.

This result is discussed briefly. The temperature dependence found in Eq. (4.62) is the

same as in the classical Marcus theory for electron transfer [46, 47]. In the Marcus theory,

the polaron binding energy Ep is regarded a barrier for the charge carrier between two states

of localization on different sites (initial and final states for the charge transfer process). Note

that beyond the maximum of µ(T ) in Eq. (4.62) (kBT > 2
3Ep), the mobility is a decreasing

function of T , while for lower temperatures (kBT < 2
3Ep) one finds an activation behavior

giving larger µ for larger T .

Comparing the high-T limit in Eq. (4.62) to the low-T limit of the incoherent hopping

contribution in Eq. (4.58), there are differences in the T dependence of the prefactor as well

as in the activation energy in the exponential. While at low T the leading term arises from

a single phonon scattering event (∝ g2
λ) and is directly related to the number of available

phonons Nλ, the high-T limit is caused by the electron-phonon coupling in all orders (since

the coupling constant gλ appears in the exponent in (4.62)) and is not easily related to phonon

occupation numbers.

4.3.4 Small Electron-Phonon Coupling

As an important limiting case, the present theory covers the bare electron limit if one reduces

the electron-phonon coupling g → 0 and hence retains the bare electronic band velocity

ṽα(k) → vα(k) =
1

~

∂ε(k)

∂kα
. (4.63)

Accordingly, Eqs. (4.42) and (4.45) reduce to

µ
(coh)
αβ =

√
πe0τ

2NckBT

∑

k1

nk1(1 − nk1)vα(k1)vβ(k1) (4.64)

and

µ(coh)
α =

√
πe0τ

2NckBT

∫ ∞

0
dε D (ε)nε(1 − nε)v

2
α(ε), (4.65)
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respectively, where D(ε) is the ordinary (bare electronic) DOS and nk and nε are taken at

the bare electronic structure.

Incoherent transport only contributes for finite electron-phonon interaction (g 6= 0). In

this case, the electron-phonon coupling in the term
(
e2

P
λ Φλ(t)g2

λ − 1
)

of Eq. (4.52) enables

scattering and thus provides transport channels involving the creation or removal of phonons.

For small g one can replace
(
e2

P
λ Φλ(t)g2

λ − 1
)
→ 2

∑
λ Φλ(t)g2

λ in Eq. (4.52) and the time

integration, in the limit τ → ∞, gives rise to delta functions in the energies which, for a

single scatterer, reads

1

~

∫ ∞

−∞
dt

{
Nλe

it
~
(eεk1

−eεk2
+~ωλ) + (1 +Nλ) e

it
~
(eεk1

−eεk2
−~ωλ)

}

= Nλδ(ε̃k1 − ε̃k2 + ~ωλ) + (1 +Nλ) δ (ε̃k1 − ε̃k2 − ~ωλ) .

(4.66)

From this equation one directly identifies both phonon absorption (∝ Nλ) and emission

(∝ 1 +Nλ) processes with the respective energies ±~ωλ that govern the incoherent mobility

in the limit of small electron-phonon interaction.



Chapter 5

Numerical Model Simulations

5.1 Comparison of New Approach to Narrow-Band Theory

The present theory as derived in Chap. 4 is further discussed and illustrated by a numerical

study for a model crystal. The discussion covers the comparison to the narrow-band theory

as well as an analysis of new features. First I specify the model crystal to which both theories

are applied. Consider, for simplicity, an orthorhombic crystal with lattice constants a = 4

Å, b = 5 Å, and c = 7 Å and one molecule per unit cell. Only nearest neighbor interactions

with εa = 100 meV, εb = 50 meV, and εc = 20 meV are taken into account which lead to a

tight-binding band energy of ε(k) = −2εa cos(ka) − 2εb cos(kb) − 2εc cos(kc). The electron-

phonon interaction is modeled by a dispersionless optical mode according to the Einstein

model which is characterized by a phonon energy of ~ω = 10 meV and a coupling strength

of g = 1. In order to calculate the mobility contributions in Eqs. (4.42) and (4.52), one has

to specify the static disorder which is expressed in the energy ~/τ = 0.1 meV, which is a low

value representing ultrapure crystals.

5.1.1 Coherent Transport

Temperature Dependence It is instructive to visualize the coherent part of the mobility

first. The temperature dependence of µ(coh) is plotted in Fig. 5.1. It shows a strong decrease

with rising T , which reflects strong band narrowing effects for the assumed coupling. Im-

portantly, there is a pronounced difference between the present theory (solid lines) and the

narrow-band theory (dashed lines) for low temperatures (see Fig. 5.1 (b)). The values in

the present theory are finite in the T → 0 limit in contrast to the narrow-band theory which

suffers from a 1/T divergence. The removal of the 1/T singularity in the present theory, as

discussed in Sec. 4.3.2, is achieved by the correct description of the quantum statistics of

the carriers and is a great strength of the theory. For elevated temperatures the mobilities

of the full and narrow-band theory approach each other and give identical curves at high T

41
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Figure 5.1: Band mobility µ(coh) from model system along directions a (red), b (green), and c (blue).
Solid lines represent the present approach. Dashed lines are obtained within the NBA. Left: logarith-
mic T scale. Right: linear T scale.

indicating that the NBA is a good approximation for high T (see also Sec. 4.3.1).

For low temperatures, the mobilities from the present theory approach constant values,

which are visible as plateaus in Fig. 5.1. The length of the plateaus depends mainly on the

phonon energy of the scatterer and its relation to kBT . It is noteworthy that the temperature

dependence, apart from the low-T plateau, is decreasing exponentially. This reflects the

narrowing aspect of band transport. The strong decrease with rising temperature indicates a

possible sharp transition from mainly coherent to predominantly incoherent carrier motion.

A mobility decrease is also observed experimentally in some cases, and it is often concluded

that band transport is observed. However, the T -dependence of all measured mobilities, e.g.,

Fig. 2.1 for naphthalene but also for inorganic crystals (like Ge, Si, GaAs, etc.) [59–61], never

follow an exponentially diminishing behavior as in Fig. 5.1 but obey a less strong decreasing

T−γ power-law. In Sec. 5.1.3 the reader will see that such a measured power-law decrease

can be explained if additional incoherent transport processes are included.

Wide-Band–Narrow-Band Transition The validity range of the NBA for coherent

transport can be estimated from Fig. 5.1 (a). Only if the temperature exceeds a thresh-

old temperature both theories give identical results. From Fig. 5.1 (b) one can conclude

that the NBA does not hold for smaller T . This figure shows this region more closely and

demonstrates the failure of the NBA for low T . The mobilities from the narrow-band theory

diverge in this limit independent of the strength of electron-phonon interaction. The removal

of the singularity is a key result of the present theory (see Sec. 4.3.2).

The low-T and high-T regimes are seperated by a threshold temperature Tc. One can
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Figure 5.2: Temperature dependent bandwidth of the model crystal vs. thermal energy kBT .

identify from Fig. 5.1 that this threshold temperature is somewhat below 200 K. The particu-

lar value depends on material parameters like the strength of the electron-phonon interaction.

There is also a dependence on the direction observable in Fig. 5.1, a refined discussion of

which is given at the end of this section. Given a value of Tc = 200 K, one can compare

the polaron bandwidth below and above this temperature. For T > Tc the polaron band-

width can be regarded small and the narrow-band approximation holds, while this is not

the case for lower temperatures. Figure 5.2 shows the temperature dependent bandwidth of

the model crystal as calculated from Eq. (3.45). Note that the bare hole bandwidth of 680

meV is strongly reduced already at T = 0 K to 250 meV due to zero point fluctuations. At

T = 200 K the bandwidth is further reduced to 20 meV. It follows that, for µ(coh) in this

model crystal the NBA is a good approximation if the polaron bandwidth is smaller than

20 meV. Although the bare electron bandwidth is on the order of 1 eV and is hence much

larger than kBT , Ep, or ~ω in the computations, the polaron bandwidth is small enough to

justify the narrow-band approximation. The question arises to which of the above quantities

the polaron bandwidth has to be compared for a formal definition of Tc?

From the discussion in Sec. 4.3.2 it gets obvious that the thermal smearing of the polaron

energies in the low-T limit is expressed in the term nk(1 − nk). Already for temperatures

slightly above absolute zero one can replace nk(1 − nk) → nk ≈ e
− eε(k)−ζ

kBT because of the

low carrier concentration of c = 10−8. With further increasing T , e
− eε(k)−ζ

kBT approaches the

constant c if the polaron bandwidth Bpol is smaller than kBT , which is the case where the

NBA holds. Thereby, the transition temperature Tc may be defined as

kBTc = Bpol(Tc) (5.1)

This corresponds nicely to the crossing of the curves in Fig. 5.2.

A refined discussion of this effect takes the effective directional bandwidth into account,
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Figure 5.3: Hopping mobility µ(inc) for model crystal along directions a (red), b (green), and c (blue).
Solid lines represent the present approach. Dashed lines are from narrow-band approximation.

which (according to a one-dimensional tight-binding expression) may be defined as Bx
pol = 4ε̃x,

where x denotes the Cartesian direction. The definition of T x
c , is given implicitly as the

temperature for which

kBT
x
c = Bx

pol(T
x
c ) (5.2)

holds. Since Bx
pol depends linearly on the transfer integral εx, the transition temperature

for the c direction (lowest transfer integral) is below the transition temperature for the b

direction. It follows that T c
c < T b

c < T a
c < Tc. This is also observed in the simulations.

5.1.2 Incoherent Transport

Temperature Dependence Figure 5.3 shows the hopping contribution µ(inc) to the total

mobility for both narrow-band theory and new approach. The curves behave very differently

unless the temperature exceeds 500 K. For low T , an increase of the mobilities with rising

temperature is observed in both theories. However, the new theory gives values that are three

orders of magnitude below the values from the narrow-band approach.

A plot of the mobility against the inverse temperature (see Fig. 5.3 (b)) reveals the

activation aspect of the incoherent transport with a Boltzmann factor e
− E

kBT . This finding

is expected from the discussion in Sec. 4.3.2 and corresponds to Eq. (4.58). The activation

energy E, as obtained from a fit of Eq. (4.58) to the low-T region of the plot in Fig. 5.3

(b), equals the phonon energy ~ω of the coupling mode. Note that this barrier for the low-T

hopping is not the polaron binding energy Ep from Eq. (4.62). Rather it is the phonon

energy ~ω because a phonon absorption process is needed to move the charge. This becomes

clear since the final state energy ε̃2 (for empty states) is larger than the initial state energy
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ε̃1 (for occupied states).

Another impression from Fig. 5.3 is that the curves in the new approach exhibit much

more fine structure than the narrow-band theory. I shall discuss the main features of the

present theory. The increase of the mobilities at low T is interrupted by a temperature

interval between T1 = 150 K and T2 = 500 K where a dip in the curves is observed. A hint on

the mechanism is given by the relevant temperatures T1 and T2. T1 is somewhat below the

threshold temperature Tc, which is relevant for the coherent part of the transport, and T2 is

well above Tc. According to the comparison to the results from the narrow-band theory, T2

is the temperature above which the NBA gets exact. The width of the polaron band should

therefore not only be compared to the thermal energy kBT as in the definition of Tc in Eq.

(5.1) but also to other characteristic energies such as the phonon energy ~ω or the disorder

energy ~/τ .

Formally, one can define a temperature Tω at which the bandwidth is reduced to the

phonon energy, i.e., Bpol(Tω) = ~ω, and which may be related to the observed temperature

T1. Whether the temperature is below or above Tω is strongly relevant for the scattering

channels contributing to the mobility. For T < Tω the bandwidth is larger than ~ω and,

hence, phonon absorption and emission processes are possible because the phonon energy can

be compensated by the energy difference of initial and final states |ε̃1 − ε̃2| ≤ Bpol. On the

other hand, for T > Tω creation or annihilation of a single phonon during a scattering process

is not possible since the energy difference |ε̃1 − ε̃2| cannot exceed the reduced bandwidth

(Bpol(Tω) < ~ω). An increase of the temperatures across Tω therefore closes such transport

channels and only elastic processes (ε̃1 − ε̃2 = 0) remain possible, e.g., the simultaneous

creation and annihilation of phonons (two-phonon process) with the same energy. In the

absence of the inelastic scattering channel, the mobility is reduced which causes the observed

dip between T1 and T2. T1 can therefore be related to Tω.

The second characteristic temperature T2 = 500 K is also derived from the polaron band

narrowing. Beyond this value the NBA is a good approximation for µ(inc) as seen in Fig.

5.3. This temperature for the incoherent mobility is much larger than Tc = 200 K for the

coherent contribution. Why is this?

According to Fig. 5.2, the characteristic temperature of 500 K corresponds to a reduced

bandwidth of 0.1 meV which is the same value as ~/τ assumed for the purity of the crystal.

In order to understand this, one has to consider the open transport channels at such large T .

These are are only elastic ones (ε̃1 = ε̃2) because the bandwidth is much smaller than ~ω, i.e.,

only those processes contribute, where the sum of all contributing phonon energies is zero. As

a consequence, initial and final states have to match in energy within the assumed broadening,

i.e., |ε̃1 − ε̃2| < ~/τ . For a large bandwidth this condition is rarely fulfilled since initial and



46 CHAPTER 5. NUMERICAL MODEL SIMULATIONS

Figure 5.4: Hopping mobility (red), band mobility (blue) and total mobility (black) of model crystal.
Different directions are plotted a, b, and c in order of decreasing mobility. Inset: Solid lines represent
the present approach. Dashed lines are narrow-band approximation. Only a axis plotted.

final states are distributed over the whole band. In contrast, for bandwidths Bpol < ~/τ ,

the difference ∆ε̃ = ε̃1 − ε̃2 is always within ~/τ of the relevant mode energy (zero). In

conclusion, the spectral width of the scattering cross section at ∆ε̃ = 0, which is given by the

disorder parameter τ and corresponds to an energy ~/τ , determines the narrow-band limit

of the incoherent contribution to the mobility.

A similar dip in the mobility has been observed previously in literature. The description

was based upon the Boltzmann equation which is perturbative in the electron-phonon cou-

pling g. [36] The explanation of the authors is based on a band occupation effect (with a

constant bandwidth) giving rise to longer scattering times in average which change the oth-

erwise decreasing temperature dependence of the band mobility. This is only partly related

to the above analysis, because the important band narrowing was not included in Ref. [36]

and also the hopping motion is not covered by the Boltzmann equation.

5.1.3 Total Mobility

The sum of coherent and incoherent mobilities gives the total mobility (cf. Eq. (4.39)). A

detailed plot for the model crystal is depicted in Fig. 5.4. In general, the total mobility in

the new approach is reduced compared to the narrow-band theory (see inset of Fig. 5.4).

