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Zusammenfassung

Die vorgelegte Arbeit behandelt den Entwurf und die Robustheit von
drei verschiedenen Regelstrategien für lineare Differentialgleichungssys-
teme mit mehrdimensionalen Ein- und Ausgangssignalen. Es werden
folgende drei Regler betrachtet: Rückführungen des Ausgangssignals
und dessen Ableitungen, λ-tracking und Funnel-Regelung. Für alle drei
Regler werden bestimmte strukturelle Voraussetzungen an die linearen
Systeme gestellt, auf die der Regler angewendet werden soll. Für die
zuerst vorgestellte Ausgangs–Ableitungs–Rückführung wird vorausge-
setzt, dass der Relativgrad des Systems bekannt ist, dass das System
minimalphasig ist, und dass die sogenannte

”
high-frequency gain“ Ma-

trix positiv definit ist. Für λ-tracking und Funnel-Regelung fordert man
die selben Voraussetzung und zusätzlich, dass der Relativgrad nicht nur
bekannt, sondern gleich eins ist.

Einer Einleitung folgend, werden im zweiten Kapitel der Arbeit die-
se strukturellen Eigenschaften linearer Systeme analysiert. Für Systeme
mit mehrdimensionalen Ein- und Ausgängen wird der sogenannte Vek-
torrelativgrad vorgestellt und für den Fall, dass dieser nicht strikt ist,
eine Normalform hergeleitet, die gleiche strukturelle Eigenschaften be-
sitzt, wie die bekannte Byrnes–Isidori–Normalform für Systeme mit ein-
dimensionalen Ein- und Ausgängen oder Systemen mit mehrdimensio-
nalen Ein- und Ausgängen und striktem Relativgrad.

Diese Normalform ist essentiell für die Konstruktion eines Reglers
mit Ausgangs–Ableitungs–Rückführung für Systeme mit mehrdimen-
sionalen Ein- und Ausgängen und nicht striktem Relativgrad im dritten
Kapitel.

In den Kapitel vier und fünf werden bekannte Resultate für λ-tracking
und Funnel-Regelung verallgemeinert und neu bewiesen, um so die Ro-
bustheitsanalyse für beide Regler in den zwei abschließenden Kapiteln
der Arbeit zu ermöglichen.

Ergebnisse zur robusten Stabilität, die in dieser Arbeit vorgestellt
werden, basieren auf der Verwendung der sogenannten Gap-Metrik: sa-
lopp gesprochen, bauen diese Robustheitsresultate auf das Messen von
Abständen zwischen Systemen oder Reglern auf. Genauer gesagt, wird
die Gap-Metrik in der vorliegenden Arbeit benutzt, um Abstände zwi-
schen den Graphen von Operatoren, die ein System beschreiben – das
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sind Mengen von Trajektoren aus zuvor gewählten Signalräumen, die

”
Lösung“ eines Systems oder eines Regler sind – zu messen. Diese Gra-

phen sind Unterräume der Signalräume.
Robuste Stabilität beschreibt im Allgemeinen dann folgendes Prin-

zip: falls ein geschlossener Kreis aus einem linearen System und einem
Regler stabil ist und der Abstand (die Gap-Metrik) zwischen dem im
geschlossenen Kreis betrachteten System und einem anderen

”
neuen“

System hinreichend klein ist (und einige weitere technische Vorausset-
zungen für den geschlossenen Kreis erfüllt sind), so ist der geschlossene
Kreis aus dem

”
neuen“ System und dem Regler wieder stabil. Die glei-

che Aussage stimmt auch für den Fall, dass man den Regler und nicht
das System austauscht.

In der vorliegenden Arbeit wird Robustheit für die drei oben genann-
ten Regler in ihrer Anwendung auf (lineare) Systeme untersucht.

Für die Ausgangs–Ableitungs–Rückführung wird gezeigt, dass, falls
diese ein System stabilisiert, die auftretenden Ableitungen des Ausgangs
durch Euler-Approximationen der Ableitungen ersetzt werden können,
insofern diese hinreichend genau sind. In diesem Fall wird also ein

”
neu-

er“ Regler auf das selbe System angewandt. Das Ergebnis zur robusten
Stabilisierung gilt sogar für nichtlineare Systeme und wird auf den im
dritten Kapitel für lineare Systeme mit striktem Relativgrad vorgestell-
ten konkreten Regler angewendet.

Bei den Untersuchungen zu λ-tracking und Funnel-Regelung bleibt
der Regler jeweils unverändert. Hier werden die linearen Systeme, auf
die der Regler angewendet wird, ersetzt. Es wird gezeigt, dass beide
Regler auch für die Stabilisierung linearer Systeme verwendet werden
können, die nicht die sonst geforderten Voraussetzungen erfüllen. Hier
ist dann allerdings gefordert, dass ein solches System einen geringen
Abstand zu einem System hat, dass die notwendigen Voraussetzungen
aus Kapitel vier und fünf erfüllt.
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Abstract

The present thesis considers the design and robustness analysis of three
different control strategies for linear systems of differential equations
with multidimensional input and output signals. These three control
strategies are the following: high-gain output derivative feedback con-
trol, λ-tracking and funnel control. Every control strategy requires cer-
tain structural properties of linear systems which it will applied to. For
high-gain output derivative feedback control it is required that the sys-
tem’s relative degree is known, that the system is minimum phase and
has a positive so-called “high-frequency gain” matrix. The same prop-
erties and additionally, that the relative degree is not only known but
equal to one, are required for λ-tracking and funnel control.

Following a short introduction, structural properties of linear systems
are considered in detail. For systems with multidimensional inputs and
outputs a definition and characterization for the so-called (vector) rel-
ative degree is presented. For systems with non-strict relative degree a
normal form is developed. This normal form has the same structural
properties as the well-known Byrnes–Isidori normal form for systems
with one-dimensional inputs and outputs or systems with multidimen-
sional input and outputs and strict relative degree.

This normal form for linear systems with non-strict relative degree
is crucial for the design of the high-gain output derivative feedback
controller. It is important to note that this controller stabilizes any
system which (vector) relative degree is known, provided the system is
minimum phase and the high-frequency gain matrix is positive definite.

In chapters four and five, respectively, known results for λ-tracking
and funnel control are generalized with regard to the analysis of robust-
ness for both control strategies in the concluding chapters of the thesis.
It is shown that the λ-tracker and funnel controller may be applied to
any system from the class of minimum phase linear systems with strict
relative degree one and positive definite high-frequency gain matrix to
achieve certain control objectives. Robustness then means that one may
apply the controllers to systems which are close (in some sense) to any
system from the above class but not in this class of systems.

The result on robustness and robust stability considered in this thesis
are based on the application of the so-called gap metric: loosely speak-
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ing, all robustness results rely on the measuring of distances of systems
or controllers. More precisely, the gap metric is used to determine the
distances between the graphs of operators representing a system or a
controller, i.e. the set of all trajectories from prespecified signal spaces
which are “solutions” for the system or the controller. This graphs are
subsets of the considered signal spaces.

In view of this gap metric, a robustness result will be considered as
follows: if a closed-loop system represented by the application of a con-
troller to a linear system is stable (in some sense), and the distance
(i.e. the gap metric) between the system considered in the closed-loop
and a different “new” system is sufficiently small (provided some more
technical requirments hold true for the closed-loop system), then the
closed-loop system represented by the application of the controller to
the “new” system is again stable. This conclusion holds also true when
changing the roles of system and controller, i.e. applying a “new” con-
troller, which is “close” (in terms of the gap metric) to the original
controller, to the same system.

In the present thesis, robustness results are presented for all three
previously introduced control strategies when applied to linear systems.

For high-gain output derivative feedback control it is shown that the
designed controller still stabilizes the system when the derivatives of the
output are replaced by Euler approximations of the derivatives provided
the approximation is sufficiently precise, i.e. if the step size is sufficiently
small the gap between the derivative feedback and the feedback with
approximations of the derivatives (delay feedback) is sufficiently small.
In this case a “new” controller is applied to the same system. The
general robustness results holds also true for nonlinear systems and it is
applied to the concrete controller for linear systems with strict relative
degree, presented in chapter three.

For robustness results for λ-tracking and funnel control the control
strategies are not changed but the systems which the controllers are
applied to. It is proved that the controller may be applied to systems
which are “close” (in terms of a small gap) to any system from the
class of systems considered in chapters four and five, i.e. the class of
minimum phase systems with relative degree one and positive definite
high-frequency gain matrix. The “new” systems may not satisfy any of
these classical assumptions.
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anregende Miteinander im Büro und an der Uni, für die zahllosen Dis-
kussionen zu mathematischen und auch ganz anderen Themen und die
gemeinsamen kreativen Pausen bei Kaffee oder Eis, die immer wieder
neuen Antrieb gegeben haben.

Ich danke allen Mitarbeitern und Studenten der Technischen Uni-
versität Ilmenau, die mich in irgend einer Weise während der Zeit in
Ilmenau unterstützt haben: u.a. dem Studentensekretäriat und den Stu-
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1 Introduction

The subject of this thesis is the study of several strategies for the reg-
ulation of the output of linear time-invariant MIMO-systems. A linear
time-invariant MIMO-system is a system of the form

ẋ = Ax+B u , y = C x ,

where A ∈ Rn×n, B,CT ∈ Rn×m for some integers n,m ∈ N with
n ≥ m. Here u is the input of the system and y denotes the system’s
output; both have m components. For linear systems (A,B,C) of the
above form it is rather simple to calculate a solution. Given an initial
value x(0) = x0 ∈ Rn and an input signal u : R≥0 → Rm from a the set
of locally integrable functions, the output y is as follows:

t 7→ y(t) = C eAtx0 + C

∫ t

0

eA(t−s)Bu(s) ds .

If the matrices A,B and C are known and have certain properties, for
example (A,B) is controllable and (A,C) is observable, see definitions
in, for example, [Son98, Ch. 3 and 6], one may choose the input function
u such that the output y has some desired properties.

However, in general applications the system’s matrices may be un-
known. Anyway, it is possible to find inputs u to control or stabi-
lize the system in some ways. One potential ansatz is to use the
system’s output y (and maybe derivatives of the output) to design
such controllers. Such control strategies are presented in, for exam-
ple, [IP98, ITT04, ITT05, SHWS05, SWS06, IS09], see also the survey
article [IR08]. There only structural properties of systems are used.
Three control strategies, which are applied to linear systems, are pre-
sented in this thesis (Chapters 3–5). Furthermore, this thesis gives
robustness results for the considered control strategies (Chapters 7–9)
which are proven by utilizing the concept of the gap metric (Chapter 6).

17



18 1 Introduction

The application of all control strategies to a linear system requires cer-
tain structural properties of the system: for example that the relative
degree is known. In the first part of the present thesis these structural
properties are analyzed.

System class.

The definition of a relative degree of linear systems goes back to
frequency representations of linear systems [Isi95, p. 139] and earlier.
In Chapter 2 definitions and characterizations for the relative degree
of linear SISO- and MIMO-systems are introduced. Here it is impor-
tant to distinguish cases where the system has one-dimensional or, for
m ≥ 2, m-dimensional inputs and outputs. Moreover, in the case of
m-dimensional u and y, it is important to know whether the relative
degree is or is not strict, see the following paragraphs for details.

The system’s relative degree can be utilized to construct a coordinate
transformation which leads to the so-called Byrnes–Isidori normal form
for the system, see [Isi95]. This normal form has new system matrices

Ã, B̃ and C̃ which have nice structural properties in view of decoupling
the system’s input and output. Therefore the normal form of a system
assists the design of suitable control strategies for the system.

In Section 3.3 a new normal form for linear MIMO-systems with non-
strict (vector) relative degree is presented. This normal form general-
izes the well known results for linear SISO-systems and linear MIMO-
systems with strict relative degree. For systems with non-strict relative
degree the construction of the normal form and the underlying proofs
become much more involved than for SISO-systems, however, all the
structural properties as in the case of SISO-systems are preserved.

One benefit of the Byrnes–Isidori normal form is that structural char-
acteristics of the system can be read off very easily from the normal
form. For example, the system’s zero dynamics and right-invertibility
can be characterized in terms of the normal form. Having a simple
characterization of the system’s zero dynamics and, therefore, having a
straightforward specification of stability of the zero dynamics is crucial
for the control strategies which are considered in this thesis. Linear
systems with exponentially stable zero dynamics are called minimum
phase. A linear system is minimum phase if, and only if, the associated
transfer function has no zeros in the closed right half complex plane C+,
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see, for example, [Oga02, p. 509].

The control strategies, considered in this thesis, require, additionally
to the minimum phase property, two more structural assumptions to
the system: the relative degree must be known (in case of the controller
presented in Chapter 3 or must be one (in case of the controllers in
Chapters 4 and 5) and the so-called high-frequency gain must be posi-
tive (positive definite in case of MIMO-systems).

Control strategies: derivative output feedback.

First, high-gain output derivative feedback stabilization is introduced.
This means that the input u is designed as

u(t) = −
r−1∑

i=0

ki+1y
(i)(t) ,

where k1, . . . , kr ∈ R are suitable parameters and r ∈ N. Suppose the
system’s matrices are unknown but the system has the following struc-
tural properties: its relative degree is r, it is minimum phase and has
positive high-frequency gain. Then one can show that there exist param-
eters k1, . . . , kr such that the above controller applied to a linear system
stabilizes the system in the sense that the solution x of the controlled
system is asymptotically stable. This approach is well known for linear
SISO-systems and MIMO-systems with strict relative degree, see, for
example, [Isi95, Isi99], however, a new result for linear MIMO-systems
with non-strict relative degree is given in Section 3.3. The reader will
find that stabilization results for SISO-systems and MIMO-systems with
strict relative degree are also slightly improved, when compared to the
results in the literature.

For the above output derivative feedback the parameters k1, . . . , kr

are fixed and could be very large. One can show existence of such
parameters but it is not straight forward to determine the parameters
for an example system with unknown system matrices. Therefore, for
systems with relative degree one, adaptive control strategies have been
developed which will derive suitable “design parameter” k on its own.
One possible strategy is to design the input as

u(t) = −k(t) y(t) , k̇(t) = ‖y(t)‖2 , k(0) = k0 ,
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where k0 ∈ R, see the seminal work of [Mar84, Mor83, WB84] and also
the survey [Ilc91]. However, this controller has the shortcomings that, if
tracking is the control objective, it needs to be combined with an inter-
nal model (thus becoming much more involved) and, more importantly,
fails for stabilizing in the presence of additive arbitrarily small input or
output L∞-disturbances.

Control strategies: λ-tracking.

The adaptive λ-tracker, which was first introduced by [IR94], is pre-
sented in Chapter 4. One designs the input u as follows:

u(t) = −k(t) y(t) , k̇(t) = dist([−λ, λ], y(t))‖y(t)‖ , k(0) = k0 ,

where λ > 0, k0 ∈ R and dist([−λ, λ], e) = max{0, ‖e‖ − λ} for e ∈ Rm.
Note that λ-tracking requires that a system has to have relative degree
one, which is more restrictive than in the case of output derivative
feedback stabilization. The other requirements, i.e. that the system is
minimum phase and has positive high-frequency gain, remain also for
λ-tracking.

λ-tracking has two significant shortcomings: (i) the tracking error
λ > 0 will only be achieved asymptotically and (ii) the new dynamic k
is monotonically increasing.

To overcome this, funnel control for linear minimum phase systems
with relative degree one and positive high-frequency gain was introduced
in the control literature, see [IRS02b].

Control strategies: funnel control.

Funnel control is presented in Chapter 5. Applying the funnel con-
troller

u(t) = −k(t) y(t) , k(t) =
ϕ(t)

1 − ϕ(t)‖y(t)‖ ,

where ϕ : R≥0 → R≥0 is a suitable function, to a linear system which
satisfies the above structural assumptions achieves better tracking re-
sults as λ-tracking and the “design parameter” k is not necessarily in-
creasing. Intuitively speaking, the funnel controller works as follows:
if ‖y(t)‖ → 1/ϕ(t), i.e. the output approaches the funnel boundary,
then k(t) becomes large such that the intrinsic high-gain property of
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the system precludes boundary contacts.

All the control strategies introduced above achieve some stability re-
sults when applied to linear systems which satisfy certain structural
requirements. However: ‘Are these strategies robust?’ which directly
leads to the question: ‘What does robustness in this context mean?’
and finally: ‘How can robustness be measured?’

The concept of the gap metric.

An answer to the latter question gives the robustness analysis of feed-
back systems by T. Georgiou and M. Smith, see [GS93, GS97]. It is pos-
sible to measure the gap metric between systems or controllers. Chap-
ter 6 provides the required terminology for an application of robustness
results which are based on the gap metric.

Actually the gap metric does not measure distances between systems
but measures the distance between the graphs of systems; the graph of
a system is, loosely speaking, the set of all input and output trajectories
from a suitable function space which satisfy the equations of a linear
system (A,B,C) or also a controller.

The approach of measuring distances between subspaces as graphs of
operators to obtain stability theorems goes back to works of J. C. Go-
hberg and M. G. Krein, H. O. Cordes and J. P. Labrousse, and T. Kato,
see [Kat76, Sec. IV.2.1] and the references therein ([Kat76, p. 197]).

Figure 1.1 may give an idea of this approach. There the directed gap
between the subspaces V1 and V2 of R3 is illustrated. For finite vector
spaces, the directed gap is defined as

~δ(V1,V2) := sup
v1∈V1, ‖v1‖=1

dist∗(v1,V2) ,

where dist∗(y,X) := inf{‖y−x‖ |x ∈ X} for some y ∈ Rn and X ⊂ Rn.
In general the directed gap is not symmetric. Therefore, define the gap
of two sets V1 and V2 as

δ(V1,V2) := max
{
~δ(V1,V2), ~δ(V2,V1)

}
.

Note that since graphs of systems are subsets of infinite dimensional
function spaces the definition for the gap between graphs becomes much
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V1

V2 {v1 ∈ V1 | ‖v1‖ = 1}
~δ(V1,V2)

·

Figure 1.1: Directed gap from [Kat76, Sec. IV.2.1]

more involved, see Section 6.3.

The essential idea of robustness analysis is, loosely speaking, the fol-
lowing: if a system P , for which one knows that a controller C stabilizes
the system, is close to another system P1, in the sense that the gap
δ(P, P1) is sufficiently small, then the controller C stabilizes also the
system P1.

With robust stability result which are based on measuring the gap
between systems one can answer the questions on robust stability of the
control strategies considerer in the present paper.

First one should answer the question what robustness means for the
considered controllers:

Robustness of output derivative feedback.

For high-gain output derivative feedback stabilization, one natural
matter of robustness analysis is the presence of derivatives. The deriva-
tives of the output have to be measured or approximated in some ways.
So a robustness analysis for derivative feedback stabilization is to re-
place the derivatives y(1), . . . , y(r−1) by approximations of the deriva-
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tives. This is done in Chapter 7: the delay feedback

u(t) = −
r−1∑

i=0

ki+1(∆i
hy)(t) ,

where, for h > 0, ∆0
hy = y and ∆i

hy, for i ≥ 1, denotes the Euler ap-
proximation of the ith derivative of y (see the definition in Section 7.2),
is considered and robust stability results are presented: for sufficiently
small h > 0 the delay feedback stabilizes any linear system which can
be stabilized by the appropriate derivative feedback. This seems to be a
reasonable result, however, in the literature one cannot find any results
for systems with relative degree r ≥ 3. for linear systems with relative
degree 2 one can find a stability result in [IS04], however the authors do
not utilize results on robust stability which are based on the gap metric.

It is important to note that the main result in Chapter 7, i.e. robust
stability of the output derivative feedback controller, is actually much
more general than a proof that linear systems can be stabilized by out-
put delay feedback control. It is shown that every linear or even nonlin-
ear system P which can be stabilized (in some sense, namely in terms
of gain stability, see Section 6.4) by output derivative feedback also can
be stabilized by output delay feedback for sufficiently small delay h > 0.

Robustness of λ-tracking and funnel control.
For λ-tracking and funnel control questions on robust stability are

different as for output derivative feedback: derivatives of the output are
not involved in this control strategies. A natural question is how robust
the control strategies are when omitting several structural properties of
the linear system (A,B,C). In other words, can the λ-tracker and funnel
controller be applied to systems which are not necessarily minimum
phase, have higher relative degree and negative high-frequency gain,
such that the controlled systems achieve similar stability results as for
systems which satisfy the classical assumptions for λ-tracking and funnel
control.

Chapters 8 and 9 give positive answers to these problems. Here it
is shown that, in presence of sufficiently small initial values and in-
put/output disturbances, the closed-loop system of any stabilizable and
detectable linear system (A,B,C) and λ-tracker or funnel controller,
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respectively, achieves robust stability if the system is sufficiently close –
in sense of a small gap metric – to a minimum phase system which has
relative degree one and positive high-frequency gain.



2 Linear systems: relative
degree and normal form

In this chapter definitions and characterizations for the relative degree of
linear systems with one-dimensional or multidimensional input/output
are given, see Section 2.1 for single-input single-output (SISO) systems
and Section 2.2 for systems with m inputs and m outputs (MIMO).
Given the relative degree of a SISO- or MIMO-system a normal form is
constructed. The normal forms for SISO- and MIMO-systems are not
only structurally simple but allow characterization of the systems’ zero
dynamics for the design of feedback controllers. These characterizations
in terms of the normal forms are given in Section 2.3.

2.1 SISO-systems

The relative degree of (nonlinear) systems with one-dimensional input
and output is well studied in literature, see [Isi95]. The concept of
the relative degree goes back to linear systems theory in the frequency
domain. A linear single-input single-output (SISO) system may be de-
scribed in the frequency domain by

q(s)Y (s) = p(s)U(s) , (2.1.1)

for polynomials p, q ∈ R[s] where Y and U are the Laplace transforms of
scalar input/output functions u, y : R → R, respectively. The difference
r = deg q − deg p is called relative degree of the system (2.1.1).

A lot of concepts in systems and control theory are well understood
in the frequency domain but often it is worth to have a look at different
approaches. All results of this thesis will deal with systems in the time
domain. If r ≥ 1, a realization of p(s)/q(s) in the time domain is given

25
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by
ẋ = Ax+ b u
y = c x ,

}
(2.1.2)

where A ∈ Rn×n, b, cT ∈ Rn.

Hence q(s)/p(s) = c(sIn − A)−1b =
∑∞

k=0 cA
kbs−(k+1). Thus, it is

easy to see that

r = deg q − deg p if, and only if,

cAkb = 0, for all k = 0, . . . , r − 2, and cAr−1b 6= 0. (2.1.3)

On the other hand, Isidori writes in [Isi95, Ch. 4.1] that a (nonlinear)
SISO-system has relative degree r if “r is exactly equal to the number
of times one has to differentiate the output y(t) at time t = t0 in order
to have the value u(t0) of the input explicitly appearing.”

In other words (see also [LMS02, Def. 2] and [IM07, Def. 2.2]): defin-
ing functions, for k ∈ N,

H0 : Rn → R , x 7→ cx ,
Hk+1 : Rn × Rk+1 → R ,

(x, u0, . . . , uk) 7→ ∂Hk

∂x (Ax+ bu0) +
∑k−1

j=0
∂Hk

∂uj
uj+1 .

Then y(t) = H0(t) and y(k)(t) = Hk

(
x(t), u(t), . . . , u(k−1)(t)

)
for all

k ∈ N, and (2.1.2) has relative degree r ∈ N if, and only if,

(i) ∀ k = 1, . . . , r − 1 ∀ i = 0, . . . , k − 1

∀ (x, u0, . . . , uk−1) ∈ Rn × Rk : ∂Hk

∂ui
(x, u0, . . . , uk−1) = 0 ,

(ii) ∀ (x, u0, . . . , ur−1) ∈ Rn × Rr : ∂Hr

∂u0
(x, u0, . . . , ur−1) 6= 0 .





(2.1.4)

This definition for the relative degree is taken from results about
nonlinear time-varying SISO-systems [IM07, Def. 2.2]. For linear time
invariant systems (A, b, c) of form (2.1.2) one can simplify the above.
Note that, for r ≥ 2,

∂H1

∂u0
(x, u0) = ∂

∂u0
(cAx+ cbu0) = cb = 0 ,

∂H2

∂u0
(x, u0, u1) = ∂

∂u0
(cA2x+ cAbu0 + cbu1) = cAb = 0 ,



2.1 SISO-systems 27

and so forth, which equals the relative degree characterization (2.1.3)
and also leads to the following definition:

Definition 2.1.1 A linear system (A, b, c) of form (2.1.2) has relative
degree r ∈ N if, and only if,

(i) ∀ k ∈ {0, . . . , r − 2} : cAkb = 0,

(ii) cAr−1b 6= 0.

The relative degree of a system leads to a normal form: the Byrnes–
Isidori normal form, which was introduced in [BI84] for nonlinear and
linear SISO-systems. For linear SISO-systems of form (2.1.2) the normal
form is well known, see [IRT07], and is implicitly contained in [Isi95,
Ch. 4.1].

Lemma 2.1.2 [IRT07, Lem. 3.5] Consider a linear system (A, b, c) of
form (2.1.2) with relative degree r ∈ N. Then there exists an invertible
matrix U ∈ Rn×n such that the coordinate transformation

(
ξ
η

)
= Ux

converts (A, b, c) into

d
dt

(
ξ
η

)
=




0 1 0 0
...

. . .
. . .

...
0 . . . 0 1 0
R1

1 . . . R1
r S1

P1 0 . . . 0 Q




︸ ︷︷ ︸
=:Ã

(
ξ
η

)
+




0
...
0

cAr−1b
0




︸ ︷︷ ︸
=:̃b

u

y = [1, 0, . . . , 0]︸ ︷︷ ︸
=:c̃

(
ξ
η

)
,





(2.1.5)

where R1
1, . . . , R

1
r ∈ R, S1 ∈ R1×n−r, P1 ∈ Rn−r and Q ∈ R(n−r)×(n−r)

can be presented explicitly in terms of the system matrices A, b and c.

Proof. Define matrices

C :=




c
cA
...

cAr−1


 ∈ Rr×n , B := [b, Ab, . . . , Ar−1b] ∈ Rn×r .
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Then by Definition 2.1.1

CB =




cb . . . cAr−2b cAr−1b
cAb . . . cAr−1b cArb

... . . .
...

cAr−1b cArb . . . cA2r−1b




=




0 . . . 0 cAr−1b
... . . . cAr−1b cArb

0 . . . . . .
...

cAr−1b cArb . . . cA2r−1b



. (2.1.6)

Thus rk CB = r and therefore C and B have full rank r. To complete C
to a basis transformation of Rn one may choose a matrix V ∈ Rn×r of
full rank with imV = ker C. Define matrices

U :=

[
C
N

]
, N := (VTV)−1VT [In − B(CB)−1C] .

It is easy to see that U−1 = [B(CB)−1 V]. Note that

[
C
N

]
b =




cb
...

cAr−2b
cAr−1b

(VTV)−1VT [b− B(CB)−1Cb]




=




0
...
0

cAr−1b
(VTV)−1VT [b− b]



,

c
[
B(CB)−1 V

]
=
[
1, 0, . . . , 0 cV

]
,

which yields b̃ and c̃ in (2.1.5). Furthermore,

[
C
N

]
A
[
B(CB)−1 V

]
=

[
CAB(CB)−1 CAV
NAB(CB)−1 NAV

]
=




0 1 0 0
...

. . .
. . .

...
0 . . . 0 1 0
R1

1 . . . R1
r S1

P1 P2 . . . P3 Q



,

where [R1
1, . . . , R

1
r S

1] = cAr[B(CB)−1 V], [P1, . . . , Pr] = NAB(CB)−1

and Q = NAV.
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Recall that NB = 0r×r. By (2.1.6) follows

[P1, . . . , Pr] = NAB(CB)−1

= [0, . . . , 0,NArb]




∗ (cA−1b)−1

. . .

(cA−1b)−1 0


 ,

hence P2 = · · · = Pr = 0(n−r)×1, which yields Ã in (2.1.5) and completes
the proof. 2

The Byrnes–Isidori normal form for nonlinear/linear SISO-systems is
widely used in control theory for the design of local and global feedback
stabilization of nonlinear systems [BI85, BI88, BI89], for the design of
adaptive observers [NT89], for the design of adaptive controllers [IT93,
IR94], to name but a few applications. Thus constructing of a normal
form for linear MIMO-systems will assist the design of controllers and
observers for this systems. For this a characterization of the (vector)
relative degree of linear MIMO-systems in sense of Definition 2.1.1 is
required which is given in the following section. Moreover, a normal
form for linear MIMO-systems is presented.

2.2 MIMO-systems

In this section linear systems with m inputs and m outputs of the form

ẋ = Ax+
[
b
(n)
1 , . . . , b(n)

m

]

︸ ︷︷ ︸
=B



u1

...
um




︸ ︷︷ ︸
=u



y1
...
ym




︸ ︷︷ ︸
=y

=



c1(n)

...
cm(n)




︸ ︷︷ ︸
=C

x





(2.2.1)

are considered, where n,m ∈ N with m ≤ n and A ∈ Rn×n, B,CT ∈
Rn×m.
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2.2.1 Relative degree

As observed in the previous section a linear single-input single-output
system (2.1.2), i.e. system (2.2.1) with m = 1, has relative degree r ∈ N

if, and only if, r is the least number of times one has to differentiate
the output to have the input appear explicitly, see the characteriza-
tion (2.1.4).

In case of MIMO-system (2.2.1) one can consider the SISO-system
relating input uj to output yi, for all (i, j) ∈ {1, . . . ,m} × {1, . . . ,m},
given by

ẋ = Ax+ b
(n)
j uj

yi = ci(n)x , i, j ∈ {1, . . . ,m} .

}
(2.2.2)

Let ri,j ∈ N be the relative degree of (2.2.2). Then, for i ∈ {1, . . . ,m},
ri := minj∈{1,...,m} ri,j is the least number one has to differentiate the
i-th output to have at least one of the m inputs appear explicitly in the
sense of (2.1.4). The vector (r1, . . . , rm) ∈ N1×m is called the vector
relative degree of the MIMO-system (2.2.1) if, for all j ∈ {1, . . . ,m},
the rows cj(n)A

rj−1B are linearly independent, see Definition 2.2.1(a).

Isidori [Isi95] presents a local definition of the vector relative degree
for nonlinear MIMO-systems.

Liberzon et al. [LMS02] give a generalization of the definition of the
relative degree for time-invariant nonlinear systems which is extended
in [IM07] for time-varying linear and nonlinear systems. However in
these papers only SISO-systems and MIMO-systems with strict relative
degree (see also Definition 2.2.1(c)) are considered. To the author’s best
knowledge, Isidori [Isi95] is the only reference in the literature where a
definition for the vector relative degree for (nonlinear) systems can be
found.

For linear MIMO-systems the (vector) relative degree is defined as
follows:

Definition 2.2.1 A linear system (A,B,C) of form (2.2.1) has

(a) (vector) relative degree r = (r1, . . . , rm) ∈ N1×m if, and only if,

(i) ∀ j ∈ {1, . . . ,m} ∀ k ∈ {0, . . . , rj − 2} : cj(n)A
kB = 01×m,
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(ii) rk




c1(n)A
r1−1B

c2(n)A
r2−1B
...

cm(n)A
rm−1B


 = m.

(b) ordered (vector) relative degree r = (r1, . . . , rm) ∈ N1×m if, and
only if, (2.2.1) has (vector) relative degree r = (r1, . . . , rm) with
r1 ≥ r2 ≥ . . . ≥ rm.

(c) strict relative degree ̺ ∈ N if, and only if, (2.2.1) has (vector)
relative degree r = (r1, . . . , rm) ∈ N1×m with ̺ = r1 = r2 = . . . =
rm.

Remark 2.2.2 (i) Note that Definition 2.2.1(a) coincides with the
definition of the vector relative degree for nonlinear systems with
multidimensional inputs and outputs, see [Isi95, Ch. 5.1].

(ii) The linear independence of the rows cj(n)A
rj−1B, although a quite

restrictive requirement, is significant for the construction of a co-
ordinate transformation and with it the normal form. For systems
that do not satisfy both conditions in Definition 2.2.1(a) the vec-
tor relative degree does not exist and thus one cannot construct
the normal form (2.2.3)–(2.2.4).

(iii) Note that in the literature sometimes the relative degree is called
uniform instead of strict.

The following lemma shows that it is not restrictive to consider sys-
tems with ordered vector relative degree. It is shown that any linear
MIMO-systems (A,B,C) of form (2.2.1) with arbitrarily vector relative
degree r ∈ N1×m can easily be transformed in a system with ordered
relative degree r̃ = (r̃1, . . . , r̃m) ∈ N1×m by a permutation of the output
signal.

Lemma 2.2.3 Let (A,B,C) be a linear system of form (2.2.1) with
vector relative degree r = (r1, . . . , rm) ∈ N1×m. Then there exists a
permutation matrix P ∈ Rm×m such that the system (A,B, PC) has
ordered vector relative degree rP = (r̃1, . . . , r̃m).
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Proof. Let σ : {1, . . . ,m} → {1, . . . ,m} be a permutation such that
rσ(1) ≥ rσ(2) ≥ · · · ≥ rσ(m). Furthermore set

P :=




e
σ(1)
(m)

...

e
σ(m)
(m)


 .

Then

PC =




e
σ(1)
(m)

...

e
σ(m)
(m)






c1(m)

...
cm(m)


 =




c
σ(1)
(m)

...

c
σ(1)
(m)


 ,

and by the assumption on the relative degree it follows that

∀ j ∈ {1, . . . ,m} ∀ k ∈ {0, . . . , rσ(j) − 2} :

(PC)j
(n)A

kB = c
σ(j)
(n) A

kB = 01×m ,

and

rk




(PC)1(n)A
r1−1B

...
(PC)m

(n)A
rm−1B


 = m.

This shows that the linear system (A,B, PC) has relative degree Pr =
(rσ(1), . . . , rσ(m)) with rσ(1) ≥ · · · ≥ rσ(m) and the proof is complete. 2

2.2.2 Normal form

Isidori [Isi95, Ch. 5] presents a local normal form for nonlinear MIMO-
systems. In [Isi99, Ch. 11] a proof is given to specify the diffeomor-
phism to produce the normal form in terms of the system data of the
nonlinear system. Moreover, for nonlinear systems that satisfy certain
assumptions, namely commutativity of certain vector fields which is au-
tomatically satisfied for linear systems, Isidori [Isi99, Prop. 11.5.2] gives
a normal form which coincides with the normal form for linear systems
given in the present work. However, the corresponding results for linear
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systems cannot be found in literature. One could translate the nonlin-
ear results for linear systems, but the machinery for nonlinear systems,
e.g. Lie-derivatives of smooth functions, is not necessary to prove the
linear results. The proof given in the present work only uses standard
linear algebra. The transformation matrix is given in terms of the linear
system matrices A, B and C and leads to “many zeros and ones” in the
normal form and allows to read off the zero dynamics very easily; the
reader will find that the normal form (2.2.3) for linear MIMO-systems
is, roughly speaking, structured as a “diagonal form of m copies of SISO
normal forms (2.1.5)”. Furthermore the matrices of the normal form and
transformation will be characterized explicitly by the system matrices.

The following theorem presents a normal form for linear MIMO-
systems (A,B,C) of form (2.2.1) with ordered vector relative degree.
The normal form has similar structural properties as the normal form
for linear SISO-systems and linear MIMO-systems with strict relative
degree, respectively, see (2.1.5).

Theorem 2.2.4 (i) Consider a linear system (A,B,C) of form (2.2.1)
with ordered vector relative degree r = (r1, . . . , rm) ∈ N1×m. Set rs :=∑m

j=1 rj. Then there exists an invertible matrix U ∈ Rn×n such that

the coordinate transformation
(

ξ
η

)
:= Ux with

ξ(t) =
(
y1(t), . . . , y

(r1−1)
1 (t)

∣∣∣ . . .
∣∣∣ ym(t), . . . , y(rm−1)

m (t)
)T

∈ Rrs

,

η(t) ∈ Rn−rs

,

converts (A,B,C) into

d
dt

(
ξ
η

)
= Ã

(
ξ
η

)
+ B̃u

y = C̃

(
ξ
η

)
,





(2.2.3)
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where
[
Ã B̃

C̃ 0

]
=







0 1 0
...

. . .
. . .

0 . . . 0 1
R1

1,1 . . . R1
1,r1

0 . . . 0
...

...
0 . . . 0

R1
2,1 . . . R1

2,r2

· · ·

0 . . . 0
...

...
0 . . . 0

R1
m,1 . . . R1

m,rm

01×(n−rs)

...
01×(n−rs)

S1

0 . . . 0
...

...
0 . . . 0

R2
1,1 . . . R2

1,r1

0 1 0
...

. . .
. . .

0 . . . 0 1
R2

2,1 . . . R2
2,r2

0 . . . 0
...

...
0 . . . 0

R2
m,1 . . . R2

m,rm

01×(n−rs)

...
01×(n−rs)

S2

...
. . .

...

0 . . . 0
...

...
0 . . . 0

Rm
1,1 . . . Rm

1,r1

0 . . . 0
...

...
0 . . . 0

Rm
2,1 . . . Rm

2,r2

0 1 0
...

. . .
. . .

0 . . . 0 1
Rm

m,1 . . . Rm
m,rm

01×(n−rs)

...
01×(n−rs)

Sm

P1 0 . . . 0 P2 0 . . . 0 · · · Pm 0 . . . 0 Q







01×m

...
01×m

c1(n)A
r1−1B

01×m

...
01×m

c2(n)A
r2−1B
...

01×m

...
01×m

cm(n)A
rm−1B

0(n−rs)×m







1 0 . . . 0
0 . . . 0
...

...

0 . . . 0

0 . . . 0
1 0 . . . 0
0 . . . 0
...

...
0 . . . 0

· · ·

0 . . . 0
...

...

0 . . . 0
1 0 . . . 0

0m×(n−rs)




0




(2.2.4)
and Rj

i,k ∈ R, for i, j ∈ {1, . . . ,m} and k ∈ {1, . . . , ri}, S1, . . . , Sm ∈
R1×(n−rs), P1, . . . , Pm ∈ Rn−rs

and Q ∈ R(n−rs)×(n−rs).

(ii) In the following, the entries of the matrices in (2.2.4) and the
entries of the transformation matrix U are expressed explicitly in terms
of the system matrices A, B and C: Set

mi := #{rj | rj ≥ i , j ∈ {1, . . . ,m}} , i ∈ {1, . . . , r1} , (2.2.5)

the number of rj’s, j ∈ {1, . . . ,m}, such that rj ≥ i, and define

Γ :=



c1(n)A

r1−1B
...

cm(n)A
rm−1B


 ∈ Rm×m (2.2.6)
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C :=




c1(n)

...
c1(n)A

r1−1

c2(n)

...
c2(n)A

r2−1

...
cm(n)

...
cm(n)A

rm−1




∈ Rrs×n (2.2.7)

B :=
[
BΓ−1

[
e
(m)
1 , . . . , e(m)

m1

]
, ABΓ−1

[
e
(m)
1 , . . . , e(m)

m2

]
,

. . . , Ar1−1BΓ−1
[
e
(m)
1 , . . . , e(m)

mr1

]]
∈ Rn×rs

(2.2.8)

V ∈ Rn×(n−rs) : imV = ker C , and rkVTV = n− rs (2.2.9)

Û :=

[
C
N

]
∈ Rn×n and N := (VTV)−1VT

[
In − B(CB)−1C

]
(2.2.10)

Ti :=

[
0(ri+n−rs)×(

∑ i−1
j=1 rj)

Iri

0(n−rs)×ri

0(ri+n−rs)×(
∑

m
j=i+1 rj)

0ri×(n−rs)

In−rs

]
∈ R(ri+n−rs)×n (2.2.11)

Ĉi :=
[
Iri
, 0ri×(n−rs)

]
∈ Rri×(ri+n−rs) (2.2.12)

B̂i :=

[
e(ri+n−rs)
ri

,
(
TiÛAÛ

−1TT
i

)
e(ri+n−rs)
ri

, (2.2.13)

. . . ,
(
TiÛAÛ

−1TT
i

)ri−1

e(ri+n−rs)
ri

]
∈ R(ri+n−rs)×ri (2.2.14)
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N̂i :=
[
0(n−rs)×ri

, In−rs

] [
Iri+n−rs − B̂i(ĈiB̂i)

−1Ĉi

]
(2.2.15)

∈ R(n−rs)×(ri+n−rs)

Ûi :=




Irs 0rs×(n−rs)

0(n−rs)×(
∑ i−1

j=1 rj)
, N̂i

[
Iri

0(n−rs)×ri

]
, 0(n−rs)×(

∑
m
j=i+1 rj) In−rs




∈ Rn×n , (2.2.16)

for i ∈ {1, . . . ,m}, and finally

U := Ûm · Ûm−1 · . . . · Û1 · Û . (2.2.17)

Then, for i, j ∈ {1, . . .m}, the entries in (2.2.3) are given by

[
Ri

j,1, . . . , R
i
j,rj

]
=


ci(n)A

riB(CB)−1




0(
∑ j−1

µ=1 rµ)×rj

Irj

0(
∑

m
µ=j+1 rµ)×rj




+ ci(n)A
riV

[
0(n−rs)×rj

, In−rs

]
B̂j(ĈjB̂j)−1




(2.2.18)

Si = ci(n)A
riV (2.2.19)

[Pi, 0, . . . , 0] = N̂i

(
TiÛAÛ

−1TT
i

)
B̂i(ĈiB̂i)

−1 (2.2.20)

Q = NAV (2.2.10)
= (VTV)−1VT

[
I − B(CB)−1C

]
AV .
(2.2.21)

It is easy to see that the normal form (2.1.5) for linear single-input
single-output systems (A, b, c) of form (2.1.2) is contained in the normal

form (2.2.3)–(2.2.4) explicitly: if m = 1 the matrix Ã reduces to the two
left and right topmost and two left and right lowermost blocks of the
original matrix. Moreover, B̃ reduces to the first row of the topmost
and lowermost blocks and C̃ reduces to the topmost column of its left



2.2 MIMO-systems 37

and right block.

For linear MIMO-systems with strict relative degree r1 = · · · = rm =
r ∈ N all m1, . . . ,mr1

from (2.2.5) are equal to the dimension m of the

input and output. Thus all m ×m left upper blocks of Ã have dimen-
sion r × r. Moreover, the lower row blocks [Pi, 0, . . . , 0] ∈ R(n−rm)×r

have the same dimensions for all i ∈ {1, . . . ,m}, as well as the right col-

umn blocks




01×(n−rs)

...
01×(n−rs)

Si


 ∈ Rr×(n−rm) and Q ∈ R(n−rm)×(n−rm). By this

observation, one may obtain the following well know normal form for
linear MIMO-systems with strict relative degree. Note that the normal
form matrices (A,B,C) from Corollary 2.2.5 differ slightly from the nor-
mal form (2.2.3)–(2.2.4): they are structured as the normal form (2.1.5)
for SISO-systems, which is more convenient for applications, see, for
example, Theorem 3.2.1.

Corollary 2.2.5 [IRT07, Lem. 3.5] Consider a linear system (A,B,C)
of form (2.2.1) with strict relative degree r ∈ N. Then there exists an
invertible matrix U ∈ Rn×n such that the coordinate transformation(

ξ
η

)
= Ux converts (A,B,C) into

d
dt

(
ξ
η

)
=




0 Im 0 0
...

. . .
. . .

...
0 . . . 0 Im 0
R1 . . . Rr S
P 0 . . . 0 Q




︸ ︷︷ ︸
=:A

(
ξ
η

)
+




0
...
0

CAr−1B
0




︸ ︷︷ ︸
=:B

u

y = [Im, 0, . . . , 0]︸ ︷︷ ︸
=:C

(
ξ
η

)
,





(2.2.22)

where R1, . . . , Rr ∈ Rm×m, S ∈ Rm×(n−rm), P ∈ R(n−rm)×m and
Q ∈ R(n−rm)×(n−rm) and the transformation matrix U can be presented
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explicitly in terms of the system matrices A, B and C as follows:

[R1, . . . , Rr S] = CAr
[
B(CB)−1 V

]
, (2.2.23)

[P, 0, . . . , 0] = NAB(CB)−1 , (2.2.24)

Q = NAV , (2.2.25)

where

C :=




C
CA
...

CAr−1


 ∈ Rrm×n ,

B := [B,AB, . . . , Ar−1B] ∈ Rn×rm ,

V ∈ Rn×rm with imV = ker C ,

and

U :=

[
C
N

]
, N := (VTV)−1VT

[In − B(CB)−1C] .

Proof. As observed above: for strict relative degree r ∈ N, r1 = · · · =
rm = r and by (2.2.5) follows m1 = · · · = mr1

= m. Moreover, rs = rm
and by (2.2.6)–(2.2.8) and (2.2.16)

Γ := CAr−1B

C =







c1(n)

...
c1(n)A

r−1



/



c2(n)

...
c2(n)A

r−1



/

. . .

/



cm(n)

...
cm(n)A

r−1





 ∈ Rrm×n

B =
[
BΓ−1Im, ABΓ−1Im, . . . , A

r1−1BΓ−1Im
]
∈ Rn×rm

=
[
B,AB, . . . , Ar1−1B

]
Γ−1 = BΓ−1

Ûi =




Irm 0rm×(n−rm)

0(n−rm)×(i−1)m, N̂i

[
Ir

0(n−rm)×r

]
, 0(n−rm)×(m−i)r In−rm


,
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for i ∈ {1, . . . ,m}. Choose a permutation matrix

Π :=




e1(n)

er+1
(n)

...

e
(m−1)r+1
(n)

e2(n)

er+2
(n)

...

e
(m−1)r+2
(n)

...
er
(n)

e2r
(n)

...
emr
(n)

emr+1
(n)

emr+2
(n)

...
en
(n)




=




1 0 . . . 0

0 . . . 0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0 . . . 0

0 1 0 . . . 0

0 . . . 0 1 0 . . . 0
...

. . .
...

0 . . . 0 1 0 . . . 0

...
0 . . . 0 1 0 . . . 0

0 . . . 0 1 0 . . . 0
...

. . .

0 . . . 0 1

0rm×(n−rm)

0(n−rm)×rm In−rm




,

with inverse

Π−1 = ΠT

=
[
e
(n)
1 , e

(n)
r+1, . . . , e

(n)
(m−1)r+1 . . . e

(n)
r , e

(n)
2r , . . . , e

(n)
mr e

(n)
mr+1, e

(n)
mr+2, . . . , e

(n)
n

]

and let

Π1 :=
[
Irm, 0rm×(n−rm)

]
Π

[
Irm

0(n−rm)×rm

]
.

For all i ∈ {1, . . . ,m} follows ΠÛi = Π and Π1C = C. Thus, by (2.2.17)

ΠU = ΠÛ , and (2.2.10) yields

N = (VTV)−1V
[
In − BΓ−1

(
Π−1

1 CBΓ−1
)−1

Π−1
1 C

]

= (VTV)−1V
[
In − BΓ−1Γ

(
CB
)−1

Π1Π−1
1 C

]
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and, setting V := V, for V ∈ Rn×(n−rm) from (2.2.9), gives N = N and
thus

U = ΠÛ = ΠU =

[
C
N

]
(2.2.26)

and it is easy to see that the coordinate transformation
(

ξ
η

)
= Ux

converts (A,B,C) into (A,B,C) = (ΠÃΠ−1,ΠB̃, C̃Π−1) in (2.2.22),

where (Ã, B̃, C̃) is given by (2.2.4).

It remains to show (2.2.23)–(2.2.25).

Note that for systems with strict relative degree r ∈ N the definition
of Ûi, i ∈ {1, . . . ,m}, yields

Ûm · Ûm−1 · . . . · Û1

=




Irm 0rm×(n−rm)

N̂1

[
Ir

0(n−rm)×r

]
, N̂2

[
Ir

0(n−rm)×r

]
, . . . , N̂m

[
Ir

0(n−rm)×r

]
In−rm


,

By (2.2.26) and the invertibility of Π follows that Û = U = Ûm · Ûm−1 ·
. . .·Û1·Û and thus invertibility of Û yields Ûm·Ûm−1·. . .·Û1 = In. Hence,

for all i ∈ {1, . . . ,m}, N̂i

[
Ir

0(n−rm)×r

]
= 0(n−rm)×r and by (2.2.15)

0(n−rm)×r

=
[
0(n−rm)×r, In−rm

] [
Ir+n−rm − B̂i(ĈiB̂i)

−1Ĉi

] [ Ir
0(n−rm)×r

]

(2.2.12)
= −

[
0(n−rm)×r, In−rm

]
B̂i(ĈiB̂i)

−1 (2.2.27)

which, in view of (2.2.18) and (2.2.19), yields (2.2.23). Note that U
−1

=
[B(CB)−1 | V]. By (2.2.20), for i ∈ {1, . . . ,m}, follows

[Pi, 0, . . . , 0] = N̂i

(
TiΠ

−1UAU
−1

ΠTT
i

)
B̂i(ĈiB̂i)

−1
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and

[Pi, 0, . . . , 0]

(2.2.11)
=

[
0(n−rm)×rm

∣∣∣∣
[
0(n−rm)×r, In−rm

]

·
[
Ir+n−rm − B̂i(ĈiB̂i)

−1Ĉi

] [
0r×(n−rm)

In−rm

] ]

·Π−1UAU
−1

Π




0(i−1)r×(r+n−rm)[
Ir, 0r×(n−rm)

]

0(m−i)r×(r+n−rm)[
0(n−rm)×r, In−rm

]


 B̂i(ĈiB̂i)

−1

(2.2.12)
(2.2.27)

=
[
0(n−rm)×rm

∣∣ In−rm

]
Π−1

[
C
N

]
A[B(CB)−1 | V]Π




0(i−1)r×r

Ir

0(m−i)r×r

0(n−rm)×r


 ,

which, in view of the definition of permutation matrix Π, yields (2.2.24).
Finally (2.2.21) leads directly to (2.2.25) and the proof is complete. 2

The remainder of this section contains the proof for Theorem 2.2.4.
It is structured as follows: First linearly independence of the matrices
C and B defined by (2.2.7) and (2.2.8), respectively, is shown. Then the
proof for the normal form including the construction of the coordinate
transformation is given.

2.2.3 Linearly independence of C and B

Recall the matrices C ∈ Rrs×n defined by (2.2.7) and B ∈ Rn×rs

defined
by (2.2.8). Note that, for mi, i ∈ {1, . . . , r1}, defined by (2.2.5) it holds
true that m = m1 ≥ m2 ≥ · · · ≥ mr1

≥ 1 and

rs =
m∑

j=1

rj =
m∑

j=1

r1∑

i=1

max{rj − i+ 1, 0}
max{rj − i+ 1, 1} =

r1∑

i=1

m∑

j=1

max{rj − i+ 1, 0}
max{rj − i+ 1, 1}

︸ ︷︷ ︸
#{rj | rj≥i , j∈{1,...,m}}

=

r1∑

i=1

mi .



42 2 Linear systems

The following lemma shows that C and B have full rank.

Lemma 2.2.6 If a linear system (A,B,C) of form (2.2.1) has ordered
vector relative degree r = (r1, . . . , rm) ∈ N1×m, then C and B defined
by (2.2.7) and (2.2.8), respectively, have full rank.

Proof. Note that
∑m

j=1 rj ≤ n. It suffices to show that CB ∈ Rrs×rs

is invertible.

First consider the first m1 = m rows of CB. Since (A,B,C) has
relative degree r = (r1, . . . , rm) ∈ N1×m it follows that

CB =




c1(n)

...
c1(n)A

r1−1

...

cm(n)

...
cm(n)A

rm−1




B =




c1(n)A
0B

...
c1(n)A

r1−1B
...

cm(n)A
0B

...
cm(n)A

rm−1B




=




0(r1−1)×m1

Γ1
(m1)
...

0(rm−1)×m1

Γm
(m1)




(2.2.28)

where Γi
(m1)

, i ∈ {1, . . . ,m}, is the i-th row of Γ. Thus

CBΓ−1
[
e
(m)
1 , . . . , e(m)

m1

]
=




0(r1−1)×m1

Γ1
(m1)
...

0(rm−1)×m1

Γm
(m1)




Γ−1Im1
=




0(r1−1)×m1

e1(m1)
...

0(rm−1)×m1

em1

(m1)




,

which shows that CBΓ−1
[
e
(m)
1 , . . . , e

(m)
m1

]
has rank m1 = m.

Next consider CAi−1BΓ−1
[
e
(m)
1 , . . . , e

(m)
mi

]
, for i ∈ {2, . . . , r1}. Since

(A,B,C) has relative degree r = (r1, . . . , rm) ∈ N1×m it follows with
the conventions

(i) 0(rj−i)×mi
is of dimension zero, if i ≥ rj , j ∈ {1, . . . ,m}, and
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(ii) Γj
(m) and ej

(mi)
do not exist in the following matrices if j > mi,

j ∈ {1, . . . ,m}, and

(iii) Xµ×ν ∈ Rµ×ν is an arbitrarily matrix of dimension µ× ν,

that

CAi−1BΓ−1
[
e
(m)
1 , . . . , e(m)

mi

]

=




c1(n)

...
cm(n)A

rm−1


Ai−1

[
b
(n)
1 , . . . , b(n)

m

]
Γ−1

[
e
(m)
1 , . . . , e(m)

mi

]

=







c1(n)A
i−1B
...

c1(n)A
r1−1B
...

c1(n)A
r1+i−2B




/
. . .

/




cm(n)A
i−1B
...

cm(n)A
rm−1B
...

cm(n)A
rm+i−2B







Γ−1
[
e
(m)
1 , . . . , e(m)

mi

]

=




0(r1−i)×m

Γ1
(m)

X(min{r1,i−1})×m
...

0(rm−i)×m

Γm
(m)

X(min{rm,i−1})×m




Γ−1
[
e
(m)
1 , . . . , e(m)

mi

]

=




0(r1−i)×mi

e1(mi)

X(min{r1,i−1})×mi
...

