
Edge Colourings of Multigraphs

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Fakultät für Mathematik und Naturwissenschaften
der Technischen Universität Ilmenau

von Dipl.-Math. Diego Scheide

1. Gutachter: Prof. Dr. rer. nat. habil. Michael Stiebitz
2. Gutachter: Prof. Dr. habil. Reinhard Diestel
3. Gutachter: Prof. RNDr. Jan Kratochvil

Tag der Einreichung: 21.10.2008
Tag der wissenschaftlichen Aussprache: 27.02.2009

urn:nbn:de:gbv:ilm1-2009000218

Contents

1 Introduction 1
1.1 Graphs . 2
1.2 Edge Colourings . 3
1.3 Critical Graphs . 4
1.4 Elementary Graphs . 5

2 Edge Colouring Algorithms 7
2.1 How to Colour a Graph? . 7
2.2 Implementation Details . 11
2.3 The Vizing Fan . 12
2.4 The Fan Number . 18
2.5 The Kierstead Path . 30
2.6 The Tashkinov Tree . 34
2.7 A New Upper Bound for the Chromatic Index 43

3 Goldberg’s Conjecture 56
3.1 On the 15/14 Edge Colouring of Graphs 56
3.2 Tashkinov Trees in Critical Graphs 58
3.3 Balanced Tashkinov Trees . 63
3.4 The Main Lemma . 66
3.5 Proof of Theorem 3.2 . 76
3.6 Some Conclusions . 89

4 Polynomial-Time Algorithms 91
4.1 Implementation Details . 93
4.2 Divide and Conquer . 98
4.3 A Polynomial Time Colouring Scheme 103

References 105

Index 108

Symbols 110

i

1 Introduction

The Edge Colouring Problem (ECP) is to find the chromatic index of a given graph
G, that is, the minimum number of colours needed to colour the edges of G such
that no two adjacent edges receive the same colour. Edge colouring problems occur
in various scheduling applications, typically in conjunction with task processing or
network communication, minimizing the number of time-slots needed for completing
a given set of tasks or data transfers. Good scheduling algorithms become more and
more important, e.g., due to the increased use of multiprocessor environments or the
increasing complexity in the wide field of logistics. Most papers on edge colouring
deal mainly with edge colourings of simple graphs. In many scheduling problems,
however, (multi)graphs occur in a natural way, and (multi)graph edge colouring is
a topic where further work should be done. One of the major unsolved problems in
this area is Goldberg’s conjecture (see. Section 1.4).

Goldberg suggested an upper bound for the chromatic index χ′ in terms of the
maximum degree ∆ and the density W, namely χ′ ≤ max{∆ + 1,W}. Since ∆ is a
lower bound for the chromatic index, Goldberg’s conjecture implies that χ′ is equal
to ∆, or to ∆ + 1, or to W.

Upper bounds for the chromatic index of a graph come often from algorithms
that produce edge colourings. As discussed in Chapter 2, a typical algorithm colours
the edges of an input graph sequentially, that is, the edges are coloured one at a time
with respect to a given edge order. The core of such an algorithm is a subroutine that
extends a given partial colouring of the input graph to the next uncoloured edge. In
each call of the subroutine, we have to decide whether we will use a fresh colour or
not. To make this decision, we shall use so-called test objects. A classical kind of test
objects, called Vizing fans, was introduced by Vizing [39] in 1964. Vizing used these
test objects to establish an upper bound for the chromatic index χ′ in terms of the
maximum degree ∆ and the maximum multiplicity µ, namely χ′ ≤ ∆ + µ. Vizing’s
bound is rather generous. In most graphs there will be scope for an improvement
of Vizing’s bound by choosing a suitable edge order to start with. This leads to a
new graph parameter, the fan number. The fan number, introduced in Section 2.4,
resembles the colouring number, and seems to be the best upper bound for the
chromatic index that can be obtained by the fan argument. Another type of test
objects, called Kierstead paths, was introduced by Kierstead [19] in 1984. Recently,
Tashkinov [38] obtained a common generalization, Tashkinov trees, of the Vizing
fans and the Kierstead paths, see Section 2.6. As we shall see in Section 2.7, some
new upper bounds for the chromatic index in terms of the maximum degree ∆ and
the density W can be obtained from Tashkinov methods. These results generalize
an earlier result of Kahn [18] proved by probabilistic methods, and improve earlier
bounds for χ′ by Sanders and Steurer [25].

In Chapter 3 we extend an earlier result of Favrholdt, Stiebitz and Toft [8], and
show that χ′ ≤ max{15

14∆ + 12
14 ,W}. The proof of this result is based on an extension

of Tashkinov’s methods. The results of Chapter 3 imply that Goldberg’s conjecture
holds for all graphs with at most 15 vertices as well as for all graphs with maximum
degree at most 15. If Goldberg’s conjecture is true, we can also give a complete
answer to the following natural question. For which value of ∆ and µ does there

1

exist a graph G satisfying ∆(G) = ∆, µ(G) = µ, and χ′(G) = ∆ + µ?
All colouring algorithms presented in the first three chapters have execution time

polynomial in |E| and |V |, but are only pseudo-polynomial in the number of bits
needed to describe the graph G = (V,E), since the size of the input graph G may be
of order log |E|. In Chapter 4 we use ideas from Sanders and Steurer [25] to develop a
scheme for polynomial-time edge colouring algorithms that can realize several upper
bounds of the chromatic index.

1.1 Graphs

By a graph we mean a finite undirected graph without loops, but possibly with
multiple edges. The vertex set and the edge set of a graph G are denoted by
V (G) and E(G), respectively. For a vertex x ∈ V (G), let EG(x) denote the set
of all edges of G that are incident with x. Two distinct edges of G incident to the
same vertex will be called adjacent edges. Furthermore, for X,Y ⊆ V (G), let
EG(X,Y) denote the set of all edges of G joining a vertex of X with a vertex of Y .
We write EG(x, y) instead of EG({x}, {y}). Two distinct vertices x, y ∈ V (G) with
EG(x, y) 6= ∅ will be called adjacent vertices or neighbours. Let NG(x) denote
the set of all neighbours of x in G, that is, NG(x) = {y ∈ V (G) | EG(x, y) 6= ∅}.

The degree of a vertex x ∈ V (G) is dG(x) = |EG(x)|, and the multiplicity
of two distinct vertices x, y ∈ V (G) is µG(x, y) = |EG(x, y)|. Let δ(G), ∆(G)
and µ(G) denote the minimum degree, maximum degree and the maximum
multiplicity of G, respectively. A graph G is called simple if µ(G) ≤ 1. A graph
G is called regular or r-regular if dG(x) = r for every vertex x of G, where r ≥ 0
is an integer.

For H is a subgraph of G, we write briefly H ⊆ G. For a graph G and a set
X ⊆ V (G), letG[X] denote the subgraph ofG induced byX, that is, V (G[X]) = X
and E(G[X]) = EG(X,X). Further, let G−X = G[V (G)\X]. We also write G−x
instead of G−{x}. For F ⊆ E(G), let G−F denote the subgraph H of G satisfying
V (H) = V (G) and E(H) = E(G)\F . If F = {e} is a singleton, we write G − e
rather than G − {e}. For the graph H = G − e, we further define H + e to be the
graph G.

The line graph of G, denoted by L(G), is the simple graph defined as follows.
The vertex set V (L(G)) equals the edge set of G, and between two vertices e, f ∈
V (L(G)) there is an edge iff e and f are adjacent edges in G.

If S is a sequence consisting of edges and vertices of a given graph G, then
we denote by V (S), respectively E(S), the set of all elements of V (G), respec-
tively E(G), that belong to the sequence S. Let G be a graph, and let S =
(v0, e1, v1, . . . , vp−1, ep, vp) be a sequence such that v0, . . . , vp are distinct vertices
of G, and e1, . . . , ep are edges of G. For a vertex vi ∈ V (S), we define Svi =
(v0, e1, . . . , ei, vi) and viS = (vi, ei+1, . . . , vp).

By a path, a cycle, or a tree we usually mean a graph or subgraph rather than a
sequence consisting of edges and vertices. The only exceptions will be the Kierstead
path and the Tashkinov tree, we consider both as sequences. If P is a path of length
p ≥ 0 with V (P) = {v0, . . . , vp} and E(P) = {e1, . . . , ep} such that ei ∈ EP (vi−1, vi)
for i = 1, . . . , p, then we also write P = P (v0, e1, v1, . . . , ep, vp). Clearly, the

2

vertices v0, . . . , vp are distinct, and we say that v0 and vp are the endvertices of P
or that P is a path joining v0 and vp. For x, y ∈ V (P), the subpath of P joining x
and y is denoted by xPy or yPx. If u is an endvertex of P , then we obtain a linear
order ¹(u,P) of the vertex set of P in a natural way, where x ¹(u,P) y if the vertex
x belongs to the subpath uPy.

1.2 Edge Colourings

By a k-edge colouring of a graph G we mean a map ϕ : E(G) → {1, . . . , k} that
assigns to every edge e of G a colour ϕ(e) ∈ {1, . . . , k} such that no two adjacent
edges receive the same colour. The set of all k-edge colourings of G is denoted by
Ck(G). The chromatic index or edge chromatic number χ′(G) is the smallest
integer k ≥ 0 such that Ck(G) 6= ∅.

In the classic papers by Shannon [36] and Vizing [39, 40] a simple, but very
useful recolouring technique was developed, dealing with edge colouring problems in
graphs. Suppose that G is a graph, and ϕ is a k-edge colouring of G. To obtain a
new colouring, choose two distinct colours α, β, and consider the subgraph H with
V (H) = V (G) and E(H) = {e ∈ E(G) | ϕ(e) ∈ {α, β}}. Then every component
of H is either a path or an even cycle, and we refer to such a component as an
(α, β)-chain of G with respect to ϕ. For every vertex v ∈ V (G), we denote by
Pv(α, β, ϕ) the unique (α, β)-chain with respect to ϕ that contains the vertex v.
For two vertices v, w ∈ V (G), the chains Pv(α, β, ϕ) and Pw(α, β, ϕ) are either equal
or vertex disjoint. Now choose an arbitrary (α, β)-chain C of G with respect to ϕ.
If we interchange the colours α and β on C, then we obtain a k-edge colouring ϕ′ of
G satisfying

ϕ′(e) =

ϕ(e) if e ∈ E(G)\E(C),
β if e ∈ E(C) and ϕ(e) = α,

α if e ∈ E(C) and ϕ(e) = β.

In what follows, we briefly say that the colouring ϕ′ is obtained from ϕ by re-
colouring C, and we write ϕ′ = ϕ/C. This recolouring operation is also called a
Kempe change. Kempe changes have been introduced by Kempe in his false proof
of the four colour theorem. They have proved to be an utmost useful tool in graph
colouring theory; it remains one of the basic and most powerful tools.

Consider a graph G and a colouring ϕ ∈ Ck(G). For a vertex v ∈ V (G), we define
the two colour sets

ϕ(v) = {ϕ(e) | e ∈ EG(v)}
and

ϕ̄(v) = {1, . . . , k}\ϕ(v).

We call ϕ(v) the set of colours present at v, and ϕ̄(v) the set of colours missing
at v with respect to ϕ. For a vertex set X ⊆ V (G), we define ϕ̄(X) =

⋃
x∈X ϕ̄(x).

If α, β ∈ {1, . . . , k} are two distinct colours and u, v are two distinct vertices of G
satisfying α ∈ ϕ̄(u) and β ∈ ϕ̄(v), then (u, v) is called an (α, β)-pair with respect
to ϕ.

Let α, β ∈ {1, . . . , k} be two distinct colours. Moreover, let v ∈ V (G), and let
P = Pv(α, β, ϕ). If exactly one of the two colours α or β is missing at v with respect

3

to ϕ, then P is a path where one endvertex is v, and the other endvertex is some
vertex u 6= v such that either α or β is missing at u. For the colouring ϕ′ = ϕ/P ,
we have ϕ′ ∈ Ck(G). Moreover, if w is an endvertex of P then we have

ϕ̄′(w) =

(ϕ̄(w)\{β}) ∪ {α} if ϕ̄(w) ∩ {α, β} = {β},
(ϕ̄(w)\{α}) ∪ {β} if ϕ̄(w) ∩ {α, β} = {α},
ϕ̄(w) if ϕ̄(w) ∩ {α, β} = {α, β}.

For all other vertices w beside the endvertices of P , we have ϕ̄′(w) = ϕ̄(w). These
facts shall be used quite often without mentioning it explicitly.

Consider a graph G, an edge e ∈ E(G), a colouring ϕ ∈ Ck(G− e), and a vertex
set X ⊆ V (G). Then X is called elementary with respect to ϕ if ϕ̄(u) ∩ ϕ̄(v) = ∅
for every two distinct vertices u, v ∈ X. The set X is called closed with respect to
ϕ if, for every edge f ∈ EG(X,V (G)\X), the colour ϕ(f) is present at every vertex
of X, that is, ϕ(f) ∈ ϕ(v) for every v ∈ X. Finally, the set X is called strongly
closed with respect to ϕ if X is closed with respect to ϕ, and ϕ(f) 6= ϕ(f ′) for every
two distinct edges f, f ′ ∈ EG(X,V (G)\X).

Figure 1: A graph G with an chain Px(α, β, ϕ) (bold edges)

��
��
��
��

����

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
��������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������������

������
������

������
������
������

α

β

β

β

β

γ

γ

γ

e

α wv

α

x

y z

γ

u

Figure 1 shows the graph G obtained from the Petersen graph by deleting one
vertex as well as a 3-edge-colouring ϕ of G − e where the three colours are α, β, γ.
The graph G itself has chromatic index 4. Furthermore, ϕ̄(x) = {α, γ}, ϕ̄(y) = {β},
ϕ̄(u) = ϕ̄(v) = ϕ̄(w) = ϕ̄(z) = ∅, and Px(α, β, ϕ) is a path of length 4 with vertex
set X = {x, v, w, u, y}. The set X is elementary with respect to ϕ, but not closed.

1.3 Critical Graphs

By a graph parameter we mean a function ρ that assigns to each graph G a real
number ρ(G) such that ρ(G) = ρ(H) whenever G and H are isomorphic graphs. A
graph parameter ρ is called monotone if ρ(H) ≤ ρ(G) whenever H is a subgraph
of G. Clearly, the set of all graph parameters form a real vector space with respect
to the addition of functions and the multiplication of a function by a real number.
Let ρ and ρ′ be two graph parameters. If ρ′(G) = c for every graph G, then instead
of ρ+ ρ′ we also write ρ + c. If ρ(G) ≤ ρ′(G) holds for every graph G, then we say
that ρ′ is an upper bound for ρ and ρ is a lower bound for ρ′.

Criticality is a general concept in graph theory and can be defined with respect
to various graph parameters. The importance of the notion of criticality is that

4

problems for graphs in general may often be reduced to problems for critical graphs
whose structure is more restricted. Critical graphs (with respect to the chromatic
number) were first defined and used by Dirac [5] in 1951.

Let ρ be a monotone graph parameter. A graph G is called ρ-critical, if ρ(H) <
ρ(G) for every proper subgraph H of G. We say that e ∈ E(G) is a ρ-critical edge
if ρ(G− e) < ρ(G). Evidently, in a ρ-critical graph every edge is ρ-critical.

Proposition 1.1 Let ρ and ρ′ be two monotone graph parameters. Then the follow-
ing statements hold:

(a) Every graph G contains a ρ-critical subgraph H with ρ(H) = ρ(G).

(b) If ρ(H) ≤ ρ′(H) for all ρ-critical graphs H, then ρ′ is an upper bound of ρ.

Proof: Since ρ is monotone, every graph G contains a minimal subgraph H with
ρ(H) = ρ(G). Obviously, the graph H is ρ-critical which proves (a).

Now let G be an arbitrary graph. By (a), G contains a ρ-critical subgraph
H with ρ(H) = ρ(G). Then ρ(H) ≤ ρ′(H) and, since ρ′ is monotone, we have
ρ(G) = ρ(H) ≤ ρ′(H) ≤ ρ′(G). This proves (b).

For convenience, we allow a graph G to be empty, that is, V (G) = E(G) = ∅.
In this case we also write G = ∅. For the empty graph G, define χ′(G) = ∆(G) =
δ(G) = µ(G) = 0. If ρ is a monotone graph parameter, then the empty graph is
ρ-critical; it is the only ρ-critical graph H with ρ(H) = ρ(∅).

By a critical graph we always mean a χ′-critical graph, and by a critical edge
we always mean a χ′-critical edge. Clearly, a graph G is critical if and only if G is
connected and every edge of G is critical. Moreover, χ′(G) ≤ k if and only if G does
not contain a (k + 1)-critical subgraph.

1.4 Elementary Graphs

Consider a graph G and a colouring ϕ ∈ Ck(G). Clearly, for every colour γ ∈
{1, . . . , k} and every subgraph H of G with |V (H)| ≥ 2, the edge set Eγ(H) = {e ∈
E(H) | ϕ(e) = γ} is a matching of H. Consequently, we have |Eγ(H)| ≤ 1

2 |V (H)|
for every colour γ and, therefore, |E(H)| ≤ k

⌊
1
2 |V (H)|⌋. This observation leads to

the following parameter for a graph G with |V (G)| ≥ 2, namely the density

W(G) = max
H⊆G
|V (H)|≥2

⌈
|E(H)|⌊
1
2 |V (H)|⌋

⌉
.

For a graph G with |V (G)| ≤ 1, define W(G) = 0. Then, clearly, we have χ′(G) ≥
W(G) for every graph G. A graph G satisfying χ′(G) = W(G) is called an ele-
mentary graph. The following conjecture seems to have been thought of first by
Goldberg [9] around 1970 and, independently, by Seymour [35] in 1977.

Conjecture 1.2 (Goldberg [9] 1973 and Seymour [35] 1979) Every graph G
with χ′(G) ≥ ∆(G) + 2 is elementary.

5

The density W is related to the so-called fractional chromatic index. A fractional
edge colouring of a graph G is an assignment of a non-negative weight wM to each
matching M of G such that, for every edge e ∈ E(G), we have

∑

M :e∈M
wM ≥ 1.

Then the fractional chromatic index χ′f(G) is the minimum value of
∑

M wM ,
where the sum is over all matchings M of G, and the minimum is over all fractional
edge colourings w of G. In case of |E(G)| = 0 we have χ′f (G) = 0. From the
definition it follows that χ′f (G) ≤ χ′(G) for every graph G. The computation of
the chromatic index is NP-hard, but with matching techniques one can compute the
fractional chromatic index in polynomial time, see [33, 34] for a proof.

From Edmonds’ matching polytope theorem the following characterization of the
fractional chromatic index of an arbitrary graph G can be obtained (see [33, 34] for
details):

χ′f (G) = max{∆(G), max
H⊆G
|V (H)|≥2

|E(H)|⌊
1
2 |V (H)|⌋}. (1.1)

As an immediate consequence of this characterization we obtain W(G) ≤ ∆(G)
if χ′f (G) = ∆(G), and W(G) =

⌈
χ′f (G)

⌉
if χ′f (G) > ∆(G). This implies, that

Goldberg’s conjecture is equivalent to the claim that χ′(G) =
⌈
χ′f (G)

⌉
for every

graph G with χ′(G) ≥ ∆(G) + 2.
The following result due to Kahn [18] shows that the fractional chromatic index

asymptotically approximates the chromatic index.

Theorem 1.3 (Kahn [18] 1996) For every ε ≥ 0, there is a ∆ε such that any
graph G with χ′f (G) > ∆ε satisfies χ′(G) < (1 + ε)χ′f (G).

This result was proved by probabilistic methods. We will extend this result and
show, using constructive colouring arguments, that, for every ε > 0, every graph G
with ∆(G) ≥ 1

2ε2
satisfies χ′(G) ≤ max{(1 + ε)∆(G),W(G)}, see Section 2.7.

The concept of elementary graphs is closely related to the concept of elemen-
tary sets. The relations between elementary graphs and sets being elementary and
strongly closed are shown by the following result, which is implicitly contained in
the papers by Andersen [1] and Goldberg [11]. A proof of this theorem can be found
in [8].

Theorem 1.4 (Favrholdt, Stiebitz and Toft [8] 2006) Let G be a graph with
χ′(G) = k+1 for an integer k ≥ ∆(G). If G is critical, then the following conditions
are equivalent:

(a) G is elementary.

(b) For every edge e ∈ E(G) and every colouring ϕ ∈ Ck(G − e), the set V (G) is
elementary with respect to ϕ.

6

(c) There is an edge e ∈ E(G) and a colouring ϕ ∈ Ck(G − e) such that V (G) is
elementary with respect to ϕ.

(d) There is an edge e ∈ E(G), a colouring ϕ ∈ Ck(G − e), and a set X ⊆ V (G)
such that X contains the two endvertices of e, and X is elementary as well as
strongly closed with respect to ϕ.

The following result provides some basic facts about elementary sets which will
be useful for our further investigations.

Proposition 1.5 (Favrholdt, Stiebitz and Toft [8] 2006) Let G be a graph with
χ′(G) = k + 1 for an integer k ≥ ∆ = ∆(G), and let e ∈ E(G) be a critical edge of
G. If X ⊆ V (G) is an elementary set with respect to a colouring ϕ ∈ Ck(G− e) such
that both endvertices of e are contained in X, then the following statements hold:

(a) |X| ≤ |ϕ̄(X)|−2
k−∆ ≤ k−2

k−∆ provided that k ≥ ∆ + 1

(b)
∑

v∈X dG(v) ≥ k(|X| − 1) + 2

(c) Suppose that

χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

for an integer m ≥ 3. Then |X| ≤ m − 1 and, moreover, |ϕ̄(X)| ≥ ∆ + 1
provided that |X| = m− 1.

2 Edge Colouring Algorithms

2.1 How to Colour a Graph?

The Edge Colouring Problem (ECP) asks for an optimal edge colouring of a
graph G, that is, an edge colouring with χ′(G) colours. Holyer [15] proved that the
determination of the chromatic index is NP-hard even for simple 3-regular graphs,
where the chromatic index is either 3 or 4. Hence it is reasonable to search for upper
bounds of the chromatic index, in particular for those bounds that can be efficiently
realized by a colouring algorithm. A graph parameter ρ is said to be an efficiently
realizable upper bound of χ′ if there exists an algorithm that computes, for every
graph G = (V,E), an edge colouring of G using at most ρ(G) colours, where the
algorithm has time complexity bounded from above by a polynomial in |V | and |E|.

Edge colouring algorithms often have an execution time polynomial in |E|, but are
only pseudo-polynomial in the number of bits needed to describe the graph, since
edge multiplicities may be encoded as binary numbers, and the size of the input
graph therefore may be just of order log |E|. In scheduling applications usually
it is necessary to really assign the colours to the edges instead of just computing a
description of a colouring. Hence the number of edges is the relevant input parameter
which justifies the definition of efficiently realizability.

One obvious way to find an edge colouring of an arbitrary graph G with at
least one edge is the following greedy algorithm. The algorithm starts from an
arbitrary fixed edge order e1, . . . , em of G. Then it subsequently colours each edge

7

ei with the smallest positive integer not already used to colour any adjacent edge ej
with j < i. If ∆(G) ≤ 2, then G contains only cycles, paths, and isolated vertices
and, therefore, the greedy algorithm computes an optimal colouring with either ∆(G)
or ∆(G) + 1 colours. If ∆(G) ≥ 3 then the greedy algorithm still works within a
constant relative error. Since every edge is adjacent to at most 2(∆(G) − 1) other
edges, this algorithm colours G using at most 2∆(G)− 1 colours. Consequently, 2∆
is an efficiently realizable upper bound of χ′ (including the case E(G) = ∅).

This upper bound is rather generous, and in most graphs there will be scope
for an improvement of this bound by choosing a particularly suitable edge order to
start with. Let us say that an edge order of a graph G is of depth p if each edge
in this order is preceded by fewer than p of its adjacent edges. Clearly, if we start
the greedy algorithm with an edge order of depth p, then the algorithm terminates
with a p-edge colouring. The least number p ≥ 1 such that G has an edge order of
depth p is called the colouring index col′(G) of G. Obviously, every graph G with
at least one edge satisfies col′(G) ≤ 2∆(G) − 1. For an edgeless graph G, we have
col′(G) = 1. It is also known, see for instance [17], that an edge order e1, . . . , em of
depth col′(G) can be obtained by letting ei be an edge having a minimum number
of adjacent edges in the subgraph Gi = G − {ei+1, . . . , em} for i = m,m − 1, . . . , 1,
where Gm = G. Hence, col′ is an efficiently realizable upper bound of χ′, obviously
the best upper bound that can be realized by the greedy strategy.

Observe that the colouring index of a graph is nothing else than the colouring
number of its line graph. The colouring number of a simple graph H is defined by
the smallest integer d ≥ 1 such that in some linear ordering of V (H) every vertex of
H is preceded by at most d−1 of its neighbours. This parameter was introduced and
studied by Erdős and Hajnal [6] in 1966. The mentioned greedy algorithm using the
edge order of depth col′ corresponds to a similar vertex colouring algorithm on the
line graph using a similar vertex order. In general, every k-edge colouring of a graph
G is equivalent to a k-vertex colouring of the line graph L(G). Hence, in order to
find an edge colouring of a graph G, one can simply take a vertex colouring algorithm
and run it on the line graph of G. Although the mentioned greedy strategy on the
special edge ordering is such an example, we will not concentrate on this general
approach.

Of course, other bounds better than 2∆ can be attained. Some classical efficiently
realizable upper bounds of χ′ are

⌊
3
2∆
⌋
(Shannon [36] 1949), ∆+µ (Vizing [39] 1964),

and ∆µ (Ore [23] 1967), where

∆µ(G) = max{dG(x) + µG(x, y) | EG(x, y) 6= ∅}
if E(G) 6= ∅, and ∆µ(G) = 0 if G is edgeless. An even better bound, the fan number,
is presented in Section 2.4.

Like the greedy algorithm, a typical approximation algorithm for ECP colours the
edges of the input graph sequentially. Hence such an algorithm first fixes an edge
order of the input graph, either an arbitrarily order or one that satisfies a certain
property. The core of the algorithm is a subroutine Ext that extends a given partial
colouring of the input graph. The input of Ext is a tuple (G, e, x, y, k, ϕ), where
G is the graph consisting of all edges that are already coloured as well as the next
uncoloured edge e ∈ EG(x, y) with respect to the given edge order and a colouring

8

ϕ ∈ Ck(G − e). The output of Ext is a tuple (k′, ϕ′) where k′ ∈ {k, k + 1} and
ϕ′ ∈ Ck′(G).

Now, to explain how Ext works, a well defined set O(G, e, ϕ) of so-called test
objects will be introduced. A test object T ∈ O(G, e, ϕ) is usually a labeled sub-
graph of G that fulfills a certain property with respect to the uncoloured edge e and
the colouring ϕ ∈ Ck(G−e). In most cases, we start with the test object that only con-
sists of the uncoloured edge e. The investigation of a test object T ∈ O(G, e, ϕ) may
have three possible outcomes. First, a colouring ϕ′ ∈ Ck(G) can be obtained from
ϕ by a sufficiently small number of recolouring steps, for example Kempe changes.
Then Ext returns (k, ϕ′). Second, the test object T can be "improved", possibly
with respect to a new colouring ϕ′ ∈ Ck(G− e′) obtained from ϕ. Then the new test
object T ′ ∈ O(G, e′, ϕ′) has to be investigated. Third, the edge e is coloured with a
new colour, resulting in a colouring ϕ′ ∈ Ck+1(G). Then Ext returns (k+ 1, ϕ′). To
ensure that the subroutine Ext works correctly, we need statements about the test
objects of the following type.

(T) Let G be a graph, let e ∈ EG(x, y), and let ϕ ∈ Ck(G − e) for some integer
k ≥ ∆(G). If the vertex set of a test object T ∈ O(G, e, ϕ) does not have the
property P with respect to ϕ, then there is a colouring ϕ′ ∈ Ck(G).

Constructive proofs of such statements can be directly transformed into an algo-
rithm Ext. Additionally, they provide some information about the time complexity
of the algorithm. For complex test objects it may be useful to consider a somewhat
weaker version of (T).