The reason is that the energy of the electronic levels is taken care of more precisely within

the present theory. This results in a proper treatment of the energy conservation in the



5.1. COMPARISON OF NEW APPROACH TO NARROW-BAND THEORY 47

Figure 5.5: Total mobility (crosses) of model crystal along a, b, and c direction. Solid lines are T−γ

power-law fits to the mobilities.

contributing scattering events. As a consequence, events for which the energy conservation

is not fulfilled no longer contribute to the current and, hence, to the mobility.

For low temperatures, finite values are obtained since the dominating coherent contribu-

tion yields finite results in the T → 0 limit. For high temperatures, i.e., T > max{Tc, T2}
the total mobility in the new approach equals the values from the narrow-band approxima-

tion. The intermediate temperature interval is of considerable importance since temperatures

around and below room temperature are easily accessible by experiment. Hence, experimen-

tally measured mobilities often cover temperatures between 100 K and room temperature.

For such temperatures one often observes a power-law dependence of the mobility in ultra-

pure crystals. In order to investigate the new theory for such a characteristic, I plotted the

mobility for temperatures between 100 K and 220 K in Fig. 5.5.

It is obvious that the mobilities exhibit a T−γ power-law dependence for temperatures

in this domain. The exponents γ are very similar among the directions between 2.9 and

3.0 and only small deviations from the power-law curvature are observed. Similar exponents

were observed for hole mobilities in naphthalene (cf. Fig. 2.1) which shows that the model

crystal is close to a real system. The power-law behavior was not present separately for

either the band mobility (black in Fig. 5.4) nor the hopping mobility (blue in Fig. 5.4)

but only for the sum of both contributions. Additionally, the temperature range where the

power-law dependence is observed exactly coincides with the transition temperature from

band to hopping transport (see Fig. 5.4). Both facts lead me directly to the conclusion that

this power-law dependence is a direct consequence of the interplay of both mechanisms and

cannot be attributed to either contribution separately. It follows that the exponent γ results
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Figure 5.6: Direction dependence of the band mobility in the ab-plane (left) and bc (right). In both
graphs, the maximum in-plane mobility is normalized to 10 for each temperature.

from the relative magnitude of each of the contributions. This is studied in more detail in

Sec. 5.3.

5.2 Mobility Anisotropy

Coherent Transport Another important effect that can be observed is the change in the

mobility anisotropy with increasing temperatures. For high T , such a temperature dependent

anisotropy has been discussed in literature theoretically [33, 44] and has been observed exper-

imentally [20]. Also at low T , such an effect is now described in the present theory due to the

improved description of the coherent transport. In order to illustrate the effect, I plotted the

coherent mobility versus direction in polar plots in Fig. 5.6. The figure shows the mobility

anisotropy with rising temperature from 0 K to 200 K within the ab plane (left) and within

the bc plane (right).

For lowest T , there is a direction dependence for both planes (see curves for T = 0 K)

which is expressed in the oval shape in the polar plots. Increasing the temperature to 100 K

or even 200 K gives rise to a strong deformation of the oval form, i.e., the mobility anisotropy(
µa

µb
or µb

µc

)
gets stronger with higher T . Beyond 200 K there are only minor residual changes

in the anisotropy, i.e., the curves at 200 K can be regarded as the high-T limit. What

is probed with this analysis are the details of the band structure. Due to the low carrier

concentration of Nc/NΩ = 10−8, the carriers occupy for low T only the lowest states near the

band edge. Only these carriers contribute to the current and hence to the mobility. Close to

the band edge, the k-dispersion is parabolic in a very good approximation and the effective
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mass m∗
x (x ∈ {a, b, c}) is calculated from the tensor [52]

[
m∗−1

el/hole

]
ij

= ± 1

~2

∂2ε(k)

∂ki∂kj
. (5.3)

From a nearest neighbor tight binding expression (ε(k) = −2εx cos(kx)) one concludes that

(m∗
x)−1 ∝ εx. Consequently, following Eq. (2.4), the mobility anisotropy behaves like εa/εb/εc

for the various directions.1 In contrast, for high T , where the polaron bandwidth is reduced,

the carriers from the entire band contribute equally to the current because the width of the

thermal smearing in nk is larger than the polaron bandwidth, i.e., kBT > Bpol, and the

thermal average over the band velocity squared in Eq. (4.42) is proportional to the transfer

integral squared (see definition of band velocity in Eq. (4.43)). Consequently, the mobility

anisotropy is changed to ε2a/ε
2
b/ε

2
c , which is the same prefactor as for the incoherent mobility

in Eq. (4.51). For the ab plane for example, this amounts to an additional factor with rising

temperature of εa

εb
= 100 meV

50 meV = 2. This factor is visible in the left part of Fig. 5.6, where the

anisotropy change is obtained from the reduction of µb relative to µa.

From the above discussion it is clear that the narrow-band theory, which neglects the

details of the band structure at this point (Bpol = 0), is not able to describe this transition

and the change in the anisotropy in the low-T region of Fig. 5.1.

One can also observe that the change in the mobility anisotropy occurs at different tem-

peratures for the two planes depicted in Fig. 5.6. At 100 K it is not yet reached for the b

direction but already for the c direction. Referring back to the discussion of the temperature

dependence in Sec. 5.1.1, this is in accordance to the direction dependence of Tc, which

describes the threshold temperature of the narrow-band transition.

The discussed change in the anisotropy does not influence the principle axes of the mobility

tensor. These axes are unchanged for the model crystal since all off-diagonal tensor elements

vanish. However, for a system with lower symmetry, e.g. monoclinic crystals as treated in

a later chapter, this is not necessarily the case. Rather, one might expect a temperature

dependent rotation of the tensor axes.

Role of Electron-Phonon Interaction Such a transition from linear to quadratic depen-

dence of the mobility on the electronic coupling strength ε is not restricted to systems with

large electron-phonon coupling nor is it caused by this coupling. Such a transition would also

be observable for an inorganic narrow-band semiconductor with vanishing electron-phonon

interaction for high enough T . However, in praxi, many inorganic semiconductors have bare

bandwidths which exceed 1 eV. This makes the transition not visible for realistic tempera-

1The additional dependence on the lattice constants a2/b2/c2, which is temperature independent, is not
relevant in this discussion.
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Figure 5.7: Total mobilities along the three Cartesian directions for each of the used coupling strengths
g of electron-phonon interaction. The T → 0 limit is indicated with crosses.

tures. The importance of the strong electron-phonon interaction in organic materials is to

reduce the effective bandwidth to the order of kBT (see Fig. 5.2) and, therefore, to shift this

transition into the observable temperature regime.

5.3 Variation of Electron-Phonon Coupling Strength

In order to further illustrate the strength of the present theory, I present and discuss some

simulations with modified material parameters. This demonstrates the whole spectrum that

is covered by the theory. In particular, the influence of the electron-phonon coupling is

studied by keeping ε fixed and varying g. Assuming a high-purity and high-crystallinity

sample (~/τ =0.1 meV) one can simulate the limit of strong chemically bonded inorganic

crystals for g ≤ 0.5. Most of the technological relevant semiconductors behave like such small

coupling crystals. The organic single crystals have intermediate values of approximately

g = 1. [25] The other limit with very strong carrier-phonon interaction g ≥ 2 may simulate

even softer materials. Besides differences in the coupling parameters the different materials

can be expected to differ also in their purity/crystallinity. This can be taken into account

with the relaxation time τ , however, since the goal is to see the influence of the electron-

phonon interaction and not of the purity, τ is kept fix. Figure 5.7 shows the total mobilities

from Eq. (4.37) for optical modes with g ∈ {0.5, 1.0, 1.5, 2.0}. For each value of g three curves

are plotted for the three principle axes of the mobility tensor.
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Similarities One observes that the temperature dependence of the curves are isotropic

apart from the above-discussed effect at low T . This holds for each of the values of g shown in

Fig. 5.7. For low temperatures, the mobilities decrease, adopt a minimum, and increase again

with rising T . As seen previously in Fig. 5.4, the minimum corresponds to a temperature

directly above the band transport-to-hopping transition which is observed for all g, though

at different T . A mobility maximum is reached for higher T , while for very high T the

mobilities decrease again. The local maximum corresponds to the narrow-band transition

temperature. Note that for all values of g such a behavior is observed. Only for the lowest

coupling constants g is the latter part of the general characteristic (maximum) not seen in Fig.

5.7 since the necessary temperature exceeds the temperature range of the plot. Such large

temperatures may be of academic use only. Importantly, however, one can conclude that the

qualitative behavior of the mobility curves is independent of the strength of electron-phonon

coupling.

Differences The total mobilities for the low-T limit differ since the zero point vibration

effects are stronger with larger g. These effects give rise to polaron binding and mass en-

hancement according to Eq. (4.57) and reduce the coherent contribution. In contrast to the

strong variation with g for low T , which reaches a factor of about 42 between g = 0.5 and

g = 2, the variation of the room temperature mobilities across different values of g is much

weaker. Similarly, also the values of the maxima of the mobility curves vary only by a factor

of 2. This may be discussed by help of the analysis of the relative contributions of both

coherent and incoherent mobility. The reduction of the band mobility µ(coh) for increased

electron-phonon coupling g has been discussed above. The dependence of the hopping con-

tribution µ(inc) on g is more complicated. At low T it is found being proportional to g2 (cf.

Eq. (4.58)), while at high T it seems not to depend strongly on g as seen in the compar-

ison of the mobility maxima in Fig. 5.7. If µ(inc) does not depend on g or even increases

with g and µ(coh) is strongly reduced for larger g, the increasing electron-phonon coupling

shifts the relative contribution of both parts towards µ(inc). Consequently, for larger g the

band-transport-to-hopping transition is observed at lower temperatures in Fig. 5.7.

Importantly, also the parameter γ for the temperature dependence T−γ below the mobility

dips in Fig. 5.7 is changed as a consequence of the reduced coherent contribution for larger

g. One finds that γ is lowered with stronger electron-phonon interaction. For g = 1.0 the

average over the three directions yields γ = 2.9 (see also Fig. 5.5). For g = 1.5 one obtains

γ = 2.4 (for 50 K < T < 90 K), and for g = 2.0 one obtains γ = 1.5 (for 20 K < T < 40 K). In

agreement with this tendency, the exponent γ is raised for smaller electron-phonon coupling.

For g = 0.5 one obtains γ = 3.6 in average (for 300 K < T < 800 K). This is qualitatively
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different to a previous finding in the high-T limit, where stronger electron-phonon interaction

(e.g. due to additional phonon modes) leads to a larger exponents. [44] Here it is a direct

consequence of the relative magnitudes of µ(coh) and µ(inc).

Silbey and Munn stated it was not clear why “the smallest mobilities tend to show an

activated behavior, intermediate ones [a] weak temperature dependence ..., and larger ones a

more rapid decrease like T−n with n = 2.5 − 3” [32], as observed in Ref. [62]. An answer is

evident from the findings in this section. The stronger the electron-phonon interaction, the

more µ(inc) dominates over µ(coh) and γ is reduced. For even larger g and, hence, stronger

thermal disorder this would lead to an activation behavior which may be described exclusively

with the incoherent mobility alone. A similar effect might also be expected for stronger static

disorder.

Experimentally Accessible Temperatures Figure 5.7 displays the carrier mobilities

over a large temperature range which allows for the analysis of the overall T dependence.

Such a large temperature interval, however, is very often not observable in experimental

measurements. For organic molecular crystals typical temperature windows for mobility

measurements are between 100 K and 300 K but often the published curves do not even

reach below 200 K. With such a limited experimentally observable temperature range, the

results are very difficult to interprete. For instance, it would be difficult to recognize that

the mobilities of crystals with different scattering strength g obey the same general behavior

but only for different temperatures, as discussed previously in this section. For the g = 0.5

curves (blue in Fig. 5.7) one would clearly anticipate band transport while for the g = 2.0

curves (orange in Fig. 5.7) similar behavior (decreasing µ(T )) is observed above 100 K but

the reason is very different. On the other hand for the curves with g = 1.5 and g = 1.0,

a thermally activated transport mechanism would be assumed from increasing µ(T ) curves.

These considerations give a hint how difficult a correct interpretation of the mobility curves

may be, when only a limited temperature interval can be observed properly.



Chapter 6

Ab initio Studies of Charge

Transport in Crystalline Structures

6.1 Computational Methods

6.1.1 Total Energy Calculations and Structural Relaxation

In order to determine the total energies of the crystals under study and their minimum with

respect to the atomic coordinates, I employ the density functional theory (DFT) code VASP.

[63, 64] The projector augmented wave (PAW) method [65] is used for the description of the

electron-ion interaction. These methods are also applied to the studied gas-phase molecules.

The wavefunctions in the interstitial region between the atomic cores are smooth and can be

expanded into plane waves using a basis set up to a cutoff energy of 37 Ry. This value has

been proven previously to give converged results for a variety of organic molecules. [66–68] It

is carefully checked that the stress tensor is converged with respect to the energy cutoff. For

test purposes the cutoff has been increased to 66 Ry where only small changes in the lattice

constants were observed as one might expect for soft matter. The changes are of only minor

importance.

In order to simulate the gas phase, i.e., a single molecule, within the above framework

the supercell approach is used. Thereby the molecule is placed in an orthorhombic supercell

and oriented perpendicular to the cell axes. In order to model the gas phase accurately,

artificial interactions with neighboring cells have to be avoided. This is achieved when the

distance between the molecules is large enough. Since the size of the supercell determines the

vacuum region between a molecule and its images, a rather large cell of dimension 24×22×18

Å3 is used. For such large cells the dispersion of the energy levels in the (rather small)

Brillouin zone is negligible and the k-space integration can be restricted to the Γ point. For

crystalline phases larger Brillouin zones are encountered and a regular grid according to the

Monkhorst-Pack scheme [69] is used for k-space sampling.

53
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The geometry optimization for molecular and crystalline structures is conducted by help of

a conjugate gradient algorithm minimizing the Hellmann-Feynman forces. Thereby, residual

forces are relaxed below a very small value of 0.1 meV/Å.

6.1.2 Treatment of Exchange and Correlation

In order to compare the molecular and crystal properties in general, one has to model both

the intramolecular and intermolecular interactions with equally high accuracy. This puts

a high demand on the approximation of the exchange-correlation (XC) functional in DFT.

Currently, there is no functional that meets this condition at acceptable computational costs.

Many density functionals have been developed in the past years each of which has its own

characteristics. Here, I apply the local density approximation (LDA), the generalized gradient

approximation (GGA), and a semiempirical van der Waals corrected GGA (GGA+vdW).

