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Funnel control with saturation:

nonlinear SISO systems

Norman Hopfe* Achim [lchmann* Eugene P. Ryan'
Abstract

Tracking — by the system output — of a reference signal (asdurounded with essentially bounded
derivative) is considered in the context of a class of n@amsingle-input, single-output systems mod-
elled by functional differential equations and subjectrtpuit saturation. Prespecified is a parameterized
performance funnel within which the tracking error is reqdi to evolve; transient and asymptotic
behaviour of the tracking error is influenced through chaitparameter values which define the funnel.
The control structure is a saturating error feedback wittetvarying non-monotone gain designed to
evolve in such a way as to preclude contact with the funnehaty. A feasibility condition — formulated
in bounds of the plant data, the saturation bound, the fuda#d, the reference signal and the initial
data — is presented under which the tracking objective isegel, whilst maintaining boundedness of
the state and gain function.

Keywords. Output feedback, input saturation, nonlinear systemasteat behaviour, tracking.

Nomenclature: R, := [0,00); C(I,RY), I C R, is the space of continuous functiods—
R L>(I,R") is the space of measurable, essentially bounded functions — Rf, with

norm | £ := ess sup.[ly(¢)

; the space of measurable, locally essentially boundediturs
f: I — Ris denoted byLie (I, RY); if ¢ = 1, we simply write L°°(I) and LS (1); Wh2(R,)
is the space of absolutely continuous functionsR, — R with r,7 € L*(R,). A function
B: Ry — R, is called aX function if it is continuous and strictly increasing, witti0) = 0; the
class ofunbounded X functions is denoted bK... A continuous functionv: R, xR, — R, is
called aXL function if (-, t) € X for all t € R, and, for alls € Ry, a(s, ) is non-increasing

with «(s,t) — 0 ast — oo.
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1. INTRODUCTION

In common with its precursor [1], we investigate funnel e¢ohtin the presence of input
constraints. In contrast with [1], the systems to be colgdoare nonlinear and are described by
functional differential equations. We restrict attenttonsingle-input, single-output systems. By

way of motivation, consider a system of two interconnectedlinear subsystems

§(t) = fuld(t),y(t), 2(t) + sak(u(t)), 2(t) = fa(y(t), 2(t), (¥(0),2(0)) = (y",2") (1.1)

wheref;: RPxRxR" ! — Randf,: RxR"! — R"! are locally Lipschitzd € L>(R,RP)

is a disturbance, and gais the saturation function, parameterized by 0, given by

+1, v>1U
sat,: R — [—a, ], v — sa(v) = v, |v]<a (1.2)
—1, v < —1.

Momentarily regarding the second subsystem in (1.1) asagepiendent system with (continuous)

input , let o(+; 2%, y) denote the unique maximal solution of the initial-value lpeon

4(t) = faly(t), 2(t),  2(0) = 2", (1.3)

Now assume that this system is input-to-state stable (I88)sa there exist functions € XL
and 3 € X, such that, for all(z°,y) € R"! x C(R,), the unique maximal solution(-) =

o(+; 2% y) is global (i.e., is defined oft,) and satisfies the ISS estimate

Iz < a(llcll ) + ess-sup. y5(ly(s)]) vt = 0. (1.4)

Example 1.1: As a highly specialized example (to which we will return ire timulations in

Section 4) of a system of the form (1.1), consider the folfayvi

d(t) + aly(t)Py(t) + 2(t) + sak(u(t)), y(0)=1° € R
2t) = —z(t) — 2()° + [1 + 2(t)*] y(1), 2(0) = 2% € R,

Nt
—
~
N—
|

(1.5)

with real constants andb > 0, and disturbancé€ € L>(R.). To see that the second subsystem
in (1.5) is ISS, consider the subsystem in isolation withuinpe C(R, ) and letz(-) = ¢(-; 2°, )
denote its unique solution on its maximal interval of exise[0,w), 0 < w < oo. Writing
V(t) := 2%(t)/2 for all ¢t € [0,w), we have

Vm——ww—f@+wwm+£@m@gaww+%w+fﬁ Vie[0,w).
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By Gronwall's Lemma, it follows that

V(t) < e 2V(0) + }1/0 (20%(s) + y*(s))e 2"V ds  Vte [0,w)

from which we may infer tha = oo and

1
2(t)] < 7|2 + 545 €55 SR (|y(s)]\/2 n yy<s)|2) Vi > 0.

