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Funnel control with saturation:

nonlinear SISO systems

Norman Hopfe∗ Achim Ilchmann∗ Eugene P. Ryan†

Abstract

Tracking – by the system output – of a reference signal (assumed bounded with essentially bounded

derivative) is considered in the context of a class of nonlinear, single-input, single-output systems mod-

elled by functional differential equations and subject to input saturation. Prespecified is a parameterized

performance funnel within which the tracking error is required to evolve; transient and asymptotic

behaviour of the tracking error is influenced through choiceof parameter values which define the funnel.

The control structure is a saturating error feedback with time-varying non-monotone gain designed to

evolve in such a way as to preclude contact with the funnel boundary. A feasibility condition – formulated

in bounds of the plant data, the saturation bound, the funneldata, the reference signal and the initial

data – is presented under which the tracking objective is achieved, whilst maintaining boundedness of

the state and gain function.

Keywords. Output feedback, input saturation, nonlinear systems, transient behaviour, tracking.

Nomenclature: R+ := [0,∞); C(I,Rℓ), I ⊂ R, is the space of continuous functionsI →
R

ℓ; L∞(I,Rℓ) is the space of measurable, essentially bounded functionsf : I → R
ℓ, with

norm ‖f‖∞ := ess supt∈I‖y(t)‖; the space of measurable, locally essentially bounded functions

f : I → R
ℓ is denoted byL∞

loc(I,R
ℓ); if ℓ = 1, we simply writeL∞(I) andL∞

loc(I); W
1,∞(R+)

is the space of absolutely continuous functionsr : R+ → R with r, ṙ ∈ L∞(R+). A function

β : R+ → R+ is called aK function if it is continuous and strictly increasing, withβ(0) = 0; the

class ofunbounded K functions is denoted byK∞. A continuous functionα : R+×R+ → R+ is

called aKL function if α(·, t) ∈ K for all t ∈ R+ and, for alls ∈ R+, α(s, ·) is non-increasing

with α(s, t) → 0 as t→ ∞.
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1. INTRODUCTION

In common with its precursor [1], we investigate funnel control in the presence of input

constraints. In contrast with [1], the systems to be controlled are nonlinear and are described by

functional differential equations. We restrict attentionto single-input, single-output systems. By

way of motivation, consider a system of two interconnected nonlinear subsystems

ẏ(t) = f1(d(t), y(t), z(t)) + sat̂u(u(t)), ż(t) = f2(y(t), z(t)), (y(0), z(0)) = (y0, z0) (1.1)

wheref1 : R
p×R×R

n−1 → R andf2 : R×R
n−1 → R

n−1 are locally Lipschitz,d ∈ L∞(R+,R
p)

is a disturbance, and satû is the saturation function, parameterized byû > 0, given by

sat̂u : R → [−û, û], v 7→ sat̂u(v) :=






+û, v ≥ û

v, |v| < û

−û, v ≤ −û.
(1.2)

Momentarily regarding the second subsystem in (1.1) as an independent system with (continuous)

input y, let ϕ(·; z0, y) denote the unique maximal solution of the initial-value problem

ż(t) = f2(y(t), z(t)), z(0) = z0. (1.3)

Now assume that this system is input-to-state stable (ISS) and so there exist functionsα ∈ KL

and β ∈ K∞ such that, for all(z0, y) ∈ R
n−1 × C(R+), the unique maximal solutionz(·) =

ϕ(·; z0, y) is global (i.e., is defined onR+) and satisfies the ISS estimate

‖z(t)‖ ≤ α(‖ζ‖, t) + ess-sups∈[0,t]β(|y(s)|) ∀ t ≥ 0. (1.4)

Example 1.1: As a highly specialized example (to which we will return in the simulations in

Section 4) of a system of the form (1.1), consider the following

ẏ(t) = d(t) + a|y(t)|by(t) + z(t) + satbu(u(t)), y(0) = y0 ∈ R

ż(t) = −z(t) − z(t)3 + [1 + z(t)2] y(t), z(0) = z0 ∈ R,




 (1.5)

with real constantsa andb ≥ 0, and disturbanced ∈ L∞(R+). To see that the second subsystem

in (1.5) is ISS, consider the subsystem in isolation with input y ∈ C(R+) and letz(·) = ϕ(·; z0, y)

denote its unique solution on its maximal interval of existence [0, ω), 0 < ω ≤ ∞. Writing