For the LDA calculations, the parameterization of Perdew and Zunger is used. [70]

For the GGA calculations, the PW91 functional [71] is employed in order to estimate the

influence of the density gradient contributions to the XC energy which are not present in

LDA. Improvements over LDA have been demonstrated for the simulation of strong hydrogen

bonds [67, 72] and a variety of quantities such as cohesive energies. [73] However, it is

also known that the GGA approach shows deficiencies for van der Waals (vdW) bonded

systems like graphite, [74, 75] which is much better described in LDA. In particular for

interacting molecules, the semi-local approximations for XC (such as GGA) fail to correctly

account for the long-range attraction by vdW forces. Even if the impact on the intramolecular

geometry or the electronic structure is weak, this directly affects the structure and energy

of condensed systems in the computations. It was shown that a semiempirical correction to

GGA can simulate this part of the correlation energy from strongly corrugated charge density

profiles. [74–76] This GGA+vdW approach is based on additional nonlocal interaction from

atom-atom potentials which vanish for small distances like the covalent bonding distance.

GGA+vdW is tested for the durene crystals as an exemplary study of its performance for

the molecular crystals.

6.1.3 Vibrational Properties

The determination of vibrations is based on the harmonic approximation of the total energy

with respect to the deviation from the ground state geometry. This approach is justified

since anharmonic effects such as the temperature dependence of the elastic constants are

not of interest here. Without explicit symmetry considerations, each nuclear coordinate is

displaced along each positive and negative Cartesian direction by a length δ. In the spirit

of the adiabatic approximation, repelling forces are calculated as Hellmann-Feynman forces
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linearly in δ. The resulting force constant matrix is derived from a central difference scheme

in accordance with the harmonic approximation. This yields a generalized eigenvalue problem

of dimension 3N (N number of atoms per unit cell). As a solution one obtains 3N eigenvectors

representing intermolecular and/or intramolecular vibrations and 3N eigenvalues representing

the corresponding frequencies at the Γ point. Note that, for the crystalline case both the

intramolecular and intermolecular vibrations result from a single force constant matrix.

The displacement parameter δ is optimized to ensure harmonic motion on the one hand

and to minimize numerical inaccuracies on the other hand for both the gas phase and the

crystal phase. An important criterion for the quality of the simulations is the characteristics

of the acoustic phonons at the Γ point, which are lattice translations with zero frequencies.

The deviation from zero, which has been used as a target quantity for the determination

of δ, is approximately 1 cm−1. The resulting value of δ = 0.05 Å is in accordance with

earlier findings for other molecular systems. [77] In the case of modes which are numerically

degenerate, the symmetry of the vibrations has been properly accounted for by means of an

additional symmetrization procedure.

The calculated phonon modes and frequencies are also important ingredients for the

calculation of the electron-phonon coupling parameters in Sec. 6.1.5.

6.1.4 Electronic Structure

Among the most important quantities of the electronic structure of organic molecular crystals

are the bandwidths of the valence and conduction bands. These quantities or, in the lan-

guage of the tight-binding theory [52], the corresponding transfer integrals are highly relevant

measures for the charge-carrier mobility and contain information about its directional depen-

dences as well as overall values. [25, 44] Another important quantity that can be obtained

from band structure calculations is the fundamental band gap (also known as the transport

gap). Additionally, the optical gap, which differs from the transport gap due to excitonic

effects, is of interest for absorption spectra.

The fundamental band gap Eg is defined as [78]

Eg = IP − EA, (6.1)

where the ionization potential IP and the electron affinity EA are the changes in the total

energy upon electron removal or electron addition, respectively,

IP = E(N − 1) − E(N) , (6.2)

EA = E(N) − E(N + 1) . (6.3)
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Figure 6.1: Illustration of the
fitting procedure. The KS
band structure (here for a
durene crystal for example) in
black is fitted by the tight
binding band energy in red.
See text for details.

Here, E(N) denotes the total energy of the N -electron system. This approach is called

the “delta self-consistent field” (∆SCF) scheme because it is based on three self-consistent

calculations of electronic ground states. The ∆SCF approach works very well for single-

particle and two-particle excitation energies of localized electronic systems, such as molecules.

[66, 68]

It is important to stress that the quantity Eg as defined in Eq. (6.1) is not directly

related to any single-particle eigenvalue of the Kohn-Sham (KS) equations [79, 80] because

ground-state DFT calculations do not take into account quasiparticle effects. Nonetheless,

for simplicity, the KS eigenvalues are often used for the discussion of the electronic structure

of the systems under study. The energetic difference between the KS eigenvalues of the

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO) defines the fundamental KS gap EKS
g , which is usually smaller than the gap defined

by Eq. (6.1). For crystalline solids, the KS eigenvalues are frequently used to discuss the

band structure, motivated by the a posteriori observation that the energy dispersion of the

individual KS bands is often more or less in agreement with experimental measurements.

Here, the KS bands are used to estimate the bare electronic bandwidths in the crystals under

study.

6.1.5 Material Parameters for Transport Theory

For the computational studies of transport properties, the analytical expressions in Secs. 3

and 4 are supplemented by the material parameters for the studied crystals. These material

parameters are obtained from first principles DFT calculations. The computational part is

performed using the Vienna ab-initio Simulation Package (VASP) [63, 64] code, the specifics

of which have been described previously.

From the Kohn-Sham band structure one obtains the transfer integrals with the following

procedure. The KS band structure is fitted by a tight binding expression to extract a set of

transfer integrals which best reproduces the band structure. If there are two molecules per
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unit cell, the tight binding expression for the energies of the two resulting bands reads

ε±(k) = M(k) ± S(k) (6.4)

where M(k) = 1
2 (F11(k) + F22(k)) is the mean energy of the bands 1

2 (ε+(k) + ε−(k)) and

S(k) =

√(
F11(k)−F22(k)

2

)2
+ |F12(k)|2 is the half splitting between the two bands. Thereby,

the definition of the auxiliary function Fij according to

Fij =
∑

R

eikRεij(R) (6.5)

is used and εij(R) is the transfer integral between orbitals i and j (i, j ∈ {1, 2}) which

belong, in general, to different unit cells (denoted by the difference vector R which is a

Bravais vector in this case).1 The sum in Eq. (6.5) runs over a set of nearest unit cells

according to the observation that with increasing distance the transfer integrals diminish

rapidly. The accuracy of the fit can therefore be increased if more neighbors are taken into

consideration. One has to find the balance between complexity of the fit function with many

neighbors and the required accuracy of the transfer integrals. The fit itself is performed on

a regular mesh of grid points in the Brillouin zone. The complexity of the fit function is

reduced by taking all symmetry operations into account.

In order to illustrate this procedure I plotted such a fit in Fig. 6.1. This example shows a

part of the durene valence band structure (see Sec. 6.3.4 for the discussion of the electronic

structure of durene) in black along with the fit function in red. Gaps in the KS bands in Fig.

6.1 are due to the removal of a second set of bands (see Fig. 6.2), which appear only slightly

lower in energy. In order to identify both set of bands in Fig. 6.2, the orbitals have been

investigated at each point in the Brillouin zone which, in most cases, coincide nicely in shape

with the molecular orbitals. Accordingly, colored lines (red and blue) indicate bands derived

from the HOMO and HOMO-1 of the durene molecule, respectively. There are a few points

where both sets (red and blue) interact which cannot be described by a single orbital per site

in the tight binding theory. Such crossing points, where the band deviates from the tight

binding expression due to interaction with another band, are excluded from the fit procedure.

With the fit procedure one obtains the values εij(R) representing the electronic structure of

the geometric ground state.

Changes in the band structure occur for deformed lattices, e.g., when lattice vibrations

are taken into account (deformation potential mechanism). According to Eq. (3.3) these

1The notation is changed here from the original εMN to εij(R) because the original quantities εMN have
translational symmetry and depend only (i) on the difference vector R associated with the two unit cells to
which the orbitals M and N belong and (ii) on the molecule indices i and j which label the molecules within
a given unit cell.
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Figure 6.2: Selection of a pair of bands (red) which are derived from the molecular HOMO in the case
of durene.

deformations modify the transfer integrals which is rationalized with the electron-phonon

coupling. The coupling constants gλ can therefore be obtained from the electronic structure

of distorted lattices when the phonon eigenvector eλ
s (see Eq. (3.6)) is used as a distortion.

More precisely, the linear changes with the amplitude is measured and gλ is obtained from Eq.

(3.18). Again the fit function is simplified by symmetry operations. However, it is important

to consider the symmetry of the mode which is not always equivalent to the symmetry of the

crystal (Ag modes for durene) but can be lower (e.g. Bg modes, cf. Tab. 6.3).

6.2 Naphthalene

6.2.1 Introduction

After having discussed the features of the present theory in application to a model crystal in

Chap. 5, I come back to the naphthalene crystal (see Fig. 2.2) which, as stated in Sec. 2.2, is

an illuminating prototypical example for studies of the two transport mechanisms in OMCs.

Its transport properties are very well characterized experimentally including electron and hole

mobilities in various directions. High mobilities at low T and power-law-like T -dependencies

have been interpreted as clear indications for band transport. [21] On the other hand, the

temperature independence of the electron mobility in c∗-direction at high T can only be

explained by hopping theories where thermally activated processes are considered. In order

to address the question of the transport mechanism and the temperature dependence of the

carrier mobility, the novel transport theory which has been developed in Chap. 4 is applied

to the description of the carrier mobilities in naphthalene. This allows for the examination

of its performance in the description of mobilities from a direct comparison to high quality

measurements.
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6.2.2 Charge Transport

It has been shown previously that the electron mobilities in naphthalene for elevated tempera-

ture (at least for the c∗ direction) strongly depend on the inclusion of nonlocal electron-phonon

interaction [31], which is not included in the derivation in Chap. 4. The influence of nonlocal

interaction on the hole mobilities is not so strong and, therefore, I focus on the simulation

of the positively charged carriers. The inclusion of nonlocal electron-phonon coupling in an

effective coupling constant as in Eq. (3.44) can partially account for the influence of this type

of coupling and has been taken into account in the simulation of the hole mobilities.

All necessary material parameters have been determined by ab initio calculations (see

Table III in Ref. [25]). From this reference I use the values of a = 7.68 Å, b = 5.76 Å,

c = 8.35 Å, and β = 125.7◦ for the monoclinic lattice, the three intermolecular phonons as

scatterers, as calculated at the Γ point, with energies ~ωλ = 10.7, 14.2, and 17.4 meV, and

effective coupling constants Gλ

2 = 0.36, 0.32, and 0.16, respectively. These effective coupling

constants take also nonlocal electron-phonon interaction into account. In principle, besides

the intermolecular optical modes also the acoustic modes and all intramolecular modes have

to be included. According to Eq. (3.41) and the accompanying discussion (i.e. the treatment

of the q dependence of the electron-phonon coupling which is modeled using the coupling

constants at Γ) one has Gacoustic = 0, which is the reason for the neglection of the acoustic

modes as in previous literature [31]. The remaining intramolecular modes have larger phonon

energies and, hence, smaller coupling constants, which may be expressed as Gλ ∝ ω−3
λ (see

Eq. (3.18)). This reduces their influence on the absolute value of the mobility. In addition

thereto, due to the very low occupation numbers, their effect on the temperature dependence

of the mobility can be neglected.

The transfer integrals εij(R) amount to εa = −29, εb = −59, εc = 4, and εac = 6 meV

for the directions ±a , ±b, ±c, and ±(a + c), respectively for equivalent molecules (i = j),

and to εab = 17 and εabc = −24 meV for the directions ±(a/2± b/2) and ±(a/2± b/2 + c),

respectively for inequivalent molecules (i 6= j). In accordance with previous calculations [31],

I choose a small static disorder ~/τ = 0.1 meV for ultrapure crystals and assume a low carrier

concentration of Nc/NΩ = 10−8.

The numerical results are plotted in Fig. 6.3 in comparison to experimental data [20]

together with the mobilities as obtained within the NBA. All graphs show hole mobilities

along the crystallographic directions a, b, and c∗ (perpendicular to a and b). The ab plane is

the herringbone stacking plane of the naphthalene crystal.

For low temperatures, an important observation is that the mobilities are finite in the low-

T limit within the present theory, whereas the NBA suffers from a 1
T divergence. Moreover,
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Figure 6.3: Anisotropy and temperature dependence of naphthalene hole mobilities in the new ap-
proach (4.37) (left) and within the narrow-band approximation [31] (right) compared to experimental
data [20] (middle). Lines in the experimental data are guides to the eye. In a and c∗ direction, the
upper experimental curve corresponds best to the low-field limit (see text). Theoretical mobilities are
decomposed with respect to coherent (dashed line) and incoherent (dotted line) contributions for the
a direction.

the mobilities for low temperatures exhibit a plateau-like behavior, which is also seen in the

experimental curves. This constitutes a strong improvement of the matching of simulated

and measured mobilities. For high temperatures the calculated mobilities in the present

theory exhibit the same temperature dependence as found in the experiments. They are

best represented by a T−γ power law with γ of 3.3, 3.1, and 2.7 in a, b, and c∗ direction,

respectively. This is close to the values obtained in the measurements, where power-law fits

yield exponents of γ = 2.9, 2.5, and 2.8, respectively.

Comparing the direction dependence of the theoretical and experimental mobilities, it

is found that the correct ordering is obtained for both the present theory and the narrow

band theory. In general, the highest hole mobilities in naphthalene are observed within the

herringbone plane (ab plane). This is in accordance to the picture of strongest overlap of

molecular orbitals in herringbone-stacked systems, which will be discussed in more detail in

Sec. 6.3 for the case of durene crystals. However, one observes that the present theory and

the narrow-band theory disagree quantitatively on the mobility anisotropy. While the present

theory predicts a rather isotropic in-plane mobility µa ≈ µb and a significant lower mobility

in c∗ direction for low T , the narrow-band theory obtains very similar results for µa and µc∗

independent of the temperature. From the experimental curves in Fig. 6.3 it is evident that

the present theory performs much better also for the anisotropy, because the experiments

find very similar mobilities in a and b direction as well. Note that the calculated mobilities

in a direction should be compared to the upper black experimental curve at low T where
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hot-carrier effects (lower µ for higher fields [45]) are reduced. For the same reason the upper

green curve represents best the low-field limit for µc∗ in the computations.2 The anisotropy

ratio µa

µc∗
for the low-T limit of the present theory is 4 and better matches to a value µa

µc∗
= 3

in the experiments than the narrow-band result for which basically no anisotropy is obtained

( µa

µc∗
= 1).