(T′) Let G be a graph with χ′(G) = k + 1 for some integer k ≥ ∆(G), let e ∈
EG(x, y) be a critical edge of G, and let ϕ ∈ Ck(G− e). Then each test object
T ∈ O(G, e, ϕ) has the property P with respect to ϕ.

Clearly, (T) implies (T′) but not the other way round. However, often the proof
of (T′) is constructive in the way that it derives a contradiction to χ′(G) = k+ 1 by
constructing a colouring ϕ′ ∈ Ck(G). In this case the proof can usually be translated
into an equivalent proof of (T) or an algorithm Ext.

The advantage of the second version are shorter proofs which are easier to read
and easier to understand, especially if the proof requires many steps changing the
test object and/or the partial colouring. For example, suppose that the proof uses
similar statements for some properties P1, . . . ,Pn. Then, every time the test object
or the partial colouring changes, the proof of version (T) has to mention the cases
where some of the properties P1, . . . ,Pn are not fulfilled anymore, and the desired
colouring ϕ′ can be obtained in one of the ’old’ ways. In version (T′) these properties
are automatically fulfilled in the new situation, and the proof can concentrate on the
significant new arguments.

Of course, when it comes to construct the algorithm Ext from the proof of (T′),
then we have to translate it to version (T), at least notionally. We also have to be
more careful when estimating the time complexity based on a proof of (T′).

For the basic test objects we will start with the first version, because the state-
ment is stronger, and easier to adapt algorithmically. However, as the complexity

9

of the test objects and recolouring strategies increases, we will change to the second
version at some point.

A typical test in many colouring algorithms is whether the vertex set of a test
object T ∈ O(G, e, ϕ) is elementary with respect to ϕ. Most of the classical kinds of
test objects fulfil the following condition.

(1) Let G be a graph with χ′(G) = k+1 for some integer k ≥ ∆(G), let e ∈ EG(x, y)
be a critical edge of G, and let ϕ ∈ Ck(G − e) be a colouring. Then the vertex
set of each test object T ∈ O(G, e, ϕ) is elementary with respect to ϕ.

To control the number of colours used by a colouring algorithm of the above type,
we need some further information about maximal test objects, that means test
objects T ∈ O(G, e, ϕ) which cannot be "improved" by certain techniques. For the
proof of Goldberg’s conjecture, a statement of the following type would be sufficient.

(2) Let G be a graph with χ′(G) = k + 1 for some integer k ≥ ∆(G) + 1, let
e ∈ EG(x, y) be a critical edge of G, and let ϕ ∈ Ck(G − e) be a colouring.
Then the vertex set of each maximal test object T ∈ O(G, e, ϕ) is elementary
and strongly closed both with respect to ϕ.

Suppose our test objects satisfy (1) and (2), and we start our colouring algorithm
with k = ∆(G) + 1 colours. If the algorithm never uses a new colour, then χ′(G) ≤
∆(G) + 1. Otherwise, let us consider the last call of Ext where we use a new colour.
The input is a tuple (G′, e, x, y, k, ϕ) where G′ is a subgraph of G, e ∈ EG′(x, y),
and ϕ ∈ Ck(G′ − e). Since Ext returns (k + 1, ϕ′) with ϕ′ ∈ Ck+1(G′), there exist a
maximal test object T ∈ O(G′, e, ϕ) such that X = V (T) is elementary and strongly
closed both with respect to ϕ. Clearly, the colouring algorithm terminates with a
(k + 1)-edge colouring of G implying χ′(G) ≤ k + 1. Now, let H be the subgraph
of G with V (H) = X and E(H) = E(G[X]) ∩ E(G′). Then E(H) consists of
the uncoloured edge e and all edges of G that are already coloured and have both
endvertices in X. Since ϕ̄(X) ⊃ ϕ̄(x) 6= ∅ and X is elementary as well as closed with
respect to ϕ ∈ Ck(G′ − e), it follows that |X| is odd and, for every colour γ ∈ ϕ̄(X),
there are

⌊
1
2 |X|

⌋
edges in EG(X,X) coloured with γ. Moreover, since |X| is odd

and X is strongly closed both with respect to ϕ, it follows that, for every colour
α /∈ ϕ̄(X), there is exactly one edge in EG(X,V (G)\X) coloured with α. Since X is
elementary with respect to ϕ, this implies that there are

⌊
1
2 |X|

⌋
edges in EG(X,X)

coloured with α. Consequently, |V (H)| is odd, and H contains
⌊

1
2 |V (H)|⌋ edges of

each colour plus the uncoloured edge e, implying that |E(H)| = 1 + k
⌊

1
2 |V (H)|⌋.

Hence we have

W(G) ≥ W(H) ≥
⌈
|E(H)|⌊
1
2 |V (H)|⌋

⌉
≥ k + 1 ≥ χ′(G) ≥ W(G)

and, therefore, χ′(G) = W(G). As a consequence, our algorithm colours the edges of
G with at most max{∆(G)+1,W(G)} colours. Since both ∆ and W are lower bounds
of χ′, this would imply that this algorithm works within an absolute approximation

10

error of 1. For a polynomial-time algorithm, this would be best possible unless P
equals NP.

Classical kinds of test objects are the fans first used by Shannon [36] and by
Vizing [39], the critical chains introduced, independently, by Andersen [1] and by
Goldberg [10, 11], and the Kierstead paths introduced by Kierstead [19]. A more
recent kind of test objects, namely Tashkinov trees, were invented by Tashkinov [38].
All these kinds of test objects satisfy (1), but up to now test objects that fulfil both
conditions (1) and (2) are not known. A possible way out of this disaster is to modify
the subroutine Ext and/or to add further heuristics before using a fresh colour.
If the vertex set X of a maximal test object T ∈ O(G, e, ϕ) is both elementary
and strongly closed with respect to ϕ, then we just colour e with a new colour.
However, if X is elementary, but not strongly closed with respect to ϕ, it might be
reasonable to use again a small number of Kempe changes to obtain a better test
object T ′ ∈ O(G, e′, ϕ′), and to continue with T ′ instead of T . We shall use this
approach to get some partial results related to Goldberg’s conjecture.

2.2 Implementation Details

Before constructing algorithms we will say something about time and space complex-
ities. As usual in many algorithmic publications, our basic computer model matches
a real computer rather than a Turing machine, but with the additionally assump-
tion that memory and bandwidth is always big enough to handle the actual problem
properly. Due to this model, we will generally assume that all basic operations with
basic data types and memory access operations, especially pointer operations, have
constant time costs O(1). In practice this is usually true up to a certain problem size
which depends on the machine. For practical reasons, often only such problem sizes
are relevant, this also supports our assumption. Note that this is a difference to the
more theoretical definition using the Turing machine model, where time costs always
rely on the length of the data. Since time complexity of an implementation on a
Turing machine differs only by a polynomial factor, any polynomial-time algorithm
in our model still is in P.

The time complexity T of our colouring algorithms has the form T = T1 + |E|T2,
where T1 is the time complexity for computing the required edge order of the input
graph G = (V,E), and T2 is the (worst case) time complexity for one call of the
subroutine Ext.

The running time T2 depends much on the manner in which the partial colouring
is stored. As long as we are satisfied with an overall running time T that is poly-
nomial in |E| and |V |, we can use the following ideas from [14]. In addition to the
standard adjacency list representing the graph G, a same-colour list is stored for
each colour. Each same-colour list contains all of the edges assigned a particular
colour. In addition, there is a list of all uncoloured edges. An edge e ∈ EG(x, y)
appears in the two adjacency lists for x and y as well as in a third list, which is
either the same-colour list for the colour of e, or the list of uncoloured edges. These
elements of the three lists are linked to each other by pointers so that each can
be directly accessed from another. Each element of the same-colour list has also a
pointer to the beginning of the list. If these lists are doubly-linked, then the basic

11

operations, like inserting or deleting elements, have constant time costs. Since every
vertex and every edge of G is stored constant times, we need O(|V (G)| + |E(G)|)
space for this representation.

Even the simple greedy algorithm uses at most 2∆(G) colours. Hence, for the
number of colours k, we can assume that k ∈ O(∆), where ∆ = ∆(G). Then, as
explained in [14], the set ϕ̄(x) can be found in time O(∆) by simply scanning the
adjacency list of x and, therefore, one can decide in time O(∆) whether two vertices
have a common missing colour. Furthermore, it takes time O(|V |) to find an (α, β)-
chain P = Px(α, β, ϕ). This can be done in two steps. First, by scanning the two
same-colour lists, one can construct the subgraph H of G consisting of all edges
coloured α or β in time O(|V |). Second, one can just start in x and follow the chain
in H. Since the length of P is at most |V |, this gives the mentioned time complexity.
Performing a Kempe change on the chain P also costs time O(|V |). This task can be
easily accomplished. During the second step of finding P , one may simply recolour
the edges of P . This gives the mentioned time complexity, because the length of P
is at most |V |, and any given edge can be recoloured in constant time by deleting it
from one and inserting it to the other same-colour list.

In most of our recolouring routines, Kempe changes are applied after a constant
number of operations of lower cost. Consequently, in this case, the costs for the
Kempe changes will dominate the other costs, and we will only count the number of
Kempe changes to derive the time costs for this routine.

2.3 The Vizing Fan

One non-trivial test object for the edge colouring problem is the Vizing fan. The
fan argument was introduced by Vizing [39] in order to prove that ∆ + µ is an
upper bound for the chromatic index. However, the appropriate conclusion of the
fan argument is not just Vizing’s bound, but the so-called fan equation from which
all the classical bounds can easily be derived.

Definition 2.1 Let G be a graph, and let ϕ ∈ Ck(G− e) for an edge e ∈ E(G) and
an integer k. Further, let x be an endvertex of e. A multi-fan at x with respect to
e and ϕ is a sequence (e1, y1, . . . , ep, yp) consisting of edges e1, . . . , ep and vertices
y0, . . . , yp satisfying the following two conditions:

(F1) The edges e1, . . . , ep are distinct, e1 = e, and ei ∈ EG(x, yi) for i = 1, . . . , p.

(F2) For every edge ei with 2 ≤ i ≤ p, there is a vertex yj with 1 ≤ j < i such that
ϕ(ei) ∈ ϕ̄(yj).

Our definition of a fan differs slightly from the classical definition going back to
Vizing [39, 40]. We allow multiple edges and only require the colour of an edge of the
fan to be missing at some previous vertex of the fan (instead of missing exactly at
the previous vertex). This change makes proofs easier and is essential for obtaining
the fan equation in Theorem 2.2(d).

Let G be a graph, and let F = (e1, y1, . . . , ep, yp) be a multi-fan at x with respect
to an edge e ∈ E(G) and a colouring ϕ ∈ Ck(G− e). Since the vertices of F need not

12

be distinct, the set V (F) = {y1, . . . , yp} may have a cardinality smaller than p. For
z ∈ V (F), let µF (x, z) = |EG(x, z) ∩ {e1, . . . , ep}|. Further, we call F a maximal
multi-fan at x with respect to e and ϕ if there is no edge-vertex pair (f, v) such
that (F, f, v) is a multi-fan at x with respect to e and ϕ.

Figure 2: A multi-fan F = (e, y, e2, z, e3, v, e4, z)

�
�
�
�

�
�
�
�

��

�
�
�
�

����

x
e

v

7

4

e2

e4

3
1

1

e3

2 4
3

6

z

u

2
5

y

6 5

7

Figure 2 shows a graph G together with a colouring ϕ ∈ C7(G− e). For the sets
of missing colours, we obtain ϕ̄(x) = {1, 3}, ϕ̄(y) = {2, 4}, ϕ̄(z) = {6}, ϕ̄(u) = {7},
and ϕ̄(v) = {5}. Hence V (G) = {x, y, z, u, v} is elementary and strongly closed
with respect to ϕ. Furthermore, F = (e, y, e2, z, e3, v, e4, z) is a multi-fan at x with
respect to e and ϕ. Clearly, χ′(G) ≤ 8 and it is easy to show that equality holds.
This follows from the simple fact that χ′(G) ≥ W(G) ≥ d |E(G)|

2 e = 8. Hence, G is
elementary. It is also easy to check that G is critical.

Theorem 2.2 Let G be a graph, let e ∈ EG(x, y), and let ϕ ∈ Ck(G − e) for an
integer k ≥ ∆(G). Furthermore, let F = (e1, y1, . . . , ep, yp) be a multi-fan at x with
respect to e and ϕ. Then the following statements hold:

(a) If ϕ̄(x) ∩ ϕ̄(yi) 6= ∅ for an i ∈ {1, . . . , p}, then a colouring ϕ∗ ∈ Ck(G) can be
derived from ϕ by recolouring at most i− 1 edges and colouring the edge e.

(b) If α ∈ ϕ̄(x), β ∈ ϕ̄(yi) for an i ∈ {1, . . . , p}, and x is not an endvertex of the
(α, β)-chain Pyi(α, β, ϕ), then a colouring ϕ∗ ∈ Ck(G) can be derived from ϕ by
at most one Kempe change, recolouring at most i − 1 edges and colouring the
edge e.

(c) If yi 6= yj and ϕ̄(yi)∩ ϕ̄(yj) 6= ∅ for 1 ≤ i < j ≤ p, then a colouring ϕ∗ ∈ Ck(G)
can be derived from ϕ by at most one Kempe change, recolouring at most j − 1
edges and colouring the edge e.

(d) If F is a maximal multi-fan at x with respect to e and ϕ such that V (F) ∪ {x}
is elementary with respect to ϕ, then |V (F)| ≥ 2 and

∑

z∈V (F)

(dG(z) + µF (x, z)− k) = 2. (2.1)

13

Proof: To prove (a), we assume that there is a colour α ∈ ϕ̄(x) ∩ ϕ̄(yi). Then, by
definition of a multi-fan, there are indices i1 < . . . < i` such that i1 = 1, i` = i and,
for j = 1, . . . , ` − 1 the colour ϕ(eij+1) is missing at yij with respect to ϕ. Now we
define

ϕ′(f) =

α if f = e` ,

ϕ(eij+1) if f = ej , j ∈ {1, . . . , `− 1} ,
ϕ(f) otherwise.

Evidently, we have ϕ′ ∈ Ck(G). Only the edges ei2 , . . . , ei` had to be recoloured to
colour ei1 = e. Since we have ` ≤ i, this proves (a).

To prove (b), we assume that there are two colours α ∈ ϕ̄(x) and β ∈ ϕ̄(yi)
such that x is not an endvertex of P = Pyi(α, β, ϕ). Since α ∈ ϕ̄(x), this implies
that x does not belong to V (P) at all. Now let j be the smallest integer such
that yj is an endvertex of P . Since yi is an endvertex of P , we have j ≤ i and
P = Pyj (α, β, ϕ). Note that even in the case j < i the vertices yj and yi may be
the same. If α ∈ ϕ̄(yj) then we are done, using (a) and j ≤ i. If α /∈ ϕ̄(yj) then
β ∈ ϕ̄(yj). Let ϕ′ = ϕ/P be the colouring obtained from ϕ by recolouring P . Since
{x, y1, . . . , yj−1} does not contain an endvertex of P , we conclude that ϕ̄′(z) = ϕ̄(z)
for all vertices z ∈ {x, y1, . . . , yj−1}. Moreover, since x /∈ V (P), and since all edges of
F are incident with x, it follows that E(P)∩E(F) = ∅. Hence, we have ϕ′(f) = ϕ(f)
for all edges f ∈ E(F)\{e}. Consequently, F ′ = (e1, y1, . . . , ej , yj) is a multi-fan
at x with respect to e and ϕ′ where α ∈ ϕ̄′(x) ∩ ϕ̄′(yj). Then, by (a), a colouring
ϕ∗ ∈ Ck(G) can be derived form ϕ′ = ϕ/P by recolouring at most j − 1 edges and
colouring the edge e. Since j ≤ i, this proves (b).

To prove (c), we assume that there are two indices i < j a colour β such that
yi 6= yj and β ∈ ϕ̄(yi) ∩ ϕ̄(yj). From k ≥ ∆(G) and e ∈ EG(x) we infer that there
is a colour α ∈ ϕ̄(x). If α = β then we are done, using (a). If α 6= β then let
P1 = Pyi(α, β, ϕ). If x is not an endvertex of P1 then we are done, using (b). If x
is an endvertex of P1 then let P2 = Pyj (α, β, ϕ). Since yj /∈ {x, yi} is an endvertex
of P2, we conclude that P2 6= P1 and, therefore, x is not an endvertex of P2. Hence,
we are done, using (b) again. This proves (c).

For the proof of (d), we assume that F is maximal with respect to e and ϕ.
By definition, we have y ∈ V (F). From k ≥ ∆(G) we infer that there is a colour
β ∈ ϕ̄(y). Since V (F) ∪ {x} is elementary with respect to ϕ, this implies that there
is an edge e′ ∈ EG(x, y′) with ϕ(e′) = β where y′ 6= y. Since F is maximal with
respect to e and ϕ, we have y′ ∈ V (F) and, therefore, |V (F)| ≥ 2.

Next, we claim that the colour sets Γ = {ϕ(e2), . . . , ϕ(ep)} and Γ′ =
⋃
z∈V (F) ϕ̄(z)

are equal. By definition, we have Γ ⊆ Γ′. Conversely, if β ∈ Γ′ then, since V (F)∪{x}
is elementary with respect to ϕ, we have β ∈ ϕ(x). Since we allow a multi-fan to
have multiple edges, the maximality of F implies that β ∈ Γ. This proves the claim
that Γ = Γ′. Since y ∈ V (F), and V (F) ∪ {x} is elementary with respect to ϕ, we
infer that

p− 1 = |Γ| = |Γ′| =
∑

z∈V (F)

|ϕ̄(z)| = 1 +
∑

z∈V (F)

(k − dG(z)).

14

Since p =
∑

z∈V (F) µF (x, z), this implies
∑

z∈V (F)

(dG(z) + µF (x, z)− k) = 2.

This completes the proof of Theorem 2.2.

Given a graph G, an edge e ∈ EG(x, y), and a colouring ϕ ∈ Ck(G − e) for an
integer k ≥ ∆(G), Theorem 2.2 shows a way to colour the uncoloured edge e using
multi-fans as test objects. This leads to an algorithm VizExt that runs on the
input (G, e, x, y, k, ϕ) and returns an edge colouring for G. The algorithm VizExt
is a first non-trivial version of Ext and works as follows. It successively builds a
multi-fan F at x with respect to e and ϕ until either a k-edge colouring of G can
be derived by means of Theorem 2.2, or F is maximal and the set V (F) ∪ {x} is
elementary with respect to ϕ. In the latter case a new colour is used for e, and the
so-called fan equation (2.1) holds.

VizExt(G, e, x, y, k, ϕ):

1) p← 1, ep ← e, yp ← y, F ← (ep, yp).

2) If ϕ̄(x) ∩ ϕ̄(yp) 6= ∅ then
2a) Compute ϕ′ ∈ Ck(G) as in Theorem 2.2(a).
2b) Return (k, ϕ′).

3) If ∃i ∈ {1, . . . , p− 1} : ϕ̄(yi) ∩ ϕ̄(yp) 6= ∅ then
3a) Compute ϕ′ ∈ Ck(G) as in Theorem 2.2(c).
3b) Return (k, ϕ′).

4) If ∃ep+1 ∈ EG(x)\E(F) : ϕ(ep+1) ∈ ϕ̄(V (F)) then
4a) Let yp+1 be the endvertex of ep+1 that is not x.
4b) F ← (F, ep+1, yp+1), p← p+ 1.
4c) Goto 2.

5) ϕ′ ← ϕ, ϕ′(e)← k + 1.

6) Return (k + 1, ϕ′).

Theorem 2.3 Let G be a graph, let e ∈ EG(x, y) be an edge, and let ϕ ∈ Ck(G)
be a colouring for an integer k ≥ ∆(G). Then, on the input (G, e, x, y, k, ϕ), the
algorithm VizExt returns a tuple (k′, ϕ′) such that k′ ∈ {k, k + 1} and ϕ′ ∈ Ck′(G).
Moreover, if k′ = k + 1 then there is a maximal multi-fan F at x with respect to e
and ϕ such that V (F) ∪ {x} is elementary with respect to ϕ.

Proof: The algorithm VizExt contains one goto-statement, so it may enter step 2
many times. We claim that when VizExt enters step 2 for the j-th time then we
have p = j, F = (e1, y1, . . . , ep, yp) is a multi-fan at x with respect to e and ϕ, and
(V (F) ∪ {x})\{yp} is elementary with respect to ϕ. We prove this by induction.

For j = 1, the algorithm comes from step 1, and we have p = 1 and F =
(e1, y1) = (e, y). Clearly, F is a multi-fan at x with respect to e and ϕ and, trivially,

15

(V (F) ∪ {x})\{yp} = {x} is elementary with respect to ϕ. This settles the basic
case.

For j > 1, the algorithm comes from step 4c and must have past steps 2-4
before. When VizExt enters step 2 the (j − 1)th time then, by induction, we
have p = j − 1, F = (e1, y1, . . . , ep, yp) is a multi-fan at x with respect to e and
ϕ, and (V (F) ∪ {x})\{yp} is elementary with respect to ϕ. To reach step 4c the
conditions in 2 and 3 must fail. This implies that V (F) ∪ {x} is elementary with
respect to ϕ. Further, the condition of 4 must be true. Hence, after step 4b we
have p = j, F = (e1, y1, . . . , ep, yp) is a multi-fan at x with respect to e and ϕ, and
(V (F)∪ {x})\{yp} is elementary with respect to ϕ. Then the algorithm enters step
2 the jth time. This completes the induction and proves the claim.

If, at some point, the conditions of statement 2 or 3 are fulfilled, it then follows
that the corresponding conditions of Theorem 2.2 are fulfilled. Hence, in both cases,
VizExt works correctly, computes a colouring ϕ′ ∈ Ck(G) and returns (k, ϕ′). Now
consider the case that neither of these two conditions is fulfilled. Since in step 4b
the size of F increases but is bounded by dG(x) ≤ ∆(G), the algorithm cannot stay
in this loop forever. Hence, at one point, the condition of statement 4 has to fail. In
this case VizExt extends ϕ to ϕ′ by using an additional colour for the edge e and
returns (k + 1, ϕ′). This proves the first part of the theorem.

If VizExt returns (k + 1, ϕ′) then, at some point, the condition of statement 4
fails. At this point, F is a maximal multi-fan at x with respect to e and ϕ, and
V (F) ∪ {x} is elementary with respect to ϕ. This completes the proof.

Note that, for any input of VizExt, the number of colours k must be at least
the maximum degree of the input graph. Since ∆ is a lower bound for χ′, this is
not a real limitation. An edge colouring algorithm that uses VizExt as kernel may
simply start with k = ∆(G), then VizExt always gets a valid input.

Theorem 2.3 shows that VizExt works as intended, so let us now take a look
at the running time of VizExt on a valid input (G, e, x, y, k, ϕ), where G = (V,E)
and ∆(G) = ∆. Further, we can assume that k ∈ O(∆), see Section 2.2. The first
initializing step clearly needs only constant time. Due to the goto-statement in step
4c we have a loop. In every sweep through the loop the multi-fan F is extended by
an edge-vertex pair. Since the edges of F are pairwise distinct and incident to the
vertex x, the loop is repeated at most dG(x) ≤ ∆ times.

Let us analyse the time costs inside the loop. The steps 2a and 3a result in a new
colouring and ending the algorithm, so they are executed at most once and do not
count to the loop. The check of step 2 can be done in time O(∆), see Section 2.2. The
check of step 3 can also be done in time O(∆) by keeping some additional entries,
one for every colour. For every colour α, we keep IND[α] the smallest index i such
that this colour is missing at yi ∈ V (F). Then, in step 3, we can at the same time
maintain this mapping and make the necessary check by simply scanning the colours
of ϕ̄(yp). For any colour with no entry IND so far, we simply set it to p. This way we
get the time O(∆) for this step. Using this mapping and additionally marking the
edges already used in F , we can also do the check of step 4 in time O(∆) by scanning
the edges in the adjacency list of x and looking, for every non-marked edge, whether
the colour of the edge has an IND-entry or not. If we found an edge with an entry

16

then simply stop scanning and mark the new edge when adding to F . Getting yp+1

and extending F only needs constant time. Consequently, since the loop repeats at
most O(∆) times, we need time O(∆2) in total for the loop.

From Theorem 2.2(a) it follows that in step 2a at most p− 1 ≤ ∆ edges have to
be recoloured. From the check in step 2 there is already a colour α ∈ ϕ̄(x)∩ ϕ̄(yp) at
hand. Then, using the IND-entries, all necessary edges and colours can be found in
time O(p), see proof of Theorem 2.2(a). The recolouring itself only needs time O(1)
for every edge, so we have a total time of O(∆) for this step.

From Theorem 2.2(c) it follows that in step 3a at most one Kempe change is
performed, and at most p − 1 edges are recoloured. To do this, see the proof of
Theorem 2.2(c), the algorithm has to find a colour α ∈ ϕ̄(x) and a colour β ∈
ϕ(yi)∩ ϕ̄(yp) (which is already given by the check in step 3), find at most two (α, β)-
chains, recolour one of it, and then recolour at most p − 1 edges similar to step 2a.
This can be done in time O(|V |+ ∆), see Section 2.2.

In step 5 a new colour is assigned to the edge e. To do this, a new same-colour
list with just one element has to be generated; this only requires constant time.
Consequently, the whole algorithm VizExt has a time complexity of O(|V | + ∆2).
Further, note that VizExt can work on the data structures from the input and
extend them. The notation ϕ′ in the algorithm is just for convenience, it is contained
in the same structures as ϕ.

The following edge colouring algorithm Vizing chooses an arbitrary edge order-
ing and then successively colours the edges of the input graph G, using VizExt.

Vizing(G):

1) Let G′ be the edgeless graph with V (G′) = V (G),
let ϕ be the empty colouring of G′, and let k = ∆(G).

2) For every edge e ∈ E(G) do
2a) Let x, y be the two endvertices of e.
2b) E(G′)← E(G′) ∪ {e}
2c) (k, ϕ)← VizExt(G′, e, x, y, k, ϕ)

3) Return ϕ.

On an input G = (V,E) with ∆(G) = ∆, the algorithm starts with k = ∆ and
a proper k-edge colouring of an edgeless graph. Since the routine VizExt never
decreases the value of k, it always gets a valid input. Consequently, the algorithm
Vizing terminates and computes a proper edge colouring of G. Further, the sub-
routine VizExt can work on the given data structures and simply extend them,
and Vizing starts VizExt exactly |E| times. Hence, the algorithm Vizing has a
running time in O

(|E|(|V |+ ∆2)
)
.

In principle, Vizing is Vizing’s classical colouring algorithm. He used it to prove
the classical bounds 3

2∆ and ∆+µ. These can easily be derived from Theorem 2.2(d),
the fan equation. If G is a graph and k ≥ ∆(G) + µ(G) then the fan equation (2.1)
fails for G as well as for any subgraph of G. Since Vizing starts with k = ∆(G), it
follows that the value of k is never increased above ∆(G) + µ(G) by the subroutine

17

VizExt. Consequently, Vizing uses not more than ∆(G) + µ(G) colours, which
proves Vizing’s bound. Shannon’s bound can be proved in the same way, because
the fan equation also fails for every k > 3

2∆(G)−1. This can be seen as follows. Using∑
z∈V (F) µF (x, z) ≤ dG(x), the fan equation implies (|V (F)|+1)∆(G)−k|V (F)| ≥ 2,

which fails for all k > ∆(G) + ∆(G)−2
|V (F)| . Since ∆(G) ≥ dG(x) ≥ |V (F)| ≥ 2, the fan

equation also fails for every k > 3
2∆(G) − 1. Since Vizing starts with k = ∆(G),

it follows that the value of k is never increased above 3
2∆(G) by the subroutine

VizExt, which proves Shannon’s bound.
The fan equation is a unifying result from which all the classical results on edge

colourings seem easily derivable. The fan equation appears in several earlier papers as
part of proofs, rather than as a separate result of interest in its own right; versions of
it can be found in the papers by Andersen [1], Goldberg [11], Hilton and Jackson [13],
and Choudum and Kayathri [4]. There have been three independent papers that have
explicitly mentioned the fan equation as an important result and tool, namely, in
chronological order, the M.Sc. thesis by Favrholdt [7] (see also the paper of Favrholdt,
Stiebitz and Toft [8]), the paper by Reed and Seymour [24], and the Ph.D. thesis by
Cariolaro [2]. The next section shows how the fan equation can be used to improve
the colouring algorithm Vizing.