V (t) := z2(t)/2 for all t ∈ [0, ω), we have

V̇ (t) = −2V (t) − z4(t) + z(t) y(t) + z3(t) y(t) ≤ −2V (t) +
y2(t)

2
+
y4(t)

4
∀ t ∈ [0, ω).
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By Gronwall’s Lemma, it follows that

V (t) ≤ e−2tV (0) +
1

4

∫ t

0

(
2y2(s) + y4(s)

)
e−2(t−s) ds ∀ t ∈ [0, ω)

from which we may infer thatω = ∞ and

|z(t)| ≤ e−t|z0| + 1

2
√

2
ess-sups∈[0,t]

(
|y(s)|

√
2 + |y(s)|2

)
∀ t ≥ 0.

Therefore, the ISS estimate (1.4) holds with

α : (ζ, t) 7→ e−tζ and β : ρ 7→ 1

2
√

2
ρ
√

2 + ρ2. (1.6)

⋄

−λ
+λ

b(0, e(0))

Error evolution in a funnelF(ψ)

Fig. 1.1. Prescribed performance funnelF(ψ).

Returning to the prototype system (1.1), the control objective is formulated in terms of a

performance funnel, see Figure 1.1,

F(ψ) := {(t, e) ∈ R+ × R | |e| < ψ(t)} , (1.7)

determined by a bounded functionψ : R+ → [λ,∞) which is globally Lipschitz with Lipschitz

constantΛ > 0 and is bounded away from 0 byλ > 0, that is, by a function of the class:

G(Λ, λ) :=
{
ψ : R+ → [λ,∞)

∣∣ ψ bounded & globally Lipschitz with Lipschitz constantΛ
}

(1.8)

The control objective is as follows. Determine a feedback structure which ensuresthat, for a

given reference signalr ∈ W 1,∞(R+), the output tracking errore = y − r evolves within

the funnel (i.e. graph(e) ⊂ F(ψ)): transient and asymptotic behaviour of the tracking erroris

influenced through choice of the functionψ. The proposed control structure is an error feedback

September 11, 2009 DRAFT
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of the formu(t) = −k(t)e(t) wherein the gain functionk : t 7→ 1/(ψ(t) − |e(t)|) evolves so as

to preclude contact with the funnel boundary. A feasibilitycondition (formulated in terms of the

plant data, the funnel data, the reference signalr, the disturbance signald, and the initial state

y0) is presented under which the tracking objective is achieved, whilst maintaining boundedness

of all signals.

Givenλ > 0 (arbitrarily small) andΛ > 0, a wide variety of funnels are possible. For example,

choosinga, b > 0 such thata > λ andab ≤ Λ, then the functiont 7→ ψ(t) := max{ae−bt, λ} is

in G(Λ, λ) and evolution within the associated funnel ensures a prescribed exponential decay in

the transient phase[0, ln(a/λ)/b] and tracking accuracyλ > 0 thereafter (we stress thatλ may

be taken arbitrarily small). Monotonicity of the funnel boundary is not required: in Section 4, we

will provide an example of a non-monotone funnel. Non-monotone funnels may be advantageous

in applications for which it is known a priori when perturbations or set-point changes may occur

- in this sense, non-monotone funnels have the connotation of re-initialization of the control

structure.

Example 1.2 (Example 1.1 revisited): In the highly specialized context of the exemplar (1.5),

the main result of the paper translates into the following: for arbitraryΛ, λ ≥ 0, ψ ∈ G(Λ, λ),

and any absolutely continuous reference signalr : R+ → R with essentially bounded derivative,

the simple control strategy

u(t) = − sat̂u(k(t)e(t)), k(t) =
1

ψ(t) − |e(t)| , e(t) = y(t) − r(t),

applied to (1.5) ensures attainment of the tracking objective (and, moreover, the gain functionk

is bounded) provided that the initial data satisfy|y0 − r(0)| < ψ(0) and the following feasibility

assumption is satisfied:̂u > L+ Λ + ‖ṙ‖∞, where

L := ‖d‖∞ + a(‖ψ‖∞ + ‖r‖∞)b+1 + ‖z0‖ +
1

2
√

2
(‖ψ‖∞ + ‖r‖∞)