0(rm−i)×mi

em
(mi)

X(min{rm,i−1})×mi




, i ∈ {2, . . . , r1} .
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Thus, for all i ∈ {1, . . . , r1}, the mi rows of CAi−1BΓ−1
[
e
(m)
1 , . . . , e

(m)
mi

]

are linearly independent, and since

CB =



01×mr1−1
e1(mr1

)

. . . e1(mr1−1)
X(r1−1)×mr1

0(r1−2)×m2
. . . X(r1−2)×mr1−1

0(r1−1)×m1
e1(m2)

. . .

e1(m1)
X1×m2

0(r2−r1+1)×mr1−1
e2(mr1

)

. . . e2(mr1−1)
X(min{r1−1,r2})×mr1

0(r2−2)×m2
. . . X(min{r1−2,r2})×mr1−1

0(r2−1)×m1
e2(m2)

. . .

e2(m1)
X1×m2

...
...

...
...

0(rm−r1+1)×mr1−1
em
(mr1

)

. . . em
(mr1−1)

X(min{r1−1,rm})×mr1

0(rm−2)×m2
. . . X(min{r1−2,rm})×mr1−1

0(rm−1)×m1
em
(m2)

. . .

em
(m1)

X1×m2








r1





r2

...



rm

︸ ︷︷ ︸
m1

︸ ︷︷ ︸
m2

. . . ︸ ︷︷ ︸
mr1−1

︸ ︷︷ ︸
mr1

(2.2.29)

it follows that CB is invertible. 2

As an immediate consequence of Lemma 2.2.6 it follows that for lin-
ear systems (A,B,C) of form (2.2.1) with vector relative degree r =
(r1, . . . , rm) ∈ N1×m, the matrices C ∈ Rm×n and B ∈ Rn×m have full
rank m.

2.2.4 Proof of the normal form

Lemma 2.2.6 shows that the rows of C qualify as basis, which, if rs =∑m
j=1 rj < n, has to be completed, for a coordinate transformation in

Rn. Consider a matrix V ∈ Rn×(n−rs) given by (2.2.9). For Û and N
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given by (2.2.10) it follows from

[
C
N

] [
B(CB)−1,V

]
= In

that Û has the inverse

Û−1 =
[
B(CB)−1,V

]
. (2.2.30)

Although Û already qualifies as coordinate transformation in Rn we do
not obtain a normal form which has the same structure properties as
the normal form (2.1.5) for linear SISO-systems (2.1.2), i.e. the trans-

formation matrix Û will not lead in general to a matrix Ã as in (2.2.4).
Therefore, it is necessary to consider the transformation matrix U given
by (2.2.17) and Ti, Ĉi, B̂i, N̂i, Ûi, for i ∈ {1, . . . ,m}, defined in (2.2.11)–
(2.2.16), respectively.

Proof of Theorem 2.2.4. Step 1 : First it is shown that the coordi-
nate transformation

( χ
ζ

)
:= Ûx with

χ(t) =
(
y1(t), . . . , y

(r1−1)
1 (t)

∣∣∣ . . .
∣∣∣ ym(t), . . . , y(rm−1)

m (t)
)T

∈ Rrs

,

ζ(t) ∈ Rn−rs

given by (2.2.9) and (2.2.10) converts (2.2.1) into

d
dt

(
χ
ζ

)
= Â

(
χ
ζ

)
+ B̃u

y = C̃

(
χ
ζ

)
,





(2.2.31)

where

Â =




Â1,1 Â1,2 . . . Â1,m Ŝ1

Â2,1 Â2,2 . . . Â2,m Ŝ2

...
...

. . .
...

...

Âm,1 Âm,2 . . . Âm,m Ŝm

P̂1 P̂2 . . . P̂m Q̂



, (2.2.32)
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and, for i, j ∈ {1, . . . ,m},

Âi,i :=




0 1 . . . 0
...

. . .

0 . . . 0 1

R̂i
i,1 . . . R̂i

i,ri


 ∈ Rri×ri ,

Âi,j :=




0 . . . 0
...

...
0 . . . 0

R̂i
j,1 . . . R̂

i
j,rj


 ∈ Rri×rj , j 6= i,

where R̂j
i,k ∈ R, for k ∈ {1, . . . , ri} and i, j ∈ {1, . . . ,m}, and, for

i ∈ {1, . . . ,m},

Ŝi :=

[
0(ri−1)×(n−rs)

Si

]
∈ Rri×(n−rs) ,

P̂i ∈ R(n−rs)×ri ,

Q̂ ∈ R(n−rs)×(n−rs) .





(2.2.33)

Step 1a): First the structure of Â is proven. By the definition of Û ,
see (2.2.10), it follows that

Â = ÛAÛ−1 =

[
C
N

]
A
[
B(CB)−1,V

]
=

[
CAB(CB)−1 CAV
NAB(CB)−1 NAV

]
.

Thus

[
P̂1, . . . , P̂m

]
= NAB(CB)−1 ∈ R(n−rs)×rs) (2.2.34)

Q̂ = NAV ∈ R(n−rs)×(n−rs) . (2.2.35)

Therefore, the definitions of C and B, see (2.2.7) and (2.2.8), respectively,
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yield

CAB(CB)−1 =




c1(n)A
...

c1(n)A
r1

...

cm(n)A
...

cm(n)A
rm




B(CB)−1

=




C2
(n)

...
Cr1

(n)

c1(n)A
r1

...

C
∑m−1

j=1 rj+2

(n)

...
Crs

(n)

cm(n)A
rm




B(CB)−1 =




(CB)2(rs)

...
(CB)r1

(rs)

c1(n)A
r1B

...

(CB)
∑m−1

j=1 rj+2

(rs)

...
(CB)rs

(rs)

cm(n)A
rmB




(CB)−1

=




e2(rs)

...
er1

(rs)

c1(n)A
r1B(CB)−1

...

e
∑m−1

j=1 rj+2

(rs)

...
ers

(rs)

cm(n)A
rmB(CB)−1




. (2.2.36)
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Furthermore, invoking imV = ker C, it follows that

CAV =




c1(n)A
...

c1(n)A
r1−1

c1(n)A
r1

...

cm(n)A
...

cm(n)A
rm−1

cm(n)A
rm




V =




C2
(n)

...
Cr1

(n)

c1(n)A
r1

...

(C)
∑m−1

j=1 rj+2

(n)

...
(C)rs

(n)

cm(n)A
rm




V =




01×(n−rs)

...
01×(n−rs)

c1(n)A
r1V

...

01×(n−rs)

...
01×(n−rs)

cm(n)A
rmV




(2.2.19)
=




0(r1−1)×(n−rs)

S1

...

0(rm−1)×(n−rs)

Sm



, (2.2.37)

Hence (2.2.36) and (2.2.37) and setting, for i ∈ {1, . . . ,m},

[
R̂i

1,1, . . . , R̂
i
1,r1

. . . R̂i
m,1, . . . , R̂

i
m,rm

]
:= ci(n)A

riB(CB)−1 , (2.2.38)

yield the structure of Â as given in (2.2.32)–(2.2.33).

Step 1b): Next the structure of B̃ is proven. By the definition of Û ,
see (2.2.10), it follows that

B̃ = ÛB =

[
CB

(VTV)−1VT
[
B − B(CB)−1CB

]
]
.

Recall (2.2.28), i.e.

CB =




0(r1−1)×m

Γ1
(m)
...

0(rm−1)×m

Γm
(m)




=




0(r1−1)×m

c1(n)A
r1−1B
...

0(rm−1)×m

cm(n)A
rm−1B



.
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Furthermore

(VTV)−1VT
[
B − B(CB)−1CB

]

= (VTV)−1VT
[
BΓ−1Γ − B(CB)−1CBΓ−1

[
e
(m)
1 , . . . , e(m)

m

]

︸ ︷︷ ︸
=
[
B

(n)
1 ,...,B

(n)
m

]

Γ
]

= (VTV)−1VT
[
BΓ−1Γ − B (CB)−1

[
(CB)

(rs)
1 , . . . , (CB)(r

s)
m

]

︸ ︷︷ ︸
=
[
e
(rs)
1 ,...,e

(rs)
m

]

Γ
]

= (VTV)−1VT
([ [

B(n)
1 , . . . ,B(n)

m

]
−
[
B(n)

1 , . . . ,B(n)
m

])
Γ

= 0(n−rs)×m ,

which shows the structure of B̃ as in (2.2.4).

Step 1c): Now the structure of C̃ is shown. Since the rows of C are
also rows of C, i.e.

C =




c1(n)

c2(n)

...
cm(n)


 =




C1
(n)

Cr1+1
(n)

...

Crs−rm+1
(n)




and since imV = ker C it follows that CV = 0m×(n−rs). Furthermore

CB(CB)−1 =




(CB)
1
(rs)

(CB)
r1+1
(rs)

...

(CB)
rs−rm+1
(rs)




(CB)−1

=




1 01×(r1−1) 0 01×(r2−1) 0 . . . 0 01×(rm−1)

0 01×(r1−1) 1 01×(r2−1) 0 . . . 0 01×(rm−1)

0 01×(r1−1) 0 01×(r2−1) 1
...

...
...

...
...

...
. . . 0 01×(rm−1)

0 01×(r1−1) 0 01×(r2−1) 0 1 01×(rm−1)



.
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Hence
C̃ = CÛ−1 =

[
CB(CB)−1, CV

]

yields the structure of C̃ as in (2.2.4).

Step 2 : Finally it is shown that the coordinate transformation
(

ξ
η

)
:=

Ux given by (2.2.9)–(2.2.17) with

ξ(t) =
(
y1(t), . . . , y

(r1−1)
1 (t)

∣∣∣ . . .
∣∣∣ ym(t), . . . , y(rm−1)

m (t)
)T

∈ Rrs

,

η(t) ∈ Rn−rs

,

converts the linear system (A,B,C) of form (2.2.1) into (2.2.3) with

Ã, B̃, C̃ as in (2.2.4) with matrix components of Ã as in (2.2.18)–(2.2.21).

Recall the structure of Â given by (2.2.32)–(2.2.33). Consider, for
i ∈ {1, . . . ,m}, the matrices

Âi :=




0 1 . . . 0
...

. . .

0 . . . 0 1

R̂i
i,1 . . . R̂i

i,ri

Ŝi

P̂i Q̂




=

[
Âi,i Ŝi

P̂i Q̂

]
= TiÂT

T
i

= TiÛAÛ
−1TT

i ∈ R(ri+n−rs)×(ri+n−rs) ,

Ĉi :=
[
1, 01×(ri+n−rs−1)

]
= e1(ri+n−rs) = ei

(m)C̃T
T
i ∈ R1×(ri+n−rs) ,

B̂i :=




0(ri−1)×1

1

0(n−rs)×1


 = e(ri+n−rs)

ri
= TiB̃Γ−1e

(m)
i ∈ Rri+n−rs

.

Then




Ĉi

ĈiÂi

...

ĈiÂ
ri−1
i


 =




e1(ri+n−rs)

e2(ri+n−rs)

...
eri

(ri+n−rs)


 =

[
Iri
, 0ri×(n−rs)

]

(2.2.12)
= Ĉi ∈ Rri×(ri+n−rs)
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and
[
B̂i, ÂiB̂i, . . . , Â

ri−1
i B̂i

]
=

[
e(ri+n−rs)
ri

, . . . , Âri−1
i e(ri+n−rs)

ri

]

(2.2.14)
= B̂i ∈ R(ri+n−rs)×ri .

More precisely B̂i is structured as follows:

B̂i =




0
...
0
0
1

0 . . . 0 1
... . . . 1 ∗
0 . . . . . .

...
1 ∗ . . . ∗
∗ . . . ∗

0(n−rs)×1 X(n−rs)×(ri−1)




∈ R(ri+n−rs)×ri . (2.2.39)

Since ĈiÂ
j
i B̂i = 0, for all j ∈ {0, . . . , ri − 2}, and ĈiÂ

ri−1
i B̂i = 1, it

follows that the linear SISO-system

ż = Âiz + B̂iv

w= Ĉiz

}

has relative degree ri. Furthermore, it follows that

ĈiB̂i =




0 . . . 0 1
... . .

.
. .

. ∗
0 1 . .

. ...
1 ∗ . . . ∗




and
(
ĈiB̂i

)−1

=




∗ . . . ∗ 1
... . .

.
. .

.
0

∗ 1 . .
. ...

1 0 . . . 0




(2.2.40)

and thus

B̂i

(
ĈiB̂i

)−1

=




1 0 . . . 0

∗ . . .
. . .

...
...

. . .
. . . 0

∗ . . . ∗ 1
∗ . . . ∗

0
...
0
0
1

X(n−rs)×(ri−1) 0(n−rs)×1




∈ R(ri+n−rs)×ri (2.2.41)
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and

[
0(n−rs)×ri

, In−rs

]
B̂i

(
ĈiB̂i

)−1

=
[
X(n−rs)×(ri−1), 0(n−rs)×1

]
. (2.2.42)

Set V̂i :=

[
0ri×(n−rs)

In−rs

]
. Then ker Ĉi = im V̂i and thus

[ [
Iri
, 0ri×(n−rs)

]
(
V̂iV̂T

i

)−1

V̂T
i

[
Iri+n−rs − B̂i(ĈiB̂i)

−1Ĉi

]
]

(2.2.12), (2.2.15)
=

[
Ĉi

N̂i

]

︸ ︷︷ ︸
=[0(n−rs)×ri

,In−rs ] (2.2.43)

is invertible with inverse

[
Ĉi

N̂i

]−1

=
[
B̂i(ĈiB̂i)

−1, V̂i

]
. (2.2.44)

Furthermore, it follows that

Ĉi

[
0ri×(n−rs)

In−rs

]
=
[
Iri
, 0ri×(n−rs)

] [0ri×(n−rs)

In−rs

]
= 0ri×(n−rs)

Ĉi

[
Iri

0(n−rs)×ri

]
=
[
Iri
, 0ri×(n−rs)

] [ Iri

0(n−rs)×ri

]
= Iri

and, in view of (2.2.43),

N̂i

[
0ri×(n−rs)

In−rs

]
=
[
0(n−rs)×ri

, In−rs

]

·
[[

0ri×(n−rs)

In−rs

]
− B̂i(ĈiB̂i)

−1Ĉi

[
0ri×(n−rs)

In−rs

]]

= In−rs .

This leads, for i ∈ {1, . . . ,m}, to the structural representation of the
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transformation matrix Ûi, namely




I∑ i−1
j=1 rj

0(
∑ i−1

j=1 rj)×ri
0(
∑ i−1

j=1 rj)

×(
∑m

j=i+1 rj)

0(
∑ i−1

j=1 rj)×(n−rs)

0ri×(
∑ i−1

j=1 rj)
Ĉi

[
Iri

0(n−rs)×ri

]

︸ ︷︷ ︸
=Iri

0ri×(
∑ i−1

j=1 rj)
Ĉi

[
0ri×(n−rs)

In−rs

]

︸ ︷︷ ︸
=0ri×(n−rs)

0(
∑m

j=i+1 rj)

×(
∑ i−1

j=1 rj)

0(
∑

m
j=i+1 rj)×ri

I∑m
j=i+1 rj

0(
∑

m
j=i+1 rj)×(n−rs)

0(n−rs)×(
∑ i−1

j=1 rj)
N̂i

[
Iri

0(n−rs)×ri

]
0(n−rs)×(

∑
m
j=i+1 rj) N̂i

[
0ri×(n−rs)

In−rs

]

︸ ︷︷ ︸
=In−rs




(2.2.16)
= Ûi .

Since

[
Iri
, 0ri×(n−rs)

]
B̂i(ĈiB̂i)

−1 = ĈiB̂i(ĈiB̂i)
−1 = Iri

,

it follows from (2.2.43) and (2.2.44) that the inverse of the transforma-

tion matrix Ûi is given by

Û−1
i =



I∑ i−1
j=1 rj

0(
∑ i−1

j=1 rj)×ri
0(
∑ i−1

j=1 rj)

×(
∑m

j=i+1 rj)

0(
∑ i−1

j=1 rj)×(n−rs)

0ri×(
∑ i−1

j=1 rj)

[
Iri
, 0ri×(n−rs)

]

·B̂i(ĈiB̂i)
−1

︸ ︷︷ ︸
=Iri

0ri×(
∑ i−1

j=1 rj)

[
Iri
, 0ri×(n−rs)

]
V̂i︸ ︷︷ ︸

=0ri×(n−rs)

0(
∑m

j=i+1 rj)

×(
∑ i−1

j=1 rj)

0(
∑

m
j=i+1 rj)×ri

I∑m
j=i+1 rj

0(
∑

m
j=i+1 rj)×(n−rs)

0(n−rs)×(
∑ i−1

j=1 rj)

[
0(n−rs)×ri

, In−rs

]

·B̂i(ĈiB̂i)
−1

0(n−rs)
×(
∑m

j=i+1 rj)

[
0(n−rs)×ri

, In−rs

]
V̂i︸ ︷︷ ︸

=In−rs




.

(2.2.45)

Recall Â = ÛAÛ−1 given by (2.2.32)–(2.2.33). First apply the trans-
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formation Û1. Then, omitting the dimensions of the zeros and identity
matrices in Û1, it follows that

Û1ÂÛ
−1
1

=




I 0 0
0 I 0

N̂1

[
I
0

]
0 N̂1

[
0
I

]

︸ ︷︷ ︸
=I







Â1,1 . . . Â1,m Ŝ1

...
. . .

...
...

Âm,1 . . . Âm,m Ŝm

P̂1 . . . P̂m Q̂







[I, 0] B̂1(Ĉ1B̂1)−1

︸ ︷︷ ︸
=I

0 0

0 I 0

[0, I] B̂1(Ĉ1B̂1)−1 0 I




=




Â1,1 Â1,2 . . . Â1,m Ŝ1

Â2,1

...

Âm,1

Â2,2 . . . Â2,m

...
...

Âm,2 . . . Âm,m

Ŝ2

...

Ŝm

N̂1

[
I
0

]
Â1,1 + N̂1

[
0
I

]
P̂1

N̂1

[
I
0

][
Â1,2, . . . , Â1,m

]

+I
[
P̂2, . . . , P̂m

] N̂1

[
I
0

]
Ŝ1 + N̂1

[
0
I

]
Q̂




·




[I, 0] B̂1(Ĉ1B̂1)−1

︸ ︷︷ ︸
=I

0 0

0 I 0

[0, I] B̂1(Ĉ1B̂1)−1 0 I




=




Â1,1I + Ŝ1 [0, I] B̂1(Ĉ1B̂1)−1 Â1,2 . . . Â1,m Ŝ1


Â2,1

...

Âm,1


+



Ŝ2

...

Ŝm


 [0, I] B̂1(Ĉ1B̂1)−1

Â2,2 . . . Â2,m

...
...

Âm,2 . . . Âm,m

Ŝ2

...

Ŝm

N̂1

[[
I
0

]
Â1,1+

[
0
I

]
P̂1

]
[I, 0] B̂1(Ĉ1B̂1)−1

+N̂1

[[
I
0

]
Ŝ1+

[
0
I

]
Q̂

]
[0, I] B̂1(Ĉ1B̂1)−1

N̂1

[
I
0

][
Â1,2, . . . , Â1,m

]

+
[
P̂2, . . . , P̂m

] N̂1

[
I
0

]
Ŝ1 + Q̂




.

(2.2.46)

Following, the entries of Û1ÂÛ
−1
1 are considered in detail. For the

two most upper blocks of the left column block of Û1ÂÛ
−1
1 it follows
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that, for j ∈ {2, . . . ,m}, the entries are given by

Â1,1Ir1
+ Ŝ1

[
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1

= Â1,1 +

[
0(r1−1)×(n−rs)

S1

] [
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1

(2.2.37)
=

[
0(r1−1)×1, Ir1−1[
R̂i

1,1, . . . , R̂
i
1,r1

]
]

+

[
0(r1−1)×(n−rs)

c1(n)A
r1V

] [
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1

(2.2.38)
=




0(r1−1)×1, Ir1−1

c1(n)A
r1B(CB)−1

[
Ir1

0(rs−r1)×r1

]



+

[
0(r1−1)×(n−rs)

c1(n)A
r1V

] [
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1 (2.2.47)

and

Âj,1 + Ŝj

[
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1

(2.2.37)
=

[
0(rj−1)×r1[

R̂j
1,1, . . . , R̂

j
1,r1

]
]

+

[
0(rj−1)×(n−rs)

cj(n)A
rjV

]
[
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1

(2.2.38)
=




0(rj−1)×r1

cj(n)A
rjB(CB)−1

[
Ir1

0(rs−r1)×r1

]



+

[
0(rj−1)×(n−rs)

cj(n)A
rjV

]
[
0(n−rs)×r1

, Ir1

]
B̂1(Ĉ1B̂1)−1 . (2.2.48)

The entries of the two most right blocks of the bottom row block of
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Û1ÂÛ
−1
1 are, for j ∈ {2, . . . ,m}, given by

N̂1

[
Ir1

0(n−rs)×r1

]
Â1,j

(2.2.43)
=

[
0(n−rs)×r1

, In−rs

] [
Ir1+n−rs − B̂1(Ĉ1B̂1)−1Ĉ1

]

·
[

Ir1

0(n−rs)×r1

] [ 0(r1−1)×rj[
R̂1

j,1, . . . , R̂
1
j,rj

]
]

(2.2.12)
=

[
0(n−rs)×r1

, In−rs

] [ Ir1

0(n−rs)×r1

][ 0(r1−1)×rj[
R̂1

j,1, . . . , R̂
1
j,rj

]
]

−
[
0(n−rs)×r1

, In−rs

]
B̂1(Ĉ1B̂1)−1

[
Ir1
, 0r1×(n−rs)

]

·
[

Ir1

0(n−rs)×r1

] [ 0(r1−1)×rj[
R̂1

j,1, . . . , R̂
1
j,rj

]
]

(2.2.42)
= 0r1×rj

−
[
X(n−rs)×(r1−1), 0(n−rs)×1

]
[

0(r1−1)×rj[
R̂1

j,1, . . . , R̂
1
j,rj

]
]

= 0r1×rj
(2.2.49)

and

N̂1

[
Ir1

0(n−rs)×r1

]
Ŝj

(2.2.37)
=

[
0(n−rs)×r1

, In−rs

] [
Ir1+n−rs − B̂1(Ĉ1B̂1)−1Ĉ1

]

·
[

Ir1

0(n−rs)×r1

] [
0(r1−1)×rj

S1

]

(2.2.49)
= 0r1×rj

. (2.2.50)

Finally, the left bottom block of the first column block of Û1ÂÛ
−1
1 is
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given by

N̂1

[[
I
0

]
Â1,1 +

[
0
I

]
P̂1

]
[I, 0] B̂1(Ĉ1B̂1)−1

+ N̂1

[[
I
0

]
Ŝ1 +

[
0
I

]
Q̂

]
[0, I] B̂1(Ĉ1B̂1)−1

= N̂1

([
Â1,1

P̂1

]
[I, 0] +

[
Ŝ1

Q̂

]
[0, I]

)
B̂1(Ĉ1B̂1)−1

= N̂1Â1B̂1(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1

V̂T
1

[
Ir1+n−rs − B̂1(Ĉ1B̂1)−1Ĉ1

]
Â1B̂1(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1

V̂T
1

[
Â1B̂1 − B̂1(Ĉ1B̂1)−1Ĉ1Â1B̂1

]
(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1

V̂T
1

[[
(B̂1)

(r1+n−rs)
2 , . . . , (B̂1)(r1+n−rs)

r1
, ∗
]

−B̂1(Ĉ1B̂1)−1
[
(Ĉ1B̂1)

(r1)
2 , . . . , (Ĉ1B̂1)

(r1)
2 , ∗

]]
(Ĉ1B̂1)−1

=
(
V̂1V̂T

1

)−1

V̂T
1

[[
(B̂1)

(r1+n−rs)
2 , . . . , (B̂1)(r1+n−rs)

r1
, ∗
]

− B̂1

[
0 ∗

Ir1−1 ∗

]]
(Ĉ1B̂1)−1

(2.2.40)
=

(
V̂1V̂T

1

)−1

V̂T
1 [0, . . . , 0, ∗]




∗ . . . ∗ 1
... . .

.
. .

.
0

∗ 1 . .
. ...

1 0 . . . 0




=
(
V̂1V̂T

1

)−1

V̂T
1 [∗, 0, . . . , 0] . (2.2.51)

Hence the representation of Û1ÂÛ
−1
1 , see (2.2.46), and the equations

(2.2.47)–(2.2.51) show that only the first r1 columns of Â change when

applying the transformation Û1. Furthermore the first r1 columns of
Û1ÂÛ

−1
1 are equal to the first r1 columns of Ã and by (2.2.47)–(2.2.51)

equations (2.2.18) and (2.2.20) hold for i = 1.
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Moreover, an application of the transformation Ûi, i ∈ {2, . . .m},
has the similar effect as in (2.2.46)–(2.2.51) on the ri columns from

column number
∑i−1

j=1 rj + 1 to column number
∑i

j=1 rj of the (already

by Û1, . . . , Ûi−1 transformed) matrix
[
Ûi−1 . . . Û1ÂÛ

−1
1 . . . Û−1

i−1

]
, which,

when finally all m transformation matrices Ûi are applied, yields (2.2.4)
and (2.2.18)–(2.2.21). This completes the proof. 2

Although the proof of Theorem 2.2.4 is very technical only basic con-
cepts from linear algebra are used. It might be also possible to prove the
result using the ideas for nonlinear MIMO-systems from [Isi99, Sec. 11].
However, the proof given here is independent of any knowledge about
nonlinear systems, so the theorem is an autonomous result. Moreover,
some of the following results of the present thesis are conclusions for
linear MIMO-systems which are shown using the normal form. So, it is
reasonable to have some better understanding of the structure of such
systems which is successfully accomplished by the above.

2.3 Zero dynamics and right-invertibility

This section comprises first applications of the normal form (2.2.3)–
(2.2.4) for linear MIMO-systems (A,B,C) of form (2.2.1): characteri-
zations of the system’s zero dynamics and right-invertibility in terms of
the normal form.

The notion of zero dynamics for (nonlinear) systems goes back to
works of C. I. Byrnes and A. Isidori, see [BI84]. In [Isi95] the author
considers the “Problem of Zeroing the Output : Find [. . . ] pairs consist-
ing of an initial state x0 and an input function u0(·) [. . . ], such that the
corresponding output y(t) is identically zero for all t [. . . ]”.

The definition for the zero dynamics of a linear system given in the
present work is very similar to Isidori [Isi95, pp. 163-164]. While Isidori’s
definition is based on the normal form already, here the zero dynam-
ics are considered as a subset of the system’s behaviour, compare, for
example, [IM07, Def. 4.1].

Furthermore, exponential stability of linear systems and exponential
stability of the zero dynamics is defined as follows:
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Definition 2.3.1 Introduce the behaviour of a linear system (A,B,C)
of form (2.2.1):

B(A,B,C)

:=





(x, u, y) ∈ C1([0,∞) → Rn)
×Cpw([0,∞) → Rm)
×C1([0,∞) → Rm)

(x, u, y) solves (2.2.1)



 .

(i) The zero dynamics of a linear system (A,B,C) of form (2.2.1)
are defined as the real vector space of trajectories

ZD(A,B,C) :=
{

(x, u, y) ∈ B(A,B,C)
∣∣∣ y ≡ 0 on [0,∞)

}
.

(ii) A linear system ẋ = Ax, for A ∈ Rn×n, is called exponentially
stable on [0,∞) if, and only if,

∃M,λ > 0 ∀ t ≥ 0 : ‖x(t)‖ ≤Me−λt‖x(0)‖ ,

for all solutions x of ẋ = Ax.

A is called Hurwitz if, and only if, all its eigenvalues have a neg-
ative real part, see [Son98, Def. C.5.2], which is equivalent to
ẋ = Ax being exponentially stable, see [Son98, Prop. 5.5.5].

(iii) The zero dynamics of a linear system (A,B,C) of form (2.2.1)
are called exponentially stable if, and only if,

∃M,λ > 0 ∀ (x, u, y) ∈ ZD(A,B,C) ∀ t ≥ 0 :

‖x(t)‖ ≤Me−λt‖x(0)‖ .

(iv) A linear system (A,B,C) is called minimum phase if, and only
if, the system’s zero dynamics are exponentially stable.

For linear systems (A,B,C) of form (2.2.1) with ordered vector rel-
ative degree r ∈ N1×m the zero dynamics of (A,B,C) can be read off
from normal form (2.2.3) given by Theorem 2.2.4. Corollary 2.3.2 pro-
vides a characterization of the system’s zero dynamics in terms of the
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normal form. Furthermore exponential stability of the zero dynamics of
(A,B,C) will be characterized.

Corollary 2.3.2 For any linear system (A,B,C) of form (2.2.1) with
ordered relative degree r = (r1, . . . , rm) ∈ N1×m and normal form given
by (2.2.3)–(2.2.4) the following holds:

(i) For S :=
[
S1T

, . . . , SmT
]T

, with S1, . . . , Sm defined in (2.2.19), Γ

defined by (2.2.6), V defined by (2.2.9) and Q defined in (2.2.21),
the zero dynamics of (A,B,C) are given by

ZD(A,B,C)

=





(
Vη,−Γ−1Sη, 0

)
∈ C1([0,∞) → Rn)
×C1([0,∞) → Rm)
×C1([0,∞) → Rm)

η̇ = Qη



 ,

(ii) System (A,B,C) is minimum phase if, and only if, Q is Hurwitz.

(iii) System (A,B,C) is minimum phase if, and only if,

∀ s ∈ C+ : det

[
sIn −A B

C 0

]
6= 0 .

Note that in the control literature the latter characterization (iii) of
the minimum phase property of linear systems is often considered as
definition, see [Oga02, p. 509]. In view of (iii) it is easy to verify that
a system is minimum phase if the associated transfer function has only
zeros in the open left half complex plane C−.

Proof. (i) Set

Z =





(Vη,−Γ−1Sη, 0) ∈ C1([0,∞) → Rn)
×C1([0,∞) → Rm)
×C1([0,∞) → Rm)

η̇ = Qη



 .

“⊆”: If (x, u, y) ∈ ZD(A,B,C) then y ≡ 0 on [0,∞) and so

ξ =
(
y1, y

(1)
1 , . . . , y

(r1−1)
1

∣∣∣ y2, . . . , y(r2−1)
2

∣∣∣ . . .
∣∣∣ ym, . . . , y

(rm−1)
m

)T

≡ 0 ,
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which, in view of (2.2.3)–(2.2.4), yields

0m×1 =



S1

...
Sm




︸ ︷︷ ︸
=:S

η +



c1(n)A

r1−1B
...

cm(n)A
rm−1B


u , η̇ = Qη ,

thus (2.2.6) yields u = −Γ−1Sη. Since x = U−1
(

ξ
η

)
it follows from

the representiation of the inverse of Û and Û1, . . . , Ûm, see (2.2.30)
and (2.2.45), that (x, u, y) = (Vη,−Γ−1Sη, 0) for η being a solution
of η̇ = Qη and therefore (x, u, y) ∈ Z.

“⊇”: Let (x̃, ũ, ỹ) = (Vη,−Γ−1Sη, 0) ∈ Z. By (2.2.9), 0 ≡ ỹ = Cx̃ =
CVη thus

ξ̃ =
(
ỹ1, . . . , ỹ

(r1−1)
1

∣∣∣ ỹ2, . . . , ỹ(r2−1)
2

∣∣∣ . . .
∣∣∣ ỹm, . . . , ỹ

(rm−1)
m

)T

≡ 0 ,

and therefore
((

0
η

)
, ũ, 0

)
solves (2.2.3), hence

(x̃, ũ, ỹ) =

(
U−1

(
0
η

)
, ũ, 0

)
= (Vη, ũ, 0) ∈ ZD(A,B,C) .

(ii) From (i) it follows that

x = Vη and η = (VTV)−1VTx ,

where η is a solution of η̇ = Qη. Thus the zero dynamics of (A,B,C) are
exponentially stable if, and only if, η̇ = Qη is an exponentially stable
system. By Definition 2.3.1(iv) then follows that (A,B,C) is minimum
phase.

(iii) For U ∈ Rn×n defined by (2.2.17) it follows that

det

[
sIn −A B

C 0

]
= det

[
U 0
0 Im

] [
sIn −A B

C 0

] [
U−1 0

0 Im

]

= det

[
sIn − Ã B̃

C̃ 0

]
.
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Deriving the determinant of
[

sIn−Ã B̃

C̃ 0

]
by lines of the system’s normal

form (2.2.3)–(2.2.4) and starting with the last m lines leads to

det

[
sIn − Ã B̃

C̃ 0

]

= det







−1 0

s
. . .

0
. . . −1

−R1
1,2 . . .s−R1

1,r1

· · ·

0 . . . 0
...

...
0 . . . 0

−R1
m,2 . . . −R1

m,rm

0
...
0

−S1

...
. . .

...
...

0 . . . 0
...

...
0 . . . 0

−Rm
1,2 . . . −Rm

1,r1

. . .

−1 0

s
. . .

0
. . . −1

−Rm
m,2 . . . s−Rm

m,rm

0
...
0

−Sm

0 . . . 0 · · · 0 . . . 0 sI −Q







0
...
0

c1(n)A
r1−1B

...

0
...
0

cm(n)A
rm−1B

0







= (−1)
∑m

j=1(rj−1) · det(sI −Q) · det Γ ,

where Γ is defined by (2.2.6). Thus, in view of (ii), the system is mini-
mum phase if, and only if, Q has only eigenvalues in C−. This completes
the proof. 2

For systems (A,B,C) with ordered relative degree r = (r1, . . . , rm) ∈
N1×m it follows that, in view of Corollary 2.3.2(i), the input is given
by u(t) = −Γ−1Sη(t) = −Γ−1S(VTV)−1VTx(t) where S, Γ and V are

given by the system’s normal form, namely S =
[
S1T

, . . . , SmT
]T

is

given by (2.2.19), Γ is defined by (2.2.6) and V is defined by (2.2.9).
Then Corollary 2.3.2(ii) yields for systems with exponentially stable
zero dynamics that

∃M,λ > 0 ∀ (x, u, y) ∈ ZD(A,B,C) ∀ t ≥ 0 : ‖u(t)‖ ≤Me−λt‖x(0)‖ .

The “Problem of Zeroing the Output” is related to the question
whether a preassigned reference signal can be tracked instantly by an
appropriate input function, i.e. whether it is possible to determine an
input u = uR such that the output y of (2.2.1) matches a given suffi-
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ciently smooth reference signal yR : R≥0 → Rm. One can do so by using
the normal form (2.2.3)–(2.2.4). A system (A,B,C) is called right-
invertible if this tracking problem can be solved [SJK97]. The following
corollary presents a solution to this problem for linear MIMO-systems
with ordered relative degree.

Corollary 2.3.3 Consider a linear system (A,B,C) of form (2.2.1)
with ordered relative degree r = (r1, . . . , rm) ∈ N1×m and normal form

given by (2.2.3)–(2.2.4). Let yR = (yR1, . . . , yRm)
T ∈ Crj ([0,∞) →

Rm). Let y be the output of (2.2.1). Then the following are equivalent

(i) y = yR,

(ii) the input u of (2.2.1) is given by

u = uR = Γ−1







yR
(r1)
1
...

yR
(rm)
m


−



R1

...
Rm


 ξ −



S1

...
Sm


 η


 (2.3.1)

where, for arbitrary η0 ∈ Rn−rs

, η is a solution of the initial value
problem

η̇ = Qη + [P1, . . . , Pm] yR , η(0) = η0 , (2.3.2)

ξ =
(
yR1, . . . , yR

(r1−1)
1

∣∣∣yR2, . . . , yR
(r2−1)
2

∣∣∣ . . .
∣∣∣yRm, . . . , yR

(rm−1)
m

)T

, Q

is defined in (2.2.21), Γ is defined in (2.2.6) and Pj is defined

in (2.2.20), Sj is defined in (2.2.19) and, for Rj
i,k from (2.2.18),

Rj :=
[
Rj

1,1, . . . , R
j
1,r1

∣∣ . . .
∣∣Rj

m,1, . . . , R
j
m,rm

]
, j ∈ {1, . . . ,m}.

Proof. “⇒”: If y = yR then by (2.2.3) the new coordinates ξ are given

by ξ =
(
yR1, . . . , yR

(r1−1)
1

∣∣∣ . . .
∣∣∣yRm, . . . , yR

(rm−1)
m

)T

and furthermore

yR
(rj)
j = y

(rj)
j = ξ̇∑ j

i=1 ri
= Rjξ+Sjη+cj(m)A

rj−1Bu , j ∈ {1, . . . ,m} ,
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thus 


yR
(r1)
1
...

yR
(rm)
m


 =



R1

...
Rm


 ξ +



S1

...
Sm


 η +



c1(m)A

r1−1B
...

cm(m)A
rm−1B




︸ ︷︷ ︸
=Γ

u

hence (2.3.1) and (2.3.2).
“⇐”: Assume that (ii) holds. By (2.2.3) it follows that, for j ∈

{1, . . . ,m},

ξ̇∑ j
i=1 ri

= Rjξ + Sjη + cj(m)A
rj−1BΓ−1

︸ ︷︷ ︸
=ej

(m)







yR
(r1)
1
...

yR
(rm)
m


−



R1

...
Rm


 ξ −



S1

...
Sm


 η




= yR
(rj)
j

where, for any η0 ∈ Rn−rs

, η is a solution of the initial value problem

η̇ = [P1, . . . , Pm] yR +Qη , η(0) = η0 .

Thus (2.2.3) yields ξ =
(
yR1, . . . , yR

(r1−1)
1

∣∣∣ . . .
∣∣∣yRm, . . . , yR

(rm−1)
m

)T

and so y =
(
ξ1, ξr1+1, . . . , ξ∑m−1

i=1 ri+1

)T

= yR which completes the

proof. 2

Zero dynamics and right-invertibility of systems are very useful con-
cepts in control theory. Note that system (2.3.1)–(2.3.2) is called the
inverse system of system (2.2.1) [Isi95]. Corollary 2.3.3 shows that it
is possible to track any sufficiently smooth reference signal instantly by
the system’s output provided that the system’s relative degree and all
entries of normal form matrices are known explicitly. Thus, in view
of (2.2.6) and (2.2.18)–(2.2.21), it is sufficient to know the original sys-
tem’s matrices explicitly to evaluate the normal form matrices and so
the solution η of (2.3.2) and the required input u in (2.3.1).

In general applications the system’s data is often not explicitly avail-
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able. So, one cannot construct an input as in Corollary 2.3.3 to track a
given reference signal. However, in the following sections of the present
thesis control strategies for stabilization and/or tracking for systems, are
presented which accomplish the shortcoming of unavailable system ma-
trices. For this strategies only some structural properties of the system,
such as the system’s relative degree, a “sign”, e.g. positive definiteness,
of the matrix Γ and exponential stability of the system’s zero dynamics,
are required.

The system’s normal forms and characterizations of the system’s zero
dynamics from this section will be utilized to prove that this control
strategies work.

2.4 Notes and references

Although, Byrnes–Isidori normal forms for linear SISO- and MIMO-
systems with strict relative are well-known in the control literature,
see [IRT07] and also [Isi95, Ch. 4.1], for linear MIMO-systems with non-
strict (vector) relative degree the main result of the present chapter is
a new result. It is also available in [Mue09a].

The Byrnes–Isidori normal form for nonlinear SISO-systems is pre-
sented in [Isi95, Ch. 5]. For nonlinear MIMO-systems one can find a
result in [Isi99, Ch. 11] which comprises also the case of MIMO-system
with non-strict relative degree. However, it is not straightforward to
deduce the main result of the present chapter from the nonlinear case.





3 Stabilization by high-gain
output derivative feedback

Derivative feedback controllers for stabilizing linear and/or nonlinear
systems are well known in control theory; at least for single-input single-
output (SISO) systems and multi-input multi-output (MIMO) systems
with strict relative degree. To design these feedback laws one can use the
invertibility of the system for which the system’s data must be known
explicitly, see Corollary 2.3.3 and also [Mor73]. For linear MIMO sys-
tems without relative degree one can find feedback strategies in [SS87]
where the authors use the “special coordinate basis” which is based on
the explicit knowledge of the system matrices, too.

In this chapter control strategies for stabilizing linear systems via
feedback of the output and its derivatives are introduced. The feedback
laws considered here require only structural properties of the system
such as known vector relative degree, stable zero dynamics and “posi-
tive” high-frequency gain. It is important that the explicit knowledge
of the system’s data is not required. One can find some related ideas for
nonlinear SISO- and MIMO-systems in [Isi95, Ch. 9] and [Isi99, Ch. 12].

Note that the present chapter is divided into three sections, on SISO-
systems, MIMO-systems with strict relative degree and MIMO-systems
with non-strict (vector) relative degree, however the feedback controllers
for all three cases are rather similar – for SISO-systems and MIMO-
systems with strict relative degree the controllers are in fact identical.
Due to the complexity of the normal form for MIMO-systems with non-
strict relative degree, it is actually a bit surprising that for this systems
the controller is still very simple and has almost the same structural
properties as for the case of SISO-systems.

In all cases similar ideas and methods, i.e. the systmes’ normal forms,
pole placement theorems, Lyapunov stability arguments and linear al-
gebra methods are used to prove that the controllers operate as desired.

67
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3.1 SISO-systems

In this section the simple high-gain derivative feedback controller for
linear single-input single-output systems of the form

u(t) = −κ
r−1∑

i=0

κr−iki+1 y
(i)(t) (3.1.1)

is introduced, where k1, . . . , km ∈ R are suitable design parameters
which are independent of the system’s data and κ > 0 is a sufficiently
large number. This controller will be applied to a linear system (A, b, c)
with the following structural properties: known relative degree, positive
high-frequency gain and exponentially stable zero dynamics.

Recall the linear SISO-system (A, b, c) of form (2.1.2), i.e.

ẋ = Ax+ bu
y = cx ,

}
(3.1.2)

where A ∈ Rn×n, b, cT ∈ Rn. Suppose that the relative degree r ∈ N

of (A, b, c) is known. Then, see Definition 2.1.1, the value cAr−1b 6= 0
is either positive or negative. For an output derivative feedback (3.1.1)
which should stabilize the system, the sign of cAr−1b must be known
and, moreover, it must be positive. However, in view of the normal
form (2.1.5) of (A, b, c) it is easy to see that a restriction to the class of
systems with positive cAr−1b is no loss of generality: recall the normal
form

d
dt

(
ξ
η

)
=




0 1 0 0
...

. . .
. . .

...
0 . . . 0 1 0
R1

1 . . . R1
r S1

P1 0 . . . 0 Q




︸ ︷︷ ︸
=:Ã

(
ξ
η

)
+




0
...
0

cAr−1b
0




︸ ︷︷ ︸
=:̃b

u

y = [1, 0, . . . , 0]︸ ︷︷ ︸
=:c̃

(
ξ
η

)
,





(3.1.3)
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where R1
1, . . . , R

1
r ∈ R, S1 ∈ R1×(n−r), P1 ∈ Rn−r and also Q ∈

R(n−r)×(n−r) may be presented explicitly in terms of the system ma-
trices A, b and c, see Lemma 2.1.2. Here the input u is multiplied by
cAr−1b so a change of the sign of cAr−1b can easily be nullified by mul-
tiplying u by −1. Thus, if the controller (3.1.1) stabilizes any linear
minimum phase system (i.e. the system must have exponentially stable
zero dynamics) with positive high-frequency gain and known relative
degree then the controller (3.1.1) multiplied by −1 stabilizes any linear
minimum phase system with negative high-frequency gain and known
relative degree.

For linear MIMO-systems with strict or non-strict relative degree
“positivity” of the high-frequency gain matrix (CAr−1B in case of strict
relative degree) may be interpreted as positive definiteness. In the
present thesis a matrix M ∈ Cn×n is called positive definite if, and
only if, its Hermitian part (symmetric part in case of real matrices)
1/2(M + M∗) is positive definite, i.e. x∗(M + M∗)x > 0 for all x ∈
Cn \{0}, see also the list of symbols. Thus it is not necessarily assumed
that M is Hermitian/symmetric.

The analogue results as in the SISO-case holds: if controller (3.1.1)
for systems with strict relative degree or controller (3.3.1) for systems
with non-strict relative degree stabilizes the respective system with pos-
itive definite high-frequency gain matrix, known relative degree and ex-
ponentially stable zero dynamics then the controller (3.1.1) or (3.3.1)
multiplied by −1 stabilizes the respective system with negative definite
high-frequency gain matrix, known relative degree and exponentially
stable zero dynamics. Since the normal forms for SISO-systems and
MIMO-systems with strict relative degree have the same structure this
is straightforward. Considering matrix B̃ from the normal form (2.2.3)–
(2.2.4) for general MIMO-systems the above is also easy to see.

For this reason all results in this chapter are restricted to systems
with “positive” high-frequency gain.

To get an idea that controller (3.1.1) works, i.e. stabilizes any linear
system with the mentioned structural properties, consider the easier
feedback law

u(t) =

r−1∑

i=0

ki+1y
(i)(t) . (3.1.4)
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An application of (3.1.4) to (3.1.3) yields the closed-loop system

d

dt

(
ξ
η

)
=




0 1 0 0
...

. . .
. . .

...
0 . . . 0 1 0

R1 + cAr−1bk1 . . . Rr + cAr−1bkr S
P 0 . . . 0 Q




(
ξ
η

)
,

and if (3.1.3) has exponentially stable zero dynamics, that is Q is a
Hurwitz matrix, a Lyapunov function argument shows that, for suitable
k1, . . . , kr, the above system is exponentially stable. Here the high-
frequency gain cAr−1b ∈ R must be known explicitly; only knowing the
sign of cAr−1b is not sufficient.

Isidori shows that there exist design parameters κ, k1, . . . , kr such that
the feedback u(t) = −∑r−1

i=0 κ
r−iki+1y

(i)(t) stabilizes SISO-systems
with known lower bound for the high-frequency gain [Isi95, Thm. 9.3.1.],
see also [Isi99, Thm. 12.1.1.] for a proof for MIMO-systems with strict
relative degree. In the present thesis it is assumed that the high-
frequency gain cAr−1b is unknown but only the sign of cAr−1b is known.
Therefore proving that the feedback law (3.1.1) with sufficiently large
κ > 0 is stabilizing linear systems becomes much more involved, see
Lemma 3.2.2, Lemma 3.2.3 and the proof of Theorem 3.2.1.

Now high-gain derivative feedback stabilization is formulated for lin-
ear SISO-systems as a corollary of Theorem 3.2.1, i.e. the equivalent
result for linear MIMO-systems with strict relative degree.

Corollary 3.1.1 Suppose that system (A, b, c) of form (3.1.2) has rel-
ative degree r ∈ N, positive cAr−1b and is minimum phase, i.e. has
exponentially stable zero dynamics. Then for any monic Hurwitz poly-

nomial
(
s 7→∑r−1

i=0 ki+1 s
i
)
∈ R[s], there exists κ∗ ≥ 1 such that, for

all κ > κ∗, the feedback

u(t) = −κ
r−1∑

i=0

κr−iki+1 y
(i)(t)

applied to (3.1.2) yields an exponentially stable closed-loop system.
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Proof. Corollary 3.1.1 is a direct consequence of Theorem 3.2.1. 2

A detailed proof is omitted here: due to scalar input and output it
would be a bit less involved than the proof of Theorem 3.2.1. However,
since Theorem 3.2.1 is true for any m ∈ N it is in particular true for
m = 1.

In the following section the above result is generalized for linear
MIMO-systems with strict relative degree.

3.2 MIMO-systems with strict relative degree

Due to the identical structure of the normal forms for linear SISO-
systems and MIMO-systems with strict relative degree, compare (2.1.5)
and (2.2.22), it is easy to generalize the idea of derivative feedback
stabilization of SISO-systems to stabilization of MIMO-systems with
strict relative degree. Because of redundancy a detailed proof for SISO-
systems was omitted in the previous section. In the following a proof is
given for linear minimum phase MIMO-systems (A,B,C) of form

ẋ = Ax+
[
b
(n)
1 , . . . , b(n)

m

]

︸ ︷︷ ︸
=B



u1

...
um




︸ ︷︷ ︸
=u



y1
...
ym




︸ ︷︷ ︸
=y

=



c1(n)

...
cm(n)




︸ ︷︷ ︸
=C

x ,





(3.2.1)

where n,m ∈ N with m ≤ n and A ∈ Rn×n, B,CT ∈ Rn×m, which
have strict relative degree r ∈ N and positive definite high-frequency
gain matrix CAr−1B with the additional assumption that there exist m
linearly independent eigenvectors for CAr−1B. The latter assumption
is due to technical reasons with respect to the proof of Lemma 3.2.3.

It is easy to see that the set of matrices in Rm×m with m pairwise
distinct eigenvalues is dense in the set of all matrices: for any matrix
M ∈ Rm×m with characteristic polynomial χM (·) =

∏m
i=1(· − λi) (for
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i 6= j it may be that λi = λj) and any neighbourhood U(M) there exists

a matrix M̃ ∈ U(M) whose characteristic polynomial χ
M̃

=
∏m

i=1(· −
(λi + δi)) has m pairwise distinct zeros for some δi ∈ C with |δi|, i ∈
{1, . . . ,m}, sufficiently small. Thus, for matrices in Rm×m, the property
of having m linearly independent eigenvectors is generic.

3.2.1 Main result: feedback stabilization for
MIMO-systems with strict relative degree

Now the main result of this section is presented. Note that only the
above structural requirements and no explicit knowledge of the sys-
tem’s data are necessary to show that an application of the high-gain
derivative feedback (3.1.1) to a linear MIMO-system (3.2.1) leads to an
exponentially stable closed-loop system.

Theorem 3.2.1 Suppose that the system (A,B,C) of form (3.2.1) has
strict relative degree r ∈ N, positive definite CAr−1B ∈ Rm×m and is
minimum phase, i.e. has exponentially stable zero dynamics. Moreover,
suppose that CAr−1B has m linearly independent eigenvectors. Then

for any monic Hurwitz polynomial
(
s 7→∑r−1

i=0 ki+1 s
i
)

∈ R[s], there

exists κ∗ ≥ 1 such that, for all κ > κ∗, the feedback

u(t) = −κ
r−1∑

i=0

κr−iki+1 y
(i)(t) (3.2.2)

applied to (3.2.1) yields an exponentially stable closed-loop system.

Theorem 3.2.1 is not a corollary of the main result of this chapter,
i.e. Theorem 3.3.1 for linear MIMO-systems with non-strict relative de-
gree. In Theorem 3.3.1 an additional design parameter ν > 0 appears
in the feedback law (3.3.1). Stabilizing by the feedback (3.2.2) requires
only one design parameter κ > 0 which has to be sufficiently large.

Due to the slightly different structure of the normal forms for MIMO-
systems with strict and non-strict relative degree, compare (2.2.22)
and (2.2.3)–(2.2.4), the proof of Theorem 3.2.1 for the strict relative
degree case is not as technically involved as in the non-strict relative
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degree case but, in view of Lemma 3.2.3, requires additional considera-
tions to show that one design parameter κ > 0 is sufficient.

The proof for Theorem 3.2.1 uses the systems’ normal form. More-
over, some technical lemmata are required which are presented in the
following subsections.

3.2.2 Simple root-locus lemma

First a useful property of Hurwitz polynomials is shown. A polynomial
p is called Hurwitz if, and only if, all zeros of p lie in the open left
complex half-plane C−. To prove the stabilization result for systems
with strict relative degree, it is sufficient to show that, given a Hurwitz
polynomial p with degree r − 1, s 7→ sr + κ p(s) is again Hurwitz for
sufficiently large κ > 0. The following lemma is actually a corollary
of the more advanced root-locus result and will be used in the proof
of Theorem 3.2.1. Lemma 3.3.2 considers the general case of a sum
of arbitrarily many polynomials which is required to proof derivative
feedback stabilization of MIMO-systems with non-strict relative degree.
Recall that Z(p) = {s ∈ C p(s) = 0} is the set of zeros of p ∈ C[s].

Lemma 3.2.2 Let
(
s 7→ p(s) :=

∑r−1
i=0 pis

i
)

∈ C[s], with Re(pr−1) >

0, be Hurwitz. Then

∃ δ, κ0 > 0 ∀κ > κ0 : max{Re s | s ∈ C : sr + κp(s) = 0} < −δ/2 .

Moreover, setting Z(s 7→ sr + κp(s)) = {λ1(κ), . . . , λr(κ)},

∃ c0, κ0 > 0 ∀κ > κ0 :

{λ1(κ), . . . , λr−1(κ)} ⊂ Bc0
(0) and λr(κ) /∈ Bc0

(0) .

The first statement of Lemma 3.2.2 is a consequence of Lemma 3.3.2.
The second statement, which is required for the proof of Theorem 3.2.1,
can be deduced easily from the proof of Lemma 3.3.2. However, it is
worth to present an independent short proof. One may consider the
lemma as a consequence of [HP05, Prop. 4.1.3].

Proof of Lemma 3.2.2. Write p(s) = pr−1

∏ℓ
j=1(s − λj)mj – the

canonical factorization of p with λ1, . . . , λℓ ∈ C pairwise distinct and
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m1, . . . ,mℓ ∈ N. Then there exists ε∗ > 0 such that

∀ i, j ∈ {1, . . . , ℓ}, i 6= j : Bε∗(λi) ∩ Bε∗(λj) = ∅ .

Since p is Hurwitz there exists δ > 0 such that max{Re s | s ∈ C :
p(s) = 0} < −δ. Set c0 := maxi∈{1,...,ℓ}{|λi|} + δ. Write, for γ > 0,
q[γ](s) = γsr + p(s) =

∏r
j=1(s− sj [γ]). Then, [HP05, Prop. 4.1.3] and

suitable numbering of the zeros sj [γ] of q[γ] implies

∀ ε ∈ (0,min{ε∗, δ/2, c−1
0 Re(pr−1)}) ∃ γ∗ > 0 ∀ γ ∈ (0, γ∗) :

{s1[γ], . . . , sr−1[γ]} ⊂
⋃

j∈{1,...,ℓ}

Bε(λj) ,

sr[γ] ∈ {s ∈ C | Re s < −ε−1 Re(pr−1)} .

Setting κ = γ−1 yields sr + κp(s) = κ(κ−1sr + p(s)) = κq[κ−1](s) =
κq[γ](s) for all s ∈ C. Hence, for all κ, γ > 0 and s ∈ C, sr + κp(s) = 0
if, and only if, q[γ](s) = 0, whence, setting κ0 = γ−1

0 completes the
proof. 2

The above lemma could also be proved with the Routh–Hurwitz cri-
terion (see details on the criterion in [Gan86, Ch. 16]). However, a
proof applying the Routh–Hurwitz criterion is much more technical and
several lines longer.