2.4 The Fan Number

One way to improve Vizing’s colouring algorithm is to leave the kernel VizExt
intact, but to choose an appropriate edge ordering. In [32] this was done, resulting
in a new graph parameter, the fan number. The fan number is based on an ordering
of vertex pairs that takes the fan equation into account.

Let G be a graph, and let k ≥ 0 be an integer. By Fk(G) we denote the set of
all triples (x, y, Z) such that x, y ∈ V (G), y ∈ Z ⊆ NG(x), |Z| ≥ 2,

dG(x) + dG(y)− µG(x, y) ≥ k + 1,

and ∑

z∈Z
(dG(z) + µG(x, z)− k) ≥ 2.

Obviously, for k ≥ ` ≥ 0, we have

Fk(G) ⊆ F`(G) (2.2)

and, moreover, we have
H ⊆ G⇒ Fk(H) ⊆ Fk(G) (2.3)

For a pair (x, y) of distinct vertices of G, let degG(x, y) be the smallest integer
k ≥ 0 such that there is no vertex set Z with (x, y, Z) ∈ Fk(G). We call degG(x, y)
the fan-degree of the vertex pair (x, y).

Note that if EG(x, y) = ∅ or if x has at most one neighbour in G, then the
fan-degree satisfies degG(x, y) = 0.

Now, suppose that EG(x, y) 6= ∅ and |NG(x)| ≥ 2. For a vertex z ∈ NG(x), let
d(z) = dG(z) + µG(x, z). Then d(z) ≥ 2 for every neighbour z of x, and NG(x)\{y}

18

consists of p ≥ 1 vertices z1, . . . , zp, where the order is chosen such that d(z1) ≥
d(z2) ≥ . . . ≥ d(zp). For integers k, ` with 1 ≤ ` ≤ p, let

mk,` = (d(y)− k) +
∑̀

i=1

(d(zi)− k).

Now, let Q denote the set of all integers k such that 0 ≤ k ≤ dG(x) + dG(y) −
µG(x, y)−1 and mk,` ≥ 2 for some integer ` ∈ {1, . . . , p}. Obviously, there is a set Z
such that (x, y, Z) ∈ Fk(G) if and only if k ∈ Q. If q = maxQ then Q = {0, 1, . . . , q}
and degG(x, y) = q + 1 ≥ 2. Since we have mk,` = d(y) +

(∑`
i=1 d(zi)

)
− (` + 1)k,

we can explicitly compute q by

q = min

{
dG(x) + dG(y)− µG(x, y)− 1, max

1≤`≤p

⌊
d(y)− 2 +

∑`
i=1 d(zi)

`+ 1

⌋}
.

Note that, while increasing `, the value of
∑`

i=1 d(zi) can always be calculated by
just one simple addition to the former value. Hence, finding the necessary maximum
term can be done in O(p) steps. Consequently, given all neighbours z of x, already
sorted by d(z), and given the values dG(z) and µG(x, z), we can compute degG(x, y)
in O(|NG(x)|) steps. Observe that degG(x, y) and degG(y, x) might be different.

From (2.2) and (2.3) it follows that if H ⊆ G then every pair x, y ∈ V (H) of
distinct vertices satisfies

degH(x, y) ≤ degG(x, y).

For a graph G with at least one edge, let

δf(G) = min{degG(x, y) | x, y ∈ V (G), EG(x, y) 6= ∅}
be the minimum fan-degree of G. If G is an edgeless graph, we define δf (G) = 0.
Note that the parameter δf is not monotone. However, the fan number defined by

fan(G) = maxH⊆G δf (H)

is a monotone graph parameter.
By the above remark, it follows that there is a polynomial-time algorithm to

compute the minimum fan-degree δf (G). In order to show that this is also true for
the fan number, we describe an alternative way for computing the graph parameter
fan(G).

Suppose that the graph G has at least one edge. Let S = ((xi, yi) | i = 1, . . . , `)
be a sequence of pairs consisting of distinct vertices of G. For such a sequence S,
we define a sequence (Gi | i = 1, . . . , `+ 1) of subgraphs of G by letting G1 = G and
Gi+1 = Gi − EGi(xi, yi) for i = 1, . . . , `. We call S a feasible sequence for G if
G`+1 is an edgeless graph and EGi(xi, yi) 6= ∅ for i = 1, . . . , `. Now, for a graph G
with at least one edge, we define σ(G) to be the smallest integer p such that there
exists a feasible sequence S = ((xi, yi) | i = 1, . . . , `) for G satisfying

degGi(xi, yi) ≤ p (2.4)

19

for i = 1, . . . , `. We say that S = ((xi, yi) | i = 1, . . . , `) is an optimal sequence for
G if S is a feasible sequence for G and

degGi(xi, yi) = δf (Gi) (2.5)

for i = 1, . . . , `, where (Gi | i = 1, . . . , ` + 1) is the corresponding sequence of sub-
graphs. For an edgeless graph G, we define σ(G) = 0.

Theorem 2.4 (Scheide and Stiebitz [32]) Every graph G satisfies

fan(G) = σ(G).

Furthermore, if G has at least one edge, and if S = ((xi, yi) | i = 1, . . . , `) is an
optimal sequence for G, then

fan(G) = max
1≤i≤`

degGi(xi, yi),

where (Gi | i = 1, . . . , `+ 1) is the corresponding sequence of subgraphs.

Proof: First, consider the case that fan(G) = 0. Then δf (H) = 0 for every subgraph
H of G. If G is edgeless, then fan(G) = σ(G) = 0, and we are done. Otherwise,
every subgraph H of G with at least one edge contains two adjacent vertices x, y such
that degH(x, y) = 0. This implies that there is a feasible sequence S = ((xi, yi) | i =
1, . . . , `) for G such that degGi(xi, yi) = 0 for i = 1, . . . , `, where (Gi | i = 1, . . . , `+1)
is the corresponding sequence of subgraphs. Hence we are done, too.

Now, consider the case that fan(G) ≥ 1. Then G has at least one edge, and there
is a feasible sequence S = ((xi, yi) | i = 1, . . . , `) for G such that degGi(xi, yi) ≤ σ(G)
holds for i = 1, . . . , `, where (Gi | i = 1, . . . , ` + 1) is the corresponding sequence of
subgraphs of G, that is, G1 = G and Gi+1 = Gi − EGi(xi, yi) for i = 1, . . . , `. By
definition, there is a subgraph H of G such that fan(G) = δf (H). Since fan(G) ≥ 1,
this implies that H has at least one edge. Consequently, since S is feasible, there is
a smallest index i such that EH(xi, yi) 6= ∅. Then H is a subgraph of Gi, and we
conclude that

fan(G) = δf (H) ≤ degH(xi, yi) ≤ degGi(xi, yi) ≤ σ(G).

Now let S = ((xi, yi) | i = 1, . . . , `) be an optimal sequence for G, and let (Gi | i =
1, . . . , ` + 1) be the corresponding sequence of subgraphs of G. Then, since S is
feasible, we obtain

σ(G) ≤ max
1≤i≤`

degGi(xi, yi) = max
1≤i≤`

δf (Gi) ≤ max
H⊆G

δf (H) = fan(G).

This completes the proof of the theorem.

In particular, Theorem 2.4 implies, that there is a polynomial-time algorithm
that computes, for a given graph G, the fan number of G as well as an optimal
sequence S for G. This algorithm starts with i = 1 and G1 = G and, as long
as Gi contains an edge, it chooses a vertex pair (xi, yi) such that degGi(xi, yi) is
minimal, computes Gi+1 = Gi − EGi(xi, yi) and increases i. Assuming that Gi is

20

represented by an adjacency list containing edge multiplicities, this can be done as
follows. First the vertex degrees dGi(x) of all vertices x ∈ V (Gi) are computed.
This can be done in time O(|V (Gi)|2), by simply adding multiplicities. Then for
every vertex x ∈ V (Gi) the neighbours z in the adjacency list of x are sorted by
dGi(z) +µGi(x, z), this needs time O(|NGi(x)| log |NGi(x)|) for every x. Now, by the
above remark, for every neighbour y of x the value of degGi(x, y) can be computed
in time O(|NGi(x)|). Thus, we need time O(|NGi(x)|2), sorting inclusive, for each
vertex x and, therefore, time O(|V (Gi)|3) for the whole graph Gi. Eventually, the
computation of the graph Gi+1 only needs updating the adjacency list for xi and yi.
The time cost for this depends a bit on the list representation, but definitely does
not exceed the time O(|V (Gi)|3) already needed. Since the length of the computed
sequence S is bounded by |V (G)|2, the algorithm has a running time O(|V (G)|5).

For a graph G, let

Fan(G) = max{∆(G), fan(G)}.
Clearly, this graph parameter is monotone and can be computed in O(|V (G)|5) steps,
too. We are now ready to design an efficient edge colouring algorithm Vizing2 that
colours any graph G with at most Fan(G) colours.

Vizing2(G):

1) If G is edgeless, then return the empty colouring ϕ.

2) Compute Fan(G) and an optimal sequence
S = ((xi, yi) | i = 1, . . . , `) for G.

3) Let G′ be the edgeless graph with V (G′) = V (G), and
let ϕ be the empty colouring of G′.

4) k ← ∆(G), i← `.

5) While i > 0 do:
5a) For every edge e ∈ EG(xi, yi) do

5a-1) E(G′)← E(G′) ∪ {e}
5a-2) (k, ϕ)← VizExt(G′, e, xi, yi, k, ϕ)

5b) i← i− 1

6) Return ϕ.

The fan number in some way resembles the colouring number. While the defini-
tion of the colouring number relies on the degree of the vertices, the definition of the
fan number relies on the fan-degree of the edges, or vertex pairs joined by at least one
edge. Then the colouring algorithm Vizing2 picks edges of large fan-degree early
and edges of small fan-degree last. Now we have to show that, for any graph G, the
algorithm Vizing2 computes an edge colouring of G using at most Fan(G) colours.

Lemma 2.5 Let G be a graph, let e ∈ EG(x, y), and let ϕ ∈ Ck(G) for an integer
k ≥ ∆(G). If degG(x, y) ≤ k then, on the input (G, e, x, y, k, ϕ), the algorithm
VizExt returns a tuple (k′, ϕ′) where ϕ′ ∈ Ck′(G) and k′ = k.

21

Proof: From Theorem 2.3 we infer that ϕ′ ∈ Ck′(G) and k′ ∈ {k, k + 1}. So we
only have to show that k′ = k. Assume, on the contrary, that k′ = k + 1. Then
Theorem 2.3 implies that there is a maximal multi-fan F at x with respect to e and
ϕ such that V (F) ∪ {x} is elementary with respect to ϕ. From Theorem 2.2(d) it
then follows that the vertex set Z = V (F) satisfies |Z| ≥ 2, y ∈ Z, and

∑

z∈Z
(dG(z) + µG(x, z)− k) ≥

∑

z∈Z
(dG(z) + µF (x, z)− k) = 2.

Since Z ∪ {x} is elementary with respect to ϕ, and since y ∈ Z, we obtain ϕ̄(x) ∩
ϕ̄(y) = ∅. Hence all k colours are present at x or y with respect to ϕ and, therefore,
we have k = |ϕ(x)∪ϕ(y)| = |ϕ(x)|+ |ϕ(y)| − |ϕ(x)∩ϕ(y)| ≤ (dG(x)− 1) + (dG(y)−
1)− (µG(x, y)−1). Hence, we have dG(x) +dG(y)−µG(x, y) ≥ k+ 1. Consequently,
we obtain (x, y, Z) ∈ Fk(G) and, therefore, degG(x, y) ≥ k+1, a contradiction. This
completes the proof.

Theorem 2.6 Let G be an arbitrary graph. Then, on the input G, the algorithm
Vizing2 returns an edge colouring of G that uses at most Fan(G) colours.

Proof: If G is edgeless then Fan(G) = 0, and Vizing2 instantly returns the empty
colouring. Hence, we are done. If G contains at least one edge then Vizing2 first
computes Fan(G) and an optimal sequence S = ((xi, yi) | i = 1, . . . , `). Let (Gi | i =
1, . . . , ` + 1) be the corresponding sequence of subgraphs of G. Then the algorithm
initializes G′, ϕ, k, and i. Now Vizing2 enters step 5 and, since i = ` > 0, enters
the loop 5a-5b. We claim that after j ≥ 0 times running this loop, we have i = `− j,
G′ = Gi+1, ∆(G) ≤ k ≤ Fan(G), and ϕ ∈ Ck(G′). We prove this by induction.

For the basic case j = 0, we have the initial state i = `, G′ = G`+1 the edgeless
graph, k = ∆(G) ≤ Fan(G), and ϕ ∈ Ck(G′) the empty colouring. This settles the
case.

Now let j > 0. By induction, when Vizing2 enters the loop for the jth time,
we have i = ` − j + 1, G′ = Gi+1, ∆(G) ≤ k ≤ Fan(G), and ϕ ∈ Ck(G′). Then
Vizing2 executes step 5a. In this step, the algorithm subsequently extends G′ by the
edges in EG(xi, yi), and uses VizExt to extend the colouring ϕ. Consequently, while
executing this loop, at any time we have E(G′) ⊆ E(Gi+1)∪EG(xi, yi) and, therefore,
G′ ⊆ Gi. Moreover, at the end we have G′ = Gi. To analyse the development of the
value of k during the loop, we consider two cases. In the case that k ≤ Fan(G) −
1 before step 5a-2 in this loop, we conclude from Theorem 2.3 that k ≤ Fan(G)
after step 5a-2. Now consider the case that k = Fan(G) before step 5a-2. From
Theorem 2.4 it then follows that degG′(x, y) ≤ degGi(x, y) ≤ fan(G) ≤ Fan(G) = k.
Then, by Lemma 2.5, the value of k remains the same during execution of step 5a-2.
Since we had k ≤ Fan(G) before step 5a, the value of k never exceeds Fan(G). Hence,
at the beginning of step 5b, we have G′ = Gi, ∆(G) ≤ k ≤ Fan(G), and ϕ ∈ Ck(G′).
Then the value of i is decreased by 1, resulting in i = ` − j and G′ = Gi+1. This
completes the induction step.

After running the loop ` times we have i = 0, and the loop ends. Then we have
G′ = G, and Vizing2 returns the colouring ϕ ∈ Ck(G) where k ≤ Fan(G). This
completes the proof.

22

Now we will look at the time complexity of Vizing2. Let G be a graph, and let
n = |V (G)|, m = |E(G)|, and ∆ = ∆(G). Then Vizing2 needs the following time to
compute a colouring for G. If not already given, the data structures used to compute
S (see above), can be constructed in time O(n + m), and then S can be computed
in time O(n5). Note that the algorithm does not have to compute and store the
whole sequence (Gi | i = 1, . . . , `+ 1) of graphs; it was only used for notation in the
proof. Clearly, after computing the optimal sequence S, the rest of the algorithm
Vizing2 runs in time O

(
m(n + ∆2)

)
, just like Vizing. This gives a total running

time of O
(
n5 + m(n + ∆2)

)
for the algorithm Vizing2 for the input G. A simple

consequence of this is the following result.

Theorem 2.7 (Scheide and Stiebitz [32]) The parameter Fan is an efficiently
realizable upper bound for the chromatic index χ′.

Theorem 2.7 implies, in particular, that χ′(G) ≤ fan(G) whenever G is a graph
with fan(G) ≥ ∆(G). The next result provides some information about the struc-
ture of fan-critical graphs. This result enables us to show that various known upper
bounds for the chromatic index are also upper bounds for the fan number. The
advantage of using the concept of criticality is that the existence of bounds usually
can be shown much easier this way than by constructing algorithms. Since we al-
ready have the algorithm Vizing2 which efficiently realizes the parameter Fan, this
algorithm will also efficiently realize all upper bounds of Fan.

Theorem 2.8 (Scheide and Stiebitz [32]) Let G be a fan-critical graph such that
fan(G) = k + 1 for an integer k ≥ 0, and let x, y ∈ V (G) with EG(x, y) 6= ∅. Then
there is a vertex set Z such that

(a) (x, y, Z) ∈ Fk(G).

Furthermore, there are two vertices z1, z2 ∈ Z such that

(b) dG(z1) + µG(x, z1) ≥ fan(G),

(c) dG(z1) + µG(x, z1) + dG(z2) + µG(x, z2) ≥ 2fan(G), and

(d) dG(x) + dG(z1) + dG(z2) ≥ 2fan(G).

Proof: Since fan as well as Fan are monotone graph parameters and G is critical
with respect to the fan number, we infer that fan(G) = δf (G). Therefore, we have
degG(x, y) ≥ δf (G) = k + 1 ≥ 1. This implies that there is a vertex set Z such that
(x, y, Z) ∈ Fk(G), this shows (a). Consequently, we have |Z| ≥ 2, y ∈ Z ⊆ NG(x),

dG(x) + dG(y)− µG(x, y) ≥ k + 1,

and ∑

z∈Z
(dG(z) + µG(x, z)− k) ≥ 2.

If a1, . . . , a` is a non-increasing sequence of ` ≥ 2 integers with
∑`

i=1 ai ≥ 2 then,
clearly, a1 ≥ 1 and a1 + a2 ≥ 2. This proves (b) as well as (c). Since dG(x) ≥
µG(x, z1) + µG(x, z2), (c) implies (d).

23

Theorem 2.9 The colouring index col′ is an upper bound for the fan number and
hence an efficiently realizable upper bound for χ′.

Proof: The aim is to show that every graph G satisfies fan(G) ≤ col′(G). Since
both parameters are monotone, it follows from Proposition 1.1(b) that it is sufficient
to prove this inequality for all fan-critical graphs G. If fan(G) = 0, this is evident.
Otherwise, G is a fan-critical graph with fan(G) ≥ 1 and, therefore, E(G) 6= ∅. Let
e ∈ EG(x, y) be an arbitrary edge. Clearly, exactly dG(x) + dG(y) − µG(x, y) − 1
edges of G are adjacent to e. From Theorem 2.8 we infer that there is a set Z
such that (x, y, Z) ∈ Fk(G) where k = fan(G) − 1. In particular, this implies that
dG(x) + dG(y)− µG(x, y) ≥ k + 1. Consequently, at least k edges of G are adjacent
to e. Since this holds for every edge e ∈ E(G), this implies that col′(G) is greater
than k and, therefore, col′(G) ≥ k + 1 = fan(G).

Theorem 2.10 (Scheide and Stiebitz [32])Every parameter ρ ∈ {∆+µ, 3
2∆,∆µ}

is an upper bound for the fan number and hence an efficiently realizable upper bound
for χ′.

Proof: Let ρ ∈ {∆ + µ, 3
2∆,∆µ}. The aim is to show that every graph G satis-

fies fan(G) ≤ ρ(G). Since both parameters are monotone, it follows from Proposi-
tion 1.1(b) that it is sufficient to prove this inequality for all fan-critical graphs G.
If fan(G) = 0, this is evident. Otherwise, G is a fan-critical graph with fan(G) ≥ 1.
Then G has an edge, and we easily infer from Theorem 2.8 that there are three ver-
tices x, z1, z2 ∈ V (G) satisfying fan(G) ≤ dG(z1)+µG(x, z1) ≤ ∆µ(G) ≤ ∆(G)+µ(G)
and 2fan(G) ≤ dG(x) + dG(z1) + dG(z2) ≤ 3∆(G). Consequently, we have fan(G) ≤
ρ(G). Since ρ(G) ≥ ∆(G) for every graph G, it then follows from Theorem 2.7 that
ρ is an efficiently realizable upper bound for the chromatic index χ′.

For an arbitrary graph G, we define

µ−(G) = minv∈V (G) µ(G− v)

if G has at least one vertex, and µ−(G) = 0 otherwise. Favrholdt, Stiebitz and
Toft [8] proved that ∆ + µ− is an upper bound for χ′, thus generalizing an earlier
result of Chetwynd and Hilton [3] about almost simple graphs, that are graphs G
for which there exists a vertex v such that the graph G− v is simple.

Theorem 2.11 (Scheide and Stiebitz [32]) ∆ + µ− is an upper bound for the
fan number and hence an efficiently realizable upper bound for χ′.

Proof: Clearly, ∆ + µ− is a monotone graph parameter and, by Proposition 1.1(b),
it is sufficient to show that fan(G) ≤ ∆(G) + µ−(G) for every fan-critical graph G.
If fan(G) = 0, this is evident.

Now assume that fan(G) = k + 1 with k ≥ 0. Then |V (G)| ≥ 3, and there is
a vertex v ∈ V (G) such that µ−(G) = µ(G − v). We have to show that fan(G) ≤
∆(G) +µ−(G) = ∆(G) +µ(G− v). Suppose on the contrary that fan(G) ≥ ∆(G) +
µ(G − v) + 1. Let X = V (G)\{v}, and let s = |X|. Evidently, we have s ≥ 2. By

24

Theorem 2.8(c), every vertex x ∈ X has two distinct neighbours in G, denoted by
z1 = z1(x) and z2 = z2(x), such that

dG(z1) + µG(x, z1) + dG(z2) + µG(x, z2) ≥ 2fan(G) ≥ 2∆(G) + 2µ(G− v) + 2.

We may assume that z2 6= v, hence we have µG(x, z1) ≥ µ(G− v) + 2, implying that
z1 = v and µG(x, v) ≥ µ(G− v) + 2. From the above inequality it then follows that

µG(x, v) + dG(z2) ≥ ∆(G) + µ(G− v) + 2 ≥ dG(v) + µ(G− v) + 2.

Since s = |X| = |V (G)| − 1, this implies

µG(x, v) + µG(z2, v) + (s− 1)µ(G− v) ≥ µG(x, v) + dG(z2)
≥ dG(v) + µ(G− v) + 2

=
(∑

y∈X
µG(y, v)

)
+ µ(G− v) + 2.

Since s ≥ 2 and µG(y, v) ≥ µ(G− v) + 2 for all y ∈ X, we then obtain

(s− 1)µ(G− v) ≥
(∑

y∈X−{x,z2}
µG(y, v)

)
+ µ(G− v) + 2

≥ (s− 2)(µ(G− v) + 2) + µ(G− v) + 2
≥ (s− 1)µ(G− v) + 2.

This, however, gives the desired contradiction.

Eventually, let us mention two other upper bounds for the chromatic index known
in the literature. The first parameter was independently introduced by Andersen [1]
and Goldberg [10], namely

ag(G) = max{∆(G),maxPb1
2(dG(y) + µG(x, y) + dG(z) + µG(x, z))c}

where P = {(x, y, z) | x, y, z ∈ V (G), z 6= y, EG(x, y) 6= ∅, EG(x, z) 6= ∅}.
Another monotone parameter, the so-called supermultiplicity, was introduced by

Kochol, Krivoňáková and Smejová [20]. For a graph G and two distinct vertices
x, y ∈ V (G), let

smG(x, y) = min{dG(y) + µG(x, y), dG(x) + dG(y)− µG(x, y)}.
Let k ≥ ∆(G) be an integer. We call x a k-reducible vertex of G if every neighbour
y of x satisfies smG(x, y) ≤ k. Then the supermultiplicity sm(G) is the smallest
integer k ≥ ∆(G) for which there exists a labeling x1, . . . , xn of the vertices of G
such each xi is a k-reducible vertex of the graph G−{x1, . . . , xi−1}. If G is edgeless,
then sm(G) = 0. It is not difficult to show that sm is a monotone graph parameter.

Theorem 2.12 (Scheide and Stiebitz [32]) Both graph parameters ag and sm
are upper bounds for the fan number and hence efficiently realizable upper bounds for
χ′.

25

Proof: From Theorem 2.8(b) we conclude that every fan-critical graph G satisfies
fan(G) ≤ ag(G). Since both parameters are monotone, Proposition 1.1(b) then im-
plies that ag is an upper bound for the fan number and hence an efficiently realizable
upper bounds for χ′.

Now assume that G is a fan-critical graph. If fan(G) = 0 then fan(G) ≤ sm(G).
Otherwise, fan(G) ≥ 1 and we conclude from Theorem 2.8(a),(b) that each vertex
x has a neighbour z such that dG(z) + µG(x, z) ≥ fan(G) and dG(x) + dG(z) −
µG(x, z) ≥ fan(G), implying that smG(x, z) ≥ fan(G). Consequently, we obtain
fan(G) ≤ sm(G). By Proposition 1.1(b) this implies that sm is an upper bound for
the fan number and hence an efficiently realizable upper bounds for χ′.

The fan number plays a similar role for the chromatic index as the colouring
number does for the chromatic number. Several results concerning the chromatic
number were originally proved using the colouring number. The most famous exam-
ple is Heawood’s bound for the chromatic number of graphs embedded on a surface.
As long as a result about the chromatic index can be proved using just Vizing’s fan
argument, and hence the fan equation, the result has a natural counterpart for the
fan number.

For simple graphs, Vizing’s bound implies that there are only two types of graphs,
class one graphs where χ′ equals ∆, and class two graphs where χ′ equals ∆+1.
Clearly, since Vizing’s bound is also an upper bound of the fan number, we also have
only two types of simple graphs with respect to the parameter Fan. In [40] Vizing
used the fan argument to establish conditions for a simple graph G to be class one.
These results can be generalized for the fan number. To do this we first prove the
following adjacency lemma, which is a counterpart to Vizing’s famous adjacency
lemma for critical, simple graphs, see [40].

Lemma 2.13 Let G be a fan-critical, simple graph with fan(G) = ∆(G) + 1, and
let e ∈ EG(x, y) be an edge of G. Then x is adjacent to at least ∆(G) − dG(y) + 1
vertices z 6= y such that dG(z) = ∆(G).

Proof: Since G is fan-critical and fan(G) = ∆(G)+1, it follows from Theorem 2.8(a)
that there is a set Z ⊆ NG(x) such that (x, y, Z) ∈ F∆(G)(G), that is, |Z| ≥ 2, y ∈ Z,
and

∑
z∈Z(dG(z) + 1−∆(G)) ≥ 2. Consequently, we have

∑

z∈Z\{y}
(dG(z) + 1−∆(G)) ≥ ∆(G)− dG(y) + 1.

Let Z ′ = {z ∈ Z \{y} | dG(z) = ∆(G)}. Then, evidently, we have
∑

z∈Z\{y}
(dG(z) + 1−∆(G)) ≤

∑

z∈Z′
(dG(z) + 1−∆(G)) = |Z ′|.

Hence |Z ′| ≥ ∆(G)− dG(y) + 1, which completes the proof.

Using this lemma, we can prove two results for the fan number, similar to results
for the chromatic index in [40]. The first result is a relation between the fan number
and the colouring number col. To prove this, we will use the fact that the colouring

26

number equals the Szekeres-Wilf number, introduced by Szekeres and Wilf [37]
in 1968. This means that every simple graph G satisfies

col(G) = 1 + max
H⊆G

δ(H).

The second result is about planar, simple graphs with maximum degree at least 8.
The proofs of both results are nearly the same as of the corresponding results for the
chromatic index in [40].

Theorem 2.14 Let G be a simple graph. If ∆(G) ≥ 2col(G) − 2 then fan(G) ≤
∆(G).

Proof: Suppose on the contrary that there is a simple graph G with ∆(G) ≥
2col(G)−2 and fan(G) > ∆(G). Since, by Theorem 2.10, we have fan(G) ≤ ∆(G)+1,
this implies fan(G) = ∆(G) + 1. Clearly, there is a fan-critical subgraph G′ of G
with fan(G′) = fan(G). Since col is a monotone graph parameter, this subgraph G′

satisfies ∆(G′) ≥ fan(G′)− 1 = ∆(G) ≥ 2col(G)− 2 ≥ 2col(G′)− 2. Hence, without
loss of generality, we can assume that G itself is fan-critical.