√
2 + (‖ψ‖∞ + ‖r‖∞)2

⋄
The concept of funnel control was introduced in [4]. For several generalizations and other aspects

of this control strategy, see the survey article [3] and references therein. For experimental results

on controlling the speed of electric devices using the funnel control methodology, see [5]. The

control problem to be considered in the present paper is the analogue - in a context of nonlinear

single-input, single-output systems - of the problem considered (in a context of linear multi-input,

multi-output systems) in its precursor [1].
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2. THE SYSTEM CLASS

We proceed to make precise the class of systems. In particular, we consider single-input,

single-output systems described by a functional differential equation of the form

ẏ(t) = f
(
d(t), (Ty)(t)

)
+ g

(
u(t)

)
, y|[−h,0] = y0 ∈ C[−h, 0], (2.1)

whereinh ≥ 0, the functionsf : R
p × R

q → R andg : R → R are continuous,d ∈ L∞(R+,R
p)

is a disturbance, and the operatorT satisfies the following.

(T) T : C[−h,∞) → L∞
loc(R+,R

q) is a causal operator with the properties:

(TB) there existsη ∈ C(R+) such that, for allc1, ω > 0 and ally ∈ C[−h, ω),

supt∈[−h,ω) |y(t)| ≤ c1 =⇒ supt∈[0,ω) |(Ty)(t)| ≤ η(c1)

(TL) for all t ≥ 0 and allw ∈ C[−h, t], there existτ > t andδ, c0 > 0 such that

ess-sups∈[t,τ ]‖(Ty)(s) − (Tz)(s)‖ ≤ c0 max
s∈[t,τ ]

|y(s) − z(s)| ∀ y, z ∈ C(w;h, t, τ, δ)

where

C(w;h, t, τ, δ) :=
{
v ∈ C[−h, τ ]

∣∣ v|[−h,t] = w, |v(s) − w(t)| ≤ δ ∀ s ∈ [t, τ ]
}
,

i.e., the space of all continuous extensionsv of w ∈ C[−h, t] to the interval[−h, τ ]
such that that|v(s) − w(t)| ≤ δ for all s ∈ [t, τ ].

The continuous input nonlinearityg : R → R is assumed to satisfy the following condition.

(g) g is non-decreasing withg(0) = 0 and

γ+ := sup
v≥0

g(v) ∈ (0,∞] and γ− := − inf
v≤0

g(v) ∈ (0,∞].

Some remarks on the above assumptions are warranted.

Remark 2.1 (On the operator T ):

(i) The parameterh ≥ 0 in the definition ofT quantifies the memory in the system and permits

the incorporation of delay elements.

(ii) Property (TL) is a technical assumption of local Lipschitz type which is required for well-

posedness of the closed-loop system (by appealing to Theorem 7.1 of [3]).

(iii) To interpret (TB) and (TL) correctly, we need to give meaning toTy, for a functiony ∈ C(I)

on a bounded intervalI of the form [−h, ρ) or [−h, ρ], where0 < ρ <∞. This we do by
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showing thatT “localizes”, in a natural way, to an operator̃T : C(I) → L∞
loc(J,R

q), where

J := I \ [−h, 0). Let y ∈ C(I). For eachσ ∈ J , defineyσ ∈ C[−h,∞) by

yσ(t) :=





y(t), t ∈ [−h, σ],

y(σ), t > σ .

By causality, we may definẽTy ∈ L∞
loc(J,R

q) by the propertyT̃ y|[0,σ] = Tyσ|[0,σ] for all σ ∈
J . Henceforth, we will not distinguish notationally an operator T and its “localisation”T̃ :

the correct interpretation being clear from context.