3.2.3 Boundedness of the solution of a parameterized
Lyapunov equation

The following lemma gives a uniform bound for the solution P (κ) of
the Lyapunov equation P (κ)A(κ) +A(κ)TP (κ) = −Irm, where A(κ) =[

0 I
A1(κ) A2(κ)

]
is a stable matrix in multi-companion form: given a num-

ber κ0 > 0 then, for all κ > κ0, the spectrum of A(κ) is in complex
half-plane C<−δ, for some δ > 0. The bound is equal for all κ > κ0

and depends only on δ. Recall that µ(A) := max{Re s | s ∈ spec(A)}
denotes the largest real part of the eigenvalues of A ∈ Cn×n. Moreover,
recall that Z(p) = {s ∈ C p(s) = 0} denotes the set of zeros of a
p ∈ C[s].
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Lemma 3.2.3 Let r,m ∈ N and Γ ∈ Rm×m be positive definite, i.e. Γ+
ΓT > 0, with spec(Γ) = {γ1, . . . , γm} and m linearly independent eigen-
vectors. Let, for k1, . . . , kr ∈ R,

A(κ) :=




0m×m Im 0m×m

...
. . .

. . .

0m×m . . . 0m×m Im
−Γκk1,−Γκk2, . . . , −Γκkr


, κ ∈ R ,

and suppose that

∃ δ, κ0 > 0 ∀κ > κ0 : µ(A(κ)) < −δ .

Let spec(A(κ)) = {λ1(κ), . . . , λrm(κ)} and suppose that, for suitable
numbering, for all j ∈ {1, . . . ,m} holds

Z
(
s 7→ sr + γjκ

r−1∑

i=0

ki+1s
i

)

=
{
λ(j−1)(r−1)+1(κ), . . . , λ(j−1)(r−1)+r−1(κ), λ(m−1)r+j(κ)

}
,

and

∃ c0 > 0 ∀κ > κ0 ∀ i ∈ {1, . . . , (r − 1)m} : |λi(κ)| < c0

∀ i ∈ {(r − 1)m+ 1, . . . , rm} : |λi(κ)| ≥ c0 .

Then the unique, symmetric, positive definite solution P (κ) ∈ Rrm×rm

of
P (κ)A(κ) +A(κ)TP (κ) = −Irm

satisfies

∃ c1 > 0 ∀κ > κ0 : P (κ) ≤ c1
δ
Irm . (3.2.3)

Note that the proof requires Γ with m linearly independent eigenvec-
tors. This is due to technical convenience. A proof for Γ with chains
of generalized eigenvectors might be also possible but would be a lot
more complicated. Recall that having m pairwise distinct eigenvalues
and therefore m eigenvectors is a generic property of positive definite
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matrices Γ ∈ Rm×m.

Proof. Step 1 : Let spec(Γ) = {γ1, . . . , γm} and x1, . . . , xm ∈ Cm. be
the corresponding eigenvectors. Consider the characteristic polynomial
of A(κ) given by

χA(κ)(s) = det


sIn −




0 Im
. . .

. . .

0 Im
−κk1Γ . . . −κkr−1Γ −κkrΓ







= det

(
srIm +

(
r−1∑

i=0

κki+1s
i

)
Γ

)
.

Since Γ has m linearly independent eigenvectors, one may choose a Jor-
dan decomposition Γ = XJX−1, where J = diag(γ1, . . . , γm) ∈ Cm×m

and X = [x1, . . . , xm] ∈ Cm×m is invertible, see [GvL96, Thm. 7.1.9].
Note that γi = γj is allowed for some i 6= j. Then

χA(κ)(s) = det

(
srIm +

(
r−1∑

i=0

κki+1s
i

)
XJX−1

)

= detX det

(
srX−1X +

(
r−1∑

i=0

κki+1s
i

)
J

)
detX−1

= det

(
srIm +

(
r−1∑

i=0

κki+1s
i

)
J

)

=

m∏

j=1

(
sr + γjκ

r−1∑

i=0

ki+1s
i

)
.

Step 2 : Consider a Jordan decomposition of A(κ), namely

A(κ) = V (κ)Λ(κ)V (κ)−1 ,
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where for some ξ1, . . . , ξrm−1 ∈ {0, 1},

Λ(κ) = diag
(
λ1(κ), . . . , λrm(κ)

)
+




0 ξ1
. . .

. . .
ξrm−1

0




V (κ) =
[
v1(κ), . . . , vrm(κ)

]
.

Next it is shown that for any eigenvalue λi(κ), i ∈ {1, . . . , rm}, of A(κ)
the associated eigenvector may be considered as

vi(κ) =




xν

λi(κ)xν

...
λi(κ)r−1xν


 , (3.2.4)

where xν , ν ∈ {1, . . . ,m}, is an eigenvector of Γ.

Note that, for fixed ν ∈ {1, . . . ,m}, vectors vi1(κ), . . . , vir (κ) are
columns of a Vandermonde matrix, and thus are linearly independent for
r pairwise distinct λi1(κ), . . . , λir

(κ), see, for example, [HJ90, Sec. 0.9].

Since λi(κ) is a zero of χA(κ)(·) there exists some eigenvalue γν , ν ∈
{1, . . . ,m}, of Γ such that λi(κ)r + κγν

∑r−1
j=0 kj+1λi(κ)j = 0. One may

choose xν such that Γxν = γνx
ν . Then

(
A(κ) − λi(κ)Irm

)
vi(κ)

=




λi(κ)xν

...
λi(κ)r−1xν

−κΓ
[∑r−1

j=0 kj+1λi(κ)j
]
xν




−




λi(κ)xν

...
λi(κ)r−1xν

λi(κ)rxν




=




0m×1

...
0m×1

−
(
λi(κ)r + κγν

∑r−1
j=0 kj+1λi(κ)j

)
xν




= 0rm,

which shows (3.2.4).
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Step 3 : Let vi(κ) be an eigenvector of A(κ) to the eigenvalue λi(κ)
and suppose that, for some ℓi ∈ {1, . . . , r − 1}, there exists a chain
of generalized eigenvectors vi(κ), vi+1(κ), . . . , vi+ℓi(κ) to λi(κ), which
satisfy

∀µ ∈ {1, . . . , ℓi} :
(
A(κ) − λi(κ)Irm

)
vi+µ(κ) = vi+µ−1(κ) .

Then

∀µ ∈ {0, . . . , ℓi} : vi+µ(κ) =
1

µ!

dµ

dλi(κ)µ




xν

λi(κ)xν

...
λi(κ)r−1xν


 . (3.2.5)

This claim will be proved by induction: for µ = 0, (3.2.5) follows
obviously from (3.2.4). Suppose (3.2.5) holds for µ ∈ {0, . . . , ℓi−1} and
show (3.2.5) for µ + 1. Adopt the convention that, for n,m ∈ N with
m > n, the binomial coefficient

(
n
m

)
= 0. Then, in view of λi(κ) being a

zero of s 7→ dµ+1

dsµ+1

(
sr + κγν

∑r−1
j=0 kj+1s

j
)

and omitting the κ in λi(κ)

to improve readability,

(
A(κ) − λiIrm

)
vi+µ+1(κ)

=




1
(µ+1)!

dµ+1

dλµ+1
i

(
λi

)
xν

...
1

(µ+1)!
dµ+1

dλµ+1
i

(
λr−1

i

)
xν

−κΓ
[∑r−1

j=0 kj+1
1

(µ+1)!
dµ+1

dλµ+1
i

(
λj

i

)]
xν




−




λi

(µ+1)!
dµ+1

dλµ+1
i

(
λ0

i

)
xν

...
λi

(µ+1)!
dµ+1

dλµ+1
i

(
λr−2

i

)
xν

λi

(µ+1)!
dµ+1

dλµ+1
i

(
λr−1

i

)
xν




=




(µ+1)!
(µ+1)!

(
1

µ+1

)
λ

1−(µ+1)
i xν

...
(µ+1)!
(µ+1)!

(
r−1
µ+1

)
λ

r−1−(µ+1)
i xν

−κγν

[∑r−1
j=0 kj+1

(µ+1)!
(µ+1)!

(
j

µ+1

)
λ

j−(µ+1)
i

]
xν




−




λi

(
0

µ+1

)
λ

0−(µ+1)
i xν

...

λi

(
r−2
µ+1

)
λ

r−2−(µ+1)
i xν

λi

(
r−1
µ+1

)
λ

r−1−(µ+1)
i xν



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=




(
0
µ

)
λ0−µ

i xν

...(
r−2
µ

)
λr−2−µ

i xν

[
−
((

r
µ+1

)
−
(

r
µ+1

)
+
(

r−1
µ+1

))
λ

r−(µ+1)
i

−κγν

∑r−1
j=0 kj+1

(
j

µ+1

)
λ

j−(µ+1)
i

]
xν




=




1
µ!

dµ

dλµ
i

(
λ0

i

)
xν

...
1
µ!

dµ

dλµ
i

(
λr−2

i

)
xν

(
r−1
µ

)
λr−1−µ

i xν




=
1

µ!

dµ

dλµ
i




λ0
ix

ν

...
λr−2

i xν

λr−1
i xν


 = vi+µ(κ) ,

which shows (3.2.5).

By assumption {x1, . . . , xm} are linearly independent. Thus, there
are at most m chains of generalized eigenvectors vi(κ), . . . , vi+ℓi(κ) as-
sociated with some xν , ν ∈ {1, . . . ,m}, with length ℓi +1 ≤ r. Since, for

all j ∈ {1, . . . ,m}, the polynomial s 7→
(
sr + γjκ

∑r−1
i=0 ki+1s

i
)

has ex-

actly one zero λ(m−1)r+j(κ) with |λ(m−1)r+j(κ)| ≥ c0 and exactly r− 1
zeros {λ(j−1)(r−1)+1(κ), . . . , λ(j−1)(r−1)+r−1(κ)} ⊂ Bc0

(0), any chain of

generalized eigenvectors vi(κ), . . . , vi+ℓi(κ) has length ℓi + 1 ≤ r − 1,
hence ℓi ≤ r − 2.

Step 4 : Derive the inverse of the Jordan transformation matrix V (κ).

Recall V (κ) =
[
v1(κ), . . . , vrm(κ)

]
, where the columns are the (gener-

alized) eigenvectors given by (3.2.4) and (3.2.5), respectively. Note that
the last m columns v(r−1)m+1(κ), . . . , vrm(κ) of V (κ) are the eigenvec-
tors associated with the eigenvalues λ(r−1)m+1(κ), . . . , λrm(κ), where,
in view of (3.2.4), one may choose

∀ j ∈ {1, . . . ,m} : v(r−1)m+j(κ) =




xj

λ(r−1)m+j(κ)xj

...
λ(r−1)m+j(κ)r−1xj


 . (3.2.6)

Divide the matrices V (κ) and Λ(κ) into parts related to the first
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(r − 1)m and last m eigenvalues of A(κ), respectively:

Λ(κ) =

[
Λ̂(κ) 0

0 diag(λ(r−1)m+1(κ), . . . , λrm(κ) +N

]

V (κ) =
[
V̂ (κ) v(r−1)m+1(κ), . . . , vrm(κ)

]
=
[
V̂ (κ) Ṽ (κ)

]
,

where N = 0m×m since the last m colums of Ṽ (κ) consists of the m
eigenvectors v(r−1)m+1(κ), . . . , vrm(κ) of A(κ).

Assumption λ1(κ), . . . , λ(r−1)m(κ) ∈ Bc0
(0) yields, in view of (3.2.4)

and (3.2.5), that the associated eigenvectors and generalized eigenvec-
tors v1(κ), . . . , v(r−1)m(κ) are also bounded in Crm. So

∃ c2 > 0 ∀κ > κ0 : ‖V̂ (κ)‖ < c2 . (3.2.7)

Recall that all chains of generalized eigenvectors vi(κ), . . . , vi+ℓi have

length ℓi + 1 ≤ r − 1. Thus, all columns of
[
I(r−1)m, 0rm×m

]
V̂ (κ) ∈

C(r−1)m×(r−1)m are non-zero and, in view of (3.2.4) and (3.2.5), linearly

independent. Hence det
([
I(r−1)m, 0(r−1)m×m

]
V̂ (κ)

)
6= 0. Then

detV (κ)

= det
([
I(r−1)m, 0(r−1)m×m

]
V̂ (κ)

)

· det
([
λ(r−1)m+1(κ)r−1x1, . . . , λrm(κ)r−1xm

]

−
[
0m×(r−1)m, Im

]
V̂ (κ)

([
I(r−1)m, 0(r−1)m×m

]
V̂ (κ)

)−1

·
[
I(r−1)m, 0(r−1)m×m

]
Ṽ (κ)

)
(3.2.8)

may be considered as multivariate polynomial in C[s1, . . . , sm] in the m
pairwise distinct variables λ(r−1)m+1(κ), . . . , λrm(κ) which satisfies

∀ j ∈ {1, . . . ,m} :

deg
(

detV (κ)(s1, . . . , sj−1, ·, sj+1, . . . , sm)
)

= r − 1 , (3.2.9)

for fixed (s1, . . . , sm) ∈ C1×m. Note that λ(r−1)m+i(κ) = λ(r−1)m+j(κ)
is allowed for some i 6= j, however, the determinant of V (κ) is always
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considered as multivariate polynomial in m variables.

The inverse of V (κ) is given as follows:

V (κ)−1 =
1

detV (κ)
adjV (κ) ,

where, omitting the κ in λ(r−1)m+1(κ), . . . , λrm(κ),

adjV (κ)

=



ψ1,1(λ(r−1)m+1, . . . , λrm) . . . ψ1,rm(λ(r−1)m+1, . . . , λrm)

...
. . .

...
ψrm,1(λ(r−1)m+1, . . . , λrm) . . . ψrm,rm(λ(r−1)m+1, . . . , λrm)


 ,

for some multivariate polynomials ψi,j ∈ C[s1, . . . , sm], for i and j ∈
{1, . . . , rm}, with

∀ i, j ∈ {1, . . . , rm} ∀ ν ∈ {1, . . . ,m} :

deg(ψi,j(s1, . . . , sν−1, ·, sν+1, . . . , sm)) ≤ r − 1 ,

∀ i ∈ {(r − 1)m+ 1, . . . , rm} ∀ j ∈ {1, . . . , rm} :

deg(ψi,j(s1, . . . , si−(r−1)m−1, ·, si−(r−1)m+1, . . . , sm)) = 0 .

Step 5 : Finally, boundedness of ‖P (·)‖ is shown.

Partition V (κ)−1 as follows

V (κ)−1 =
1

detV (κ)

[
Ŵ (κ)

W̃ (κ)

]

where
(
(s1, . . . , sm) 7→ Ŵ (κ)(s1, . . . , sm)

)
∈ C[s1, . . . , sm](r−1)m×rm

satisfies deg Ŵ (κ)(s1, . . . , sν−1, ·, sν+1, . . . , sm) ≤ r − 1 for every ν ∈
{1, . . . ,m}, and

W̃ (κ) =



w(r−1)m+1(κ)

...
wrm(κ)


 ∈ C[s1, . . . , sm]m×rm,
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has the property deg
(
w(r−1)m+ν(κ)(s1, . . . , sν−1, ·, sν+1, . . . , sm)

)
= 0

for all ν ∈ {1, . . . ,m}. Then, in view of (3.2.9)

∃ c3 > 0 ∀κ > κ0 :

∥∥∥∥
1

detV (κ)
Ŵ (κ)

∥∥∥∥ < c3 . (3.2.10)

Moreover, in view of (3.2.6),

∀ j, ν ∈ {1, . . . ,m} :

deg
((
v(r−1)m+j(κ)w(r−1)m+j(κ)

)
(s1, . . . , sν−1, ·, sν+1, . . . , sm)

)

≤ r − 1 ,

hence, for t ≥ 0 and omitting some κ for ease of notation,

1

detV (κ)
Ṽ (κ) diag

(
eλ(r−1)m+1t, . . . , eλrmt

)
W̃ (κ)

=
1

detV (κ)

[
eλ(r−1)m+1tv(r−1)m+1, . . . , eλrmtvrm

]


w(r−1)m+1

...
wrm




=
1

detV (κ)

m∑

j=1

eλ(r−1)m+jtv(r−1)m+j(κ)w(r−1)m+j(κ) .

Therefore,

∃ c4 > 0 ∀κ > κ0 :
∥∥∥∥

1

detV (κ)
Ṽ (κ) diag

(
eλ(r−1)m+1t, . . . , eλrmt

)
W̃ (κ)

∥∥∥∥ < c4 . (3.2.11)

Thus

P (κ) =

∫ ∞

0

eA(κ)T teA(κ)t dt

≤
∫ ∞

0

∥∥∥V (κ)eΛ(κ)tV (κ)−1
∥∥∥

2

dt Irm ,
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and (3.2.7), (3.2.10) and (3.2.11) give that, for c1 := (c2c3 + c4)2,

P (κ) ≤
∫ ∞

0

∥∥∥∥
[
V̂ (κ)

∣∣∣ Ṽ (κ)
] [
eΛ̂(κ)t 0

0 ediag(λ(r−1)m+1(κ),...,λrm(κ))t

]

· 1

detV (κ)

[
Ŵ (κ)

W̃ (κ)

]∥∥∥∥∥

2

dt Irm

=

∫ ∞

0

∥∥∥∥∥
[
V̂ (κ)eΛ̂(κ)t

∣∣∣ Ṽ (κ) diag
(
eλ(r−1)m+1(κ)t, . . . , eλrm(κ)t

)]

· 1

detV (κ)

[
Ŵ (κ)

W̃ (κ)

]∥∥∥∥∥

2

dt Irm

=

∫ ∞

0

∥∥∥∥∥

[
V̂ (κ)eΛ̂(κ)t 1

detV (κ)
Ŵ (κ)

+
1

detV (κ)
Ṽ (κ)

[
eλ(r−1)m+1(κ)t

. . .
eλrm(κ)t

]
W̃ (κ)

]∥∥∥∥∥

2

dt Irm

≤
∫ ∞

0

c1e
−δ t dt Irm

= c1/δ Irm ,

which shows (3.2.3) and completes the proof. 2

The above result is essential for the proofs of the derivative feedback
stabilization in the case of linear MIMO-systems with strict relative de-
gree. The uniform boundedness of the Lyapunov equation solution en-
ables the choice of arbitrarily large κ > 0 in the control strategy (3.1.1)
to control all terms in the closed-loop systems, see Step 3 of the proof
of Theorem 3.2.1 for detail.

Note that the result has one shortcoming: it is required that Γ has m
linearly independent eigenvectors. A proof for Γ having (chains of) gen-
eralized eigenvectors might be also possible, however it would become
much more technical than the above proof.

Note also that a similar result might be true for any multi-companion
matrices which appear when proving that the control strategy (3.3.1)
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applied to linear MIMO-systems with non-strict relative degree yields an
exponentially stable closed-loop system, see the proof of Theorem 3.3.1.
However, a proof would be a lot more technical and is not included
in the present thesis. Therefore, the control strategy (3.3.1) has the
shortcoming that an additional design parameter ν > 0 is required.

3.2.4 Proof of the main result

In this subsection a proof for the output derivative feedback stabiliza-
tion result for linear MIMO-systems with strict relative degree is pre-
sented. Since there is an additional design parameter ν > 0 in (3.3.1)
Theorem 3.2.1 is not simply a corollary of Theorem 3.3.1. However,
both proofs use similar ideas. Owing to the complexity of the result
for systems with non-strict relative degree, the results about robust-
ness of high-gain feedback stabilization in Chapter 7 are restricted to
MIMO-systems with strict relative degree.

First, consider another standard property of positive definite matrices
which is required throughout the proof. Since mostly the definition
of positive definiteness of matrices requires that the matrix has to be
Hermitian [HJ90] (symmetric for real matrices; in [GvL96, Sec. 4.2.2]
one can find a very short section on the unsymmetrical case), a proof
was not found in standard literature. There might be a proof of this
lemma in some books on linear algebra, however, due to completeness
of the present thesis, a proof is given here.

Lemma 3.2.4 Any positive definite A ∈ Rn×n satisfies spec(A) ⊂ C+.

Proof. Let λ ∈ spec(A) = spec(AT ) ⊂ C and let v ∈ Cn \ {0} be such
that Av = λv. Then Av̄ = λ̄v̄ and the definition of positive definiteness,
see the list of symbols, yields

0 < v∗Av + v∗AT v = v∗λv + (Av̄)T v = λ‖v‖2 + (λ̄v̄)T v

= λ‖v‖2 + λ̄‖v‖2 = 2 Re(λ)‖v‖2 ,

whence Re(λ) > 0. 2

The proof of Theorem 3.2.1 is structured as follows: first the system’s
normal form is utilized, then another coordinate transformation will be
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applied to design, in view of the root-locus Lemma 3.2.2, solutions of
two Lyapunov equations which are finally used to create a Lyapunov
function to prove exponential stability of the closed-loop system.

In the following let µ(p(·)) := max{Re s | s ∈ C, p(s) = 0} denote
the largest real part of the zeros of p ∈ C[s] and let RH [s] := {p ∈
R[s] |µ(p) < 0} be the set of all Hurwitz polynomials. Moreover, recall
that Z(p) = {s ∈ C p(s) = 0} is the set of zeros of p ∈ C[s].

Proof of Theorem 3.2.1. Let x(·) be a solution of (3.2.1).

Step 1 : Representation of (3.2.1) in normal form.

By Corollary 2.2.5 there exists an invertible U ∈ Rn×n such that the
coordinate transformation

(
ξ
η

)
:= Ux

converts (3.2.1) into (A,B,C) with

d
dt

(
ξ
η

)
=




0 Im 0 0
...

. . .
. . .

...
0 . . . 0 Im 0
R1 . . . Rr S
P 0 . . . 0 Q




︸ ︷︷ ︸
=:A=UAU

−1

(
ξ
η

)
+




0
...
0

CAr−1B
0




︸ ︷︷ ︸
=:B=UB

u

y = [Im, 0, . . . , 0]︸ ︷︷ ︸
=:C=CU

−1

(
ξ
η

)
,





(3.2.12)

where P ∈ R(n−rm)×m, Q ∈ R(n−rm)×(n−rm), S ∈ Rm×(n−rm) and
R1, . . . , Rr ∈ Rm×m are given by (2.2.23)–(2.2.25). In the following let
Γ := CAr−1B.

Step 2 : Scaling the state vector.

Section ξ = (ξ1/ξ2/ . . . /ξr) and ζ = (ζ1/ζ2/ . . . /ζr) with ξi(t), ζi(t) ∈
Rm for i ∈ {1, . . . , r}. Setting ζi = κ−i+1ξi for i ∈ {1, . . . , r}, yields

ζ̇i = κ−i+1ξ̇i = κ−i+1ξi+1 = κζi+1 , for i ∈ {1, . . . , r − 1} ,
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and

ζ̇r = κ−r+1ξ̇r

= κ−r+1
[
(R1 − κk1κ

rΓ)ξ1 + · · · + (Rr−1 − κkr−1κ
2Γ)ξr−1

+ (Rr − κkrκΓ)ξr
]

+ κ−r+1Sη

= κ

[(
1

κr
R1 − κk1Γ

)
ζ1 + · · · +

(
1

κ2
Rr−1 − κkr−1Γ

)
ζr−1

+

(
1

κ
Rr − κkrΓ

)
ζr

]
+ κ−r+1Sη .

Thus, for κ ≥ 1, additional scaling

(
ζ
η

)
= diag

(
Im, κ

−1Im, . . . , κ
−r+1Im, In−rm

)
︸ ︷︷ ︸

=: Uκ

(
ξ
η

)

leads to

d
dt

(
ζ
η

)
=




κ




0 Im
. . .

. . .

0 Im
R1

κr − κk1Γ . . . Rr−1

κ2 − κkr−1Γ Rr

κ − κkrΓ




0
...
0

κ−r+1S

P 0 . . . 0 Q




︸ ︷︷ ︸
=: AΓ,k,κ

(
ζ
η

)

y = (Im, 0, . . . , 0)

(
ζ
η

)
.





(3.2.13)

Step 3 : Design of positive definite solutions of two Lyapunov equa-
tions.

Since Γ is positive definite and spec(Γ) = {γ1, . . . , γm} ⊂ C+, see
Lemma 3.2.4, one may choose a Jordan decomposition of Γ such that,
in view of [GvL96, Thm. 7.1.9], Γ = XJX−1 for an invertible matrix
X ∈ Cm×m and the Jordan normal form J ∈ Cm×m of Γ.
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In view of Step 1 of the proof of Lemma 3.2.3 it follows that

det


sIn −




0 Im
. . .

. . .

0 Im
−κk1Γ . . . −κkr−1Γ −κkrΓ







=

m∏

j=1

(
sr + γj

r−1∑

i=0

κki+1s
i

)
.

Recall the assumption
(
s 7→ p(s) :=

∑r−1
i=0 ki+1 s

i
)
∈ RH [s] which, set-

ting
δ := −µ(p(·)) > 0 ,

together with γj > 0, for all j ∈ {1, . . . ,m}, and Lemma 3.2.2 then
yields

∃κ∗ > 0 ∀κ > κ∗ :

µ

(
s 7→ det

(
srIm +

(
r−1∑

i=0

κki+1s
i

)
Γ

))

= µ


s 7→

m∏

j=1

(
sr + γjκ

r−1∑

i=0

ki+1s
i

)
 < −δ/2 .

Thus, and since spec(Q) ⊂ C−, one may choose, for all κ > κ∗, pos-
itive definite matrices Nζ(κ) = Nζ(κ)T ∈ Rmr×mr and Nη = NT

η ∈
R(n−mr)×(n−mr) such that

Nζ(κ)

[
0(r−1)m×m I(r−1)m

−κk1Γ . . . − κkrΓ

]

+

[
0(r−1)m×m I(r−1)m

−κk1Γ . . . − κkrΓ

]T

Nζ(κ) = −Imr , (3.2.14a)

NηQ+QTNη = −In−mr . (3.2.14b)

Moreover, setting {λj,1(κ), . . . , λj,r(κ)} = Z(s 7→ sr + γjκ
∑r−1

i=0 ki+1s
i)
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for j ∈ {1, . . . ,m}, Lemma 3.2.2 yields the existence of a constant c0 > 0
such that, for all j ∈ {1, . . . ,m},

∀κ > κ∗ : {λj,1(κ), . . . , λj,r−1(κ)} ⊂ Bc0
(0) and |λr(κ)| ≥ c0 .

Since Γ has m linearly independent eigenvectors, Lemma 3.2.3 yields
that there exists a constant c1 > 0 such that, for all κ > κ∗,

‖Nζ(κ)‖ ≤ 2c1/δ .

Step 4 : Design of a Lyapunov function to show exponential stability.

The derivative of

t 7→ V (t) := 1
2 ζ(t)TNζ(κ)ζ(t) + 1

2 η(t)TNηη(t)

along the solution of

d
dt

(
ζ
η

)
(t) = AΓ,k,κ

(
ζ
η

)
(t)

yields, for all t ≥ 0, and omitting the argument t for brevity,

V̇ (t) = d
dt

(
1
2 ζ

TNζ(κ)ζ + 1
2 η

TNηη
)

= ζTNζ(κ)


κ




0 Im
. . .

. . .
0 Im

R1

κr − κk1Γ, . . . , Rr−1

κ2 − κkr−1Γ, Rr

κ − κkrΓ


ζ +




0
...
0

1
κr−1Sη







+ηTNη (Qη + Pζ1)

(3.2.14)

≤ −κ
2 ‖ζ‖2 + κζNζ(κ)

[
0m(r−1)×mr
R1

κr · · · Rr

κ

]
ζ +

1

κr−1
‖Nζ(κ)‖ ‖S‖ ‖ζ‖ ‖η‖

− 1
2‖η‖2 + ‖NηP‖ ‖η‖ ‖ζ1‖

κ≥1

≤ −κ
2 ‖ζ‖2 + ‖Nζ(κ)‖ ‖(R1, . . . , Rr)‖ ‖ζ‖2 + 1

κr−1 ‖Nζ(κ)‖ ‖S‖ ‖ζ‖2

+ 1
κr−1 ‖Nζ(κ)‖ ‖S‖ ‖η‖2 − 1

2‖η‖2 + 1
4‖η‖2 + 4‖NηP‖ ‖ζ1‖2

≤ −
(

κ
2 − ‖Nζ(κ)‖ ‖(R1, . . . , Rr)‖ − ‖Nζ(κ)‖ ‖S‖ − 4‖NηP‖

)
‖ζ‖2

−
(

1
4 − ‖Nζ(κ)‖ ‖S‖

κr−1

)
‖η‖2 .
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Setting

κ∗∗ := max
{

1
4 + 2(2c1 ‖(R1, . . . , Rr)‖/δ − 2c1 ‖S‖/δ − 4‖NηP‖),

(16 c1 ‖S‖)−r+1/δ, κ∗
}
,

α := min

{
δ

16 c1
,

1

8‖Nη‖

}
,

yields, for all t ≥ 0 and κ > κ∗∗,

V̇ (t) ≤ − 1
8‖ζ(t)‖2 − 1

8‖η(t)‖2

≤ − 1
8‖Nζ(κ)‖ζ(t)TNζ(κ)ζ(t) − 1

8‖Nη‖
η(t)TNηη(t) ≤ −αV (t) ,

whence, since the initial value x(t0) = x0 for (3.2.1) leads to the initial
value

(
ζ
η

)
(t0) = UκUx

0 for (3.2.13),

∀ t ≥ t0 ∀ t0 ≥ 0 :

∥∥∥∥
(
ζ(t)
η(t)

)∥∥∥∥ ≤ exp (−α(t− t0))

√√√√√
max spec

[
Nζ(κ) 0

0 Nη

]

min spec
[

Nζ(κ) 0
0 Nη

]
∥∥∥∥
(
ζ(t0)
η(t0)

)∥∥∥∥ ,

which completes the proof of the theorem. 2

The above proof of high-gain derivative feedback stabilization for lin-
ear MIMO-systems with strict relative degree will be generalized to
MIMO-systems with non-strict relative degree in the following section.
However, the stabilizing feedback comes with one additional design
parameter ν > 0. This is due to the fact that a generalization of
Lemma 3.2.3 for more involved multi-companion matrices appearing
in the proof of Theorem 3.3.1 could not be proved yet.

3.3 MIMO-systems with non-strict relative
degree

Stabilization by output derivative feedback of linear MIMO-systems
(A,B,C) with non-strict relative degree is shown. Recall the linear
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system (A,B,C) with m inputs and m outputs of form (3.2.1), i.e.

ẋ = Ax+
[
b
(n)
1 , . . . , b(n)

m

]

︸ ︷︷ ︸
=B



u1

...
um




︸ ︷︷ ︸
=u



y1
...
ym




︸ ︷︷ ︸
=y

=



c1(n)

...
cm(n)




︸ ︷︷ ︸
=C

x ,

where n,m ∈ N with m ≤ n and A ∈ Rn×n, B,CT ∈ Rn×m. For the
remainder of this chapter the linear system (A,B,C) will satisfy the
following three assumptions: it has (i) (non-strict vector) relative degree
r = (r1, . . . , rm) ∈ N1×m, see Definition 2.2.1, (ii) a positive definite
high-frequency gain matrix

[
c1(n)A

r1−1B
/
c2(n)A

r2−1B
/
. . .
/
cm(n)A

rm−1B
]

and (iii) is minimum phase, i.e. has exponentially stable zero dynamics,
see Definition 2.3.1.

As in the case of SISO-systems and MIMO-systems with strict relative
degree no explicit knowledge of the system’s data and only the structural
properties (i)–(iii) are required.

In Section 3.2 stabilization by high-gain output derivative feedback of
linear MIMO-systems with strict relative degree was shown. Due to the
higher complexity of the normal form (2.2.3)–(2.2.4) for MIMO-systems
with non-strict relative degree, the control strategy (3.2.2) applied in
Theorem 3.2.1 is not easily applicable to systems with non-strict rel-
ative degree. It could be possible to prove such stabilization results
for systems with known upper bound for the (vector) relative degree,
see [Hop07]. However, this is not part of the present thesis.

It is not at all hard to get an idea why controller (3.2.2) does not fit
for MIMO-systems with non-strict relative degree: consider a system
(A,B,C) with m = 2, i.e.

ẋ = Ax+
[
b
(n)
1 , b

(n)
2

](
u1

u2

)

(
y1
y2

)
=

[
c1(n)

c2(n)

]
x ,
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which has relative degree r = (r1, r2) ∈ N1×2 with r1 > r2. Recall that
the normal form (2.2.3)–(2.2.4) for this system is given by

d
dt

(
ξ
η

)
=




0 1 0
...

. . .
. . .

0 . . . 0 1
R1

1,1 . . . R1
1,r1

0 . . . 0
...

...
0 . . . 0

R1
2,1 . . . R1

2,r2

01×(n−r1−r2)

...
01×(n−r1−r2)

S1

0 . . . 0
...

...
0 . . . 0

R2
1,1 . . . R2

1,r1

0 1 0
...

. . .
. . .

0 . . . 0 1
R2

2,1 . . . R2
2,r2

01×(n−r1−r2)

...
01×(n−r1−r2)

S2

P1 0 . . . 0 P2 0 . . . 0 Q




(
ξ
η

)
+




01×2

...
01×2

c1(n)A
r1−1B

01×2

...
01×2

c2(n)A
r2−1B

0(n−r1−r2)×2




u

y =

[
1 0 . . . 0
0 . . . 0

0 . . . 0
1 0 . . . 0

02×(n−r1−r2)

](
ξ
η

)
,

Recall the controller (3.2.2):

u(t) = −κ
̺−1∑

i=0

κ̺−iki+1 y
(i)(t) ,

with suitable design parameters k1, . . . , km ∈ R and sufficiently large
κ > 0. Note that, in view of Theorem 3.2.1, ̺ ∈ N should be equal to
either r1 or r2. In view of the proof of Theorem 3.2.1, it is not possible
to choose ̺ = r2 since r2 < r1, and so stabilization of the “upper subsys-
tem” (system concerning the first component of y) cannot be achieved.
Hence one has to choose ̺ = r1. But then showing stabilization of
the “lower subsystem” might be complicated. However, in view of the
normal form for MIMO-systems with non-strict relative degree, Theo-
rem 3.3.1 presents a natural generalization for the stabilizing feedback
law.

3.3.1 Main result: feedback stabilization for
MIMO-systems with non-strict relative degree

The main result of this section, namely stabilization of linear MIMO-
systems with non-strict vector relative degree by feedback law (3.3.1), is
on the one hand a generalization of the stabilization result for systems
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with strict relative degree: Theorem 3.2.1. On the other hand (3.3.1)
has one strong shortcoming: there is another design parameter ν > 0.
This is due to the fact that a generalization of Lemma 3.2.3 is not
available yet: it might be possible to prove a similar statement for
more involved multi-companion matrices, however, a proof would be
extremely technical.

Theorem 3.3.1 Suppose that system (A,B,C) of form (3.2.1) has vec-
tor relative degree r = (r1, . . . , rm) ∈ N1×m, positive definite high-
frequency gain matrix

[
c1(n)A

r1−1B
/
c2(n)A

r2−1B
/
. . .
/
cm(n)A

rm−1B
]

and
is minimum phase, i.e. has exponentially stable zero dynamics. Then,
for any m Hurwitz polynomials

(
s 7→

rj−1∑

i=0

kj,i+1 s
i

)
∈ R[s] , j = 1, . . . ,m ,

there exists ν∗ ≥ 1 such that, for all ν > ν∗, there exists κ∗ ≥ 1 such
that, for all κ > κ∗, the feedback

u(t) =



u1(t)

...
um(t)


 = −ν




∑r1−1
i=0 κr1−ik1,i+1 y

(i)
1 (t)

...∑rm−1
i=0 κrm−ikm,i+1 y

(i)
m (t)


 (3.3.1)

applied to (3.2.1) yields an exponentially stable closed-loop system.

Because of the higher complexity of the normal form for linear MIMO-
systems with non-strict relative degree the proof of the theorem is still
similar to the proof of Theorem 3.2.1 but much more involved. A gen-
eralization of Lemma 3.2.2 and a very technical property of the deter-
minant of a parameterized matrix are required. These follow next.

3.3.2 Advanced root-locus lemma

Recall the simple root-locus result Lemma 3.2.2: it was shown that, for
p ∈ R[s] Hurwitz with deg p = r − 1, s 7→ sr + κp(s) is again Hurwitz
for sufficiently large κ > 0. Next this lemma will be generalized. For a
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polynomial p ∈ R[s] write

p(s) = pn

ℓ∏

j=1

(s− sj)mj , can. fact.

for the canonical factorization of p with s1, . . . , sℓ ∈ C pairwise distinct
and m1, . . . ,mℓ ∈ N. It will be shown that a sum of d products of
polynomials pi of decreasing degree n− i and an increasing power of a
sufficiently large parameter ν > 0 is a Hurwitz polynomial if the poly-
nomial pd with the smallest degree and a polynomial build from the
leading coefficients of all polynomials are Hurwitz. This result is a gen-
eralization of [HP05, Thm. 4.1.2]. Recall that µ(p(·)) := max{Re s | s ∈
C, p(s) = 0} denotes the largest real part of the zeros of p ∈ C[s].

Lemma 3.3.2 For δ > 0, d ∈ N and i ∈ {0, . . . , d}, let

(
s 7→ pi(s) = pi,n−is

n−i + pi,n−i−1s
n−i−1 + · · · + pi,1s+ pi,0

)
∈ R[s] ,

such that

pd,n−d > 0 , p0,n > 0 , µ(pd(·)) < −δ
and(
ν 7→ p̂(ν) = p0,nν

d + p1,n−1ν
d−1 + · · · + pd−1,n−d+1ν + pd,n−d

)
∈ R[ν]

with µ(p̂(·)) < −δ. Then

∃ ν0 > 0 ∀ ν > ν0 : µ

(
d∑

k=0

νkpk(·)
)
< −δ/2 . (3.3.2)

Proof. Write

pd(s) = pd,n−d

ℓ1∏

j=1

(s− ζj)mj , can. fact.

and

p̂(ν) = p0,n

ℓ2∏

j=1

(ν − ξj)nj , can. fact.
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and, for γ > 0,

q[γ](s) :=
d∑

k=0

γd−kpk(s) = γdp0,n

n∏

j=1

(s− sj [γ]) ,

with s1[γ], . . . , sn[γ] ∈ C .

Suppose it is shown that, for α := maxj∈{1,...,ℓ1}{|ζj |} + δ and suitable
numbering of the zeros sj [γ],

∃ γ0 > 0 ∀ γ ∈ (0, γ0) :

{s1[γ], . . . , sn−d[γ]} ⊂
⋃

j∈{1,...,ℓ1}

Bδ/2(ζj) ⊂ C− , (3.3.3a)

{sn−d+1[γ], . . . , sn[γ]} ⊂ {s ∈ C | Re s < −α} ⊂ C− . (3.3.3b)

Then there exists γ0 > 0 such that for all γ ∈ (0, γ0) all zeros of q[γ]
are in C−δ/2. Setting ν = γ−1 yields p[ν] = νdq[ν−1] = νdq[γ]. Hence,
for all ν, γ > 0 and s ∈ C, p[ν](s) = 0 if, and only if, q[γ](s) = 0. Thus
setting ν0 = γ−1

0 yields (3.3.2).

In the remainder of the proof (3.3.3) is shown. One may choose ε∗ > 0
such that

∀ i, j ∈ {1, . . . , ℓ1}, i 6= j : Bε∗(ζi) ∩ Bε∗(ζj) = ∅ ,
∀ i, j ∈ {1, . . . , ℓ2}, i 6= j : Bε∗(ξi) ∩ Bε∗(ξj) = ∅ .

Then, an application of [HP05, Thm. 4.1.2] to the polynomial q[γ](·) =∑d−1
k=0 γ

d−kpk(·)+pd(·) and suitable numbering of the zeros sj [γ] of q[γ]
implies

∀ ε ∈ (0,min{ε∗, δ/2}) ∃ γ∗ = γ∗(ε) > 0 ∀ γ ∈ (0, γ∗) :

{s1[γ], . . . , sn−d[γ]} ⊂⋃j∈{1,...,ℓ1}
Bε(ζj) ,

{sn−d+1[γ], . . . , sn[γ]} ⊂ C \ B1/ε(0) .

Now µ(pd(·)) < −δ yields (3.3.3a).
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For γ > 0 setting x = γs yields

q[γ](s)

= q[γ](γ−1x)

= γd
(
p0,nγ

−nxn + p0,n−1γ
−n+1xn−1 + · · · + p0,1γ

−1x+ p0,0

)

+ γd−1
(
p1,n−1γ

−n+1xn−1 + · · · + p1,1γ
−1x+ p1,0

)

...
+ γ

(
pd−1,n−d+1γ

−n+d−1xn−d+1 + · · · + pd−1,1γ
−1x+ pd−1,0

)

+
(
pd,n−dγ

−n+dxn−d + · · · + pd,1γ
−1x+ pd,0

)

= γ−n+d
(
xn−d

(
p0,nx

d + p1,n−1x
d−1 + · · · + pd−1,n−d+1x+ pd,n−d

)

+ γ
[ (
p0,n−1x

n−1 + · · · + γn−1p0,0

)

+
(
p1,n−2x

n−2 + · · · + γn−2p1,0

)

+ · · · +
(
pd,n−d−1x

n−d−1 + · · · + γn−d−1pd,0

) ])
.

Write

q̂[γ](x) := γn−dq[γ](γ−1x)

= xn−dp̂(x) + γ
d∑

k=0

n−k−1∑

i=0

(
γn−k−1−ipk,i x

i
)

= p0,n

n∏

j=1

(x− xj [γ]) .

Thus, and by [HP05, Thm. 4.1.2] and suitable numbering of the zeros
xj [γ] of the polynomial q̂[γ],

∀ ε ∈ (0,min{ε∗, δ/2}) ∃ γ0 ∈
(
0,min

{
γ∗, εα−1, 1

})
∀ γ ∈ (0, γ0) :

{x1[γ], . . . , xn−d[γ]} ⊂ Bε(0) ,

{xn−d+1[γ], . . . , xn[γ]} ⊂⋃j∈{1,...,ℓ2}
Bε(ξj) .
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Hence µ(p̂(·)) < −δ yields, for suitable numbering of the zeros xj [γ],

∀ γ ∈ (0, γ0) :

{xn−d+1[γ], . . . , xn[γ]} ∈
⋃

j∈{1,...,ℓ2}

Bδ/2(ξj) ⊂ C− . (3.3.4)

Furthermore, µ(p̂(·)) < −δ and γ0 < 1 yields

∀ γ ∈ (0, γ0) ∀x0 ∈
⋃

j∈{1,...,ℓ2}

Bδ/2(ξj) :

|γ−1x0| > |γ−1
0 x0| > ε−1αδ/2 > α ,

thus

∀ γ ∈ (0, γ0) ∀x0 ∈
⋃

j∈{1,...,ℓ2}

Bδ/2(ξj) : γ−1x0 /∈
⋃

j∈{1,...,ℓ1}

Bδ/2(ζj)

and by (3.3.4), for suitable numbering of the zeros xj [γ],

∀ γ ∈ (0, γ0) : {γ−1xn−d+1[γ], . . . , γ−1xn[γ]} ∈ {s ∈ C | Re(s) < −α} ,

whence, noting that for every γ > 0 and x0 ∈ C, q̂[γ](x0) = 0 if, and
only if, q[γ](γ−1x0) = 0, (3.3.3b), which completes the proof. 2

One can find various results about Hurwitz polynomials in the litera-
ture which are related to Lemma 3.3.2, for example Hurwitz properties
under coefficient perturbation [Bar84, BG85, GB83, Soh89, WY87]. The
results published in these papers use the Routh–Hurwitz criterion, see,
for example [Gan86, Ch. 16]. However, all these results do not provide
the necessary statements to prove the main results Theorem 3.2.1 and
Theorem 3.3.1.

3.3.3 Determinant of a parameterized matrix

The following property of the determinant of the sum of a general matrix
and a diagonal matrix multiplied by a parameter t, which is used in to
prove the main result Theorem 3.3.1 of this chapter, is maybe a standard
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result in linear algebra. However, a proof for the following was not found
in the literature. A reason for this might be that the proof given here
is rather technical and it might be hard to simplify the used ideas and
methods. A similar result for the characteristic polynomial of a matrix
can be found in [Pen87].

First note that the principal minors of a matrix A = [ai,j ]i,j=1,...,n ∈
Rn×n are defined as follows: for a set of indices {i1, . . . , ik} with 1 ≤
i1 < · · · < ik ≤ n, k ∈ {0, . . . , n}, let

minor(A ; {i1, . . . , ik}) := det




ai1,i1 ai1,i2 . . . ai1,ik

ai2,i1 ai2,i2

. . .
...

...
. . .

. . . aik−1,ik

aik,i1 . . . aik,ik−1
aik,ik



,

minor(A ; ∅) := 1 .

With the minors of a matrix A one can write the determinant of A +
t diag(b1, . . . , bn) as polynomial in t as follows:

Lemma 3.3.3 Let A = [ai,j ]i,j=1,...,m ∈ Rm×m and b1, . . . , bm ∈ R.
Then

det(A+ t diag(b1, . . . , bm))

=

m∑

k=0




∑

1≤i1<···<ik≤m

minor (A ; {i1, . . . , ik})
∏

i∈{1,...,m}
i/∈{i1,...,ik}

bi


 tm−k . (3.3.5)

Proof. Write, for t ∈ C,

det(A+ t diag(b1, . . . , bm)) = pmt
m + pm−1t

m−1 + · · · + p1t+ p0

and define the function f : Rm → R by

(t1, . . . , tm) 7→ f(t1, . . . , tm) = det(A+ diag(b1t1, . . . , bmtm)) .
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Then

f(t1, . . . , tm) = det




a1,1 + b1t1 a1,2 . . . a1,m

a2,1 a2,2 + b2t2
. . .

...
...

. . .
. . . am−1,m

am,1 . . . am,m−1 am,m + bmtm




=
∑

σ∈Σm

sgn(σ)
m∏

i=1

(
ai,σ(i) + bi,σ(i)ti

)
,

where

bi,σ(i) :=

{
bi , if i = σ(i)

0 , if i 6= σ(i)

and Σm is the set of all permutations of {1, . . . ,m}. Then

f(t, . . . , t) = det(A+ t diag(b1, . . . , bm)) ,

p0 = f(0, . . . , 0) = det(A) = minor(A ; {1, . . . ,m}) .

The coefficients pk are given via the partial derivatives of f , that is,
for k ∈ {1, . . . ,m},

pk =
∑

1≤i1<···<ik≤m

∂k

∂ti1 · · · ∂tik

f(t1, . . . , tm)

∣∣∣∣
t1=...=tm=0

.

Moreover, it follows that

∂k

∂ti1 · · · ∂tik

f(t1, . . . , tm)

∣∣∣∣
t1=...=tm=0

=
∂k

∂ti1 · · · ∂tik

(
∑

σ∈Σm

sgn(σ)

m∏

i=1

(
ai,σ(i) + bi,σ(i)ti

)
) ∣∣∣∣

t1=...=tm=0

=
∑

σ∈Σm

sgn(σ)
∂k

∂ti1 · · · ∂tik

m∏

i=1

(
ai,σ(i) + bi,σ(i)ti

) ∣∣∣∣
t1=...=tm=0
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=
∑

σ∈Σm

sgn(σ)
∂k−1

∂ti1 · · · ∂tik−1





0 , if σ(ik) 6= ik

bik

m∏
i=1
i6=ik

(
ai,σ(i)

+ bi,σ(i)ti
)

+ (aik,ik
+ bik

tik
)

· ∂

∂tik

m∏
i=1
i6=ik

(
ai,σ(i)

+ bi,σ(i)ti
)

︸ ︷︷ ︸
= 0

, if σ(ik) = ik

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣t1=...
=tm
=0

=
∑

σ∈Σm

sgn(σ)





0 , if ∃ j ∈ {1, . . . , k} :

σ(ij) 6= ij

k∏
j=1

bij

m∏
i=1

i6=i1,...,ik

(
ai,σ(i)

+ bi,σ(i)ti
), if ∀ j ∈ {1, . . . , k} :

σ(ij) = ij

∣∣∣∣∣∣∣∣∣∣∣t1=...
=tm
=0

=
∑

σ∈Σm

{i1,...,ik}⊂σ

sgn(σ)

k∏

j=1

bij

m∏

i=1
i6=i1,...,ik

ai,σ(i)

=
k∏

j=1

bij
minor(A ; {1, . . . ,m} \ {i1, . . . , ik}) .

Hence, for k = 1, . . . ,m,

pk =
∑

1≤i1<···<ik≤m

k∏

j=1

bij
minor(A ; {1, . . . ,m} \ {i1, . . . , ik}) ,

and thus

pm−k =
∑

1≤i1<···<ik≤m

∏

i∈{1,...,m}
i/∈{i1,...,ik}

bi minor(A ; {i1, . . . , ik}) ,

which shows (3.3.5) and completes the proof. 2

With the above lemma and Lemma 3.3.2 all required lemmata to
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prove Theorem 3.3.1 are given.

3.3.4 Proof of the main result

The proof of Theorem 3.3.1 is structured similar to the proof of deriva-
tive feedback stabilization for MIMO-systems with strict relative de-
gree, i.e. Theorem 3.2.1: first the system’s normal form and another
coordinate transformation are utilized to design, in view of the general
root-locus Lemma 3.3.2, solutions of two Lyapunov equations which are
finally used to create a Lyapunov function to prove exponential stability
of the closed-loop system.

Recall that µ(p(·)) := max{Re s | s ∈ C, p(s) = 0} denotes the largest
real part of the zeros of p ∈ C[s]. Let µ(A) := max{Re s | s ∈ spec(A)}
be the largest real part of the eigenvalues of a matrix A ∈ Cn×n and
recall that RH [s] := {p ∈ R[s] |µ(p) < 0} denotes the set of all Hurwitz
polynomials.

Proof of Theorem 3.3.1. Without loss of generality suppose that
the linear system (3.2.1) has ordered relative degree r = (r1, . . . , rm) ∈
N1×m, see Definition 2.1.1(b), otherwise note that for a linear system
(A,B,C) of form (3.2.1) with vector relative degree r = (r1, . . . , rm) ∈
N1×m there exists a permutation matrix P ∈ Rm×m such that the sys-
tem (A,B, PC) has ordered vector relative degree rP = (r̃1, . . . , r̃m),
see also Lemma 2.2.3. Thus it is sufficient to prove the statement of
Theorem 3.3.1 for systems with ordered vector relative degree.

Step 1 : Next it is shown that, for




Γ1
1 Γ1

2 . . . Γ1
m

Γ2
1 Γ2

2 . . . Γ2
m

...
...

. . .
...

Γm
1 Γm

2 . . . Γm
m


 := Γ =




c1(n)A
r1−1B

c2(n)A
r2−1B
...

cm(n)A
rm−1B


 ,

Rj
i,k ∈ R, for i, j ∈ {1, . . . ,m} and k ∈ {1, . . . , ri}, S1, . . . , Sm ∈

R1×(n−rs), P1, . . . , Pm ∈ Rn−rs

and Q ∈ R(n−rs)×(n−rs), where rs :=
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∑m
j=1 rj , as in normal form (2.2.3)–(2.2.4) with (2.2.18)–(2.2.21) and

AΓ,k,κ,ν :=



κ




0 1 . . . 0
...

. . .
. . .

0 . . . 0 1
R1

1,1

κr1

−Γ1
1ν k1,1

. . .
R1

1,r1

κ
−Γ1

1ν k1,r1



. . . κ




0 . . . 0
...

...
0 . . . 0

R1
m,1

κrm

−Γ1
mν km,1

. . .
R1

m,rm

κ
−Γ1

mν km,rm



κ




0
...
0

1
κrm

S1




...
...

...

κ




0 . . . 0
...

...
0 . . . 0

Rm
1,1

κr1

−Γm
1 ν k1,1

. . .
Rm

1,r1

κ
−Γm

1 ν k1,r1



. . . κ




0 1 . . . 0
...

. . .
. . .

0 . . . 0 1
Rm

m,1

κrm

−Γm
mν km,1

. . .
Rm

m,rm

κ
−Γm

mν km,rm



κ




0
...
0

1
κrm

Sm




[
κ−r1+rmP1 0 . . . 0

]
. . .

[
κ−rm+rmPm 0 . . . 0

]
Q




,

the closed-loop system (3.2.1), (3.3.1) is equivalent to

d
dt

(
ζ
ϑ

)
= AΓ,k,κ,ν

(
ζ
ϑ

)
(3.3.6)

in the sense that there exists a matrix W ∈ Rn×n such that
(

ζ
ϑ

)
= Wx.

By Theorem 2.2.4 there exists an invertible U ∈ Rn×n such that
the coordinate transformation

(
ξ
η

)
= Ux converts (3.2.1) into nor-

mal form (2.2.3)–(2.2.4). Thus the closed-loop system (3.2.1), (3.3.1) is
equivalent to the system (2.2.3), (2.2.4), (3.3.1).

Split ξ as follows:

ξ =



ξ1

...
ξm


 and ξj =



ξj
1
...
ξj
rj


 ∈ Rrj , j ∈ {1, . . . ,m} .

For ease of notation define vectors

Rj
µ :=

[
Rj

µ,1, . . . , R
j
µ,rµ

]
∈ R1×rµ , j, µ ∈ {1, . . . ,m} ,
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where, for i ∈ {1, . . . , rµ}, Rj
µ,i, is defined by (2.2.18).

Setting ζj
i = κrj−r1−i+1ξj

i , for j ∈ {1, . . . ,m} and i ∈ {1, . . . , rj},
yields

ξj
i = κ−rj+r1+i−1ζj

i , for j ∈ {1, . . . ,m} and i ∈ {1, . . . , rj} ,

ξj =



ξj
1
...
ξj
rj




=



κ−rj+r1+1−1ζj

1
...

κ−rj+r1+rj−1ζj
rj




=




κr1−rj 0 . . . 0

0 κr1−rj+1 . . .
...

...
. . .