Let d = col(G). Since fan(G) > 0, the graph G is not edgeless, and we have
d ≥ δ(G)+1 ≥ 2. Hence ∆(G) ≥ 2d−1 > d−1. Let Y = {y ∈ V (G) | dG(y) ≤ d−1}.
Since δ(G) ≤ col(G) − 1 = d − 1 and ∆(G) > d − 1, both sets Y and V (G)\Y
are non-empty. Furthermore, the subgraph H = G − Y satisfies δ(H) + 1 ≤ d
and, therefore, H contains a vertex x with dH(x) ≤ d − 1. Since x /∈ Y , we have
dG(x) ≥ d. Consequently, there is a vertex y ∈ NG(x) ∩ Y . Now let Z = {z ∈
NG(x) | dG(z) = ∆(G)}. Then, by Lemma 2.13, we have |Z| ≥ ∆(G)− dG(y) + 1 ≥
(2d− 2)− (d− 1) + 1 = d. Since ∆(G) > d− 1, we also have Z ′ ⊆ V (G)\Y = V (H)
and, therefore, |Z ′| ≤ dH(x) ≤ d− 1. This contradiction proves the claim.

In 1890 Heawood [12] established an upper bound for the chromatic number of
a graph embedded on a surface of Euler genus g ≥ 1. This upper bound became
known as the Heawood number

H(g) =
⌊

7+
√

24g+1
2

⌋

and is in fact an upper bound for the colouring number of a simple graph embedded
on a surface of Euler genus g ≥ 1. Consequently, Theorem 2.14 implies that if
a simple graph G can be embedded on a surface of Euler genus g ≥ 1 such that
∆(G) ≥ 2H(g) − 2, then fan(G) ≤ ∆(G). For a simple planar graph, the colouring
number is at most 6. Hence, every simple planar graph G with ∆(G) ≥ 10 implies
that fan(G) ≤ ∆(G). The next result shows that 10 is not the optimum.

Theorem 2.15 Let G be a planar, simple graph. If ∆(G) ≥ 8 then fan(G) ≤ ∆(G).

Proof: Suppose on the contrary that there is a planar, simple graph G with ∆(G) =
∆ ≥ 8 but fan(G) > ∆. Since, by Theorem 2.10, we have fan(G) ≤ ∆(G) + 1, this
implies fan(G) = ∆(G) + 1. Clearly, there is a fan-critical subgraph G′ of G with
fan(G′) = fan(G). Then this subgraph G′ satisfies ∆(G′) ≥ fan(G′)−1 = ∆(G) ≥ 8.
Hence, without loss of generality, we may assume that G itself is fan-critical.

27

Let n = |V (G)| and m = |E(G)|. Since we have n ≥ 3, the planarity of G implies
m ≤ 3n−6. For i ∈ N, let ni be the number of vertices x of G with degree dG(x) = i.
Since G is fan-critical, we have n0 = n1 = 0. Then, evidently,

∆∑

i=2

i · ni =
∑

x∈V (G)

dG(x) = 2m ≤ 6n− 12 = 6 ·
∆∑

i=2

ni − 12

and, therefore,
∆∑

i=7

(i− 6)ni ≤ n5 + 2n4 + 3n3 + 4n2 − 12. (2.6)

Let n∆(i2, i3, i4, i5) be the number of vertices x of G with degree dG(x) = ∆ such
that x has id neighbours z of degree dG(z) = d, respectively for d = 2, 3, 4, 5. If
id > 0 for such a vertex x and a d ≤ 5 then, by Lemma 2.13, x has at least ∆ + 1−d
neighbours of degree ∆ and, therefore, we have i2 + i3 + i4 + i5 ≤ d−1. Hence, there
are only 16 types of vertices of degree ∆ where n∆(i2, i3, i4, i5) may be positive.

n∆ = n∆(1, 0, 0, 0) + n∆(0, 1, 0, 0) + n∆(0, 1, 1, 0) + n∆(0, 1, 0, 1)
+ n∆(0, 2, 0, 0) + n∆(0, 0, 1, 0) + n∆(0, 0, 1, 1) + n∆(0, 0, 1, 2)
+ n∆(0, 0, 2, 0) + n∆(0, 0, 2, 1) + n∆(0, 0, 3, 0) + n∆(0, 0, 0, 1)
+ n∆(0, 0, 0, 2) + n∆(0, 0, 0, 3) + n∆(0, 0, 0, 4) + n∆(0, 0, 0, 0).

(2.7)

Similarly, let n∆−1(i3, i4, i5) be the number of vertices x of G with degree dG(x) =
∆−1 such that x has id neighbours z of degree dG(z) = d, respectively for d = 3, 4, 5.
Note that, by Lemma 2.13, a vertex of degree ∆−1 cannot have a neighbour of degree
2. If id > 0 for such a vertex x and a d ≤ 5 then, by Lemma 2.13, x has at least
∆ + 1 − d neighbours of degree ∆ and, therefore, we have i3 + i4 + i5 ≤ d − 2.
Hence, there are only 9 types of vertices of degree ∆− 1 where n∆−1(i3, i4, i5) may
be positive.

n∆−1 = n∆−1(1, 0, 0) + n∆−1(0, 1, 0) + n∆−1(0, 1, 1)
+ n∆−1(0, 2, 0) + n∆−1(0, 0, 1) + n∆−1(0, 0, 1)
+ n∆−1(0, 0, 2) + n∆−1(0, 0, 3) + n∆−1(0, 0, 0).

(2.8)

Now we want to derive a contradiction to (2.6). To do this we will count edges
between vertices of given degree in two different ways, using the given partitions of
n∆ and n∆−1.

First we count the edges between vertices of degree 2 and ∆. From (2.7) it follows
that there are exactly n∆(1, 0, 0, 0) edges of this type. Moreover, by Lemma 2.13,
every vertex with degree 2 has two neighbours with degree ∆. Hence, we have

2n2 = n∆(1, 0, 0, 0). (2.9)

Now we count the edges joining a vertex of degree 3 and one of degree ∆− 1 or
∆. By Lemma 2.13, every vertex with degree 3 has only neighbours with degrees ∆
or ∆− 1. Hence, we have 3n3 edges of this type. Then (2.7) and (2.8) imply that

3n3 = n∆(0, 1, 0, 0) + n∆(0, 1, 1, 0) + n∆(0, 1, 0, 1)
+ 2n∆(0, 2, 0, 0) + n∆−1(1, 0, 0).

(2.10)

28

By Lemma 2.13, every vertex with degree 5 has at least two neighbours with
degree ∆. Hence, there are at least 2n5 edges joining a vertex of degree 5 and one
of degree ∆ or ∆− 1. Then, by (2.7) and (2.8), we obtain

2n5 ≤ n∆(0, 1, 0, 1) + n∆(0, 0, 1, 1) + 2n∆(0, 0, 1, 2)
+ n∆(0, 0, 2, 1) + n∆(0, 0, 0, 1) + 2n∆(0, 0, 0, 2)
+ 3n∆(0, 0, 0, 3) + 4n∆(0, 0, 0, 4).

(2.11)

By Lemma 2.13, every vertex with degree 4 either has one neighbour with degree
∆−2 and 3 neighbours with degree ∆, or has 4 neighbours with degrees ∆ or ∆−1.
Let n′4 be the number of vertices of G with degree 4 having a neighbour of degree
∆ − 2. Then there are 3n′4 + 4(n4 − n′4) edges joining a vertex of degree 4 and one
of degree ∆ or ∆− 1, and from (2.7) and (2.8) it follows that

3n′4 + 4(n4 − n′4) = n∆(0, 1, 1, 0) + n∆(0, 0, 1, 0) + n∆(0, 0, 1, 1)
+ n∆(0, 0, 1, 2) + 2n∆(0, 0, 2, 0) + 2n∆(0, 0, 2, 1)
+ 3n∆(0, 0, 3, 0) + n∆−1(0, 1, 0) + n∆−1(0, 1, 1)
+ 2n∆−1(0, 2, 0).

(2.12)

Furthermore, by Lemma 2.13, every vertex with degree 4 has at least two neigh-
bours with degree ∆. Consequently, in the case, where a vertex with degree 4 has
only neighbours with degrees ∆ or ∆ − 1, it has at most two neighbours with de-
gree ∆ − 1. Hence, there are at most 2(n4 − n′4) edges between vertices of degrees
4 and ∆ − 1. Since there are at least 2n∆−1(0, 2, 0) edges of this type, we obtain
n4 − n′4 ≥ n∆−1(0, 2, 0). From this and (2.12) it then follows that

3n4 ≤ n∆(0, 1, 1, 0) + n∆(0, 0, 1, 0) + n∆(0, 0, 1, 1)
+ n∆(0, 0, 1, 2) + 2n∆(0, 0, 2, 0) + 2n∆(0, 0, 2, 1)
+ 3n∆(0, 0, 3, 0) + n∆−1(0, 1, 0) + n∆−1(0, 1, 1)
+ n∆−1(0, 2, 0).

(2.13)

From the four inequalities (2.9),(2.10),(2.11) and (2.13) we now conclude that

n5 + 2n4 + 3n3 + 4n2

≤ 2n∆(1, 0, 0, 0) + n∆(0, 1, 0, 0) + 5
3n∆(0, 1, 1, 0) + 2

3n∆(0, 1, 0, 1)
+ 2n∆(0, 2, 0, 0) + 2

3n∆(0, 0, 1, 0) + 7
6n∆(0, 0, 1, 1) + 5

8n∆(0, 0, 1, 2)
+ 4

3n∆(0, 0, 2, 0) + 11
6 n∆(0, 0, 2, 1) + 2n∆(0, 0, 3, 0) + 1

2n∆(0, 0, 0, 1)
+ n∆(0, 0, 0, 2) + 3

2n∆(0, 0, 0, 3) + 2n∆(0, 0, 0, 4)
+ n∆−1(1, 0, 0) + 2

3n∆−1(0, 1, 0) + 2
3n∆−1(0, 1, 1) + 2

3n∆−1(0, 2, 0).

By (2.7) and (2.8), this implies n5+2n4+3n3+4n2 ≤ 2n∆+n∆−1. Consequently,
since ∆ ≥ 8, we have

n5 + 2n4 + 3n3 + 4n2 ≤ 2n∆ + n∆−1 ≤
∆∑

i=7

(i− 6)ni,

29

a contradiction to (2.6). This completes the prove.

That a simple planar graph of maximum degree 7 is of class one, was recently
proved by Zhang [41] and, independently, by Sanders and Zhao [26]. However, both
proofs use adjacency lemmas that cannot be derived from the fan equation. We do
not know whether every simple planar graph G with maximum degree 7 satisfies
fan(G) ≤ ∆(G).

2.5 The Kierstead Path

Kierstead [19] invented a new type of test objects for the edge colouring problem. He
used it to give a strengthening of Vizing’s result. Kierstead’s method can also be used
to give an alternative colouring algorithm. This algorithm is based on recolouring
the edges of a path instead of recolouring the edges of a fan.

Definition 2.16 Let G be a graph, let e ∈ E(G), and let ϕ ∈ Ck(G− e) for an inte-
ger k. A Kierstead path with respect to e and ϕ is a sequence (y0, e1, y1, . . . , ep, yp)
consisting of edges e1, . . . , ep and vertices y0, . . . , yp satisfying the following two con-
ditions:

(K1) The vertices y0, . . . , yp are distinct, e1 = e, and ei ∈ EG(yi−1, yi) for i =
1, . . . , p.

(K2) For every edge ei with 2 ≤ i ≤ p, there is a vertex yj with 0 ≤ j < i such that
ϕ(ei) ∈ ϕ̄(yj).

Kierstead [19] proved 1984 that for every graph G with χ′(G) = k+ 1, the vertex
set of any Kierstead path with respect to a critical edge e ∈ E(G) and a colouring
ϕ ∈ Ck(G − e) is elementary with respect to ϕ if k ≥ ∆(G) + 1. That Kierstead’s
argument also works in case of k = ∆(G) provided we add a degree condition seems
to be first noticed by Zhang [41]. In the following we formulate an algorithmic version
of Kierstead’s result.

If K = (y0, e1, y1, . . . , ep, yp) is a Kierstead path, then (K1) implies that the
corresponding graph (V (K), E(K)) is indeed a path in G with endvertices y0 and
yp. We call K a maximal Kierstead path with respect to e and ϕ if there is no
edge-vertex pair (f, v) such that (K, f, v) is a Kierstead path with respect to e and
ϕ. Clearly, Kyq remains a Kierstead path whenever 1 ≤ q ≤ p. Furthermore, if
V (K) is not elementary with respect to ϕ, then there exists an integer 1 ≤ q ≤ p
such that V (Kyq) is not elementary, but V (Kyq−1) is elementary with respect to ϕ.

Theorem 2.17 Let G be a graph, let e ∈ E(G), and let ϕ ∈ Ck(G−e) for an integer
k ≥ ∆(G). Furthermore, let K = (y0, e1, y1, . . . , ep, yp) be a Kierstead path with
respect to e and ϕ such that dG(yj) < k for all j = 2, . . . , p. If V (K) is not elementary
but V (Kyp−1) is elementary with respect to ϕ, then a colouring ϕ′ ∈ Ck(G) can be
derived from ϕ by at most p(p+1)

2 − 1 Kempe changes plus colouring the edge e.

Proof: The proof will be based on induction with respect to p. If p = 1 then
K consists only of the edge e1 = e and the two endvertices y0 and y1. Clearly,

30

V (Ky0) = {y0} is elementary with respect to ϕ. Since V (K) is not elementary with
respect to ϕ, there is a colour α ∈ ϕ̄(y0) ∩ ϕ̄(y1). Hence we can get ϕ′ simply by
colouring e with α.

Now let p > 1. Since V (K) is not elementary, but V (Kyp−1) is elementary with
respect to ϕ, there is a maximal index i ∈ {0, . . . , p− 1} such that ϕ̄(yi)∩ ϕ̄(yp) 6= ∅.
Let α ∈ ϕ̄(yi) ∩ ϕ̄(yp). Now we claim that there is a colouring ϕ′′ ∈ Ck(G − e) and
an index r < p such that Kyr is a Kierstead path with respect to e and ϕ′′, V (Kyr)
is not elementary, but V (Kyr−1) is elementary with respect to ϕ′′. Moreover, the
colouring ϕ′′ can be derived from ϕ by at most p− i Kempe changes.

If this claim is proved then, by induction, we can derive the desired colouring
ϕ′ from ϕ′′ by at most r(r+1)

2 − 1 Kempe changes plus colouring the edge e. From
r ≤ p − 1 and p − i ≤ p we then conclude that in total we need at most p(p+1)

2 − 1
Kempe changes plus the colouring of e to derive ϕ′ from ϕ.

To complete the proof we only have to prove the claim. To do this we use again an
induction, this time with respect to i and secondarily to the induction with respect
to p.

If i = p − 1 then let β = ϕ(ep). By definition, there is an index j < p with
β ∈ ϕ̄(yj). Since ep ∈ EG(yp−1, yp), we have j < p − 1. Since α ∈ ϕ̄(yp−1) ∩ ϕ̄(yp),
we can recolour ep with α, resulting in a colouring ϕ′′ ∈ Ck(G− e) such that Kyp−1

is a Kierstead path with respect to e and ϕ′′ satisfying β ∈ ϕ̄′′(yj) ∩ ϕ̄′′(yp−1).
Clearly, since ep ∈ EG(yp−1, yp), the set V (Kyp−2) remains elementary with respect
to ϕ′′. We used exactly one Kempe change, namely the recolouring of ep, because
Pyp(α, β, ϕ) = P (yp, ep, yp−1). This settles the case.

Now let i < p − 1. Since the edge e1 is uncoloured with respect to ϕ, we have
|ϕ̄(yj)| = k − dG(yj) + 1 for j = 1, 2 and |ϕ̄(yj)| = k − dG(yj) otherwise. From
dG(yj) < k for j = 2, . . . , p and k ≥ ∆(G) we conclude that ϕ̄(yj) 6= ∅ for j =
0, . . . , p. In particular, this implies that there is a colour β ∈ ϕ̄(yi+1). Since yi+1 ∈
V (Kyp−1) and V (Kyp−1) is elementary with respect to ϕ, the colours α and β
are distinct and, moreover, α ∈ ϕ(yi+1), β ∈ ϕ(yi), and α, β ∈ ϕ(yh) for h =
0, . . . , i− 1. Consequently, by definition, we have ϕ(eh) /∈ {α, β} for h = 2, . . . , i+ 1
and, moreover, the (α, β)-chain P = Pyi+1(α, β, ϕ) is a path with one endvertex yi+1

and another endvertex z ∈ V (G)\{y0, . . . , yi−1, yi+1}. Hence ϕ1 = ϕ/P ∈ Ck(G− e),
and we distinguish two cases.

If z = yi, then K is a Kierstead path with respect to e and ϕ1, where α ∈
ϕ̄1(yi+1)∩ ϕ̄1(yp). Clearly, the set V (Kyp−1) remains elementary with respect to ϕ1.
Hence, by induction, we can derive the colouring ϕ′′ from ϕ1 by at most p − i − 1
Kempe changes. Therefore, to derive ϕ′′ from ϕ we need p − i Kempe changes in
total. This settles the case z = yi.

If z 6= yi then Kyi+1 is a Kierstead path with respect to e and ϕ1, where α ∈
ϕ̄1(yi)∩ ϕ̄1(yi+1). Since the set V (Kyi) remains elementary with respect to ϕ1, then
we already have our desired colouring ϕ′′ = ϕ1. There was just one Kempe change
needed to derive ϕ′′ = ϕ1 from ϕ. Since 1 ≤ p− i, this settles the case z 6= yi. This
completes the induction and proves the claim.

This result gives us a way to construct an alternative kernel KierExt for our
colouring algorithm.

31

KierExt(G, e, x, y, k, ϕ):

1) p← 1, ep ← e, yp ← y, y0 ← x, K ← (y0, ep, yp).

2) If ϕ̄(V (Kyp−1)) ∩ ϕ̄(yp) 6= ∅ then
2a) Compute ϕ′ ∈ Ck(G) as in Theorem 2.17.
2b) Return (k, ϕ′).

3) If ∃ep+1 ∈ EG(yp, V (G)\V (K)) : ϕ(ep+1) ∈ ϕ̄(V (K)) then
3a) Let yp+1 be the endvertex of ep+1 that is not yp.
3b) K ← (K, ep+1, yp+1), p← p+ 1.
3c) Goto 2.

4) ϕ′ ← ϕ, ϕ′(e)← k + 1.

5) Return (k + 1, ϕ′).

Correctness of KierExt: Let G be a graph, let e ∈ EG(x, y), and let ϕ ∈
Ck(G − e) for an integer k ≥ ∆(G) + 1. Then, on the input (G, e, x, y, k, ϕ), the
algorithm KierExt subsequently builds a Kierstead path K = (y0, e1, y1, . . . , ep, yp)
with respect to e and ϕ until either V (K) is not elementary with respect to ϕ, or K
is a maximal Kierstead path with respect to e and ϕ. In the first case, V (Kyp−1) is
elementary with respect to ϕ, otherwise the algorithm had detected it before. Fur-
ther, k ≥ ∆(G) + 1 implies that d(y) < k for all y ∈ V (K). Hence, the requirements
of Theorem 2.17 are fulfilled, and KierExt can compute the colouring ϕ′ ∈ Ck(G).
Consequently, KierExt works correctly in this case. In the other case, clearly,
V (K) is maximal and elementary with respect to ϕ, and KierExt simply assigns
a new colour to e. In any case, KierExt computes a colouring ϕ′ ∈ Ck′(G) where
k′ ∈ {k, k + 1}.

Note that, in order to fulfill the requirements of Theorem 2.17, we had to require
k ≥ ∆(G) + 1. So from now on require this for an input (G, e, x, y, k, ϕ) to be valid.

Time Complexity of KierExt: Now we have to analyse the running time of
the algorithm KierExt on a valid input, that is, an input (G, e, x, y, k, ϕ) with
|V (G)| = n and ∆(G) = ∆. The first initializing step only needs constant time. Due
to the goto-statement in step 3c there is a loop starting in step 2. In every round the
value of p is increased, the number of rounds is bounded by the order of a maximal
Kierstead path with respect to e and ϕ. Since the vertices of a Kierstead path are
distinct, we have p ≤ n. Moreover, in the loop V (Kyp−1) is always an elementary
set with respect to ϕ and, since k ≥ ∆(G) + 1, we also have p ≤ |ϕ̄(V (Kyp−1))| ≤ k.
Hence, the loop is repeated at most min{n, k} times.

In every sweep of the loop the algorithm has to check the condition of step 2.
This can be done in time O(∆) by maintaining, for every colour α, an entry IND[α]
that is the index i of the vertex yi where α is missing. During step 2 it can easily
be updated. Moreover, during this step we can identify the maximal index i such
that there is a colour α ∈ ϕ̄(yi)∩ ϕ̄(yp) which is needed for the following recolouring
procedure, see the proof of Theorem 2.17. The recolouring step 2a does not count to
the loop, because the algorithm will terminate right after this step. The next step
inside the loop is step 3. This check can be done in time O(∆) by simply scanning

32

the adjacency list of yp and using the IND-entries. Note, that to decide whether
a vertex belongs to V (K) or not, we simply mark every vertex when adding it to
V (K). Updating K clearly needs constant time, then the loop starts over again.
Consequently, every round in the loop needs time O(∆). For the whole loop, this
gives a running time of O(n∆) or O(k∆), respectively.

The step 2a is computed at most once during the algorithm. During the check
in step 2, the necessary index and colour (which are needed to start the recolouring
procedure) are already computed, and the time costs for this have already been taken
into account. Hence, the running time of step 2a contains only the real recolouring
costs, which are determined by the number of the performed Kempe changes, see
Section 2.2. By Theorem 2.17, at most O(p2) Kempe changes are needed and, as
already stated, we have p ≤ n as well as p ≤ k. Consequently, step 2a has a running
time of O(n2(n+ ∆)) or O(k2(n+ ∆)), respectively.

If the algorithm uses a new colour in step 4, this needs only constant time. Since
we can assume k ∈ O(∆), see Section 2.2, KierExt has a total running time of
O
(
n2(n + ∆)

)
or O

(
∆2(n + ∆)

)
, respectively. Since we may have n ∈ o(∆) or

∆ ∈ o(n), neither of these two bounds is generally better than the other one. Hence,
we have a running time of O

(
(n+ ∆) min{n2,∆2}) for the algorithm KierExt.

Kierstead’s colouring algorithm: For the Kierstead path, there is a inequality
similar to the fan equation. To see this, let G be a graph, let e ∈ EG(x, y), and
let ϕ ∈ Ck(G − e) for an integer k ≥ ∆(G) + 1. If KierExt increases the number
of colours for the input (G, e, x, y, k, ϕ), then there is a maximal Kierstead path
K = (y0, e1, y1, . . . , ep, yp) with respect to e and ϕ such that V (K) is elementary
with respect to ϕ. Hence, we have p ≥ 2 and, for the vertex set X = V (Kyp−1) we
have ϕ̄(X) ⊆ ϕ(yp). From this and the fact that K is a maximal Kierstead path
with respect to e and ϕ, we infer that for every colour α ∈ ϕ̄(X) there is an edge
f ∈ EG(yp, X) with ϕ̄(f) = α. This implies |ϕ̄(X)| ≤ |EG(yp, X)| = ∑

z∈X µ(z, yp).
On the other hand, since x, y ∈ X and X is elementary with respect to ϕ, we have
|ϕ̄(X)| ≥∑z∈X(k − dG−e(z)) =

∑
z∈X(k − dG(z)) + 2. Consequently, this gives the

inequality ∑

z∈X
(dG(z) + µG(z, yp)− k) ≥ 2. (2.14)

Let Kierstead be a colouring algorithm that uses an arbitrary edge order,
KierExt as kernel, and that starts with k = ∆(G) + 1 for any input graph with
∆(G) ≥ 2. Note that in the case ∆(G) ≤ 1 the algorithm can simply colour the
graph optimal with ∆(G) colours. Clearly, Kierstead only increases the number
of colours if ∆(G) ≥ 2 and (2.14) holds for a subgraph of G. From (2.14) then
follows that Kierstead attains Vizing’s and Shannon’s bound. This can be seen as
follows. If G is a graph and k ≥ ∆(G) + µ(G) then (2.14) fails for G as well as for
any subgraph of G. Since Kierstead starts with k = ∆(G) + 1 ≤ ∆(G) + µ(G), it
follows that the value of k is never increased above ∆(G) + µ(G) by the subroutine
KierExt. Consequently, Kierstead uses not more than ∆(G) + µ(G) colours,
which proves Vizing’s bound. Shannon’s bound can be proved the same way, because
for ∆(G) ≥ 2 the algorithm starts with k ≤ 3

2∆(G), and (2.14) also fails for every
k > 3

2∆(G) − 1. This can be seen as follows. Using
∑

z∈X µG(z, yp) ≤ dG(yp),

33

(2.14) implies (p + 1)∆(G) − kp ≥ 2 which fails for k > ∆(G) + ∆(G)−2
p . Since

∆(G) ≥ 2 and p ≥ 2, it fails for every k > 3
2∆(G) − 1. Since Kierstead starts

with k ≤ 3
2∆(G), it follows that the value of k is never increased above 3

2∆(G) by
the subroutine KierExt. Consequently, Kierstead uses not more than 3

2∆(G)
colours, which proves Shannon’s bound.

2.6 The Tashkinov Tree

Tashkinov [38] obtained a common generalization, Tashkinov trees, of both the Viz-
ing fans and the Kierstead paths. Tashkinov trees form a very useful type of test
objects for the edge colouring problem.

Definition 2.18 Let G be a graph, let e ∈ E(G), and let ϕ ∈ Ck(G− e) for an inte-
ger k. A Tashkinov tree with respect to e and ϕ is a sequence (y0, e1, y1, . . . , ep, yp)
consisting of edges e1, . . . , ep and vertices y0, . . . , yp satisfying the following two con-
ditions:

(T1) The vertices y0, . . . , yp are distinct, e1 = e and, for i = 1, . . . , p, we have
ei ∈ EG(yi, yj) where 0 ≤ j < i.

(T2) For every edge ei with 2 ≤ i ≤ p, there is a vertex yj with 0 ≤ j < i such that
ϕ(ei) ∈ ϕ̄(yj).

If T is a Tashkinov tree, then condition (T1) implies that the corresponding
graph (V (T), E(T)) is indeed a tree in G. If F = (e1, y1, . . . , ep, yp) is a multi-fan at
a vertex x with respect to a colouring ϕ ∈ Ck(G− e), then T = (x, e1, y1, . . . , ep, yp)
is a Tashkinov tree with respect to e and ϕ, provided that the vertices y1, . . . , yp
are distinct. Furthermore, every Kierstead path with respect to e and ϕ is also a
Tashkinov tree with respect to e and ϕ.

Let T = (y0, e1, y1, . . . , ep, yp) be a Tashkinov tree with respect to e and a colour-
ing ϕ ∈ Ck(G − e). Clearly, Tyr with 1 ≤ r ≤ p is a Tashkinov tree with respect
to e and ϕ, too. Furthermore, ypT = (yp) is a path in G of length 0. Hence there
is a smallest integer i ∈ {0, . . . , p} such that the sequence yiT = (yi, ei+1, . . . , ep, yp)
corresponds to a path in G, that is, ej ∈ EG(yj−1, yj) for j = i+ 1, . . . , p. We refer
to this number i as the path number of T and write p(T) = i. Clearly, if p(T) = 0
then T is a Kierstead path with respect to e and ϕ.

We call T a maximal Tashkinov tree with respect to e and ϕ if there is no
edge-vertex pair (f, z) such (T, f, z) is a Tashkinov tree with respect to e and ϕ.
This means that there is no edge f ∈ EG(V (T), V (G)\V (T)) with ϕ(f) ∈ ϕ̄(V (T)).
Consequently, T is a maximal Tashkinov tree with respect to e and ϕ iff V (T) is
closed with respect to ϕ. Furthermore, we say that a colour α is used on T with
respect to ϕ if ϕ(f) = α for some edge f ∈ E(T). Otherwise, we say that α is
unused on T with respect to ϕ.