(iv) Property (TB) is a bounded-input, bounded-output assumption onT . In the context of the

prototype system in Section 1, this property is a consequence of the ISS assumption. ⋄

Remark 2.2 (Examples for the input nonlinearity g): The prototype input nonlinearity isg =

sat̂u as in (1.2), withû > 0, in which caseγ+ = û = γ−. Note that the general form ofg allows

for saturation nonlinearities with non-symmetric bounds. ⋄

Example 2.3 (System (1.1) revisited): We show that the prototype system (1.1) can be written

in the form (2.1) and that the conditions (T) and (g) are satisfied, assuming that the ISS

estimate (1.4) holds. That condition (g) holds is an immediate consequence of Remark 2.2.

Again, temporarily regarding the first subsystem in (1.1) inisolation with inputy ∈ C(R+), let

ϕ(·; z0, y) denote the unique maximal solution of the initial-value problem (1.3): in view of (1.4),

we know that this solution is global (i.e. exists onR+). For eachz0 ∈ R
n−1, we may define

a causal operatorTz0 : C(R+) → C(R+,R
n−1) by

(
Tz0(y)

)
(t) := ϕ(t; z0, y) for all t ∈ R+.

Introducing the causal operator

T : C(R+) → C(R+,R
n), y 7→

(
y,

(
Tz0(y)

))
,

and the function

f : R
p × R

n → R, (δ, ξ) =
(
δ, (θ, ζ)

)
7→ f(δ, ξ) := f1(δ, θ, ζ),

then original initial-value problem (1.1) may be expressedin the form in the form of the func-

tional differential equation (2.1). It remains to show thatthe operatorT satisfies conditions (TB)

and (TL) of Assumption (T). Clearly, (TB) holds since, by virtue of the ISS estimate (1.4), we

September 11, 2009 DRAFT
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may infer that,

∀c1 > 0 ∀y ∈ C(R+) : ‖y‖∞ ≤ c1 =⇒ ‖Ty‖∞ ≤ η(c1) := c1 + α(|z0|, 0) + β(c1). (2.2)

It remains to show thatT satisfies (TL). Letw ∈ C(R+) and fix t ≥ 0, δ > 0 and τ > 0

arbitrarily, and, for notational convenience, set∆ := δ+sups∈[0,t] |w(s)|. Define the compact set

K :=
{
(ρ, θ) ∈ R × R

n−1
∣∣ |ρ| ≤ ∆, ‖θ‖ ≤ α(|z0|, 0) + β(∆)

}
.

By the local Lipschitz property off2, there existsc > 0 such that

‖f2(ρ, θ) − f2(̺, ϑ)‖ ≤ c
[
|ρ− θ| + ‖̺− ϑ‖

]
∀ (ρ, θ), (̺, ϑ) ∈ K.

Let y1, y2 ∈ C(R+) be such thaty1(s) = w(s) = y2(s) for all s ∈ [0, t], and |y1(s)|, |y2(s)| ≤ δ

for all s ∈ [t, t+ τ ]. Then

‖(Tz0y1)(s) − (Tz0y2)(s)‖ ≤
∫ s

0

‖f2(y1(σ), z(σ; z0, y1)) − f2(y2(σ), z(σ; z0, y2))‖dσ

≤ c

∫ s

t

[
|y1(σ) − y2(σ)| + ‖(Tz0y1)(σ) − (Tz0y2)(σ)‖

]
dσ ∀ s ∈ [t, t+ τ ].

By Gronwall’s Lemma, it follows that

‖(Tz0y1)(s) − (Tz0y2)(s)‖ ≤ c

∫ s

t

eL(s−σ)|y1(σ) − y2(σ)|dσ ∀ s ∈ [t, t+ τ ]

whence

sup
s∈[t,t+τ ]

‖(Tz0y1)(s) − (Tz0y2)(s)‖ ≤ ecτ sup
s∈[t,t+τ ]

|y1(s) − y2(s)|.

We may now conclude that property (TL) holds withc0 = 1 + ecτ . ⋄

Example 2.4 (Examples for (2.1)):

(i) Linear systems, as investigated in the precursor [1], are encompassed by (2.1) if they are

single-input, single-output.

(ii) In [2, Ex. 2.3], we have shown that a certain class of linear retarded minimum-phase systems

with relative degree one can be written in the form (2.1) and satisfy (TB) and (TL).

(iii) In [3, Sec. 6.3], we have shown that systems with hysteresis can be written in the form (2.1)

which satisfies (TB) and (TL).