. . . 0
0 . . . 0 κr1−1






ζj
1
...
ζj
rj




︸ ︷︷ ︸
=:ζj

, for j ∈ {1, . . . ,m} ,

and

ζ̇j
i = κrj−r1−i+1ξ̇j

i

= κrj−r1−i+1ξj
i+1

= κrj−r1−i+1κr1−rj+i+1−1ζj
i+1 = κζj

i+1 , for j ∈ {1, . . . ,m}
and i ∈ {1, . . . , rj − 1} ,

ζ̇j
rj

= κ−r1+1ξ̇j
rj

= κ−r1+1

[
m∑

µ=1

Rj
µξ

µ + Sjη + cj(n)A
rj−1Bu

]
, for j ∈ {1, . . . ,m} .

Thus, by (3.3.1) and y
(i−1)
j = ξj

i , for all j ∈ {1, . . . ,m} and i ∈
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{1, . . . , rj}, it follows that, for j ∈ {1, . . . ,m},

ζ̇j
rj

= κ




m∑

i=1

κ−r1Rj
i




κr1−ri 0 . . . 0

0 κr1−ri+1 . . .
...

...
. . .

. . . 0
0 . . . 0 κr1−1



ζi + κ−r1Sjη

−ν κ−r1cj(n)A
rj−1B




∑r1−1
i=0 κr1−ik1,i+1 ξ

1
i+1

...∑rm−1
i=0 κrm−ikm,i+1 ξ

m
i+1







= κ

[
m∑

i=1

[
κ−riRj

i,1, κ
−ri+1Rj

i,2, . . . , κ
−1Rj

i,ri

]
ζi + κ−r1Sjη

−ν κ−r1

[
Γj

1,Γ
j
2, . . . ,Γ

j
m

]



∑r1−1
i=0 κr1−iκr1−r1+ik1,i+1 ζ

1
i+1

...∑rm−1
i=0 κrm−iκr1−rm+ikm,i+1 ζ

m
i+1







= κ

[
m∑

i=1

([
Rj

i,1

κri
,
Rj

i,2

κri−1
, . . . ,

Rj
i,ri

κ

]
− Γj

iν [ki,1, . . . , ki,ri
]

)
ζi +

1

κr1
Sjη

]

Setting ϑ = κrm−r1η yields

ϑ̇ = κrm−r1 η̇ = κrm−r1

(
m∑

i=1

Piξ
i
1 +Qη

)

= κrm−r1

(
m∑

i=1

κr1−riPiζ
1
i + κr1−rmQϑ

)
=

m∑

i=1

κrm−riPiζ
1
i +Qϑ .

Thus, in view of the coordinate transformation,

ζj
i = κrj−r1−i+1ξj

i , for j ∈ {1, . . . ,m} , i ∈ {1, . . . , rj} ,
ϑ = κrm−r1η ,

and setting ζ =
[
ζ1
/
ζ2
/
. . .
/
ζm
]

(the first rs entries of the new co-
ordinates) the closed-loop system (2.2.3), (2.2.4), (3.3.1) is equivalent
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to (3.3.6).

Step 2 : For rs =
∑m

i=1 ri and

AΓ,k,ν :=






0 1 . . . 0
...

. . .

0 . . . 0 1
−ν Γ1

1

[
k1,1. . . k1,r1

]







0 . . . 0
...

...
0 . . . 0

−ν Γ1
2

[
k2,1. . . k2,r2

]


 . . .




0 . . . 0
...

...
0 . . . 0

−ν Γ1
m

[
km,1. . . km,rm

]







0 . . . 0
...

...
0 . . . 0

−ν Γ2
1

[
k1,1. . . k1,r1

]







0 1 . . . 0
...

. . .

0 . . . 0 1
−ν Γ2

2

[
k2,1. . . k2,r2

]


. . .




0 . . . 0
...

...
0 . . . 0

−ν Γ2
m

[
km,1. . . km,rm

]




...
...

...



0 . . . 0
...

...
0 . . . 0

−ν Γm
1

[
k1,1. . . k1,r1

]







0 . . . 0
...

...
0 . . . 0

−ν Γm
2

[
k2,1. . . k2,r2

]


 . . .




0 1 . . . 0
...

. . .

0 . . . 0 1
−ν Γm

m

[
km,1. . . km,rm

]







.

it is shown that

∃ δ > 0 ∃ ν∗ ≥ 1 ∀ ν > ν∗ : µ (AΓ,k,ν) < −δ/2 . (3.3.7)

Set, for i = 1, . . . , r1, mi := #
{
rj
∣∣ rj ≥ i, j ∈ {1, . . . ,m}

}
, the number

of rj ’s, j ∈ {1, . . . ,m}, such that rj ≥ i. Define permutation matrices

ΠR :=

[
e
(rs)
1 , e

(rs)
r1+1, . . . , e

(rs)
m1−1∑

i=1

ri+1

e
(rs)
2 , e

(rs)
r1+2, . . . , e

(rs)
m2−1∑

i=1

ri+2

. . . e
(rs)
r1 , e

(rs)
r1+r2

, . . . , e
(rs)
mr1

−1∑
i=1

ri+r1

]
,

ΠL :=







e1(rs)

er1+1
(rs)

...

e

m2−1∑
i=1

ri+1

(rs)




/




e2(rs)

er1+2
(rs)

...

e

m3−1∑
i=1

ri+2

(rs)




/
. . .

/




er1−1
(rs)

er1+r2−1
(rs)

...

e

mr1
−1∑

i=1

ri+(r1−1)

(rs)




/




er1

(rs)

er1+r2

(rs)

...

e

m1∑
i=1

ri

(rs)






,
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and

ΠD :=

[
e
(rs)
1 , e

(rs)
2 , . . . , e

(rs)
m2

∣∣∣∣∣ e
(rs)
m1 , . . . , e

(rs)
m1+m3

∣∣∣∣∣ . . .
∣∣∣∣∣ e

(rs)
r1−2∑
i=1

mi+1

, . . . , e
(rs)
r1−2∑
i=1

mi+mr1

∣∣∣∣∣

e
(rs)
rs−mr1

+1, . . . , e
(rs)
rs−mr1

+mr1

∣∣∣∣∣

e
(rs)
r1−2∑
i=1

mi+mr1
+1

, . . . , e
(rs)
r1−1∑
i=1

mi

∣∣∣∣∣ . . .
∣∣∣∣∣ e

(rs)
r1−r1∑

i=1

mi+mr1−(r1−2)+1

, . . . , e
(rs)
r1−(r1−1)∑

i=1

mi

]

Then, for s ∈ C,

ΠDΠL (sIrs − AΓ,k,ν) ΠR =



sIm2

[
−Im3

0(m2−m3)×m3

]
0m2×m4

. . . 0m2×mr1

0m3×m2
sIm3

[
−Im4

0(m3−m4)×m4

]
0m3×m5

. . .

... 0m4×m3
sIm4

. . .
. . .

...
. . .

. . .

[ −Imr1

0(mr1−1−mr1
)×mr1

]

0mr1
×m2

0mr1
×m3

. . . 0mr1
×mr1−1

sImr1

Γ




ν k1,1 0
. . .

0 ν km2,1

0(m1−m2)×m2


Γ




ν k1,2 0
. . .

0 ν km3,2

0(m1−m3)×m3


Γ




ν k1,3 0
. . .

0 ν km4,3

0(m1−m4)×m4


 . . . Γ




ν k1,r1−1 0
. . .

0 ν kmr1
,r1−1

0(m1−mr1
)×mr1




0m2×mr1
. . .

[
0m3×(m2−m3)

−Im2−m3

]
0m2×(m1−m2)

... . . .
...

0mr1−1×mr1

[
0mr1

×(mr1−1−mr1
)

−Imr1−1−mr1

]
...

[
−Imr1

]
0mr1

×(mr1−1−mr1
) . . . 0mr1

×(m2−m3) 0mr1
×(m1−m2)

sIm1
+ Γ diag

(
ν k1,r1

, . . . , ν kmr1
,r1
, ν kmr1

+1,r1−1, . . . , ν kmr1−1,r1−1,
. . . , ν km2+1,1, . . . , ν km1,1

)

︸ ︷︷ ︸
=: Kk,ν




,

(3.3.8)
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and

det(ΠDΠL (sIrs − AΓ,k,ν) ΠR)

= det(sIm2
)

det




sIm3

[
−Im4

0(m3−m4)×m4

] [
0m3
×m4

0m3×
(m3−m4)

Im3−m4

0m3×
(m1−m3)

]

0(
∑ r1

i=4 mi)×m3
. . . . . .

Γ




ν k1,2 + 1
sν k1,1 0
. . .

0 ν km3,2 + 1
sν km3,1

0(m1−m3)×m3


Γ




ν k1,3 0
. . .

0 ν km4,3

0(m1−m4)×m4




sIm1
+ ΓKk,ν

+
Γ

s




0m3×(m2−m3)

ν km3+1,1 0
. . .

0 ν km2,1

0(m1−m2)×(m2−m3)

0







= . . .

= s
∑ r1−1

i=2 mi det(sImr1
)

· det

[
sIm1

+ Γ diag

(
r1∑

i=1

ν k1,is
−(r1−i), . . . ,

r1∑
i=1

ν kmr1
,is

−(r1−i),

r1−1∑
i=1

ν kmr1
+1,is

−(r1−1−i), . . . ,
r1−1∑
i=1

ν kmr1−1,is
−(r1−1−i),

. . . ,
1∑

i=1

ν km2+1,is
−(1−i), . . . ,

1∑
i=1

ν km1,is
−(1−i)

)]

= det

[
diag (sr1 , . . . , srm)

+ Γ diag

(
r1∑

i=1

ν k1,is
i−1,

r2∑
i=1

ν k2,is
i−1, . . . ,

rm1∑
i=1

ν km1,is
i−1

)]
.

Recall that m = m1. Setting, for j ∈ {1, . . . ,m}, kj(s) :=
∑rj

i=1 kj,is
i−1

an application of Lemma 3.3.3 leads to

det(Γ) det(ΠDΠL (sIrs − AΓ,k,ν) ΠR)

= det




sr1
(
Γ−1

)
1,1

+ νk1(s), sr2
(
Γ−1

)
1,2
, . . . , srm

(
Γ−1

)
1,m

sr1
(
Γ−1

)
2,1
, sr2

(
Γ−1

)
2,2

+ νk2(s)
. . .

...

...
. . .

. . . srm
(
Γ−1

)
m−1,m

sr1
(
Γ−1

)
m,1

, . . . , srm−1
(
Γ−1

)
m,m−1

, srm
(
Γ−1

)
m,m

+ νkm(s)



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=
m∑

j=0




∑

1≤i1<···<ij≤m

s

(
j∑

l=1

ril

)

minor
(
Γ−1 ; {i1, . . . , ij}

) ∏

i∈{1,...,m}
i/∈{i1,...,ij}

ki(s)


 νm−j.

(3.3.9)

Observe that, for fixed j = 0, . . . ,m, every summand in (3.3.9) is a
polynomial in R[s] with degree rs − m + j. Moreover, for j = 0, the
summand in (3.3.9) equals p(s) :=

∏m
i=1 k

i(s) which is the product of
m Hurwitz polynomials and thus p ∈ RH [s], hence

∃ δ∗ > 0 : µ(p(·)) < −δ∗ .

Let {γ1, . . . , γm} = spec(Γ) ⊂ C and J ∈ Cm×m be a Jordan canonical
form of Γ−1, see [GvL96, Thm. 7.1.9]. Since det(Γ−1 + νIm) = det(J +
νIm) =

∏m
j=1(ν+γ−1

j ) and Γ and thus Γ−1 are positive definite, whence,

in view of Lemma 3.2.4, spec(Γ−1) ⊂ C+, Lemma 3.3.3 yields

∃ δ∗∗ > 0 :

µ


ν 7→

m∑

j=0


 ∑

1≤i1<···<ij≤m

minor
(
Γ−1 ; {i1, . . . , ij}

)

 νm−j


 < −δ∗∗

Setting δ = min{δ∗, δ∗∗} and since

det(sIrs − AΓ,k,ν)

= det(ΠD) det(ΠL) det(ΠR)︸ ︷︷ ︸
∈{−1,+1}

det(ΠDΠL (sIrs − AΓ,k,ν) ΠR) , s ∈ C ,

Lemma 3.3.2 and (3.3.9) yield (3.3.7).
Step 3 : It is shown that, for any initial value x(t0) = x0 for (3.2.1)

or, equivalently,
(

ζ
ϑ

)
(t0) = Wx0 for (3.3.6),

∃ ν∗ > 0 ∀ ν > ν∗ ∃α > 0 ∃M > 0
∃κ∗ ≥ 1 ∀κ > κ∗ ∀ t0 ≥ 0 ∀ t ≥ t0 :
∥∥∥∥
(
ζ(t)
ϑ(t)

)∥∥∥∥ ≤ exp (−α(t− t0))M

∥∥∥∥
(
ζ(t0)
ϑ(t0)

)∥∥∥∥ . (3.3.10)
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By Step 2 and since system (3.2.1) has stable zero dynamics which, in
view of Corollary 2.3.2, is equivalent to spec(Q) ⊂ C−, one may choose
symmetric positive definite matrices Nζ(ν) = Nζ(ν)T ∈ Rrs×rs

, for all
ν > ν∗, and Nϑ = NT

ϑ ∈ R(n−rs)×(n−rs) such that

Nζ(ν) AΓ,k,ν + A
T
Γ,k,ν Nζ(ν) = −Irs , NϑQ+QT Nϑ = −In−rs ,

(3.3.11)
where ζ =

[
ζ1
/
ζ2
/
. . .
/
ζm
]
. Moreover

∀ ν > ν∗ : ‖Nζ(ν)‖ <∞ .

Let
(

ζ
ϑ

)
be an arbitrary solution of the closed system (3.3.6). Set

Rκ := κ







0 1 . . . 0
...

. . .

0 . . . 0 1
R1

1,1

κr1
. . .

R1
1,r1

κ


 . . .




0 . . . 0
...

...
0 . . . 0

R1
m,1

κrm
. . .

R1
m,rm

κ




...
...



0 . . . 0
...

...
0 . . . 0

Rm
1,1

κr1
. . .

Rm
1,r1

κ


 . . .




0 1 . . . 0
...

. . .

0 . . . 0 1
Rm

m,1

κrm
. . .

Rm
m,rm

κ







, (3.3.12)

Sκ := κ







01×(n−rs)...
01×(n−rs)

1
κrm

S1




/
. . .

/



01×(n−rs)...
01×(n−rs)

1
κrm

Sm





. (3.3.13)

Then differentiation of

t 7→ V (t) :=
1

2
ζ(t)

T
Nζ(ν)ζ(t) +

1

2
ϑ(t)TNϑϑ(t)

along (ζT , ϑT )T yields, for all t ≥ 0, and omitting the argument t for
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brevity,

V̇ (t) =
d

dt

(
1

2
ζTNζ(ν)ζ +

1

2
ϑTNϑϑ

)

=
1

2

(
ζ̇TNζ(ν)ζ + ζTNζ(ν)ζ̇

)
+

1

2

(
ϑ̇TNϑϑ+ ϑTNϑϑ̇

)

=
1

2

(
[κAΓ,k,νζ + Rκζ + Sκϑ]

T
Nζ(ν)ζ

+ζTNζ(ν) [κAΓ,k,νζ + Rκζ + Sκϑ]
)

+
1

2





Qϑ+

m∑

j=1

Pj

κr1−rm
ζj
1




T

Nϑϑ

+ϑTNϑ


Qϑ+

m∑

j=1

Pj

κr1−rm
ζj
1







=
1

2

(
κ ζT

(
A

T
Γ,k,νNζ(ν) +Nζ(ν)AΓ,k,ν

)
ζ + ζT

R
T
κNζ(ν)ζ

+ ζTNζ(ν)Rκζ + ϑT
S

T
κNζ(ν)ζ + ζTNζ(ν)Sκϑ

)

+
1

2


ϑT

(
QTNϑ +NϑQ

)
ϑ

+
m∑

j=1

[
(ζj

1)T
PT

j

κr1−rm
Nϑϑ+ ϑTNϑ

Pj

κr1−rm
ζj
1

]


whence, in view of (3.3.11),

V̇ (t) = − 1

2
κ |ζ|2 + ζTNζ(ν)Rκζ + ζTNζ(ν)Sκϑ

− 1

2
|ϑ|2 +

m∑

j=1

ϑTNϑ
Pj

κr1−rm
ζj
1 ,
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and since r1 ≥ · · · ≥ rm ≥ 1 and κ ≥ 1 it follows that

V̇ (t) ≤ − 1

2
κ ‖ζ‖2 + ‖Nζ(ν)‖ ‖R1‖ ‖ζ‖2 + ‖Nζ(ν)‖ ‖S1‖ ‖ζ‖ ‖ϑ‖

− 1

2
‖ϑ‖2 +

m∑

j=1

‖Nϑ‖ ‖Pj‖
κr1−rm

‖ζj
1‖ ‖ϑ‖

≤ − 1

2
κ ‖ζ‖2 + ‖Nζ(ν)‖ ‖R1‖ ‖ζ‖2 + 2‖Nζ(ν)‖2‖S1‖2‖ζ‖2

+
1

8
‖ϑ‖2 − 1

2
‖ϑ‖2 +

m∑

j=1

(
2m‖Nϑ‖2‖Pj‖2‖ζj

1‖2 +
1

8m
‖ϑ‖2

)

≤ − 1

2
κ ‖ζ‖2 + ‖Nζ(ν)‖ ‖R1‖ ‖ζ‖2 + 2‖Nζ(ν)‖2‖S1‖2‖ζ‖2

+ 2m‖Nϑ‖2
m∑

j=1

‖Pj‖2‖ζ‖2 − 1

2
‖ϑ‖2 +

1

8
‖ϑ‖2 +m

1

8m
‖ϑ‖2

≤ −


1

2
κ− ‖Nζ(ν)‖ ‖R1‖ − 2‖Nζ(ν)‖2‖S1‖2

−2m‖Nϑ‖2
m∑

j=1

‖Pj‖2


 ‖ζ‖2 − 1

4
‖ϑ‖2 ,

where R1, S1 are defined setting κ = 1 in (3.3.12) and (3.3.13). Setting

κ∗ := max

{
1

4
+ 2

(
‖Nζ(ν)‖‖R1‖ − 2 ‖Nζ(ν)‖2‖S1‖2

− 2m‖Nϑ‖2∑m
j=1 ‖Pj‖2

)
, ν∗
}
,

α := min

{
1

8 ‖Nζ(ν)‖ ,
1

8‖Nϑ‖

}
,

M :=

√√√√√
max spec

[
Nζ(ν) 0

0 Nϑ

]

min spec
[

Nζ(ν) 0
0 Nϑ

]
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yields, for all t ≥ 0 and all κ > κ∗,

V̇ (t) ≤ −1

8
‖ζ(t)‖2 − 1

8
‖ϑ(t)‖2

≤ − 1

8‖Nζ(ν)‖ζ(t)TNζ(ν)ζ(t) − 1

8‖Nϑ‖
ϑ(t)TNϑϑ(t) ≤ −αV (t) ,

hence (3.3.10) which shows the exponential stability of the closed-loop
system and the proof is complete. 2

The above proof gives evidence that high-gain derivative feedback
stabilization works for linear MIMO-systems with non-strict relative
degree. Any linear minimum phase system (A,B,C) the relative de-
gree of which is know and having a positive definite high-frequency gain
matrix can be stabilized by the derivative feedback (3.3.1) with suffi-
ciently large design parameters ν > 0 and κ = κ(ν) > 0. Any other
parameter kj,i ∈ R, j ∈ {1, . . . ,m} and i ∈ {1, . . . , rj}, can be chosen

almost arbitrarily: s 7→ ∑rj−1
i=0 kj,i+1s

i must be a Hurwitz polynomial.
Although the normal form for MIMO-systems with non-strict relative
degree is involved and the proof for the high-gain stabilization result is
very technical, the control strategy (3.3.1) is surprisingly simple. One
shortcoming is that two parameters ν, κ > 0 required. It might be pos-
sible to obtain a stabilization result with only one parameter κ > 0 as
for systems with strict relative degree, however, to show boundedness
of the solution Nζ(κ) of the first Lyapunov equation in (3.3.11), one
has to prove a generalization of Lemma 3.2.3 which might be extremely
technical. Another shortcoming of the high-gain feedback is that the
actual ν∗, κ∗ > 0 for which stabilization can be guaranteed are possibly
very large. Moreover, it would be nice if a controller can “find” the
sufficient ν and κ adaptively.

The following chapters will pursue this question. Two more control
strategies are presented: an adaptive controller namely the λ-tracker,
see Chapter 4, and the so-called funnel controller, see Chapter 5. On the
one hand some more restrictive assumptions to the class of systems as
for high-gain derivative feedback stabilization are made to apply these
strategies: a system shall also have a positive high-frequency gain matrix
and stable zero dynamics, but moreover the system has to have (strict)
relative degree one. This restriction is essential for the proofs given in
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the present thesis. Future research might give more general results for λ-
tracking and funnel control, however this is not part of the thesis. On the
other hand the benefit of λ-tracking and funnel control is that, roughly
speaking, these controllers do not required that a special parameter κ
is provided; these controllers “will find their κ automatically”.

Another question in control theory is the robustness analysis of con-
trol strategies. In Chapter 7 one robustness problem will be analyzed:
may high-gain derivative output feedback be replaced by “high-gain de-
lay output feedback”? In the feedback law (3.2.2) the derivatives of
the output signal will be replaced by approximations of the derivatives
and it will be shown that the new delay system is again stable for suf-
ficiently small approximation step size. This will be proved using the
terminology of the gap metric, see Chapter 6.

3.4 Notes and references

Stabilization of linear MIMO-systems by high-gain output derivative
feedback seems to be well-known in control theory. However, to the
author’s best knowledge the results of the present chapter for MIMO-
systems with strict and particularly non-strict relative degree cannot be
found in the literature. There are similar results for nonlinear SISO-
and MIMO-systems in [Isi95, Ch. 9] and [Isi99, Ch. 12]. The results
and proofs from the present chapter are revised versions of the results
within the submitted paper [Mue09b].
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For m-input, m-output, finite-dimensional, linear systems satisfying the
classical assumptions of adaptive control, that is that the system (i) is
minimum phase (i.e. has stable zero dynamics), (ii) has (strict) relative
degree one and (iii) has a “positive” high-frequency gain, it is well known
(see [IR04]) that the adaptive λ-tracker ‘u = −k e, k̇ = max{0, ‖e‖ −
λ}‖e‖’ achieves λ-tracking of the tracking error e if applied to such
a system: all states of the closed-loop system are bounded and ‖e‖
is ultimately bounded by λ, where λ > 0 is prespecified and may be
arbitrarily small.

In the present chapter λ-tracking is introduced in detail. Due to
later robustness analysis of λ-tracking in Chapter 8, a special λ-tracking
result and a new proof are presented. This is required for the result of
Chapter 8: there it is shown that the λ-tracker is robust in terms of the
gap metric, see Chapter 6.

The present chapter is structured as follows. First some well known
adaptive feedback strategies are introduced. Then follows a new λ-
tracking result which is essential for the later robustness analysis in
Chapter 8.

4.1 Adaptive feedback control

Consider linear n-dimensional, m-input, m-output (MIMO) systems of
the form

ẋ(t) = Ax(t) +B u(t) , x(0) = x0,
y(t) = C x(t) ,

}
(4.1.1)

where A ∈ Rn×n, B,CT ∈ Rn×m and x0 ∈ Rn is an arbitrary initial
value.

There may be additive input/output disturbances u0, y0, respectively,
from signal spaces specified in due course. To improve readability of the

113
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following, input u and output y of system (A,B,C) will be denoted as
u1, y1, respectively. The interconnection equations

u0 = u1 + u2, y0 = y1 + y2 , (4.1.2)

lead to a closed-loop system as depicted in Figure 4.1: the linear system
(A,B,C) maps the interior input signal u1 to the interior output signal
y1 and the controller C maps the interior output signal y2 (i.e. the
difference of system’s output y1 and the output disturbance y0) to the
interior input signal u2. Controller C, specified in due course, always
denotes a feedback law.

u0

u1 y1
(A,B,C)

Controller C y0
u2 y2

−
+

+

−

Figure 4.1: The closed-loop system: (A,B,C) with controller C.

By Theorem 3.2.1 one knows that in case of zero disturbances u0 ≡
y0 ≡ 0, any linear system (A,B,C) of form (4.1.1) can be stabilized by
proportional high-gain (k ≫ 0) output feedback

u2(t) = −k y2(t) , (4.1.3)

provided that (4.1.1) is minimum phase, i.e. has stable zero dynamics
or equivalently

∀ s ∈ C+ : det

[
sI −A B
C 0

]
6= 0 ,

see Definition 2.3.1 and Corollary 2.3.2, and has strict relative degree
one with “positive” high-frequency gain, i.e. CB is positive definite
(not necessarily symmetric). For notational convenience write CB +
(CB)T > 0 if CB is positive definite.

The class of systems which satisfy the above structural properties is
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denoted, for n,m ∈ N with n ≥ m, as

M̃n,m

:=





(A,B,C)
∈ Rn×n × Rn×m × Rm×n

CB + (CB)T > 0 ,

∀ s ∈ C+ : det

[
sIn −A B

C 0

]
6= 0



 .

Note that the state space dimension n ∈ N needs not to be known but
only the input/output dimension m ∈ N. Most importantly, only struc-
tural assumptions are required but the entries of the system’s matrices
may be completely unknown, see Chapter 3. A sufficiently large high-
gain k in (4.1.3) can be found adaptively. More precisely, any system

(A,B,C) ∈ M̃n,m can be stabilized adaptively, in the presence of L2 in-
put/output disturbances, by the controller (ubiquitous in the adaptive
control literature)

k̇(t) = ‖y2(t)‖2 , k(0) = k0 ∈ R ,
u2(t) = −k(t) y2(t) ,

}
(4.1.4)

in the sense that all states of the closed-loop (4.1.1), (4.1.2), (4.1.4) are
bounded and limt→∞ y1(t) = 0. This approach has been introduced by
the seminal work of [Mar84, Mor83, WB84], see also the survey [Ilc91].

The surprising property of the controller (4.1.4) is not only its simplic-
ity but also its robustness: it is also applicable in the presence of additive
L2 input/output disturbances and it may stabilize systems (4.1.1) not

belonging to M̃n,m but sufficiently “close” – in terms of the gap metric

defined in Chapter 6 – to some (A,B,C) belonging to M̃n,m. This has
been proved in [FIR06].

However, the controller (4.1.4) has the shortcomings that, if tracking
is the control objective, it needs to be combined with an internal model
(thus becoming more involved) and, more importantly, fails for stabi-
lizing non-linear systems or in the presence of additive arbitrarily small
input or output L∞-disturbances. To overcome these shortcomings, the
so called λ-tracker

k̇(t) = dist (y2(t), [−λ, λ]) · ‖y2(t)‖ , k(0) = k0 ,
u2(t) = −k(t)y2(t) ,

}
(4.1.5)



116 4 Adaptive λ-tracking

for λ > 0, k0 ∈ R and dist : Rm × R>0 → R≥0 defined by (y, λ) 7→
dist(y, [−λ, λ]) := max{0, ‖y‖ − λ}, has been introduced by [IR94].

The application of the λ-tracker (4.1.5) to any system (4.1.1) be-

longing to M̃n,m, via (4.1.2), satisfies, in the presence of arbitrary in-
put/output disturbances u0, y0 which are essentially bounded and have
essentially bounded derivatives, arbitrary initial conditions x0 ∈ Rn,
k0 ∈ R and any arbitrarily small design parameter λ > 0, the control
objectives of λ-tracking :

• all signals of the closed-loop system (4.1.1), (4.1.2), (4.1.5) and
their derivatives are bounded;

• lim sup
t→∞

dist(y2(t), [−λ, λ]) = 0.

This result has been generalized to nonlinear and infinite dimensional
systems [IRS02a] and applied, to name but a few, to regulate biogas
tower reactors [IP98], chemical reactors [ITT04], insulin delivery for
diabetic patients [BFS+00] by preserving the simplicity of the control
strategy. Note also that it is a tracking result without invoking an
internal model: set y0(·) ≡ yref(·) as the prespecified reference signal.

Due to better applicability, the result in the present chapter is re-
stricted to systems in Byrnes–Isidori normal form, see Corollary 2.2.5
for the normal form for linear systems with strict relative degree, instead
of systems (A,B,C) ∈ M̃n,m. That is, for each (A,B,C) ∈ M̃n,m the
matrix

U =

[
C

(VTV)−1VT
[In −B(CB)−1C]

]
,

where V ∈ Rn×(n−m) with rkV = n − m and imV = kerC, con-
verts (4.1.1) via the coordinate transformation ( y1

η ) = Ux into

ẏ1 = A1y1 +A2η + CB u1 , y1(0) = y0
1 ∈ Rm,

η̇ = A3y1 +A4η , η(0) = η0 ∈ Rn−m,

(
y0
1

η0

)
= Ux0, (4.1.6)

where
[
A1 A2

A3 A4

]
:= UAU

−1
,

[
B1

0(n−m)×m

]
:=

[
CB
0

]
= UB .
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and [
Im 0m×(n−m)

]
= CU

−1
.

By the minimum-phase property Corollary 2.3.1 yields that A4 is Hur-
witz, i.e. has spectrum in the open left half complex plane C−. Now
introduce, for n,m ∈ N with n ≥ m, the system class

Mn,m

:=





(A,B,C)
∈ Rn×n × Rn×m × Rm×n

A =

[
A1 A2

A3 A4

]
, B =

[
B1

0

]
,

C =
[
Im 0

]
, B1, A1 ∈ Rm×m,

spec(A4) ⊂ C− , B1 +BT
1 > 0




.

In the following section the properties of the closed-loop system gen-
erated by the application of the λ-tracker (4.1.5) to systems (A,B,C)
of class Mn,m and in the presence of disturbances (u0, y0) from sig-
nal spaces W 1,∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm), satisfying the
interconnection equations (4.1.2), are studied. The closed-loop sys-
tem (4.1.6), (4.1.5), (4.1.2) is depicted in Figure 4.2.

u0
u1 y1ẏ = A1y1 +A2η + CB u , y1(0) = y0

1 ,
η̇ = A3y1 +A4η , η(0) − η0

k̇ = dist(y2, [−λ, λ]) ‖y2‖ , k(0) = k0,
u2 = −k y2

y0u2 y2

−
+

+

−

Figure 4.2: The adaptive closed-loop system.

4.2 λ-tracking

In this section it is shown that the control strategy (4.1.5) applied to any
linear system (A,B,C) of class Mn,m achieves λ-tracking in the pres-
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ence of W 1,∞(R≥0 → Rm) input/output disturbances, see Figure 4.2 for
the closed-loop system. To be more precise it is shown that all signals
and their derivatives of the closed-loop system (4.1.6), (4.1.5), (4.1.2) are
essentially bounded and that ‖y2‖ asymptotically approaches a λ-strip
at zero, i.e. lim supt→∞ dist(y2(t), [−λ, λ]) = 0.

The latter is the actual tracking result: consider y0 = yref as reference
signal and the error e = y2 = yref − y1 between reference signal yref and
solution y1 of the controlled system. Recall that λ > 0 is prespecified
and so may be arbitrarily small. Thus the norm of the error ‖e(t)‖
becomes, in view of lim supt→∞ dist(e(t), [−λ, λ]) = 0, also arbitrarily
small as t tends to infinity. Hence y1(t) is close to the reference signal
yref(t) for sufficiently large t > 0.

Furthermore, Theorem 4.2.1 shows not only that all signals of the
closed-loop systems (4.1.6), (4.1.5), (4.1.2) and their derivatives are es-
sentially bounded but that they are uniformly essentially bounded in
terms of the linear system’s matrices, initial values and disturbance
signals. This feature is very important for the robustness analysis of
λ-tracking in terms of the gap metric: alone the uniform boundedness
leads to the gain-function stability of the closed-loop systems, see Chap-
ter 8 and Section 6.4, which is essential for the robustness analysis.

Set, for n,m ∈ N with n ≥ m,

Dn,m

:= Mn,m×(Rm×Rn−m×R)×W 1,∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm)

the set of all tuples of systems, initial values y0
1 , η

0 of the linear system
and k0 of the controller and input/output disturbances (u0, y0).

Theorem 4.2.1 Let m,n ∈ N with n ≥ m and λ > 0. Then there
exists a continuous map ν : Dn,m → R≥0 such that, for all tuples d =([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0, k0), u0, y0

)
∈ Dn,m, the associated closed-loop

initial value problem (4.1.6), (4.1.2), (4.1.5) satisfies

‖(u2, y2, η, k)‖W 1,∞(R≥0→Rm+n+1) ≤ ν(d) (4.2.1)

and
lim sup

t→∞
‖y2(t)‖ ≤ λ . (4.2.2)
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That λ-tracking achieves the second control objective from Section 4.1
for systems from the class Mn,m goes back to [IR94] and tracking with
input disturbances are considered in [Ilc98]. However, to prove robust-
ness of the λ-tracker in Chapter 8, the existence of a continuous function
ν(·) satisfying (4.2.1) is crucial. Therefore, a new proof showing (4.2.1)
and (4.2.2) follows.

The proof is structured as follows: first existence and uniqueness of
solutions of the closed-loop initial value problem (4.1.6), (4.1.2), (4.1.5)
is proved. Then estimates for the y2- and η-dynamics are given which
are used to show boundedness of k, y2, u2 and η. With this follows
that the solution exists on whole R≥0. Then it is easy to show essen-
tial boundedness of the derivatives of k, y2, u2 and η. The last step
proves (4.2.2).

Proof of Theorem 4.2.1. Consider any element from the set Dn,m,
i.e. let d =

([
A1 A2

A3 A4

]
, B,C, (y0

1 , η
0, k0), u0, y0

)
∈ Dn,m and set, for nota-

tional convenience,

h(·) := ẏ0(·) −A1 y0(·) − CB u0(·) ,
e(·) := y2(·)

and define dλ : Rm → R≥0, e 7→ dλ(e) := max{0, ‖e‖ − λ}. The closed-
loop initial value problem (4.1.6), (4.1.2), (4.1.5) is then given by

ė = A1 e−A2 η − k CB e+ h , e(0) = e0 := y0(0) − y0
1 ,

η̇ = −A3 e+A4 η +A3 y0 , η(0) = η0 ,

k̇ = dλ(e) ‖e‖ , k(0) = k0 .



 (4.2.3)

The proof is divided into ten steps.
Step 1 : Existence and uniqueness of a solution of (4.2.3) is shown.
The right hand side of (4.2.3) is continuous and locally Lipschitz, i.e.

f : R≥0 × Rm × Rn−m × R → Rn+1 ,

(t, e, η, k) 7→



A1 e−A2 η − kCBe+ h
−A3 e+A4 η +A3 y0

dλ(e) ‖e‖


 ,

satisfies a local Lipschitz condition on the relatively open set R≥0×Rm×
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Rn−m ×R in the sense that, for all (τ, ξ, ζ, κ) ∈ R≥0 ×Rm ×Rn−m ×R,
there exists an open neighbourhood O of (τ, ξ, ζ, κ) and a constant L > 0
such that

∀ (t, e, η, k) ∈ O :

‖f(t, e, η, k) − f(t, ξ, ζ, κ)‖ ≤ L(‖e− ξ‖ + ‖η − ζ‖ + ‖k − κ‖) .

Therefore, standard theory of ordinary differential equations, see, for
example, [Wal98, Thm. III.11.III], yields that (4.2.3) has an absolutely
continuous solution

(e, η, k) : [0, ω) → Rm × Rn−m × R

for some ω ∈ (0,∞]. Moreover, the solution is unique and the solution
can be extended up to the boundary of R≥0 × Rm × Rn−m × R. In
other words: for every compact K ⊂ R≥0 × Rm × Rn−m × R exists
t ∈ [0, ω) such that (t, e(t), η(t), k(t)) /∈ K. This means that either
ω = ∞ or if ω < ∞ then for every ε > 0 there exists t ∈ (0, ω) such
that ‖(e(t), η(t), k(t)‖ > 1/ε.

Step 2 : Next some constants are defined. These are used in the
following steps of the proof.

Since spec(A4) ⊂ C− it follows that

∃ M1, µ > 0 ∀ t ≥ 0 : ‖ exp(A4 t)‖ ≤M1 exp(−µt) . (4.2.4)

Set

σ1 := min spec
(
CB + (CB)T

)
/2

M2 := M1 +M1‖A3‖
(
‖y0‖L∞(R≥0→Rm) + λ+ µ

)
/µ

M3 := M2

(
1 + ‖η0‖

)
/λ+M2 (1 + 1/µ)

M4 := ‖A1‖ + ‖A2‖ + ‖h‖L∞(R≥0→Rm)/λ

M5 := |k0| + 2 (M4 +M3M4 + 1) /σ1

M6 := M5 + |k0| + ‖e0‖2/2

M7 :=
(
dλ(e0)2 + 2(M6 + |k0|)

[
σ1

(
M6 + |k0|

)
/2 +M4 +M3M4

]) 1
2 +λ

M8 := M2

(
1 + ‖η0‖ +M7/µ

)
.
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Step 3 : It is shown that the η-dynamics can be estimated as

∀ t ∈ [0, ω) :

∫ t

0

dλ(e(τ)) ‖η(τ)‖dτ ≤ M3

[
k(t) − k0

]
. (4.2.5)

Applying Variation of Constants to the second equation in (4.2.3) and
invoking (4.2.4) gives, for all t ∈ [0, ω),

‖η(t)‖

≤M1 e
−µt‖η0‖ +

∫ t

0

M1 e
−µ(t−τ)‖A3‖ (‖e(τ)‖ + ‖y0(τ)‖) dτ

≤M1 e
−µt‖η0‖

+M1‖A3‖
∫ t

0

e−µ(t−τ)
(
dλ(e(τ)) + ‖y0‖L∞(R≥0→Rm) + λ

)
dτ

≤M1 e
−µt‖η0‖ +M1‖A3‖

∫ t

0

e−µ(t−τ)‖y0‖L∞(R≥0→Rm) dτ

+M1‖A3‖
∫ t

0

e−µ(t−τ)λdτ +M1‖A3‖
∫ t

0

e−µ(t−τ)dλ(e(τ)) dτ

≤M1 ‖η0‖ +
M1‖A3‖

µ

(
‖y0‖L∞(R≥0→Rm) + λ

)

+M1‖A3‖
∫ t

0

e−µ(t−τ)dλ(e(τ)) dτ

≤M2

[
1 + ‖η0‖ +

∫ t

0

e−µ(t−τ)dλ(e(τ)) dτ

]
. (4.2.6)

Let

∀ t ∈ [0,∞) ∀ϕ ∈ L2
loc(R≥0 → R) : (L ∗ ϕ)(t) :=

∫ t

0

e−µ(t−τ)ϕ(τ) dτ .

Invoking the well known inequality, see for example [Vid93, p. 298],

∀ t ≥ 0 : ‖L ∗ ϕ‖L2([0,t)→R) ≤ ‖e−µ ·‖L1(R≥0→R)‖ϕ‖L2([0,t)→R)

= 1
µ‖ϕ‖L2([0,t)→R)
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and the fact that

∀ e ∈ Rm : dλ(e)2 ≤ dλ(e) ‖e‖

yields, in view of (4.2.3), (4.2.6) and the Cauchy–Schwarz inequality,
for all t ∈ [0, ω),

∫ t

0

dλ(e(τ)) ‖η(τ)‖dτ

≤M2

∫ t

0

dλ(e(τ))
[
1 + ‖η0‖ + (L ∗ dλ(e))(τ)

]
dτ

≤M2

[
1 + ‖η0‖

] 1

λ

∫ t

0

dλ(e(τ)) ‖e(τ)‖dτ

+M2

[
‖dλ(e)‖2

L2([0,t)→R) + ‖L ∗ dλ(e)‖2
L2([0,t)→R)

]

≤M2

[
1 + ‖η0‖

] 1

λ

∫ t

0

dλ(e(τ)) ‖e(τ)‖dτ

+M2

(
1 +

1

µ

)∫ t

0

dλ(e(τ))2 dτ .

This proves (4.2.5).

Step 4 : It is shown that the e-dynamics can be estimated as

∀ t ∈ [0, ω) :

1

2
dλ(e(t))2 ≤ 1

2
dλ(e0)2

−
(
k(t) − k0

) [σ1

2

(
k(t) + k0

)
−M4 −M3M4

]
. (4.2.7)

By (4.2.3) and Step 2 follows, omitting the argument t,

d
dt

(
1

2
dλ(e(t))2

)

= dλ(e) ‖e‖−1 eT ė

= dλ(e) ‖e‖−1eT [A1 e−A2 η − k CB e+ h]
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≤ dλ(e) ‖e‖ ‖A1‖ + dλ(e) ‖η‖ ‖A2‖ + dλ(e) ‖h‖L∞(R≥0→Rm)

− k dλ(e) ‖e‖−1 eT
(

1
2 (CB + (CB)T

)
e

≤ −(k σ1 − ‖A1‖)dλ(e) ‖e‖ + ‖A2‖ dλ(e) ‖η‖ + dλ(e) ‖h‖L∞(R≥0→Rm)

≤ −(k σ1 − ‖A1‖)dλ(e) ‖e‖ + ‖A2‖ dλ(e) ‖η‖

+ dλ(e)
‖e‖
λ

‖h‖L∞(R≥0→Rm)

≤ −(k σ1 −M4)dλ(e) ‖e‖ +M4 dλ(e) ‖η‖ ,

and hence, by integration and invoking (4.2.5), one arrives at

∀ t ∈ [0, ω) :
1

2
dλ(e(t))2 ≤ 1

2
dλ(e0)2

−
∫ t

0

(k(τ)σ1 −M4)k̇(τ) dτ +M3M4

[
k(t) − k0

]

which yields (4.2.7).

Step 5 : Boundedness of k is shown:

∀ t ∈ [0, ω) : k(t) ≤M6 (4.2.8)

Suppose there exists T ∈ [0, ω) such that k(T ) = M5, otherwise
inequality (4.2.8) is obvious. Then, by monotonicity of k, it follows
from (4.2.7) that, for all t ∈ [T, ω),

0 ≤ 1

2
dλ(e(t))2

≤ 1

2
dλ(e0)2 − σ1

2

(
k(t) − k0

) [
k(t) + k0 − 2

σ1
(M4 +M3M4)

]

≤ 1

2
dλ(e0)2 − σ1

2

(
k(t) − k0

) [
M5 + k0 − 2

σ1
(M4 +M3M4)

]

=
1

2
dλ(e0)2 − σ1

2

(
k(t) − k0

) [
|k0| + k0 +

2

σ1

]

≤ 1

2
dλ(e0)2 −

(
k(t) − k0

)
,
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and thus

∀ t ∈ [T, ω) : k(t) − k0 ≤ 1

2
dλ(e0)2 ≤ 1

2
‖e0‖2

and
∀ t ∈ [0, T ) : k(t) − k0 ≤M5 − k0 ,

whence (4.2.8).
Step 6 : Boundedness of e is shown:

∀ t ∈ [0, ω) : ‖e(t)‖ ≤M7 . (4.2.9)

An application of (4.2.8) to (4.2.7) gives, for all t ∈ [0, ω),

‖e(t)‖ ≤ dλ(e(t)) + λ

≤
(
dλ(e0)2 − 2

(
k(t) − k0

) [σ1

2

(
k(t) + k0

)
−M4 −M3M4

]) 1
2

+ λ

≤
(
dλ(e0)2 + 2(M6 + |k0|)

[σ1

2

(
M6 + |k0|

)
+M4 +M3M4

]) 1
2

+ λ .

Note that the argument of the root in the second line is nonnegative,
see Step 5. Now (4.2.9) follows from Step 2.

Step 7 : Boundedness of η in the form

∀ t ∈ [0, ω) : ‖η(t)‖ ≤M2

[
1 + ‖η0‖ +

∫ t

0

e−µ(t−τ)M7 dτ

]
≤M8

(4.2.10)
follows from applying (4.2.9) to (4.2.6).

Step 8 : It is shown that ω = ∞.
Seeking a contradiction suppose that ω < ∞. Then, in view of in-

equalities (4.2.8)–(4.2.10),

K :=

{
(t, e, η, k)
∈ R≥0 × Rm × Rn−m × R

t ∈ [0, ω] ,

‖e, η, k‖ ≤
√
M2

6 +M2
7 +M2

8

}

is a compact subset of R≥0 ×Rm ×Rn−m ×R with (t, e(t), η(t), k(t)) ∈
K for all t ∈ [0, ω), which contradicts the fact that the closure of

graph
(

(e, η, k)|[0,ω)

)
is not a compact set, see Step 1. Therefore, ω = ∞
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as required.

Step 9 : Inequality (4.2.1) is shown.

Recall that y2 = e. It follows from Step 5–8 that (u2, y2, η, k) is
uniformly bounded in terms of d =

([
A1 A2

A3 A4

]
, B,C, (y0

1 , η
0, k0), u0, y0

)
.

Moreover, applying Step 5–8 again and invoking (4.2.3) yields uniform
boundedness of

(
u̇2, ẏ2, η̇, k̇

)
in terms of d. Now the existence of a contin-

uous function ν : Dn,m → R≥0 such that (4.2.1) holds is straightforward
by invoking the constants from Step 2.

Step 10 : Finally, (4.2.2) is shown.

Since, in view of (4.2.1), k ∈ L∞(R≥0 → R) it follows from the equal-
ity ‖dλ(y2) ‖y2‖‖L1([0,t)→R) = k(t) − k0 that dλ(y2) ‖y2‖ ∈ L1(R≥0 →
R).

Since y2 ∈ W 1,∞(R≥0 → Rm) there exists a constant M > 0 such
that ess supt≥0 |(ẏ2)i(t)| < M , for all i ∈ {1, . . . ,m}, which gives

∀ s ≥ 0 ∀ i ∈ {1. . . . ,m} ∀ t ∈ [0, s) ∃ τi ∈ (t, s) :

(ẏ2)i(τi) =
(y2)i(s) − (y2)i(t)

s− t
< M

and so

∀ i ∈ {1. . . . ,m} ∀ t ∈ [0, s) : |(y2)i(s) − (y2)i(t)| < M(s− t) .

In view of setting δ = ε
M , one arrives at

∀ i ∈ {1. . . . ,m} ∀ ε > 0 ∃ δ > 0 ∀ t, s ∈ R≥0 with |t− s| < δ :

|(y2)i(t) − (y2)i(s)| < ε ,

i.e. y2 is uniformly continuous. Boundedness and uniform continuity of
y2 and the continuity of the map e 7→ dλ(e) ‖e‖ gives uniform continuity
of t 7→ dλ(y2(t)) ‖y2(t)‖. So Barbălat’s Lemma, see [Bar59], gives

lim
t→∞

dλ(y2(t)) ‖y2(t)‖ = 0 ,

which yields (4.2.2) and completes the proof. 2

The statement of Theorem 4.2.1 includes the classical λ-tracking re-
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sult. Moreover, uniform boundedness of the system’s signals and their
derivatives is shown. This is essential for the robustness analysis in
terms of the gap metric, see Chapter 8.

Although an important result, λ-tracking has two significant short-
comings: (i) the tracking error λ > 0 will only be achieved asymp-
totically, i.e. the distance between reference signal and output is only
asymptotically small, and (ii), though bounded, the system’s dynamic
k is increasing. The latter is easy to see since k̇ = dλ(y2)‖y2‖ is al-
ways nonnegative. The λ-tracker cannot overcome this shortcomings.
Therefore, funnel control is introduced in the following chapter.

The funnel controller overcomes both shortcomings: (i) one can pre-
scribe almost arbitrary positive, bounded, locally Lipschitz continuous
functions which constrain the error between reference signal and the
system’s output, for example functions which approach a prespecified
bound λ > 0 in prespecified time T > 0, and (ii) the funnel controller
has no additional dynamic k̇(t) which has to be positive for all t ≥ 0, but
applies a map k in u2 = −k y2 which will be become large if necessary
and may decrease afterwards.

4.3 Notes and references

λ-tracking has been introduced by [IR94] and has been generalized to
nonlinear and infinite dimensional systems [IRS02a]. The results of
the present chapter are from [IM08], where the attention lies on the
robustness analysis of λ-tracking. Therefore, the main result of the
present chapter is designed to provide all requirements to show robust
stability of λ-tracking in Chapter 8. In particular it is shown that the
system’s signals are uniformly bounded in terms of the system’s data.
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In the present chapter funnel control is introduced. Loosely speaking,
funnel control exploits the high-gain property of a system from class
M̃n,m by designing a proportional feedback u(t) = −k(t) e(t) in such
a way that k(t) becomes large if ‖e(t)‖ approaches a prespecified per-
formance funnel boundary ψ from a large class of boundary functions,
thereby precluding contact with the funnel boundary.

As for λ-tracking in the previous chapterm-input, m-output (MIMO),
finite-dimensional, linear systems satisfying the classical assumptions of
adaptive control, i.e. having (i) stable zero dynamics (i.e. being mini-
mum phase), (ii) (strict) relative degree one and (iii) “positive” high-
frequency gain are considered. The well known funnel controller ‘u =
−k e, k = 1/(ψ − ‖e‖)’ achieves tracking of a tracking error e within
a prescribed performance funnel with boundaries ψ and −ψ where ψ
is from a large class of positive, bounded, locally Lipschitz continuous
functions, see also Figure 5.2. Moreover, if applied to the class of sys-
tems which satisfy properties (i)–(iii), the funnel controller also leads
to that all signals and states of the closed-loop system are essentially
bounded.

Funnel control has been introduced by [IRS02b] not only for linear sys-
tems but a rather general system class including nonlinear systems, non-
linear delay systems, systems with hysteresis and infinite-dimensional
regular linear systems. In [IRT06] also linear systems with higher rel-
ative degree are considered: to apply the funnel controller to linear
systems with (strict) relative degree r ≥ 2 the authors have to apply an
additional filter.

In Section 5.2 a well known but slightly modified funnel control result
is presented: additionally it is shown that all states and signals of a fun-
nel controlled system are uniformly bounded in terms of the matrices of
the linear system, the initial values, input/output disturbances and the
funnel boundary function. This is required for the robustness analysis

127
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of funnel control in Chapter 9 by invoking the conceptual framework of
nonlinear gap metric.

5.1 Preliminaries for funnel control

As in the previous chapter on λ-tracking, consider linear n-dimensional,
m-input, m-output (MIMO) systems of the form

ẋ(t) = Ax(t) +B u1(t) , x(0) = x0,
y1(t) = C x(t) ,

}
(5.1.1)

where A ∈ Rn×n, B,CT ∈ Rn×m and x0 ∈ Rn. As depicted in Fig-
ure 5.1 consider additive input/output disturbances u0, y0, respectively,
which in view of the interconnection equations

u0 = u1 + u2, y0 = y1 + y2 , (5.1.2)

lead to a closed-loop system of linear system and funnel controller, where
the funnel controller is specified in due course.

u0

u1 y1
(A,B,C)

Funnel controller y0
u2 y2

−
+

+

−

Figure 5.1: The closed-loop system (A,B,C) with funnel controller.

As for λ-tracking consider, for n,m ∈ N with n ≥ m, linear systems
from the class of systems

M̃n,m

=





(A,B,C)
∈ Rn×n × Rn×m × Rm×n

CB + (CB)T > 0 ,

∀ s ∈ C+ : det

[
sIn −A B

C 0

]
6= 0



 ,

i.e. the class of all linear minimum phase systems with relative degree
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one and positive definite high-frequency gain matrix CB.

As highlighted in the conclusion of Chapter 4 one shortcoming of the
λ-tracker (4.1.5) is the increasing k. It would be more efficient having
a control strategy which uses k that is large if necessary and small
else. Therefore the control objectives, defined below, will be captured
in terms of the performance funnel

Fϕ := {(t, y) ∈ R≥0 × Rm | ϕ(t)‖y‖ < 1} ,

determined by a function ϕ(·) belonging to

Φ :=




ϕ ∈W 1,∞(R≥0 → R≥0)

ϕ(0) = 0 , ∀ t > 0 : ϕ(t) > 0 ,

∀ ε > 0 : ϕ|[ε,∞)
(·)−1 is globally

Lipschitz, lim inft→∞ ϕ(t) > 0




.

Note that the funnel boundary is given by ϕ(t)−1, t > 0; see Figure 5.2.
The concept of performance funnel had been introduced by [IRS02b].
There it is not assumed that ϕ(·) has the Lipschitz condition as given
in Φ; this mild assumption is incorporated for technical reasons. The
assumption ϕ(0) = 0 allows to start with arbitrarily large initial condi-
tions x0 and output disturbances y0. If for special applications the
initial value and y0 are known, then ϕ(0) = 0 may be relaxed by
ϕ(0)‖y0(0) − Cx0‖ < 1, see also the examples in Subsection 9.2.1.

The funnel controller, for prespecified ϕ(·) ∈ Φ, is given by

k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖ , ϕ ∈ Φ ,

u2(t) = −k(t)y2(t) ,





(5.1.3)

and will be applied to linear systems (5.1.1) or (5.1.4).

If the funnel controller (5.1.3), for prespecified ϕ ∈ Φ determining
the funnel boundary, is applied to any system (5.1.1), belonging to the

class M̃n,m, in the presence of input/output disturbances (u0, y0) ∈
L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm) satisfying the interconnection
equations (5.1.2), then the closed-loop system (5.1.1), (5.1.2), (5.1.3),
as depicted in Figure 5.3, is supposed to meet the following control
objectives:
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Fϕ

0 t
λ

1/ϕ(·)

‖y2(t)‖ = ‖y0(t) − y1(t)‖

Figure 5.2: Funnel Fϕ with ϕ ∈ Φ and inft>0 ϕ(t)−1 = λ

• all signals of the closed-loop system are essentially bounded;

• ∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ = {(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1}.

A proof for these will be given in Section 5.2. Note that, for t = 0, in
view of the set Φ the value y2(0) may be arbitrarily large which implies
that one may choose every initial value y0

1 ∈ Rm and every bounded
output disturbance y0 such that y2(0) = y0(0) − y0

1 ∈ Rm.
The reciprocal funnel boundary ϕ ∈ Φ may be chosen arbitrarily. So

one can set ϕ such that limt→∞ ϕ−1(t) = λ, for arbitrarily small λ > 0.
Then, as in the case of λ-tracking, one would also arrive at

lim sup
t→∞

dist(y2(t), [−λ, λ]) = 0 .