Therefore, the ISS estimate (1.4) holds with

a: ((,t)—e ¢ and B: p % 2+ p2. (1.6)

Error evolution in a funneff ()

Fig. 1.1. Prescribed performance funidghp).

Returning to the prototype system (1.1), the control objecis formulated in terms of a

performance funnel, see Figure 1.1,

FW):={(t,e) e Ry xR [e] <9(1) }, (1.7)

determined by a bounded functian R, — [\, co) which is globally Lipschitz with Lipschitz
constantA > 0 and is bounded away from 0 by> 0, that is, by a function of the class:

S(A,A) = {¢: Ry — [X\,00)| ¢ bounded & globally Lipschitz with Lipschitz constant;
(1.8)
The control objective is as follows. Determine a feedback structure which enstiras for a
given reference signat € WH>=(R, ), the output tracking erroe = y — r evolves within
the funnel (i.e. grapte) C F(¢)): transient and asymptotic behaviour of the tracking eisor

influenced through choice of the functian The proposed control structure is an error feedback
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of the formu(t) = —k(t)e(t) wherein the gain functiort: ¢ — 1/(¢)(t) — |e(t)|) evolves so as
to preclude contact with the funnel boundary. A feasibitibndition (formulated in terms of the
plant data, the funnel data, the reference signdhe disturbance signal, and the initial state
y") is presented under which the tracking objective is achigwdilst maintaining boundedness
of all signals.
Given \ > 0 (arbitrarily small) andA > 0, a wide variety of funnels are possible. For example,
choosinga, b > 0 such thata > X andab < A, then the functiont — (¢) := max{ae ", \} is
in §(A, \) and evolution within the associated funnel ensures a pbestexponential decay in
the transient phas@, In(a/))/b] and tracking accuracy > 0 thereafter (we stress thatmay
be taken arbitrarily small). Monotonicity of the funnel bmlary is not required: in Section 4, we
will provide an example of a non-monotone funnel. Non-monetfunnels may be advantageous
in applications for which it is known a priori when perturiggis or set-point changes may occur
- in this sense, non-monotone funnels have the connotatiae-mitialization of the control
structure.

Example 1.2 (Example 1.1 revisited): In the highly specialized context of the exemplar (1.5),
the main result of the paper translates into the followiray: drbitrary A, A > 0, ¥ € G(A, ),
and any absolutely continuous reference signaR, — R with essentially bounded derivative,

the simple control strategy
1

u(t) = —sat(k(t)e(t)), k(t)=—————, e(t)=y(t)—r(t),

(1 (k(Belt). ki) = S e =90 =)
applied to (1.5) ensures attainment of the tracking objedi&nd, moreover, the gain functién
is bounded) provided that the initial data satigf) — r(0)| < ¥(0) and the following feasibility

assumption is satisfied: > L + A + ||7||, where

= Uellse + lI7lloe) V2 + ([ ]loe + I7]lo0)?

<

= ||d ) o T oob+1+ 0 +
[dlloe + a([[¥]loo + [I7]]o0) 127 2\/—

The concept of funnel control was introduced in [4]. For salvgeneralizations and other aspects
of this control strategy, see the survey article [3] andrezfees therein. For experimental results
on controlling the speed of electric devices using the flueoeatrol methodology, see [5]. The
control problem to be considered in the present paper isriakgue - in a context of nonlinear
single-input, single-output systems - of the problem odersd (in a context of linear multi-input,

multi-output systems) in its precursor [1].
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2. THE SYSTEM CLASS