(iv) In [4, Sec. 4] we have shown that infinite-dimensional regular linear systems and nonlinear

delay systems can be written in the form (2.1) which satisfies(TB) and (TL). ⋄
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3. THE MAIN RESULT

We now arrive at the main result, the proof of which may be found in the Appendix.

Theorem 3.1: Let Λ > 0, λ > 0 and ψ ∈ G(Λ, λ) define the performance funnelF(ψ) =

{(t, e) ∈ R+×R| |e| < ψ(t)}. Let h ≥ 0, y0 ∈ C([−h, 0]), d ∈ L∞(R+,R
p) andr ∈ W 1,∞(R+).

Consider a system of form (2.1) satisfying (T), (TB) (with associated functionη ∈ C(R+)),

(TL) and (g). Define

L := sup
{
|f(ρ, σ)|

∣∣∣(ρ, σ) ∈ R
p × R

q, ‖ρ‖ ≤ ‖d‖∞, |σ| ≤ η(‖y0‖∞ + ‖ψ‖∞ + ‖r‖∞)
}
, (3.1)

If the initial datay0 and the reference signalr are such that

|y0(0) − r(0)| < ψ(0), (3.2)

and the feasibility condition

γ := max{γ−, γ+} > L+ Λ + ‖ṙ‖∞ =: Γ, (3.3)

holds, then application of the feedback strategy

u(t) = −k(t) e(t), k(t) =
1

ψ(t) − |e(t)| , e(t) = y(t) − r(t) (3.4)

to (2.1) yields a closed-loop initial-value problem with the following properties.

(a) The closed-loop initial-value problem (2.1), (3.4) hasa solutiony : [−h, ω) → R and

every solution can be extended to a global solution, i.e.ω = ∞.

(b) There existsε > 0 such that every global solutiony satisfies

|y(t) − r(t)| ≤ ψ(t) − ε ∀ t ≥ 0.

(c) The functionu(·) := −(y(·) − r(·))/(ψ(·) − |y(·) − r(·)|) is bounded and the following

hold:

(i) |g(u(τ))| < γ for someτ ∈ R+.

(ii)
[
∃ τ ≥ 0 : |g(u(τ))| < γ

]
=⇒

[
|g(u(t))| < γ ∀ t ∈ [τ,∞)

]
.

Remark 3.2 (Existence of solution): In view of the potential singularity in (3.4), some care

is required in formulation the closed-loop initial-value problem (2.1), (3.4). Define

D := {(t, v) ∈ R+ × R| (t, v − r(t)) ∈ F(ψ)} (3.5)
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and defineF : D × R
q → R by

F (t, v, w) := f(d(t), w) + g
(
− (v − r(t))/(ψ(t) − |v − r(t)|)

)
, (3.6)

in which case, the closed-loop, initial-value problem (2.1), (3.4) is formulated as

ẏ(t) = F (t, y(t), (Ty)(t)), y|[−h,0] = y0 . (3.7)

By a solution of (3.7) we mean a functiony ∈ C[−h, ω), 0 < ω ≤ ∞, such thaty|[−h,0] =

y0, y|[0,ω) is locally absolutely continuous, with(t, y(t)) ∈ D for all t ∈ [0, ω) and ẏ(t) =

F (t, y(t), (Ty)(t)) for almost allt ∈ [0, ω). A solution is said to bemaximal if it has no proper

right extension that is also a solution. A solution defined on[−h,∞) is said to beglobal.

That (3.7) has a solution, and that every solution can be extended to a maximal solution, is an

immediate consequence of [3, Th. 7.1] which also implies that, if y ∈ C[−h, ω) is a maximal

solution, then the closure of graph
(
y|[0,ω)

)
= {(t, y(t)) | t ∈ [0, ω)} ⊂ D is not a compact subset

of D. ⋄

Remark 3.3 (Comments on Theorem 3.1):

(i) Assertion (b) is the essence of the result: it asserts that, if (3.2) and the feasibility condi-

tion (3.3) hold, then the funnel control (3.4) ensures achievement of the control objectives;

in particular, the tracking errore = y− r remains uniformly bounded away from the funnel

boundary and the gain functionk is bounded, with‖k‖∞ ≤ 1/ε.