Furthermore, one can choose ϕ such that ϕ−1(t) = λ for all t larger
then some specified time T > 0. Then

∀ t > T : dist(y2(t), [−λ, λ]) = 0 ,

which is much better than the usual tracking result.
Note that the funnel controller (5.1.3) is not an adaptive control

strategy. There is no new dynamic k̇ in the closed-loop system as for
λ-tracking (4.1.5). The new variable k just measures the distance be-
tween y2 = y0 − y1 and the funnel boundary ϕ−1. If this becomes large
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then “some stabilizing effect” on the system will be executed, if k is
small then y2 is well in the funnel and has some distance to the funnel
boundary.

As in the previous chapter and due to more convenient applicabil-
ity the main result of the present chapter is restricted to systems in
Byrnes–Isidori normal form, see Corollary 2.2.5 for the normal form for
linear systems with strict relative degree, instead of systems (A,B,C) ∈
M̃n,m. Recall the system class

Mn,m

:=





(A,B,C)
∈ Rn×n × Rn×m × Rm×n

A =

[
A1 A2

A3 A4

]
, B =

[
B1

0

]
,

C =
[
Im 0

]
, B1, A1 ∈ Rm×m,

spec(A4) ⊂ C− , B1 +BT
1 > 0




.

from Section 4.1, i.e. the class of all linear minimum phase systems with
relative degree one and positive definite high-frequency gain matrix CB
which are already in Byrnes–Isidori normal form

ẏ1 = A1y1 +A2η + CB u1 , y1(0) = y0
1 ∈ Rm,

η̇ = A3y1 +A4η , η(0) = η0 ∈ Rn−m,

(
y0
1

η0

)
= Ux0, (5.1.4)

where

U =

[
C

(VTV)−1VT
[In −B(CB)−1C]

]
,

for V ∈ Rn×(n−m) with rkV = n−m and imV = kerC and
[
A1 A2

A3 A4

]
:= UAU

−1
,

[
B1

0(n−m)×m

]
:=

[
CB
0

]
= UB ,

[
Im 0m×(n−m)

]
= CU

−1
.

In the following section properties of the closed-loop system generated
by the application of the funnel controller (5.1.3) to systems (5.1.1) of
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class Mn,m in the presence of disturbances (u0, y0) ∈ L∞(R≥0 → Rm)×
W 1,∞(R≥0 → Rm) satisfying the interconnection equations (5.1.2) are
studied. The closed-loop system (5.1.4), (5.1.2), (5.1.3) is depicted in
Figure 5.3.

u0
u1 y1ẏ1 = A1y1 +A2η + CB u1 , y1(0) = y0

1 ,
η̇ = A3y1 +A4η , η(0) − η0

k = ϕ
1−ϕ‖y2‖

,

u2 = −k y2
y0u2 y2

−
+

+

−

Figure 5.3: The funnel control closed-loop system.

5.2 Funnel control result

In this section it is explicitly shown that the funnel controller (5.1.3) ap-
plied to any linear system (A,B,C) of class Mn,m achieves in presence
of L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm) input/output disturbances
u0, y0, respectively, the control objectives of funnel control: y2 is forced
to proceed within a funnel Fϕ with ϕ ∈ Φ and all signals and states of
the closed-loop (5.1.4), (5.1.2), (5.1.3), as depicted in Figure 5.3, remain
essentially bounded. Moreover, it is shown that the derivatives of the
output signals y1, y2 and the state ( y1

η ) are essentially bounded, too.
Furthermore, it is proved that all signals and states of the closed-

loop system are uniformly essentially bounded in terms of the system
matrices A,B,C, the initial values y0

1 , η
0, the function ϕ and the in-

put/output disturbances u0, y0, respectively. This is required for the
robustness analysis of funnel control, see Chapter 9.

Set, for n,m ∈ N with n ≥ m,

Dn,m

:= Mn,m×(Rm×Rn−m)×Φ×L∞(R≥0 → Rm)×W 1,∞(R≥0 → Rm),
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the set of all tuples of systems, initial values y0
1 , η

0 of the linear system,
reciprocal funnel boundary function ϕ and input/output disturbances
(u0, y0).

Theorem 5.2.1 Let n,m ∈ N with n ≥ m and ϕ ∈ Φ. Then there
exists a continuous map ν : Dn,m → R≥0 such that, for all tuples d =([

A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
∈ Dn,m, the associated closed-loop ini-

tial value problem (5.1.4), (5.1.2), (5.1.3) satisfies

‖(k, u2, y2, η)‖L∞(R≥0→R1+m)×W 1,∞(R≥0→Rm+n−m) ≤ ν(d) , (5.2.1)

and

∀ t ≥ 0 :

(t, y2(t)) ∈ Fϕ := {(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1} . (5.2.2)

That funnel control works for the class of systems Mn,m goes back
to [IRS02b] where also input disturbances are considered. However,
to prove robustness of funnel control in terms of the gap metric, see
Chapter 9, the existence of a continuous function ν(·) satisfying (5.2.1)
is crucial. Therefore, a new proof showing (5.2.1) is presented. This
proof uses some ideas from [HIR09]. In this paper the authors consider
funnel control with input saturation and give a proof which is much
more elementary than the proofs one can find in [IRS02b, IRT05, IR06,
IRT06, IRT07, RST08].

Proof of Theorem 5.2.1. Consider any element from the set Dn,m,
i.e. let d =

([
A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
∈ Dn,m. The closed-loop

initial value problem (5.1.4), (5.1.2), (5.1.3) is then given by

ẏ2 = A1 y2 −A2 η − k CB y2 + ẏ0 −A1 y0 − CB u0 , y2(0) = y0
2 ,

η̇ = −A3 y2 +A4 η +A3 y0 , η(0) = η0 ,

k =
ϕ

1 − ϕ‖y2‖
,

u2 = −ky2 ,





(5.2.3)
where y0

2 := y0(0) − y0
1 . The proof is divided into 5 steps.

Step 1 : Existence and uniqueness of a solution of (5.2.3) is shown.
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In view of the definition of Fϕ, see (5.2.2), it is easy to see that

∀ y0 ∈W 1,∞(R≥0 → Rm) ∀ y0
1 ∈ Rm : (0, y2(0)) = (0, y0(0)−y0

1) ∈ Fϕ .

In view of the equations in (5.2.3) the closed-loop initial value prob-
lem (5.1.4), (5.1.2), (5.1.3) may be written as

d
dt

(
y2
η

)
= f(t, y2, η) ,




0
y2(0)
η(0)


 =




0
y0(0) − y0

1

η0


 ∈ Fϕ × Rn−m ,

(5.2.4)
where, in view of ϕ|[ε,∞)

(·)−1 being globally Lipschitz for every ε > 0

and ϕ(0) = 0,

f : Fϕ × Rn−m → Rn ,

(t, y2, η)

7→
(
A1y2 −A2η − CB ϕ(t)

1−ϕ(t)‖y2‖
y2 + ẏ0(t) −A1y0(t) − CBu0(t)

−A3y2 +A4η +A3y0(t)

)
,

satisfies a local Lipschitz condition on the relatively open set Fϕ×Rn−m

in the sense that, for all (τ, ξ, ζ) ∈ Fϕ × Rn−m, there exists an open
neighbourhood O of (τ, ξ, ζ) and a constant L > 0 such that

∀ (t, y, η) ∈ O : ‖f(t, y, η) − f(t, ξ, ζ)‖ ≤ L(‖y − ξ‖ + ‖η − ζ‖) .

Therefore, standard theory of ordinary differential equations, see, for
example, [Wal98, Thm. III.11.III], yields that (5.2.3) has an absolutely
continuous solution (y2, η) : [0, ω) → Rm × Rn−m for some ω ∈ (0,∞],
which satisfies (t, y2(t), η(t)) ∈ Fϕ × Rn−m for all t ∈ [0, ω). Moreover,
the solution is unique and can be extended up to the boundary of Fϕ ×
Rn−m. In other words: the closure of graph

(
(y2, η)|[0,ω)

)
is not a

compact subset of Fϕ × Rn−m, i.e. for every compact K ⊂ Fϕ × Rn−m

exists t ∈ [0, ω) such that (t, y2(t), η(t)) /∈ K. This means that either
ω = ∞ or if ω < ∞ then for every ε > 0 there exists t ∈ (0, ω) such
that 1 − ϕ(t)‖y2(t)‖ < ε or ‖η(t)‖ > 1/ε.

Step 2 : Some technicalities, crucial for the following steps, are pre-
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sented.

From the existence of a solution and the properties of ϕ it follows
that

∃ δ = δ(d) > 0 ∀ t ∈ [0, δ] :

{
‖y2(t)‖ ≤ ‖y2(0)‖ + 1 and

1 − ϕ(t)‖y2(t)‖ ≥ max{1/2, ϕ(t)} ,
(5.2.5)

By definition of Φ there exists a global Lipschitz constant Lδ > 0 of
the reciprocal ϕ|[δ,∞)

(·)−1 and λ := inf
{
ϕ(t)−1 | t > 0

}
. Moreover,

(t, y2(t)) ∈ Fϕ for all t ∈ [0, ω) yields

∀ t ∈ [0, ω) :

‖y2(t)‖ ≤ max
{
‖ϕ|[δ,∞)

(·)−1‖L∞ , ‖y0(0) − y0
1‖ + 1

}
. (5.2.6)

By the minimum phase property of (5.1.4), i.e. specA4 ⊂ C−,

∃α, β > 0 ∀ t ≥ 0 : ‖eA4t‖ ≤ βe−αt . (5.2.7)

In view of positive definiteness of CB, define γCB > 0 by

∀ v ∈ Rm \ {0} : 〈v, CBv〉 ≥ γCB‖v‖2 .

Step 3 : It is shown:

∀ t ∈ [δ, ω) : ϕ(t)−1 − ‖y2(t)‖ ≥ ε , (5.2.8)

where δ > 0 is defined by (5.2.5) and, for γCB , λ, Lδ, α and β defined in
Step 2,

ε := min

{
1

2
,
λ

2
,
γCB λ

2
,

[
Lδ +

(
‖A1‖ + ‖A2‖ ‖A3‖

β

α

)

·
(
‖y0‖L∞ + ‖ϕ|[δ,∞)

(·)−1‖L∞

)

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]−1
}
. (5.2.9)
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Seeking a contradiction, suppose that

∃ t1 ∈ [δ, ω) : ϕ(t1)−1 − ‖y2(t1)‖ < ε . (5.2.10)

Since t 7→ ϕ(t)‖y2(t)‖ is continuous on [0, ω) and in view of (5.2.5) it
follows that

∃ t0 ≥ δ : t0 = max {t ∈ [δ, t1) ϕ(t) − ‖y2(t)‖ = ε} .

Thus, by definition of Φ,

∀ t ∈ [t0, t1] :

{
ϕ(t)−1 − ‖y2(t)‖ ≤ ε and

‖y2(t)‖ ≥ ϕ(t)−1 − ε ≥ λ− λ/2
(5.2.11)

and hence

∀ t ∈ [t0, t1] :
‖y2(t)‖

ϕ(t)−1 − ‖y2(t)‖ ≥ λ

2
ε−1 . (5.2.12)

By Variation of Constants the second line of (5.2.3) yields

∀ t ≥ 0 : η(t) = eA4tη0 +

∫ t

0

eA4(t−s)A3 (y0(s) − y2(s)) ds , (5.2.13)

thus the first line of (5.2.3) writes

for a.a. t ≥ 0 :

ẏ2(t) = −A1(y0(t) − y2(t))

+A2

∫ t

0

eA4(t−s)A3 (y0(s) − y2(s)) ds−A2e
A4tη0

+ ẏ0(t) − CBu0(t) + CB

( −ϕ(t)

1 − ϕ(t)‖y2(t)‖y2(t)

)
.

Hence, by (5.2.6), (5.2.7), (5.2.12) and (5.2.9), conclude, for almost all



5.2 Funnel control result 137

t ∈ [t0, t1],

〈y2(t), ẏ2(t)〉

≤ ‖y2(t)‖
[(

‖A1‖ + ‖A2‖ ‖A3‖
β

α

)[
‖y0‖L∞ +

∥∥ϕ|[δ,∞)
(·)−1

∥∥
L∞

]

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]

− ϕ(t)

1 − ϕ(t)‖y2(t)‖ 〈y2(t), CBy2(t)〉

≤ ‖y2(t)‖
[(

‖A1‖ + ‖A2‖ ‖A3‖
β

α

)[
‖y0‖L∞ +

∥∥ϕ|[δ,∞)
(·)−1

∥∥
L∞

]

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]

− ϕ(t)γCB‖y2(t)‖
ϕ(t) (ϕ(t)−1 − ‖y2(t)‖)

‖y2(t)‖

≤ ‖y2(t)‖
[(

‖A1‖ + ‖A2‖ ‖A3‖
β

α

)[
‖y0‖L∞ +

∥∥ϕ|[δ,∞)
(·)−1

∥∥
L∞

]

+ ‖A2‖β‖η0‖ + ‖ẏ0‖L∞ + ‖CB‖ ‖u0‖L∞

]

− γCBλ

2
ε−1‖y2(t)‖

≤ −Lδ‖y2(t)‖ . (5.2.14)

Thus

‖y2(t1)‖ − ‖y2(t0)‖ =

∫ t1

t0

1

‖y2(τ)‖〈y2(τ), ẏ2(τ)〉dτ

≤ −Lδ(t1 − t0) ≤ −|ϕ(t1)−1 − ϕ(t0)−1|
≤ ϕ(t1)−1 − ϕ(t0)−1 ,

whence the contradiction

ε = ϕ(t0)−1 − ‖y2(t0)‖ ≤ ϕ(t1)−1 − ‖y2(t1)‖ < ε .
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This proves (5.2.8).

Step 4 : It is shown that ω = ∞.

Let σ := min
{

1, inft∈[δ,ω) ϕ(t)
}
> 0. By (5.2.8) follows that

∀ t ∈ [δ, ω) : 1 − ϕ(t)‖y2(t)‖ ≥ εϕ(t) ≥ εσ ,

where ε > 0 is defined by (5.2.9) and so, in view of (5.2.5),

∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≥ εσ .

Seeking a contradiction, suppose ω < ∞. By (5.2.6) and (5.2.13)
follows that η ∈ L∞([0, ω) → Rn−m) with

∥∥η|[0,ω)

∥∥
L∞ ≤ c for some

c > 0. Then

K :=
{

(t, y, z) ∈ Fϕ × Rn−m t ∈ [0, ω] , 1 − ϕ(t)‖y‖ ≥ εσ , ‖z‖ ≤ c
}

is a compact subset of Fϕ × Rn−m with (t, y2(t), η(t)) ∈ K for all t ∈
[0, ω), which contradicts the fact that the closure of graph

(
(y2, η)|[0,ω)

)

is not a compact set, see Step 1. Therefore, ω = ∞.

Step 5 : Inequality (5.2.1) is shown.

Step 4 yields ω = ∞. Then Step 3 and (5.2.5) guarantee that
(t, y2(t)) ∈ Fϕ for all t ≥ 0. Moreover, for some δ = δ(d) > 0 de-
fined by (5.2.5), ‖y2(t)‖ ≤ ϕ−1(t) − ε for all t ≥ δ, and, in view
of (5.2.5), is ‖y2(t)‖ ≤ ‖y2(0)‖ + 1 ≤ ‖y0(0)‖ + ‖y0

1‖ + 1 for all t ∈
[0, δ]. Thus y2 ∈ L∞(R≥0 → Rm) is uniformly bounded in terms of
d =

([
A1 A2

A3 A4

]
, B,C, (y0

1 , η
0), ϕ, u0, y0

)
. Moreover, (5.2.8) and (5.2.5)

yield
∀ t ≥ 0 : 1 − ϕ(t)‖y2(t)‖ ≥ εϕ(t)

and so

∀ t ≥ 0 : k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖ ≤ ε−1

which gives k ∈ L∞(R≥0 → R) and, in view of (5.2.5), ‖k‖L∞ ≤ 1
ε , thus

k is uniformly bounded in terms of d. Hence, u2 = −k y2 ∈ L∞(R≥0 →
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Rm) is also uniformly bounded in terms of d. By (5.2.13) follows

∀ t ≥ 0 :

‖η(t)‖ =

∥∥∥∥e
A4tη0 +

∫ t

0

eA4(t−s)A3 (y0(s) − y2(s)) ds

∥∥∥∥

≤ βe−αt‖η0‖ +

∫ t

0

β‖A3‖e−α(t−s) (‖y0‖L∞ − ‖y2‖L∞) ds

≤ β‖η0‖e−αt +
β

α
‖A3‖ (‖y0‖L∞ − ‖y2‖L∞)

(
1 + e−αt

)
,

hence η ∈ L∞ (R≥0 → Rn−m) and moreover, η is uniformly bounded
in terms of the system matrices and the L∞-norms of y0 and y2 which
yields that η is uniformly bounded in terms of d ∈ Dn,m.

Finally, in view of (5.2.3), it follows that the derivatives of y2 and
η are also uniformly bounded in terms of d which yields that (y2, η) ∈
W 1,∞ (R≥0 → Rm × Rn−m). Moreover, this proves the existence of a
continuous function ν : Dn,m → R≥0 such that (5.2.1) holds true.

Step 6 : Finally, (5.2.2) is shown.

By Step 5 one has k ∈ L∞(R≥0 → R). Thus, and since y2 is continu-
ous, it follows that, for all t ≥ 0, 1−ϕ(t)‖y2(t)‖ > 0, which shows (5.2.2)
and completes the proof. 2

Funnel control is actually not a new result. However, a proof for
Theorem 5.2.1 becomes a lot easier with the ideas from [HIR09]; here the
authors consider funnel control with input saturation. Most proofs for
funnel control in the literature, see [IRS02b, IRT05, IR06, IRT06, IRT07,
RST08] are much more technical and cannot give uniform boundedness
of the system’s signals in terms of the system’s data, initial values,
funnel boundary function and disturbance signals.

Note that the second statement of Theorem 5.2.1, i.e. (5.2.2), can be
formulated even more restrictive:

∀ t ≥ 0 : (t, y2(t)) ∈ {(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ ≤ 1 − ε} ,

where ε > 0 is defined in terms of d ∈ Dn,m by (5.2.9). Loosely speaking:
one can show that there exists a constant ε = ε(d) > 0 (only depending
on the closed-loop system’s data) such that the distance between funnel
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boundary ϕ(t)−1 and norm of the error/output y2(t) is larger than ε,
for all t > 0, and infinity for t = 0.

Statement (5.2.1) is very important for the robustness analysis of
funnel control in the terminology of the gap metric, see Chapter 9. The
requirements for the robustness analysis not only of funnel control, but
also λ-tracking and high-gain output derivative feedback follow in the
next chapter, where the concept of the gap metric is introduced and all
important details are presented.

5.3 Notes and references

The results of the present section are from [IM09] and the “new” proof
for funnel control relies on an idea from [HIR09], where the authors
show funnel control of MIMO-systems with input saturation. Classical
proofs for funnel control can be found in [IRS02b, IRT05, IR06, IRT06,
IRT07, RST08]. However, the results from these works do not provide a
proof which may lead to uniform boundedness of the systems signals in
terms of the system’s data which is required for the robustness analysis
in Chapter 9.



6 The concept of the gap
metric

In the previous chapters several control strategies have been introduced:
high-gain derivative feedback, λ-tracking and funnel control. These
strategies work for more or less different classes of systems. The main
idea is feeding back the output signal, and maybe derivatives of the
output, in an appropriate way via the input of the system. The so
resulting closed-loop systems are “stable” in different senses. An im-
portant question might be: ‘What can be said about the robustness
of a “stable” closed-loop system?’ That means does it remain stable
under sufficiently small disturbances of, for example, the system’s data.
Therefore, another question arises: ‘How can anything be said about
the robustness of a closed-loop system?’

Consider the classical feedback configuration shown in Figure 6.1,
where the plant P denotes a system which is controlled by the controller
C.

P

C

u0

y0

+ u1 y1

−
+y2u2

−

Figure 6.1: The closed-loop system [P,C]

One can find answers to questions concerning robustness of a closed-
loop system [P,C] by, loosely speaking, measuring distances between
systems. To be more precise: given a “stable” closed-loop system [P,C]
with known P and C, one can consider a new plant P1 and measure the
distance between P and P1 in some sense. If this distance is sufficiently

141
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small then one can guarantee that the new closed-loop system [P1, C]
is again “stable”. The big advantage of this approach is that almost
no knowledge of the closed-loop system [P1, C] is required. This means
in particular that it is not necessary to study how controller C effects
P1. Moreover, this makes it possible to consider systems P1 which do
not satisfy the classical assumptions required for an application of the
control strategy C. This idea is applied to λ-tracking and funnel control
and some robustness results for these control strategies are presented,
see Chapter 8 and Chapter 9.

Note that the closed-loop system [P,C] in Figure 6.1 is symmetric.
Therefore, it is possible to switch the roles of P and C: instead of con-
sidering different plants P and P1 one may consider different controllers
C and C1. So, the idea of measuring distances can also applied to dif-
ferent control strategies which is done for high-gain derivative feedback
control, see Chapter 7.

One possibility of measuring the distance between two systems is the
so-called gap metric, firstly introduced by [ZES80]. Further important
papers on gap metric are the works by T. Georgiou and M. Smith [GS90,
GS93, GS97]. Other robustness concepts which are related to the gap
metric are, for example, w-stability introduced by T. Georgiou and
M. Smith in [GS89], or the ν-gap distance introduced by G. Vinnecombe,
see, for example [Vin93, Vin99, Vin01]. Some more thoughts on these
are added in the conclusion of the present chapter.

The terminology and results of the present chapter are based on the
gap metric basics from [GS97, Sec. II], [Fre08, Sec. 2], [FIR06, Sec. 2]
and [FIM09, Sec. 2]. Moreover, the terminology in the present chapter is
generalized for signal spaces of continuous functions. Therefore, results
on robust stability from [GS97, Sec. III] and [Fre08, Sec. 5] which are
required for the robustness analysis for λ-tracking and funnel control
are revisited.

6.1 Generalized signal spaces

In this section the so-called extended space Ve and the ambient space
Va of a signal space V are introduced. Loosely speaking, these spaces
are required for the terminology of the gap metric to deal with sys-
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tems which produce unbounded outputs in some sense. For example,
consider the system ẏ1 = y1 + u1 with initial value y1(0) = 0, which
can be regarded as a plant P which maps a signal u1 to y1 = Pu1 =(
t 7→

∫ t

0
et−su0(s) ds

)
. Then, for u0 = (t 7→ 1) ∈ V = L∞(R≥0 → R),

y1 = (t 7→ et − 1) which is not in L∞(R≥0 → R). However, the ex-
tended space of V = L∞(R≥0 → Rm) is Ve = L∞

loc(R≥0 → Rm) and so
y1 = (t 7→ et − 1) ∈ Ve. Here one can see that it becomes necessary to
consider generalized signal spaces. Note that, for V = L∞(R≥0 → R),
one would find that the ambient space Va = ∪0<ω≤∞L

∞
loc([0, ω) → Rm)

which becomes important for plants P that produce even outputs with
finite escape time.

To be more precise, let X be a nonempty set. For 0 < ω ≤ ∞ let
Sω denote the set of all locally integrable maps in map([0, ω) → X ).
For ease of notation define S := S∞. For 0 < τ < ω ≤ ∞ define a
truncation operator Tτ as follows:

Tτ : Sω → S , v 7→ Tτv :=

(
t 7→

{
v(t), t ∈ [0, τ)

0, t ∈ [τ,∞)

)
.

Then, as in [Fre08, FIR06, GS97], one may associate with V ⊂ S spaces
as follows:

Vold
e =

{
v ∈ S

∣∣∀ τ > 0 : Tτv ∈ V
}
, the “old” extended space ;

Vold
ω =

{
v ∈ Sω

∣∣∀ τ ∈ (0, ω) : Tτv ∈ V
}
, 0 < ω ≤ ∞ ;

Vold
a =

⋃
ω∈(0,∞] Vω, the “old” ambient space.

However note that these definitions are not applicable for subspaces of
continuous functions as considered in the present thesis. This is due to
the fact that for continuous v ∈W r,p(R≥0 → R) (see the list of symbols
for a definition of this Sobolev space), with r ∈ N and p ∈ [1,∞], the
truncation Tτv, τ > 0, does not necessarily belong to W r,p(R≥0 → R).

Therefore, define, in addition to the truncation operator, for 0 < τ <
ω ≤ ∞, the restriction of maps as follows:

(·)∣∣
[0,τ)

: Sω → Sτ , v 7→ v
∣∣
[0,τ)

:= (t 7→ v(t), t ∈ [0, τ)) .



144 6 The concept of the gap metric

Consider next a vector space V ⊂ S of maps defined on [0,∞) with norm
‖ · ‖V : V → R≥0. One may introduce the norm ‖ · ‖V∣∣

[0,τ)
: {v∣∣

[0,τ)
| v ∈

V} → R≥0 where ‖v∣∣
[0,τ)

‖V∣∣
[0,τ)

denotes the norm on the restriction

[0, τ) ⊂ R≥0, and write, for ease of notation, ‖Tτv‖V = ‖v∣∣
[0,τ)

‖V∣∣
[0,τ)

for v ∈ V.

Now associate with V ⊂ S spaces as follows:

V[0, τ) =
{
v ∈ Sτ

∣∣∣∃w ∈ V with ‖Tτw‖V <∞ : v = w
∣∣
[0,τ)

}
,

for τ > 0 ;

Ve =
{
v ∈ S

∣∣∣∀ τ > 0 : v
∣∣
[0,τ)

∈ V[0, τ)
}
, the extended space ;

Vω =
{
v ∈ Sω

∣∣∣∀ τ ∈ (0, ω) : v
∣∣
[0,τ)

∈ V[0, τ)
}
, for 0 < ω ≤ ∞ ;

Va =
⋃

ω∈(0,∞] Vω , the ambient space .

In case of V = W r,p(R≥0 → R) this means in view of the W r,p-norm:

‖Tτw‖W r,p =

r∑

i=0

‖Tτw
(i)‖Lp .

For Lp spaces these definitions coincide with the above “old” defini-
tions of ambient and extended spaces Vold

a and Vold
e , respectively.

If v, w ∈ Va with v|I = w|I on I = dom(v) ∩ dom(w), then write
v = w. For (u, y) ∈ Va × Va, the domains of u and y may be different;
adopt the convention

dom(u, y) := dom(u) ∩ dom(y) .

The set V ⊂ S is a said to be a signal space if, and only if, it is a) a
normed vector space and b) supτ≥0 ‖Tτv‖V <∞ implies v ∈ V.

Following an example: in some later applications, V may be the
space Lp(R≥0 → Rm) for p ∈ [1,∞], which obviously satisfies the
aforementioned assumptions a) and b): Lp is a normed space and if
supτ≥0 ‖Tτv‖Lp < ∞ then v ∈ Lp(R≥0 → Rm). Note that this also
holds for any Sobolev space W r,p(R≥0 → Rm), r ∈ N, p ∈ [1,∞], which
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are also used in later applications.
If V = Lp(R≥0 → Rm) then it follows that Ve = Lp

loc(R≥0 → Rm),
Vω = Lp

loc([0, ω) → Rm) for ω ∈ (0,∞], and Va = ∪0<ω≤∞L
p
loc([0, ω) →

Rm). It is important to note that Vω ) Lp([0, ω) → Rm).
For a normed signal space U and the Euclidean space Rl, l ∈ N, also

subsets of V = Rl × U will be considered, which, on identifying each
θ ∈ Rl with the constant signal t 7→ θ, can be thought of as a normed
signal space with norm given by ‖(θ, x)‖V =

√
|θ|2 + ‖x‖2

U .
The results in Chapters 7–9 handle different types of signal spaces are

considered. These are not specified here but in the respective chapter.

6.2 Well posedness

The notion of well posedness goes back to a definition by J. Hadamard,
see [Par94], for models of physical phenomena which should satisfy the
assumptions that there exists a unique solution which depends continu-
ously on the systems data, in some reasonable topology. In the present
section this idea will be applied to closed-loop systems [P,C], as depicted
in Figure 6.1, and softened in some sense: existence and uniqueness of
solutions is still required, but one may consider local, global or regular
well posedness, see below.

For this some more terminology is presented. A mapping Q : Ua → Ya

is said to be causal if, and only if,

∀ x, y ∈ Ua ∀ τ ∈ dom(x, y) ∩ dom(Qx,Qy) :
[
x|[0,τ)

= y|[0,τ)
⇒ (Qx)|[0,τ)

= (Qy)|[0,τ)

]
.

This means that, loosely speaking, the “present” may only depend on
the “past”. For better comprehension note that there exist operators
which do not satisfy this causality assumption. For example, let U =
L∞(R≥0 → R) and consider the translation operator T : x(·) 7→ x(·+1).

Then, for x = (t 7→ 1), y =
(
t 7→

{
1 , t∈[0,1]
0 , t>1

)
and τ = 1, it follows that

x|[0,τ)
= y|[0,τ)

but (Tx)|[0,τ)
≡ 0|[0,τ)

6= 1|[0,τ)
≡ (Ty)|[0,τ)

, see, for

example, [Kur05].
Consider P : Ua → Ya, u1 7→ y1, and C : Ya → Ua, y2 7→ u2 being
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causal mappings representing the plant and the controller, respectively,
and satisfying the closed-loop equations:

[P,C] : y1 = Pu1, u2 = Cy2, u0 = u1 + u2, y0 = y1 + y2 , (6.2.1)

corresponding to the closed-loop shown in Figure 6.1.

For w0 = (u0, y0) ∈ W := U×Y a pair (w1, w2) = ((u1, y1), (u2, y2)) ∈
Wa ×Wa, Wa := Ua × Ya, is a solution if, and only if, (6.2.1) holds on
dom(w1, w2). The (possibly empty) set of solutions is denoted by

Xw0
:= {(w1, w2) ∈ Wa ×Wa | (w1, w2) solves (6.2.1)}

The closed-loop system [P,C], given by (6.2.1), is said to have:

• the existence property if, and only if, Xw0
6= ∅ ;

• the uniqueness property if, and only if,

∀ w0 ∈ W :
[
(ŵ1, ŵ2), (w̃1, w̃2) ∈ Xw0

=⇒

(ŵ1, ŵ2) = (w̃1, w̃2) on dom(ŵ1, ŵ2) ∩ dom (w̃1, w̃2)
]
.

Assume that [P,C] has the existence and uniqueness property. For each
w0 ∈ W, define ωw0

∈ (0,∞], by the property

[0, ωw0
) := ∪(ŵ1,ŵ2)∈Xw0

dom(ŵ1, ŵ2)

and define (w1, w2) ∈ Wa × Wa, with dom(w1, w2) = [0, ωw0
), by the

property (w1, w2)|[0,t) ∈ Xw0
for all t ∈ [0, ωw0

). This construction
induces the closed-loop operator

HP,C : W → Wa ×Wa, w0 7→ (w1, w2) .

For Ω ⊂ W the closed-loop system [P,C], given by (6.2.1), is said to be:

• locally well posed on Ω if, and only if, it has the existence and
uniqueness properties and the operator HP,C

∣∣
Ω

: Ω → Wa ×Wa,

w0 7→ (w1, w2), is causal;
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• locally well posed if, and only if, it has the existence and uniqueness
properties and the operator HP,C : W → Wa×Wa, w0 7→ (w1, w2),
is causal;

• globally well posed on Ω if, and only if, it is locally well posed on
Ω and HP,C(Ω) ⊂ We ×We ;

• globally well posed if, and only if, it is locally well posed and
HP,C(W) ⊂ We ×We ;

• W-stable if, and only if, it is locally well posed and HP,C(W) ⊂
W ×W ;

• regularly well posed if, and only if, it is locally well posed and

∀w0 ∈ W :
[
ωw0

<∞ ⇒
∥∥(HP,Cw0)|[0,τ)

∥∥
Wτ×Wτ

→ ∞ as τ → ωw0

]
.

(6.2.2)

Note that it is differentiated between well posedness of [P,C] on a
subset Ω of W and sheer well posedness of [P,C]. This is required due
to technical reasons when applying the terminology to the robustness
analysis in the following chapters.

If [P,C] is globally well posed, then for each w0 ∈ W the solution
HP,C(w0) exists on the half line R≥0. Regular well posedness means
that if the closed-loop system has a finite escape time ωw0

> 0 for some
disturbance w0 ∈ W, then at least one of the components u1, u2 or y1,
y2 is not a restriction to [0, ωw0

) of a function in U or Y, respectively.
If [P,C] is regularly well posed and satisfies

∀w0 ∈ W :
[
ωw0

<∞ ⇒ HP,C(w0)
∣∣
[0,ωw0

)
∈ W[0, ωw0

) ×W[0, ωw0
)
]
,

there does not exist a solution of [P,C] with a finite escape time, and
therefore [P,C] is globally well posed. However, global well posedness
does not guarantee that each solution belongs to W × W; the latter
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is ensured by W-stability of [P,C]. Note also that neither regular nor
global well posedness implies the other.

6.3 Graphs and the nonlinear gap metric

To measure the distance between two plants P and P1 it is necessary to
find sets associated with the plant operators within some space where
one may define a map which identifies the gap. These set are the graphs
of the operators: for the plant operator P : Ua → Ya and the controller
operator C : Ya → Ua define the graph GP of the plant and the graph
GC of the controller, respectively, as follows:

GP :=

{(
u
Pu

)
u ∈ U , Pu ∈ Y

}
⊂ W ,

GC :=

{(
Cy
y

)
Cy ∈ U , y ∈ Y

}
⊂ W .

Note that GP and GC are, strictly speaking, not subsets of W; however,
abusing the notation one may identify GP ∋ ( u

Pu ) = (u, Pu) ∈ W and
GC ∋

(
Cy
y

)
= (Cy, y) ∈ W.

An operator P : Ua → Ya is said to be causally extendible [GS93] (or
stabilizable in [Fre08]) if, and only if,

∀ τ > 0 ∀w1 = (u1, y1) ∈ Wa with Tτy1 = TτPu1 ∃w∗
1 ∈ GP :

Tτw1 = Tτw
∗
1 .

The essence of Chapters 7–9 is a study of robust stability in a specific
control context. Robust stability is the property that the stability prop-
erties of a globally well posed closed-loop system [P,C] persists under
“sufficiently small” perturbations of the plant. In other words, robust
stability is the property that [P1, C] inherits the stability properties of
[P,C], when the plant P is replaced by any plant P1 sufficiently “close”
to P . In the context of this thesis, plants P and P1 are deemed to be
close if, and only if, their respective graphs are close in the gap sense
of [GS97]. The nonlinear gap is defined as follows:



6.3 Graphs and the nonlinear gap metric 149

Definition 6.3.1 Let, for signal spaces U and Y,

Γ(U ,Y) :=
{
P : Ua → Ya

∣∣ P is causal
}

and, for P1, P2 ∈ Γ, define the (possibly empty) set

OP1,P2
:=
{

Φ : GP1
→ GP2

∣∣ Φ is causal, surjective, and Φ(0) = 0
}
.

The directed nonlinear gap ~δ : Γ(U ,Y) × Γ(U ,Y) → [0,∞] is given by

(P1, P2) 7→

~δ(P1, P2) := inf
Φ∈OP1,P2

sup
x∈GP1

\{0}, τ>0

(‖Tτ (Φ − I)|GP1
(x)‖U×Y

‖Tτx‖U×Y

)
,

with the convention that ~δ(P1, P2) := ∞ if OP1,P2
= ∅, and the nonlinear

gap δ is

δ : Γ(U ,Y) × Γ(U ,Y) → [0,∞] ,

(P1, P2) 7→ δ(P1, P2) := max{~δ(P1, P2), ~δ(P2, P1)} .

In the following subsection the above definitions are illustrated. The
graphs of two different systems are considered and an upper bound for
the gap is derived.

6.3.1 Example: the gap of two linear systems

In this subsection the previously introduced concepts of graphs and the
nonlinear gap are illustrated by two simple example plants. Consider

linear systems given by the transfer functions 1
s−α and N(M−s)

(s−α)(s+N)(s+M) ,

respectively. Let associated operators

Pα;x0 : Ua → Ya , u1 7→ y1 and PN,M,α;x̃0 : Ua → Ya , ũ1 7→ ỹ1
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be induced by state space systems

Pα;x0 : ẋ = αx+ u1 , x(0) = x0

y1 = x

}
(6.3.1)

PN,M,α;x̃0 : ẋ = Ã x+ b̃ ũ1 , x(0) = x̃0

ỹ1 = c̃ x

}
(6.3.2)

for x0 ∈ R, x̃0 ∈ R3, α,N,M > 0 and
(
Ã, b̃, c̃

)
given by

Ã :=




0 1 0
0 0 1

αNM, −NM + αN + αM, α−N −M


 , b̃ :=




0
0
N


 ,

c̃ := [M,−1, 0] .

Throughout this subsection assume that x0 = 0 and x̃0 = 03×1. The
purpose of this example is to show that Pα;0 is close to PN,M,α;0 in the
sense

lim sup
M→∞

~δ(Pα;0, P2M,M,α;0) = 0 . (6.3.3)

The graphs of Pα;0 and PN,M,α;0 are given, respectively, by

GPα;0
=

{(
u1

y1

) ∣∣∣∣ (u1, y1) ∈ U × Y : y1 solves (6.3.1) for x0 = 0

}
,

GPN,M,α;0
=

{(
ũ1

ỹ1

) ∣∣∣∣ (ũ1, ỹ1) ∈ U × Y : ỹ1 solves (6.3.2) for x̃0 = 0

}
,

for some signal spaces U and Y specified in due course. To determine
an upper bound for the gap between Pα;0 and PN,M,α;0, consider the
bijective mapping Φ from graph GPα;0

to graph GPN,M,α;0
given by

Φ: GPα;0
→ GPN,M,α;0

,



u∫ ·

0

eα(·−s) u(s) ds


 7→




u

c̃

∫ ·

0

eÃ(·−s)b̃ u(s) ds


 .
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By the definition of the nonlinear gap, see Section 6.3, one arrives at

~δ(Pα;0, PN,M,α;0) ≤ sup
w ∈GPα;0

\{0}, τ>0

‖Tτ (Φ − I)(w)‖W
‖Tτw‖W

, (6.3.4)

where W = U × Y and, for w = (u, y) ∈ W, the norm of W is defined
by

‖(u, y)‖W := ‖u‖U + ‖y‖Y .
In the following let U and Y be any of the spaces L∞(R≥0 → R) or
W 1,∞(R≥0 → R). To estimate

‖(Φ − I)(w)(t)‖ for w :=

(
u∫ ·

0
eα(·−s) u(s) ds

)
∈ GPα;0

calculate that the output ỹ1 of (6.3.2) is given, for all t ≥ 0, by

ỹ1(t) = c̃

∫ t

0

eÃ(t−s)b̃ ũ1(s) ds

=

∫ t

0

N(M − α)

(α+N)(α+M)
eα(t−s) ũ1(s) ds

+

∫ t

0

N(N +M)

(N −M)(α+N)
e−N(t−s) ũ1(s) ds

+

∫ t

0

−2NM

(N −M)(α+M)
e−M(t−s) ũ1(s) ds

and thus, for all t ≥ 0,

‖(Φ − I)(w)(t)‖ ≤
∥∥∥∥
(

N(M−α)
(α+N)(α+M) − 1

)∫ t

0

eα(t−s) u(s) ds

∥∥∥∥

+

∥∥∥∥
N(N+M)

(N−M)(α+N)

∫ t

0

e−N(t−s) u(s) ds

∥∥∥∥

+

∥∥∥∥ −2NM
(N−M)(α+M)

∫ t

0

e−M(t−s) u(s) ds

∥∥∥∥
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and moreover, for all t ≥ 0,

‖(Φ − I)(w)(t)‖

≤
∥∥∥ N(M−α)

(α+N)(α+M) − 1
∥∥∥
∥∥∥∥
∫ t

0

eα(t−s) u(s) ds

∥∥∥∥

+

(∥∥∥∥
N(N+M)

(N−M)(α+N)

∫ t

0

e−N(t−s) ds

∥∥∥∥

+

∥∥∥∥ −2NM
(N−M)(α+M)

∫ t

0

e−M(t−s) ds

∥∥∥∥
)
‖u‖U

≤
∥∥∥ N(M−α)

(α+N)(α+M) − 1
∥∥∥
∥∥∥∥
∫ ·

0

eα(·−s) u(s) ds

∥∥∥∥
Y

+
(∥∥∥ N+M

(N−M)(α+N)

∥∥∥+
∥∥∥ 2N

(N−M)(α+M)

∥∥∥
)
‖u‖U

≤
[∥∥∥ N(M−α)

(α+N)(α+M) − 1
∥∥∥+

∥∥∥ N+M
(N−M)(α+N)

∥∥∥+
∥∥∥ 2N

(N−M)(α+M)

∥∥∥
]

·
(
‖u‖U +

∥∥∥∥
∫ ·

0

eα(·−s) u(s) ds

∥∥∥∥
Y

)
.

Hence, in view of (6.3.4),

~δ(Pα;0, PN,M,α;0)

≤
∣∣∣ N(M−α)
(α+N)(α+M) − 1

∣∣∣+
∣∣∣ N+M
(N−M)(α+N)

∣∣∣+
∣∣∣ 2N
(N−M)(α+M)

∣∣∣ (6.3.5)

which yields (6.3.3).
In Chapters 8 and 9 the above example plants are visited again to

illustrate the robustness analysis of λ-tracking and funnel control.

6.4 Gain stability and gain-function stability

Two concepts of stability in the terminology of closed-loop systems
[P,C] given by (6.2.1) are introduced in detail: gain stability and gain-
function stability. Given normed signal spaces U , Y and W := U × Y
and causal operators P : Ua → Ya, C : Ya → Ua, recall from Sec-
tion 6.2 that the closed-loop system [P,C] with the associated operator
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HP,C : W → Wa×Wa is W-stable if, and only if, it is globally well posed
and HP,C(W) ⊂ W ×W. Then W-gain stability of [P,C] is defined as
follows:

Definition 6.4.1 (i) Given normed signal spaces X and V and Ω ⊂ X ,
a causal operator Q : X → Va is said to be gain stable on Ω if, and only
if, Q(Ω) ⊂ V, Q(0) = 0 and

∥∥∥Q∣∣Ω
∥∥∥
X ,V

:= sup

{‖(Qx)
∣∣
[0,τ)

‖Vτ

‖x|[0,τ)
‖Xτ

x ∈ Ω , τ > 0 , x|[0,τ)
6= 0

}
<∞ .

(ii) The closed-loop system [P,C] given by (6.2.1) with the associated
operator HP,C : W → Wa ×Wa is said to be W-gain stable if, and only
if, it is W-stable and HP,C is gain stable on W.

Next, associate with the closed-loop system [P,C] given by (6.2.1)
the following two parallel projection operators:

ΠP//C : W → Wa , w0 7→ w1 and ΠC//P : W → Wa , w0 7→ w2 .

Clearly, HP,C =
(
ΠP//C , ΠC//P

)
and ΠP//C + ΠC//P = I. Note that

gain stability of either ΠP//C and ΠC//P implies W-gain stability of

the closed-loop system [P,C] and that
∥∥ΠP//C

∥∥
W,W

,
∥∥ΠC//P

∥∥
W,W

≥ 1

since ΠP//C = Π2
P//C , ΠC//P = Π2

C//P .

The following definition of gain-function stability goes back to [GS97].
Note that the concept of gain-function stability is required to attain
robustness results for λ-tracking and funnel control.

Definition 6.4.2 (i) A causal operator F : X → Va, where X ,V are
subsets of normed signal spaces, is said to be gain-function stable if, and
only if, F (X ) ⊂ V and the following nonlinear so-called gain-function
is well defined:

g[F ] : (r0,∞) → R≥0,

r 7→ g[F ](r) = sup
{
‖TτFx‖V x ∈ X , ‖Tτx‖X ∈ (r0, r], τ > 0

}
,

(6.4.1)
where r0 := infx∈X ‖x‖X <∞.
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(ii) A closed-loop system [P,C] is said to be gain-function stable if,
and only if, it is globally well posed and HP,C : W → We ×We is gain-
function stable.

Observe that ‖TτFx‖V ≤ g[F ](‖Tτx‖X ) and note the following facts:

(i) global well posedness of [P,C] implies that imHP,C ⊂ We ×We;

(ii) stability of [P,C] implies W-stability of [P,C];

(iii) if [P,C] is W-stable, then HP,C : W → GP × GC is a bijective
operator with inverse H−1

P,C : (w1, w2) 7→ w1 + w2.

To see (iii), note that HP,C(W) ⊂ W × W implies that HP,C(W) ⊂
GP × GC , and since, for any w1 ∈ GP ⊂ W, w2 ∈ GC ⊂ W one has
w1 +w2 ∈ W, it follows that HP,C(W) ⊃ GP ×GC . Therefore, think of a
gain-function stable HP,C as a surjective operator HP,C : W → GP ×GC .
The inverse of HP,C : W → GP × GC is obviously H−1

P,C : (w1, w2) 7→
w1 + w2.

Finally, recall ΠP//C : w0 7→ w1 and ΠC//P : w0 7→ w2 and that

HP,C =
(
ΠP//C , ΠC//P

)
and ΠP//C + ΠC//P = I. Therefore, gain-

function stability of one of the operators ΠP//C and ΠC//P implies the
gain-function stability of the other, and so gain-function stability of ei-
ther operator implies gain-function stability of the closed-loop system
[P,C].

In the following robustness results from [GS97] and [Fre08] are rewrit-
ten into the present terminology. These results are crucial for the ro-
bustness analysis in the following chapters.

6.5 Robust stability

This section reviews some results from [GS97] and [Fre08]. These the-
orem about robust stability are rewritten in the terminology of the
present chapter.

6.5.1 [GS97, Thm. 1] revisited

Now a robust stability theorem is proved on which the main results
of Chapter 7 are based. This result is based on [GS97, Thm. 1], but
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extends the scope of that result in several directions. First, the result
is established in the language of ambient signal spaces to handle finite
escape times (cf. [GS97, Thm. 8]). More importantly, the implicit
requirement in [GS97] of well posedness of [P1, C] is extended to include
the often weaker requirement of regular well posedness. This eases the
application of the result in general, as global well posedness is non-trivial
to verify a priori, and regular well posedness is often easier to establish
(for L∞ as signal space regular well posedness follows from standard
results on the finite escape time properties of differential equations).

Note that this theorem is presented in a form where stability of [P1, C]
is inferred from [P,C], however, in the sequel the theorem will be apply
in the setting whereby stability of [P,C1] is to be inferred from [P,C].
Such applications of the theorem follow from a trivial interchange of P
and C and U , Y; to follow the convention of the literature and since,
in contrast to the results in Chapter 7, most applications of such ro-
bust stability results concern uncertainty in the plant P , the theorem is
presented in the context of P , P1.

Theorem 6.5.1 Let U , Y be signal spaces and W = U × Y. Consider
P : Ua → Ya, P1 : Ua → Ya and C : Ya → Ua with P (0) = 0, C(0) = 0.
Suppose [P,C] is gain stable on W, P1 is causally extendible and [P1, C]
is either a) globally or b) regularly well posed. If

~δ(P, P1) <
∥∥ΠP//C

∥∥−1

W,W
(6.5.1)

then the closed-loop system [P1, C] is gain stable on W with

∥∥ΠP1//C

∥∥
W,W

≤
∥∥ΠP//C

∥∥
W,W

1 + ~δ(P, P1)

1 −
∥∥ΠP//C

∥∥
W,W

~δ(P, P1)
. (6.5.2)

Proof. Since
∥∥ΠP//C

∥∥
W,W

≥ 1, it follows that ~δ(P, P1) < ∞ and

hence there exists a causal surjective mapping Φ: GP → GP1
such that

γ := ‖(Φ− I)ΠP//C‖W,W ≤ ‖(Φ− I)‖W,W · ‖ΠP//C‖W,W < 1. (6.5.3)

Let w ∈ W and let [0, ωw) be the maximal interval of existence for
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HP1,C(w). Let 0 < τ < ωw. Consider the equation

w|[0,τ)
= ((I + (Φ − I)ΠP//C)(x))

∣∣
[0,τ)

(6.5.4)

= ((ΠC//P + ΦΠP//C)(x))
∣∣
[0,τ)

. (6.5.5)

By either well posedness assumption a) or b), one knows that [P1, C] is
locally well posed, and hence satisfies the existence and uniqueness prop-
erties on [0, τ). Hence there exists w1 = (u1, y1), w2 = (u2, y2) ∈ Wωw

such that y1 = P1u1, u2 = Cy2 and w|[0,τ)
= w1|[0,τ)

+ w2|[0,τ)
. Since

P1 is causally extendible, there exists w′′
1 ∈ GP1

, such that w′′
1 |[0,τ)

=

w1|[0,τ)
. The definition of Wωw

yields that w2|[0,τ)
∈ W[0, τ) and hence

there exists w′
2 ∈ W such that w′

2|[0,τ)
= w2|[0,τ)

. Since Φ is sur-

jective it follows that there exists w′
1 ∈ GP such that Φ(w′

1) = w′′
1

and hence (Φ(w′
1))
∣∣
[0,τ)

= w′′
1 |[0,τ)

= w1|[0,τ)
. It can now be seen that

x = w′
1 + w′

2 ∈ W satisfies x|[0,τ)
= (w′

1 + w2)|[0,τ)
and x is a solution

of (6.5.5).

Since Φ, ΠP1//C , ΠP//C , ΠC//P are causal, it follows from (6.5.5)
that

(ΠP1//C(w))
∣∣
[0,τ)

=
(
ΠP1//C

(
ΠC//Px+ ΦΠP//C(x)

))∣∣
[0,τ)

= (ΦΠP//C(x))
∣∣
[0,τ)

. (6.5.6)

It follows from (6.5.4) that
∥∥x|[0,τ)

∥∥
Wτ

≤ 1
1−γ

∥∥w|[0,τ)

∥∥
Wτ

, hence, in

view of inequalities (6.5.1), (6.5.3) and equation (6.5.6),

∥∥ΠP1//C(w)
∣∣
[0,τ)

∥∥
Wτ

=
∥∥ΦΠP//C(x)

∣∣
[0,τ)

∥∥
Wτ

≤
∥∥ΠP//C(x)

∣∣
[0,τ)

∥∥
Wτ

+
∥∥(Φ − I)ΠP//C(x)

∣∣
[0,τ)

∥∥
Wτ

≤
∥∥ΠP//C

∥∥
W,W

1 + ~δ(P, P1)

1 −
∥∥ΠP//C

∥∥
W,W

~δ(P, P1)

∥∥w|[0,τ)

∥∥
Wτ

. (6.5.7)

If [P1, C] is globally well posed, ωw = ∞, so inequality (6.5.7) holds for
all τ > 0, and the proof is complete.
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Suppose [P1, C] is regularly well posed. Since, in view of (6.5.7), it
is shown that (ΠP1//C(w))

∣∣
[0,τ)

∈ W[0, τ) is uniformly bounded for all

τ ∈ (0, ωw) and since [P1, C] is regularly well posed, it follows that
ωw = ∞ so inequality (6.5.7) holds for all τ > 0. This completes the
proof. 2

6.5.2 [Fre08, Thm. 5.1–5.3] revisited

The results in this subsection form the theoretical basis for deducing
robustness results for closed-loop systems [P,C] which are not W-gain
stable but gain-function stable, see Theorems 6.5.2 and 6.5.3, and pro-
vide a robustness result for systems with non-zero initial conditions.
The following theorems are extracted from [Fre08, Sec. V] and rewrit-
ten in the terminology of the present chapter. This becomes necessary
due to the more general definitions of extended and ambient spaces in
view of the truncation and restriction operators, see Section 6.1.

Some more definitions are required: let

K∞ :=
{
k ∈ C(R≥0 → R≥0) k(0) = 0, lim

t→∞
k(t) = ∞

}
,

Br := {w ∈ W | ‖w‖W ≤ r} .

The following theorem rewrites [Fre08, Thm. 5.1] in the present ter-
minology of restriction and truncation operators, see Section 6.1. Note
that only one additional assumption is made: for signal spaces W =
U × Y it is required that W[0, τ) is complete for all τ ∈ (0,∞). Theo-
rem 6.5.2 is required to proof Theorem 6.5.3.

Theorem 6.5.2 ([Fre08, Thm. 5.1] revisited) Let U , Y be signal spaces
and W = U×Y such that W[0, τ) is complete for all τ ∈ (0,∞). Suppose
that the closed-loop [P,C] given by (6.2.1) is gain-function stable and
the closed-loop [P1, C] is regularly well posed. Let D ⊂ GP , D1 ⊂ GP1

,
X ⊂ W be convex and r > 0. Suppose that ΠP//CX ⊂ D and there
exists a causal, gain-function stable map Ψ: D → D1 such that, for all
τ > 0, the following hold:

(1) (I − Ψ)ΠP//C(·)∣∣
[0,τ)

: X → W[0, τ) is causal and compact;
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(2) ∀x,w ∈ X [0, τ) : w|[0,τ)
+
(
(I − Ψ)ΠP//C(x)

) ∣∣
[0,τ)

∈ X [0, τ);

(3) ∃κ ∈ K∞ ∀x ∈ X ∩ Br : ‖Tτ (I − Ψ)ΠP//C(x)‖W ≤ (1 + κ)−1(r).
(6.5.8)

Then HP1,C
∣∣
X∩Br

: X ∩ Br → W ×W is gain-function stable and

∀ τ > 0 ∀w ∈ X ∩Br : ‖Tτ ΠP1//Cw‖W ≤ g[Ψ]◦g[ΠP//C ]◦(1+κ−1)(r) .
(6.5.9)

Proof. The proof follows the outline of the proof of [Fre08, Thm. 5.1].

Let w ∈ X with ‖w‖W ≤ r and let [0, ωw) be the maximal of existence
for HP1,Cw. Let τ ∈ (0, ωw). Consider the equation

w|[0,τ)
= ((I + (Ψ − I)ΠP//C)(x))

∣∣
[0,τ)

= ((ΠC//P + ΨΠP//C)(x))
∣∣
[0,τ)

. (6.5.10)

It is claimed that this equation has a solution x ∈ V , where

V :=
{
x ∈ X [0, τ)

∣∣ ‖x‖W ≤ (1 + κ−1)(r)
}
.