In 2000 Tashkinov [38] proved that for every graph G with χ′(G) = k + 1, the
vertex set of any Tashkinov tree with respect to a critical edge e ∈ E(G) and a
colouring ϕ ∈ Ck(G − e) is elementary with respect to ϕ if k ≥ ∆(G) + 1. We will
give an algorithmic version of this result, that allows us to construct a colouring
algorithm using Tashkinov trees as test objects.

34

Lemma 2.19 Let G be a graph, let e ∈ E(G), and let ϕ ∈ Ck(G− e) for an integer
k ≥ ∆(G) + 1. Furthermore, let T = (y0, e1, y1, . . . , ep, yp) be a Tashkinov tree with
respect to e and ϕ such that V (Tyr) is elementary with respect to ϕ for some integer
1 ≤ r ≤ p.
(a) Then there are at least 4 colours in ϕ̄(V (Tyr)) which are unused on Tyr with

respect to ϕ.

Let 0 ≤ i < j ≤ r, let (yi, yj) be a (γ, δ)-pair with respect to ϕ, and let γ be unused
on Tyj with respect to ϕ. Furthermore, let P = Pyj (γ, δ, ϕ) and ϕ′ = ϕ/P . Then the
following statements hold:

(b) If yi is not an endvertex of P then T ′ = Tyj is a Tashkinov tree with respect to e
and ϕ′, and V (T ′) is not elementary, but V (T ′yj−1) is elementary with respect
to ϕ′.

(c) If yi is an endvertex of P , then T is a Tashkinov tree with respect to e and ϕ′,
and V (Tyr) is elementary with respect to ϕ′.

Proof: For the set ϕ̄(v) of missing colours at v ∈ V (T), we have |ϕ̄(v)| = k −
dG(v) + 1 ≥ 2 if v ∈ {y0, y1} and |ϕ̄(v)| = k − dG(v) ≥ 1 otherwise. Since V (Tyr)
is elementary with respect to ϕ, and since y0, y1 ∈ V (Tyr), it then follows that
|ϕ̄(V (Tyr))| ≥ |V (Tyr)| + 2 = r + 3. Since |E(Tyr)| = r, e1 = e ∈ E(Tyr), and e
is uncoloured, at least 4 colours in ϕ̄(V (Tyr)) are unused on Tyr with respect to ϕ.
This proves (a).

Since V (Tyr) is elementary with respect to ϕ, no vertex v ∈ V (Tyr)\{yi, yj} can
be an endvertex of the (γ, δ)-chain P and, therefore, we have ϕ̄′(v) = ϕ̄(v) for every
such vertex v. Since δ ∈ ϕ̄(yj), j ≤ r, and V (Tyr) is elementary with respect to ϕ,
the colour δ is unused on Tyj with respect to ϕ. Since the colour γ also is unused on
Tyj , this implies E(Tyj) ∩ E(P) = ∅. Consequently, Tyj remains a Tashkinov tree
with respect to e and ϕ′.

If yi is not an endvertex of P then, since γ ∈ ϕ̄(yi), yi does not belong to P at
all. Consequently, we have ϕ̄′(yi) = ϕ̄(yi). Hence, we have γ ∈ ϕ̄′(yi) ∩ ϕ̄′(yj) and,
therefore, V (T ′) is not elementary with respect to ϕ′. Since ϕ̄′(v) = ϕ̄(v) for every
v ∈ V (Tyj−1), and since V (Tyj−1) ⊆ V (Tyr) is elementary with respect to ϕ, we
infer that V (T ′yj−1) = V (Tyj−1) is elementary with respect to ϕ′. This proves (b).

If yi is an endvertex of P then ϕ̄′(yi) = (ϕ̄(yi)\{γ})∪{δ} and ϕ̄′(yj) = (ϕ̄(yi)\{δ})∪
{γ}. Since ϕ̄′(v) = ϕ̄(v) for all vertices v ∈ V (G)\{yi, yj}, we conclude that V (Tyr)
still is elementary with respect to ϕ′ and, moreover, that ϕ̄′(V (Tyj)) = ϕ̄(V (Tyj)).
Then, for h ∈ {i, . . . , p}, we clearly have ϕ′(eh) ∈ {ϕ(eh), γ, δ} ⊆ ϕ̄(V (Tyh−1)) =
ϕ̄′(V (Tyh−1)). Hence, T remains a Tashkinov tree with respect to e and ϕ′. This
proves (c).

Theorem 2.20 Let G be a graph with |V (G)| = n, let e ∈ E(G), and let ϕ ∈
Ck(G − e) for an integer k ≥ ∆(G) + 1. Furthermore, let T = (y0, e1, y1, . . . , ep, yp)
be a Tashkinov tree with respect to e and ϕ such that V (T) is not elementary, but
V (Typ−1) is elementary with respect to ϕ. Then a colouring ϕ∗ ∈ Ck(G) can be de-
rived from ϕ by performing at most O(min{pn2, pk2}) Kempe changes plus colouring
the edge e.

35

Proof: The proof is by induction on the path number q = p(T). If q ≤ 2 then,
since e1 ∈ EG(y0, y1), we have either q = 0 or q = 2. In the first case T is a
Kierstead path with respect to e and ϕ. In the second case e2 ∈ EG(y2, y0) and
T ′ = (y1, e1, y0, e2, y2, . . . , ep, yp) is a Kierstead path with respect to e and ϕ. Hence,
in both cases, Theorem 2.17 implies that the desired colouring ϕ∗ can be derived
from ϕ using at most O(p2) Kempe changes.

For the induction step, let q ≥ 3. Clearly, we have p ≥ q. Since V (Typ−1) is
elementary, but V (T) is not elementary with respect to ϕ, there is at least one index
i ∈ {0, 1, . . . , p − 1} such that ϕ̄(yi) ∩ ϕ̄(yp) 6= ∅. We denote the set of all these
indices by Iϕ. Now, for the proof of the induction step, we use induction again, this
time with respect to p = |V (T)| − 1.

Case 1: (the basic case) p = q. This implies that ep ∈ EG(yh, yp) for some
integer h ≤ p− 2. Let β = ϕ(ep). Now we have to distinguish between some cases.

Case 1a: β ∈ ϕ(yp−1) and min Iϕ ≤ p − 2. Then β ∈ ϕ̄(V (Typ−2)), and
there is an index i ≤ p − 2 satisfying ϕ̄(yi) ∩ ϕ̄(yp) 6= ∅. Then, evidently, T ′ =
(y0, e1, y1, . . . , ep−2, yp−2, ep, yp) is a Tashkinov tree with respect to e and ϕ satisfy-
ing p(T ′) ≤ |V (T ′)|−1 < |V (T)|−1 = p(T) and, moreover, V (T ′) is not elementary,
but V (T ′yp−2) is elementary with respect to ϕ. Consequently, by induction, we can
derive the desired colouring ϕ∗ from ϕ.

Case 1b: β ∈ ϕ(yp−1) and Iϕ = {p− 1}. Then there is a colour α ∈ ϕ̄(yp−1) ∩
ϕ̄(yp). By Lemma 2.19(a), there are at least 4 colours in ϕ̄(V (Typ−2)) that are unused
on Typ−2 with respect to ϕ. Consequently, there is a colour γ ∈ ϕ̄(V (Typ−2)),
say γ ∈ ϕ̄(yj) with j ≤ p − 2, such that γ is unused on T with respect to ϕ.
Since V (Typ−1) is elementary with respect to ϕ, it follows that γ is distinct from α.
Hence, (yj , yp−1) is a (γ, α)-pair with respect to ϕ. Now let P = Pyp−1(α, γ, ϕ) and
ϕ′ = ϕ/P .

If yj is an endvertex of P then, by Lemma 2.19(c), T is a Tashkinov tree with
respect to e and ϕ′, and V (Typ−1) is elementary with respect to ϕ′. Moreover, we
have α ∈ ϕ̄′(yj)∩ ϕ̄′(yp) and β = ϕ′(ep) ∈ ϕ′(yp−1). Hence, we can derive the desired
colouring ϕ∗ from ϕ′ as in Case 1a.

If yj is not an endvertex of P then, by Lemma 2.19(b), T ′ = Typ−1 is a Tashkinov
tree with respect to e and ϕ′ such that V (T ′) is not elementary, but V (T ′yp−2) is
elementary with respect to ϕ′. Moreover, we have p(T ′) ≤ |V (T ′)|− 1 = p− 1 < p =
q = p(T). Consequently, by induction, we can derive the desired colouring ϕ∗ from
ϕ′.

Case 1c: β ∈ ϕ̄(yp−1) and there is an index i ≤ p− 2 and a colour α ∈ ϕ̄(yi) ∩
ϕ̄(yp) that is not used on T with respect to ϕ. Since V (Typ−1) is elementary with
respect to ϕ, we have α 6= β, implying that (yi, yp−1) is an (α, β)-pair with respect
to ϕ. Now let P = Pyp−1(α, β, ϕ) and ϕ′ = ϕ/P .

If yi is an endvertex of P then, by Lemma 2.19(c), T is a Tashkinov tree with
respect to e and ϕ′, and V (Typ−1) is elementary with respect to ϕ′. Since β = ϕ(ep)
and α ∈ ϕ̄(yp), we conclude that yp does not belong to P . This implies that β =
ϕ′(ep) and α ∈ ϕ̄′(yp). Furthermore, we have β ∈ ϕ̄′(yi) and α ∈ ϕ̄′(yp−1). Hence,
we can derive the desired colouring ϕ∗ from ϕ′ as in Case 1a or Case 1b.

If otherwise yi is not an endvertex of P then, by Lemma 2.19(c), T ′ = Typ−1 is

36

a Tashkinov tree with respect to e and ϕ′ such that V (T ′) is not elementary, but
V (T ′yp−2) is elementary with respect to ϕ′. Moreover, we have p(T ′) ≤ |V (T ′)|−1 =
p−1 < p = q = p(T). Consequently, by induction, we can derive the desired colouring
ϕ∗ from ϕ′.

Case 1d: β ∈ ϕ̄(yp−1) and min Iϕ ≤ p − 2. Then there is an index i ≤ p − 2
and a colour α ∈ ϕ̄(yi)∩ ϕ̄(yp). We may assume that α is used on T with respect to
ϕ, otherwise we are in Case 1c. By Lemma 2.19(a), there are at least 4 colours in
ϕ̄(V (Typ−2)) that are unused on Typ−2 with respect to ϕ. Consequently, there is a
colour γ ∈ ϕ̄(V (Typ−2)), say γ ∈ ϕ̄(yj) with j ≤ p − 2, such that γ is unused on T
with respect to ϕ. We may assume that γ ∈ ϕ(yp), otherwise we are again in Case
1c (with γ instead of α). Since V (Typ−1) is elementary with respect to ϕ, it follows
that γ is distinct from α. Now let P = Pyp(α, γ, ϕ). Clearly, P is a path, and yp is
an endvertex of P .

If V (P)∩ V (Typ−1) = ∅ then E(P)∩E(T) = ∅ and, therefore, T is a Tashkinov
tree with respect to e and ϕ′ = ϕ/P . Moreover, we have ϕ̄(y) = ϕ̄(y) for all
y ∈ V (Typ−1) and, therefore, V (Typ−1) remains elementary with respect to ϕ′.
Since we now have γ ∈ ϕ̄′(yj)∩ ϕ̄′(yp) and γ is not used on T with respect to ϕ′, we
can derive the desired colouring ϕ∗ from ϕ′ as in Case 1c.

If V (P) ∩ V (Typ−1) 6= ∅ then there is a number i0 ∈ {0, . . . , p− 1} such that yi0
belongs to P , and the subpath P ′ of P joining yp and yi0 does not contain any other
vertex of V (Typ−1). Let P ′ = (yi0 , f1, z1, . . . , fm, zm) where zm = yp. If i0 < p − 1
then, since α ∈ ϕ̄(yi) and γ ∈ ϕ̄(yj), where i, j ≤ p− 2,

T ′ = (y0, e1, y1, . . . , ep−2, yp−2, f1, z1, . . . , fm, zm)

is a Tashkinov tree with respect to e and ϕ satisfying α ∈ ϕ̄(yi) ∩ ϕ̄(zm). Conse-
quently, since V (T ′yp−2) is elementary with respect to ϕ, there is a smallest index
m′ ∈ {1, . . . ,m} such that T ′′ = T ′zm′ is not elementary with respect to ϕ. More-
over, we have p(T ′′) ≤ p− 1 < p = q = p(T). Hence, by induction, we can derive the
desired colouring ϕ∗ from ϕ. In the other case we have i0 = p− 1, and

T ′ = (y0, e1, y1, . . . , ep−1, yp−1, f1, z1, . . . , fm, zm)

is a Tashkinov tree with respect to e and ϕ satisfying α ∈ ϕ̄(yi) ∩ ϕ̄(zm). Conse-
quently, since V (T ′yp−1) is elementary with respect to ϕ, there is a smallest index
m′ ∈ {1, . . . ,m} such that T ′′ = T ′zm′ is not elementary with respect to ϕ. More-
over, we have p(T ′′) ≤ p− 1 < p(T). Hence, by induction, we can derive the desired
colouring ϕ∗ from ϕ.

Case 1e: β ∈ ϕ̄(yp−1) and Iϕ = {p− 1}. Then there is a colour α ∈ ϕ̄(yp−1) ∩
ϕ̄(yp). Clearly, α 6= β. By Lemma 2.19(a), there are at least four colours in
ϕ̄(V (Typ−2)) that are unused on Typ−2 with respect to ϕ. Consequently, there
is a colour γ ∈ ϕ̄(V (Typ−2)), say γ ∈ ϕ̄(yj) with j ≤ p− 2, such that γ is unused on
T with respect to ϕ. Since V (Typ−1) is elementary with respect to ϕ, it follows that
γ is distinct from α and β. Hence, (yj , yp) is a (γ, α)-pair with respect to ϕ. Now
let P = Pyp−1(α, γ, ϕ) and ϕ′ = ϕ/P .

If yj is an endvertex of P then, by Lemma 2.19(c), T is a Tashkinov tree with
respect to e and ϕ′, and V (Typ−1) is elementary with respect to ϕ′. Moreover, we

37

have α ∈ ϕ̄′(yj) ∩ ϕ̄′(yp) and β = ϕ′(ep) ∈ ϕ̄′(yp−1). Therefore, we can derive the
desired colouring ϕ∗ from ϕ′ as in Case 1d.

If yj is not an endvertex of P then, by Lemma 2.19(b), T ′ = Typ−1 is a Tashkinov
tree with respect to e and ϕ′ such that V (T ′) is not elementary, but V (T ′yp−2) is
elementary with respect to ϕ′. Moreover, we have p(T ′) ≤ |V (T ′)|−1 = p−1 < p(T).
Consequently, by induction, we can derive the desired colouring ϕ∗ from ϕ′.

Case 2: (induction step) p > q. Again we distinguish between several cases.
Case 2a: max Iϕ ≥ q. Let i = max Iϕ. Then there is a colour α ∈ ϕ̄(yi)∩ ϕ̄(yp).

Now we use a third induction, this time with respect to i = max Iϕ and secondarily
to the induction with respect to p.

If i = p − 1 then let β = ϕ(ep). By definition, β is missing at some vertex yj
where j ≤ p − 1. Since q < p, we have ep ∈ EG(yp−1, yp) and, therefore, j ≤ p − 2.
Recolour ep with α. This results in a colouring ϕ′ ∈ Ck(G− e) such that T ′ = Typ−1

is a Tashkinov tree with respect to e and ϕ′ satisfying β ∈ ϕ̄′(yj) ∩ ϕ̄′(yp−1) and
ϕ̄′(yh) = ϕ̄(yh) for all h ≤ p − 2. Consequently, V (T ′) is not elementary, but
V (T ′yp−2) is elementary with respect to ϕ′. Moreover, we have |V (T ′)| < |V (T)|
and p(T ′) = p(T), because of q < p. Therefore, by induction (with respect to p), we
can derive the desired colouring ϕ∗ from ϕ′. This settles the basic case i = p− 1.

For the induction step, let i < p− 1. From k ≥ ∆(G) + 1 we infer that there is
a colour β ∈ ϕ̄(yi+1). Since V (Typ−1) is elementary with respect to ϕ, the colours
α and β are distinct and, moreover, the colour α is not used on Tyi. Since i ≥ q,
we have ei+1 ∈ EG(yi, yi+1) and, therefore, α 6= ϕ(ei+1). Consequently, α is not
used on Tyi+1 either. Clearly, (yi, yi+1) is an (α, β)-pair with respect to ϕ. Now let
P = Pyi+1(α, β, ϕ) and ϕ′ = ϕ/P .

If yi is an endvertex of P then, by Lemma 2.19(c), T is a Tashkinov tree with
respect to e and ϕ′, and V (Typ−1) is elementary with respect to ϕ′. Moreover, we
have α ∈ ϕ̄′(yi+1)∩ ϕ̄′(yp) and, therefore, V (T) is not elementary with respect to ϕ′,
and max Iϕ′ > i. Consequently, by induction (with respect to i), we can derive the
desired colouring ϕ∗ from ϕ′.

If yi is not an endvertex of P then, by Lemma 2.19(b), T ′ = Tyi+1 is a Tashkinov
tree with respect to e and ϕ′ such that V (T ′) is not elementary, but V (T ′yi) is
elementary with respect to ϕ′. Moreover, we have |V (T ′)| = i+ 2 < p+ 1 = |V (T)|
and, since i ≥ q, also p(T ′) = p(T). Consequently, by induction (with respect to p),
we can derive the desired colouring ϕ∗ from ϕ′.

Case 2b: max Iϕ < q and there is an index i ∈ Iϕ and a colour α ∈ ϕ̄(yi)∩ϕ̄(yp)
that is not used on Tyq with respect to ϕ. Since k ≥ ∆(G) + 1, there is a colour
β ∈ ϕ̄(yq). From max Iϕ < q we infer that β 6= α. Hence, (yi, yq) is an (α, β)-pair
with respect to ϕ. Now let P = Pyq(α, β, ϕ) and ϕ′ = ϕ/P .

If yi is an endvertex of P then, by Lemma 2.19(c), T is a Tashkinov tree with
respect to e and ϕ′, and V (Typ−1) is elementary with respect to ϕ′. Moreover, we
have α ∈ ϕ̄′(yq) ∩ ϕ̄′(yp) and, therefore, V (T) is not elementary with respect to ϕ′,
and max Iϕ′ = q. Hence, we can derive the desired colouring ϕ∗ from ϕ′ as in Case
2a.

If yi is not an endvertex of P then, by Lemma 2.19(b), T ′ = Tyq is a Tashkinov
tree with respect to e and ϕ′ such that V (T ′) is not elementary, but V (T ′yq−1) is

38

elementary with respect to ϕ′. Moreover, we have p(T ′) = p(T) and |V (T ′)| = q+1 <
p + 1 = |V (T)|. Consequently, by induction (with respect to p), we can derive the
desired colouring ϕ∗ from ϕ′.

Case 2c: max Iϕ < q and min Iϕ < q−1. Then there is a colour α ∈ ϕ̄(yi)∩ϕ̄(yp)
where i = min Iϕ. We may assume that α is used on T with respect to ϕ, otherwise
we are in Case 2b. By Lemma 2.19(a), there are at least 4 colours in ϕ̄(V (Tyq−2))
that are unused on Tyq−2 with respect to ϕ. Consequently, there is a colour γ ∈
ϕ̄(V (Tyq−2))\{α}, say γ ∈ ϕ̄(yj) with j ≤ q − 2, such that γ is unused on Tyq with
respect to ϕ. We may assume that γ ∈ ϕ(yp), otherwise we are again in Case 2b.
Now let P = Pyp(α, γ, ϕ). Then P is a path where one endvertex is yp, and the other
endvertex is some vertex z 6= yp. Since V (Typ−1) is elementary with respect to ϕ,
we conclude that z ∈ {yi, yj} or z ∈ V (G)\V (T).

If V (P) ∩ V (Tyq−1) = ∅ then E(P) ∩ E(Tyq) = ∅ and, therefore, Tyq is a
Tashkinov tree with respect to e and ϕ′ = ϕ/P . Moreover, z ∈ V (G)\V (T) and,
therefore, we have ϕ̄′(y) = ϕ̄(y) for all y ∈ V (Typ−1), and ϕ′(f) ∈ {ϕ(f), α, γ} ⊆
ϕ̄(V (Tyq)) = ϕ̄′(V (Tyq)) for all f ∈ E(T) \E(Tyq). Consequently, even T is a
Tashkinov tree with respect to e and ϕ′, and V (Typ−1) is elementary with respect
to ϕ′. Since we have γ ∈ ϕ̄′(yj)∩ ϕ̄′(yp) and γ is not used on Tyq with respect to ϕ′,
we can derive the desired colouring ϕ∗ from ϕ′ as in Case 2b.

If V (P) ∩ V (Tyq−1) 6= ∅ then there is a number i0 ∈ {0, . . . , q − 1} such that yi0
belongs to P , and the subpath P ′ of P joining yp and yi0 does not contain any other
vertex of V (Tyq−1). Let P ′ = (yi0 , f1, z1, . . . , fm, zm) where zm = yp. If i0 < q − 1
then, since α ∈ ϕ̄(yi) and γ ∈ ϕ̄(yj) where i, j ≤ q − 2,

T ′ = (y0, e1, y1, . . . , eq−2, yq−2, f1, z1, . . . , fm, zm)

is a Tashkinov tree with respect to e and ϕ satisfying α ∈ ϕ̄(yi) ∩ ϕ̄(zm). Conse-
quently, since V (T ′yq−2) is elementary with respect to ϕ, there is a smallest index
m′ ∈ {1, . . . ,m} such that T ′′ = T ′zm′ is not elementary with respect to ϕ. More-
over, we have p(T ′′) ≤ q−1 < p(T). Hence, by induction (with respect to q), we can
derive the desired colouring ϕ∗ from ϕ. In the other case we have i0 = q − 1, and

T ′ = (y0, e1, y1, . . . , eq−1, yq−1, f1, z1, . . . , fm, zm)

is a Tashkinov tree with respect to e and ϕ satisfying α ∈ ϕ̄(yi) ∩ ϕ̄(zm). Conse-
quently, since V (T ′yq−1) is elementary with respect to ϕ, there is a smallest index
m′ ∈ {1, . . . ,m} such that T ′′ = T ′zm′ is not elementary with respect to ϕ. More-
over, we have p(T ′′) ≤ q−1 < p(T). Hence, by induction (with respect to q), we can
derive the desired colouring ϕ∗ from ϕ.

Case 2d: Iϕ = {q − 1}. Then there is a colour α ∈ ϕ̄(yq−1) ∩ ϕ̄(yp). By
Lemma 2.19(a), there are at least 4 colours in ϕ̄(V (Tyq−2)) that are unused on Tyq−2

with respect to ϕ. Consequently, there is a colour γ ∈ ϕ̄(V (Tyq−2)), say γ ∈ ϕ̄(yj)
with j ≤ q− 2, such that γ is not used on Tyq with respect to ϕ. Since V (Typ−1) is
elementary with respect to ϕ, it follows that γ is distinct from α. Hence, (yj , yq−1)
is a (γ, α)-pair with respect to ϕ. Now let P = Pyq−1(α, γ, ϕ) and ϕ′ = ϕ/P .

If yj is an endvertex of P then, by Lemma 2.19(c), T is a Tashkinov tree with
respect to e and ϕ′, and V (Typ−1) is elementary with respect to ϕ′. Moreover, we

39

have α ∈ ϕ̄′(yj) ∩ ϕ̄′(yp) and, therefore, V (T) is not elementary with respect to ϕ′.
Hence, we can derive the desired colouring ϕ∗ from ϕ′ as in Case 2c.

If yj is not an endvertex of P then, by Lemma 2.19(b), T ′ = Tyq−1 is a Tashkinov
tree with respect to e and ϕ′ such that V (T ′) is not elementary, but V (T ′yq−2) is
elementary with respect to ϕ′. Moreover, we have p(T ′) ≤ |V (T ′)|−1 = q−1 < p(T).
Consequently, by induction (with respect to q), we can derive the desired colouring
ϕ∗ from ϕ′.

Now Case 2 is settled, which completes the induction with respect to p and also
the induction with respect to q. Hence, we can derive the desired colouring ϕ∗ from
ϕ. We just have to check the number of Kempe changes (before colouring the edge
e) to do this. As already stated, in the case q ≤ 2 we need O(p2) Kempe changes.
In the case q > 2 we can inductively reduce the value of q.

For the cost of one such reduction, we have to analyse the different cases from
the first part of the proof. In Case 1a we can simply reduce q without recolouring
anything. In Case 1b one Kempe change is needed to either reduce q or get to Case
1a. Hence, we need a total of O(1) Kempe changes to reduce q. In Case 1c one
Kempe change is needed to either reduce q or get to Case 1b. Hence, we need a total
of O(1) Kempe changes to reduce q. In Case 1d either we use at most one Kempe
change to get to Case 1c, or we can reduce q by just finding but not recolouring a
chain. Hence, we need a total of O(1) Kempe changes to reduce q. In Case 1e one
Kempe change is needed to either reduce q or get to Case 1d. Hence, we need a total
of O(1) Kempe changes to reduce q. Consequently, in the case p = q (Case 1) we
need O(1) Kempe changes to reduce the value of q.

In the case p > q (Case 2) we may have to reduce p while leaving q unchanged.
So we have to look also at the costs of such a reduction of p. In Case 2a we need at
most p−1−max Iϕ ∈ O(p) Kempe changes to increase max Iϕ until we can reduce p
using one Kempe change. Hence, we need a total of O(p) Kempe changes to reduce
p. In Case 2b we need one Kempe change to either reduce p or get to Case 2a.
Hence, we need a total of O(p) Kempe changes to reduce p. In Case 2c either we use
at most one Kempe change to get to Case 2b, or we can reduce q by just finding but
not recolouring a chain. Hence, we need a total of O(p) Kempe changes to reduce
p or q. In Case 2d we need one Kempe change to either reduce q or get to Case 2c.
Hence, we need a total of O(p) Kempe changes to reduce p or q. Consequently, in
the case p > q (Case 2) we need O(p) Kempe changes to reduce p or q. Hence, after
at most p − q reductions of p we can reduce q using O(p) or O(1) (Case 1) Kempe
changes, which leads to a total of O((p− q)p+ p) ⊆ O(p2) Kempe changes to reduce
the value of q.

Note that, during a reducing step for q, the order of the new Tashkinov tree
may significantly increase, namely in Case 1d and in Case 2c. Hence, to estimate the
costs for the whole reduction of q we cannot use the value p of the original Tashkinov
tree, we have to use an upper bound of the order of all constructed Tashkinov trees.
Clearly, one possible upper bound is |V (G)| = n. Moreover, the vertex set of every
constructed Tashkinov T is elementary with respect to the current colouring, except
for the last vertex. Since we have k ≥ ∆ + 1, this implies that the order of every
constructed Tashkinov tree is bounded by the number of missing colours of V (T)
which itself is at most k. Consequently, the number of Kempe changes needed for

40

one reduction of q is in O(n2) as well as in O(k2).
Then we get the total costs as follows. After at most q−2 reductions of the path

number we get to the basic case q ≤ 2 where we need at most O(n2) and also at most
O(k2) Kempe changes using Kierstead’s method. Hence, to derive the colouring ϕ∗ ∈
Ck(G), the total number of Kempe changes needed is in O((q− 2)n2 +n2) ⊆ O(pn2)
as well as in O((q − 2)k2 + k2) ⊆ O(pk2). This completes the proof.

Let G be a graph, let e ∈ E(G), and let ϕ ∈ Ck(G − e) for an integer k ≥
∆(G) + 1. Moreover, let T be a Tashkinov tree with respect to e and ϕ. If V (T)
is not elementary with respect to ϕ, then Theorem 2.20 shows how to get a k-
edge colouring of G. If V (T) is elementary with respect to ϕ, but there is an edge
f ∈ EG(V (T), z) satisfying z ∈ V (G)\V (T) and ϕ(f) ∈ ϕ̄(V (T)), then T ′ = (T, f, z)
is a Tashkinov tree with respect to e and ϕ. This gives us a way to construct an
algorithm TashExt1 that extends a partial colouring ϕ ∈ Ck(G − e) and uses
Tashkinov trees as test objects.