We proceed to make precise the class of systems. In parfiauéa consider single-input,

single-output systems described by a functional diffea¢mtquation of the form
y(t) = f(d). (Ty) (1) + g(u(®),  ylnog =y° € C[=h,0], (2.1)
whereinh > 0, the functionsf: R? x R? — R andg: R — R are continuousd € L>*(R,,RP)
is a disturbance, and the operafbrsatisfies the following.
(T) T: C[—h,0) — L2 (R4, RY) is a causal operator with the properties:
(TB) there exists; € C(R,) such that, for alk;,w > 0 and ally € C[—h,w),

SUDye[pw) Y] < 1 = sup,cp o [(Ty) ()] < nlcr)
(TL) for allt >0 and allw € C[—h,t], there existr >t andd, ¢ > 0 such that

ess-sup., 1 [[(Ty)(s) — (T2)(s)[| < co max [y(s) — z(s)| Vy,z € C(w;h,t,7,0)

SE[t,T]

where

Clw; h,t,7,6) == {v € C[=h,7]| v|ng=mw, Jv(s)—w(t)| <5 VseltT]},

i.e., the space of all continuous extensiansf w € C[—h,t] to the interval[—h, 7]
such that thatv(s) — w(t)| < § for all s € [t, 7].
The continuous input nonlinearity: R — R is assumed to satisfy the following condition.

(9) ¢ is non-decreasing with(0) = 0 and

vt i=supg(v) € (0, ] and 4 :=—inf g(v) € (0, 0]
v>0 v<0

Some remarks on the above assumptions are warranted.
Remark 2.1 (On the operator T):
(i) The parameteh > 0 in the definition ofl’ quantifies the memory in the system and permits
the incorporation of delay elements.
(i) Property (TL) is a technical assumption of local Lipgehype which is required for well-
posedness of the closed-loop system (by appealing to Timedre of [3]).
(ii) To interpret (TB) and (TL) correctly, we need to give nmiag to Ty, for a functiony € C(I)

on a bounded interval of the form[—h, p) or [—h, p], where0 < p < co. This we do by
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showing thatT’ “localizes”, in a natural way, to an operatdr C'(I) — Li=(J,R9), where
J:=1\[-h,0). Lety € C(I). For eacho € J, definey, € C[—h, o) by

y(t)’ te [—h,O'],

-(t) =
bold) y(o), t>o.

loc

By causality, we may defin€y ¢ L (J,R?) by the propertyTyho,g} = TYs|0,0 forall o €
J. Henceforth, we will not distinguish notationally an operal” and its “localisation™T":
the correct interpretation being clear from context.

(iv) Property (TB) is a bounded-input, bounded-output agstion on7'. In the context of the

prototype system in Section 1, this property is a consequehthe ISS assumption. ©

Remark 2.2 (Examples for the input nonlinearity ¢g): The prototype input nonlinearity ig=
sat, as in (1.2), witha > 0, in which casey™ = @ = v~ . Note that the general form gfallows

for saturation nonlinearities with non-symmetric bounds. o

Example 2.3 (System (1.1) revisited): We show that the prototype system (1.1) can be written
in the form (2.1) and that the conditions (T) and (g) are fatis assuming that the ISS
estimate (1.4) holds. That condition (g) holds is an immiediconsequence of Remark 2.2.
Again, temporarily regarding the first subsystem in (1.1)swmilation with inputy € C(R,), let
©(+; 2%, y) denote the unique maximal solution of the initial-valuelypeon (1.3): in view of (1.4),
we know that this solution is global (i.e. exists @ ). For each:’ ¢ R"!, we may define
a causal operatof,o: C(R;) — C(Ry,R"Y) by (Tho(y))(t) = ¢(t;2°,y) for all ¢ € Ry.