Note that (t 7→ 0)
∣∣
[0,τ)

∈ V 6= ∅. Moreover, it is easy to see that V is

closed and bounded and, in view of convexity of X , V is convex, too.
Consider the operator

Qw : V → X [0, τ) , x 7→ w|[0,τ)
+ ((I − Ψ)ΠP//C(x))

∣∣
[0,τ)

where observe, by assumption (2), it follows that Qw(V ) ⊂ X [0, τ) as
required. In view of assumption (3) there exists κ ∈ K∞ such that, for
all x ∈ V ,

‖Qwx‖Wτ
= ‖w|[0,τ)

+ ((I − Ψ)ΠP//C(x))
∣∣
[0,τ)

‖Wτ

≤ ‖Tτw‖W + ‖Tτ ((I − Ψ)ΠP//C(x))‖W
≤ ‖Tτw‖W + (1 + κ)−1 (‖Tτx‖W)

≤ r + (1 + κ)−1 ◦ (1 + κ−1)(r)

= (1 + κ−1)(r) .
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Therefore, Qw(V ) ⊂ V . Since, by assumption (1), (I−Ψ)ΠP//C(·)∣∣
[0,τ)

is compact it then follows that Qw is compact. Then, in view of com-
pleteness of W[0, τ), W[0, τ) is a Banach space. Hence, and since
V is nonempty, closed, bounded and convex, Schauder’s fixed point
theorem [Zei86, Thm. 2.A] yields that Qw has a fixed point in V .
Hence (6.5.10) has a solution x ∈ V ⊂ X [0, τ) as claimed.

Since ΨΠP//C(x) ∈ GP1
, ΠC//P (x) ∈ GC and Ψ,ΠP1//C ,ΠP//C and

ΠC//P are causal it follows from (6.5.10) that

(ΠP1//C(w))
∣∣
[0,τ)

=
(
ΠP1//C

(
ΠC//P (x) + ΨΠP//C(x)

))∣∣
[0,τ)

=
(
ΨΠP//C(x)

)∣∣
[0,τ)

.

Hence, since x ∈ V ,

‖(ΠP1//C(w))
∣∣
[0,τ)

‖Wτ
= ‖Tτ ΠP1//C(w)‖W
= ‖Tτ ΨΠP//C(x)‖W
≤ g[Ψ] ◦ g[ΠP//C ]

(
‖Tτx‖W

)

≤ g[Ψ] ◦ g[ΠP//C ] ◦ (1 + κ−1)(x) .

As W is a signal space, thus has the property that supτ≥0 ‖Tτw‖W <∞,
and since τ ∈ (0, ωw) was arbitrary it follows that (ΠP1//C(w))

∣∣
[0,ωw)

∈
W[0, ωw) and so (HP1,C(w))

∣∣
[0,ωw)

∈ W[0, ωw)×W[0, ωw). Since [P1, C]

is regularly well posed it follows that ωw = ∞, see Section 6.2, and thus
ΠP1//C(w) ∈ W. Since w ∈ X ∩ Br was arbitrary it follows that (6.5.9)
holds and hence, HP1,C : X ∩ Br → W × W is gain-function stable.
Therefore, the proof is complete. 2

The following theorem applies the above gain-function stability result
to linear plants with zero initial conditions. Robustness is shown with
respect to a sufficiently small gap. Theorem 6.5.3 together with The-
orem 6.5.3 provide the theoretical basis for the robustness analysis of
λ-tracking and funnel control in Chapters 8 and 9. However, both theo-
rems achieve general robustness results for all closed-loop systems which
arise from the application of any causal controller C to any stabilizable
and detectable linear plant P .

Recall that a linear time-invariant system (A,B,C) ∈ Rn×n×Rn×m×
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Rm×n is stabilizable if, and only if, there exists a matrix F ∈ Rm×n such
that A+ BF is Hurwitz, see, for example, [Son98, Ch. 5.5]. Moreover,
recall that (A,B,C) ∈ Rn×n × Rn×m × Rm×n is detectable if, and only
if, (AT , CT , BT ) is stabilizable, see [Son98, Ch. 7.1].

Introduce the class of stabilizable and detectable m-input, m-output
linear systems: for n,m ∈ N with n ≥ m, define

Pn,m :=

{
(A,B,C)
∈ Rn×n × Rn×m × Rm×n

∣∣∣∣
(A,B,C) is stabilizable
and detectable

}
,

where (A,B,C) has, as in the previous chapters, the (standard) form

ẋ(t) = Ax(t) +B u1(t) , x(0) = x0,
y1(t) = C x(t) ,

}
(6.5.11)

where A ∈ Rn×n, B,CT ∈ Rn×m and x0 ∈ Rn is an arbitrary initial
value.

For any normed signal spaces U and Y, associate with a system θ =
(A,B,C) ∈ Pn,m and initial value x0 ∈ Rn associate a plant operator

P (θ, x0) : Ua → Ya , u1 7→ P (θ, x0)(u1) := y1 , (6.5.12)

where u1 ∈ Ua and y1 ∈ Ya satisfy (6.5.11). Note that P is a map from⋃
n≥m(Pn,m × Rn) to the space of maps Ua → Ya.

To establish gap margin results, it is required to construct the aug-
mented plant and controller operators as in [Fre08, FIR06].

For m,n ∈ N with n ≥ m, consider Pn,m as a subspace of the Eu-

clidean space Rn2+2mn by identifying a plant θ = (A,B,C) with a vector
θ consisting of the elements of the plant matrices, ordered lexicographi-
cally. Define, for any signal spaces U and Y, the space Ũ := Rn2+2nm×U
and let W̃ := Ũ×Y, which can be considered as signal spaces by identify-
ing θ ∈ Rn2+2mn with the constant function t 7→ θ and endowing Ũ with
the norm ‖(θ, u)‖Ũ :=

√
‖θ‖2 + ‖u‖2

U . For given P (θ, 0) as in (6.5.12),
define the (augmented) plant operator as

P̃ : Ũa → Ya , (θ, u1) = ũ1 7→ y1 = P̃ (ũ1) := P (θ, 0)(u1) . (6.5.13)

Define, for any causal controller operator C : Y → U , y2 7→ u2, the
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(augmented) controller operator as

C̃ : Ya → Ũa , y2 7→ ũ2 = C̃(y2) := (0, C(y2)) = (0, u2) . (6.5.14)

Now, one is in the position to state the revision of [Fre08, Thm. 5.2]
for a larger class of signal spaces than in [Fre08], namely Sobolev spaces
W r,p(R≥0 → Rm), r ∈ N and 1 ≤ 0 ≤ ∞.

Theorem 6.5.3 ([Fre08, Thm. 5.2] revisited) Let n, q,m, r ∈ N, p ∈
[1,∞] and let U , Y be any of the signal spaces Lp(R≥0 → Rm) or
W r,p(R≥0 → Rm). Set W = U×Y and let C : Ya → Ua, y2 7→ u2 be any
causal controller operator. Consider the plant operator P (θ, x0) : Ua →
Ya defined by (6.5.12) for (θ, 0) ∈ Pn,m × Rn or (θ1, 0) ∈ Pq,m × Rq.
Suppose that the closed-loop system [P (θ1, 0), C] is regularly well posed
for all θ1 ∈ Pq,m. Define the (augmented) plant and controller operators
as in (6.5.13) and (6.5.14):

P̃ : (Rn2+2nm × U)a → Ya , (ϑ, u1) 7→ y1 = P̃ (ϑ, u1) := P (ϑ, 0)(u1) ,

C̃ : Ya → (Rn2+2nm × U)a , y2 7→ C̃(y2) := (0, C(y2)) = (0, u2) .

Let Ω ⊂ Rn2+2nm be closed. Suppose that HP̃ ,C̃

∣∣
Ω×W is gain-function

stable and ΠP̃ //C̃(·)∣∣
[0,τ)

is continuous for all τ > 0.

Then there exists a continuous function µ : R≥0 × Ω → (0,∞) such
that

∀ (θ1, w0, ̺) ∈ Pn,m ×W × (0,∞) :

‖w0‖W ≤ ̺

~δ
(
P (θ, 0), P (θ1, 0)

)
≤ µ(̺, θ)

}
⇒ HP (θ1,0),Cw0 ∈ W ×W .

(6.5.15)

A proof of Theorem 6.5.3 is omitted here since it is equivalent to the
proof of [Fre08, Thm. 5.2] with the one exception: apply Theorem 6.5.2
instead of [Fre08, Thm. 5.1]. Note that the additional assumption of
Theorem 6.5.2, namely that W[0, τ) is complete for all τ ∈ (0,∞),
obviously holds true for U ,Y being any of the signal spaces Lp(R≥0 →
Rm) or W r,p(R≥0 → Rm), see also [AF03, Ch. 3].
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The third result in this section shows that robust stability of closed-
loop systems with zero initial conditions also guarantees stability mar-
gins in presence of sufficiently small initial values x0 ∈ Rn of the linear
plant (A,B,C).

Theorem 6.5.4 ([Fre08, Thm. 5.3] revisited) Let n,m, r ∈ N, p ∈
[1,∞] and let U , Y be any of the signal spaces Lp(R≥0 → Rm) or
W r,p(R≥0 → Rm). Set W = U × Y and let C : Ya → Ua, y2 7→ u2

be any causal controller operator. Consider, for (θ, x0) ∈ Pn,m × Rn,
the plant operator P (θ, x0) : Ua → Ya defined by (6.5.12). Suppose that
there exists ̺ > 0 such that HP (θ,0),Cw0 ∈ W ×W for all w0 ∈ W with
‖w0‖W ≤ ̺. Then

∃λ > 0 ∀ (θ, w0, x
0) ∈ Pn,m ×W × Rn :

λ‖x0‖ + ‖w0‖W ≤ ̺ ⇒ HP (θ,x0),Cw0 ∈ W ×W . (6.5.16)

Proof. The proof follows the steps of the proof of [Fre08, Thm. 5.3].

Since system (A,B,C) = θ ∈ Pn,m is stabilizable there exists F ∈
Rm×n such that Â = A + BF is Hurwitz. Then one may define maps
Ñ : U → U , u0 7→ u1, and M : U → Y, u0 7→ y1 such that the tuples
(u0, u1) = (u0, Ñu0) and (u0, y1) = (u0,Mu0) satisfy

ẋ = (A+BF )x+B u0 , x(0) = 0
u1 = F x+ u0 ,
y1 = C x .



 (6.5.17)

Step 1 : It is shown that Ñ(U) = V := {u ∈ U |P (θ, 0)u ∈ Y}:

Suppose u ∈ V, i.e. u ∈ U with P (θ, 0)u ∈ Y. Then Y ∋ P (θ, 0)u =
C x =: y for x being a solution of ẋ = Ax + B u, x(0) = 0. Since
(A,B,C) is detectable, there exists L ∈ Rn×m such that A + LC is
Hurwitz. Since y ∈ Y and u ∈ U writing

ẋ = (A+ LC)x− LC x+B u = (A+ LC)x− Ly +B u

yields that x ∈ Lp(R≥0 → Rn) for every p ∈ [1,∞]. Thus u0 := u−Fx ∈
U and (6.5.17) then yields that u = u1 = Ñ(u0) ∈ Ñ(U), which gives

V ⊂ Ñ(U).
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Conversely, suppose u ∈ Ñ(U). Then there exists u0 ∈ U such that
u0 = u−Fx ∈ U . Since spec(A+BF ) ⊂ C− it follows by (6.5.17) that

P (θ, 0)u = y = Cx ∈ Y. Hence Ñ(U) ⊂ V.

Now N : U → V, u0 7→ (1 0) ΠP (θ,0)//C ( u0
0 ), is well defined and

writing

ẋ = Ax+B u1 , x(0) = 0

u0 = F x− u1 ,

directly gives that N is invertible and P (θ, 0) = MN−1.

Step 2 : Characterization of the graph GP (θ,x0): it is shown that

GP (θ,x0) = Q

:=

{(
N
M

)
v +

(
F exp(Â·)x0

C exp(Â·)x0

)
∈ W v ∈ U , N,M,F

and Â as in Step 1

}
.

Suppose, for any v ∈ U , qv = ( N
M ) v +

(
F exp(Â·)x0

C exp(Â·)x0

)
∈ Q. Let u =

Nv + F exp(Â·)x0. Since Nv ∈ U and, for any r ∈ N and p ∈ [1,∞],

F exp(Â·) ∈W r,p(R≥0 → Rm)n ⊂ Un it follows that u ∈ U . Observe

ẋ = Ax+B(F exp(Â·)x0) , x(0) = x0 ∈ Rn

has the solution x(·) = exp(Â·)x0. Thus it follows that

P (θ, x0)
(
F exp(Â·)x0

)
= C exp(Â·)x0 . (6.5.18)

Hence, by C exp(Â·) ∈W r,p(R≥0 → Rm)n ⊂ Yn, it follows that

P (θ, x0)(u) = P (θ, x0)(Nv) + P (θ, x0)
(
F exp(Â·)x0

)
− P (θ, x0)(0)

= P (θ, 0)(Nv) + P (θ, x0)
(
F exp(Â·)x0

)

= (MN−1)(Nv) + C exp(Â·)x0

= Mv + C exp(Â·)x0 ∈ Y . (6.5.19)

Thus qv =
(
u, P (θ, x0)u

)
∈ U×Y and so qv ∈ GP (θ,x0) and Q ⊂ GP (θ,x0).
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Conversely, suppose
( u

P (θ,x0)u

)
∈ GP (θ;x0). Then, in view of (6.5.18),

P (θ, 0)
(
u− F exp(Â·)x0

)
= P (θ, x0)(u) − P (θ, x0)

(
F exp(Â·)x0

)
∈ Y .

Therefore, Step 1 yields that u − F exp(Â·)x0 ∈ V = im(N) and so

there exists v ∈ U such that Nv = u − F exp(Â·)x0. Therefore, equa-
tion (6.5.19) holds, hence

(
u

P (θ, x0)u

)
=

(
N
M

)
v +

(
F exp(Â·)x0

C exp(Â·)x0

)
∈ Q

and so GP (θ,x0) ⊂ Q. Therefore, GP (θ,x0) = Q as claimed.

Step 3 : Finally, (6.5.16) is shown.

Let λ :=
∥∥(F exp(Â·), C exp(Â·))‖Un×Yn . Suppose that w0 ∈ W and

x0 ∈ Rn satisfy λ‖x0‖ + ‖w0‖W ≤ ̺. Then, by letting

w
′

0 = w0 − w
′′

0 , w
′′

0 =
(
F exp(Â·)x0, C exp(Â·)x0)T ,

it follows that ‖w′

0‖W ≤ λ‖x0‖ + ‖w0‖W ≤ ̺. Hence, by assumption,

HP (θ,0),C(w
′

0) = (w1, w2) ∈ GP (θ,0) × GC .

In particular, w
′

0 = w1 + w2 and, by rearranging, it follows that w0 =
(w1 +w

′′

0 )+w2. Since w1 ∈ GP (θ,0) there exists v ∈ U such that, in view
of N,M defined in Step 1,

w1 =

(
N
M

)
v ,

hence w1 + w
′′

0 ∈ Q = GP (θ,x0). Thus, and since w2 ∈ GC , it follows

HP (θ,x0),Cw0 = (w1 + w
′′

0 , w2) ∈ W ×W and the proof is complete. 2

In the following chapters the results of the present subsection are
applied to the robustness analysis of high-gain derivative feedback sta-
bilization, λ-tracking and funnel control.
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6.6 Notes and references

The idea of measuring distances between graphs of operators to deter-
mine stability results in some sense goes back to works of J. C. Gohberg
and M. G. Krein, H. O. Cordes and J. P. Labrousse, and T. Kato, see
the references within [Kat76, p. 197].

The gap metric used in the present thesis, firstly introduced by the
work of G. Zames and A. El-Sakkary [ZES80], is based on the works
by T. Georgiou and M. Smith [GS90, GS93, GS97]. However, due to
the application in the various signal space settings of Chapters 7–9,
the terminology and results of the present chapter are based on the
terminology of [FIM09, Sec. 2]. In particular, the use of continuously
differential signals which do not allow for the terminology of [GS97,
Sec. II], [Fre08, Sec. 2] or [FIR06, Sec. 2].

Finally, some additional comments on w-Stability and ν-gap distance
follow:

T. Georgiou and M. Smith introduce in their paper [GS89] the idea of
w-Stability of closed-loop systems [P,C] as “a generalization of a con-
cept of well posedness discussed by J. Willems [Wil71]”. w-stability of
systems means that the systems should remain stable for a certain class
of perturbations which may not necessarily be small when measured by
the gap metric. However, w-stability of a system is defined in terms
of the so-called approximate identities, see [GS89, Sec. 2] for the defi-
nitions. Due to a strict frequency domain terminology in [GS89], the
concept of w-stability is limited to linear plants and linear controllers. It
might be worth to study whether w-stability can be adopted to find ro-
bustness results for high-gain derivative feedback stabilization, however,
this is not part of the present thesis.

G. Vinnicombe introduces the ν-gap distance in his thesis [Vin92] for
linear time-invariant systems and gives a generalization for nonlinear
systems in [Vin99]. The ν-gap metric δν(P, P1) of two systems P and P1

is the smallest metric for which certain robustness results hold. Unlike
the gap metric the ν-gap is introduced in a strict frequency domain
terminology which makes it much more complex when applying to the
nonlinear feedback systems considered in the present thesis.





7 Robustness of output
feedback stabilization

The main result in this chapter establishes that if the high-gain output
derivative feedback controller

C : y 7→ u =

r−1∑

i=0

ki+1y
(i) ,

introduced in Chapter 3, globally stabilizes (in some sense) a (nonlinear)
plant P , then global stabilization of P can also be achieved by an output
feedback controller C[h], given by

C[h] : y 7→ u =

r−1∑

i=0

ki+1∆i
hy ,

that means where the output derivatives in C are replaced by an Euler
approximation with sufficiently small delay h > 0.

This is proved within the conceptual framework of the nonlinear gap
metric approach to robust stability. It is shown that, for sufficiently
small h > 0, the closed-loop system [P,C[h]] of plant P and con-
troller C[h] is gain stable (recall the definition of gain stability from
Section 6.4). The main result is then applied to linear minimum phase
systems (A,B,C) with unknown coefficients but relative degree r and
“positive” high-frequency gain to prove exponential stability of the de-
lay differential system consisting of the linear system controlled by the
delay output feedback.

167
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7.1 Derivative and delay feedback

The problem of robust stability of high-gain output derivative feedback
is studied in the setup of the feedback configuration shown in Figure 7.1,
see also Chapter 6. Here P may be any (nonlinear) plant and the con-
trollers Ck and CEuler

k [h] are specified in due course. One is concerned

u0

u1 y1
P

Ck

/
CEuler

k [h] y0
u2 y2

−
+

+

−

Figure 7.1: The closed-loop system [P,C].

with the concept of gain stability from Section 6.4 of the closed-loop
systems [P,Ck] and [P,CEuler

k [h]], respectively. Recall, for some appro-
priate choices of signal spaces U and Y and k = (k1, . . . , kr) ∈ R1×r,
the high-gain output derivative feedback controller

Ck : Y → U , y2 7→ u2 = −
r−1∑

i=0

ki+1 y
(i)
2 . (7.1.1)

In the following section it is shown that stabilization of P can also
be achieved by replacing Ck by the delay (Euler) feedback controller
CEuler

k [h] for sufficiently small h > 0, given by

CEuler
k [h] : Y → U , y2 7→ u2 = −

r−1∑

i=0

ki+1 ∆i
hy2 , (7.1.2)

where ∆0
hy2 = y2 and ∆i

hy2 for i ≥ 1, denotes the Euler approximation
of the ith derivative of y2 defined by

∆i
hy2 = ∆h ◦ · · · ◦ ∆h︸ ︷︷ ︸

i times

y2 , where (∆hy2) (t) =
y2(t) − y2(t− h)

h
.
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The main result presents conditions under which a feedback controller
based on the measured output and its derivatives can be replaced by a
feedback controller based on the measured output and numerical deriva-
tives.

The signal spaces U and Y for which these result holds depend on
structural properties of the controller Ck. For concreteness: since Ck

maps the output y2 onto a sum of derivatives of y2 some regularity of Y is
required. On the other side, in view of the application of the main result
Theorem 7.2.1 to m-input, m-output linear plants, which are minimum
phase and have strict relative degree r ≥ 1, see Section 7.3, choices
of signal spaces U = CLp(R≥0 → Rm) and Y = CW ̺,p(R≥0 → Rm),
where ̺ = r if p = ∞ and ̺ = r or either ̺ = ∞ if p <∞, are valid.

For the application of Theorem 7.2.1, the stabilizing high-gain output
derivative feedback (3.2.2) for linear MIMO-systems with strict relative
degree r is considered and replaced by an according high-gain output
delay feedback and an explicit upper bound on the permitted delay is
given. The results on robust stability are also extended to incorporate
systems with non-zero initial conditions. One can find a similar result
on stabilizing by output delay feedback for systems with relative degree
2 in [IS04]. Some more comments about related literature on stabilizing
by delays follow in the conclusion of this section.

The results are established by computing the gap distance between Ck

and CEuler
k [h] and using the framework of the nonlinear robust stability

theory from Chapter 6 to deduce the stability of the closed-loop sys-
tem containing the Euler controller from the stability of the derivative
feedback controlled closed-loop system.

7.2 Robust stabilization by delay feedback

First, the result on robust stabilization by output delay feedback is
presented: the main result of the present chapter establishes conditions
under which a derivative feedback controller (7.1.1) may be replaced by
the Euler controller (7.1.2). First formally define, for m ∈ N and h > 0,
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the Euler approximation

∆h : map(R≥0 → Rm) → map(R≥0 → Rm) ,

(t 7→ y(t)) 7→
(
t 7→ y(t) − y(t− h)

h

)
, where y(s) = 0 if s < 0,

of the derivative of y and, for higher derivatives y(i), i ∈ N,

∆i
h : map(R≥0 → Rm) → map(R≥0 → Rm) ,

y 7→ ∆i
h(y) :=





∆i−1
h (∆h(y)) if i ≥ 2

∆h(y) if i = 1

y if i = 0 .

(7.2.1)

Now the underlying signal spaces for the results of this section are
presented, see also the list of symbols. Let, for p ∈ [1,∞] and r ∈
N ∪ {∞},

CLp(R≥0 → Rm)

:= C(R≥0 → Rm) ∩ Lp(R≥0 → Rm)

CW r,p(R≥0 → Rm)

:= W r,p(R≥0 → Rm) ∩ Cr(R≥0 → Rm)

CW r,p
0 (R≥0 → Rm)

:=

{
y ∈ CW r,p(R≥0 → Rm)

y(i)(0) = 0 for

all i ∈ {0, . . . , r − 1}

}

CW∞,p
0 (R≥0 → Rm)

:=
{
y ∈ CW∞,p(R≥0 → Rm) ∀ i ∈ N0 : y(i)(0) = 0

}

The results in the present section will hold in the following three signal
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space settings (A)–(C):

(A) W = U × Y =CL∞(R≥0 → Rm) ×CW r,∞(R≥0 → Rm) ,

W0 = U0 × Y0 =CL∞(R≥0 → Rm) ×CW r,∞
0 (R≥0 → Rm) ,

r ∈ N , p = ∞ ,

(B) W = U × Y =CLp(R≥0 → Rm) ×CW r,p(R≥0 → Rm) ,

W0 = U0 × Y0 =CLp(R≥0 → Rm) ×CW r,p
0 (R≥0 → Rm) ,

r ∈ N , p ∈ [1,∞) ,

(C) W = U × Y =CW∞,p(R≥0 → Rm) ×CW∞,p(R≥0 → Rm) ,

W0 = U0 × Y0 =CW∞,p
0 (R≥0 → Rm) ×CW∞,p

0 (R≥0 → Rm) ,

p ∈ [1,∞) .





(7.2.2)
The spaces W0 will be utilized for results whereby the systems’ ini-

tial conditions are zero, whilst the spaces W are utilized in the general
setting with non-zero initial conditions. The spaces of type (A) and (B)
are standard, the need for spaces with constrained derivatives arises
from the setting whereby derivative based controllers are being consid-
ered. The application of the robust stability result Theorem 7.2.1 to
linear minimum phase systems in Section 7.3 a legitimates the spaces
of type (C), which allows for more general controllers (one will not re-
quire kr = 0 for controller Ck given by (7.1.1) as for signal spaces of
type (B), see below) at the price of greater regularity constraints on the
disturbances.

Next, the main result of this section is stated: if Ck gain stabilizes a
plant P it follows that CEuler

k [h] is also a gain stabilizing controller for
P for sufficiently small h > 0. The idea behind the proof is to show
that the gap ~δ(Ck, C

Euler
k [h]) is small if h > 0 is small and hence deduce

the result from Theorem 6.5.1. Recall the definition of the closed-loop
operators ΠCk//P for [P,Ck] and ΠCEuler

k
[h]//P for [P,CEuler

k [h]] from
Section 6.4.

Theorem 7.2.1 Let p ∈ [1,∞], m, r ∈ N and consider signal spaces
U0, Y0 and W0 of type (A), (B) or (C) in (7.2.2). Suppose that there
exists k = (k1, . . . , kr) ∈ R1×r \ {0}, with kr = 0 for case (B), such
that controller Ck : Y0a → U0a given by (7.1.1) applied to a causal plant
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P : U0a → Y0a, u1 7→ y2 with P (0) = 0 yields, in view of the closed-loop
equations (6.2.1), a closed-loop system [P,Ck] which is gain stable on
W0 := U0 × Y0 with

1 ≤ γ :=
∥∥ΠCk//P

∥∥
W0,W0

< ∞ .

Suppose h∗ > 0 satisfies

h∗ ≤
(
γ

r−1∑

i=1

|ki+1| · iηp,m(h∗, i)

)−1

where, for h > 0, ηp,m(h, i) :=





m, in case (A),

2m(1 + ihp)1/p , in case (B),

2m(1 + ihp) , in case (C).

(7.2.3)

Let h ∈ (0, h∗) and suppose that the closed-loop system [P,CEuler
k [h]] is

either globally or regularly well posed, where controller CEuler
k [h] : Y0a →

U0a is given by (7.1.2). Then the closed-loop system [P,CEuler
k [h]] is gain

stable on W0 with

∥∥ΠCEuler
k

[h]//P

∥∥
W0,W0

≤
∥∥ΠCk//P

∥∥
W0,W0

1 + h
r−1∑
i=1

|ki+1| iηp,m(h, i)

1 −
∥∥ΠCk//P

∥∥
W0,W0

h
r−1∑
i=1

|ki+1| iηp,m(h, i)

. (7.2.4)

In all three signal space settings (A), (B) and (C) the condition (7.2.3)
on h∗ can always be met for sufficiently small h∗ > 0, for example by
taking

h∗ =

(
γ m

r−1∑

i=1

|ki+1| · i
)−1

in case (A) and by taking

h∗ = min





1

rp
,

(
4mγ

r−1∑

i=1

|ki+1| · i
)−1




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in cases (B) and (C).

The condition that the nominal closed-loop gain is bounded enforces
key attenuation properties, which varies with the different choices of
the signal space W0. Within the context of linear systems a key pur-
pose of Section 7.3 is to explore how these properties can be enforced
by structural requirements on the relative degree and the order of the
controller. For example, Theorem 7.3.2 shows that in the case of the
signal space setting (A) a stabilizing controller whose order is less than
or equal to the relative degree of the plant can be replaced by suitable
a Euler controller. In the signal space setting (B) Theorem 7.3.2 shows
that a stabilizing controller is required to have a order strictly less than
the relative degree of the plant. Theorem 7.3.2 also shows that the
third signal space setting (C) overcomes the structural limitation of the
choice (B) by again allowing stabilizing controllers whose order is less
than or equal to the relative degree of the plant, but with considerable
extra signal regularity requirements.

The extra requirement that kr = 0 in the signal space setting (B)
arises from the application of the Mean Value Theorem in the proof
of Theorem 7.3.2. In the case of p = ∞, i.e. signal space setting (A),
it follows from the Mean Value Theorem that ‖y(·) − y(· − h)‖L∞ ≤
h‖ẏ‖L∞ ≤ h‖y‖W 1,∞ , whereas in the case of p < ∞, i.e. signal space
setting (B), again by the Mean Value Theorem, ‖y(·) − y(· − h)‖Lp ≤
h‖Mh[ẏ](·)‖Lp which in view of Proposition 7.2.2 below yields a bound
of the form: ‖y(·) − y(· − h)‖Lp ≤ 2h‖Mh[y](·)‖W 2,p . The requirement
to bound an extra derivative then leads to the additional requirement
that kr = 0 (signal space setting (A)), or alternatively, that derivatives
of all orders are bounded (signal space setting (C)).

Before giving the proof of Theorem 7.2.1 one has to establish the key
bound which will be required in the proof of Theorem 7.2.1 for the signal
space choices (B) and (C) as discussed above.

Proposition 7.2.2 For y ∈ C(R≥0 → R) and ̺ > 0, define the function

M̺[y] : R≥0 → R , t 7→ max
τ∈[t−̺,t]

|y(τ)| , where y(s) = 0 if s < 0 .

(7.2.5)
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Then, for every y ∈ CW 1,p
0 (R≥0 → R) and p ∈ [1,∞),

∀T > 0 : ‖M̺[y]‖p
Lp([0,T )→R)

≤ 2‖y‖p−1
Lp([0,T )→R)

(
‖y‖Lp([0,T )→R) + ̺p‖ẏ‖Lp([0,T )→R)

)
.

(7.2.6)

Proof. Let y ∈ CW 1,p
0 (R≥0 → R), p ∈ [1,∞), T > 0 and ε > 0. By

the density of C2
0 ([0, T ] → R) in C0([0, T ] → R) it follows from [Riv69,

Thm. 4.12] applied on the interval [0, T ] that there exists a (piecewise
cubic) function G0 : [0, T ] → R such that G0 is nowhere locally constant,
and

|G0(t) − y(t)| ≤ ε , |Ġ0(t) − ẏ(t)| ≤ ε , t ∈ [0, T ] .

Define G ∈ Lp(R≥0 → R) by G = TTG0, where TT is the truncation
operator defined in Section 6.1 for time T > 0. Suppose, for the time
being,

‖M̺[G]‖p
Lp([0,T )→R)

≤ 2 ‖G‖p−1
Lp([0,T )→R)

(
‖G‖Lp([0,T )→R) + ̺p‖Ġ‖Lp([0,T )→R)

)
. (7.2.7)

Then in view of

M̺[y](t) = M̺[y +G−G](t)

≤M̺[G](t) +M̺[y −G](t)

≤M̺[G](t) +M̺[ε](t) ,

and since M̺[ε](t) = ε for t ≥ 0, it follows that

‖M̺[y]‖p
Lp([0,T )→R)

≤ 2‖G‖p−1
Lp([0,T )→R)

(
‖G‖Lp([0,T )→R) + ̺p‖Ġ‖Lp([0,T )→R)

)
+ Tεp .

Since

‖G‖Lp([0,T )→R) ≤ ‖G− y‖Lp([0,T )→R) + ‖y‖Lp([0,T )→R)

≤ T 1/p ε+ ‖y‖Lp([0,T )→R) ,
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‖Ġ‖Lp([0,T )→R) ≤ ‖Ġ− ẏ‖Lp([0,T )→R) + ‖ẏ‖Lp([0,T )→R)

≤ T 1/p ε+ ‖ẏ‖Lp([0,T )→R) ,

it follows that

‖M̺[y]‖p
Lp([0,T )→R)

≤ 2
(
T 1/p ε+ ‖y‖Lp([0,T )→R)

)p−1

·
(
T 1/p ε+ ‖y‖Lp([0,T )→R) + ̺p

(
T 1/p ε+ ‖ẏ‖Lp([0,T )→R)

))
+ Tεp

As this holds for all ε > 0, inequality (7.2.6) follows as required.

It remains to show (7.2.7). Let

R(G) :=
{
t ∈ [0, T ]

∣∣ |G(t)| is a local maximum of |G|
}
.

Since |G| is piecewise polynomial, G 6≡ 0, R(G) is non-empty and has a
finite or countable number of elements. To every point t ∈ R(G) define

tM := inf
(
{T} ∪

{
τ ∈ [t, T ]

∣∣ |G(τ)| is a local minimum of |G|
})
,

tR := min
{
t+ ̺ , T , inf

{
τ ∈ R(G)

∣∣ τ > t
}}

.

Next, the Lp-norm of M̺[G] is estimated by the Lp-norm of G and the
sum of parts of the areas of the hatched boxes, see Figure 7.2. By the
definition of M̺[G] it follows that

‖M̺[G]‖p
Lp([0,T )→R) =

∫ T

0

(
max

τ∈[t−̺,t]
|G(τ)|

)p

dt

≤
∫ T

0

|G(t)|p dt+
∑

t∈R(G)

( [
tR − t

]
|G(t)|p + min{t+ ̺− tR, T − tR}

· max
{

0, |G(t)|p − |G(tR)|p
})

,

where
([
tR − t

]
|G(t)|p

)
is the area of the hatched box of height |G(t)|p

between the local maximum t and either the following local maximum
tR on the right or the minimum of the points T or t+ ̺. Furthermore,
min{t + ̺ − tR, T − tR} · max

{
0, |G(t)|p − |G(tR)|p

}
is the area of the

box which remains by subtracting a box with the height |G(tR)|p of the
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0 t

|G(·)|p

̺

t1

tM
1

t2

tM
2

t3

tM
3

t4

tM
4

t5

tM
5

t6

tM
6

t7

tM
7

t8

T=tM
8 =tR

8

∈ R(G)

M̺[G](·)p

Figure 7.2: Example function |G|p and M̺[G]p, here: tR1 = t2, tR2 =

t2 + ̺, tR3 = t4, tR4 = t5, tR5 = t6, tR6 = t7, tR7 = t8 and
tR8 = T = tM8 .

following maximum value tR from a box with height |G(t)|p and length
min{t + ̺ − tR, T − tR}. Since |G(tR)| ≥ |G(tM )|, (t, tR) ∩ (s, sR) = ∅
for all t, s ∈ R(G) and tR ≤ T , follows

∑

t∈R(G)

[
tR − t

]
|G(tM )|p ≤

∑

t∈R(G)

∫ tR

t

|G(t)|p dt ≤
∫ T

0

|G(t)|p dt ,

and hence

‖M̺[G]‖p
Lp([0,T )→R)

≤
∫ T

0

|G(t)|p dt+
∑

t∈R(G)

([
tR − t

](
|G(t)|p − |G(tM )|p

)
+
[
tR − t

]
|G(tM )|p

+ min{t+ ̺− tR, T − tR} · max
{

0, |G(t)|p − |G(tR)|p
})

≤
∫ T

0

|G(t)|p dt+
∑

t∈R(G)

([
tR − t

](
|G(t)|p − |G(tM )|p

)
+
[
tR − t

]
|G(tM )|p

+
[
t+ ̺− tR

](
|G(t)|p − |G(tM )|p

))

≤ 2

∫ T

0

|G(t)|p dt+ ̺
∑

t∈R(G)

(
|G(t)|p − |G(tM )|p

)
. (7.2.8)
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Since G
∣∣
(t,tM )

is either strictly positive or negative, |G| is continuously

differentiable on (t, tM ), partial integration yields

∑

t∈R(G)

(
|G(t)|p − |G(tM )|p

)

≤
∑

t∈R(G)

∫ tM

t

p |G(t)|p−1 |Ġ(t)|dt

≤ p‖Gp−1Ġ‖L1([0,T )→R) , (7.2.9)

where the second inequality above follows from (t, tM )∩ (s, sM ) = ∅ for
all t, s ∈ R(G) and since tM ≤ T . Let 1 < q < ∞ satisfy 1

p + 1
q = 1,

then by Hölder’s inequality

‖Gp−1Ġ‖L1([0,T )→R)

≤ ‖Gp−1‖Lq([0,T )→R)‖Ġ‖Lp([0,T )→R)

= ‖G‖p−1
Lp([0,T )→R)‖Ġ‖Lp([0,T )→R). (7.2.10)

Finally, inequalities (7.2.8), (7.2.9) and (7.2.10) give the claimed in-
equality (7.2.7) and the proof is complete. 2

The following inequalities for the norms of vector valued Lp-functions
are required to prove Theorem 7.2.1.

Lemma 7.2.3 Let, for m ∈ N and p ∈ [1,∞], x ∈ Lp(R≥0 → Rm).
Then

‖x‖Lp(R≥0→Rm) ≤
{

2
p−1

p
∑m

ν=1 ‖xν‖Lp(R≥0→R) , if p <∞,∑m
ν=1 ‖xν‖L∞(R≥0→R) , if p = ∞,

(7.2.11)

Furthermore, let, for r ∈ N ∪ {∞}, x ∈W r,p(R≥0 → Rm). Then

m∑

ν=1

‖xν‖W r,p(R≥0→R) ≤ m‖x‖W r,p(R≥0→Rm) . (7.2.12)

Proof. Let p = ∞. Recall that ‖ · ‖ is the Euclidean norm in Rm.
Then, in view of the well-known inequality ‖ξ‖ ≤∑m

ν=1 |ξν | for ξ ∈ Rm,
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it follows that

‖x‖L∞(R≥0→Rm) = ess sup
t≥0

‖x(t)‖

≤ ess sup
t≥0

m∑

ν=1

|xν(t)| =
m∑

ν=1

‖xν‖L∞(R≥0→R).

Let p ∈ [1,∞). By the definition of the Lp-norm of vector valued
functions, see the nomenclature, and, for example, [AF03, Lem. 2.2] it
follows that

‖x‖Lp(R≥0→Rm) =

(∫ ∞

0

‖x(t)‖p dt

)1/p

=

(∫ ∞

0

( m∑

ν=1

|xν(t)|2
)p/2

dt

)1/p

≤
(∫ ∞

0

( m∑

ν=1

|xν(t)|
)p

dt

)1/p

≤
(∫ ∞

0

2p−1

( m∑

ν=1

|xν(t)|p
)

dt

)1/p

≤ 2
p−1

p

( m∑

ν=1

‖xν‖p
Lp(R≥0→R)

)1/p

≤ 2
p−1

p

m∑

ν=1

‖xν‖Lp(R≥0→R) ,

which yields (7.2.11). Inequality (7.2.12) from the definition of the
W r,p-norm: write for brevity ‖ · ‖W r,p = ‖ · ‖W r,p(R≥0→R) and ‖ ·
‖Lp = ‖ · ‖Lp(R≥0→R). Then

∑m
ν=1 ‖xν‖W r,p =

∑m
ν=1

∑r
i=0 ‖xν‖Lp ≤∑r

i=0m ‖x‖Lp(R≥0→Rm) = m ‖x‖W r,p(R≥0→Rm), and the proof is com-
plete. 2

With the crucial property of continuous differential shown by Propo-
sition 7.2.2 one is now in a position to prove Theorem 7.2.1.

Proof of Theorem 7.2.1. Let p ∈ [1,∞], r ∈ N, signal spaces U0, Y0



7.2 Robust stabilization by delay feedback 179

and W0 of type (A), (B) or (C) given by (7.2.2), and k = (k1, . . . , kr) ∈
R1×r, kr = 0 in case (B). First, it is claimed that if h ∈ (0, h∗), then

~δ
(
Ck, C

Euler
k [h]

)
≤ h

r−1∑

i=1

|ki+1| · iηp,m(h, i) , (7.2.13)

and hence,

~δ(Ck, C
Euler
k [h])

(7.2.13)

≤ h
r−1∑

i=0

|ki+1| · iηp,m(h, i)

(7.2.3)
< γ−1 =

∥∥ΠCk//P

∥∥−1

W0,W0
.

By assumption P is causal. It is easy to see that Ck and CEuler
k [h]

are causal, see, for example, [Kur05]. Moreover, by assumption P (0) =
Ck(0) = CEuler

k [h](0) = 0, [P,Ck] is gain stable on W0 and [P,CEuler
k [h]]

is either globally or regularly well posed. Finally, since CEuler
k [h](Y0) ⊂

U0 it follows that CEuler
k [h] is causally extendible, see Section 6.3. Ap-

plying Theorem 6.5.1 with the roles of P and C interchanged one sees
that (7.2.4) is a consequence of inequality (6.5.2) and inequality (7.2.13).

It remains to show (7.2.13).

Step 1 : The graphs of Ck and CEuler
k [h] are given by

GCk
=






−

r−1∑
i=0

ki+1 y
(i)

y


 −

r−1∑
i=0

ki+1 y
(i) ∈ U

and y ∈ Y



 ⊂ U × Y ,

GCEuler
k

[h] =






−

r−1∑
i=0

ki+1 ∆i
h(y)

y


 −

r−1∑
i=0

ki+1 ∆i
h(y) ∈ U

and y ∈ Y



 ⊂ U × Y .

Recall that U and Y are signal spaces of functions from R≥0 to Rm.

For u ∈ U the norm of u is given by ‖u‖U =
(∑m

ν=1 ‖uν‖2
U ′

)1/2
, where

uν : R≥0 → R is the νth component of u and U ′ is corresponding to U
the space of scalar valued functions.
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Consider the surjective map

Φh : GCk
→ GCEuler

k
[h] ,

(
−∑r−1

i=0 ki+1 y
(i)

y

)
7→
(
−∑r−1

i=0 ki+1 ∆i
h(y)

y

)
.

(7.2.14)

Since
∥∥∥
(
−∑r−1

i=0 ki+1 y
(i), y

)∥∥∥
U0×Y0

≥ ‖y‖Y0
and

∥∥∥∥∥

(
r−1∑

i=0

ki+1 ∆i
h(y), y

)
−
(

r−1∑

i=0

ki+1 y
(i), y

)∥∥∥∥∥
W0

=

∥∥∥∥∥

r−1∑

i=1

ki+1

(
∆i

h(y) − y(i)
)∥∥∥∥∥

U0

≤
r−1∑

i=1

|ki+1|
∥∥∆i

h(y) − y(i)
∥∥
U0
,

it follows that

~δ(Ck, C
Euler
k [h]) ≤ ‖Φh − I‖W0,W0

≤ sup
y∈Y0\{0}

∑r−1
i=1 |ki+1|

∥∥∆i
h(y) − y(i)

∥∥
U0

‖y‖Y0

. (7.2.15)

Note that (7.2.15) holds for all signal spaces U0 and Y0 considered in
(A), (B) and (C).

Step 2 : Recall that, for y ∈ Y0, the definition of Y0 gives y(i)(0) = 0,
for all i ∈ {0, . . . , r − 1}, in case (A) and (B), and that y(i)(0) = 0,
for all i ∈ N0 in case (C). Also recall that by definition of ∆i

h one has
∆i

h(y)(t) = 0 for t < ih. To simplify notation, without loss of generality,
define y(t) = 0 for t < 0.

Let y ∈ Y0 and fix i ∈ {1, . . . , r−1}. By i+1 applications of the Mean
Value Theorem there exist, for j ∈ {1, . . . , i}, functions ξi

j : [0,∞) → Rm

with ξi
j(t) ∈ (0, jh]m and ξi,0

i+1 : [0,∞) → Rm with ξi,0
i+1(t) ∈ (0, ih]m such
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that, for all components of y, i.e. for all ν ∈ {1, . . . ,m} and all t ≥ 0,

∣∣∣∆i
h(yν)(t) − y(i)

ν (t)
∣∣∣

=

∣∣∣∣∆
i−1
h

(
1

h

(
yν(·) − yν(· − h)

))
(t) − y(i)

ν (t)

∣∣∣∣

=
∣∣∣∆i−1

h y(1)
ν (t− (ξi

1)ν(t)) − y(i)
ν (t)

∣∣∣
...

=

∣∣∣∣
1

h

(
y(i−1)

ν (t− (ξi
i−1)ν(t)) −

(
y(i−1)

ν

)
(t− (ξi

i−1)ν(t) − h)
)
− y(i)

ν (t)

∣∣∣∣

=
∣∣∣y(i)

ν

(
t− (ξi

i)ν(t)
)
− y(i)

ν (t)
∣∣∣

≤ ih
∣∣∣y(i+1)

ν (t− (ξi,0
i+1)ν(t))

∣∣∣ .

Furthermore, for signal spaces from case (C), there exist, for all µ ∈ N,
functions ξi,µ

i+1 : [0,∞) → Rm with ξi,µ
i+1(t) ∈ (0, ih]m such that, for all

ν ∈ {1, . . . ,m} and all t ≥ 0,

∣∣∣∆i
h(y(µ)

ν )(t) − y(µ+i)
ν (t)

∣∣∣ ≤ ih
∣∣∣y(µ+i+1)

ν (t− (ξi,µ
i+1)ν(t))

∣∣∣ .

Hence, in case (A) for p = ∞, µ = 0; in case (B) for p ∈ [1,∞), µ = 0;
and in case (C) for p ∈ [1,∞), µ ∈ N0; the following inequality holds
for all ν ∈ {1, . . . ,m},

∥∥∆i
h(y(µ)

ν ) − y(µ+i)
ν

∥∥
Lp(R≥0→R)

≤ ih
∥∥y(µ+i+1)

ν (· − (ξi,µ
i+1)ν(·))

∥∥
Lp(R≥0→R)

≤ ih
∥∥Mih[y(µ+i+1)

ν ](·)
∥∥

Lp(R≥0→R)
,

whence, in view of inequality (7.2.11), see Lemma 7.2.3,

∥∥∆i
h(y(µ)) − y(µ+i)

∥∥
Lp(R≥0→Rm)

≤ ih





2
p−1

p
∑m

ν=1

∥∥Mih[y
(µ+i+1)
ν ](·)

∥∥
Lp(R≥0→R)

, if p <∞,
∑m

ν=1

∥∥Mih[y
(µ+i+1)
ν ](·)

∥∥
L∞(R≥0→R)

, if p = ∞.
(7.2.16)
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Step 3 : Inequality (7.2.13) in case (A), i.e. for U0 = CL∞(R≥0 → Rm)
and Y0 = CW r,∞

0 (R≥0 → Rm), is shown.

Let y ∈ Y0. Observe that, for all ν ∈ {1, . . . ,m} and all i ∈ {1, . . . , r−
1},
∥∥Mih[y

(i+1)
ν ](·)

∥∥
U ′

0
= ‖y(i+1)

ν ‖U ′
0

and ‖y(i+1)‖U0
≤ ‖y‖Y0

, where U ′
0 =

CL∞(R≥0 → R). Thus it follows from inequalities (7.2.15), (7.2.16) and
Lemma 7.2.3 that

~δ(Ck, C
Euler
k [h])

≤ sup
y∈Y0\{0}

∑r−1
i=1 |ki+1| ihm

∥∥y(i+1)
∥∥
U0

‖y‖Y0

≤ hm

r−1∑

i=1

|ki+1| i .

This completes the proof for case of signal spaces of type (A).

Step 4 : Show (7.2.13) in case (B) with kr = 0, that is, for p ∈ [1,∞),
let U0 = CLp(R≥0 → Rm) and Y0 = CW r,p

0 (R≥0 → Rm).

Let y ∈ Y0, i ∈ {1, . . . , r− 2}. Since k = (k1, . . . , kr−1, 0) ∈ R1×r and
y(i+1) ∈ CW 1,p

0 (R≥0 → Rm), it follows from (7.2.16), Proposition 7.2.2
and Lemma 7.2.3 that

∥∥∆i
h(y) − y(i)

∥∥
U0

≤ ih 2
p−1

p

m∑

ν=1

∥∥Mih[y(i+1)
ν ](·)

∥∥
U ′

0

≤ ih 2
p−1

p

m∑

ν=1

(
2 ‖y(i+1)

ν ‖p−1
U ′

0

(
‖y(i+1)

ν ‖U ′
0

+ ihp‖y(i+2)
ν ‖U ′

0

))1/p

≤ ih 2
p−1

p

m∑

ν=1

21/p(1 + ihp)1/p‖yν‖Y′
0

≤ 2mih(1 + ihp)1/p‖y‖Y0
, (7.2.17)

where U ′
0 = CLp(R≥0 → R) and Y ′

0 = CW r,p
0 (R≥0 → R). Then (7.2.15)

and (7.2.17) yield

~δ(Ck, C
Euler
k [h])

≤ 2mh

r−2∑

i=0

|ki+1| · i(1 + ihp)1/p kr=0
= 2mh

r−1∑

i=0

|ki+1| · i(1 + ihp)1/p .

This completes the proof for signal spaces of type (B) with kr = 0.
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Step 5 : Show (7.2.13) in case (C), i.e. for p ∈ [1,∞) let U0 = Y0 =
CW∞,p

0 (R≥0 → Rm).

Let y ∈ Y0. Note that (∆i
h(y))(µ) = ∆i

h(y(µ)) for all i ∈ {1, . . . , r−1}
and all µ ∈ N0. For brevity write ‖ · ‖Lp := ‖ · ‖Lp(R≥0→R). Then
it follows from Proposition 7.2.2, inequality (7.2.16) and Lemma 7.2.3
that, setting Y ′

0 = CW∞,p
0 (R≥0 → R), for all i ∈ {1, . . . , r − 1},

∥∥∆i
h(y) − y(i)

∥∥
U0

=

∞∑

µ=0

∥∥∆i
h(y(µ)) − y(i+µ)

∥∥
Lp(R≥0→Rm)

≤
∞∑

µ=0

(
ih 2

p−1
p

m∑

ν=1

∥∥Mih

[
y(i+1+µ)

ν

]
(·)
∥∥

Lp

)

≤ ih 2
p−1

p

∞∑

µ=0

( m∑

ν=1

[
2 ‖y(µ+i+1)

ν ‖p−1
Lp

(
‖y(µ+i+1)

ν ‖Lp + ihp‖y(µ+i+2)
ν ‖Lp

)]1/p)

≤ 2 ih
∞∑

µ=0

m∑

ν=1

(
‖y(µ+i+1)

ν ‖Lp + ihp‖y(µ+i+1)
ν ‖

p−1
p

Lp ‖y(µ+i+2)
ν ‖1/p

Lp

)

= 2 ih
m∑

ν=1

( ∞∑

µ=0

‖y(µ+i+1)
ν ‖Lp + ihp

∞∑

µ=0

‖y(µ+i+1)
ν ‖

p−1
p

Lp ‖y(µ+i+2)
ν ‖1/p

Lp

)

≤ 2 ih

m∑

ν=1

( ∞∑

µ=0

‖y(µ+i+1)
ν ‖Lp

+ ihp

( ∞∑

µ=0

‖y(µ+i+1)
ν ‖

p−1
p

Lp

)( ∞∑

µ=0

‖y(µ+i+2)
ν ‖1/p

Lp

))

≤ 2 ih

m∑

ν=1

( ∞∑

µ=0

‖y(µ)
ν ‖Lp + ihp

( ∞∑

µ=0

‖y(µ)
ν ‖

p−1
p

Lp

)( ∞∑

µ=0

‖y(µ)
ν ‖1/p

Lp

))

≤ 2 ih

[ m∑

ν=1

(1 + ihp)

( ∞∑

µ=0

‖y(µ)
ν ‖Lp

)
,



184 7 Robustness of output feedback stabilization

thus, for all y ∈ Y0 and i ∈ {1, . . . , r − 1},

∥∥∆i
h(y) − y(i)

∥∥
U0

= 2 ih(1 + ihp)
m∑

ν=1

‖yν‖Y′
0

= 2mih(1 + ihp)‖y‖Y0
,

and so (7.2.15) yields

~δ(Ck, C
Euler
k [h]) ≤ 2mh

r−1∑

i=0

|ki+1| · i(1 + ihp) .

which completes the proof for signal spaces of type (C) and concludes
the proof of the theorem. 2

Note that Theorem 7.2.1 requires the following assumptions to the
plant P : 1) P must be causal, 2) P must be gain stabilizable by the
controller Ck, in other words the closed-loop system [P,Ck] must be gain
stable on W0 for some signal spaces W0, and 3) the closed-loop system
[P,CEuler

k [h]] must be either globally or regularly well posed. For ex-
ample, linear minimum phase MIMO-systems (A,B,C) with strict rela-
tive degree r and positive definite high-frequency matrix of form (2.2.1)
satisfy these assumptions. This is partially shown in Section 3.2: the
plant operator P (A,B,C;x0) corresponding to an initial value prob-
lem (7.3.1) with x0 ∈ Rn is causal, and Theorem 3.2.1 shows that, for
suitable k ∈ R1×r, the controller Ck stabilizes any (A,B,C) (in sense of
exponential stability of the closed-loop initial value problem with zero
disturbances u0 = y0 ≡ 0) that is minimum phase, strict relative degree
r and positive definite high-frequency matrix. It remains to show that
the closed-loop [P (A,B,C;x0), Ck] is gain stable on W0, see Subsec-
tion 7.3.2, and that the closed-loop [P (A,B,C;x0), CEuler

k [h]] of linear
system and output delay feedback is globally or regularly well posed,
see Subsection 7.3.3.
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7.3 Applications to linear minimum phase
systems

The main result from the previous chapter, Theorem 7.2.1, is stated for
various signal spaces (7.2.2). Now, consider linear systems in detail to
illustrate how the choice of signal space is determined by relative degree
assumptions on the linear system and the stabilizability requirements
in the various signal spaces. In particular consider, for n,m, r ∈ N,
n ≥ rm, the class Mn,m,r of all triples (A,B,C) ∈ Rn×n × Rn×m ×
Rm×n corresponding to n-dimensional, minimum phase, m-input, m-
output systems with known relative degree r ∈ N and positive definite
high-frequency gain matrix CAr−1B ∈ Rm×m which has m linearly
independent eigenvectors (note that Mn,m,r is more general than the

class of relative degree one systems M̃n,m considered for λ-tracking
and funnel control, see Sections 4.1 and 5.1). Let (A,B,C) ∈ Mn,m,r,
x0 ∈ Rn and P (A,B,C;x0) : Ue → Ye be the associated plant operator
u1 7→ y1 given by

ẋ = Ax+B u1 , x(0) = x0 ,

y1 = C x ,

}
(7.3.1)

where U and Y are any of the input/output signal spaces pairs given
in (7.2.2).