TashExt1(G, e, x, y, k, ϕ):

1) p← 1, ep ← e, yp ← y, y0 ← x, T ← (y0, ep, yp).

2) If ϕ̄(V (Typ−1)) ∩ ϕ̄(yp) 6= ∅ then
2a) Compute ϕ′ ∈ Ck(G) as in Theorem 2.20.
2b) Return (k, ϕ′).

3) If ∃ep+1 ∈ EG(V (T), V (G)\V (T)) : ϕ(ep+1) ∈ ϕ̄(V (T)) then
3a) Let yp+1 be the endvertex of ep+1 that is not in V (T).
3b) T ← (T, ep+1, yp+1), p← p+ 1.
3c) Goto 2.

4) ϕ′ ← ϕ, ϕ′(e)← k + 1.

5) Return (k + 1, ϕ′).

Correctness of TashExt1: If G is a graph, e ∈ EG(x, y), and ϕ ∈ Ck(G − e)
for an integer k ≥ ∆(G) + 1, then TashExt1 subsequently builds a Tashkinov tree
T = (y0, e1, y1, . . . , ep, yp) with respect to e and ϕ until either V (T) is not elementary
with respect to ϕ, or T is a maximal Tashkinov tree with respect to e and ϕ. In the
first case, V (Typ−1) is elementary with respect to ϕ, otherwise the algorithm had
detected it before. Hence, by Theorem 2.20, TashExt1 can compute the colouring
ϕ′ ∈ Ck(G). Consequently, TashExt1 works correctly in this case. In the other
case, V (T) is maximal and elementary with respect to ϕ, and TashExt1 simply
assigns a new colour to e. In any case, TashExt1 computes a colouring ϕ′ ∈ Ck′(G)
where k′ ∈ {k, k + 1}.

Note that, in order to use Theorem 2.20, we have to require k ≥ ∆(G) + 1. So
we consider only inputs (G, e, x, y, k, ϕ) with k ≥ ∆(G) + 1 as valid.

Time Complexity of TashExt1: Now, let us analyse the running time of the
algorithm TashExt1. Let (G, e, x, y, k, ϕ) be a valid input with |V (G)| = n and
∆(G) = ∆. We can assume that k ∈ O(∆), see Section 2.2. The first initializing
step only needs constant time. Due to the goto-statement in step 3c, there is a loop

41

starting in step 2. In every round the value of p is increased, the number of rounds
is bounded by the order of a maximal Tashkinov tree with respect to e and ϕ. Since
the vertices of a Tashkinov tree are distinct, we have p ≤ n. Moreover, in the loop
V (Typ−1) is always an elementary set with respect to ϕ and, since k ≥ ∆(G) + 1,
we also have p ≤ |ϕ̄(V (Kyp−1))| ≤ k. Hence, the loop is repeated at most min{n, k}
times.

In every sweep of the loop, the algorithm has to check the condition of step 2. This
can be done in time O(∆), using the same method as described for KierExt. The
recolouring step 2a does not count to the loop, because the algorithm will terminate
right after this step. The next step inside the loop is step 3. This step can also be
implemented in time O(∆). We simply maintain, for every colour, the number of
edges with this colour that join V (T) and V (G)\V (T). This can easily be updated
in time O(∆) when increasing T . With this information, in step 3 we can decide in
time O(∆) whether there is a suitable colour and, if this is the case, find an edge by
scanning the corresponding same-colour list. Consequently, for the whole loop this
gives a running time of O(∆ ·min{n,∆}).

The step 2a is computed at most once during the algorithm. Since k ∈ O(∆)
and the order of T is in O(min{n,∆}), Theorem 2.20 implies that there are at most
O(min{n3,∆3}) Kempe changes needed to compute the k-edge colouring of G. This
gives a running time of O

(
(n + ∆) min{n3,∆3}), see Section 2.2. In most steps of

this recolouring the costs for the Kempe changes dominate the other costs. The only
exceptions are the cases in which the path number of T is decreased by adding a path
to a part of the tree, see Case 1d and Case 2c in the proof of Theorem 2.20. In these
cases a part of the Tashkinov tree is extended by several new vertices until the vertex
set is not elementary with respect to the current colouring ϕ. For every new vertex
added, it is necessary to check whether the vertex set remains elementary with respect
to ϕ or not. This needs time O(∆) for every new vertex. Since vertices are added
only as long as the resulting Tashkinov tree remains elementary with respect to ϕ,
the number of new vertices is bounded by k as well as by n. Consequently, this whole
step costs time O(∆·min{n,∆}) which may exceed the time cost of the corresponding
Kempe change. Since the path number is never increased, this decreasing step occurs
at most min{n, k} times during the algorithm. This gives an additional running
time of O(∆ ·min{n2,∆2}) for step 2a. Hence, the number of Kempe changes still
determines the time cost for this step which is in O

(
(n+ ∆) min{n3,∆3}).

If TashExt1 uses a new colour in step 4, this needs only constant time. Hence,
the algorithm has a total running time of O

(
(n+ ∆) min{n3,∆3}).

Tashkinov’s colouring algorithm: Let Tashkinov1 be a colouring algorithm
that uses an arbitrary edge order, TashExt1 as kernel, and that starts with k =
∆(G) + 1 for any input graph with ∆(G) ≥ 2. In the case ∆(G) ≤ 1 the algorithm
simply colours the graph optimal with ∆(G) colours.

Since every Kierstead path with respect to an edge e and a colouring ϕ is also a
Tashkinov tree with respect to e and ϕ, the algorithm Tashkinov1 uses not more
colours than Kierstead. Moreover, for every multi-fan F at a vertex x with respect
to an edge e and a colouring ϕ, there is a Tashkinov tree T with respect to e and
ϕ satisfying V (T) = V (F) ∪ {x}. Consequently, Tashkinov1 also uses not more

42

colours than Vizing provided that Vizing uses at least ∆(G) + 1 colours. This
’flaw’ could be overcome by a hybrid algorithm. This algorithm would start with
k = ∆(G) and use VizExt as kernel until the number of colours is increased to
∆(G) + 1, from this point on the algorithm would use TashExt1 as kernel. This
hybridizing technique is always possible for kernels with such a requirement for the
starting value of k, but we will not concentrate further on this. We will rather
improve TashExt1 in other ways.

If, on the input (G, e, x, y, k, ϕ), TashExt1 increases the number of colours to
k + 1, then there is a maximal Tashkinov tree T with respect to e and ϕ such that
V (T) is elementary with respect to ϕ. In [38] Tashkinov developed some methods
which may allow us to compute a k-edge colouring of G even in this case. We will
use this methods to improve the algorithm TashExt1.

2.7 A New Upper Bound for the Chromatic Index

For a graph G, let

τ (G) = max{∆(G) +
√

∆(G)−1
2 ,W(G)}

if G contains at least one edge, and τ(G) = 0 otherwise. Further, for every ε > 0 let

τε(G) = max{b(1 + ε)∆(G) + 1− 3εc , ⌊∆(G)− 1 + 1
2ε

⌋
, W(G)}

In this section we shall demonstrate how Tashkinov’s methods can be used to
show that the parameters τ and τε are upper bounds of the chromatic index. First
we need some further notation.

Let G be a graph, and let k ≥ ∆(G) + 1 be an integer. We denote by Tk(G)
the set of all triples (T, e, ϕ) such that e ∈ E(G), ϕ ∈ Ck(G − e), T is a maximal
Tashkinov tree with respect to e and ϕ, and V (T) is elementary with respect to ϕ.
Evidently, if Tk(G) = ∅ then either χ′(G − e) > k for all edges e ∈ E(G), or, by
Theorem 2.20, there is a k-edge colouring of G.

For a triple (T, e, ϕ) ∈ Tk(G), we introduce the following notation. For a colour
α, let Eα(e, ϕ) = {e′ ∈ E(G)\{e} | ϕ(e′) = α} be the set of all edges of G coloured
with α with respect to ϕ. Further, let

Eα(T, e, ϕ) = Eα(e, ϕ) ∩ EG(V (T), V (G)\V (T)).

The colour α is said to be defective with respect to (T, e, ϕ), if |Eα(T, e, ϕ)| ≥ 2.
The set of all defective colours with respect to (T, e, ϕ) is denoted by Γd(T, e, ϕ).
The colour α is said to be free with respect to (T, e, ϕ), if α ∈ ϕ̄(V (T)) and α is
unused on T with respect to ϕ. The set of all free colours with respect to (T, e, ϕ) is
denoted by Γf(T, e, ϕ).

Proposition 2.21 Let G be a graph, let k ≥ ∆(G) + 1 be an integer, and let
(T, e, ϕ) ∈ Tk(G). Then the following statements hold:

(a) V (T) is elementary and closed with respect to ϕ.

(b) |V (T)| ≥ 3 is odd.

43

(c) V (T) is strongly closed with respect to ϕ iff Γd(T, e, ϕ) = ∅.
(d) If γ ∈ ϕ̄(V (T)) then Eγ(T, e, ϕ) = ∅.
(e) If δ ∈ Γd(T, e, ϕ) then |Eδ(T, e, ϕ)| ≥ 3 is odd.

(f) For a vertex x ∈ V (T), we have |ϕ̄(x)| = k − dG(x) + 1 ≥ 2 if e ∈ EG(x) and
|ϕ̄(x)| = k − dG(x) ≥ 1 otherwise. Moreover, |Γf (T, e, ϕ)| ≥ 4.

(g) Every colour in Γd(T, e, ϕ) ∪ Γf (T, e, ϕ) is unused on T with respect to ϕ.

(h) Let u, v ∈ V (T), and let (u, v) be an (α, β)-pair with respect to ϕ. Then P =
Pu(α, β, ϕ) is a path with endvertices u and v, where V (P) ⊆ V (T). Moreover,
if α and β are unused on Tu and on Tv, then T is a maximal Tashkinov tree
with respect to e and ϕ′ = ϕ/P such that V (T) is elementary with respect to ϕ,
that is, (T, e, ϕ′) ∈ Tk(G).

Proof: By definition of Tk(G), the vertex set V (T) is elementary with respect to ϕ.
Let f ∈ EG(V (T), V (G)\V (T)). Since T is a maximal Tashkinov tree with respect
to e and ϕ, it follows that ϕ(f) /∈ ϕ̄(V (T)). Hence, V (T) is also closed with respect
to ϕ. This proves (a).

From k ≥ ∆(G) + 1 we infer that for any vertex v ∈ V (T) there is a colour
γ ∈ ϕ̄(v). Then (a) implies that every other vertex of V (T) is incident to an edge
in EG(V (T), V (T)) coloured with γ. In particular, this implies that |V (T)| is odd.
Since both endvertices of e belong to V (T), we also obtain |V (T)| ≥ 3. This proves
(b). Evidently, (b) implies both statements (c) and (d).

For the proof of (e), consider a defective colour δ ∈ Γd(T, e, ϕ), and let Eδ =
Eδ(T, e, ϕ). Then, by definition, |Eδ| ≥ 2. By (d) and (b), we know that δ ∈ ϕ(v)
for every v ∈ V (T) and that |V (T)| is odd. Since Eδ(e, ϕ) is a matching of G, this
implies that |Eδ| is odd and, therefore, |Eδ| ≥ 3. Thus (e) is proved.

The first part of statement (f) follows simply from the fact that ϕ ∈ Ck(G − e)
and k ≥ ∆(G) + 1. Since, by (a), V (T) is elementary with respect to ϕ, this implies
that |ϕ̄(V (T))| ≥ p + 2 where p = |V (T)|. From |E(T)| = p − 1 and e ∈ E(T) we
then conclude that at least 4 colours in ϕ̄(V (T)) are unused on T with respect to ϕ.
Hence, we have |Γf (T, e, ϕ)| ≥ 4, and (f) is proved.

That every free colour is unused on T with respect to ϕ follows from the definition.
If δ ∈ Γd(T, e, ϕ) is a defective colour, then Eδ(T, e, ϕ) 6= ∅. By (d), this implies that
δ /∈ ϕ̄(V (T)). Consequently, δ is unused on T with respect to ϕ. This proves (g).

Let u, v ∈ V (T), let (u, v) be an (α, β)-pair with respect to ϕ, and let P =
Pu(α, β, ϕ). Hence, we have u 6= v, α ∈ ϕ̄(u), and β ∈ ϕ̄(v). Since V (T) is
elementary with respect to ϕ, the vertex u respectively v is the unique vertex of T
where α respectively β is missing with respect to ϕ. Therefore, P is a path, where
one endvertex is u and the other endvertex is some vertex z 6= u. From (d) we know
that Eα(T, e, ϕ) = Eβ(T, e, ϕ) = ∅. This clearly implies that V (P) ⊆ V (T) and
z = v. This proves the first part of (h). Now suppose that α and β are unused on
both Tu and Tv with respect to ϕ. Without loss of generality we may assume that u
comes before v in T . Then E(P) ∩E(V (Tv)) = ∅ and, therefore, Tv is a Tashkinov
tree with respect to e and ϕ′ = ϕ/P . Clearly, we have ϕ̄′(u) = (ϕ̄(u)\{α}) ∪ {β},

44

ϕ̄′(v) = (ϕ̄(v)\{β})∪{α}, and ϕ̄′(z) = ϕ̄(z) for every vertex z /∈ {u, v}. In particular
this implies that V (T) remains elementary with respect to ϕ′. Furthermore, we have
ϕ̄′(V (T)) = ϕ̄(V (T)) as well as ϕ̄′(V (Tv)) = ϕ̄(V (Tv)). Obviously, for all edges
f ∈ E(T)\E(Tv), we have ϕ′(f) ∈ {ϕ(f), α, β}. Consequently, T is a Tashkinov
tree with respect to e and ϕ′. From Eα(T, e, ϕ) = Eβ(T, e, ϕ) = ∅ it follows that
ϕ′(f) = ϕ(f) for all edges f ∈ EG(V (T), V (G)\V (T)). Since ϕ̄′(V (T)) = ϕ̄(V (T)),
it then follows from (d) that Eγ(T, e, ϕ′) = ∅ for all colours γ ∈ ϕ̄′(V (T)). Hence, T
is a maximal Tashkinov tree with respect to e and ϕ′ ∈ Ck(G− e) such that V (T) is
elementary with respect to ϕ′, that is, (T, e, ϕ′) ∈ Tk(G). This proves (h).

Let G be graph, let e ∈ E(G), and let ϕ ∈ Ck(G−e) for an integer k ≥ ∆(G)+1.
Further, let T be a maximal Tashkinov tree with respect to e and ϕ such that V (T)
is elementary with respect to ϕ. The following results will give some conditions that
allow us to recolour G− e and derive from T a new Tashkinov tree T ′ with respect
to e and ϕ′ with |V (T ′)| > |V (T)|. These results are already implicitly given in [38].

Proposition 2.22 Let G be a graph, let k ≥ ∆(G) + 1 be an integer, and let
(T, e, ϕ) ∈ Tk(G). Furthermore, let δ ∈ Γd(T, e, ϕ) be a defective colour, and let
u ∈ V (T) be a vertex such that ϕ̄(u) contains a free colour γ ∈ Γf (T, e, ϕ). Then,
for the (γ, δ)-chain P = Pu(γ, δ, ϕ) and the colouring ϕ′ = ϕ/P , the following state-
ments hold:

(a) P is a path where one endvertex is u and the other endvertex belongs to V (G)\
V (T).

(b) E(P) ∩ EG(V (T), V (G)\V (T)) ⊆ Eδ(T, e, ϕ).

(c) T is a Tashkinov tree with respect to e and ϕ′ and, moreover, V (T) is elementary
with respect to ϕ′.

(d) If Eδ(T, e, ϕ) * E(P) then V (T) is not closed with respect to ϕ′.

Proof: By definition, V (T) is elementary and closed with respect to ϕ. Hence, the
vertex u is the only vertex in V (T) where the colour γ is missing with respect to ϕ.
Since δ ∈ Γd(T, e, ϕ), we have δ ∈ ϕ(v) for all v ∈ V (T). Consequently, P is a path
where one endvertex is u and the other endvertex belongs V (G)\V (T). This proves
(a).

The edges of P are coloured either with γ or δ with respect to ϕ and, therefore,
we clearly have E(P) ∩ EG(V (T), V (G)\V (T)) ⊆ Eγ(T, e, ϕ) ∪ Eδ(T, e, ϕ). Since,
by Proposition 2.21(d), we have Eγ(T, e, ϕ) = ∅, this implies (b).

Since, by Proposition 2.21(g), γ and δ both are unused on T with respect to ϕ,
we have ϕ′(f) = ϕ(f) for all f ∈ E(T). Moreover, ϕ̄′(u) = (ϕ̄(u)\{γ}) ∪ {δ} and
ϕ̄′(v) = ϕ̄(v) for all vertices v ∈ V (T)\{u}. Consequently, T remains a Tashkinov
tree with respect to e and ϕ′. Since δ does not belong to ϕ̄(V (T)), the vertex set
V (T) remains elementary with respect to ϕ′. Thus (c) is proved.

If Eδ(T, e, ϕ) * E(P) then there is an edge f ∈ Eδ(T, e, ϕ) that does not belong
to E(P). Hence, we have ϕ′(f) = ϕ(f) = δ and, therefore, Eδ(T, e, ϕ′) 6= ∅. Since
δ ∈ ϕ̄′(V (T)), this implies that V (T) is not closed with respect to ϕ′. This proves
(d).

45

Theorem 2.23 Let G be a graph, let k ≥ ∆(G)+1 be an integer, and let (T, e, ϕ) ∈
Tk(G). Furthermore, let δ ∈ Γd(T, e, ϕ), let u ∈ V (T) be a vertex such that ϕ̄(u)
contains a free colour γ ∈ Γf (T, e, ϕ), and let P = Pu(γ, δ, ϕ). If Eδ(T, e, ϕ) ⊆ E(P)
then the following statements hold:

(a) In the linear order ¹(u,P) there is a last vertex v0 that belongs to V (T) and a
first vertex v1 that belongs to V (G)\V (T), where v1 ¹(u,P) v0. In the same
order v1 has a successor v2 which belongs to V (G)\V (T), too.

(b) If ϕ̄(v0) ∩ Γf (T, e, ϕ) 6= ∅ then there is a colouring ϕ′ ∈ Ck(G − e) such that T
is a Tashkinov tree with respect to e and ϕ′ where V (T) is elementary but not
closed with respect to ϕ′. Moreover, ϕ′ can be derived from ϕ by at most two
Kempe changes.

(c) If the set X = V (T) ∪ {v1, v2} is not elementary with respect to ϕ, then there
is a colouring ϕ′ ∈ Ck(G − e) such that T is a Tashkinov tree with respect to e
and ϕ′ where V (T) is elementary but not closed with respect to ϕ′. Moreover,
ϕ′ can be derived from ϕ by at most four Kempe changes.

(d) If X = V (T) ∪ {v1, v2} is elementary with respect to ϕ, then

|V (T)| ≤ ∆(G)− 3
k −∆(G)

− 1.

(e) If ϕ̄(v0)∩Γf (T, e, ϕ) = ∅ then at least k−dG(v0)+1 colours are used on T with
respect to ϕ.

Proof: The existence of v0 and v1 is a simple consequence of Proposition 2.22(a)
and the fact that u ∈ V (T). Since, by definition, we have |Eδ(T, e, ϕ)| ≥ 2, it follows
from Eδ(T, e, ϕ) ⊆ E(P) that v1 ¹(u,P) v0. Moreover, v1 is not an endvertex of
P and hence, in the linear order ¹(u,P), v1 has a successor v2. Then there is an
edge f ∈ EG(v1, v2) with ϕ(f) = γ. From Proposition 2.21(d) it then follows that
v2 ∈ V (G)\V (T). Thus (a) is proved.

To prove (b), we assume that there is a colour α ∈ ϕ̄(v0) ∩ Γf (T, e, ϕ). By
(a), we have v0 6= u and, therefore, α 6= γ. Since α and γ are unused on T with
respect to ϕ, Proposition 2.21(h) implies that P1 = Pu(α, γ, ϕ) is a path joining u
and v0 and, moreover, that (T, e, ϕ1) ∈ Tk(G) where ϕ1 = ϕ/P1. Further, we infer
from Proposition 2.21(d) that Eα(T, e, ϕ) = Eγ(T, e, ϕ) = ∅ and, therefore, V (P1) ⊆
V (T). Now let z be the endvertex of P that is not u. By Proposition 2.22(a), we have
z ∈ V (G)\V (T). Since v0 is in the linear ¹(u,P) the last vertex that belongs to V (T),
we infer for P2 = v0Pz that V (P2)∩V (T) = {v0} and |E(P2)∩E(V (G)\V (T))| = 1.
In particular, this implies E(P2) ∩ E(P1) = ∅. Consequently, since γ ∈ ϕ̄1(v0),
we have P2 = Pv0(γ, δ, ϕ1). By Proposition 2.22(c), T is a Tashkinov tree with
respect to e and ϕ′ = ϕ1/P2, and V (T) is elementary with respect to ϕ′. Moreover,
since δ ∈ Γd(T, e, ϕ) and |E(P2) ∩ E(V (T), V (G) \V (T))| = 1, there is an edge
f ′ ∈ EG(V (T), V (G)\V (T))\E(P2) with ϕ(f ′) = δ. Then, clearly, ϕ′(f ′) = ϕ1(f ′) =
δ. Since δ ∈ ϕ̄′(v0), this implies that V (T) is not closed with respect to ϕ′. The
colouring ϕ′ was derived from ϕ by two Kempe changes and hence, (b) is proved.

46

To prove (c), we assume that X = V (T)∪{v1, v2} is not elementary with respect
to ϕ. Since V (T) is elementary with respect to ϕ, we distinguish two cases.

Case 1: There is a colour α ∈ ϕ̄(v1)∩ ϕ̄(V (T)∪{v2}). Since γ /∈ ϕ̄(v1), we have
α 6= γ. Let P1 = Pv1(α, γ, ϕ). In the case α ∈ ϕ̄(v2) we have P1 = P (v1, f, v2). In
the other case we have α, γ ∈ ϕ̄(V (T)). Since V (T) is closed with respect to ϕ, this
implies that V (P1)∩V (T) = ∅. Hence, in both cases we have V (P1)∩V (T) = ∅ and,
therefore, T remains a Tashkinov tree with respect to e and ϕ1 = ϕ/P1. Furthermore,
we have (T, e, ϕ1) ∈ Tk(G), δ ∈ Γd(T, e, ϕ1), and γ ∈ ϕ̄1(u) remains unused on T
with respect to ϕ1. Moreover, the chain P2 = Pu(γ, δ, ϕ1) satisfies P2 = uPv1 and,
therefore, E(P2) contains only one, but not all edges from Eδ(T, e, ϕ1). Then, by
Proposition 2.22(c),(d), T is a Tashkinov tree with respect to e and ϕ′ = ϕ1/P2, and
V (T) is elementary, but not closed with respect to ϕ′. Since we used two Kempe
changes to derive ϕ′ from ϕ, this settles Case 1.

Case 2: There is a colour α ∈ ϕ̄(V (T)) ∩ ϕ̄(v2). By Proposition 2.21(f), there
is a free colour α′ ∈ Γf (T, e, ϕ)\{α, γ}. Clearly, α′ 6= δ. Since V (T) is elementary
with respect to ϕ, there is a unique vertex u′ ∈ V (T) such that α′ ∈ ϕ̄(u′). Let
P1 = Pv2(α, α′, ϕ). Since α, α′ ∈ ϕ̄(V (T)) and V (T) is closed with respect to ϕ, we
have Eα(T, e, ϕ) = Eα′(T, e, ϕ) = ∅ and hence V (P1) ∩ V (T) = ∅. Consequently, T
remains a Tashkinov tree with respect to e and ϕ1 = ϕ/P1, and we have (T, e, ϕ1) ∈
Tk(G), δ ∈ Γd(T, e, ϕ1), γ ∈ ϕ̄1(u), P = Pu(γ, δ, ϕ1), α′ ∈ ϕ̄1(u′) ∩ ϕ̄1(v2), and both
colours α′ and γ remain unused on T with respect to ϕ1.

From Proposition 2.21(f) we also infer that there is a colour β ∈ ϕ̄(v1). We may
assume that V (T) ∪ {v1} is elementary with respect to ϕ, since otherwise we are in
Case 1. Hence, we have β /∈ ϕ̄(V (T)) = ϕ̄1(V (T)) and β ∈ ϕ̄1(v1). In particular,
β /∈ {α, α′, γ}. Since δ /∈ ϕ̄1(v1), we also have β 6= δ. Now let P2 = Pv1(α′, β, ϕ1).
Clearly, P2 is a path where one endvertex is v1. Let z be the other endvertex of P2.

Case 2a: z 6= u′. Since ϕ̄1(z)∩{α′, β} 6= ∅ and V (T) is elementary with respect
to ϕ1, this implies that z /∈ V (T). The colours α′ and β both are unused on T with
respect to ϕ1. Consequently, T is a Tashkinov tree with respect to e and ϕ2 = ϕ1/P2,
and we have (T, e, ϕ2) ∈ Tk(G), δ ∈ Γd(T, e, ϕ2), γ ∈ ϕ̄2(u), P = Pu(γ, δ, ϕ2),
α′ ∈ ϕ̄2(u′) ∩ ϕ̄2(v1), and α′, γ remain unused on T with respect to ϕ2. Now we can
continue as in Case 1 with ϕ2 instead of ϕ, and with the colour α′. Hence, we can
recolour in the same way, that is, ϕ3 = ϕ2/Pv1(α′, γ, ϕ2) and ϕ′ = ϕ3/Pu(γ, δ, ϕ3),
where ϕ′ is the desired colouring. Since we used four Kempe changes to derive ϕ′

from ϕ, this settles Case 2a.
Case 2b: z = u′. Then let P3 = Pv2(α′, β, ϕ1). Since α′ ∈ ϕ̄1(v2), we obtain

that v2 is an endvertex of P3, and P3 6= P2. Therefore, the second endvertex z′

of P3 is distinct from u′. Since ϕ̄1(z′) ∩ {α′, β} 6= ∅, and V (T) is elementary with
respect to ϕ1, this implies that z′ /∈ V (T). The colours α′ and β both are unused
on T with respect to ϕ1. Consequently, T is a Tashkinov tree with respect to e
and ϕ2 = ϕ1/P3, and we have (T, e, ϕ2) ∈ Tk(G), δ ∈ Γd(T, e, ϕ2), γ ∈ ϕ̄2(u),
P = Pu(γ, δ, ϕ2), β ∈ ϕ̄2(v1) ∩ ϕ̄2(v2), and γ remains unused on T with respect to
ϕ2. Now we can continue as in Case 1 with ϕ2 instead of ϕ, and with the colour
β. Hence we can recolour in the same way, that is, ϕ3 = ϕ2/Pv1(β, γ, ϕ2) and
ϕ′ = ϕ3/Pu(γ, δ, ϕ3), where ϕ′ is the desired colouring. Since we used four Kempe

47

changes to derive ϕ′ from ϕ, this settles Case 2b. Now all cases are done, and (c) is
proved.

To prove (d), we assume that X = V (T) ∪ {v1, v2} is elementary with respect
to ϕ. From δ ∈ Γd(T, e, ϕ) it follows, by Proposition 2.21, that δ /∈ ϕ̄(V (T)) and
|Eδ(T, e, ϕ)| ≥ 3. Since Eδ(T, e, ϕ) ⊆ E(P), this implies in particular that v2 is not
an endvertex of P . Hence, we have δ /∈ ϕ̄({v1, v2} and, therefore, δ /∈ ϕ̄(X). This
implies that |ϕ̄(X)| ≤ k − 1. Moreover, since X is elementary with respect to ϕ, we
have

|ϕ̄(X)| =
∑

z∈X
(k − dG−e(z)) = 2 +

∑

z∈X
(k − dG(z)) ≥ 2 + |X|(k −∆(G)).

From this an |ϕ̄(X)| ≤ k − 1 we then obtain

|X| ≤ k − 3
k −∆(G)

=
∆(G)− 3
k −∆(G)

+ 1.