Although the novel theory improves the description of the temperature dependence and

the mobility anisotropy, the agreement between the new approach and the experiment is not

perfect. The length of the above-discussed plateau is somewhat overestimated, which might

be due to the treatment of acoustic phonons (Gacoustic = 0) since the length of the plateau

is related to possible scatterers with lower phonon energies than for the three optical modes

taken into account. A study on acoustic phonons has not been considered during this thesis

because the role of these phonons has not yet been established in literature. [22] The reason

might be that the description of the q dependence of the electron-phonon coupling of acoustic

phonons is considerably more difficult. With rising temperature, the theoretical values of µa

deviate stronger from µb and come closer to the values for µc∗. This is a result in accordance

to the narrow-band limit and can be understood from the comparison to the curves from

the narrow-band theory. In experiment the deviation between µa and µb for higher T is less

strong, though present as well.

In order to investigate the transport mechanism, a resolution of the mobility according

to µ = µ(coh) + µ(inc) has been plotted in Fig. 6.3 for the a direction. It shows that band

transport dominates at low T but is strongly reduced at high T . In particular at room

temperature, band transport is found to contribute only 4% (narrow-band theory) or 22%

(present theory) to the total mobility.

In summary, the present theory is not only applicable to model studies but can be success-

fully applied to the prototypical naphthalene crystal as well. It was found that it gives a sig-

nificantly improved description of the hole mobilities in naphthalene for low and medium tem-

peratures. This is observed for both the temperature dependence and the mobility anisotropy.

For high T , the anisotropy of the previous narrow-band mobilities is recovered.

6.3 Durene

6.3.1 Introduction

The durene molecule is derived from the benzene molecule by substitution of four hydrogen

atoms with four methyl groups. According to the IUPAC nomenclature its chemical name

2Unfortunately some data points for highest mobilities at 4 K were not reported but the existence of a
small plateau is evident from all the data in the reference.
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Figure 6.4: Durene in monoclinic crystal structure. The lattice vectors a, b, and c define the unit cell
and β is the monoclinic angle. Top view along monoclinic b direction (left) and side view along a

∗

(right).

is 1,2,4,5-tetramethylbenzene. Durene exhibits D2h point group symmetry. The crystalline

phase of durene belongs to the space group P21/c (C5
2h) with two molecules in a monoclinic

unit cell. The structure is depicted in Fig. 6.4.

The crystal structure is known from x-ray and neutron diffraction studies. [81, 82] Re-

cently, inelastic neutron scattering (INS) experiments have been performed by Plazanet et

al., and a comparison with computed spectra has been made. [83] Early studies of the vibra-

tional properties of durene crystals were carried out applying Raman spectroscopy. [84, 85]

In a very recent study, INS, Raman, and infrared (IR) spectra have been recorded. [86]

Durene crystallizes in a herring-bone geometry like naphthalene. Although quite high

carrier mobilities have been reported for durene long ago [39] it has remained relatively

unattended by the organic electronics community. The confirmation of the reported high

mobilities [87] was motivation enough to study this system theoretically. An additional

advantage of durene in an ab initio study is the smallness of the molecules and the elementary

cell which reduces the computational effort. There was only a single theoretical work about

durene in literature by Plazanet et al. which aimed at the simulation of measured INS spectra.

[83] A full characterization from a relaxed geometry, however, was missing. Consequently,

such a characterization of the theoretical ground state geometry, vibrational properties as

well as the electronic bandstructure is conducted prior to a study on charge transport.

The study on durene is presented as follows. Basic geometric properties can be found

in Sec. 6.3.2. Therein, an analysis of three exchange-correlation functionals for the struc-

tural properties provides the basis for subsequent studies on durene and other OMCs. An

investigation on vibrational properties follows in Sec. 6.3.3. Section 6.3.4 contains the study

on electronic properties which focuses on the evolution of the band structure, i.e., the struc-

ture/property relationship is examined. The computations of charge transport-related quan-

tities is compiled in Sec. 6.3.5. It includes the temperature-dependent polaron bandwidth

and the mobility tensor of the charge carriers. The origin of the T dependence of the mobility
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Figure 6.5: Nomenclature for carbon (C)
and hydrogen (H) atoms in durene crystals.

Table 6.1: Lattice constants a, b, c (Å) and monoclinic angle β (o) for the durene crystal in different
approximations for XC and experimental reference data from Ref. [83].

LDA GGA GGA+vdW Exp.

a 6.432 7.497 5.765 6.817
b 5.258 6.000 4.316 5.578
c 11.200 12.790 11.614 11.505
β 111.5 113.1 111.0 112.9

curves is discussed, and the anisotropy of the mobility is analyzed in detail. I put a special

focus on the relationship between crystal packing geometry, molecular wavefunction overlap,

and charge transport properties. The results include a visualization of the transport channels

in durene which can be regarded as a prototypical herringbone-stacked crystal.

6.3.2 Geometric Structure

Based on the experimental findings for structural properties, the ground state geometry is ob-

tained in a structural relaxation as described in Sec. 6.1.1. Thereby, unit cell parameters and

atomic coordinates of crystalline durene, as obtained from neutron diffraction measurements,

[83] serve as initial coordinates. In the ionic relaxation (total energy minimization), both the

lattice parameters and the atomic basis are optimized. The symmetry is kept fix in the space

group P21/c (C5
2h). The Brillouin zone is sampled using a grid dimension of 8×8×4. The

structural relaxation is performed with different descriptions for exchange and correlation,

namely, the LDA, GGA, and GGA+vdW approaches (see Sec. 6.1.2). The results for the

lattice structure and molecular geometry are compared in Tabs. 6.1 and 6.2, respectively. In

addition to the computational results, the experimental values [83] are reported as well for

comparison.

One observes differences in the lattice parameters for durene across the used XC func-

tionals. The values for the monoclinic angle β vary only between 1-2 degrees, while for the

lattice constants a, b, and c, differences of up to 20% are found (cf. Tab. 6.1). Among
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Table 6.2: Intramolecular bond lengths (Å) for the durene crystal. Root mean square (rms) value
with respect to the experimental reference [83].

LDA GGA GGA+vdW Exp.

C1-C2 1.484 1.506 1.476 1.508
C2-C3 1.391 1.400 1.393 1.399
C3-C4 1.391 1.400 1.389 1.401
C4-C5 1.484 1.506 1.479 1.508
C4-C12 1.400 1.410 1.400 1.409
C1-H1 1.107 1.100 1.082 1.092
C1-H2 1.110 1.101 1.081 1.096
C1-H3 1.102 1.097 1.077 1.088
C5-H7 1.103 1.097 1.086 1.093
C5-H6 1.109 1.101 1.086 1.095
C5-H5 1.108 1.100 1.092 1.092
C3-H4 1.100 1.093 1.094 1.090

rms rms rms
0.016 0.004 0.010

the XC functionals used, the LDA compares best to the measurements. LDA lattice con-

stants are only 2-6% smaller than in the experiments. The good accordance of theoretical

and experimental lattice parameters is lost to some extent when taking gradient corrections

for XC into account. In GGA, the lattice constants are overestimated by 7-10 %. This re-

sult shows that the intermolecular interaction is not equally well accounted for within the

common approximations for exchange and correlation, which is in accordance to findings of

previous studies. [74, 75] Like for typical van der Waals bonded systems, the underestimation

of long-range electron correlations in GGA yields incorrect lattice parameters but the effect

is less pronounced than one might have expected. This indicates that even though the van

der Waals interaction is very important for the occurrence of a stable durene crystal, there

are likely additional effects contributing to the bonding between the molecules. Otherwise,

the GGA lattice constants would compare worse to the experimental values.

The GGA+vdW approach, which has been used successfully for van der Waals bonded

systems previously, [74] is not able to improve GGA lattice parameters for durene but, in

fact, leads to a strong underestimation of the lattice constants a and b by more than 15%.

Due to a small molecule rotation during the relaxation, the c lattice constant in GGA+vdW

is not as severely underestimated as the a and b lattice constants but is very similar to the

experimental one (cf. Tab. 6.1). It is observed that the shortcoming of the GGA with respect

to the dispersive forces is less severe for durene than for the systems studied previously. [74,

75] As a result, the van der Waals forces overcompensate the failure of the GGA, which

results in an underestimation of the lattice constants here. The reason might be that the

durene crystal is not exclusively bonded by vdW forces but, as discussed elsewhere, also weak



6.3. DURENE 65

hydrogen bonds of the C-H· · · π type contribute. [48, 88]

In conclusion from the findings in Tab. 6.1, the lattice parameters and, hence, the in-

termolecular interactions in durene crystals are described most reliably in LDA.

For the intramolecular geometry of durene in crystal phase, Tab. 6.2 compares the theo-

retical findings with experimental data. One finds that each of the XC functionals is able to

reproduce bonding distances (cf. Tab. 6.2) and angles3 (not shown as a table) for durene cor-

rectly. Differences across the XC functionals are small. As expected, for purely intramolecular

properties, the vdW correction gives rise to only minor changes in the GGA values. From Tab.

6.2, one concludes that the best values for the intramolecular geometry are obtained within

GGA but, in fact, all three approximations yield very similar results. This is additionally

confirmed by the investigation of the bond angles. [48]

Based on these findings for the accuracy of the description of intermolecular and in-

tramolecular geometry, further studies are performed using the LDA for the XC functional.

In particular, the importance of the intermolecular interaction and its influence on charge

transport parameters highlights the LDA as best suited.

This result shows that even though LDA has some difficulties describing strong hydrogen

bonds [67, 72], it is very successful in the case of the weak C-H· · · π-bond. No overbinding

effects as for water [72] or for amino acids [68] have been found in the studies here.

In conclusion of this section, it is shown that simulations within LDA are able to give

parameters for intramolecular as well as intermolecular bonds in good accordance to the

experiment. Although the intramolecular properties come out slightly better in GGA, the

LDA calculations give the best overall description of durene crystals due to its accurate

lattice parameters. Hence, for all further calculations and, in particular, the calculations of

the vibrational modes, I proceed using only the LDA for the XC functional. The geometric

ground state serves as a starting point for all further computations.

6.3.3 Vibrations

Lattice vibrations are investigated by using the methods discussed in Sec. 6.1.3. A set

of phonon modes with eigenvectors and mode frequencies is obtained by diagonalizing the

dynamical matrix. Here, I focus on the most relevant findings. A full mode description of all

Γ point phonons in the crystal as well as a description for the gas-phase molecule vibrations

has been compiled in a related publication. [48] The lower energy modes in the crystal are

listed in Tab. 6.3.

A symmetry classification has been carried out by an analysis of the modes by means of

group theory. For the durene crystal, neglecting the three zero-frequency acoustic modes, the

3A more comprehensive characterization which also includes bonding angles is compiled elsewhere. [48]
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Table 6.3: Phonon modes for the durene crystal with frequencies (in cm−1) and symmetry classifica-
tion. Mode descriptions hold for all subsequent empty lines. Abbreviations: torsion (tors), wagging
(wagg), translation (T), and rotation (R).

Frequency Symmetry Mode description

224.8 Au butterfly
219.0, 218.2 Ag, Bg CH3 tors

214.3 Bu butterfly
201.0, 193.6, 186.9, 186.4 Bu, Au, Ag, Au CH3 tors

180.2 Bu C-CH3 wagg, CH3 tors
175.2 Au C-CH3 wagg

173.7, 163.1 Bg, Bu CH3 tors
140.2, 140.2 Ag, Bg RCH

120.7, 113.2 Ag, Bg RL

102.4 Au Tc

84.0 Bu Tb

61.7 Ag R6

53.2 Au Ta

51.5 Bg R6

141 optical modes can be represented as

Γcryst
vib = 36Ag + 36Bg + 35Au + 34Bu.

Here, the index g (u) denotes even (odd) symmetry. In the crystalline phase, one obtains the

9 intermolecular vibrations below 150 cm−1. These are classified as three translations (T)

basically along the lattice vectors a, b, and c and six librations (R), i.e., molecule rotations

about the axes corresponding to the principal moments of inertia (cf. Tab. 6.3). The 6

librational normal modes have even symmetry, i.e., they are not IR-active, whereas the three

translational modes belong to u representations and should have more or less strong transition

dipole moments. [89]

In recent experimental IR studies on the vibrational properties of durene the low-frequency

region has been investigated up to 600 cm−1. [86] IR spectra have also been simulated in the

course of this work and are discussed elsewhere [48] since this thesis is limited in space. From

these investigations one concludes that for the spectral range below 600 cm−1, measurements

and theoretical predictions agree very well.

For even lower frequencies in the region of the intermolecular phonons, however, the

spectra recorded from suspension are not useful. For example, the translational modes can

only be seen in the spectra of single crystals. [89] In the experiments of Ref. [89] the peak

positions change upon cooling the crystals from room temperature down to 80 K. These

low-T values can be compared to the DFT calculations. At this temperature, the Tb (Ta)

translation is found at 70 (45) cm−1 which is in surprisingly good accordance to the findings
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Figure 6.6: Band structure of durene along special lines in the Brillouin zone in comparison to molec-
ular energy levels. The valence band maximum is set to zero. The definition of the high-symmetry
points is depicted at the irreducible wedge of the Brillouin zone. Important high-symmetry lines: ΓB
along a

∗, ΓY along b, and ΓZ along c
∗. The absolute square of the wavefunctions of the HOCO and

the HOMO are depicted in the insets.

of 84 (53) cm−1. Even for the Tc mode the value of 102 cm−1 accords reasonably well with

the experimental wave number of 74 cm−1.

The modes with g symmetry are not visible in the IR signal but in Raman measurements.

The Raman spectrum of powder samples of durene [86] shows a major contribution from the

spectral region below 150 cm−1. Correspondingly, in the calculations one finds such modes

between 110 and 140 cm−1 associated with librations (cf. Tab. 6.3). Furthermore, the

experimental Raman frequencies [86] in the range of 250-1650 cm−1 are also well reproduced

by the calculations.

6.3.4 Electronic Structure

In Fig. 6.6, I have plotted the band structure of durene crystals in comparison to the energy

levels in durene molecules. All values are obtained as eigenvalues of the Kohn-Sham equation

as discussed in Sec. 6.1.4. The most important high-symmetry lines are ΓB along the a∗

direction, ΓY along the b direction, and ΓZ along the c∗ direction (the latter is defined as

being perpendicular to the ab plane; see Fig. 6.4). Note that the energy gap cannot directly

be compared to experimental excitation energies (see discussion in Sec. 6.1.4). The insets in

Fig. 6.6 also shows plots of crystal and molecular orbitals for the highest occupied crystal

orbital (HOCO) and the highest occupied molecular orbital (HOMO), respectively.