(ii) Assertion (c) has non-trivial content only in the case wherein γ is finite and either the

supremumγ+ or the infimum−γ− of g is attained, that is, the case wherein the input may

saturate (the prototype being the saturation functiong = sat̂u). Assertion (c)(i) implies that

the control input cannot remain saturated for allt ≥ 0 and, when it becomes unsaturated,

then Assertion (c)(ii) implies that the signal remains unsaturated thereafter. If the initial data

is such that the signalg(u(·)) is initially unsaturated, i.e.|g(u(0))| < γ, then the saturation

bound is never attained (see Assertion (c)(ii)). If, on the other hand, the signalg(u(·)) is

initially saturated, i.e.|g(u(0))| = γ, then the conjunction of Assertions (c)(i) and (c)(ii)

ensures that it remains so only on a finite interval[0, τ ] and is unsaturated on(τ,∞).

(iii) The condition (3.2) is necessary for attainment of thecontrol objective and is equivalent to

the requirement that(0, y0(0)) ∈ D.

September 11, 2009 DRAFT
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The feasibility condition (3.3) is a sufficient condition for attainment of the control objective

(of course, in the caseγ = ∞, i.e. in the absence of saturation, (3.3) holds trivially).It

quantifies and exhibits the interplay between the saturation boundγ (sufficiently large to

ensure performance) and bounds of the plant data, funnel data, initial data, reference signal

data and disturbance signal data. The nature of the dependence of the saturation bound on

these data is not surprising. For example:

1) it is to be expected that tracking of “large and rapidly varying” reference signalsr would

require control inputs capable of taking sufficiently largevalues – this is reflected in the

dependence of the saturation bound on both‖r‖∞ and‖ṙ‖∞;

2) transient and asymptotic behaviour of the tracking erroris influenced by the choice of

funnelF(ψ) determined by the globally Lipschitz functionψ – a stringent requirement that

transient behaviour decays rapidly would be reflected in a large Lipschitz constantΛ which,

not unexpectedly, appears in the feasibility condition;

3) it is to be expected that the saturation bound depends on the disturbance signald – this

is reflected in its dependence on‖d‖∞. ⋄

4. SIMULATIONS

For purposes of illustration, consider the single-input, single-output system (1.5) subject to

the saturation contant̂u := 25. Example 2.3 shows that the systems (1.5) can be written in the

form (2.1) and that the conditions (T) and (g) are satisfied.

As reference signal we chooser(·) = ξ1(·) the first component of the solution of the Lorentz

system

ξ̇1 = ξ2 − ξ1, ξ̇2 = (28ξ1/10) − (ξ2/10) − ξ1ξ3, ξ̇3 = ξ1ξ2 − (8ξ3/30),

with the initial values(ξ1(0), ξ2(0), ξ3(0)) = (1, 0, 3). It is shown in [6, App. C] that the

solutions are chaotic and bounded. This yields a boundedr with bounded derivative. Note that

r(0) = 1 and numerical simulations show‖r‖∞ ≤ 9/5, and‖ṙ‖∞ ≤ 6/5.

As disturbance signal we choosed(·) = −ξ2(·); again, numerical simulations show‖d‖∞ ≤ 2.4.

Settingλ = 0.1, the funnelF(ψ) is determined by

ψ : R+ → R , ψ(t) :=






2e−0.1 t , t ∈ [0, 10 ln 20]

max{3/5 cos(t/3), λ} , else
(4.1)
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Then‖ψ‖∞ = 2 and it prescribes an exponential (exponent0.1) decay of the tracking error in the

transient phase[0, T ], whereT = 10 ln 20 ≈ 30, and a tracking accuracy quantified byλ = 0.1

and3/5 cos(t/3) thereafter;ψ is non-monotone with global Lipschitz constantΛ = 0.2.