This proves (d).
To prove (e) we assume that ϕ̄(v0) ∩ Γf (T, e, ϕ) = ∅. Then, clearly, all colours

of ϕ̄(v0) are used on T with respect to ϕ. In the case that v0 is an endvertex of
e, we have |ϕ̄(v0)| = k − dG(v0) + 1 and, therefore, at least k − dG(v0) + 1 colours
are used on T with respect to ϕ. Now consider the other case, where v0 is not an
endvertex of e. If T = (y0, e1, y1, . . . , ep, yp), this means that v0 = yi for an index
i ≥ 2. Hence, the colour α = ϕ(ei) is used on T with respect to ϕ. Since ei is
incident with yi = v0, the colour α does not belong to ϕ̄(v0) and, therefore, at least
ϕ̄(v0) + 1 = k− dG(v0) + 1 colours are used on T with respect to ϕ. This completes
the proof of (e).

Since Theorem 2.23(b) works if there is a free colour missing at a certain vertex,
it might be useful to reduce the number of used colours in a Tashkinov tree. The
following simple result shows how to do that. In fact it shows that, for every triple
(T, e, ϕ) ∈ Tk(G), the vertex set of T is a unique set, completely determined by e
and ϕ. It does not depend on the structure of T at all.

Lemma 2.24 Let G be a graph, let k ≥ ∆(G) + 1 be an integer, and let (T, e, ϕ) ∈
Tk(G). Further, let T ′ = (y0, e1, y1, . . . , es, ys) be an arbitrary Tashkinov tree with
respect to e and ϕ. Then the following statements hold:

(a) V (T ′) ⊆ V (T).

(b) There is a Tashkinov tree T ′′ with respect to e and ϕ such that V (T ′′) = V (T),
(T ′′, e, ϕ) ∈ Tk(G), and T ′′ys = T ′.

(c) There is a Tashkinov tree T̃ with respect to e and ϕ such that V (T̃) = V (T),
(T̃ , e, ϕ) ∈ Tk(G), and at most |V (T)|−1

2 colours are used on T̃ with respect to ϕ.

Proof: Suppose that (a) is not true. Then there is a smallest index i ∈ {0, . . . , s}
such that yi /∈ V (T). Since the endvertices y0, y1 of e1 = e belong to V (T), we
conclude that i ≥ 2. Hence, by definition, we have ei ∈ EG(V (T ′yi−1)), yi) and

48

ϕ(ei) ∈ ϕ̄(V (T ′yi−1)). Because of the choice of i, we have V (T ′yi−1) ⊆ V (T) and,
therefore, ei ∈ EG(V (T), V (G) − V (T)) and ϕ(ei) ∈ ϕ̄(V (T)). Hence, V (T) is not
closed with respect to ϕ, a contradiction to Proposition 2.21(a). This proves (a).

Clearly, T ′ can simply be extended to a maximal Tashkinov tree T ′′ with respect
to e and ϕ. Then, by (a), we have V (T ′′) ⊆ V (T). Since V (T) is elementary
with respect to ϕ, this implies that V (T ′′) is elementary with respect to ϕ as well.
Consequently, we have (T ′′, e, ϕ) ∈ Tk(G). Then, again from (a) but with exchanged
roles of T ′′ and T , we conclude that V (T) ⊆ V (T ′′). Hence V (T ′′) = V (T). This
proves (b).

Eventually, we prove (c). From k ≥ ∆(G) + 1 we infer that there is a colour
α ∈ ϕ̄(y0). Since y0, y1 ∈ V (T) and V (T) is elementary with respect to ϕ, there
is an edge f2 ∈ EG(y1, z2) with z2 ∈ V (G)\{y0, y1} and ϕ(f) = α. Consequently,
T1 = (y0, e1, y1, f2, z2) is a Tashkinov tree with respect to e and ϕ. Moreover, only
|V (T1)|−1

2 = 1 colours are used on T1 with respect to ϕ. Starting from T1 we can
successively extend the Tashkinov tree as follows.

For j ≥ 0, let Tj = (y0, e1, y1, f2, z2, . . . , f2j , z2j) be a Tashkinov tree with respect
to e and ϕ such that at most j colours are used on Tj with respect to ϕ. By (a),
we have V (Tj) ⊆ V (T). If |V (Tj)| < |V (T)| then it follows from (b) that there is an
edge f2j+1 ∈ EG(V (Tj), z2j+1) with z2j+1 ∈ V (T)\V (Tj) and ϕ(f2j+1) ∈ ϕ̄(V (Tj)).
Hence, T ′j = (Tj , f2j+1, z2j+1) is a Tashkinov tree with respect to e and ϕ, and at
most j+1 colours are used on T with respect to ϕ. Let αj be a colour that is used on
T ′j with respect to ϕ. Then αj ∈ ϕ̄(V (T ′j)). Since V (T ′j) ⊆ V (T) is elementary with
respect to ϕ, this implies that the colour αj is missing at exactly one vertex of T ′j .
Moreover, |V (T ′j)| is even. Hence, there is an edge f2j+2 ∈ EG(V (T ′j), V (G)\V (T ′j))
with ϕ(f) = αj . Let z2j+2 be the endvertex of f2j+2 that belongs to V (G)\V (T ′j),
and let Tj+1 = (T ′j , f2j+2, z2j+2). Evidently, Tj+1 is a Tashkinov tree with respect to
e and ϕ. Moreover, since αj is already used on T ′j , there are at most j + 1 colours
used on Tj+1 with respect to ϕ.

If |V (T)| = |V (Tj)| = 2j + 1 then (a) implies that V (Tj) = V (T) and, therefore,
(Tj , e, ϕ) ∈ Tk(G). Since there are at most |V (T)|−1

2 colours used on Tj with respect
to ϕ, (c) is proved.

Using the methods of Theorem 2.23 and Lemma 2.24, we can improve the algo-
rithm TashExt1. This leads to the following algorithm TashExt2.

TashExt2(G, e, x, y, k, ϕ):

1) p← 1, ep ← e, yp ← y, y0 ← x, T ← (y0, ep, yp).

2) If ϕ̄(V (Typ−1)) ∩ ϕ̄(yp) 6= ∅ then
2a) Compute ϕ′ ∈ Ck(G) as in Theorem 2.20.
2b) Return (k, ϕ′).

3) If ∃ep+1 ∈ EG(V (T), V (G)\V (T)) : ϕ(ep+1) ∈ ϕ(E(T)) then
3a) Let yp+1 be the endvertex of ep+1 that is not in V (T).
3b) T ← (T, ep+1, yp+1), p← p+ 1.
3c) Goto 2.

4) If ∃ep+1 ∈ EG(V (T), V (G)\V (T)) : ϕ(ep+1) ∈ ϕ̄(V (T))\ϕ(E(T)) then

49

4a) Let yp+1 be the endvertex of ep+1 that is not in V (T).
4b) T ← (T, ep+1, yp+1), p← p+ 1.
4c) Goto 2.

5) If Γd(T, e, ϕ) = ∅ then
5a) ϕ′ ← ϕ, ϕ′(e)← k + 1.
5b) Return (k + 1, ϕ′).

6) Choose δ ∈ Γd(T, e, ϕ) and γ ∈ Γf (T, e, ϕ).
Let u ∈ V (T) with γ ∈ ϕ̄(u), and set P ← Pu(γ, δ, ϕ).

7) If Eδ(T, e, ϕ) * E(P) then
7a) Compute ϕ′ = ϕ/P, and set ϕ← ϕ′.
7b) Goto 3.

8) Set v0, v1, v2 according to Theorem 2.23(a).

9) If ϕ̄(v0) ∩ Γf (T, e, ϕ) 6= ∅ then
9a) Compute ϕ′ ∈ Ck(G− e) as in Theorem 2.23(b), and set ϕ← ϕ′.
9b) Goto 3.

10) If V (T) ∪ {v1, v2} is not elementary with respect to ϕ then
10a) Compute ϕ′ ∈ Ck(G− e) as in Theorem 2.23(c), and set ϕ← ϕ′.
10b) Goto 3.

11) ϕ′ ← ϕ, ϕ′(e)← k + 1.

12) Return (k + 1, ϕ′).

Theorem 2.25 Let G be a graph, let e ∈ EG(x, y), and let ϕ ∈ Ck(G − e) for
an integer k ≥ ∆(G) + 1. On the input (G, e, x, y, k, ϕ), the algorithm TashExt2
returns a tuple (k′, ϕ′) with k′ ∈ {k, k + 1} and ϕ′ ∈ Ck′(G). Moreover, if k′ = k + 1
then W(G) = k + 1, or there is a triple (T, e, ϕ∗) ∈ Tk(G) satisfying:

|V (T)| ≤ ∆(G)− 3
k −∆(G)

− 1 (2.15)

and
|V (T)| ≥ 2(k −∆(G)) + 3. (2.16)

Proof: We will refer to all variables as they are valued in the current state of the
algorithm, not as they are valued in the input. Note that the value of k is never
changed during the algorithm. In particular, we always have k ≥ ∆(G) + 1 and will
use this fact without mentioning it every time. Moreover, if TashExt2 terminates
then it will always return a value k′ ∈ {k, k + 1}. Hence, this part of the proof is
already done. Now we will prove the correctness of the algorithm TashExt2. To
do this, we first formulate some conditions that has to be fulfilled when entering
the several steps of the algorithm. Then we show that these conditions are always
fulfilled during the algorithm and that, under these conditions, the algorithm gives
the required output. The entering conditions are the following:

50

(C1) When entering step 2, we have p ≥ 1, and T = (y0, e1, y1, . . . , ep, yp) is a
Tashkinov tree with respect to e and ϕ such that V (Typ−1) is elementary with
respect to ϕ.

(C2) When entering step 3 or step 4, T is Tashkinov tree with respect to e and ϕ
such that V (T) is elementary with respect to ϕ.

(C3) When entering step 5, we have (T, e, ϕ) ∈ Tk(G).

(C4) When entering step 7, we have (T, e, ϕ) ∈ Tk(G), δ ∈ Γd(T, e, ϕ), γ ∈ ϕ̄(u),
γ ∈ Γf (T, e, ϕ), and P = Pu(γ, δ, ϕ).

(C5) When entering step 9, we have (T, e, ϕ) ∈ Tk(G), δ ∈ Γd(T, e, ϕ), γ ∈ ϕ̄(u),
γ ∈ Γf (T, e, ϕ), P = Pu(γ, δ, ϕ), Eδ(T, e, ϕ) ⊆ E(P), and v0, v1, v2 are the
vertices as defined in Theorem 2.23(a).

(C6) When entering step 10, we have (T, e, ϕ) ∈ Tk(G), δ ∈ Γd(T, e, ϕ), γ ∈
Γf (T, e, ϕ), γ ∈ ϕ̄(u), P = Pu(γ, δ, ϕ), Eδ(T, e, ϕ) ⊆ E(P), v0, v1, v2 are the
vertices as defined in Theorem 2.23(a), and ϕ̄(v0) ∩ Γf (T, e, ϕ) = ∅.

After step 1 of TashExt2, T = (x, e, y) is the trivial Tashkinov tree with respect
to e and ϕ, and condition (C1) is satisfied. Now let step 2 be entered with fulfilled
condition (C1). If ϕ̄(V (T)) ∩ ϕ̄(yp) 6= ∅ then the requirements of Theorem 2.20 are
fulfilled. Then, in step 2a, TashExt2 computes a k-edge colouring ϕ′ of G and
returns (k, ϕ′). In the other case, the check in step 2 fails. Then V (T) is elementary
with respect to ϕ and, therefore, condition (C2) is satisfied.

Let step 3 be entered with satisfied condition (C2). Then, in this step, the
algorithm checks whether there is an edge joining V (T) and V (G) \V (T) that is
coloured with a colour already used on T with respect to ϕ. If yes then the order
of T is increased, condition (C1) is satisfied again, and the algorithm starts over at
step 2. If not then step 4 checks whether there is an edge in EG(V (T), V (G)\V (T)),
coloured with a colour in ϕ̄(V (T)), but not used on T with respect to ϕ. If yes then
the order of T is increased, condition (C1) is satisfied again, and the algorithm starts
over at step 2. If not, then the checks of step 3 and step 4 both failed and, therefore,
V (T) is closed with respect to ϕ. Consequently, we have (T, e, ϕ) ∈ Tk(G) and hence
condition (C3) is satisfied.

Let step 5 be entered with fulfilled condition (C3). If the check fails then there
is no defective colour with respect to (T, e, ϕ) and, by Proposition 2.21(c), V (T) is
strongly closed with respect to ϕ. Hence TashExt2 terminates with a new colour
used for the edge e. In the other case, TashExt2 chooses in step 6 an existing
defective colour δ as well as a free colour γ with respect to (T, e, ϕ). The existence
of γ follows from Proposition 2.21(f). Then, after finding u and P , condition (C4)
is clearly satisfied.

Now let step 7 be entered with fulfilled condition (C4). If Eδ(T, e, ϕ) * E(P) then
TashExt2 computes a k-edge colouring ϕ′ = ϕ/P of G− e. By Proposition 2.22, T
is a Tashkinov tree with respect to e and ϕ′, and V (T) is elementary, but not closed
with respect to ϕ′. After ϕ is set to ϕ′, condition (C2) is satisfied, and TashExt2

51

starts over at step 3. In the other case we have Eδ(T, e, ϕ) ⊆ E(P), and the algorithm
finds v0, v1, v2 in the next step. Hence, condition (C5) is fulfilled.

Let step 9 be entered with satisfied condition (C5). If ϕ̄(v0) ∩ Γf (T, e, ϕ) 6= ∅
then the requirements of Theorem 2.23(b) are fulfilled and, therefore, TashExt2
computes a k-edge colouring ϕ′ of G−e such that T is a Tashkinov tree with respect
to e and ϕ′, and V (T) is elementary but not closed with respect to ϕ′. After ϕ is set
to ϕ′, condition (C2) is satisfied, and TashExt2 starts over at step 3. In the other
case we have ϕ̄(v0) ∩ Γf (T, e, ϕ) = ∅ and, therefore, condition (C6) is satisfied.

Let step 10 be entered with fulfilled condition (C6). If V (T) ∪ {v1, v2} is not
elementary with respect to ϕ, then the requirements of Theorem 2.23(c) are satisfied
and, therefore, TashExt2 computes a k-edge colouring ϕ′ of G − e such that T is
a Tashkinov tree with respect to e and ϕ′, and V (T) is elementary, but not closed
with respect to ϕ′. After ϕ is set to ϕ′, condition (C2) is satisfied, and TashExt2
starts over at step 3. In the other case V (T)∪ {v1, v2} is elementary with respect to
ϕ. Then the algorithm uses a new colour for the edge e and terminates.

Now we only have to show that the algorithm terminates. Then, since the con-
ditions (C1)-(C6) are always satisfied, the algorithm works correctly. Due to several
goto-statements the algorithm may jump to step 2 or step 3 at some points. There
are no other loops. If the algorithm jumps to step 2 then it came either from step
3c or step 4c. In both cases the value of p was increased before. Since p is never
decreased and p + 1 = |V (T)| ≤ |V (G)|, this implies that there is only a finite
number of jumps to step 2. If TashExt2 jumps to step 3 then it comes from step
7b, 9b, or 10b. In any of these cases, see above, the set V (T) is not closed with
respect to ϕ and, therefore, the checks in step 3 and 4 cannot both fail. Then the
algorithm has to jump back to step 2 again, but this is possible only a finite number
of times. Consequently, the algorithm TashExt2 has to terminate at some point.
This, eventually, proves the first part of the theorem.

To prove the second part, we assume that TashExt2 returns (k′, ϕ′) with k′ =
k + 1. Then the algorithm terminates either in step 5b or in step 12.

In the first case, see above, we have (T, e, ϕ) ∈ Tk(G) and, therefore, the set
V (T) is elementary and strongly closed with respect to ϕ ∈ Ck(G − e). By Propo-
sition 2.21(b), |V (T)| ≥ 3 is odd. Since V (T) is elementary and closed with respect
to ϕ, for every colour α ∈ ϕ̄(V (T)) there are |V (T)|−1

2 edges in EG(V (T), V (T))
coloured with α. Since V (T) is also strongly closed with respect to ϕ, it follows
from Proposition 2.21(c) that Γd(T, e, ϕ) = ∅. Then, for every colour α /∈ ϕ̄(V (T)),
we have |Eα(T, e, ϕ)| = 1. Since α is present at every vertex of V (T), this implies
that there are |V (T)|−1

2 edges in EG(V (T), V (T)) coloured with α. Consequently,
the induced subgraph H = G[V (T)] of G contains k |V (T)|−1

2 edges plus the edge e.
From this we infer that W(G) ≥ W(H) ≥ k + 1. Since W(G) ≤ χ′(G) and ϕ′ is a
(k + 1)-edge colouring of G, this implies W(G) = k + 1.

In the other case TashExt2 terminates in step 12. Then, see above, we have
(T, e, ϕ) ∈ Tk(G), δ ∈ Γd(T, e, ϕ), Eδ(T, e, ϕ) ⊆ E(P), ϕ̄(v0) ∩ Γf (T, e, ϕ) = ∅, and
V (T) ∪ {v1, v2} is elementary with respect to ϕ. Then (2.15) follows directly from
Theorem 2.23(d). Moreover, in steps 7a, 9a and 10a of the algorithm TashExt2, the
number of used colours on T is never increased with respect to the new colouring, see

52

proof of Theorem 2.23. Hence the number of used colours on T could only change
while increasing the order of T . Step 3b uses an already used colour to increase
T . Only in step 4b a new colour is used, but then the check in step 3 must have
failed. Consequently, the algorithm uses new colours only if necessary and hence,
see proof of Lemma 2.24(c), at most |V (T)|−1

2 colours are used on T with respect to
ϕ. Moreover, since ϕ̄(v0) ∩ Γf (T, e, ϕ) = ∅, Theorem 2.23(e) implies that at least
k−dG(v0)+1 ≥ k−∆(G)+1 colours are used on T with respect to ϕ. Consequently,
we have |V (T)|−1

2 ≥ k −∆(G) + 1 and, therefore, |V (T)| ≥ 2(k −∆(G)) + 3. This,
eventually proves (2.16).

Now we have to analyse the running time of TashExt2 on a valid input, that is,
an input (G, e, x, y, k, ϕ) with |V (G)| = n and ∆(G) = ∆. For this, we can consider
k ∈ O(∆), see Section 2.2. Since T is always a Tashkinov tree with respect to e and
ϕ and |V (T)| = p + 1, it follows that p ≤ n. Since k ≥ ∆(G) + 1 and V (Typ−1)
is always elementary with respect to ϕ, we also infer that p ≤ k. Consequently, we
have p ∈ O(min{n,∆}).

Now we give some thoughts about maintaining some extra information during
the algorithm. For every colour, we store the information whether it is missing in
ϕ̄(V (T)) or not and, in the first case, at which vertex it is missing. This can easily
be updated when adding an edge to T or performing a Kempe change. We also store,
for every colour, the number of edges of this colour joining V (T) and V (G)\V (T).
When increasing the order of T this can be updated in time O(∆) by scanning
the adjacency list of the new vertex. When performing a Kempe change it can be
updated in time O(n), less than the time for the Kempe change itself. Clearly, the
checks in the steps 3, 4, 5, and 7 then only need time O(∆).

Step 2 needs time O(∆). By Theorem 2.20, step 2a requires O(min{n3,∆3})
Kempe changes. That gives a running time of O

(
(n + ∆) min{n3,∆3}). Step 6

needs time O(n + ∆). From Theorem 2.23 we infer that the steps 7a, 9a, and 10a
require only a constant number of Kempe changes and, therefore, time O(n + ∆).
The steps 9 and 10 only need time O(∆).

Due to several goto-statements, some of these steps are repeated. When the
algorithm returns to step 2, the value of p was increased before. Hence this happen
only O(min{n,∆}) times. When the algorithm returns to step 3, V (T) is not closed
with respect to ϕ, and the algorithm reaches either step 3c or step 4c and jumps
back to step 2; see also the proof of Theorem 2.25. Consequently, every step of the
algorithm is repeated at most O(min{n,∆}) times. Clearly, step 2a is performed at
most once. This leaves the time of O

(
(n + ∆) min{n3,∆3}) for this step. The rest

of the algorithm has a running time of O
(
(n + ∆) min{n,∆}). This gives a total

running time of O
(
(n+ ∆) min{n3,∆3}).

Using the algorithm TashExt2 as kernel, we can construct a new edge colour-
ing algorithm Tashkinov2 that will attain some new bounds which follow from
Theorem 2.25.

Tashkinov2(G):

1) If ∆(G) ≤ 2 then compute an optimal colouring ϕ of G
and return ϕ.

53

2) Let G′ be the edgeless graph with V (G′) = V (G),
let ϕ be the empty colouring of G′, and let k = ∆(G) + 1.

3) For every edge e ∈ E(G) do
3a) Let x, y be the two endvertices of e.
3b) E(G′)← E(G′) ∪ {e}
3c) (k, ϕ)← TashExt2(G′, e, x, y, k, ϕ)

4) Return ϕ.

Theorem 2.26 Let G be a graph. Then, on the input G, Tashkinov2 returns
an edge colouring of G using at most τ(G) colours. Hence, the parameter τ is an
efficiently realizable upper bounds of χ′.

Proof: If ∆(G) ≤ 2 then χ′(G) = W(G) ≤ τ(G) and, since Tashkinov2 returns an
optimal edge colouring of G, we are done. Now consider the case ∆(G) ≥ 3. Then
the algorithm starts with k colours, where

k = ∆(G) + 1 ≤ ∆(G) +

√
∆(G)− 1

2
≤ τ(G).

Hence, if the algorithm never uses a new colour, we are done. Otherwise there is a
last call of the subroutine TashExt2 where a new colour is used. The input is then
a tuple (H, e, x, y, k, ϕ), where H is a subgraph of G and k ≥ ∆(H) + 1. The output
is a (k + 1)-edge colouring of H, and we have χ′(G) ≤ k + 1. By Theorem 2.25, we
have two possible cases. The first case is that W(H) = k + 1. This implies

W(G) ≥ k + 1

and we are done. The second case is that there is a triple (T, e, ϕ∗) ∈ Tk(H) satisfying

2(k −∆(H)) + 3 ≤ |V (T)| ≤ ∆(H)− 3
k −∆(H)

− 1.

This implies

(k −∆(H))2 + 2(k −∆(H)) ≤ ∆(H)− 3
2

and hence k−∆(H)+1 ≤
√

∆(H)−1
2 . From this and ∆(H) ≤ ∆(G) we then conclude

that

χ′(G) ≤ k + 1 ≤ ∆(G) +

√
∆(G)− 1

2
≤ τ(G).

Consequently, the computed colouring uses at most τ(G) colours.
Since the time complexity of Tashkinov2 is bounded by a polynomial in the

number of vertices and edges of the input graph, τ is an efficiently realizable upper
bound of χ′. This completes the proof.

A consequence of Theorem 2.26 is the following result about an asymptotic ap-
proximation of the chromatic index for graphs with sufficiently large maximum de-
gree. In particular, it supports Goldberg’s conjecture asymptotically and extends a
result of Kahn [18], see Theorem 1.3.

54

Corollary 2.27 Let ε > 0, and let G be a graph with ∆(G) ≥ 1
2ε2

. Then, on the
input G, the algorithm Tashkinov2 returns an edge colouring of G using at most
τ̃(G) colours, where τ̃(G) = max{(1 + ε)∆(G),W(G)} ≤ (1 + ε)χ′f (G).

Proof: Suppose that ε > 0 and ∆(G) ≥ 1
2ε2

. Then ε ≥
√

1
2∆(G) and, therefore,

(1 + ε)∆(G) = ∆(G) + ε∆(G) ≥ ∆(G) +

√
∆(G)

2
.

This implies that

τ̃(G) = max{(1 + ε)∆(G),W(G)} ≥ max{∆(G) +

√
∆(G)

2
,W(G)} = τ(G).

Hence, by Theorem 2.26, Tashkinov2 returns an edge colouring of G using at most
τ̃(G) colours.

If ∆(G) ≤ 1 then we have χ′f (G) = W(G) = ∆(G) and, therefore, we obtain
τ̃(G) ≤ max{(1 + ε)∆(G),W(G)} ≤ (1 + ε)χ′f (G). If ∆(G) ≥ 2 then ∆(G) ≥ 1

2ε
implies that ε∆(G) ≥ 1. By (1.1), we have χ′f (G) ≥ ∆(G) and dχ′f (G)e ≥ W(G).
Consequently, we obtain (1 + ε)χ′f (G) ≥ χ′f (G) + ε∆(G) ≥ χ′f (G) + 1 ≥ W(G) and,
therefore, τ̃(G) ≤ max{(1 + ε)∆(G),W(G)} ≤ (1 + ε)χ′f (G). This completes the
proof.

The next two results are improvements of results due to Sanders and Steurer [25].
The first one is a simple consequence of Theorem 2.26, the second one states that,
for every ε > 0, the parameter τε is realized by the algorithm Tashkinov2.

Corollary 2.28 The parameter χ′f +
√

1
2χ
′
f is an efficiently realizable upper bound

of the chromatic χ′.

Proof: Let G be a graph. If ∆(G) ≤ 1 then, clearly, we have χ′f (G) = W(G) =
∆(G). In the other case, if ∆(G) ≥ 2 then we obtain from χ′f (G) ≥ ∆(G) and
dχ′f (G)e ≥ W(G) that

χ′f (G) +

√
1
2
χ′f ≥ χ′f (G) + 1 ≥ W(G).

Consequently, in any case, we have

χ′f (G) +

√
1
2
χ′f ≥ τ(G)

and, therefore, the desired result follows from Theorem 2.26. This completes the
proof.

Theorem 2.29 Let ε > 0, and let G be a graph. Then, on the input G, the algorithm
Tashkinov2 returns an edge colouring of G using at most τε(G) colours. Hence,
the parameter τε is an efficiently realizable upper bounds of χ′.

55

Proof: If ∆(G) ≤ 2 then χ′(G) = W(G) and, since Tashkinov2 returns an optimal
edge colouring of G, we are done. Let us consider the case ∆(G) ≥ 3. Then the
algorithm starts with a value of k = ∆(G) + 1 ≤ (1 + ε)∆(G) + 1 − 3ε ≤ τε(G).
Hence, if k is never increased, we are done, too. If it is increased then there is a
last time that k is increased to k + 1 by the subroutine TashExt2 for an input
(H, e, x, y, k, ϕ) where H is a subgraph of G. Then, by Theorem 2.25, there are two
possible cases. The first one is that we have W(H) = k+ 1, implying W(G) ≥ k+ 1.
This settles the case. In the other case Theorem 2.25 implies that there is a triple
(T, e, ϕ∗) ∈ Tk(H) satisfying

2(k −∆(H)) + 3 ≤ |V (T)| ≤ ∆(H)− 3
k −∆(H)

− 1.

In particular, this implies ∆(H) ≥ 3. Now we distinguish two cases. If |V (T)| ≤ 1
ε−1

then we infer that

k + 1 ≤ ∆(H) +
|V (T)| − 1

2
≤ ∆(H)− 1 +

1
2ε
.

Since ∆(H) ≤ ∆(G) and k is an integer, it follows that k + 1 ≤ ⌊∆(G)− 1 + 1
2ε

⌋ ≤
τε(G). If otherwise |V (T)| > 1

ε − 1 then we have

∆(H)− 3
k −∆(H)

≥ |V (T)|+ 1 >
1
ε

and, therefore, k < (1 + ε)∆(H)− 3ε. Since ∆(H) ≤ ∆(G) and k is an integer, this
implies k+ 1 ≤ (1 + ε)∆(G) + 1−3ε ≤ τε(G). Consequently, the computed colouring
uses at most τε(G) colours.

Since the time complexity ofTashkinov2 is bounded polynomially in the number
of vertices and edges of the input graph, τε is an efficiently realizable upper bounds
of χ′. This completes the proof.