The bands are formed by delocalized π orbitals of the molecule. Since the crystal unit

cell contains two molecules, there are twice the number of states per unit cell in comparison

to the gas-phase species. At Γ, the HOCO and the HOCO-1 are similar to the HOMO as

seen from the insets in Fig. 6.6. The same analogy holds for the states below, namely, the
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HOCO-2 and HOCO-3 (see Fig. 6.2) which are formed from the HOMO-1. The identification

of the hole states with former molecular orbitals is justified by visual identification on the one

hand and the correspondence of the energy levels on the other. From Fig. 6.6 it is obvious

that the relative energetic positions of molecular orbitals experience changes below 1eV when

transforming into Bloch states in the crystal, thus the energetic ordering is comparable to the

energy structure in the molecule. Of course a rather strong band dispersion occurs due to the

intermolecular interaction (electronic coupling). Investigating the states in the conduction

band, a correspondence between molecular orbitals and crystal orbitals, established by their

characteristic shapes (not shown in Fig. 6.6), has been confirmed as well.

For the valence bands, i.e. for the holes, a rather strong energy dispersion for the

HOCO/HOCO-1 is found which results in a large bandwidth. The bandwidth can be quan-

tified by the band splitting at Γ, which is mainly due to the interaction of both molecules in

a crystal unit cell (cf. Fig. 6.4). The splitting amounts to 0.92 eV yielding a large transfer

integral. Similarly, the HOCO-2/HOCO-3 exhibits a splitting of 0.38 eV at Γ. These values

give rise to bandwidths that are unusually large for an organic molecular crystal and indicate

potentially high hole mobilities in durene crystals. For the conduction bands, i.e. the elec-

tron states, similar effects are observed. The bands formed from the two lowest unoccupied

molecular orbitals (LUMO and LUMO+1) overlap in energy since the dispersion is much

larger than the original energy difference of 0.1 eV between LUMO and LUMO+1. The

corresponding total splitting (LUCO/LUCO+3) at Γ is 1.05 eV which also indicates possibly

high electron mobilities in durene crystals. From the widths of the bands one can anticipate

potentially high mobilities for both electrons and holes in durene crystals. Their directional

dependence, however, does not result from the bandwidth but from the band dispersion along

various directions.

Interestingly, the band dispersion is extremely anisotropic. A very strong dispersion is

found in b (ΓY) direction and in c∗ (ΓZ) direction for the HOCO/HOCO-1 as well as for the

HOCO-2/HOCO-3. But also the electron states exhibit the same characteristic anisotropy

as found for the holes. A highly relevant quantitative measure for the directional dependence

of mobilities are effective masses m∗. I address the observed anisotropy by studying the

direction dependence of m∗. According to the definition of the inverse effective mass tensor

in Eq. (5.3), the values at the valence and conduction band edges (critical points in the BZ)

can be calculated for arbitrary directions. In Tab. 6.4 I have compiled the effective masses for

various directions at the Γ-point for the uppermost valence band and the lowest conduction

band.

The lowest mass is measured for electrons. For this type of charge carriers the effective

mass is 0.49 me in c-direction. In the same direction one also observes the smallest hole mass
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Table 6.4: Effective masses of electrons and holes at the Γ point in units of the free electron mass me.

direction c c∗(ΓZ) b(ΓY ) a a∗(ΓB)

m∗
el 0.49 0.58 12.8 4.88 -11.9

m∗
hole 0.68 0.77 1.16 3.55 9.71

of 0.68 me. This is even smaller than along the monoclinic b axis (1.16 me). In contrast,

both holes and electrons are very immobile perpendicular to the bc-plane. In this direction

(a∗), the observed effective masses are higher by one order of magnitude or even negative.

This strong anisotropy found from the analysis of the effective masses implies that durene

crystals are effective two-dimensional electronic systems. This is similar to another group

of herringbone-stacked organic molecular crystals, namely, the oligoacene crystals such as

naphthalene as discussed in Sec. 6.2. From these findings, very anisotropic hole mobilities

may be expected. [25, 44] The hole mobility should be minimal in a∗ direction whereas high

mobilities are expected to occur within the bc plane.

6.3.5 Charge Transport

In the preceding section, charge transport properties of durene crystals have been studied by

means of bare electronic quantities which serve as precursors for transport characteristics.

The electronic structure has been examined and its anisotropy has been rationalized with

the concept of an effective band mass for electrons and holes. In contrast to conventional

semiconductors, the relatively weak intermolecular bonds in OMCs lead to a strong inter-

action between the charge carriers and the lattice vibrations. Consequently, the concept of

an electron/hole moving in bands and showing bandlike mobilities as in traditional inorganic

crystals might no longer hold and polarons are formed. [22] I turn now to the inclusion of the

electron-phonon scattering and come to the modeling of polaronic effects. The investigation

of charge transport is restricted to holes since for the electrons the experimental data for

comparison are incomplete.

A prominent polaronic effect is the bandwidth narrowing which reflects the increased

mass of the polaron and results in a reduced band velocity (see Eq. (4.43)). In Sec. 3 this

temperature-dependent effect has been quantified (see Eq. (3.44)) to

ε̃MN = (εMN − ∆MN ) e−
1
2

P
λ(1+2Nλ)Gλ , (6.6)

where ∆MN describes polaron-binding effects and

Gλ = 2
(
gλ
MM

)2
+

∑

K 6=M

(
gλ
MK

)2
(6.7)
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Figure 6.7: Symmetry-reduced set of most important transfer integrals.

are effective coupling constants containing all local and non-local terms (see Eq. (3.43)).

The transition from the bare transfer integrals εMN to the polaron transfer integrals ε̃MN

amounts to a reduction of the values due to the exponential narrowing factor in (6.6) which

includes the temperature T via the phonon numbers Nλ =
(
e~ωλ/kBT − 1

)−1
as well as all

orders of the carrier-phonon interaction via Gλ.

In order to obtain the necessary material parameters in Eqs. (6.6) and (6.7), first princi-

ples calculations have been performed using the methods outlined in Sec. 6.1.5. In Fig. 6.7,

the symmetry-reduced set of the used transfer integrals in Eq. (6.5) is plotted as colored dots

at molecular sites. Besides the on-site energy and the neighbors associated with the lattice

vectors in each direction, RM −RN = 0,±a ,±b,±c (blue), I also consider the transfer inte-

grals belonging to other lattice vectors RM −RN = ±(a±b),±(a±c),±(b±c),±2b (green)

as well as non-lattice vectors RM −RN = ±(b/2± c/2),±(a ± (b/2± c/2)),±(3b/2± c/2)

(red). The same mapping method is used to measure the band-structure changes due to

phonon distortions to obtain the hole-phonon coupling constants (see Sec. 6.1 for details). In

consistency to the theory the symmetric low-energy rotational modes are taken into consid-

eration as in previous work.4 [25, 31] They correspond to wavenumbers of 51.5, 120.7, and

140.2 cm−1 (see Tab. 6.3) and effective couplings Gλ

2 of 0.51, 0.05, and 1.16, respectively. 5

In the first column of Tab. 6.5, a compilation of the bare hole transfer integrals which

fit best to the ground-state band structure is given. The two molecules within a unit cell

(ε b
2
+ c

2
= 103.7 meV) and the two adjacent molecules along b (εb = 116.2 meV) exhibit the

4The inclusion of other modes is not necessary as discussed for naphthalene.
5Note that in a related publication [58] the definition of the quantities Gλ vary by a factor of 2.
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Table 6.5: Bare hole-transfer integrals ε, polaron transfer integrals ε̃ according to Eq. (6.6), and
resulting bandwidths (in meV).

bare holes polarons polarons
(T = 0 K) (T = 300 K)

ε̃a -3.3 -0.5 -0.001
ε̃b 116.2 21.7 0.045
ε̃c -6.7 -1.3 -0.003
ε̃a+b 0.7 0.0 0.000
ε̃a−b 0.7 0.1 0.000
ε̃a+c -1.6 -0.3 -0.001
ε̃a−c -0.5 -0.1 -0.000
ε̃b+c -7.7 -1.5 -0.003
ε̃b−c 0.5 0.0 0.000
ε̃2b -21.6 -4.9 -0.010
ε̃ b

2
+ c

2
103.7 18.6 0.038

ε̃a+ b
2
+ c

2
5.3 0.9 0.002

ε̃−a+ b
2
+ c

2
2.0 0.3 0.001

ε̃ 3b
2

+ c
2

2.9 0.5 0.001

bandwidth 952 171 0.35

strongest electronic interaction. As a result of the hole-phonon coupling, one observes a

strong reduction of these values at room temperature, and even at T = 0 K there is already

a significant decrease due to zero-point vibrations. From these polaron transfer integrals one

can directly calculate the T -dependent polaron bandwidth which reduces from the bare value

of 952 meV to 171 meV at T = 0 K and to 0.35 meV at T = 300 K.

Following Holstein’s original idea, the size of the polaron and the transport mechanism can

be estimated from the energy ratio
Ep

B (see Sec. 2.3.1). Here I use
Ep

Bp
, where Bp is the polaron

bandwidth, in order to account for the temperature dependence of the bandwidth as discussed

above. To estimate the transport mechanism from the findings about the polaron bandwidths

one has to compare the bandwidths, which reflects the energy gain due to delocalization, to

the polaron binding energy Ep =
∑

λ g
2
λ~ωλ = 24 meV reflecting the localization aspect.

Comparing Ep to Bp for different T , where Bp varies between 171 meV and 0.35 meV,

evidently, the carriers are very unlikely delocalized at room temperature but can be regarded

rather delocalized at 0 K. Accordingly, band transport will not be a suitable concept for

the description of carrier motion at room temperature but for small T it should give good

results. At this point, however, no statement is possible about the transport mechanism in

the intermediate temperature regime.

In order to model the charge transport in durene crystals, the above-described polaron-

band picture is helpful but, in itself, not sufficient. Due to the large carrier-phonon coupling

and, hence, strong localization, the bandlike transport may be suppressed and, instead, ther-
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Figure 6.8: (a) Solid lines: Calcu-
lated durene hole mobilities µ accord-
ing to Eq. (6.8). Values for b (red),
c (black), 35◦ off bc plane (green),
and a∗ ≡⊥ bc (blue). Inset: Dashed
line: Band mobility µ(coh), as calcu-
lated by setting Φλ(t) ≡ 0 in Eq.
(6.8). Dotted line: Hopping mobil-
ity µ(inc) = µ− µ(coh). (b) Measured
durene hole mobilities from Ref. [39].
Data points for 45◦ between b and c
(red), 35◦ off bc plane (green), and a∗

(blue).

mally activated hopping may become important. In general, for ordered crystals which exhibit

a large bandwidth on the one hand but also strong polaronic effects on the other, an a priori

assumption whether bandlike transport or hopping is prevailing cannot be made, as discussed

in Sec. 1. In fact, it has been stated previously in the thesis that the sharp transition from

band transport to hopping can only be described within a transport theory treating both on

equal footing. I make use of the recently developed expression for the mobility tensor based

upon a non-perturbative evaluation of the Kubo formula [31, 44], which has been introduced

in the discussion of Eq. (4.55). The expression reads6:

µαβ =
e0

2kBT~2

∑

M,N

(RMα −RNα) (RMβ −RNβ)

×
∫ ∞

−∞
dtFMNe

−
P

λ Gλ(1+2Nλ)e+
P

λ GλΦλ(t)e−
t2

τ2 ,

FMN = (ǫMN − ∆MN )2 +
1

2

∑

λ

(
~ωλg

λ
MN

)2
Φλ(t).

(6.8)

As an important feature, one recognizes that the (coherent) narrowing term e−
1
2

P
λ(1+2Nλ)Gλ

from Eq. (6.6) reappears in the mobility but is now supplemented by an additional exponent

containing Φλ(t) = Nλe
iωλt + (1+Nλ)e−iωλt. This exponent explicitly describes (incoherent)

scattering events with absorption and emission of phonons, and its opposite sign indicates a

6The mobility expression used for this part of the thesis is different to the one derived in Chap. 4 (Eq.
(4.37)) since the study had been carried out before the theory in Chap. 4 has been developed. The subsequent
discussion of the mobility anisotropy, however, is not affected by the choice of the mobility expression, at least
not as far as temperatures above 100 K are concerned for which experimental measurements are published.
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Figure 6.9: Hole mobilities in durene within the
herringbone-stacking (bc) plane and the per-
pendicular ca∗ plane.

Figure 6.10: HOMO-overlap density in durene
as described in the text as a visualization tool
for the relevant carrier channels in herringbone-
stacked materials. View onto the herringbone
(bc) plane (left) and onto the ca∗ plane (right).

thermally activated, i.e., hopping contribution to the mobility.

In the following, the results for the anisotropy and temperature dependence of the hole

mobilities in durene crystals are presented. The theoretical analysis is based upon Eq. (6.8)

in conjunction with an ab initio determination of all relevant material parameters according

to the methods described in Sec. 6.1.

The durene hole mobilities are plotted in Fig. 6.8 (a). First, I discuss the T dependence.

As an important result, it is found that in spite of small transfer integrals at T = 300 K, the

mobility curves still exhibit a behavior that is commonly associated with bandlike transport:

decreasing mobilities with increasing T . The same behavior is found in the experiments in

Fig. 6.8 (b). Moreover, this decrease is almost independent of the direction, in accordance

to the experimental data. The simultaneous presence of a very narrow band and a seemingly

bandlike mobility behavior is at first somewhat surprising and puzzling. It can only be

understood by the complex interplay between the band narrowing and hopping terms in Eq.

(6.8), which is illustrated in the inset of Fig. 6.8 (a). While at low T the total mobility is

basically governed by the band narrowing term (dashed line), the hopping term (dotted line)

becomes increasingly important at higher T . Nonetheless, the underlying thermally activated

behavior at high T , where it dominates the total mobility, becomes masked due to the overall

1/T prefactor in Eq. (6.8), see also Ref. [44].

As another important result, one finds that the direction dependence of the absolute

mobility values is highly anisotropic. This is analyzed in polar plots in Fig. 6.9. It gets

obvious that within the herringbone (bc) plane the changes upon angular variation are small

but along the perpendicular direction (a∗) the mobilities drop by two orders of magnitude, see

also Fig. 6.8 (a). This anisotropy is confirmed by experimental findings from time-of-flight
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measurements [39]; only the difference between in-plane and out-of-plane values is somewhat

smaller in the experiments, see Fig. 6.8 (b).