Introducing the causal operator
T: C(Ry) — C(R, R,y (y, (T(y))),
and the function
[ARPXR" =R, (§,€) = (6,(6,¢) = f(3.€) = f1(8,0,¢),

then original initial-value problem (1.1) may be expressethe form in the form of the func-
tional differential equation (2.1). It remains to show tttz operatofl” satisfies conditions (TB)
and (TL) of Assumption (T). Clearly, (TB) holds since, by vetof the ISS estimate (1.4), we
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may infer that,
Vor >0y € CRY) ||yl <1 = [Tyl < nler) :=c1 +a(|2°],0) + B(er).  (2.2)

It remains to show thaf" satisfies (TL). Letw € C(R,) and fixt > 0,0 > 0 and7T > 0

arbitrarily, and, for notational convenience, get= 0 +sup,(, |w(s)|. Define the compact set
K= {(p,0) e RxR"| |p| <A, [I0]] < a(]z°],0) + B(A)} .
By the local Lipschitz property of,, there exists: > 0 such that
1f2(p,0) = falo, )| <cllo—0l+le=dl]  V¥(p,0),(e,9) € K.

Let 1,90 € C(R,) be such that;(s) = w(s) = ya(s) for all s € [0,¢], and|y;(s)],|y2(s)] < o
for all s € [t,t+ 7]. Then

[(Teoy1)(s) = (Teow2)(s)]| < /0 1£2(1(0), 2(05 2% 1)) = Fa(ya(0), 2(03 2%, o)) [ do

< c/ltS [|yl(0) - 92(0)| + ||(Tzoyl)(0) - (TZO?/Q)(U)MdU Vs & [t’t+ 7—]‘

By Gronwall's Lemma, it follows that

[(Te01)(5) = (Teoy2) (s)]| < C/ts " Nyi(0) — yu(o)ldo Vs € [t t+17]

whence
sup ||(Teoy1)(s) = (Tooy2)(s)[ < €7 sup |yi(s) — ya(s)].
SE[tt+7] sE[t,t+7]
We may now conclude that property (TL) holds with= 1 + e". o

Example 2.4 (Examples for (2.1)):
() Linear systems, as investigated in the precursor [1d, emcompassed by (2.1) if they are
single-input, single-output.
(i) In[2, Ex. 2.3], we have shown that a certain class ofdineetarded minimum-phase systems
with relative degree one can be written in the form (2.1) amisfy/ (TB) and (TL).
(i) In[3, Sec. 6.3], we have shown that systems with hyetes can be written in the form (2.1)
which satisfies (TB) and (TL).
(iv) In [4, Sec. 4] we have shown that infinite-dimensionaular linear systems and nonlinear

delay systems can be written in the form (2.1) which satisf{&8) and (TL). o
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3. THE MAIN RESULT

We now arrive at the main result, the proof of which may be tbimthe Appendix.

Theorem 3.1: Let A > 0, A > 0 andy € G(A, \) define the performance funnél(y) =
{(t,e) e R.xR| |e| < (t)}. Leth > 0,4° € C([—h,0]),d € L®(R,,R?) andr € WH>=(R,).
Consider a system of form (2.1) satisfying (T), (TB) (with adated functionn € C(R.)),
(TL) and (g). Define

Li=sup {11(0,0)| |(p,7) € R x R, o] < s lo] < n(llslloe + ]l + I7ll20) } B.D)
If the initial datay® and the reference signalare such that
[y°(0) — r(0)| < ¥(0), (3.2)
and the feasibility condition
yi=max{7, 7"} > L+ A+ |r||le=:T, (3.3)

holds, then application of the feedback strategy

1
)= ——,
Y= STl

to (2.1) yields a closed-loop initial-value problem withetfollowing properties.

u(t) = —k(D)e(t), & e(t) = y(t) - (1) (3.4

(@) The closed-loop initial-value problem (2.1), (3.4) resolutiony : [—h,w) — R and
every solution can be extended to a global solution,u.e: cc.

(b) There exists > 0 such that every global solution satisfies
ly(t) —r(t)] < () —e Vi =>0.

(c) The functionu(-) := —(y(-) — r(-))/(¥(-) — |y(-) — r(-)|) is bounded and the following
hold:

(i) lg(u(r))| <~ for somer € R,.
(i) [3r=0: [gu(n)l <] = [lg(u))] <y Vte][r,c0)].