For a = b = 1 andz0 = 1 andL as in Example 1.2, we have

L+ ‖ṙ‖∞ + Λ = 24.68 < 25 = û

and so the feasibility condition (3.3) is satisfied. The condition (3.2), i.e.|e(0)| = |y0−r(0)| < 2,

impliesy0 ∈ (−1, 3). To illustrate the occurrence of saturation of the control input, we choosey0

to be such that Assertion (c)(ii) fails to hold forτ = 0 (in which case, there existsτ > 0 such

that the controlu is saturated on[0, τ)). Note that

|satbu(u(0))| < û ⇐⇒ |y0 − r(0)| < ψ(0)û

1 + û

and so the input is saturated at the beginning if, and only if,|e(0)| = |y0−r(0)| ≥ 25/13. Hence

we choosey0 = −0.95, and soε = λ/(2û) = 0.002.

Figure 4.2 depicts the behaviour of the closed-loop system (1.5), (3.4). The simulations con-

firm the result of Theorem 3.1: the tracking error remains uniformly bounded away from the

funnel boundary; moreover, the second picture suggests that the calculated boundε = 0.002 is

conservative. Non-monotonicity of gain functionk is also evident: it increases when the error

approaches the funnel boundary and decreases when the errorrecedes from the boundary. The

third row of pictures confirms that the input is initially saturated: it remains so on an interval of

short duration and remains unsaturated thereafter. The last picture shows the disturbance signal

and thez-component of (1.5).

5. APPENDIX: PROOF OFTHEOREM 3.1

In view of Remark 3.2, we know that there exists a solution of the closed-loop system and

every solution can be extended to a maximal solution. Lety : [−h, ω) → R, 0 < ω ≤ ∞, be any

maximal solution of (2.1), (3.4), and set

e(t) := y(t) − r(t), k(t) :=
1

ψ(t) − |e(t)| , u(t) = −k(t)e(t) ∀ t ∈ [0, ω).

Step 1: We show that the tracking errore satisfies

e(t)ė(t) ≤ −|e(t)|
(
Λ − Γ + |g(u(t))|

)
for almost allt ∈ [0, ω). (5.1)
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Fig. 4.2. Behaviour of the closed-loop system (1.5), (3.4)

Observe that

|y(t)| ≤ |e(t)| + |r(t)| ≤ ‖ψ‖∞ + ‖r‖∞ ∀ t ∈ [0, ω),

and so

|y(t)| ≤ c1 := ‖y0‖∞ + ‖ψ‖∞ + ‖r‖∞ ∀ t ∈ [−h, ω).

By Property (TB), we may infer that‖(Ty)(t)‖ ≤ η(c1) for almost allt ∈ [0, ω), and so (3.1)

yields

|f
(
d(t), (Ty)(t)

)
| ≤ L for almost allt ∈ [0, ω).

Therefore, we have, for almost allt ∈ [0, ω),

e(t)ė(t) = e(t)
(
f
(
d(t), (Ty)(t)

)
+ g(u(t)) − ṙ(t)

)
≤ |e(t)|

(
L+ ‖ṙ‖∞ − |g(u(t))|

)
,

and, sinceL+ ‖ṙ‖∞ = Γ − Λ, (5.1) follows.

Step 2: Chooseε > 0 sufficiently small so that

ε ≤ min{λ/2 , ψ(0) − |e(0)|}, g(λ/(2ε)) ≥ Γ, −g(−λ/(2ε)) ≥ Γ. (5.2)

We will show that

ψ(t) − |e(t)| ≥ ε ∀ t ∈ [0, ω). (5.3)

Seeking a contradiction, suppose that there existst1 ∈ (0, ω) such thatψ(t1)−|e(t1)| < ε. Since

ψ(0)−|e(0)| ≥ ε, the numbert0 := max{t ∈ [0, t1)| ψ(t)−|e(t)| = ε} ∈ [0, t1) is well defined.
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It follows that ψ(t) − |e(t)| ≤ ε for all t ∈ [t0, t1] and so|e(t)| ≥ ψ(t) − ε ≥ λ − ε ≥ λ/2 for

all t ∈ [t0, t1], whence

|u(t)| = k(t) |e(t)| ≥ λ

2ε
∀ t ∈ [t0, t1].

Therefore, by monotonicity ofg and (5.2),

g(|u(t)|) ≥ g(λ/(2ε)) ≥ Γ ∀ t ∈ [t0, t1] and −g(−|u(t)|) ≥ −g(−λ/(2ε)) ≥ Γ ∀ t ∈ [t0, t1].