An important observation is that the anisotropy in the mobility stems from an anisotropy

in the underlying electronic structure. For example, the small a∗ mobility can be traced back

to the transfer integrals in this direction: only the small values for εa, εa+ b
2
+ c

2
, and ε−a+ b

2
+ c

2

give minor contributions compared to the much larger values εb and ε b
2
+ c

2
for the bc plane.

This is also true including hole-phonon interaction.

In view of these findings, I conclude that the anisotropy in the electronic coupling be-

tween molecules is a valuable precursor for the resulting mobility anisotropy in the crystal.

Moreover, this electronic coupling between the molecular orbitals can be directly estimated

from the overlap of the wavefunctions (see definition of the transfer integrals in Eq. (3.2)).

The orbital plots in the insets of Fig. 6.6 give no indication for a preferred overlap direction.

However, from molecular orbital theory, it can be expected that these orbitals are mainly

extended perpendicular to the molecular plane, i.e., the plane of the π-electron system. The

normal vector to this plane lies nearly completely in the bc-plane (herringbone plane) with a

deviation of less than 2◦. Hence, a strong wavefunction overlap may be expected within her-

ringbone planes. This amounts to a strong wavefunction overlap between the two molecules

in the unit cell, i.e., within the bc plane (see Fig. 6.4) and of adjacent molecules belonging

to different unit cells in b direction, which is the reason for the respective transfer integrals

ε b
2
+ c

2
and εb being much larger than between molecules lying in different herringbone planes.

In order to illustrate the implications of such a pairwise overlap of wavefunctions for the

crystal as a whole, I have computed the sum
∑′

ij |ψi(r)ψj(r)| over all pairs of overlapping

HOMO wavefunctions of durene molecules in crystal geometry, where the sum excludes i = j.

This results in an overlap density and gives an excellent impression of the formation of global

transport channels.7 Figure 6.10 shows the overlap density in an isosurface plot. The sum of

all pairwise contributions gives rise to a dense herringbone pattern leading to the formation of

wide hole-transport channels traversing the entire herringbone-stacking plane. The bc-planes

are nearly isotropically filled which corresponds nicely to the findings for the bc-mobilities

in Fig. 6.9. In contrast thereto, the top view (ca∗-plane) exhibits that the overlap density

nearly vanishes between the individual herringbone planes. Due to such large gaps between

the two-dimensional channels it is clear that the carriers are confined to the herringbone

planes. In order to move through the crystal in the perpendicular a∗ direction, the holes

have to overcome these gaps which strongly reduces the mobility, in agreement with the

simulations for this direction. These findings are particularly relevant because they allow for

7If i = j was included the resulting quantity resembles the charge density for which a correlation between
density and anisotropy of electronic coupling was found as well [90]. The overlap density used here, however,
is an even better indicator.
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an understanding why the transport channels in herringbone-based OFET devices are often

confined to the surface layers. [8]

In summary, based on first principles DFT calculations with several approximations for

XC, the ground state geometry has been investigated. Proceeding with the best performing

LDA functional, vibrational and electronic properties have been analyzed. Large bandwidths

were found for valence and conduction bands along with a strong anisotropy in the crystal

band structure, which was further rationalized by the calculation of band effective masses.

Besides the anisotropy, the influence of the temperature on the effective electronic structure

has been studied making use of the polaron concept. It was found that the polaron bandwidth

is strongly reduced at T = 300 K which rather points to a hopping mechanism for transport

at room temperature.

This was further examined in a study on the hole mobility in durene crystals. The mobil-

ity was investigated within a sophisticated theory which takes polaronic effects, hopping, and

band transport into account. I have analyzed the temperature dependence and anisotropy of

hole mobilities in durene. The temperature dependence was found to be equal for all direc-

tions, with a dominating mobility contribution from band transport for low T and hopping

for room temperature. As an example for herringbone-stacked materials, durene essentially

shows a two-dimensional mobility characteristic. This feature was traced back to the wave-

function overlap which leads to large transfer integrals. As an important observation, the

directional distribution of the largest transfer integral governs the mobility anisotropy. An

analysis of the overlap density is proven a powerful tool to understand and visualize the re-

sulting carrier-transport channels in such crystals. In addition to the two-dimensional plots,

these transport channels are even more impressive in 3D views as created in a movie8 for a

related publication. [58]

6.4 Guanine

6.4.1 Introduction

The study of crystalline guanine (see Fig. 6.11 for a structural overview) is motivated by

several aspects. As one of the DNA bases, guanine has an outstanding role over the usual

“suspects” in organic electronics. This is related to the self-assembly of DNA, which may

be of importance in building up organic electronic devices in a bottom-up approach. Its

π conjugation should give rise to wide HOMO/LUMO bands similarly to the oligoacenes

and durene but the anisotropy is unknown. Due to the occurring strong hydrogen bonds,

8The movie showing the hole overlap density in durene crystals can be downloaded from
http://ftp.aip.org/epaps/appl phys lett/E-APPLAB-93-052847/254195 0 vid 0 k71b6k.mpeg.

http://ftp.aip.org/epaps/appl_phys_lett/E-APPLAB-93-052847/254195_0_vid_0_k71b6k.mpeg.
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Figure 6.11: Perspective view to the lay-
ers in a guanine crystal (three molecu-
lar planes are shown). For clarity, the
plane distances in the vertical stacking
direction have been doubled and water
molecules have been omitted. The four
molecules in a single unit cell are labeled
from 1 to 4 each of which represents also
a vertical stack. Transport pathways are
indicated by arrows (c: along the stack,
a and b: between the stacks).

which are not present in acene-type crystals like naphthalene or durene, guanine crystallizes

in a structure different to the herring-bone fashion, which may give a different anisotropy

characteristic as well.

In addition, the DNA molecule itself (e.g. in form of a poly-guanine–poly-cytosine se-

quence) is considered to be interesting to study. [91] In solution, the DNA bases are stacked

along the helix axis and the π-π interaction along this direction led to the notion of a (semi-)

conducting molecular channel very soon after the discovery of the real structure. [92] Also, an

enormous knowledge of synthesizing and manipulating the DNA has been gathered over the

past decades. Therefore, nanowires based on the DNA are considered promising candidates

for molecular devices toward the further miniaturization of electronic technology and have

been studied actively in the past. [93–100]

A different type of transport study, namely, through a guanosine derivative in a field

effect transistor geometry has been carried out recently. [101] In contrast to DNA, where

the charge transport occurs along the stack through intrastrand or interstrand pathways (c

or a direction, respectively, in Fig. 6.11), Ref. [101] investigated the charge transport along

a ribbon structure of guanines across the hydrogen bridges within single molecular planes (b

direction in Fig. 6.11). The transport in this direction does not fit into the simple overlap-

of-π-orbitals picture. In order to better understand the anisotropy arising from the relative

orientation of the guanine molecules, it is instructive to consider three-dimensional guanine

crystals as a model system. The guanine crystals studied here have the great advantage

to provide many transport pathways simultaneously due to the anisotropy of the molecular
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(a) (b)

Figure 6.12: (a) Monoclinic unit cell of the guanine monohydrate crystal with atomic basis of four
guanine molecules. Neighboring parallel layer and water columns along the c-axis are indicated. (b)
View along the c direction of the crystal. The dashed box indicates the unit cell with the lattice vector
b. Black double lines represent hydrogen atoms in a hydrogen bridge bond of the OH· · ·O type in the
water columns.

arrangement, among them, a stack similar to the base pair stack in DNA and a ribbon

geometry as used in the transistor experiment of Ref. [101].

Previously, much computational effort has been spent to determine the structural prop-

erties of the gas-phase guanine molecule as well as its vibronic and electronic excitations.

However, much less work has been devoted to condensed aggregates. [102–105]

The structural results and vibrational properties of guanine crystals are presented in Sec.

6.4.2 and Sec. 6.4.3, respectively. Electronic properties follow in Sec. 6.4.4, and Sec. 6.4.5 is

devoted to the charge transport. The findings are discussed in relation to transport pathways

in DNA-based structures like guanine quadruplexes and ribbons which are considered to play

a major role in DNA-based nanoelectronics. The mobility results are interpreted by help

of a novel visualization method for transport channels, which is derived from overlapping

wavefunctions. An analysis of coherent and incoherent contributions to the mobility shows

which mechanism dominates at room temperature in guanine structures with high purity and

long-range order like crystals.

6.4.2 Geometry

The crystal structure of guanine is obtained from experimental results from X-ray diffraction

[106]. Guanine crystallizes in a monoclinic crystal with axes a, b, and c and the monoclinic

angle β between a and c as depicted in Fig. 6.12 (a). The molecules arrange in a more or less

planar configuration in (301) planes. Water molecules are arranged in columnar structures

interconnecting these planes as indicated in the figure.

Laterally, the arrangement is stabilized by a hydrogen bonding network between the

guanine molecules as well as between the water columns and the guanine molecules. This

bonding is different from what has been proposed for a guanine monolayer on graphite [107]
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Figure 6.13: Schematic drawing of the columnar H2O structures in the high-symmetry geometry (left)
and low-symmetry configurations (middle and right).

or the Hoogsteen-bonded guanine tetraplexes. [108] From Fig. 6.12 (b) it can be seen that

each water molecule forms an OH· · ·O hydrogen bond to an oxygen atom of one guanine

molecule as well as an NH· · ·O hydrogen bond with an amino group of another guanine

molecule. In the experimental studies [106], the positions of the water hydrogens could

only be determined with large error bars, but also the positions of the water oxygens along

the H2O columns are affected by considerable uncertainty. Nevertheless, the dominating

structure is clearly identified as a stacking of guanine molecules hydrogen-bonded to the

water columns with space-group symmetry P21/c (C5
2h) and associated point group C2h.

In the original paper, Thewalt et al. (cf. Ref. [106]) discussed that the water columns

may have a more complicated structure. This is motivated since the space group symmetry

P21/c suggests symmetric hydrogen bonds, i.e., that the water hydrogens, which are not

hydrogen-bonded to the guanines, are in a symmetric position between the water oxygens,

which appears as an unlikely geometry. A more realistic asymmetric assignment of these

hydrogens lowers the symmetry to either P21 (C2
2) or Pc (C2

S) with associated point groups

C2 and CS , respectively. For better visualization, these three possible structures of the H2O

columns are sketched in Fig. 6.13 in a view along the monoclinic b axis. The assignment

of the hydrogens to the upper oxygens in both columns gives the CS structure whereas the

assignment to upper oxygens in one column and to lower oxygens in the other column results

in a crystal with C2 symmetry. For that reason, the three different crystal structures are

investigated and compared with respect to energetic results, ground-state geometries, and

vibrational and electronic properties. Henceforth, they will be named according to their

point group symmetry: the C2h, C2, and CS structure.

The lattice parameters as derived from the total energy minimization are listed in Tab.

6.6 for the three different local arrangements of the H2O columns. The LDA results are

compared with the results derived within the GGA scheme and measured data from Ref.

[106]. For the LDA lattice constants one obtains equilibrium values that are below those

found experimentally. For a, b, and c this underestimation amounts to 5.4%, 3.3%, and 2.9%,

respectively. These deviations seem to be in agreement with the general overbinding tendency
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Table 6.6: Lattice constants a, b, and c (Å) and monoclinic angle β (deg) for the guanine monohydrate
crystal in different structures and for different XC approximations. Experimental reference data from
Ref. [106].

LDA GGA Expt.
C2h CS C2 C2h

a 15.62 15.68 15.68 16.35 16.510(8)
b 10.91 10.93 10.93 11.25 11.277(8)
c 3.54 3.53 3.53 4.024 3.645(5)
β 94.2 94.4 94.4 98.9 96.8(1)

for covalent bonds using a local approach to XC and are very similar to the results for durene

(cf. Sec. 6.3.2). The deviation of the monoclinic angle β from its measured value is 2.5◦ in

average and somewhat larger than in durene. Within the DFT-GGA description, the two

largest lattice constants, a and b, are increased and approach the measured values. This can

be explained with the correction of the overbinding of the hydrogen bonding network of the

guanines in agreement with general observations for hydrogen bridge bonds (cf. Refs. [67,

72, 109]). In order to explain the strong elongation of the c lattice constant within GGA, one

has to consider the bonding mechanism perpendicular to the guanine sheets. Bonding in c

direction is only partially governed by the hydrogen bonds of the water columns. Instead, the

vdW interaction is expected to play a substantial role in the bonding along the c direction.

As a result, within GGA one observes a significant expansion of the lattice perpendicular

to the guanine sheets. The indirect guanine-water-guanine bridge obviously cannot prevent

the expansion of the lattice in c direction that is caused by the failure of GGA describing

the vdW interaction. The GGA calculations give intermolecular plane spacings of 3.64 Å.

Compared to the experimental value of 3.30 Å, [106] this overestimation (10%) is larger than

the underestimation in LDA (3.15 Å or -4.5%).

Finally, I compare the different structural models for the water columns. As seen from

Tab. 6.6, one observes only very small changes in the lattice parameters going from the

high-symmetry H2O columns (C2h) to columns of lower symmetry (CS and C2). Therefore,

one concludes that the influence of the detailed arrangement of the hydrogen atoms in the

columns on the lattice and, hence, on the intermolecular spacing of the guanine molecules is

negligibly small. Between the two low-symmetry structures there is practically no difference

at all.

In a related publication, the intramolecular guanine bond length and bond angles are

compared as well in detail. [49] One finds that the three structures under investigation do

not differ in the guanine geometries. Also, the comparison to the experimental findings yield

only small deviations of 1.4◦ for bond angles between heavy atoms and bond length of 0.018
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Å, which is very similar to the given error bars in the experiment. As a result, the structural

influence of the water columns on the guanine molecules in the three different crystals is

nearly identical.

Another important quantity is the total energy for the three structures. Here, one finds

that, from the energetic point of view, the most symmetric crystal (C2h) is the least stable

one. A lower energy is obtained in both low-symmetry structures. It costs approximately 0.15

eV per unit cell or 0.84 kcal per mole water molecules to move the hydrogens into the mid-

oxygen position in the C2h structure. Since this holds for both low-symmetry structures, the

potential for these hydrogens in-between the oxygens can be characterized as a double-well

barrier.

6.4.3 Dynamic Properties

Having discussed the structural properties, I come to the investigation of the lattice vibra-

tions. Thereby, I concentrate on the discussion of the low-frequency vibrations as displayed

in Tab. 6.7, mainly for two reasons: First, they basically describe intermolecular vibrations

and are therefore more sensitive to the actual bonding between the molecules. Second, be-

cause of their low frequencies, these modes can be occupied at room temperature and, hence,

influence thermal properties and charge-transport characteristics of the crystal. The inter-

molecular vibrations can also indicate possible changes in the crystal bonding that can be

detected immediately from changes in the mode frequency or the motion pattern of these

modes.