Stability properties for both the nominal closed-loop initial value
problem [P (A,B,C;x0), Ck] and the closed-loop initial value problem
with the delay based controller [P (A,B,C;x0), CEuler

k [h]] are estab-
lished. First, recall the exponential stability result for closed-loop initial
value problems [P (A,B,C;x0), Ck] with zero disturbances u0 = y0 ≡ 0
from Chapter 3. There it is shown that the high-gain output derivative
feedback controller

Ck,κ : Ye → Ue , y2 7→ u2 = −κ
r−1∑

i=0

κr−iki+1y
(i)
2 , (7.3.2)

where k = (k1, . . . kr) ∈ R1×r is such that kr = 1 and the polynomial

s 7→ ∑r−1
i=0 ki+1 s

i is Hurwitz, i.e. has all roots in C−, stabilizes any
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(A,B,C) ∈ Mn,m,r provided κ ≥ 1 is suitably large, see Theorem 3.2.1.

Note for better readability that it is always referred to the closed-
loop equations (6.2.1) when any closed-loop [P,C] is considered in the
present section.

7.3.1 Exponential stability of the ‘derivative closed-loop’
[P (A, B, C; x0), Ck,κ] with u0 = y0 ≡ 0

The following corollary is a direct consequence of Theorem 3.2.1: the
statement of Theorem 3.2.1 is rewritten such that it can be applied to
the following results of the present section.

Corollary 7.3.1 Let, for n,m, r ∈ N with n ≥ rm, (A,B,C) ∈ Mn,m,r

and x0 ∈ Rn. Suppose k = (k1, . . . , kr) ∈ R1×r with kr = 1 and

s 7→ ∑r−1
i=0 ki+1 s

i Hurwitz. Then, there exists κ∗ ≥ 1 such that for all
κ > κ∗ the closed-loop initial value problem [P (A, b, c;x0), Ck,κ] given
by (7.3.1), (7.3.2), (6.2.1) with u0 ≡ y0 = 0 is exponentially stable, in
the sense

∃κ∗ ≥ 1 ∃M > 0 ∃α > 0 ∀κ ≥ κ∗ ∀ t ≥ 0 ∀x0 ∈ Rn :
∥∥x(t;x0)

∥∥ ≤Me−αt‖x0‖, (7.3.3)

where x(·;x0) denotes, for initial condition x(0) = x0, the solution of
the closed-loop initial value problem (7.3.1), (7.3.2), (6.2.1) with u0 ≡
y0 = 0. Therefore, for every system (A,B,C) ∈ Mn,m,r of form (7.3.1),

one may choose K̃ ∈ Rm×rm such that

spec
(
A+BK̃[C/ . . . /CAr−1]

)
⊂ C− . (7.3.4)

Proof. In view of the closed-loop equations (6.2.1), in particular y2 =
y0−y1 and u2 = u0−u1, and the u0 = y0 ≡ 0, the first statement (7.3.4)
follows directly form Theorem 3.2.1.

With the transformation matrix U ∈ Rn×n given by Corollary 2.2.5
and K̃ =

[
k̃1Im, . . . , k̃rIm

]
with k̃i defined by k̃i := κr+2−iki, i ∈
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{1, . . . , r}, (7.3.4) follows from

spec
(
A+BK̃[C/ . . . /CAr−1]

)

= spec
(
UAU

−1
+ UB

[
K̃ | 0m×(n−rm)

])
⊂ C− ,

and the proof is complete. 2

In the remainder of this section most results are considered for signal
spaces of type (A), (B) and/or (C) from (7.2.2). When presenting results
in case of signal spaces of type (B) it is assumed, see Theorem 7.2.1,

that k̃r = 0. In this case one cannot refer to Corollary 7.3.1 and so for
all results in case of signal spaces of type (B) the matrix K̃ ∈ Rm×rm

is chosen such that spec
(
A+BK̃[C/ . . . /CAr−1]

)
⊂ C−.

7.3.2 Stability properties of the ‘derivative closed-loop’
[P (A, B, C; x0), Ck]

Now, for (A,B,C) ∈ Mn,m,r, n,m, r ∈ N with n ≥ rm, and k ∈
R1×r with the assumption that, for K = [k1Im, . . . , krIm] ∈ Rm×rm,
it holds that spec

(
A+BK[C/ . . . /CAr−1]

)
⊂ C−, and for appropriate

input/output signal spaces of types (A), (B) or (C) in (7.2.2), it is
shown that, if x0 = 0, then the closed-loop system [P (A,B,C;x0), Ck]
is gain stable on W0. For the input/output signal spaces of type (A)
or (B) only, it is also shown that the closed-loop initial value problem
[P (A,B,C;x0), Ck] is W-stable for any initial conditions x0 ∈ Rn.

Theorem 7.3.2 Let, for n,m, r ∈ N with n ≥ rm, (A,B,C) ∈ Mn,m,r

given by (7.3.1) and choose k = (k1, . . . , kr) ∈ R1×r with the matrix K =
[k1Im, . . . , krIm] ∈ Rm×rm such that spec

(
A+BK[C/ . . . /CAr−1]

)
⊂

C−. Let signal spaces U , Y, W and W0 be of type (A), (B) or (C)
in (7.2.2); in case (B) suppose kr = 0. Consider the controller operator
Ck : Ye → Ue, as defined by (7.1.1) and the associated plant operator
P (A,B,C;x0) : Ue → Ye with initial value x0 ∈ Rn as defined by (7.3.1).
Then the closed-loop system [P (A,B,C; 0), Ck] is W0-gain stable. In
the case of signal spaces given by (A) or (B), the closed-loop system
[P (A,B,C;x0), Ck] is also W-stable.
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Proof. Step 1 : Consider W of type (A), (B) or (C) given by (7.2.2)
and let (u0, y0) ∈ W.

The closed-loop initial value problem [P (A,B,C;x0), Ck] given by
equations (7.3.1), (7.1.1), (6.2.1) is, in view of the coordinate trans-
formation

(
ξ
η

)
= Ux, where U is given by Corollary 2.2.5, equivalent

to (2.2.22), (7.1.1), (6.2.1). Invoking Corollary 2.2.5 and applying Vari-
ation of Constants yields

∀ t ≥ 0 :

(
ξ
η

)
(t) = e

U


A+BK




C
...

CAr−1




U

−1
t(
ξ0

η0

)

+

∫ t

0

e

U


A+BK




C
...

CAr−1




U

−1
(t−s)

ϕ(s)ds , (7.3.5)

where
(

ξ0

η0

)
= Ux0 and, in view of u0 ∈ U and y0 ∈ Y,

ϕ(·) :=




0(r−1)m×m

CAr−1B
0(n−rm)×m


[u0(·) +

(
Cky0

)
(·)
]
∈ Lp(R≥0 → Rn) . (7.3.6)

Step 2 : Consider case (A) or (B), i.e. U × Y = CLp(R≥0 → Rm) ×
CW r,p(R≥0 → Rm), p ∈ [1,∞], n ≥ rm. Taking norms in (7.3.5) and in-
voking the well-known inequality

∥∥ ∫ ·

0
f(·−s) g(s) ds

∥∥
Lp ≤ ‖f‖L1‖g‖Lp ,

for f ∈ L1 and g ∈ Lp, one obtains, for some β1, β2 > 0,

∥∥∥∥
(
ξ
η

)∥∥∥∥
Lp(R≥0→Rn)

≤ β1

[∣∣∣∣
(
ξ0

η0

)∣∣∣∣+ ‖ϕ‖Lp(R≥0→Rn)

]

≤ β1

∣∣∣∣
(
ξ0

η0

)∣∣∣∣+ β1β2

[
‖u0‖Lp(R≥0→Rm) +

r−1∑
i=0

|ki+1|
∥∥y(i)

0

∥∥
Lp(R≥0→Rm)

]

and thus, (
ξ
η

)
∈ Lp(R≥0 → Rn) .
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Now, by (2.2.22),

y
(i)
1 = ξi+1 ∈ Lp(R≥0 → Rm) , for i = 0, . . . , r − 1

y
(r)
1 = ξ̇r =

( r∑

i=1

(
Ri − CAr−1Bki

)
ξi

)
+ Sη + ϕ ∈ Lp(R≥0 → Rm)

and with (7.3.6) it follows that y1 ∈ CW r,p(R≥0 → Rm) = Y.

Finally,

u1 = u0 − Ck(y2) = u0 − Ck(y0) + Ck(y1) ∈ CLp(R≥0 → Rm) = U ,

which shows that the closed-loop system [P (A,B,C;x0), Ck] is W-stable
for signal spaces of types (A) and (B).

Step 3 : Let x0 = 0 and let W0 be as in (A) or (B), i.e. W0 =
U0 ×Y0 = CLp(R≥0 → Rm) ×CW r,p

0 (R≥0 → Rm), p ∈ [1,∞], n ≥ rm.
It is straightforward to see that y(i)(0) = 0 for i = 0, . . . , r, and hence
one can show similarly as in Step 2 that, for some β1, . . . , β5 ≥ 1,

‖y1‖CW r,p
0 (R≥0→Rm)

≤ β1β2β3

[
‖u0‖CLp(R≥0→Rm) +

r−1∑

i=0

|ki+1|
∥∥y(i)

0

∥∥
CLp(R≥0→Rm)

]

≤ β4

[
‖u0‖CLp(R≥0→Rm) + ‖y0‖CW r−1,p

0 (R≥0→Rm)

]

and

‖u1‖CLp(R≥0→Rm)

≤ ‖u0‖CLp(R≥0→Rm) + ‖Cky2‖CLp(R≥0→Rm)

≤ ‖u0‖CLp(R≥0→Rm) + β5 ‖y2‖CW r−1,p
0 (R≥0→Rm)

≤ ‖u0‖CLp(R≥0→Rm)

+ β5

[
‖y1‖CW r−1,p

0 (R≥0→Rm) + ‖y0‖CW r−1,p
0 (R≥0→Rm)

]
.

Therefore, W0-gain stability for signal spaces of types (A) and (B) fol-
lows.
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Step 4 : Let x0 = 0 and let W0 be as in (C), i.e. W0 = U0 × Y0 =
CW∞,p

0 (R≥0 → Rm) × CW∞,p
0 (R≥0 → Rm), p ∈ [1,∞). First note

that ϕ ∈ CW∞,p
0 (R≥0 → Rm). By [Yos80, Prop. VI.3.1] one has, for all

i ∈ N and all t ≥ 0,

di

dti

∫ t

0

e

U


A+BK




C
...

CAr−1




U

−1
(t−s)

ϕ(s)ds

=

∫ t

0

e

U


A+BK




C
...

CAr−1




U

−1
(t−s)

ϕ(i)(s)ds.

Hence it follows from (7.3.5) that di

dti

(
ξ
η

)
t=0 = 0, and so y(i)(0) = 0

for all i ∈ N. It follows also that u
(i)
1 (0) = u

(i)
0 (0) − Ck(y

(i)
0 (0)) +

Ck(y
(i)
1 (0)) = 0 for all i ∈ N. One can then show similarly as in Step 3

that, for some β1, β2 ≥ 1,

‖y1‖CW∞,p(R≥0→Rm) =
∑

j≥0

‖y1‖CLp(R≥0→Rm)

≤ β1

∑

j≥0

[∥∥u(j)
0

∥∥
CLp(R≥0→Rm)

+
∥∥ (Cky0)

(j) ∥∥
CLp(R≥0→Rm)

]

≤ β1 ‖u0‖CW∞,p(R≥0→Rm) + β2

∑

j≥0

r−1∑

i=0

∥∥y(i+j)
0

∥∥
CLp(R≥0→Rm)

≤ β1 ‖u0‖CW∞,p(R≥0→Rm) + rβ2 ‖y0‖CW∞,p(R≥0→Rm) .

An analogous inequality for ‖u1‖CW∞,p(R≥0→Rm) gives W0-gain stability

as required. This completes the proof of the theorem. 2

Theorem 7.3.2 shows in combination with Corollary 7.3.1, for signal
spaces of type (A) or (C) in (7.2.2), that if n ≥ rm and κ∗ ≥ 1 is
sufficiently large then [P (A,B,C;x0), Ck,κ] is W0-gain stable for all κ >
κ∗, with a bound for the gain given by

∥∥ΠCk,κ//P (A,B,C;0)

∥∥
W0,W0

≤ β(k, κ) , (7.3.7)

for some β(k, κ) > 0 determined by the proof of Theorem 7.3.2 and
Corollary 7.3.1.
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In the signal space setting of type (B) in (7.2.2), i.e. p, r < ∞, these
stability results are only proved for kr = 0, thus precluding the appli-
cation of Corollary 7.3.1. Since Corollary 7.3.1 gives stabilizability of
plants (A,B,C) in Mn,m,r, n ≥ rm, and since the signal space setting
(A) is only applicable when p = ∞, the setting (C) has been introduced
to allow stability results in the context of p < ∞, without the assump-
tion that kr = 0 as in (B). However, the setting (C) does introduce
extra regularity requirements on the external disturbances u0, y0.

7.3.3 Gain stability of the ‘delay closed-loop’ with zero
initial conditions: [P (A, B, C; 0), CEuler

k
[h]]

To apply Theorem 7.2.1 one has to show that, for initial condition
x0 = 0, the closed-loop system [P (A,B,C; 0), CEuler

k [h]] is globally or
regularly well posed. Note that, for (A,B,C) ∈ Mn,m,r and x0 ∈ Rn,
the closed-loop [P (A,B,C;x0), CEuler

k [h]] may be written as delay dif-
ferential equation as follows:

ẋ(t) =
(
A+ Ã0

)
x(t) +

r−1∑
j=1

Ãjx(t− jh)

+Bu0(t) +
r−1∑
j=0

B̃jy0(t− jh) , x ≡ ϕ on [(1 − r)h, 0] ,

y1(t) = C x(t) ,

u1(t) = u0(t) +
r−1∑
j=0

(−1)j
r−1∑
i=j

ki+1

hi

(
i
j

)
(y0 − y1)(t− jh)





(7.3.8)
where ϕ(0) = x0 and, in view of the normal form (2.2.22) of (A,B,C),
for j = 0, . . . , r − 1,

Ãj := (−1)j+1CAr−1B

r−1∑

i=j

ki+1

hi

(
i

j

)
U

−1

[
0(r−1)m×m

Im
0(n−rm)×m

∣∣∣∣∣ 0n×(n−m)

]
U ,

B̃j := (−1)j
r−1∑

i=j

ki+1

hi

(
i

j

)
B ,

where the transformation matrix U ∈ Rn×n is given by Corollary 7.3.1.
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Lemma 7.3.3 Let, for n,m, r ∈ N with n ≥ rm, (A,B,C) ∈ Mn,m,r

and k = (k1, . . . , kr) ∈ R1×r. Let the signal spaces U , Y, W, W0

be of type (A), (B) or (C) in (7.2.2). Then the closed-loop system
[P (A,B,C; 0), CEuler

k [h]] which is given by the application of the delay
feedback controller operator CEuler

k [h] : Y0e → U0e defined in (7.1.2),
onto the plant operator P (A,B,C; 0) : U0e → Y0e given by (7.3.1), is
globally well posed on W.

Proof. In view of (7.3.8) with ϕ ≡ 0 on [(1−r)h, 0], u0, y0 ∈ C(R≥0 →
Rm) and the additional assumption that u0, y0 can be continuously ex-
tended to functions in C([(1−r)h,∞) → Rm), the lemma follows directly
from [HVL93, Thm. 1.2.1]. 2

Now one is in the position to show that linear minimum phase MIMO-
systems (A,B,C) ∈ Mn,m,r, n,m, r ∈ N, n ≥ rm, are gain stabilizable
on U ×Y by the delay feedback CEuler

k [h] defined in (7.1.2), for suitable
k ∈ R1×r, for sufficiently small h > 0 and for signal spaces of type (A),
(B) or (C) in (7.2.2).

Theorem 7.3.4 Let, for n,m, r ∈ N with n ≥ rm, (A,B,C) ∈ Mn,m,r

and choose k = (k1, . . . , kr) ∈ R1×r with K = [k1Im, . . . , krIm] ∈
Rm×rm such that spec

(
A+BK[C/ . . . /CAr−1]

)
⊂ C−. Let the sig-

nal spaces U , Y, W, W0 be of type (A), (B) or (C) in (7.2.2); in case
(B) suppose kr = 0. Then γ :=

∥∥ΠCk//P (A,B,C;0)

∥∥
W0,W0

<∞. Suppose

h ∈ (0, h∗), where h∗ > 0 satisfies (7.2.3). Then the delay feedback
controller CEuler

k [h] : Y0e → U0e, defined in (7.1.2), applied to the plant
P (A,B,C; 0) : U0e → Y0e given by (7.3.1) yields

∥∥ΠCEuler
k

[h]//P (A,B,C;0)

∥∥
W0,W0

≤ γ

1 + h
r−1∑
i=1

|ki+1| iηp,m(h, i)

1 − hγ
r−1∑
i=1

|ki+1| iηp,m(h, i)

. (7.3.9)

Proof. By Theorem 7.3.2 follows γ :=
∥∥ΠCk//P (A,B,C;0)

∥∥
W0,W0

<∞.

The result now follows from Theorem 7.2.1 since, by Lemma 7.3.3, the
closed-loop [P (A,B,C; 0), CEuler

k [h]] is globally well posed and, more-
over, P (0) = 0. 2
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In the following let CEuler
k,κ [h] : y2 7→ u2 = −κ∑r−1

i=0 κ
r−iki+1∆i

hy2
be the delay feedback controller corresponding to controller Ck,κ given
in (7.3.2).

Together with Corollary 7.3.1 and Theorem 7.3.2, Theorem 7.3.4
shows for signal spaces of type (A) or (C) in (7.2.2), that for suffi-
ciently large κ∗ ≥ 1 (determined by Corollary 7.3.1) and any κ > κ∗,
β(k, κ) given in (7.3.7) and sufficiently small h > 0 (determined by The-
orem 7.3.4), the closed-loop system [P (A, b, c; 0), CEuler

k,κ [h]] is W0-gain
stable. Moreover,

∃κ∗ ≥ 1 ∀κ ≥ κ∗ ∃h∗ > 0 ∀h ∈ (0, h∗) :
∥∥ΠCEuler

k,κ
[h]//P (A,B,C;0)

∥∥
W0,W0

≤ β(k, κ)

1 + hκ
r−1∑
i=1

κr−i|ki+1| iηp,m(h, i)

1 − hβ(k, κ)κ
r−1∑
i=1

κr−i|ki+1| iηp,m(h, i)

.

7.3.4 Gain stability of the ‘delay closed-loop’ with
non-zero initial conditions:
[P (A, B, C; x0), CEuler

k
[h]]

To generalize Theorem 7.3.4 by allowing for non-zero initial conditions,
the following theorem, which incorporates non-zero initial conditions
and will be applied to signal spaces of type (A) or (B) in (7.2.2), is
presented. The proof of Theorem 7.3.5 is based on an extension of
Theorem 6.5.4.

Theorem 7.3.5 Let n,m, r ∈ N with n ≥ rm and consider signal
spaces U , Y, W, W0 of type (A) or (B) in (7.2.2). Let k = (k1, . . . , kr) ∈
R1×r and additionally in case (B) suppose kr = 0. Let (A,B,C) ∈
Mn,m,r, x

0 ∈ Rn and consider the operator P (A,B,C;x0) : Ue → Ye

as defined in (7.3.1). Suppose that for h > 0, applying the feedback
controllers

Ck : Ye → Ue and CEuler
k [h] : Y0e → Ue
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as defined in (7.1.1) and (7.1.2), respectively, to P (A,B,C; 0) yields

∥∥ΠCk//P (A,B,C;0)

∥∥
W0,W0

<∞ and
∥∥ΠCEuler

k
[h]//P (A,B,C;0)

∥∥
W0,W0

=: γ <∞ .

Then

∃λ > 0 ∀x0 ∈ Rn ∀w0 ∈ W0 :
∥∥ΠCEuler

k
[h]//P (A,B,C;x0)w0

∥∥
W

≤ λ|x0| + γ ‖w0‖W0
. (7.3.10)

Proof. Note that one may consider P (A,B,C; 0) as an operator from
Ue to Ye or from Ue to Y0e. Furthermore, note that Ck and CEuler

k [h]
may be considered as operators from Ye to U or from Y0e to U . Thus one
may consider the graphs of P (A,B,C; 0), Ck and CEuler

k [h] in W0 or in
W. To identify in which signal space a graph is considered a superscript
W0 or W is added such as in GW0

P (A,B,C;0) ⊂ W0 or GW
P (A,B,C;0) ⊂ W.

For x0 6= 0 one has to consider P (A,B,C;x0) as an operator from Ue

to Ye with GW
P (A,B,C;x0) ⊂ W.

Step 1 : For k = (k1, . . . , kr) ∈ R1×r let K =
[
k1Im, . . . , krIm

]
. Let

y0 ≡ 0 and consider the map defined by u0
(2.2.22), (7.1.1), (6.2.1)7−→ y1 with

transfer matrix

s 7→ G(s) = [Im | 0m×(n−m)]

· (sIn − (UAU
−1

+ UB(K | 0m×(n−rm))))
−1UB

= [Im | 0m×(n−m)]

·
(
U(sIn − (A+BK[C/ . . . /CAr−1]))U

−1)−1
UB ,

where the matrix U is given by Corollary 2.2.5.

By boundedness of
∥∥HP (A,B,C;0),Ck

∥∥
W0,W0×W0

and in view of [Fra87,

Thm. 2.4.2] it follows that G(·) is stable. Since (A,B,C) is minimum
phase, setting F := K[C/ . . . /CAr−1] ∈ Rm×n, [Cop74, Thm. 10] yields
that spec(A+BF ) = spec(A+BK[C/ . . . /CAr−1]) ⊂ C−.

Since
∥∥HP (A,B,C;0),Ck

∥∥
W0,W0×W0

<∞, one may define maps Ñ : U →
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U , u0 7→ u1, and M : U → Y0, u0 7→ y1 by

Ñu0 = (Im | 0m×m) ΠP (A,B,C;0)//Ck

(
u0

0

)
,

Mu0 = (0m×m | Im) ΠP (A,B,C;0)//Ck

(
u0

0

)
.

Then, Proposition 7.3.1 yields that the tuples (u0, u1) = (u0, Ñu0) and
(u0, y1) = (u0,Mu0) satisfy

ẋ = (A+BF )x+Bu0 , x(0) = 0
u1 = Fx+ u0 ,
y1 = Cx .



 (7.3.11)

Step 2 : It is shown that Ñ(U) = V := {u ∈ U |P (A,B,C; 0)u ∈ Y}.

Suppose u ∈ V, i.e. u ∈ U with P (A,B,C; 0)u ∈ Y. Then Y ∋
P (A,B,C; 0)u = C x =: y for x being a solution of ẋ = Ax + B u,
x(0) = 0. Since (A,B,C) is minimum phase, thus (A,C) is detectable,
there exists L ∈ Rn such that spec(A + LC) ⊂ C−. Since y ∈ Y and
u ∈ U writing

ẋ = (A+ LC)x− LC x+B u = (A+ LC)x− Ly +B u

yields that x ∈ CLp(R≥0 → Rn). Thus u0 := u− Fx ∈ U and (7.3.11)

then yields that u = u1 = Ñ(u0) ∈ Ñ(U), which gives Ñ(U) ⊂ V.

Conversely, suppose u ∈ N(U). Then there exists u0 ∈ U such that
u0 = u−Fx ∈ U . Since spec(A+BF ) ⊂ C− it follows by (7.3.11) that

P (A,B,C; 0)u = y = Cx ∈ Y. Hence Ñ(U) ⊂ V.

Now N : U → V, u0 7→ (Im | 0m×m) ΠP (A,B,C;0)//Ck
( u0

0 ), is well de-
fined and writing

ẋ = Ax+B u1 , x(0) = 0

u0 = F x− u1 ,

directly gives that N is invertible and P (A,B,C; 0) = MN−1.

Step 3 : Set A := A+BF = (A+BK[C/ . . . /CAr−1]). Next is shown
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that

GW
P (A,B,C;x0)

= Q :=

{(
N
M

)
v +

(
F exp(A·)x0

C exp(A·)x0

)
∈ W v ∈ U , N,M,F

and A as in Step 1

}
.

First, show Q ⊂ GW
P (A,B,C;x0).

Consider, for any v ∈ U , qv = ( N
M ) v +

(
F exp(A·)x0

C exp(A·)x0

)
∈ Q. Let u =

Nv+F exp(A·)x0. Since Nv ∈ U and exp(A·) ∈ CW r,p(R≥0 → R)n×n,
it follows that u ∈ U . Observe

ẋ = Ax+B(F exp(A·)x0) , x(0) = x0 ∈ Rn

has the solution x(·) = exp(A·)x0. Thus it follows that

P (A,B,C;x0)F exp(A·)x0 = C exp(A·)x0 .

Hence

P (A,B,C;x0)u = P (A,B,C;x0)Nv + P (A,B,C;x0)
(
F exp(A·)x0

)

− P (A,B,C;x0)(0)

= P (A,B,C; 0)Nv + P (A,B,C;x0)
(
F exp(A·)x0

)

= MN−1Nv + C exp(A·)x0

= Mv + C exp(A·)x0 ∈ Y . (7.3.12)

Thus qv =
( u

P (A,B,C;x0)u

)
∈ U × Y, so qv ∈ GW

P (A,B,C;x0) and Q ⊂
GW

P (A,B,C;x0).

Next, show GW
P (A,B,C;x0) ⊂ Q.

Consider
( u

P (A,B,C;x0)u

)
∈ GW

P (A,B,C;x0). Then

P (A,B,C; 0)
(
u− F exp(A·)x0

)

= P (A,B,C;x0)u− P (A,B,C;x0)
(
F exp(A·)x0

)
∈ Y .

Therefore u−F exp(A·)x0 ∈ V = Im(N), and so there exists v ∈ U such
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that Nv = u− F exp(A·)x0. Therefore, equation (7.3.12) holds, hence

(
u

P (A,B,C;x0)u

)
=

(
N
M

)
v +

(
F exp(A·)x0

c exp(A·)x0

)
∈ Q

and so GW
P (A,B,C;x0) ⊂ Q. Therefore, it is shown that GW

P (A,B,C;x0) = Q
as claimed.

Step 4 : Finally, inequality (7.3.10) is shown.

For w0 ∈ W0 and x0 ∈ Rn let w′
0 := w0 − v1 − v2 where

v1 :=

(
F exp(A·)x0

C exp(A·)x0

)
, v2 :=

(
−CEuler

k [h](C exp(A·)x0)
−C exp(A·)x0

)
.

Since CEuler
k [h](Y) ⊂ U , it follows that w′

0 ∈ W0, hence,

HP (A,B,C;0),CEuler
k

[h](w
′
0) = (w1, w2) ∈ GW0

P (A,B,C;0) × GW0

CEuler
k

[h]
.

In particular, w′
0 = w1 + w2, and by rearranging one has w0 = (w1 +

v1) + (w2 + v2). Since w1 ∈ GW0

P (A,B,C;0) ⊂ GW
P (A,B,C;0), there ex-

ists v ∈ U such that w1 = ( N
M ) v, hence w1 + v1 ∈ Q = GW

P (A,B,C;x0).

Since w2 ∈ GW0

CEuler
k

[h]
⊂ GW

CEuler
k

[h]
and v2 ∈ GW

CEuler
k

[h]
, it follows by

linearity of CEuler
k [h] that w2 + v2 ∈ GW

CEuler
k

[h]
. Therefore, since the

closed-loop [P (A,B,C;x0), CEuler
k [h]] has the uniqueness property, see

Lemma 7.3.3, HP (A,B,C;x0),CEuler
k

[h] : W → W ×W is defined and

HP (A,B,C;x0),CEuler
k

[h]w0

= (w1 + v1, w2 + v2) ∈ GW
P (A,B,C;x0) × GW

CEuler
k

[h] ⊂ W ×W.

For
λ := sup

x0∈Rn\{0}

‖v2‖W
‖x0‖ =

∥∥∥∥
(
−CEuler

k [h](C exp(A·))
−C exp(A·)

)∥∥∥∥
Lp×W r,p

, (7.3.13)

where p = ∞ in case (A) and p ∈ [1,∞) in case (B), it follows that

∥∥ΠCEuler
k

[h]//P (A,B,C;x0)w0

∥∥
W×W

≤ ‖v2‖W + ‖w2‖W
≤ λ‖x0‖ + γ ‖w0‖W0

,
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thus concluding the proof. 2

Now one can state the robust stability result for the delay feedback
controller in the presence of both input/ouput disturbances and initial
conditions.

Theorem 7.3.6 Let, for n,m, r ∈ N with n ≥ rm, (A,B,C) ∈ Pn,m,r

and choose k = (k1, . . . , kr) ∈ R1×r with K = [k1Im, . . . , krIm] ∈
Rm×rm such that spec

(
A+BK[C/ . . . /CAr−1]

)
⊂ C−. Let the sig-

nal spaces U , Y, W and W0 be of type (A) or (B) in (7.2.2); in case
(B) suppose kr = 0. Then γ :=

∥∥ΠCk//P (A,B,C;0)

∥∥
W0,W0

<∞. Suppose

h ∈ (0, h∗), where h∗ > 0 satisfies (7.2.3). Consider for (A,B,C) the
plant operator P (A,B,C;x0) : Ue → Ye given by (7.3.1) and the delay
feedback controller CEuler

k [h] : Y0e → Ue, defined in (7.1.2). Then there
exists λ > 0 such that, for all w0 ∈ W0,

∥∥ΠCEuler
k

[h]//P (A,B,C;x0)w0

∥∥
W,W

≤ λ‖x0‖ + γ

1 + h
r−1∑
i=1

|ki+1| iηp,m(h, i)

1 − hγ
r−1∑
i=1

|ki+1| iηp,m(h, i)

‖w0‖W0
.

Proof. The result follows directly from Theorems 7.3.4 and 7.3.5. 2

Together with Corollary 7.3.1 and Theorem 7.3.2, Theorem 7.3.6
shows for signal spaces of type (A) in (7.2.2), that for sufficiently large
κ∗ ≥ 1 (determined by Corollary 7.3.1) and any κ > κ∗, β(k, κ) given
in (7.3.7) and for sufficiently small h > 0 (determined by Theorem 7.3.4)
there exists λ > 0 (determined by equation (7.3.13)) such that, for all
x0 ∈ Rn and w0 ∈ W0:

∥∥ΠCEuler
k,κ

[h]//P (A,B,C;x0)w0

∥∥
W,W

≤ λ‖x0‖ +


β(k, κ)

1 + hκ
r−1∑
i=1

κr−i|ki+1| iηp,m(h, i)

1 − hβ(k, κ)κ
r−1∑
i=1

κr−i|ki+1| iηp,m(h, i)


‖w0‖W0

.
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7.3.5 Exponential stability of the ‘delay closed-loop’
[P (A, B, C; x0), CEuler

k
[h]] with u0 = y0 ≡ 0

In Theorem 3.2.1, see also Corollary 7.3.1, it has been shown that the
high-gain output derivative feedback controller Ck,κ : y2 7→ u2 leads to
an internally stable system, i.e. for u0 = y0 ≡ 0, any k = (k1, . . . , kr) ∈
R1×m with kr = 1 and s 7→∑r−1

i=0 ki+1s
i Hurwitz, Corollary 7.3.1 gives

∃κ∗ ≥ 1 ∀κ ≥ κ∗ :

ẋ = (A+BK̃[C/ . . . /CAr−1])x is exponentially stable,

where K̃ =
[
k̃1Im, . . . , k̃rIm

]
with k̃i := κr+2−iki, i ∈ {1, . . . , r}.

Now (as in [IS04] where a more limited class of systems was consid-
ered, namely systems with relative degree 2) it is shown that an anal-
ogous result holds true if the stabilizing derivative feedback controller
Ck : y2 7→ u2 is replaced by the delay feedback CEuler

k [h] : y2 7→ u2 for
h > 0 sufficiently small. Exponential stability for a delay differential
equation is defined as follows, see, for example [CZ95, Def. 5.1.1].

Definition 7.3.7 Let h > 0 and, for n, r ∈ N, n ≥ r, A0, . . . , Ar−1 ∈
Rn×n. Then the delay differential initial value

ẋ =

r−1∑

j=0

Aj x(t− jh) , x ≡ ϕ on [(1 − r)h, 0] , (7.3.14)

is said to be exponentially stable if, and only if,

∃M,λ > 0 ∀ t ≥ 0 ∀ϕ ∈ Cpw([(1 − r)h, 0] → Rn) :

‖x(t)‖ ≤Me−λt max
s∈[(1−r)h,0]

‖ϕ(s)‖ . (7.3.15)

The following proposition now shows exponential stability of the closed-
loop initial value problem [P (A,B,C;x0), CEuler

k [h]] with zero distur-
bances u0 = y0 ≡ 0.

Proposition 7.3.8 Let, for n,m, r ∈ N with n ≥ rm, (A,B,C) ∈
Pn,m,r, x

0 ∈ Rn. Consider the signal spaces U = Y = CW∞,2
0 (R≥0 →
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R) and W := U × Y and choose k ∈ R1×r and h > 0 such that

∥∥ΠP (A,B,C;0)//CEuler
k

[h]

∥∥
W,W

<∞ ,

Then the delay differential system associated with the closed-loop ini-
tial value problem [P (A,B,C;x0), CEuler

k [h]] given by (7.3.1), (7.1.2)
and (6.2.1) with u0 = y0 ≡ 0 is exponentially stable.

Proof. For (A,B,C) ∈ Pn,m,r, n,m, r ∈ N with n ≥ m and h > 0, the
closed-loop system [P (A,B,C;x0), CEuler

k [h]] given by (7.3.1), (7.1.2)
and (6.2.1) is described by the delay differential equation (7.3.8), see
Subsection 7.3.3. Let GP (A,B,C;0)//CEuler

k
[h] ∈ R(s)2m×2m denote the

transfer function of ΠP (A,B,C;0)//CEuler
k

[h]. Then, [Tre04, Thm. 30] or,

for example, [Fra87, Thm. 2, Sect. 2.4] yields

sup
ω∈R

∥∥GP (A,B,C;0)//CEuler
k

[h](iω)
∥∥

2
=
∥∥ΠP (A,B,C;0)//CEuler

k
[h]

∥∥
W,W

<∞ .

Since the denominator of the function
(
s 7→ GP (A,B,C;0)//CEuler

k
[h](s)

)
is

equal to

det
(
sI −

(
A+ Ã0 + e−shÃ1 + · · · + e−s(r−1)hÃr−1

))
,

where Ã0, . . . , Ãr−1 as in Subsection 7.3.3, it follows that

∀ s ∈ C+ : det
(
sI −

(
A+ Ã0 + e−shÃ1 + · · · + e−s(r−1)hÃr−1

))
6= 0 .

Now, [CZ95, Thm. 5.1.5] yields exponential stability of (7.3.8) with
u0 = y0 ≡ 0, and the proof is complete. 2

This section is concluded by noting that for sufficiently large κ∗ ≥ 1
(determined by Corollary 7.3.1) and any κ > κ∗, β(k, κ) given in (7.3.7)
and for sufficiently small h > 0 (determined by Theorem 7.3.4) Propo-
sition 7.3.8 yields that the closed-loop system [P (A,B,C;x0), CEuler

k,κ [h]]
with u0 = y0 ≡ 0 is exponentially stable. Thus, robust stability when
replacing derivatives by delays of the high-gain output derivative feed-
back controller 3.2.2 is proven.
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7.4 Example

In this section an example is presented which illustrates Theorem 7.3.4,
and its application within a nonlinear context. Consider the linear SISO-
system P (A, b, c;x0) : u1 7→ y1 given by (7.3.1) with the system matrices

A =




0 1 0
1 1 1
1 0 −1


, b =




0
1
0


 and c = [1, 0, 0] and initial value x0 ∈ R3.

Note that the system has relative degree r = 2, positive high-frequency
gain cAr−1b = 1, stable zero dynamics and is already in Byrnes-Isidori
normal form. An application of Ck,κ defined by (7.3.2) with k = (1, 1)
yields the closed-loop system



ẏ1
ÿ1
η̇


 =




0 1 0
1 − κ3 1 − κ2 1

1 0 −1




︸ ︷︷ ︸
=: Aκ



y1
ẏ1
η


+




0
1
0


[u0 + κ3y0 + κ2ẏ0

]
,

u1 = u0 + κ3y0 + κ2ẏ0 − (κ3y1 + κ2ẏ1) ,



y1
ẏ1
η


 (0) = x0 .





(7.4.1)
If κ > 3

√
2 then spec(Aκ) ⊂ C−. Replacing Ck,κ by the appropriate

delay feedback controller CEuler
k,κ [h] yields the closed-loop system



ẏ1
ÿ1
η̇


 =




0 1 0

1 − κ3 − κ2

h 1 1
1 0 −1





y1
ẏ1
η


+




0 0 0
κ2

h 0 0
0 0 0





y1
ẏ1
η


 (· − h)

+




0
1
0



[
u0 + κ3y0 + κ2 y0−y0(·−h)

h

]
,

u1 = u0 + κ3y0 + κ2 y0−y0(·−h)
h −

(
κ3y1 + κ2 y1−y1(·−h)

h

)
,


y1
ẏ1
η


 ≡ ϕ on [−h, 0] ,





(7.4.2)
where ϕ(0) = x0. Theorem 7.3.4 now guarantees that, for sufficiently
small h > 0, the delay system (7.4.2) is W0-gain stable for signal spaces
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W0 of type (A) or (C) defined by (7.2.2). Moreover, Proposition 7.3.8
shows that, for (u0, y0) = (0, 0), the solution of (7.4.2) is exponentially
stable for sufficiently small h > 0.

Next the effect of an additional causal and invertible nonlinearity
Ψ: U0 → U0 is considered. Connect this in series with the input of the
plant, to give the plant operator P (A, b, c;x0) ◦ Ψ, see Figure 7.3.

Ψ P

C

u0

y0

+ u1 y1

−
+y2u2

−

Figure 7.3: The closed-loop system [P ◦ Ψ, C]

Consider the map Φ: GP (A,b,c;0) → W0 defined by

Φ

(
u
y

)
=

(
Ψ−1(u)

y

)
, for all

(
u
y

)
∈ GP (A,b,c;0) .

Since Ψ−1(u) ∈ U0 for all u ∈ U0, Φ ∈ OP (A,b,c;0),P (A,b,c;0)◦Ψ, hence

~δ(P (A, b, c; 0), P (A, b, c; 0) ◦ Ψ) ≤ ‖I − Φ‖W0,W0
≤ ‖I − Ψ−1‖U0,U0

.

An application of Theorem 6.5.1 then shows that if the nonlinearity Ψ is
sufficiently mild, i.e. if ‖I −Ψ−1‖U0,U0

< ‖ΠCk,κ//P (A,b,c;0)‖−1
W0,W0

, then
[P (A, b, c; 0) ◦ Ψ, Ck,κ] is also gain stable on W0. Consequently, Theo-
rem 7.2.1 establishes, for sufficiently small h > 0, that [P (A, b, c; 0) ◦
Ψ, CEuler

k,κ [h]] is W0-gain stable for signal spaces W0 of type (A) or (C)
defined by (7.2.2).

For example, in the setting of signal space (A), consider Ψ: U0 →
U0 defined by Ψ(u)(t) = ψ(u(t)) for the memoryless function ψ : R →
R, ψ(s) = s + ε sin(s), 0 < ε ≤ 1. Then ψ is bijective and there
exist functions α, β : (0, 1] → (0,∞) with the property limε→0 α(ε) = 1,
limε→0 β(ε) = 1 such that α(ε)s ≤ ψ(s) ≤ β(ε)s. It follows that the
inverse ψ−1 holds 1

β(ε)s ≤ ψ−1(s) ≤ 1
α(ε)s. Hence the bounded inverse
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Ψ−1 : U0 → U0 is given by Ψ−1(u)(t) = ψ−1(u(t)) and

‖I−Ψ−1‖ ≤ sup
s∈R

|s− ψ−1(s)|
|s| ≤ 1−max

{
1

α(ε)
,

1

β(ε)

}
→ 0 as ε→ 0.

Hence for sufficiently small ε > 0 and h > 0, [P (A, b, c;x0)◦Ψ, CEuler
k,κ [h]]

is W0-gain stable.
Robust stability is illustrated in the following simulation study. Recall

that k = (1, 1) and choose κ = 2 and ε = 1. The simulations are
computed with MATLAB’s dde23 solver for delay differential equations,
see also [SGT03]. All state variables y1, ẏ1, η of the undisturbed (u0 =
y0 = 0) closed-loop systems are illustrated for t ∈ [0, 20].

Figure 7.4(a) shows an exponentially stable solution of (7.4.1) with

initial conditions (y1(0), ẏ1(0), η(0)) = x0T
= (1, 1, 1) and (u0, y0) =

(0, 0).
Figures 7.4(b), 7.4(c), 7.4(d) illustrate [P (A, b, c;x0) ◦ Ψ, CEuler

k,κ [h]]
with (u0, y0) = (0, 0) and initial function

(y1|[−h,0], ẏ1|[−h,0], η|[−h,0]) ≡ ϕT ≡ (1, 1, 1)

for Euler step sizes h = 0.1, 0.4, 0.7, respectively. Note that for h = 0.7
the delay system becomes unstable.

7.5 Notes and references

The results from the present chapter are shown in [FIM09]. Perhaps sur-
prisingly, there are relatively few theoretical results available on closed-
loop stability for such delay based controllers. For linear time-invariant
systems with relative degree 2 controlled by the delay feedback (7.1.2),
exponential stability of the resulting closed-loop delay differential sys-
tem was established in [IS04]. In the very recent work, [Kar08] tries to
generalize the results in [IS04] for systems with arbitrary relative de-
gree, however the proof is very technical and seems to be inaccurate.
Other analogous results for systems with higher relative degree have not
been previously established. Stabilization of (nonlinear) systems via de-
lays has been considered by some authors: in [NM04] the authors give
a control strategy with multiple delays that stabilizes a simple system
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Figure 7.4: Simulations; Robust stability of derivative feedback

of the form y(n) = u. In [KNMM05] necessary conditions for multiple
delay controllers that stabilize linear systems are shown, but no explicit
control strategy is given. In [Kar06] the author considers nonlinear sys-
tems with several constraints and gives a control strategy that achieves
a bounded output.

Analogous results for sampled versions of CEuler
k [h] can also be shown

utilizing the techniques of this chapter. A variety of sampled versions
of these results are presented in [FM09], which also extends the results
for fully nonlinear controllers and to the important case of semi-global
stabilization.



8 Robustness of λ-tracking

In this chapter it is verified that λ-tracking is robust in the sense that
the control objectives (bounded signals and tracking) are still met if the
λ-tracker (4.1.5) is applied to any system “close” (in terms of a small
gap metric) to a system satisfying the classical assumption for adaptive
control, i.e. systems which are (i) minimum phase, have (ii) relative
degree one and (iii) “positive” high-frequency gain, as long as the initial
conditions and the disturbances are “small”. This will be achieved by
exploiting the concept of the nonlinear gap metric from Chapter 6.

8.1 Well posedness of the closed-loop system

Recall λ-tracking from Chapter 4: Theorem 4.2.1 shows that linear n-
dimensional, m-input, m-output (MIMO) systems of the form

ẋ(t) = Ax(t) +B u1(t) , x(0) = x0,
y1(t) = C x(t) ,

}
(8.1.1)

where (A,B,C) ∈ Mn,m, see Section 4.1, and x0 ∈ Rn is an arbitrary
initial value, can be “stabilized” in presence of additive input/output
disturbances u0, y0 ∈ W 1,∞(R≥0 → Rm) satisfying the interconnection
equations

u0 = u1 + u2, y0 = y1 + y2 , (8.1.2)

by application of the adaptive control strategy

k̇(t) = dist (y2(t), [−λ, λ]) · ‖y2(t)‖ , k(0) = k0 ,
u2(t) = −k(t)y2(t) ,

}
(8.1.3)

where λ > 0, k0 ∈ R and dist : Rm × R>0 → R≥0 defined by (y, λ) 7→
dist(y, [−λ, λ]) := max{0, ‖y‖ − λ}.

205
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A linear system (A,B,C) from system class Mn,m satisfies the clas-
sical assumptions for adaptive control: (A,B,C) given by (8.1.1) is
minimum phase, see Definition 2.3.1 and Corollary 2.3.2, has strict rel-
ative degree one with positive definite high-frequency gain matrix CB,
i.e. CB + (CB)T > 0.

The purpose of the present chapter is to show robustness properties of
the λ-tracker in terms of the gap metric. This means that the λ-tracker
may also be applied to linear systems which are sufficiently close (in
terms of a small gap) to any system from class Mn,m but may not
satisfy any of the above assumptions.

For the purpose of illustration recall the example plant from Subsec-
tion 6.3.1. A minimal realization (Ã, b̃, c̃), see Subsection 8.2.1, of the
system given by the transfer function

s 7→ N(M − s)

(s− α)(s+N)(s+M)
, α,N,M > 0,

(which obviously does not satisfy any of the classical assumptions since it
is not minimum phase, has relative degree 2 and negative high-frequency
gain) is closer (in sense of the nonlinear gap) to a system in M1,1 the

larger N and M are, see (6.3.3). Furthermore, (Ã, b̃, c̃) is stabilizable
and detectable. Recall, for n,m ∈ N with n ≥ m, the system class

Pn,m :=

{
(A,B,C)
∈ Rn×n × Rn×m × Rm×n

(A,B,C) is stabilizable
and detectable

}
,

from Subsection 6.5.2 and note that Mn,m ( Pn,m.

For m,n ∈ N with n ≥ m, consider Pn,m as a subspace of the Eu-

clidean space Rn2+2mn by identifying a plant θ = (A,B,C) with a vector
θ consisting of the elements of the plant matrices, ordered lexicograph-
ically. With normed signal spaces U and Y and (θ, x0) ∈ Pn,m × Rn,
where x0 ∈ Rn is the initial value of a linear system (8.1.1), one may
associate the causal plant operator

P (θ, x0) : Ua → Ya , u1 7→ P (θ, x0)(u1) := y1 , (8.1.4)

where, for u1 ∈ Ua with dom(u1) = [0, ω), holds y1 = Cx, x being
the unique solution of (8.1.1) on [0, ω). Note that P is a map from
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⋃
n≥m(Pn,m × Rn) to the space of maps Ua → Ya.

Consider, for λ > 0, the adaptive strategy (8.1.3) and associate the
causal controller operator, parameterized by λ and the initial value k0 ∈
R, i.e.

C(λ, k0) : Ya → Ua , y2 7→ C(λ, k0)(y2) := u2 . (8.1.5)

Note that C is a map from (0,∞) × R to the space of causal maps
Ya → Ua.

In this section it is shown that, for U = Y = W 1,∞(R≥0 → Rm),
the closed-loop system [P (θ, x0), C(λ, k0)] (depicted in Figure 8.1) of
any plant of the form (8.1.1) (with associated operator P (θ, x0)) and
adaptive controller (8.1.3) (with associated operator C(λ, k0)), where
(θ, x0) ∈ Pn,m × Rn and (λ, k0) ∈ (0,∞) × R, satisfying the intercon-
nection equations (8.1.2), is regularly well posed.

u0

u1 y1
P (θ, x0)

C(λ, k0) y0
u2 y2

−
+

+

−

Figure 8.1: The closed-loop system [P,C].

First, it is verified that, for any θ ∈ Mn,m, see Section 4.1, the closed-
loop system [P (θ, x0), C(λ, k0)] is globally well posed and

(
U×Y

)
-stable,

see Section 6.2.

Proposition 8.1.1 Let m,n ∈ N with n ≥ m, λ > 0, (θ, x0, k0) ∈
Mn,m×Rn×R and u0, y0 ∈W 1,∞(R≥0 → Rm). Then, for plant opera-
tor P (θ, x0) and control operator C(λ, k0), given by (8.1.4) and (8.1.5),
respectively, the closed-loop initial value problem [P (θ, x0), C(λ, k0)],
given by (4.1.6), (8.1.2), (8.1.3), is globally well posed and additionally(
W 1,∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm)

)
-stable.

Proof. The proposition is a consequence of Proposition 4.2.1. 2
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Note that, for (A,B,C) ∈ Pn,m, x0 ∈ Rn, λ > 0 and k0 ∈ R, the
closed-loop initial value problem (8.1.1), (8.1.2), (8.1.3) may be written
as

ẋ(t) = Ax(t) +B[u0(t) − u2(t)] , x(0) = x0 ∈ Rn ,

k̇(t) = dλ(y2(t)) ‖y2(t)‖ , k(0) = k0 ∈ R ,

y2(t) = y0(t) − C x(t) ,

u2(t) = −k(t)y2(t) ,





(8.1.6)

where dλ : Rm → R≥0 is defined by e 7→ dλ(e) := max{0, ‖e‖ − λ}, see
also Section 4.2.

Proposition 8.1.2 Let m,n ∈ N with n ≥ m, λ > 0, (θ, x0, k0) ∈
Pn,m×Rn×R and u0, y0 ∈W 1,∞(R≥0 → Rm). Then, for plant operator
P (θ, x0) and control operator C(λ, k0), given by (8.1.4) and (8.1.5), re-
spectively, the closed-loop initial value problem [P (θ, x0), C(λ, k0)], given
by (8.1.6), has the following properties:

(i) there exists a unique solution (x, k) : [0, ω) → Rn × R, for some
ω ∈ (0,∞], and the solution is maximal in the sense that for
every compact K ⊂ R≥0 × Rn × R exists t ∈ [0, ω) such that
(t, x(t), k(t)) /∈ K;

(ii) if k ∈W 1,∞([0, ω) → R), then ω = ∞;

(iii) if y2 ∈W 1,∞([0, ω) → Rm), then ω = ∞;

(iv) [P (θ, x0), C(λ, k0)] is regularly well posed.

Proof. (i): The right hand side of (8.1.6) is continuous and locally
Lipschitz, i.e.

f : R≥0 × Rn × R → Rn+1 ,

(t, x, k) 7→
(
Ax+B[u0(t) + k(y0(t) − C x)]
dλ(y0(t) − C x) ‖y0(t) − C x‖

)
,

satisfies a local Lipschitz condition on the relatively open set R≥0 ×
Rn × R in the sense that, for all (τ, ξ, κ) ∈ R≥0 × Rn × R, there exists
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an open neighbourhood O of (τ, ξ, κ) and a constant L > 0 such that

∀ (t, x, k) ∈ O : ‖f(t, x, k) − f(t, ξ, κ)‖ ≤ L(‖x− ξ‖ + ‖k − κ‖) .

Therefore, standard theory of ordinary differential equations, see, for
example, [Wal98, Thm. III.11.III], yields that (8.1.6) has an absolutely
continuous solution

(x, k) : [0, ω) → Rn × R

for some ω ∈ (0,∞], which satisfies (t, x(t), k(t)) ∈ R≥0 × Rn × R.
Moreover, the solution is unique and the solution can be extended up
to the boundary of R≥0 × Rn × R. In other words: for every compact
K ⊂ R≥0 × Rn × R exists t ∈ [0, ω) such that (t, x(t), k(t)) /∈ K, as
required.

(ii): Suppose k ∈ W 1,∞([0, ω) → R) and, for contradiction, ω < ∞.
Since dλ(y2)2 ≤ dλ(y2) ‖y2‖ = k̇ ∈ L∞([0, ω) → R≥0), it follows that
dλ(y2) ∈ L∞([0, ω) → R≥0) and dλ(y2) + λ ∈ L∞([0, ω) → R≥0). Thus,
y2 ∈ L∞([0, ω) → Rm).

Since k ∈ L∞([0, ω) → R), Variation of Constants applied to (8.1.6)
yields the existence of constants c0, c1 > 0 such that

∀ t ∈ [0, ω) :

‖x(t)‖ ≤ c0

(
ec1ω +

∫ ω

0

ec1(ω−s) (‖u0(s)‖ + ‖y2(s)‖) ds

)
. (8.1.7)

Since y2 ∈ L∞([0, ω) → Rm) and u0 ∈ L∞(R≥0 → Rm), it follows from
the convolution in (8.1.7) that the right hand side of (8.1.7) is bounded
by c3 = c0

(
ec1ω+(ec1ω+1)(‖u0‖L∞([0,ω)→Rm)+‖y2‖L∞([0,ω)→Rm))/c1

)
>

0 on [0, ω) which gives that

K :=
{

(t, x, κ) ∈ R≥0 × Rn × R
∣∣∣ t ∈ [0, ω] , ‖x, κ‖ ≤

√
c23 + ‖k‖L∞

}

is a compact subset of R≥0 × Rn × R with (t, x(t), k(t)) ∈ K for all t ∈
[0, ω), which contradicts the fact that the closure of graph

(
(x, k)|[0,ω)

)

is not a compact set, see (i). Therefore, ω = ∞.
(iii): Suppose y2 ∈ W 1.∞([0, ω) → Rm) and, for contradiction, ω <
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∞. Then k̇ = dλ(y2) ‖y2‖ ∈ L∞([0, ω) → R) and, combined with

∀ t ∈ [0, ω) :

k(t) − k0 =

∫ t

0

dλ(y2(s)) ‖y2(s)‖ds

≤
∫ t

0

‖y2‖2
L∞([0,ω)→Rm) ds = ω ‖y2‖2

L∞([0,ω)→Rm) ,

one arrives at k ∈W 1,∞([0, ω) → R). Now (ii) yields that ω = ∞. This
is a contradiction and so ω = ∞.

(iv): For ease of notation, let W = W 1,∞(R≥0 → Rm)×W 1,∞(R≥0 →
Rm). By (i), the closed-loop [P (θ, x0), C(λ, k0)] is locally well posed. To
prove that [P (θ, x0), C(λ, k0)] is regularly well posed, it suffices to show
that (6.2.2) holds, see Section 6.2. For arbitrary w0 = (u0, y0) ∈ W
consider (w1, w2) = HP (θ,x0),C(λ,k0)(w0) where dom(w1, w2) = [0, ω)
is maximal. Suppose, contrary to the right hand side of (6.2.2), that∥∥(w1, w2)

∣∣
[0,ω)

∥∥
Wω×Wω

< ∞. Then y2 ∈ W 1,∞([0, ω) → Rm), which,

in view of (iii), yields ω = ∞, i.e. the contrary of the left hand side
of (6.2.2). Hence the closed-loop system is regularly well posed. 2

With the knowledge that the closed-loop system [P (θ, x0), C(λ, k0)]
is regularly well posed for all θ ∈ Pn,m, one is in the position to present
the main results on robust stability of λ-tracking which follows in the
next section

8.2 Robust stability

Theorem 4.2.1 and Proposition 8.1.1 establish that, for (θ, x0, k0) ∈
Mn,m × Rn × R and m,n ∈ N with n ≥ m, λ > 0 and u0, y0 ∈
W 1,∞(R≥0 → Rm), the closed-loop system [P (θ, x0), C(λ, k0)], given
by (4.1.6), (8.1.2), (8.1.3) is globally well posed and has certain stabil-
ity properties. Furthermore, Theorem 4.2.1 shows λ-tracking for linear
systems belonging to class Mn,m.