Remark 3.2 (Existence of solution): In view of the potential singularity in (3.4), some care

is required in formulation the closed-loop initial-valueoplem (2.1), (3.4). Define

D :={(t,v) e Ry xR| (t,v—r(t)) € F¥)} (3.5)
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and definef': D x R? — R by

F(t,v,w) = f(d(t),w) + g( = (v —r(t)/((t) = [v—r(t)])), (3.6)

in which case, the closed-loop, initial-value problem J2(8.4) is formulated as

y(t) = F(t,y(t), (Ty)(1), yli-no =1". 3.7)

By a solution of (3.7) we mean a functiop € C[—h,w), 0 < w < oo, such thaty|_q =
v°, ylpw) is locally absolutely continuous, witkt,y(t)) € D for all t € [0,w) and y(t) =
F(t,y(t),(Ty)(t)) for almost allt € [0,w). A solution is said to benaximal if it has no proper
right extension that is also a solution. A solution defined-eh, o) is said to beglobal.

That (3.7) has a solution, and that every solution can bendet to a maximal solution, is an
immediate consequence of [3, Th. 7.1] which also implieg, tiiay € C[—h,w) is a maximal
solution, then the closure of graffjp..,) = {(¢,y(t)) | t € [0,w)} C D is not a compact subset
of D. o

Remark 3.3 (Comments on Theorem 3.1):

(i) Assertion (b) is the essence of the result: it asserts th&3.2) and the feasibility condi-
tion (3.3) hold, then the funnel control (3.4) ensures adm@ent of the control objectives;
in particular, the tracking errar = y — r remains uniformly bounded away from the funnel
boundary and the gain functionis bounded, with|% | < 1/e.

(i) Assertion (c) has non-trivial content only in the casé@enein~ is finite and either the
supremunm™ or the infimum—~~ of ¢ is attained, that is, the case wherein the input may
saturate (the prototype being the saturation functiea sat,). Assertion (c)(i) implies that
the control input cannot remain saturated for#at 0 and, when it becomes unsaturated,
then Assertion (c)(ii) implies that the signal remains uns#ed thereafter. If the initial data
is such that the signajl(u(-)) is initially unsaturated, i.elg(u(0))| < ~, then the saturation
bound is never attained (see Assertion (c)(ii)). If, on thieeo hand, the signa}(u(-)) is
initially saturated, i.e|g(u(0))| = =, then the conjunction of Assertions (c)(i) and (c)(ii)
ensures that it remains so only on a finite interigalr] and is unsaturated ofr, co).

(i) The condition (3.2) is necessary for attainment of tdentrol objective and is equivalent to
the requirement thaf), 4°(0)) € D.
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The feasibility condition (3.3) is a sufficient conditiorr fattainment of the control objective
(of course, in the case = o, i.e. in the absence of saturation, (3.3) holds trivially).
guantifies and exhibits the interplay between the saturdtimund~ (sufficiently large to
ensure performance) and bounds of the plant data, funna) imhatial data, reference signal
data and disturbance signal data. The nature of the depemadrthe saturation bound on
these data is not surprising. For example:

1) itis to be expected that tracking of “large and rapidlyywag” reference signals would
require control inputs capable of taking sufficiently langues — this is reflected in the
dependence of the saturation bound on bpth,, and ||7||;

2) transient and asymptotic behaviour of the tracking elsanfluenced by the choice of
funnel ¥ () determined by the globally Lipschitz functiah— a stringent requirement that
transient behaviour decays rapidly would be reflected ingel&ipschitz constant which,
not unexpectedly, appears in the feasibility condition;

3) it is to be expected that the saturation bound dependseodistiurbance signal — this

is reflected in its dependence ¢d||... o

4. SMULATIONS

For purposes of illustration, consider the single-inpingke-output system (1.5) subject to
the saturation contani := 25. Example 2.3 shows that the systems (1.5) can be writtenein th
form (2.1) and that the conditions (T) and (g) are satisfied.