For the three crystal structures of a guanine monohydrate crystal as discussed through-

out this section, the presentation of the lowest energy vibrations in Tab. 6.7 includes the

description of the modes, their frequencies, and a classification with respect to symmetry

operations. A comprehensive list for all modes can be found in Ref. [49]. The low-frequency

part, in general, is dominated by intermolecular modes where the molecules move as a whole.

The large effective masses related to these translations and/or rotations of the molecules give

rise to small frequencies. For similar reasons the lowest intramolecular vibration in the crys-

tal, more precisely the bending motion of the guanine molecule as a whole (the so called

butterfly mode), appears in this region as well. For the mode description of intermolecular

modes the term T (R) for translation (rotation) of the guanine molecules is used if not in-

dicated differently as, e.g., “H2O: T”, which denotes a translation of the water molecules or

“H2Ocol: T”, which indicates that the water columns translate as a whole. The indices a, b,

and c refer to the displacement direction more or less parallel to the crystal axes. For rota-

tions, the index L (S) denotes the long (short) axis of the guanine molecule as the rotation

axis within the guanine plane while c denotes the normal axis to the plane. Finally, due to
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Table 6.7: Lowest phonon modes for the guanine monohydrate crystal with frequencies (in cm−1),
symmetry classification, and mode descriptions. For abbreviations see text or original paper [49].

C2 CS C2h

mode description frequency symm. frequency symm. frequency symm.

Tb 187.2 B 187.0 A” 187.7 Bg

Ta 184.6 A 184.6 A’ 186.5 Ag

Rc, Ta 179.6 A 179.7 A” 180.3 Au

butterfly 176.2 A 176.2 A’ 176.4 Ag

butterfly 170.5 B 170.3 A’ 169.1 Bu

butterfly 168.1 B 168.8 A” 168.7 Bg

butterfly 161.2 A 160.9 A” 160.5 Au

Tb 170.0 B 168.5 A’ 168.2 Bu

Rc 156.5 A 156.5 A’ 156.7 Ag

Rc 152.2 B 152.1 A’ 152.2 Bu

RL, Ta 148.4 B 149.1 A” 148.6 Bg

Rc; H2Ocol: Tb 142.9 A 142.6 A” 143.8 Au

Rc 137.6 B 137.5 A” 138.0 Bg

RL, Ta 125.0 B 125.1 A” 124.6 Bg

RL 122.1 A 122.1 A’ 122.4 Ag

H2Ocol: Tb/a; Tb 120.4 A 119.4 A” 116.3 Au

H2Ocol: Tb/a 115.9 B 115.4 A’ 115.2 Bu

RL; H2Ocol: Ta/b/c 107.2 A 107.3 A” 106.8 Au

RL 103.6 B 103.8 A’ 103.4 Bu

RS; H2Ocol: Tc 99.2 B 98.6 A’ 94.7 Bu

Tc 84.9 A 84.9 A’ 85.6 Ag

RS 85.1 B 85.0 A” 85.1 Bg

H2Ocol: Tc; RS 74.6 B 75.0 A’
H2Ocol: Tc 73.3 Bu

Tb; H2Ocol: Tc 73.0 A 69.6 A’
Tb 71.0 Ag

H2Ocol: Tc; Tc, Rs 69.9 A”
H2Ocol: Tc; Rs, Tc 68.8 A
H2Ocol: Tc; Tc 67.2 Au

Tc 57.7 B 57.8 A” 58.0 Bg

RS; H2Ocol: Tc 57.7 A 56.2 A” 57.0 Au

Tc, RS 49.7 A 48.7 A” 48.2 Au

RS 46.0 A 45.3 A’ 43.9 Ag
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Figure 6.14: Electronic density of states. The valence band maximum is set to zero.

the symmetry classification of the modes of the C2h structure one can identify IR-active and

Raman-active modes as ungerade (u) and gerade (g) modes, respectively.

The results in Tab. 6.7 show that for the majority of the modes one can observe very

similar mode patterns in all three crystals. These modes are put together under the same

mode description. Hence, it follows that the influence of the water column arrangement

on low-frequency modes related to guanine molecules is also small and that it is essentially

restricted to modes with contributions from the water. Further evidence is found in the

respective frequencies where deviations among the structures rarely exceed a few cm−1.

In conclusion, similarly to the structural properties discussed in Sec. 6.4.2, also the vibra-

tional properties of guanine crystals are only minimally influenced by the exact arrangement

of the water columns. Even the energetically unfavorable C2h structure gives nearly the same

results as the more stable CS and C2 crystals, especially in the low-energy region relevant for

thermal and/or charge transport.

6.4.4 Electronic Properties

The electronic DOS is plotted in Fig. 6.14 for the three geometries of the H2O columns.

Apparently, the graphs are again very similar among the structures. Once more, this indicates

the localized nature and small magnitude of effects caused by structural modifications of the

water columns. A closer inspection of the graphs reveals that the low-symmetry structures

and the C2h crystal differ in their electronic DOS primarily in the lower energy region around

-20 eV. These modifications are attributed to states centered at the water columns and are

discussed elsewhere. [49]

However, due to their energetic position, these states do not influence the HOCO and the

LUCO which are the most important crystal orbitals for charge transport. The decomposition

of the DOS with respect to the molecules (not shown as a plot) further confirms that HOCO
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Figure 6.15: Bandstructure of the guanine crystal in the C2h structure. The valence band maximum
is set to zero. Inset: Irreducible part of the Brillouin zone with half reciprocal lattice vectors a’, b’,
and c’.

and LUCO are only derived from guanine orbitals. As an important consequence, it follows

that for the three structures discussed throughout this section, the electronic DOS in the

vicinity of the fundamental gap is nearly identical, as can be seen from Fig. 6.14.

In order to investigate the electronic properties further, I calculate the crystal band struc-

ture. A plot of the gap region is displayed in Fig. 6.15 for the C2h crystal. The definition of

critical points in the Brillouin zone is given in the inset of Fig. 6.15. At first, in agreement

with the findings for the DOS, the variation among the three configurations in the regions of

the highest valence bands and lowest conduction bands is only on the order of 10 meV, hence

they would be hardly distinguishable in Fig. 6.15. Consequently, the figure shows only the

band structure of the C2h crystal. Moreover, this accordance holds for the entire HOMO band

as well as for the LUMO band each of which consists of four bands lying energetically close

to each other. From these findings it follows that the respective states in the C2 structure

and the CS structure nearly coincide with their counterparts in the C2h crystal.

Having discussed the negligible influence of the water molecules, I now turn to the elec-

tronic coupling between the guanine molecules themselves which causes the band dispersion.

There are two types of such interactions. First there is an interaction within each guanine

layer which is due to wavefunction overlap between the four guanine molecules in the unit

cell. A good measure for this type of interaction is the Davydov splitting of the HOMO and

LUMO bands at Γ. The energy difference at Γ between HOCO and HOCO-3 is found to be

0.16 eV, and the splitting between the LUCO and LUCO+3 amounts to 0.11 eV. Even though

these splittings are not small, compared to the overall dispersion of the HOMO bands and the

LUMO bands, they are of minor importance. The strong band dispersions are a consequence

of the other type of interaction, namely the interaction between the guanine layers. In fact

the largest dispersion of the guanine states is observed in the ΓZ direction, i.e. approximately

the direction of the H2O columns. The reason for this is the strong coupling of the molecular
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states in that direction caused by the shape and the extent of the π orbitals. In that respect

the crystals are similar to the DNA itself. There, the interaction of the π orbitals along the

helix axis has already been suggested to be a prerequisite for a one-dimensional conducting

channel by Eley and Spivey. [92] Moreover, doublets and triplets of guanines act as an effec-

tive hole trap due to their higher oxidation potential compared to single guanines, [110] which

results from the coupling of the molecular states. In the a’b’ plane the energy dispersion is

approximately one order of magnitude smaller. A similar strong anisotropy was found for

durene. However, for guanine strong band dispersion is found only in a single direction.

In guanine crystals the electronic coupling results in a bandwidth of 0.83 eV for the

HOMO bands and of 0.38 eV for the LUMO bands. This is larger than the bandwidths found

in comparable calculations for oligoacene crystals [25] and comparable to the bandwidth in

durene crystals (cf. Sec. 6.3.4). It indicates that guanine crystals should indeed be considered

as organic crystals with potential electronic applications, at least with hole transport in the

stacking direction.

6.4.5 Charge Transport

From the band structure one obtains the transfer integrals according to a fit procedure similar

to the one described for durene in Sec. 6.1.5. Here, I focus on hole transport in guanine

crystals. The results are collected in Tab. 6.8. In order to describe temperature-induced

effects in the electronic structure, I additionally take into account the vibrational degrees of

freedom and the coupling between the charges and the vibrations according to the Holstein-

Peierls Hamiltonian (2.3). For the guanine crystal one obtains effective coupling values9 of

Gλ

2 = 0.25, 0.09, 0.34 for the three symmetrical rotations at ~ωλ = 10.6, 15.2, 17.1 meV (85.1,

122.4, and 138.0 cm−1, respectively; see Tab. 6.7) according to the method described in Sec.

6.1.5 in more detail.10 With these material parameters one can directly evaluate the mobility

expression Eq. (6.8).11 The result (assuming again a broadening of ~/τ = 0.1 meV) is plotted

in Fig. 6.16 which gives an overview over the temperature dependence of the mobility for

different directions.

With increasing T the mobilities are strongly reduced underlining the effect of electron-

phonon interaction and polaron formation. Decreasing mobilities with rising T as seen in Fig.

6.16 are known from band transport. In contrast, here one finds that at room temperature

actually only a small fraction of the mobility is really due to coherent transport even for this

9Note that in a related publication [111] the definition of the quantities Gλ vary by a factor of 2.
10The inclusion of other modes is not necessary as discussed for naphthalene.
11The mobility expression used for this part of the thesis is different to the one derived in Chap. 4 (Eq.

(4.37)) since the study had been carried out before the theory in Chap. 4 has been developed. The subsequent
discussion of the mobility anisotropy, however, is not affected by the choice of the mobility expression, at least
not for higher temperatures.
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Table 6.8: Transfer integrals that best fit to the hole band structure. Values are given in meV. For
denotation see 6.11.

εa11 0.0 ε012 -10.2 ε014 1.2
εb11 4.1 εc12 48.2 εa14 8.0
εc11 170.4 ε−c

12 5.5 εc14 12.0
ε2c
11 11.7 εac14 -5.7
εbc
11 -1.2

Figure 6.16: Temperature dependence of hole
mobilities in guanine crystals. The mobility
along the stack is given by µc, whereas µa′

and µb measure the mobilities in perpendic-
ular directions. Inset: Coherent (µ(coh)) and
incoherent (µ(inc)) contributions to the total
mobility µ.

model system of high purity. The inset in Fig. 6.16 shows the composition of the total mobility

(in stacking direction) with respect to incoherent and coherent contributions. The coherent

mobility is obtained by setting Φλ = 0 in (6.8). In the low-T limit, coherent processes

contribute most since the number of scatterers (Nλ) is small. The incoherent processes

obtained by µ(inc) = µ− µ(coh) are negligible in this limit but become more important with

rising T . The break even point depends on the static disorder of the sample and shifts to

lower temperatures if the purity/crystallinity is reduced, i.e., the lower the crystallinity the

lesser is the contribution from band transport. The total mobility in Fig. 6.16 represents

the limit of ultrapure crystals. It is also interesting to consider strong disorder, like, e.g. the

case of stacked molecules in DNA-like structures, which can be regarded as a limit with high

impurities/low crystallinity compared to the model guanine crystal. In such a system the

coherent contribution vanishes (in DNA coherent tunneling is only observed experimentally

across very few bases [112]) and the total mobility is then given by µ(inc) in Fig. 6.16.

However, for high-purity crystals as assumed here it should be possible to achieve band-like

conduction at least for low T .
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Figure 6.17: Comparison of mobility anisotropy (a), (b) and overlap of molecular orbitals (c), (d) in
guanine crystals. Displayed is the hole mobility and HOMO overlap density as described in the text.

I now proceed with the discussion of the anisotropy of the charge-transport at room tem-

perature. In order to gain a more comprehensive impression of the direction dependence, I

present polar plots in Fig. 6.9 (a) and (b). Low mobilities are found in the plane perpendic-

ular to the stacking direction (a′b plane) in contrast to much (≈ 30×) higher mobilities along

the stack (c direction). This quasi one-dimensional characteristic is a direct consequence of

the electronic coupling implied by the stacking motif (see Fig. 6.11). Although the molecules

within the guanine planes are hydrogen-bridge bonded, the electronic coupling within such

planes is small. In contrast, electronic coupling across the planes is strong and leads to high

mobilities. A small off-angle from the low-mobility a′b-plane gives already strong contribu-

tions from the principal (c) direction. The discussed direction-dependence of the mobility is

a direct consequence of the anisotropy of the bare electronic coupling. The reason are the

relatively small non-local coupling constants for electron-phonon interaction and hence small

non-local currents. [44]

As demonstrated in Sec. 6.3.4, a highly significant measure of the electronic coupling

is the overlap of the involved molecular orbitals ψi. [58, 113] Therefore, one can directly

access the origin of the mobility anisotropy by the anisotropy of the overlap of contributing

electronic wavefunctions. This is studied here as well. In Fig. 6.9 (c) and (d), I have plotted

the absolute value of the overlap density which is a total of all pairwise overlaps according
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to
∑′

ij |ψi(r)ψj(r)| where the sums run over all molecules but excluding i = j as indicated

by the prime. High density between the planes indicates a strong overlap of the π-orbitals

between adjacent molecules in stacking direction (cf. Fig. 6.9 (d)). The resulting vertical

columns represent hole transport channels. On the other hand, these vertical channels are

very weakly connected to each other. More precisely, the overlap density between molecules

of adjacent stacks is small. A view along the stacking direction (cf. Fig. 6.9 (c)) reveals the

weak coupling within each stacking plane. As a result, charge carriers can hardly overcome

the gaps resulting in low carrier mobility in a′- and b-direction. This is in accordance to the

anisotropy factor of 30 in the mobilities seen in Fig. 6.16. For a three-dimensional view to

the transport channels the reader is referred to a movie in a related publication. [111]

The most important findings of the study on guanine crystals can be summarized as

follows: (i) Large bandwidths of the valence bands indicate possible high carrier mobilities in

guanine crystals. (ii) The temperature dependence of the hole transport in guanine-derived

systems can only be understood within the polaron concept. (iii) At room temperature

only a small contribution to the mobility in guanine based materials comes from coherent

transport. Due to thermal disorder, the dominating contribution originates from incoherent

phonon-assisted hopping. (iv) As a consequence, no contribution to the hole mobility along

a poly(dG) sequence in DNA-like structures should be due to coherent transport since the

required crystallinity cannot be achieved. This, however, does not necessarily prevent high

mobilities. (v) The analysis of the anisotropy of the mobility shows that transport along the

stacks is strongly preferred over motion across the hydrogen bonds between the stacks. (vi)

It is, however, possible to have also interstrand pathways in DNA-like structures although

the hopping rate between adjacent guanines is reduced by a factor of 30. (vii) The quasi

one-dimensional transport channels made visible by a novel technique are aligned along the

stack in striking accordance to the calculated mobility anisotropy. (viii) The anisotropy of

the bare electronic coupling is a strong indicator for the anisotropy in the carrier mobilities,

even in the presence of strong polaronic effects.