The purpose of this section is to determine conditions under which
these properties are maintained when the plant P (θ, x0) is perturbed to

a plant P (θ̃, x̃0) where (θ̃, x̃0) ∈ Pq,m ×Rq for some q ∈ N, in particular
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when θ̃ /∈ Mq,m. The main result Theorem 8.2.3 shows that stability

properties and λ-tracking persist if (a) the plants P (θ̃, 0) and P (θ, 0)
are sufficiently close (in the gap sense) and (b) the initial data x̃0 and
disturbance w0 = (u0, y0) ∈ W = W 1,∞(R≥0 → Rm) ×W 1,∞(R≥0 →
Rm) are sufficiently small.

To establish gap margin results, the augmented plant and controller
operators as in Subsection 6.5.2 are required. Define, for the con-
crete signal spaces U = Y = W 1,∞(R≥0 → Rm), Ũ := Rn2+2nm ×
W 1,∞(R≥0 → Rm) and let W̃ := Ũ ×W 1,∞(R≥0 → Rm), which can

be considered as signal spaces by identifying θ ∈ Rn2+2mn with the
constant function t 7→ θ and endowing Ũ with the norm ‖(θ, u)‖Ũ :=√
‖θ‖2 + ‖u‖2

W 1,∞(R≥0→Rm). For P (θ, 0) given as in (8.1.4), define the

(augmented) plant operator, as in (6.5.13), by

P̃ : Ũa →W 1,∞
a (R≥0 → Rm) ,

(θ, u1) = ũ1 7→ y1 = P̃ (ũ1) := P (θ, 0)(u1) . (8.2.1)

Fix λ > 0, k0 ∈ R and define, for C(λ, k0) as in (8.1.5), the (aug-
mented) controller operator, as in (6.5.14) but for the concrete λ-tracker,
by

C̃ : W 1,∞
a (R≥0 → Rm) → Ũa ,

y2 7→ ũ2 = C̃(y2) :=
(
0, C(λ, k0)(y2)

)
= (0, u2) . (8.2.2)

Note that 0 /∈ Mn,m. For each non-empty Ω ⊂ Mn,m, define

WΩ :=
(
Ω ×W 1,∞(R≥0 → Rm)

)
×W 1,∞(R≥0 → Rm)

and HΩ
P̃ ,C̃

:= HP̃ ,C̃ |WΩ . (8.2.3)

It follows from Proposition 8.1.1 that HΩ
P̃ ,C̃

: WΩ → W̃ × W̃ is a causal

operator for any non-empty Ω ⊂ Mn,m. Next, Proposition 8.2.1 shows
gain-function stability of HΩ

P̃ ,C̃
. This is a supposition of Theorem 6.5.3

and latter is used to show Proposition 8.2.2 and thus the main result
Theorem 8.2.3.
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Proposition 8.2.1 Let m,n ∈ N with n ≥ m, k0 ∈ R, λ > 0 and
assume Ω ⊂ Mn,m is closed. Then, for the closed-loop system [P̃ , C̃]
given by (6.2.1), (8.2.1) and (8.2.2), the operator HΩ

P̃ ,C̃
, given by (8.2.3)

is gain-function stable.

Proof. Note that ((θ, u1), y1) = ((θ, u0), y0) − ((0, u2), y2). For the
continuous map ν : Dn,m → R≥0 as in Theorem 4.2.1 and WΩ given
by (8.2.3), it follows that

∀ ((θ, u0), y0) ∈ WΩ :
∥∥HΩ

P̃ ,C̃
((θ, u0), y0)

∥∥
W̃×W̃

= ‖
(
((θ, u1), y1), ((0, u2), y2)

)
‖
W̃×W̃

≤ ‖((θ, u0), y0)‖
W̃

+ 2‖((0, u2), y2)‖
W̃

≤ ‖(u0, y0)‖W + ‖θ‖ + 2 ν(θ, (0, k0), u0, y0) ,

and so, for r0 := infw∈WΩ ‖w‖
W̃

and r ∈ (r0,∞), closedness of Ω yields

g
[
HΩ

P̃ ,C̃

]
(r) := sup

{
‖(u0, y0)‖W + ‖θ‖
+2 ν(θ, (0, k0), u0, y0)

(θ, u0, y0) ∈ WΩ ,
‖(θ, u0, y0)‖

W̃
≤ r

}
<∞ .

Thus a gain-function for HΩ
P̃ ,C̃

exists, and the proof is complete. 2

The following establishes
(
W 1,∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm)

)
-

stability of the closed-loop system [P (θ̃, x̃0), C(λ, k0)] for a system θ̃
belonging to the system class Pq,m, q ≥ m, if, for a system θ belong-

ing to Mn,m, n ≥ m, the gap between P (θ̃, 0) and P (θ, 0), the ini-
tial value x̃0 ∈ Rq and the input/output disturbances w0 = (u0, y0) ∈
W 1,∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm) are sufficiently small. The
proof is based on results from Subsection 6.5.2, namely Theorems 6.5.3
and 6.5.4.

Proposition 8.2.2 Let m,n, q ∈ N with n, q ≥ m,signal spaces U =
Y = W 1,∞(R≥0 → Rm), W = U × Y and θ ∈ Mn,m. For any

(θ̃, x̃0, k0) ∈ Pq,m ×Rq ×R and λ > 0, consider P (θ̃, x̃0) : Ua → Ya, and
C(λ, k0) : Ya → Ua defined by (8.1.4) and (8.1.5), respectively. Then
there exist a continuous function η : (0,∞) → (0,∞) and a function
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ψ : Pq,m → (0,∞) such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
⇒ HP (θ̃,x̃0),C(λ,k0)(w0) ∈ W ×W .

(8.2.4)

It is required to show how the gain-function stability of the augmented
closed loop [P̃ , C̃], given by (6.2.1), (8.2.1), (8.2.2), yields the robustness

property (8.2.4) for the unaugmented closed-loop [P (θ̃, x̃0), C(λ, k0)].

Proof of Proposition 8.2.2. By Proposition 8.1.2 the closed-loop
system [P (θ̃, x̃0), C(λ, k0)] is regularly well-posed for all θ̃ ∈ Pq,m. Con-
sider the augmented operators defined by (8.2.1) and (8.2.2), i.e.

P̃ : Pn,m × Ua → Ya , (θ̃, u1) 7→ P̃ (θ̃, u1) = P (θ̃, 0)(u1) ,

C̃ : Ya → Pn,m × Ua , y2 7→ C̃(y2) = (0, C(λ, k0)(y2)) .

For θ ∈ Mn,m set Ω = {θ}. By Proposition 8.2.1, HΩ
P̃ ,C̃

= HP̃ ,C̃ |WΩ ,

given by (8.2.3), is gain-function stable. By, for example, the proof
of [Zei86, Thm. 4.D], ΠP (θ,0)//C(λ,k0)(·)

∣∣
[0,τ)

is continuous for all τ > 0,

which yields that
(
ΠP̃ //C̃ |WΩ

)
(·)∣∣

[0,τ)
is continuous for all τ > 0.

Then Theorem 6.5.3 for U = Y = W 1,∞(R≥0 → Rm) gives the exis-
tence of a continuous function µ : (0,∞) × Ω → (0,∞) such that

∀
(
θ, θ̃, w0, r

)
∈ Ω × Pq,m ×W × (0,∞) :

‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ µ(r, θ)

}
⇒ HP (θ̃,0),C(λ,k0)(w0) ∈ W ×W .

Now, Theorem 6.5.4 for U = Y = W 1,∞(R≥0 → Rm) yields the
existence of a continuous function µ : (0,∞)×Ω → (0,∞) and a function
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ψ : Pq,m → (0,∞) such that

∀
(
θ̃, θ, x̃0, w0, r

)
∈ Pq,m ×Mn,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ µ (r, θ)

}
⇒ HP (θ̃,x̃0),C(λ,k0)(w0) ∈ W ×W .

(8.2.5)

Finally, statement (8.2.4) follows on setting η(·) = µ(·, θ). 2

Note that Theorem 6.5.4 requires stabilizability of system θ̃ ∈ Pq,m.
Finally, one is in the position to state and prove the main result of

the present chapter. Loosely speaking, it is show that the λ-tracker
also works for systems

(
Ã, B̃, C̃

)
∈ Pq,m which are not necessarily

minimum phase, may have higher relative degree and negative high-
frequency gain. However

(
Ã, B̃, C̃

)
has to be sufficiently close – in the

terms of the gap metric – to a system (A,B,C) ∈ M̃n,m and the initial

value x̃0 ∈ Rq for
(
Ã, B̃, C̃

)
and the input/output disturbances (u0, y0)

have to be sufficiently small.

Theorem 8.2.3 Let m,n, q ∈ N with n, q ≥ m, U = Y = W 1,∞(R≥0 →
Rm), W = U × Y, k0 ∈ R, λ > 0 and θ ∈ Mn,m. For (θ̃, x̃0) ∈
Pq,m × Rq consider the associated operators P (θ̃, x̃0) : Ua → Ya and
C(λ, k0) : Ya → Ua defined by (8.1.4) and (8.1.5), respectively, and the
closed-loop initial value problem (8.1.1), (8.1.2), (8.1.3). Then there ex-
ist a continuous function η : (0,∞) → (0,∞) and a function ψ : Pq.m →
(0,∞) such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
⇒





lim supt→∞ ‖y2(t)‖ ≤ λ ,

k ∈W 1,∞(R≥0 → R) ,

x ∈W 1,∞(R≥0 → Rq) ,

(8.2.6)

where (x, k) and y2 satisfy (8.1.6).
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Proof. Step 1 : It is shown that

((u1, y1), (u2, y2)) = HP (θ̃,x̃0),C(λ,k0)(w0) ∈ W ×W . (8.2.7)

Choose functions η : (0,∞) → (0,∞) and ψ : Pq,m → (0,∞) from
Proposition 8.2.2. Let

(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r ∧ ~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r) .

Then Proposition 8.2.2 gives (8.2.7).
Step 2 : By Proposition 8.1.2 it follows that (8.1.6) has a unique

solution
(x, k) : [0, ω) → Rq × R

on a maximal interval of existence [0, ω) for some ω ∈ (0,∞], in the
sense that for every compact K ⊂ R≥0 × Rn × R exists t ∈ [0, ω) such
that (t, x(t), k(t)) /∈ K. Now, Proposition 8.1.2(iii) together with (8.2.7),
in particular y2 ∈W 1,∞([0, ω) → Rq), yields ω = ∞.

Step 3 : It is shown that k̇ ∈ L∞(R≥0 → R).

Suppose, for contradiction, that k̇ /∈ L∞(R≥0 → R), i.e. there exists

a sequence (ti) ∈ (R≥0)N with ti > ti+1 and limi→∞ k̇(ti) = ∞. Then

lim
i→∞

dλ(y2(ti)) ‖y2(ti)‖ = ∞

and thus
lim

i→∞
‖y2(ti)‖ = ∞ ,

a contradiction to (8.2.7).
Step 4 : It is shown that k ∈ L∞(R≥0 → R).
Suppose, for contradiction, that k /∈ L∞(R≥0 → R), that means that

limt→∞ k(t) = ∞. Since u2 ∈ W 1,∞(R≥0 → Rm), the forth equation
in (8.1.6) yields limt→∞ y2(t) = 0, and thus

∃T > 0 ∀ t ≥ T : k̇(t) = dλ(y2(t)) ‖y2(t)‖ = 0

which contradicts the assumption on k.
Step 5 : By Step 3 and 4 one may obtain k ∈W 1,∞(R≥0 → R).
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Step 6 : Proposition 8.2.2 yields in particular that y2, ẏ2 ∈ L∞(R≥0 →
Rm). Analogous as in Step 10, of the proof of Theorem 4.2.1, one may
establish that y2 is uniformly continuous.

Step 7 : By Step 6 and continuity of the map e 7→ dλ(e)‖e‖ obtain
that t 7→ dλ(y2(t)) ‖y2(t)‖ is uniformly continuous. Hence, in view of
k̇ = dλ(y2)‖y2‖ ∈ L1(R≥0 → R), which is equivalent to k ∈ L∞(R≥0 →
R), and Barbălat’s Lemma, see [Bar59], limt→∞ dλ(y2(t)) ‖y2(t)‖ = 0
holds. This gives lim supt→∞ ‖y2(t)‖ ≤ λ.

Step 8 : It remains to show that x ∈W 1,∞(R≥0 → Rq).

Let
(
Ã, B̃, C̃

)
∈ Pq,m associated with (8.1.1). Detectability of system(

Ã, B̃, C̃
)

yields the existence of F ∈ Rq×m such that Ã+FC̃ is Hurwitz.

Setting g := −
[
F + k B̃

]
(y0 − y2) + B̃ u0 + B̃ ky0 gives

ẋ =
[
Ã− k B̃C̃

]
x+ B̃ u0 + B̃ ky0 =

[
Ã+ FC̃

]
x+ g . (8.2.8)

By Proposition 8.2.2 and Step 5 follows y2 ∈ W 1,∞(R≥0 → Rm) and
k ∈ W 1,∞(R≥0 → R) and since w0 = (u0, y0) ∈ W 1,∞(R≥0 → Rm) ×
W 1,∞(R≥0 → Rm) it follows that g ∈ W 1,∞(R≥0 → Rq). Hence,
by (8.2.8) obtain x ∈ L∞(R≥0 → Rq). The first equation in (8.1.6)
then gives ẋ ∈ L∞(R≥0 → Rq) which shows x ∈W 1,∞(R≥0 → Rq) and
completes the proof. 2

8.2.1 Example: robust stability of λ-tracking

Finally, revisit the example plants (8.2.9) and (8.2.10) given by minimal

realizations of the transfer functions s 7→ 1
s−α and s 7→ N(M−s)

(s−α)(s+N)(s+M) ,

α,N,M > 0, with the associated operators

Pα;x0 : Ua → Ya , u1 7→ y1 and PN,M,α;x̃0 : Ua → Ya , ũ1 7→ ỹ1

which are induced by state space systems

Pα;x0 : ẋ = αx+ u1 , x(0) = x0

y1 = x

}
(8.2.9)

PN,M,α;x̃0 : ẋ = Ã x+ b̃ ũ1 , x(0) = x̃0

ỹ1 = c̃ x

}
(8.2.10)
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with x0 ∈ R, x̃0 ∈ R3 and where

Ã :=




0 1 0
0 0 1

αNM, −NM + αN + αM, α−N −M


 , b̃ :=




0
0
N


 ,

c̃ := [M,−1, 0] .

The signal spaces in the present chapter, see also Chapter 4, are given
as U = Y = W 1,∞(R≥0 → Rm). In Subsection 6.3.1 it was shown that
the gap metric between Pα;0 and P2M,M,α;0 is small for large M > 0,
i.e.

lim sup
M→∞

~δ(Pα;0, P2M,M,α;0) = 0 .

Note that system (8.2.9) is minimum phase, has relative degree one
and positive high-frequency gain, in fact (α, 1, 1) ∈ M1,1. Furthermore,

(Ã, b̃, c̃) /∈ M̃3,1. Equivalently, for the Byrnes–Isidori normal form of
system (8.2.10), given by Lemma 2.1.2, i.e.

d
dt



ξ1
ξ2
η


 = UÃU−1

︸ ︷︷ ︸
=: Ã′



ξ1
ξ2
η


+ Ub̃︸︷︷︸

=: b̃′

u1 , y1 = c̃U−1
︸ ︷︷ ︸
=: c̃′



ξ1
ξ2
η


 , (8.2.11)

where, in view of the coordinate transformation
( ξ1

ξ2
η

)
=
[

M −1 0
0 M −1
1 0 0

]

︸ ︷︷ ︸
=: U

x,

Ã′ =




0 1 0
αN + 2M(α−M −N) , α−M −N , 2M(NN +M2 − αM − αN)

−1 0 M


,

b̃′ =




0
−N

0


, c̃′ = [1, 0, 0] , (8.2.12)

holds (Ã′, b̃′, c̃′) /∈ M3,1. In particular, (8.2.10) does not satisfy any
of the classical structural assumptions for adaptive control: it is not
minimum phase, it has relative degree two and its high-frequency gain
−N < 0 has the “wrong” sign.
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However, note that the matrices

[̃b, Ãb̃, Ã2b̃] =




0 0 N
0 N (α−N −M)N
N, (α−N −M)N, (−NM + αM + αN + (α−N −M)2)N






c̃

c̃Ã

c̃Ã2


 =




M −1 0
0 M −1

−αNM, NM − αM − αN, 2M − α+M




are invertible, thus system (8.2.10) is controllable and observable and

therefore, (Ã, b̃, c̃) is stabilizable and detectable. Thus (Ã, b̃, c̃) ∈ P3,1.

By Theorem 8.2.3 there exist a continuous function η : (0,∞) →
(0,∞) and a function ψ : P3,1 → (0,∞) such that

∀ (x̃0, w0, r) ∈ R3 ×W × (0,∞) :

ψ
(
(Ã, b̃, c̃)

)
‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
Pα;0, PN,M,α;x̃0

)
≤ η(r)

}
⇒





k ∈W 1,∞(R≥0 → R) ,

lim sup
t→∞

‖y0(t) − y1(t)‖ ≤ λ ,

x ∈W 1,∞(R≥0 → R3) ,

where W = W 1,∞(R≥0 → R) ×W 1,∞(R≥0 → R).

This means in particular that λ-tracking is achieved by the adaptive
control strategy (8.1.3) applied to system (8.2.10) despite the fact that
it has unstable zero dynamics, has relative degree two and negative
high-frequency gain. The only restrictions are that the zero is “far” in
the right half complex plane, the initial condition x̃0 is “small” and the
W 1,∞ input/output disturbances u0 and y0 are “small”, too.

The result is illustrated by following simulations: recall the Byrnes–
Isidori normal form (8.2.11), (8.2.12) of example plant PN,M,α;x̃0 . Let
α = 1 andN = 2M = 100. Then inequality (6.3.5), see Subsection 6.3.1,

yields ~δ(Pα;0, PN,M,α;0) ≤ 8/51. Moreover, let λ = 1/2.

Then, for initial values k0 = −1 for the controller C(λ, k0), x0 = 1 for
system (8.2.9) and Ux̃0 = (−0.1, 0.1,−0.1)T for system (6.3.2) and in-
put/output disturbances u0 = y0 ≡ 0, obtain Figure 8.2: Figure 8.2(a)
shows the solution t 7→ y1(t) and t 7→ k(t) of the closed-loop sys-
tem (8.2.9), (8.1.3) and (8.1.2) with u0 = y0 ≡ 0. Figures 8.2(b)–

8.2(d) show all components of the solution t 7→
(
ξ(t)T , η(t), k(t)

)T
=
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(a) [Pα;x0 , C(λ, k0)] with u0 = y0 ≡ 0
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(b) [P2M,M,α;x̃0 , C(λ, k0)] with u0 =
y0 ≡ 0, figure detail: y1 and η
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(c) [P2M,M,α;x̃0 , C(λ, k0)] with u0 =
y0 ≡ 0, figure detail: k
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(d) [P2M,M,α;x̃0 , C(λ, k0)] with u0 =

y0 ≡ 0, figure detail: d
dt

y1

Figure 8.2: Simulations; Robustness of λ-tracking

(y1(t), ẏ1(t), η(t), k(t)) of the closed-loop system (8.2.11), (8.1.3), (8.1.2)
with u0 = y0 ≡ 0 in different picture details.

Note that Theorem 8.2.3 shows existence of two functions ψ : Pn,m →
(0,∞) and η : (0,∞) → (0,∞) in (8.2.6) however, it could be hard to
find these functions for a given system. Moreover, it is also possible
that these functions counteract in some ways. For example: given small
r > 0 and θ̃ ∈ Pq,m such that ~δ

(
P (θ, 0), P (θ̃, 0)

)
≤ η(r) it could be

possible that ψ(θ̃) is very large which requires then a very small initial
value x̃0 ∈ Rq so that the left hand side of (8.2.6) holds. However, in
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view of (8.2.6) given that the second inequality holds for r and θ̃ it is
always possible to choose a sufficiently small initial value.

8.3 Notes and references

The results from this chapter on robust stability for λ-tracking are
shown in [IM08]. There it is shown that the λ-tracker (8.1.3) may
be applied to a class of linear systems close in the gap metric to lin-
ear minimum phase systems with strict relative degree one and “pos-
itive” high-frequency gain. Moreover, the λ-tracker copes with cer-
tain bounded input/output disturbances. Some inaccuracy is present
in [IM08]: although robust stability of λ-tracking is shown in [IM08]
by using the terminology from [GS97], [Fre08] and [FIR06] and theo-
rems about robust stability from [Fre08], the underlying signal spaces,
namely U = Y = W 1,∞(R≥0 → Rm) (as in the present chapter), actu-
ally do not fit in the terminology of [FIR06] and [IM08]; since all signals
in W 1,∞(R≥0 → Rm) are absolutely continuous the definitions for the
generalized signal spaces in [IM08] are not applicable to this function
space. Therefore, more general definitions for extended and ambient
spaces, which are also applicable to spaces of continuous functions, are
presented in Section 6.1. Moreover, for this generalized signal spaces a
revision of the required results from [Fre08, Sec. 5] is given in Subsec-
tion 6.5.2. However, the main result of [IM08], namely that λ-tracking
is robust, holds true since the inaccuracy can be resolved, as can be
seen by the analysis from Chapter 6 and the results from the present
chapter.

A robustness analysis of the adaptive controller k̇(t) = ‖y2(t)‖2,
u2(t) = −k(t) y2(t), see also (4.1.4), is presented in [FIR06]. The au-
thors utilize similar techniques as in the present chapter, for example
applying the concept of gain-function stability and robustness results as
in Subsection 6.5.2 or from [Fre08, Sec. V], respectively.



9 Robustness of funnel control

In this chapter it is verified that funnel control is robust. As in the pre-
vious chapter for λ-tracking, the framework of the nonlinear gap metric
from Chapter 6 is applied to show that the funnel controller (5.1.3) may
be applied to any stabilizable and detectable system as long as the initial
conditions and the input/output disturbances are “small” and the sys-
tem is “close” (in terms of a small gap metric) to a system satisfying the
assumptions for funnel control, i.e. linear minimum phase systems with
relative degree one and positive definite high-frequency gain matrix.

9.1 Well posedness of the closed-loop system

Recall funnel control from Chapter 5: the closed-loop system of linear
system

ẋ(t) = Ax(t) +B u1(t) , x(0) = x0,
y1(t) = C x(t) ,

}
(9.1.1)

where (A,B,C) ∈ Mn,m, see Section 5.1, and x0 ∈ Rn is an arbitrary
initial value, and funnel controller (5.1.3), i.e.

k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖ ,

u2(t) = −k(t)y2(t) ,



 (9.1.2)

where ϕ ∈ Φ, see Section 5.1, interconnected via the equations

u0 = u1 + u2, y0 = y1 + y2 , (9.1.3)

satisfies, for u0 ∈ U := L∞(R≥0 → Rm) and y0 ∈ Y := W 1,∞(R≥0 →
Rm), the control objectives of funnel control, see Theorem 5.2.1.

Recall also that (A,B,C) ∈ Mn,m is minimum phase, has strict rel-

221
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ative degree one with positive definite high-frequency gain matrix CB,
i.e. CB + (CB)T > 0.

The purpose of the present chapter is to show robust stability prop-
erties in terms of the gap metric of the funnel controller when applied
to linear systems from

Pq,m :=

{
(A,B,C)
∈ Rq×q × Rq×m × Rm×q

∣∣∣∣
(A,B,C) is stabilizable
and detectable

}
,

q,m ∈ N, q ≥ m, see also Chapter 8, which are sufficiently close to a
system from class Mn,m but not necessarily in Mn,m, n ∈ N, n ≥ m.
This is equivalent to the intentions of Chapter 8.

As in Section 8.1 one may associate, for (θ, x0) = ((A,B,C), x0) ∈
Pn,m×Rn and normed signal spaces U and Y, the causal plant operator

P (θ, x0) : Ua → Ya , u1 7→ P (θ, x0)(u1) := y1 , (9.1.4)

with the initial value problem (9.1.1), where y1 = Cx, x being the
unique solution of (9.1.1) on [0, ω) for u1 ∈ Ua with dom(u1) = [0, ω).

Consider, for ϕ ∈ Φ, the funnel controller (9.1.2) and associate the
causal controller operator

C(ϕ) : Ya → Ua , y2 7→ C(ϕ)(y2) := u2 . (9.1.5)

u0

u1 y1
P (θ, x0)

C(ϕ) y0
u2 y2

−
+

+

−

Figure 9.1: The closed-loop system [P,C].

First, it is verified that, for any θ ∈ Mn,m, see Section 4.1, the closed-
loop system [P (θ, x0), C(λ, k0)] is globally well posed and

(
U×Y

)
-stable,

see Section 6.2.
In this section it is shown that, for W = U × Y = L∞(R≥0 → Rm) ×

W 1,∞(R≥0 → Rm), any reciprocal funnel boundary function ϕ ∈ Φ
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and every (θ, x0) ∈ Mn,m × x0, the closed-loop system [P (θ, x0), C(ϕ)]
as depicted in Figure 9.1 is globally well posed and W-stable. More
important, it is shown that, for all (θ, x0) ∈ Pn,m × Rn and ϕ ∈ Φ, the
closed-loop [P (θ, x0), C(ϕ)] is regularly well posed.

Proposition 9.1.1 Let n,m ∈ N with n ≥ m, ϕ ∈ Φ, (θ, x0) ∈
Mn,m × Rn and (u0, y0) ∈ W := L∞(R≥0 → Rm) × W 1,∞(R≥0 →
Rm). Then, for plant operator P (θ, x0) and control operator C(ϕ), given
by (9.1.4) and (9.1.5), respectively, the closed-loop initial value problem
[P (θ, x0), C(ϕ)], given by (5.1.4), (9.1.3), (9.1.2), is globally well posed
and moreover, the closed-loop [P (θ, x0), C(ϕ)] is W-stable.

Proof. The proposition is a direct consequence of Theorem 5.2.1. 2

Note that, for (A,B,C) ∈ Pn,m, x0 ∈ Rn and ϕ ∈ Φ, the closed-loop
initial value problem (9.1.1), (9.1.3), (9.1.2) may be written as

ẋ(t) = Ax(t) +B[u0(t) − u2(t)] , x(0) = x0 ∈ Rn ,

k(t) =
ϕ(t)

1 − ϕ(t)‖y2(t)‖ ,

y2(t) = y0(t) − Cx(t) ,

u2(t) = −k(t)y2(t) .





(9.1.6)

Proposition 9.1.2 Let n ∈ N with n ≥ m, ϕ ∈ Φ, (θ, x0) ∈ Pn,m ×Rn

and (u0, y0) ∈ W := L∞(R≥0 → Rm) × W 1,∞(R≥0 → Rm). Then,
for the plant operator P (θ, x0) and the control operator C(ϕ), given
by (9.1.4) and (9.1.5), respectively, the closed-loop initial value problem
[P (θ, x0), C(ϕ)], given by (9.1.6), has the following properties:

(i) there exists a unique solution x : [0, ω) → Rn, for some ω ∈ (0,∞],
and the solution is maximal in the sense that for every compact
K ⊂ R≥0 × Rn exists t ∈ [0, ω) such that (t, x(t)) /∈ K;

(ii) if (u2, y2) ∈ L∞([0, ω) → Rm) ×W 1,∞([0, ω) → Rm) then ω = ∞
and k ∈ L∞(R≥0 → R) and y2 is uniformly bounded away from
the funnel boundary ϕ(·)−1;

(iii) [P (θ, x0), C(ϕ)] is regularly well posed.
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Proof. (i): Set, for ϕ ∈ Φ and y0 ∈W 1,∞(R≥0 → Rm),

Hϕ,y0
:=
{

(t, x) ∈ R≥0 × Rn
∣∣ϕ(t)‖y0(t) − C x‖ < 1

}
.

Note that, for all x0 ∈ Rn and y0 ∈ W 1,∞(R≥0 → Rm), the tuple
(0, y0(0) − C x0) ∈ Hϕ,y0

. Then (9.1.6) may be written as

ẋ(t) = g(t, x(t)) , x(0) = x0 , (9.1.7)

where

g : Hϕ,y0
→ Rn ,

(t, x) 7→ Ax+Bu0(t) +
ϕ(t)

1 − ϕ(t)‖y0(t) − C x‖B(y0(t) − C x) ,

satisfies, in view of ϕ−1|[ε,∞)
being globally Lipschitz for every ε > 0

and ϕ(0) = 0, see the definition of Φ in Section 5.1, a local Lipschitz
condition on the relatively open set Hϕ,y0

in the sense that, for all
(τ, ξ) ∈ Hϕ,y0

, there exists an open neighbourhood O of (τ, ξ) and a
constant L > 0 such that

∀ (t, x) ∈ O : ‖g(t, x) − g(t, ξ)‖ ≤ L‖x− ξ‖ .

Therefore, standard theory of ordinary differential equations, see, for
example, [Wal98, Thm. III.11.III], yields that (9.1.6) has an absolutely
continuous solution x : [0, ω) → Rn for some ω ∈ (0,∞], which satisfies
(t, x) ∈ Hϕ,y0

. Moreover, the solution is unique and the solution can
be extended up to the boundary of Hϕ,y0

. In other words: for every
compact K ⊂ Hϕ,y0

exists t ∈ [0, ω) such that (t, x(t)) /∈ K, as required.

(ii): Suppose (u2, y2) ∈ L∞([0, ω) → Rm) ×W 1,∞([0, ω) → Rm) and,
for contradiction, ω <∞. By boundedness of ϕ, see the definition of Φ,
it follows that there exists λ > 0 such that ϕ(t) ≤ 1/λ for all t ∈ [0, ω).
Thus

∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≤ 1/2 ⇒ 1/2 ≤ ϕ(t)‖y2(t)‖ ≤ ‖y2(t)‖/λ
⇒ ‖y2(t)‖ ≥ λ/2

which yields, in view of y2 ∈ L∞([0, ω) → Rm) and −ϕ
1−ϕ‖y2‖

y2 = u2 ∈
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L∞([0, ω) → R), that

∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≤ 1/2 ⇒

‖u2‖L∞ ≥ ϕ(t)

1 − ϕ(t)‖y2(t)‖‖y2(t)‖ ≥ λϕ(t)

2(1 − ϕ(t)‖y2(t)‖)
,

thus ϕ
1−ϕ‖y2‖

is bounded on
{
t ∈ [0, ω)

∣∣ 1 − ϕ(t)‖y2(t)‖ ≤ 1/2
}

. More-

over, for all t ∈ [0, ω) such that 1−ϕ(t)‖y2(t)‖ > 1/2,
(

ϕ(t)
1−ϕ(t)‖y2(t)‖

)
≤

2/λ. Thus k = ϕ
1−ϕ‖y2‖

∈ L∞([0, ω) → R). Hence, by continuity of the

solution
∃ ε > 0 ∀ t ∈ [0, ω) : 1 − ϕ(t)‖y2(t)‖ ≥ ε .

Then, Variation of Constants applied to (9.1.6) yields the existence of
constants c0 = c0(B, λ, ε), c1 = c1(A) > 0 such that

∀ t ∈ [0, ω) :

‖x(t)‖ ≤ c0

(
ec1ω +

∫ ω

0

ec1(ω−s) (‖u0(s)‖ + ‖y2(s)‖) ds

)
. (9.1.8)

Since y2 ∈ L∞([0, ω) → Rm) and u0 ∈ L∞(R≥0 → Rm), it follows from
the convolution in (9.1.8) that the right hand side of (9.1.8) is bounded
by c3 = c0

(
ec1ω+(ec1ω+1)(‖u0‖L∞([0,ω)→Rm)+‖y2‖L∞([0,ω)→Rm))/c1

)
>

0 on [0, ω) which gives that

K :=
{

(t, x) ∈ Hϕ,y0

∣∣ t ∈ [0, ω] , ‖x‖ ≤ c3
}

is a compact subset of Hϕ,y0
with (t, x(t)) ∈ K for all t ∈ [0, ω), which

contradicts the fact that the closure of graph
(
x|[0,ω)

)
is not a compact

set, see (i). Therefore, ω = ∞.

(iii): By (i), the closed-loop initial value problem [P (θ, x0), C(ϕ)] is
locally well posed. To prove that [P (θ, x0), C(ϕ)] is regularly well posed,
it suffices to show that (6.2.2) holds. For arbitrary w0 = (u0, y0) ∈ W
consider (w1, w2) = HP (θ,x0),C(ϕ)(w0) where dom(w1, w2) = [0, ω) is
maximal. Suppose, contrary to the right hand side of (6.2.2), that∥∥(w1, w2)

∣∣
[0,ω)

∥∥
Wω×Wω

< ∞. Then (u2, y2) ∈ L∞([0, ω) → Rm) ×
W 1,∞([0, ω) → Rm), which, in view of (ii), yields ω = ∞, i.e. the
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contrary of the left hand side of (6.2.2). Hence the closed-loop system
is regularly well posed and the proof is complete. 2

Regularly well posedness of the closed-loop system [P (θ, x0), C(ϕ)] for
all θ ∈ Pn,m is crucial to show robust stability for funnel control because
of the application of the results from Subsection 6.5.2. The results in
the following section are analogous to the robust stability results for
λ-tracking in Section 8.2.

9.2 Robust stability

In Section 8.2 it was shown that λ-tracking works also for linear systems
P (θ̃, x̃0) with θ̃ ∈ Pq,m, q,m ∈ N, q ≥ m, and initial value x̃0 ∈ Rq, if
three requirements are satisfied:

1) the system θ̃ is close to a system θ ∈ Mn,m, n ∈ N, n ≥ m, in

other words, the gap metric ~δ(P (θ̃, 0), P (θ, 0)) is sufficiently small;

2) the initial value x̃0 is sufficiently small;

3) input/output disturbances (u0, y0) ∈ W are sufficiently small.

An equivalent stability result is shown for funnel control in the present
section. Proofs and lemmata are adapted from Section 8.2, too.

As for λ-tracking the augmented plant and controller operators as
in Section 8.2 and Subsection 6.5.2 are required. Note that for funnel
control and λ-tracking slightly different signals spaces are considered.
In the following, let W = U × Y = L∞(R≥0 → Rm) ×W 1,∞(R≥0 →
Rm) and define Ũ := Rn2+2mn × U and W̃ := Ũ × Y. Recall that,

by identifying θ ∈ Rn2+2mn with the constant function t 7→ θ, the

norm of Ũ is given by ‖(θ, u)‖Ũ :=
√
‖θ‖2 + ‖u‖2

L∞(R≥0→Rm). For given

P (θ, 0) as in (9.1.4), define the (augmented) plant operator as in (6.5.13)
and (8.2.1) by

P̃ : Ũa →W 1,∞
a (R≥0 → Rm) ,

(θ, u1) = ũ1 7→ y1 = P̃ (ũ1) := P (θ, 0)(u1) , (9.2.1)
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and, for ϕ ∈ Φ and for C(ϕ) as in (9.1.5), the (augmented) controller
operator, as in (6.5.14) and (8.2.2) but for the funnel controller, by

C̃ : W 1,∞
a (R≥0 → Rm) → Ũa ,

y2 7→ ũ2 = C̃(y2) := (0, C(ϕ)(y2)) = (0, u2) . (9.2.2)

Moreover, define for each non-empty Ω ⊂ Mn,m, equivalently to (8.2.3),

WΩ := (Ω × L∞(R≥0 → Rm)) ×W 1,∞(R≥0 → Rm)

and HΩ
P̃ ,C̃

:= HP̃ ,C̃ |WΩ . (9.2.3)

Also equivalently as for λ-tracking in the previous chapter one can
show gain-function stability of HΩ

P̃ ,C̃
.

Proposition 9.2.1 Let n,m ∈ N with n ≥ m, ϕ ∈ Φ and assume
Ω ⊂ Mn,m is closed. Then, for the closed-loop system [P̃ , C̃] given
by (6.2.1), and the augmented operators (9.2.1) and (9.2.2), the operator
HΩ

P̃ ,C̃
given by (9.2.3) is gain-function stable.

Note that since the proof of Proposition 9.2.1 is identical – with one
exception: apply the funnel control result Theorem 5.2.1 instead of the
λ-tracking result Theorem 4.2.1 – to the proof of Proposition 8.2.1, it
is omitted here.

Next, as for λ-tracking in Section 8.2, it is shown that the closed-
loop system [P (θ̃, x̃0), C(ϕ)] for a system θ̃ belonging to the system
class Pq,m is

(
L∞(R≥0 → Rm) ×W 1,∞(R≥0 → Rm)

)
-stable if, for any

system θ belonging to Mn,m, the gap between P (θ̃, 0) and P (θ, 0), the
initial value x̃0 ∈ Rq and the input/output disturbances w0 = (u0, y0)
are sufficiently small.

Proposition 9.2.2 Let n, q,m ∈ N with n, q ≥ m, U = L∞(R≥0 →
Rm), Y = W 1,∞(R≥0 → Rm), W = U × Y and θ ∈ Mn,m. For

(θ̃, x̃0, ϕ) ∈ Pq,m×Rq×Φ, consider P (θ̃, x̃0) : Ua → Ya, and C(ϕ) : Ya →
Ua defined by (9.1.4) and (9.1.5), respectively. Then there exist a con-
tinuous function η : (0,∞) → (0,∞) and a function ψ : Pq,m → (0,∞)
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such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
=⇒ HP (θ̃,x̃0),C(ϕ)(w0) ∈ W ×W .

(9.2.4)

Again the proof of Proposition 9.2.2 is identical to the proof of Propo-
sition 8.2.2 if the gain-function stability result Proposition 9.2.1 for fun-
nel control is applied instead of the corresponding result for λ-tracking
(Proposition 8.2.1) and one chooses the signal spaces for funnel control
(namely U = L∞(R≥0 → Rm) and Y = W 1,∞(R≥0 → Rm) instead of
U = Y = W 1,∞(R≥0 → Rm)) when applying Theorems 6.5.3 and 6.5.4.
Therefore, the proof of Proposition 9.2.2 is omitted here.

With the above proposition one can state and prove the main result of
this chapter, namely robust stability of funnel control. As for λ-tracking,
see Theorem 8.2.3, it is shown that, loosely speaking, funnel control also
works for any systems

(
Ã, B̃, C̃

)
∈ Pq,m which is sufficiently close to a

system (A,B,C) ∈ M̃n,m and the initial value x̃0 ∈ Rq for
(
Ã, B̃, C̃

)

and the input/output disturbances (u0, y0) are sufficiently small.

The system
(
Ã, B̃, C̃

)
∈ Pq,m need not necessarily be minimum phase,

may have higher relative degree and negative high-frequency gain . Note
that the following theorem is the equivalent to Theorem 8.2.3, however,
the proof is much shorter.

Theorem 9.2.3 Let n, q,m ∈ N with n, q ≥ m, U = L∞(R≥0 → Rm),
Y = W 1,∞(R≥0 → Rm), W = U × Y, ϕ ∈ Φ and θ ∈ Mn,m. For

(θ̃, x̃0) ∈ Pq,m × Rq consider the associated operators P (θ̃, x̃0) : Ua →
Ya and C(ϕ) : Ya → Ua defined by (9.1.4) and (9.1.5), respectively,
and the closed-loop initial value problem (9.1.1), (9.1.3), (5.1.3). Then
there exist a continuous function η : (0,∞) → (0,∞) and a function
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ψ : Pq,m → (0,∞) such that the following holds:

∀
(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r)

}
⇒





∀ t ≥ 0 : (t, y2(t)) ∈ Fϕ ,

k ∈ L∞(R≥0 → R) ,

x ∈W 1,∞(R≥0 → Rq) ,

(9.2.5)

where (x, k) and y2 satisfy (9.1.6) and

Fϕ = {(t, y) ∈ R≥0 × Rm ϕ(t)‖y‖ < 1} .

Proof. Step 1 : First, it is shown that

(
(u1, y1), (u2, y2)

)
= HP (θ̃,x̃0),C(ϕ)(w0) ∈ W ×W . (9.2.6)

Choose functions η : (0,∞) → (0,∞) and ψ : Pq,m → (0,∞) from
Proposition 9.2.2. Let

(
θ̃, x̃0, w0, r

)
∈ Pq,m × Rq ×W × (0,∞) :

ψ(θ̃)‖x̃0‖ + ‖w0‖W ≤ r ∧ ~δ
(
P (θ, 0), P (θ̃, 0)

)
≤ η(r) .

Then Proposition 9.2.2 gives (9.2.6).

Step 2 : By Proposition 9.1.2 it follows that (9.1.6) has a unique
solution

x : [0, ω) → Rq

on a maximal interval of existence [0, ω) for some ω ∈ (0,∞]. Propo-
sition 9.1.2(iii) yields ω = ∞ and k = ϕ

1−ϕ‖y2‖
∈ L∞(R≥0 → R), the

second assertion of (9.2.5).

Step 3 : By Step 2 follows k ∈ L∞(R≥0 → R) which, in view of conti-
nuity of 1−ϕ‖y2‖ on (0,∞), yields 1−ϕ(t)‖y2(t)‖ ≥ ‖ϕ‖L∞‖k‖−1

L∞ > 0.
Thus, for all t ≥ 0, ϕ(t)‖y2(t)‖ < 1, which yields the first assertion
of (9.2.5).

Step 4 : It remains to show that x ∈W 1,∞(R≥0 → Rq).

Let
(
Ã, B̃, C̃

)
∈ Pq,m associated with (9.1.1). Detectability of system
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(
Ã, B̃, C̃

)
yields the existence of F ∈ Rq such that Ã+ FC̃ is Hurwitz.

Setting g := −
[
F + k B̃

]
(y0 − y2) + B̃ u0 + B̃ ky0 gives

ẋ =
[
Ã− k B̃C̃

]
x+ B̃ u0 + B̃ ky0 =

[
Ã+ FC̃

]
x+ g . (9.2.7)

By Proposition 9.2.2 and Step 3 it follows that y2 ∈ W 1,∞(R≥0 →
R) and k ∈ L∞(R≥0 → R) and since w0 = (u0, y0) ∈ L∞(R≥0 →
Rm) ×W 1,∞(R≥0 → Rm) it follows that g ∈ L∞(R≥0 → Rq). Hence,
by (9.2.7) and Variation of Constants one arrives at x ∈ L∞(R≥0 → Rq).
The first equation in (9.1.6) then gives ẋ ∈ L∞(R≥0 → Rq) which shows
the third assertion in (9.2.5) and the proof is complete. 2

Following this result is illustrated by application of funnel control to
the same example systems from the previous chapter.

9.2.1 Example: robust stability of funnel control

Revisit the example plants (8.2.9) and (8.2.10) from Subsection 8.2.1
(see also Subsection 6.3.1).

Recall that, for zero initial conditions, the gap between the system
Pα;0 and PN,M,α;0 given by (8.2.9) and (8.2.10), respectively, tends to
zero as N = 2M and M tends to infinity, see (6.3.3). Moreover, recall

that the systems satisfy
(
Ã, b̃, c̃

)
∈ P3,1 \M3,1 and (α, 1, 1) ∈ M1,1.

By Theorem 9.2.3 there exist a continuous function η : (0,∞) →
(0,∞) and a function ψ : P3,1 → (0,∞) such that

∀ (x̃0, w0, r) ∈ R3 ×W × (0,∞) :

ψ
(
(Ã, b̃, c̃)

)
‖x̃0‖ + ‖w0‖W ≤ r

~δ
(
Pα;0, PN,M,α;0

)
≤ η(r)

}
⇒





∀ t ≥ 0 :
(t, y0(t) − y1(t)) ∈ Fϕ ,

k ∈ L∞(R≥0 → R) ,

x ∈W 1,∞(R≥0 → R3) ,

where W = L∞(R≥0 → R)×W 1,∞(R≥0 → R). Note that Theorem 9.2.3
shows only existence of two continuous functions ψ : Pn,m → (0,∞) and
η : (0,∞) → (0,∞) in (9.2.5) however, it could be hard to find these
functions for a given system.
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This result is visualized by MATLAB simulations.
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(a) [Pα;x0 , C(ϕ)] with u0 = y0 ≡ 0, fig-
ure detail: y1, k and u1
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(b) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0,
figure detail: y1, η and k
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(c) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0,

figure detail: d
dt
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(d) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0
and inital value (0.1, 0.1, 0.1)

Figure 9.2: Simulations; Robustness of funnel control

Recall normal form (8.2.11)–(8.2.12) of the example plant PN,M,α;x̃0 .

Let α = 1 and N = 2M = 100 then (6.3.5) yields ~δ(Pα;0, PN,M,α;0) ≤
8/51. Moreover, let, for λ = 0.1 and

ϕ−1 : R≥0 → R>0 , t 7→
{

15.31 − 7.8 t+ t2 , if t ∈ [0, 3.9)

λ , if t ≥ 3.9.
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For initial values x0 = 1 for system (8.2.9) and Ux̃0 = (0.1, 0.1, 0.08)T

for the second system (8.2.10) and input/output disturbances u0 = y0 ≡
0, Figures 9.2(a) shows the solution t 7→ y1(t), k and the input u1 of
the closed-loop system (6.3.1), (5.1.3), (9.1.3). Moreover, Figures 9.2(b)

and 9.2(c) show the components of the solution t 7→
(

ξ(t)
η(t)

)
=

(
y1(t)
ẏ1(t)
η(t)

)
,

k and u1 of the closed-loop system (8.2.11), (5.1.3), (9.1.3), where Fig-
ures 9.2(c) indicates that all states (in particular ξ2 = ẏ1) are bounded.

Figure 9.2 illustrates that the funnel controller (5.1.3) may be applied
to linear systems, which do not satisfy the classical assumptions for
funnel control, but are close in terms of the gap metric to minimum
phase systems with relative degree one and positive high-frequency gain,
as long as the initial values are small.

Figure 9.2(d) indicates that, for too large initial values, here Ux̃0 =
(0.1, 0.1, 0.1)T , the output t 7→ y1(t) approaches the funnel boundary
1/ϕ(·) after some time t′ > 0 and therefore limt→t′ k(t) = ∞ and
limt→t′ u1(t) = ∞. Thus, the solution has (y1, u1) of the closed-loop
system has a finite escape time.

A shortcoming of the main result is that it shows only existence of
functions ψ and η in (9.2.5), compare also with the result for λ-tracking.

For a given systems θ̃ it is maybe hard to calculate the value ψ(θ̃). It
could be also possible that this functions counteract in some ways. For
example: given small r > 0 and θ̃ ∈ Pq,m such that ~δ

(
P (θ, 0), P (θ̃, 0)

)
≤

η(r) it could be possible that ψ(θ̃) is very large which requires then a
very small initial value x̃0 ∈ Rq so that the left hand side of (9.2.5)
holds. However, in view of (9.2.5) given that the second inequality

holds for r and θ̃ it is always possible to choose a sufficiently small
initial value. This is shown with the simulation in Figure 9.3: choose
PN,M,α;x̃0 with α = 1, N = 2M = 10000 and the initial value x̃0 =
(0.0001, 0.0001, 0.0001).

Figure 9.3(a) shows that the output y2 is within the funnel and k
is bounded. Figure 9.3(b) shows that all states are bounded, although
though ẏ1 is very large.
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(a) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0,
figure detail: y1, η, k and u1
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(b) [PN,M,α;x̃0 , C(ϕ)] with u0 = y0 ≡ 0,

figure detail: d
dt

y1

Figure 9.3: Simulations; Robustness of funnel control for PN,M,α;x̃0 with
“huge” N = 2M = 10000

9.3 Notes and references

Robust stability of the funnel controller is a new result which will be sub-
mitted for publication in due course [IM09]. The results are very similar
to those for λ-tracking, see [IM08]. Since [IM08] has some inaccuracy
which result from the application of the terminology from [GS97], [Fre08]
and [FIR06] and theorems on robust stability from [Fre08] on signal
spaces W 1,∞(R≥0 → Rm), see also the comments in Section 8.3, the
terminology in [IM09] will be adapted from the present thesis.
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List of Symbols

N,N0; the set of natural numbers without and with zero, respectively

R, C; the sets of real/complex numbers

Rn, Cn;
the sets of real/complex vectors

Rn×m, Cn×m;
the sets of real/complex matrices

R≥τ = [τ,∞);
the set of real numbers larger than τ ∈ R

C+ = {s ∈ C Re s > 0};
the open right half complex plane

C− = {s ∈ C Re s < 0};
the open left half complex plane

[
l
(n)
1 , . . . , l

(n)
m

]
= L ∈ Rn×m;

where l
(n)
i ∈ Rn denotes the i-th column of L and the super-

script (n) remarks the dimension of the vector
[
l1(m)

/
. . .
/
ln(m)

]
= L ∈ Rn×m;

where lj(m) ∈ R1×m denotes the j-th row of L and the subscript

(m) remarks the dimension of the row-vector

e
(n)
k =

[
01×(k−1), 1, 01×(n−k)

]T
;

the k-th row unit vector in Rn

ek
(m) =

[
01×(k−1), 1, 01×(m−k)

]
;

the k-th row unit vector in R1×m
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0n×m ∈ Rn×m;
the 0-matrix of dimension n×m

Xn×m ∈ Rn×m;
an arbitrary matrix of dimension n × m; note that the use of
this symbol implicates that the specific entries of the matrix are
not important but only the dimension

In ∈ Rn×n;
the identity matrix of dimension n× n

diag(A1, . . . , Am) ∈ Cn×n;
a matrix with Ai ∈ Cji×ji , i = 1, . . . ,m, on the diagonal and
zeros otherwise

spec(A) = {λ ∈ C det(λIn −A) = 0};
the spectrum of a matrix A ∈ Cn×n

imA; the image (or range) of a matrix A

kerA; the kernel of a matrix A

rkA; the rank of a matrix A

AT Cm×n, xT C1×n;
the transpose of a matrix A ∈ Cn×m or a vector x ∈ Cn

A ∈ Cn×n is called positive definite;
if, and only if, x∗(A + A∗)x > 0 for all x ∈ Cn \ {0}; write
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A ∈ Rn×n is called Hurwitz;
if, and only if, spec(A) ⊂ C−

Re z, Im z;
the real/imaginary part of a complex number or vector z

x̄; the complex conjugate of scalar of vector x

adjA; the adjoint of a matrix A ∈ Cn×n

‖x‖; the euclidian norm of x ∈ Cn
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‖Ax‖
‖x‖ ;

the matrix norm of A ∈ Cn×m induced by the euclidian norm

‖v‖V ; the norm of v ∈ V, for any normed vector space V

〈·, ·〉; the scalar product in Rn, where n ∈ N

map(E → F );
the set of all maps from the set E to the set F

R[s] =
{
p(s) =

∑m
i=0 ais

i m ∈ N, a0, . . . , am ∈ R
}

;
the ring of polynomials with real coefficients

C[s] =
{
p(s) =

∑m
i=0 ais

i m ∈ N, a0, . . . , am ∈ C
}
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the ring of polynomials with complex coefficients
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the set of all Hurwitz polynomials
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the quotient field of real rational functions
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‖y(t)‖p dt

) 1
p

Lp
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the space of locally p-integrable functions y : I → Rℓ, with∫
K
‖y(t)‖p dt < ∞ for all compact K ⊂ I, where p ∈ [1,∞),

ℓ ∈ N and I ⊂ R is an interval
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the space of essentially bounded functions y : R≥0 → Rℓ, where
ℓ ∈ N and I ⊂ R is an interval, with norm ‖y‖L∞(R≥0→Rℓ) =
ess supt≥0 ‖y(t)‖
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the space of locally bounded functions y : I → Rℓ with
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the set of continuous Lp-functions from I to Rℓ, where p ∈
[1,∞], ℓ ∈ N and I ⊂ R an interval, with norm ‖y‖CLp(I→Rℓ) =
‖y‖Lp(I→Rℓ)
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where D(i)y is the i-th weak derivative of y, see, for exam-
ple [AF03, Para. 1.62]

CW r,p(I → Rℓ) = W r,p(I → Rℓ) ∩ Cr(I → Rℓ);
the set of r-times continuously differentiable W r,p-functions,
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in W r,p which are zero at 0 and all derivatives are zero at 0,
where p ∈ [1,∞], ℓ ∈ N and I ⊂ R is an interval, with norm
‖y‖CW∞,p(I→Rℓ)

deg p; the degree of a polynomial p in R[s] or C[s]

µ(A) = max{Re s s ∈ spec(A)};
the largest real part of the eigenvalues of A ∈ Cn×n

Z(p) = {s ∈ C p(s) = 0};
the set of zeros of p ∈ C[s]

µ(p(·)) = max{Re s s ∈ Z(p)};
the largest real part of the zeros of p ∈ C[s]

Bδ(s0) = {s ∈ C |s− s0| < δ};
the ball in C of radius δ > 0 around s0 ∈ C

Σm; the set of permutations of {1, . . . ,m}, where m ∈ N

sgn(σ); the sign of a permutation σ ∈ Sm
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Lyapunov function, 88, 108
Lyapunov stability, 88, 108

minimum phase, 59, 60
multivariate polynomial, 80

nonlinear gap, 149
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normal form
linear MIMO-systems, 33,

37
linear SISO-systems, 27

output, 17

plant, 141
operator, 146

augmented, 160
positive definite matrix, 69, 84
principal minors, 97

relative degree
linear MIMO-systems

non-strict, 30
ordered, 31
strict, 31

linear SISO-systems, 27
nonlinear systems, 26, 31

restriction operator, 143
right-invertibility, 63
robustness

λ-tracking, 214
derivative and delay feed-

back, 171, 192, 198
funnel control, 228

root locus, 73, 92

signal space, 144
Sobolev space, 143, 161
stability

W-stable, 147
exponential, 59, 199
gain, 153
gain-function, 153

stabilizable, 160

transfer function, 149, 200, 216
truncation operator, 143

well posed
globally, 147
locally, 147
regularly, 147

zero dynamics, 59
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