As reference signal we choos¢) = & (-) the first component of the solution of the Lorentz

system

& =6&—¢&, o = (28£1/10) — (§2/10) — &1, &3 = &1& — (843/30),

with the initial values(&(0), &(0), &(0)) = (1, 0, 3). It is shown in [6, App. C] that the
solutions are chaotic and bounded. This yields a boundedh bounded derivative. Note that
r(0) = 1 and numerical simulations sho\v||. < 9/5, and||7||. < 6/5.
As disturbance signal we choogé) = —&,(+); again, numerical simulations shdi||., < 2.4.
Setting A = 0.1, the funnelJ () is determined by

201t , t €0, 101n 20]

Ry - R, Y(t) = (4.1)
max{3/5 cos(t/3), A} , else
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Then||¥||» = 2 and it prescribes an exponential (expon@nj decay of the tracking error in the
transient phasé, 7’|, whereT = 101n 20 ~ 30, and a tracking accuracy quantified By= 0.1

and 3/5 cos(t/3) thereafter;y) is non-monotone with global Lipschitz constakt= 0.2.

Fora=b=1andz’ =1 andL as in Example 1.2, we have
L+ il +A=2468<25=1

and so the feasibility condition (3.3) is satisfied. The dbad (3.2), i.e.|e(0)]| = |[y°—7(0)| < 2,
impliesy® € (-1, 3). To illustrate the occurrence of saturation of the contnplit, we choose®
to be such that Assertion (c)(ii) fails to hold fer= 0 (in which case, there exists > 0 such
that the control: is saturated on0, 7)). Note that

SOl <@ = -] < SO
and so the input is saturated at the beginning if, and only(6,)| = |¢° —r(0)| > 25/13. Hence
we choose)’ = —0.95, and sos = \/(2u) = 0.002.

Figure 4.2 depicts the behaviour of the closed-loop system),((3.4). The simulations con-
firm the result of Theorem 3.1: the tracking error remaindarmly bounded away from the
funnel boundary; moreover, the second picture suggeststibecalculated bound = 0.002 is
conservative. Non-monotonicity of gain functidnis also evident: it increases when the error
approaches the funnel boundary and decreases when theegeales from the boundary. The
third row of pictures confirms that the input is initially saated: it remains so on an interval of
short duration and remains unsaturated thereafter. Theietsire shows the disturbance signal

and thez-component of (1.5).

5. APPENDIX PROOF OFTHEOREM3.1

In view of Remark 3.2, we know that there exists a solution &f tfosed-loop system and
every solution can be extended to a maximal solution.ykdt-h,w) — R, 0 < w < oo, be any
maximal solution of (2.1), (3.4), and set

e(t) = y(t) = r(t), () = m

Sep 1. We show that the tracking errersatisfies
e(t)é(t) < —le(®)](A =T + [g(u(t))]) for almost allt € [0,w). (5.1)
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disturbance via time t second system z via time t

d(

L L L L L L L L L L
10 20 30 40 50 60 0 10 20 30 40 50 60
time t time t

Disturbance signad Functionz

Fig. 4.2. Behaviour of the closed-loop system (1.5), (3.4)

Observe that
ly@®)] <le@®)|+[r@)] <Yl +lI7llec  VEE[0,w),

and so
()] <1 =1110lse + [¥lloo + I7lle Vi€ [—h,w).

By Property (TB), we may infer that(7y)(t)|| < n(c;) for almost allt € [0,w), and so (3.1)
yields
|f(d(t), (Ty)(t))| < L for almost allt € [0,w).

Therefore, we have, for almost alle [0, w),
e(t)e(t) = e(t) (f(dt), (Ty)®) +g(u®)) — i) < [e@®(L+ 7l — lg(ul®))]),

and, sincel + ||7|l.c =T — A, (5.1) follows.

Sep 2. Chooses > 0 sufficiently small so that

e <min{A/2, ¥(0) = [e(0)[}, g(A/(2¢)) =T, —g(=A/(2¢)) = T (5.2)

We will show that
»(t) —le(t)] > € Vtel0,w). (5.3)

Seeking a contradiction, suppose that there exists (0, w) such that)(t,) — |e(t1)| < e. Since
¥(0) —|e(0)| > €, the numbet, := max{t € [0,t1)| ¥(t)—le(t)| =<} € [0,t1) is well defined.
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It follows thatv)(t) — |e(t)| < e for all ¢ € [ty,t;] and sole(t)| > ¥(t) —e > A —e > \/2 for

all ¢ € [to, t1], whence

lu(t)| = k(t) le(t)| > Vit € [to, t1].