Chapter 7

Summary and Outlook

7.1 Summary

In this thesis, I have presented a novel theoretical description of charge transport in organic

crystals. One of the central messages from this work is that the two paradigms of coherent

band transport and incoherent hopping coexist together in general and can be treated on equal

footing. This leads to a polaron transport theory that bridges from Boltzmann’s transport

equation at low T to Marcus’ electron transfer theory at high T . Thereby, it unifies the

concepts of large polarons and small polarons, which were previously considered mutually

exclusive. This was possible within a non-perturbative treatment of all relevant interactions.

In the past, the sharp transition between the different transport mechanisms with changing

temperature has led to intense discussions concerning the mechanism. Here, it is shown,

that the description of this transition, supplemented by first principles material parameters,

serves as an essential ingredient for the success of any transport theory for organic crystals.

Below I briefly summarize the major findings of my thesis.

• A novel analytical expression for the charge carrier mobility has been derived.

• The non-perturbative derivation includes all orders of the electron-phonon interaction.

Momentum and energy conservation are fulfilled in the contributing scattering pro-

cesses.

• The mobility formula can be used directly with ab initio parameters for arbitrary crys-

talline materials and serves as a starting point for first principles studies.

• The mobility is naturally separable into two contributions: coherent band transport and

incoherent thermally activated hopping, which are treated on equal footing in the the-

ory. This gives very interesting results on the relative importance of both contributions

and sheds new light on previous transport studies.

88
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• In application to various interesting real materials, I was able to show that the fa-

mous T−γ power law dependence of the mobility on temperature can be understood as

the seamless transition from coherent (band) to incoherent (hopping) transport. The

parameter γ follows from the relative contribution of either transport modes.

• The new theory is superior to previous treatments of small polaron motion, which were

based upon narrow-band theories. In the present derivation I was able to overcome the

narrow-band approximation which directly leads to finite low-temperature mobilities

for finite relaxation times τ . The unphysical low-temperature singularity of previous

approaches is removed.

• In the limit of low temperatures, the present theory is equal to an expression derived

from the Boltzmann transport equation.

• In the limit of high temperatures, the present theory obeys the same T dependence as

the classical Marcus theory.

• Another strength of this theory is that the anisotropy in the mobility tensor is now

much better accounted for. This improves the matching to the experimental mobility

anisotropy as demonstrated for naphthalene crystals.

• The improved anisotropy description of the theory allows to analyze prevalent transport

mechanisms in experiments directly from the anisotropy ratio.

• In addition to the theoretical and computational achievements I have developed a novel

visualization method for the transport channels of the charge carriers. This is a very

intuitive tool to gain an impression of the mobility anisotropy.

• Both durene and guanine crystals have hole bandwidths of approximately 1 eV. This

highlights their potential as good charge-transport materials since these bandwidths

are even larger than for the famous rubrene or the polyacene crystals.

• The polaron bandwidths are strongly narrowed compared to the bare hole bandwidths.

Nevertheless, the temperature dependence of the mobility indicates predominantly band

transport. In contrast, an in-depth analysis shows that hopping dominates at room

temperature.

• The anisotropy of the durene hole mobilities identifies this crystal as a typical herring-

bone stacked OMC with a 2D mobility characteristic (high mobilities in herring-bone

plane versus low mobility perpendicular thereto) in contrast to the guanine crystal

which exhibits a 1D mobility characteristic.
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Figure 7.1: Schematic illustration of the development of the present theory (red frame) in relation to
the previous theory by Hannewald and Bobbert [44] (blue frame) and Holstein’s small polaron model
[29] (black frame). The simultaneous description of the full bandwidth and the full electron-phonon
coupling is an open question.

Finally, I hope that, taking different routes, one via an analytical treatment and another with

some computational studies, this work contributes to the understanding of basic transport

mechanisms in organic crystals and provides a basis for further systematic studies. Referring

back to the quotations in Chap. 1, I think that at least some of the pieces of the “mobility

puzzle” have been brought together, which, hopefully, stimulates further research in view of

the achievements.

7.2 Outlook

With the theory developed in this thesis, the scheme in Fig. 1.1 became two-dimensional.

After the extension of Holstein’s model towards non-local electron-phonon coupling by Han-

newald and Bobbert (first dimension), this second dimension into the direction of the full

bandwidth has been explored. However, one domain (green question mark in Fig. 7.1) is still

missing, which is needed to unify both theories completely. This is a real challenge, since

the effort for the theoretical description, which is valid for the total green domain, cannot be

estimated at present. The reason is that one may not be able to take advantage of simplifi-

cations, which are helpful in one part, also in the other part and vice versa. Nevertheless an

extension to the full bandwidth including also nonlocal electron-phonon coupling is needed

to be able to simultaneously describe electron and hole mobilities in naphthalene for all tem-

peratures visible in Fig. 2.1. It would also be interesting to calculate the carrier mobility
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of an inorganic crystal, to explore whether a seamless transition of the presented concepts is

possible. This is a quite fundamental question.

There are many further interesting open issues. This includes the influence of acoustic

phonons on the transport, which has not been addressed sufficiently so far. But also the role

of disorder certainly deserves particular attention and additional research. Further organic

crystals like rubrene, perylene, or pentacene should be studied theoretically and compared

to the experiment. Interestingly, the influence of functional groups or isotope effects may

give additional insight. Another direction to extend the theoretical description would be to

include higher electric fields, i.e., to go beyond the linear response. In any case, I am sure

that one or the other direction will be explored in the near future.
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Deutsche Zusammenfassung

Das Verstehen des Ladungstransports ist einer der zentralen Schwerpunkte bei der Unter-

suchung von halbleitenden Kristallen. Insbesondere das komplexe Zusammenspiel zwischen

Elektronen und Phononen in den dabei relevanten Streuprozessen ist nur auf quantenmecha-

nischer Grundlage beschreibbar. Für Materialien mit starker Kopplung der elektronischen

und vibronischen Freiheitsgrade sind diese Prozesse und damit auch die charakteristischen

Eigenschaften der resultierenden Ladungsträgermobilität bisher nur unvollständig verstan-

den. Insbesondere gilt dies für die organischen Kristalle, die in den letzten Jahren wegen

ihrer Bedeutung für die organische Elektronik stark in den Forschungsfokus gerückt sind.

Die vorliegende Arbeit beschäftigt sich mit dem Ladungstransport durch organische Kris-

talle. Die im Rahmen meiner Dissertation erhaltenen Ergebnisse sind in ihrer Darstellung

unterteilt in einen theoretischen Teil und einen anwendenden Teil. Der theoretische Teil be-

schreibt die mikroskopische Modellierung des Ladungstransports durch Kristalle im Allge-

meinen, wobei besonderes Augenmerk auf der Beschreibung der Elektron-Phonon-Wechsel-

wirkung liegt. Gerade dieser Streukanal bestimmt für ultrareine Kristalle maßgeblich die

Größe der Ladungsträgermobilität und deren Temperaturabhängigkeit. Andere Streuprozes-

se werden effektiv behandelt. Der zweite Teil stellt die Ergebnisse zur temperatur- und rich-

tungsabhängigen Mobilität für einige ausgewählte organische Molekülkristalle vor. Hierbei

fokussiere ich insbesondere auf die Darstellung des Zusammenhangs zwischen Anisotropie in

der Mobilität und Struktur der Kristalle.

Von theoretischer Seite wird gezeigt, wie die beiden Konzepte des Bandtransports und der

Hüpfbewegung konsistent innerhalb eines Formalismus beschreibbar sind. Ein im Rahmen des

Kubo-Formalismus abgeleiteter neuartiger expliziter Ausdruck für die Mobilität beinhaltet

vollständig beide Transportmechanismen, welche sich auf natürliche Weise aus einer Separa-

tion der beitragenden Terme ergeben. Die Gültigkeit dieser Mobilitätsformel reicht vom Gel-

tungsbereich der Boltzmann-Gleichung für tiefe Temperaturen bis zu hohen Temperaturen,

dem klassischen Anwendungsgebiet der Marcus-Theorie. Es wird gezeigt, wie beide Grenzfälle

enthalten sind. Das entspricht einer vereinheitlichten Beschreibung von delokalisierten Bloch-

Elektronen, schwach lokalisierten (
”
großen“) Polaronen und stark lokalisierten (

”
kleinen“)



Polaronen. Die konzeptionelle Erweiterung des ursprünglichen Holstein-Modells kleiner Po-

laronen ist nicht-störungstheoretisch bezüglich der Elektron-Phonon-Kopplung vollzogen wor-

den. Es ergeben sich über die Elektron-Phonon-Streuung stark temperaturabhängige Beiträge

des kohärenten und nicht-kohärenten Transports. Die starke Temperaturabhängigkeit vermag

erstmals die Schwierigkeiten oder Inkonsistenzen zu erklären, die bei früheren Beschreibun-

gen der Ladungsträgermobilität in Molekülkristallen unter Beschränkung auf nur einen der

beiden Transportmechanismen auftraten.

Bei der Herleitung der neuen Mobilitätstheorie wurden so fundamentale Konzepte wie

Energie- und Impulserhaltung bei den elementaren Streuereignissen berücksichtigt, was nur

dadurch möglich wurde, dass über die sonst übliche Näherung schmaler Bänder hinausgegan-

gen wurde. Als wichtiges Ergebnis dessen wurde insbesondere eine unphysikalische Singula-

rität für den Tieftemperaturgrenzfall behoben, die in früheren Erweiterungen des Holstein-

Modells stets present war. Durch den nahtlosen Übergang zum Bandtransport bei niedrigen

Temperaturen ermöglicht die Theorie auch eine im Allgemeinen bessere Beschreibung der

Richtungsabhängigkeit der Mobilität. Dies wurde in Anwendung auf Naphthalin exempla-

risch gezeigt, was zu einer besseren Übereinstimmung in Vergleich zum Experiment führt

und eine weitere wesentliche Verbesserung der theoretischen Beschreibung darstellt.

Der resultierende Ausdruck für die Ladungsträgermobilität lässt sich direkt mit Material-

parametern von Kristallen auswerten. Diese Größen können, wie in der Anwendung gezeigt,

aus sog. first principles oder ab initio Rechnungen (parameterfreie Methoden) wie etwa der

Dichtefunktional-Theorie gewonnen werden. Diese Dissertation ist somit ein Ausgangspunkt

für eine ab initio-Beschreibung des Ladungstransports.

Die Anwendung dieser ab initio-Beschreibung des Ladungstransports ist ein zentraler Be-

standteil meiner Studien zu einzelnen Molekülkristallen. Neben dem bereits erwähnten Naph-

thalin (engl.: naphthalene), wurden erstmalig auch Durol (engl.: durene) und Guanin (engl.:

guanine) studiert. Die Untersuchungen zu Durol und Guanin beinhalten zudem umfangreiche

strukturelle Charakterisierungen und detaillierte Analysen der Gitterschwingungen und elek-

tronischen Struktur.1 Die Breite der Valenzbänder beider Kristalle ist außerordentlich hoch

im Vergleich zu den für den Ladungstransport favorisierten Oligoacen-Kristallen oder Ru-

bren, was ihre Bedeutung für den Ladungstransport hervorhebt. Die temperaturabhängigen

Polaron-Bandbreiten sind hingegen stark reduziert. Die berechneten Löcher-Mobilitäten deu-

ten zwar zunächst dennoch auf einen bandartigen Transportmechanismus hin, was im Falle

von Durol auch mit experimentellen Ergebnissen korelliert, aber durch eingehende Untersu-

chungen konnte gezeigt werden, dass bei Raumtemperatur tatsächlich der Hüpfmechanismus

1Nicht alle Ergebnisse konnten in die Dissertation aufgenommen werde. Siehe angegebene Publikationen
für ausführlichere Betrachtungen.



dominiert.

Sowohl Durol- als auch Guanin-Kristalle zeigen eine starke Anisotropie in der Löcher-

Mobilität. Bei Durol zeigt sich eine zweidimensionale Charakteristik, bei der hohe Mobi-

litäten in der Ebene des Fischgräten-Musters auftreten, während senkrecht zu dieser Ebene

viel niedrigere Werte erreicht werden. Im Gegensatz dazu zeigt der Guanin-Kristall relativ

hohe Mobilitäten nur entlang einer Richtung, während in der Ebene senkrecht dazu die Werte

deutlich kleiner sind und sich somit eine eindimensionale Charakteristik ergibt. Die Bezie-

hung zur Struktur der Kristalle und den elektronischen Eigenschaften wurde erläutert. Ins-

besondere eine 3D-Visualisierung der anisotropen
”
Transport-Kanäle“ ermöglicht ein tieferes

Verständnis für den Zusammenhang von Struktur und Transporteigenschaften. Dazu wurde

eine neue Methode der Darstellung entwickelt, die insbesondere die Unterschiede zwischen

den Kristallen eindrucksvoll aufzeigt.

Abschließend hoffe ich, dass die zusammenhängende Arbeit aus einem analytisch model-

lierenden Teil und einem auf ausgewählte Kristalle anwendenden Teil zum grundlegenden

Verständnis des Ladungstransports in Molekül-Kristallen beiträgt und zudem als Grundlage

zu weiteren Untersuchungen anregt.
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zulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und

Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen Da-

ten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir die nachstehend aufgeführten

Personen in der jeweils beschriebenen Weise unentgeltlich geholfen:

1. Prof. Dr. sc. nat. Friedhelm Bechstedt als betreuender Hochschullehrer,
2. Dr. Karsten Hannewald in betreuender Funktion.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit nicht

beteiligt. Insbesondere habe ich hierfür nicht die Hilfe von Vermittlungs- bzw. Beratungs-

diensten (Promotionsberater oder andere Personen) in Anspruch genommen. Niemand hat

von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten erhalten, die im Zu-

sammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
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