Noting that

|g(u(t))| =





g(|u(t)|), if u(t) ≥ 0

−g(−|u(t)|), if u(t) < 0 ,
(5.4)

and invoking (5.1), we may infer that

e(t)ė(t) ≤ −|e(t)|(Λ − Γ + Γ) = −Λ|e(t)| ∀ t ∈ [t0, t1].

which, on integration, gives|e(t1)| − |e(t0)| < −Λ |t1 − t0|. We now arrive at the contradiction

0 < ψ(t0) − |e(t0)| − (ψ(t1) − |e(t1)|) ≤ |ψ(t1) − ψ(t0)| + |e(t1)| − |e(t0)|

< Λ|t1 − t0| − Λ|t1 − t0| = 0,

wherein we have invoked the global Lipschitz property ofψ. Therefore, (5.3) holds.

Step 3: We establish Assertions (a) and (b). In view of (5.2), boundedness ofr implies

boundedness ofy. To establish Assertions (a), (b), it remains only to show that ω = ∞. Seeking

a contradiction, suppose thatω <∞. Then{(t, y) ∈ D| t ∈ [0, ω], ψ(t) − |y − r(t)| ≥ ε} is a

compact subset ofD and contains the graph ofy|[0,ω): this contradicts the fact that the closure

of the graph is not a compact subset ofD. Therefore,ω = ∞.

Step 4: We establish Assertion (c). Boundedness ofu is an immediate consequence of Asser-

tion (b). If γ = ∞, then Assertion (c) trivially holds. Assumeγ <∞.

Step 4a: First, we establish Assertion (c)(i). Seeking a contradiction, suppose|g(u(t))| ≥ γ

for all t ≥ 0. Recalling thatγ > Γ and invoking (5.1), we havee(t)ė(t) ≤ −Λ|e(t)| for all

t ≥ 0, which, on integration, yields the contradiction:

0 ≤ |e(t)| ≤ |e(0)| − Λt ∀ t ≥ 0.

Therefore, there existsτ ≥ 0 such that|g(u(τ))| < γ. This establishes Assertion (c)(i).
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Step 4b: Next, we show Assertion (c)(ii). Letτ ∈ R+ be such that|g(u(τ))| < γ. Again

seeking a contradiction, suppose that|g(u(t))| ≥ γ for somet ∈ [τ,∞). Define t1 := min{t ∈
[τ,∞)| |g(u(t))| = γ}. Chooseρ ∈ [Γ, γ) such that|g(u(τ))| ≤ ρ and definet0 := max{t ∈
[τ, t1)| |g(u(t))| = ρ}. Observe that

τ ≤ t0 < t1 and |g(u(t))| ≥ ρ ≥ Γ ∀ t ∈ [t0, t1].

Therefore,|u(t)| > 0 for all t ∈ [t0, t1] and so, by continuity ofu, we haveu(t) = c0|u(t)| for

all t ∈ [t0, t1], wherec0 := sgn(u(t0)). By (5.4), it now follows that

|g(u(t))| = c0g(c0|u(t)|) ∀ t ∈ [t0, t1]. (5.5)

Invoking (5.1), we havee(t)ė(t) ≤ −Λ|e(t)| for all t ≥ [t0, t1], which, on integration, yields

|e(t1)| − |e(t0)| ≤ −Λ|t1 − t0|. The latter inequality in conjunction with the global Lipschitz

property ofψ gives

ψ(t0) − |e(t0)| − (ψ(t1) − |e(t1)|) ≤ |ψ(t1) − ψ(t0)| − Λ|t1 − t0| ≤ 0.

Therefore,

|u(t1)| =
|e(t1)|

ψ(t1) − |e(t1)|
<

|e(t0)|
ψ(t0) − |e(t0)|

= |u(t0)|,

which, in conjunction with (5.5) and monotonicity ofg, yields the contradiction:

γ = |g(u(t1))| = c0g(c0|u(t1)|) ≤ c0g(c0|u(t0)|) = |g(u(t0))| = ρ < γ.

Therefore,|g(u(t))| < γ for all t ∈ [τ,∞). This completes the proof. �
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