A
2
Therefore, by monotonicity of and (5.2),

9(lu@)]) = g(A/(2¢)) =TVt € [to, 1] and  —g(=|u(t)]) = —g(=A/(2e)) = ' Vit € [to, t1].

Noting that

) 9(u@))), if u(t) >0
lg(u(t))] = { A, i o) 0. (5.4)

and invoking (5.1), we may infer that
e()é(t) < —[e()[(A =T +T) = —Ale(t)] Vi€ [to, ta].

which, on integration, giveg:(t1)| — |e(to)| < —A |[t1 — to|. We now arrive at the contradiction

0 <(to) — le(to)| = (V(t1) = le(tr)]) < [(t1) = ¥ (to)| + le(t1)] — le(to)]
< Alt; — to] — Aty — to] =0,

wherein we have invoked the global Lipschitz property/ofTherefore, (5.3) holds.
Sep 3: We establish Assertions (a) and (b). In view of (5.2), badmkss ofr implies
boundedness @f. To establish Assertions (a), (b), it remains only to shoat ih= cc. Seeking
a contradiction, suppose that< co. Then{(t,y) € D| t € [0,w], ¥(t) — |y —r(t)| > e} is a
compact subset db and contains the graph ofj,.: this contradicts the fact that the closure
of the graph is not a compact subsetJof Thereforew = oo.
Sep 4. We establish Assertion (c). Boundednessuas an immediate consequence of Asser-
tion (b). If v = oo, then Assertion (c) trivially holds. Assume< oco.

Sep 4a: First, we establish Assertion (c)(i). Seeking a contrialic supposeg(u(t))| >
for all ¢ > 0. Recalling thaty > I' and invoking (5.1), we have(t)é(t) < —Ale(t)| for all
t > 0, which, on integration, yields the contradiction:

0 < le(t)] < |e(0)] — At Vit > 0.

Therefore, there exists > 0 such thatjg(u(7))| < . This establishes Assertion (c)(i).

September 11, 2009 DRAFT



SUBMISSION .................. IEEE TRANSACTIONS ON AUTOMIC CONTROL 15

Sep 4b:  Next, we show Assertion (c)(ii). Let € R, be such thatg(u(7))| < ~. Again
seeking a contradiction, suppose thgtu(t))| > ~ for somet € [, c0). Definet; := min{t €
[7,00)| |g(u(t))] = v}. Choosep € [I',v) such that|g(u(7))| < p and definety := max{t €
[7,t1)| |g(u(t))| = p}. Observe that

T<to<t; and |g(u(t))|>p>T VtE [ty t1].

Therefore,|u(t)| > 0 for all t € [ty,¢;] and so, by continuity of;, we haveu(t) = co|u(t)| for

all t € [tg,t1], wherecy := sgn(u(ty)). By (5.4), it now follows that

l9(u(t))] = coglcolu(t)]) Vi € [to, t1]. (5.5)
Invoking (5.1), we have:(t)é(t) < —Ale(t)| for all ¢ > [to,t1], which, on integration, yields
le(t1)| — |e(to)] < —Alty — to|. The latter inequality in conjunction with the global Lisz
property ofi gives
Pto) = leto)] = (¥(tr) = [e(t)]) < [(tr) = P(to)| = Altr = o < 0.

Therefore,

)l leto)
() — le(t)] — ¥(to) — le(to)]

which, in conjunction with (5.5) and monotonicity gf yields the contradiction:

u(ty)] = = [ulto)],
7 = lg(u(tr))] = coglcolu(tr)]) < coglcolulto)]) = lg(ulto))| = p <.

Therefore,|g(u(t))| < v for all t € |1, 00). This completes the proof. |
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