3 Goldberg’s Conjecture

3.1 On the 15/14 Edge Colouring of Graphs

In this section we will extend Tashkinov’s methods to prove a result related to Gold-
berg’s conjecture 1.2. An equivalent formulation of this conjecture can be obtained
as follows. For an integer m ≥ 3, let Jm denote the class of all graphs G with

χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

.

Then for every integer m ≥ 3 we have Jm ⊆ Jm+1. Moreover, the class

J =
∞⋃

m=3

Jm

consists of all graphs G with χ′(G) ≥ ∆(G)+2. Consequently, Goldberg’s conjecture
is equivalent to the following conjecture.

56

Conjecture 3.1 For every integer m ≥ 3, every graph G with

χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

is elementary.

Up to now, this conjecture is known to be true for m ≤ 13. It was proved for
m = 5 by Sørensen (unpublished), Andersen [1] and Goldberg [9], for m = 7 by
Sørensen (unpublished) and Andersen [1], for m = 9 by Goldberg [11], for m = 11
by Nishizeki and Kashiwagi [22] and by Tashkinov [38] and, eventually, form = 13 by
Favrholdt, Stiebitz and Toft [8]. We will make the next step and show the following
result.

Theorem 3.2 Every graph G with

χ′(G) >
15
14

∆(G) +
12
14

is elementary.

Corollary 3.3 Every graph G satisfies

χ′(G) ≤ max
{⌊

15
14

∆(G) +
12
14

⌋
,W(G)

}
.

To prove Theorem 3.2, we will further extend Tashkinov’s methods by generaliz-
ing the ideas of Theorem 2.23. Most of these improvements were already introduced
by Favrholdt, Stiebitz and Toft in [8].

Clearly, the statements of Theorem 3.2 and Corollary 3.3 are equivalent. From
Proposition 1.1 it then follows that it is sufficient to prove Theorem 3.2 for critical
graphs. Let us mention a further consequence of Theorem 3.2.

Corollary 3.4 Let 3 ≤ m ≤ 15 be an odd integer. If G is a critical graph such that

χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

,

then |V (G)| ≤ m− 2 is odd.

Proof: By Theorem 3.2, G is an elementary graph, that is, χ′(G) = W(G). Since G
is critical, every proper subgraph H of G satisfies W(H) ≤ χ′(H) < χ′(G) = W(G).
This implies that

χ′(G) = W(G) =

⌈
|E(G)|⌊
1
2 |V (G)|⌋

⌉
.

Consequently, |V (G)| is odd, since otherwise χ′(G) = d2|E(G)|/|V (G)|e ≤ ∆(G), a
contradiction to the assumption G ∈ Jm. From Theorem 1.4 and Proposition 1.5 it
then follows that |V (G)| ≤ m− 2.

That the above result holds for every odd integer m ≥ 3 was conjectured in 1974
by Jakobsen [16].

Conjecture 3.5 Let m ≥ 3 be an odd integer. Every critical graph G ∈ Jm has at
most m− 2 vertices.

57

3.2 Tashkinov Trees in Critical Graphs

Although, in the last section, we introduced Tashkinov’s methods totally from an
algorithmic point of view, we will now change this and concentrate more on the
analysis of critical graphs. As explained in Section 2.1, this gives some advantages
in formulating and proving results. Since the results deal with optimal colourings
in critical graphs, the results are weaker than algorithmic versions. However, it will
always be possible to adapt the methods of the proofs to arbitrary colourings and
to construct a corresponding algorithm. In principle, this will always work in the
following way. A result states that in a critical graph G with χ′(G) = k + 1 some
condition is fulfilled. Then the proof will show how a k-edge colouring of G could
be constructed otherwise. We will always discuss how this can be translated into a
similar recolouring method for a non-critical graph.

First we will reformulate some results of Section 2.6 and Section 2.7 for critical
graphs. One simple consequence of Theorem 2.20 is the following.

Theorem 3.6 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. Furthermore, let e ∈ E(G), let ϕ ∈ Ck(G− e), and let T be a Tashkinov
tree with respect to e and ϕ. Then V (T) is elementary with respect to ϕ.

Let G be a critical graph with χ′(G) = k+ 1 for an integer k ≥ ∆(G) + 1. Since
G is critical, for every edge e ∈ E(G) and every colouring ϕ ∈ Ck(G− e), there is a
Tashkinov tree T with respect to e and ϕ. Hence, there is a largest number p such
that p = |V (T)| for such a Tashkinov tree T . We call p the Tashkinov order of G
and write t(G) = p. Furthermore, we denote by T (G) the set of all triples (T, e, ϕ)
such that e ∈ E(G), ϕ ∈ Ck(G− e), and T is a Tashkinov tree on t(G) vertices with
respect to e and ϕ. Evidently, T (G) 6= ∅.
Corollary 3.7 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. If (T, e, ϕ) ∈ T (G) then V (T) is elementary and closed with respect to ϕ.
As a consequence T (G) ⊆ Tk(G), and t(G) ≥ 3 is odd.

Proof: Clearly, T is a maximal Tashkinov tree with respect to e and ϕ and, therefore,
V (T) is closed with respect to ϕ. Moreover, by Theorem 3.6, V (T) is also elementary
with respect to ϕ. This implies that (T, e, ϕ) ∈ Tk(G). By Proposition 2.21(b), we
obtain t(G) = |V (T)| ≥ 3 is odd.

Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and
let (T, e, ϕ) ∈ T (G). By Corollary 3.7, the vertex set V (T) is elementary and closed
with respect to ϕ and, therefore, we have T (G) ⊆ Tk(G). In particular, this implies
that the sets Γd(T, e, ϕ) and Γf (T, e, ϕ) are well defined. Thus we can use the results
of the last section also for (T, e, ϕ) ∈ T (G). From now on, we will use the facts of
Corollary 3.7 quite often without mentioning it explicitly.

Note that considering Tashkinov trees of maximum order gives another problem
for the translation of the upcoming results into algorithms. However, this will not
be a problem. Whenever this maximality is used to prove some condition, it would
otherwise be possible to construct a Tashkinov tree of larger order. A corresponding
algorithm simply checks the condition and, in case it is not fulfilled, increases the
order of the Tashkinov tree.

58

Theorem 3.8 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G)+1, and let (T, e, ϕ) ∈ T (G). Furthermore, let δ ∈ Γd(T, e, ϕ), let u ∈ V (T) be
a vertex such that ϕ̄(u) contains a free colour γ ∈ Γf (T, e, ϕ), and let P = Pu(γ, δ, ϕ).
Then the following statements hold:

(a) Eδ(T, e, ϕ) ⊆ E(P).

(b) In the linear order ¹(u,P) there is a last vertex v0 that belongs to V (T) and a
first vertex v1 that belongs to V (G)\V (T), where v1 ¹(u,P) v0. In the same
order v1 has a successor v2 which belongs to V (G)\V (T), too.

(c) ϕ̄(v0) ∩ Γf (T, e, ϕ) = ∅.
(d) The set X = V (T) ∪ {v1, v2} is elementary with respect to ϕ.

Proof: To prove (a), assume that Eδ(T, e, ϕ) * E(P). Then Proposition 2.22
implies that there is a colouring ϕ′ ∈ C(G − e) such that T is a Tashkinov tree
with respect to e and ϕ′, but V (T) is not closed with respect to ϕ′. Consequently,
there is a Tashkinov tree T ′ with respect to e and ϕ′ satisfying |V (T ′)| > |V (T)|, a
contradiction to |V (T)| = t(G). This proves (a).

Statement (b) is an immediate consequence of (a) and Theorem 2.23(a). State-
ments (c) and (d) follow from (a) and Theorem 2.23(b)-(c) and the fact that |V (T)| =
t(G).

Theorem 3.8 shows how the vertex set of a maximum Tashkinov tree can be
extended to an elementary set by adding two vertices. Now we will generalize these
ideas to get elementary sets of potentially larger size.

Let G be a graph with χ′(G) = k + 1, where k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈
T (G). A vertex v in V (G)\V (T) is called absorbing with respect to (T, e, ϕ) if,
for every colour δ ∈ ϕ̄(v) and every free colour γ ∈ Γf (T, e, ϕ) with γ 6= δ, the
(γ, δ)-chain Pv(γ, δ, ϕ) contains a vertex u ∈ V (T) satisfying γ ∈ ϕ̄(u). Since V (T)
is elementary with respect to ϕ, this vertex u is the unique vertex in T with γ ∈ ϕ̄(u)
and, moreover, Pv(γ, δ, ϕ) is a path whose endvertices are u and v. Clearly, u belongs
to Pv(γ, δ, ϕ) if and only if v belongs to Pu(γ, δ, ϕ). Let A(T, e, ϕ) denote the set
of all vertices in V (G)\V (T) which are absorbing with respect to (T, e, ϕ).

Proposition 3.9 (Favrholdt, Stiebitz and Toft [8] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Then the vertex set V (T) ∪A(T, e, ϕ) is elementary with respect to ϕ.

Proof: Suppose, on the contrary, that Z = V (T)∪A(T, e, ϕ) is not elementary with
respect to ϕ. Then there are two distinct vertices v, v′ ∈ Z, and there is a colour α
such that α ∈ ϕ̄(v)∩ ϕ̄(v′). Since, by Corollary 3.7, V (T) is elementary with respect
to ϕ, at least one of the these two vertices belong to A = A(T, e, ϕ), say v ∈ A.
From Proposition 2.21(f) it follows that there is a free colour γ ∈ Γf (T, e, ϕ) that is
distinct from α. Then, since V (T) is elementary with respect to ϕ, there is a unique
vertex u in V (T) such that γ ∈ ϕ̄(u). Since v ∈ A, it follows that v belongs to
the chain Pu = Pu(γ, α, ϕ). Hence, Pu is a path and u, v are the endvertices of Pu
where u 6= v. Since α ∈ ϕ̄(v′) and v′ 6= v, we then conclude that v′ /∈ V (Pu) and,

59

therefore, v′ 6= u. Clearly, this implies that v′ /∈ A. Consequently, v′ ∈ V (T)\{u}.
It then follows from Proposition 2.21(h) that the vertex v′ is an endvertex of Pu, a
contradiction. This completes the proof.

Note that the proof of Proposition 3.9 does not depend on the criticality of the
graph G or on the fact that (T, e, ϕ) ∈ T (G). A similar result also holds for any
graph G and any (T, e, ϕ) ∈ Tk(G) with k ≥ ∆(G) + 1. The result is only due to the
special definition of absorbing vertices. This definition makes it impractical to find
the set of absorbing vertices algorithmically. However, it is a useful tool to prove
that special vertex sets are elementary.

Let G be a critical graph with χ′(G) = k + 1, where k ≥ ∆(G) + 1, and let
(T, e, ϕ) ∈ T (G). We call v ∈ V (G) a defective vertex with respect to (T, e, ϕ) if
there are two distinct colours δ and γ such that δ ∈ Γd(T, e, ϕ) is a defective colour,
γ ∈ Γf (T, e, ϕ) is a free colour, and v is the first vertex in the linear order ¹(u,P)

that belongs to V (G)\V (T), where u is the unique vertex in T with γ ∈ ϕ̄(u) and
P = Pu(δ, γ, ϕ). The set of all defective vertices with respect to (T, e, ϕ) is denoted
by D(T, e, ϕ).

Proposition 3.10 (Favrholdt, Stiebitz and Toft [8] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Then D(T, e, ϕ) ⊆ A(T, e, ϕ).

Proof: Let v be an arbitrary vertex of D(T, e, ϕ). Then there are two distinct
colours γ ∈ Γf (T, e, ϕ) and δ ∈ Γd(T, e, ϕ) such that v is the first vertex in the linear
order ¹(u,P) that belongs to V (G)\V (T) where u is the unique vertex in T with
γ ∈ ϕ̄(u) and P = Pu(γ, δ, ϕ).

Now consider an arbitrary colour α ∈ ϕ̄(v) and a free colour γ′ ∈ Γf (T, e, ϕ). By
Theorem 3.8(d), the set V (T) ∪ {v} is elementary with respect to ϕ. Consequently,
there is a unique vertex u′ ∈ V (T) such that γ′ ∈ ϕ̄(u′) and γ′ 6= α. Since δ ∈ ϕ(v)
is a defective colour, α ∈ ϕ̄(v) and γ′ is a free colour, we conclude that δ 6= α and,
by Proposition 2.21(d), δ 6= γ′.

In order to prove that v ∈ A(T, e, ϕ), we have to show that u′ belongs to the
(α, γ′)-chain P ′ = Pv(α, γ′). Suppose, on the contrary, that u′ /∈ V (P ′). Since
V (T) ∪ {v} is elementary with respect to ϕ, this implies, in particular, that no
endvertex of P ′ belongs to V (T). Moreover, α /∈ ϕ̄(V (T)) and γ′ ∈ Γf (T, e, ϕ) and
hence, both colours α and γ′ are unused on T with respect to ϕ. Consequently, T
is a Tashkinov tree with respect to e and ϕ′ = ϕ/P ′ satisfying ϕ̄′(V (T)) = ϕ̄(V (T))
and, therefore, (T, e, ϕ′) ∈ T (G). For the colouring ϕ′, we then obtain that γ′ ∈
ϕ̄′(u′) ∩ ϕ̄′(v), Eδ(T, e, ϕ′) = Eδ(T, e, ϕ) and, moreover, the chain P ′ = Pu(γ, δ, ϕ′)
satisfies P ′ = uPv. Hence, we have δ ∈ Γd(T, e, ϕ′), and v is the first vertex in
the linear order ¹(u,P ′) that belongs to V (G)\V (T). From Theorem 3.8(d) it then
follows that V (T) ∪ {v} is elementary with respect to ϕ′. Since γ′ ∈ ϕ̄′(u′) ∩ ϕ̄′(v),
this is a contradiction. Consequently, v ∈ A(T, e, ϕ) and we are done.

Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and
let (T, e, ϕ) ∈ T (G). A simple consequence of Proposition 3.9 and Proposition 3.10
is that the set V (T) ∪ D(T, e, ϕ) is elementary with respect to ϕ. This is a first
generalization of Theorem 3.8 where v1 is the only considered defective vertex.

60

Algorithmic aspect: Let us say something about a realization of Proposition 3.10
in a colouring algorithm. The input of our subroutine is an arbitrary graph G, an
edge e ∈ E(G), and a colouring ϕ ∈ Ck(G − e) for an integer k ≥ ∆(G) + 1. Like
in TashExt2, we successively construct a Tashkinov tree and maybe change the
colouring ϕ until we either get a k-edge colouring of G, or we get an elementary
and strongly closed set, or we get a triple (T, e, ϕ) ∈ Tk(G). At this point we
successively compute the defective vertices. This means, for every free colour γ and
every defective colour δ, we check the (γ, δ)-chain P = Pu(γ, δ, ϕ) where u ∈ V (T)
and γ ∈ ϕ̄(u). This process stops in three cases. First, the path P contains not all
edges of Eδ(T, e, ϕ). Then, as in TashExt2, we recolour, increase the order of T and
start over with this larger Tashkinov tree. Second, we get a setD of defective vertices
such that V (T) ∪D is not elementary with respect to ϕ. If there is a vertex v ∈ D
such that V (T) ∪ {v} is not elementary then, again as in TashExt2, we recolour,
increase the order of T and start over again with this larger T . Otherwise there are
two distinct vertices v1, v2 ∈ D and a colour α ∈ ϕ̄(v1) ∩ ϕ̄(v2). Then we choose a
free colour γ′ 6= α. Since v1, v2 are distinct, the vertex u is not an endvertex of at
least one of the chains Pi = Pvi(α, γ

′, ϕ), i ∈ {1, 2}. The proof of Proposition 3.10
then shows how, by performing one Kempe change, colouring ϕ′ can be derived from
ϕ such that vi ∈ D(T, e, ϕ′) and V (T) ∪ {vi} is not elementary with respect to ϕ′.
Again, this allows us to recolour, to increase the order of T , and to start over with
this larger T . In the third case, the process stops when all defective vertices are
found and V (T) ∪D(T, e, ϕ) is elementary with respect to ϕ.

Clearly, the search for the defective vertices can be done in a time that is poly-
nomial in ∆(G) and |V (G)|. This search is only repeated after the order of the
Tashkinov tree T was increased. Since the order of T is bounded by |V (G)|, the run-
ning time of the whole algorithm is bounded by a polynomial in ∆(G) and |V (G)|.
Definition 3.11 Let G be graph, and let (T, e, ϕ) ∈ Tk(G) for an integer k ≥ ∆(G)+
1. Furthermore, let Z be a vertex set with V (T) ⊆ Z ⊆ V (G). A sequence F =
(e1, u1, . . . , ep, up) is called a fan at Z with respect to ϕ if the following conditions
hold:

(F1) The edges e1, . . . , ep ∈ E(G) as well as the vertices u1, . . . , up ∈ V (G) are
distinct.

(F2) For every i ∈ {1, . . . , p}, there are two vertices z ∈ Z and z′ ∈ Z∪{u1, . . . , ui−1}
satisfying ei ∈ EG(z, ui) and ϕ(ei) ∈ ϕ̄(z′).

Theorem 3.12 (Favrholdt, Stiebitz and Toft [8] 2006) Let G be a critical
graph with χ′(G) = k + 1 for an integer k ≥ ∆(G) + 1, and let (T, e, ϕ) ∈ T (G).
Furthermore, let Y ⊆ D(T, e, ϕ) and Z = V (T) ∪ Y . If F is a fan at Z with respect
to ϕ, then Z ∪ V (F) is elementary with respect to ϕ.

For a proof of Theorem 3.12, see [8]. This result is another generalization of
Theorem 3.8. There v1 is the only considered defective vertex, and there is an edge
f ∈ EG(v1, v2) with ϕ(f) = γ. Consequently, F = (f, v2) is a fan at V (T)∪{v1} with
respect to ϕ. Now, Theorem 3.12 allows to add a whole fan to get an elementary
vertex set.

61

Algorithmic aspect: Let us say something about a realization in a colouring algo-
rithm, where the input of our subroutine is a valid tuple (G, e, x, y, k, ϕ). As already
described, we can algorithmically construct a maximal Tashkinov tree and the set of
defective vertices in polynomial time, resulting in either a k-edge colouring of G, or
a triple (T, e, ϕ) ∈ Tk(G) such that Z = V (T)∪D(T, e, ϕ) is elementary with respect
to ϕ. Then we can successively build the fan F at Z with respect to ϕ until either
Z ∪ V (F) is not elementary with respect to ϕ, or F is maximal and Z ∪ V (F) is
elementary with respect to ϕ. In the first case the proof of Theorem 3.12, see [8],
shows how the colouring ϕ can be changed in such a way that the order of T can be
increased. Then we start over with this larger Tashkinov tree. Moreover, the time
for the necessary operations is bounded by a polynomial in ∆(G) and |V (G)| and
hence, also the time for the whole algorithm is.

Consider a graph G and a triple (T, e, ϕ) ∈ Tk(G) for an integer k ≥ ∆(G) + 1.
Let α ∈ ϕ̄(u) for a vertex u ∈ V (T), and let δ ∈ Γd(T, e, ϕ). Clearly, the (α, δ)-chain
P = Pu(α, δ, ϕ) is a path where u is one endvertex of P and, moreover, exactly one
of the two colours α or δ is missing at the second endvertex of P with respect to
ϕ. Since V (T) is elementary and δ is present at every vertex in V (T), both with
respect to ϕ, the second endvertex of P belongs to V (G)\V (T). Hence, in the linear
order ¹(u,P) there is a last vertex v that belongs to V (T). This vertex is said to be
an exit vertex with respect to (T, e, ϕ). The set of all exit vertices with respect to
(T, e, ϕ) is denoted by F (T, e, ϕ).

Lemma 3.13 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1, and let (T, e, ϕ) ∈ T (G). Then ϕ̄(F (T, e, ϕ)) ∩ Γf (T, e, ϕ) = ∅.

Proof: Let v ∈ F (T, e, ϕ). Then there is a vertex u ∈ V (T), a colour α ∈ ϕ̄(u), and
a colour δ ∈ Γd(T, e, ϕ) such that v is the last vertex in the linear order ¹(u,P) that
belongs to V (T), where P = Pu(α, δ, ϕ). Clearly, P is a path with one endvertex u
and the other endvertex z ∈ V (G)\V (T).

Suppose that there is a colour γ ∈ ϕ̄(v) ∩ Γf (T, e, ϕ). By Corollary 3.7, V (T) is
elementary and closed with respect to ϕ and, therefore, no edge in EG(V (T), V (G)\
V (T)) is coloured with α or γ with respect to ϕ. Consequently, there is a colour-
ing ϕ′ ∈ Ck(G − e), obtained from ϕ by interchanging the colours α and γ on all
edges in EG(V (G)\V (T), V (G)\V (T)). Evidently, we then have (T, e, ϕ′) ∈ T (G),
Γf (T, e, ϕ′) = Γf (T, e, ϕ), and Γd(T, e, ϕ′) = Γd(T, e, ϕ). In particular, we obtain
α ∈ ϕ̄′(v)∩ Γf (T, e, ϕ′) and δ ∈ Γd(T, e, ϕ′). Moreover, for P ′ = Pv(α, δ, ϕ′) we have
P ′ = vPz. One one hand, this implies |E(P ′)∩EG(V (T), V (G)\V (T))| = 1. On the
other hand, it follows from Theorem 3.8(a) that |E(P ′) ∩EG(V (T), V (G)\V (T)| =
|Eδ(T, e, ϕ′))| > 1, a contradiction. Consequently, we have ϕ̄(v) ∩ Γf (T, e, ϕ) = ∅.
This completes the proof.

In Theorem 3.8 the vertex v0 was the only considered exit vertex. In Theo-
rem 2.23, the algorithmic version of Theorem 3.8, the exit vertex v0 was used to
increase the order of the Tashkinov tree and to estimate the number of used colours.
In some of the later results the exit vertices will be used in a similar way.

62

3.3 Balanced Tashkinov Trees

The last results were dealing with generating elementary vertex sets. This is sup-
ported by another useful idea from Section 2.7, namely building Tashkinov trees in
such a way that preferably few colours are used. Lemma 2.24 dealt with this issue
in a general way that still leaves a wide range of possible Tashkinov trees. We will
now focus on constructing Tashkinov trees that not only use few colours but have a
more definite structure.

Let G be a graph, and let (T, e, ϕ) ∈ Tk(G) for an integer k ≥ ∆(G) + 1. Then
T has the form

T = (y0, e1, y1, . . . , ep−1, yp−1).

T is called a normal Tashkinov tree with respect to e and ϕ if there are two colours
α ∈ ϕ̄(y0) and β ∈ ϕ̄(y1), an integer 2 ≤ q ≤ p − 1, and an edge f ∈ EG(y0, yq−1)
such that the path P (y1, e2, y2, . . . , eq−1, yq−1, f, y0) is an (α, β)-chain with respect
to ϕ. In this case Tyq−1 is called the (α, β)-trunk of T , and the number q is called
the height of T , denoted by h(T) = q. Furthermore, let T Nk (G) denote the set of
all triples (T, e, ϕ) ∈ Tk(G) for which T is a normal Tashkinov tree with respect to
e and ϕ. The following result shows that normal Tashkinov trees can be generated
from arbitrary ones.

Lemma 3.14 Let G be a graph, and let (T, e, ϕ) ∈ Tk(G) with k ≥ ∆(G) + 1 and
e ∈ EG(x, y). Furthermore, let α ∈ ϕ̄(x) and β ∈ ϕ̄(y) be two colours, and let
P = Px(α, β, ϕ). Then there is a triple (T ′, e, ϕ) ∈ T Nk (G) such that V (T ′) = V (T)
and h(T ′) = |V (P)|.

Proof: By Proposition 2.21(h), we have α 6= β, and the (α, β)-chain P = Px(α, β, ϕ)
is a path with endvertices x and y. This means that P is a path of the form

P = P (v1, f2, v2, . . . , fq, vq)

with v1 = y and vq = x. Evidently, fj ∈ EG(vj−1, vj) and ϕ(fj) ∈ {α, β} ⊆ ϕ̄({x, y})
for all j ∈ {2, . . . , p}. Hence, T1 = (x, e, y, f2, v2, . . . , fq−1, vq−1) is a Tashkinov tree
with respect to e and ϕ. By Lemma 2.24(b), there is a Tashkinov tree T ′ with respect
to e and ϕ with V (T ′) = V (T) and T ′vq−1 = T1. Then T ′ is a normal Tashkinov
tree with respect to e and ϕ and, therefore, (T ′, e, ϕ) ∈ T Nk (G). Moreover, T1 is the
(α, β)-trunk of T ′ and h(T ′) = |V (T1)| = |V (P)|. This completes the proof.

Let G be a graph, and let (T, e, ϕ) ∈ T Nk (G) for an integer k ≥ ∆(G) + 1,
where T has the form T = (y0, e1, y1, . . . , ep−1, yp−1). Then T is called a balanced
Tashkinov tree with respect to e and ϕ if ϕ(e2j) = ϕ(e2j−1) for h(T) < 2j < p.
Let T Bk (G) denote the set of all triples (T, e, ϕ) ∈ Tk(G) for which T is a balanced
Tashkinov tree with respect to e and ϕ. A triple (T, e, ϕ) ∈ T Bk (G) is also called a
balanced triple. The following result shows that balanced Tashkinov trees can be
generated from normal ones.

Lemma 3.15 Let G be a graph, and let (T, e, ϕ) ∈ T Nk (G) for an integer k ≥
∆(G)+1. Then there is a balanced triple (T ′, e, ϕ) ∈ T Bk (G) such that V (T ′) = V (T),
h(T ′) = h(T), and all colours used on T ′ are used on T , both with respect to ϕ.

63

Proof: Let (T, e, ϕ) ∈ T Nk (G), and let q = h(T). Then, clearly, T has the form
T = (y0, e1, y1, . . . , ep−1, yp−1), and Tyq−1 is the (α, β)-trunk of T . By definition,
we have α ∈ ϕ̄(y0), β ∈ ϕ̄(y1), and there is an edge f ∈ EG(y0, yq−1) satisfying
P = Py0(α, β, ϕ) = P (y1, e2, y2, . . . , eq−1, yq−1, f, y0). Hence, P is a path with two
distinct endvertices, and moreover P is alternately coloured with two colours. Since
every of these two colours is missing at one of the endvertices, we conclude that
|E(P)| ≥ 2 is even. Hence, q ≥ 3 is odd.

Let i ≤ p be the greatest odd integer for which there exists a Tashkinov tree
T ′ = (y′0, e

′
1, y
′
1, . . . , e

′
i−1, y

′
i−1) with respect to e and ϕ satisfying T ′y′q−1 = Tyq−1,

ϕ(E(T ′)) ⊆ ϕ(E(T)) and ϕ(e′2j−1) = ϕ(e′2j) for q < 2j < i. Evidently, we have
i ≥ q, because T fulfils these requirements for i = q.

Now suppose that i < p. Then there is a smallest integer r satisfying yr ∈
V (T) \ V (T ′). Let y′i = yr and e′i = er. Consequently, e′i ∈ EG(V (T ′), y′i) and
ϕ(e′i) ∈ ϕ̄(V (T ′)) and, therefore, T1 = (T ′, e′i, y

′
i) is a Tashkinov tree with respect

to e and ϕ. Let γ = ϕ(e′i). Clearly, |V (T1)| is even and γ ∈ ϕ̄(V (T1)). Since
V (T) is elementary with respect to ϕ, the set V (T1) is elementary with respect
to ϕ, too. It then follows that there is an edge e′i+1 ∈ EG(V (T1), y′i+1) satisfying
y′i+1 ∈ V (G)\V (T1) and ϕ(e′i+1) = γ. Evidently, T2 = (T1, e

′
i+1, y

′
i+1) is a Tashkinov

tree with respect to e and ϕ satisfying T2y
′
q−1 = Tyq−1, ϕ(E(T2)) ⊆ ϕ(E(T)),

and ϕ(e′2j−1) = ϕ(e′2j) for p < 2j < i + 2. This contradicts the maximality of
i. Consequently, we have i = p and, by Lemma 2.24(b), V (T ′) = V (T). Then
(T ′, e, ϕ) ∈ T Bk (G) with h(T ′) = h(T) = q and ϕ(E(T ′)) ⊆ ϕ(E(T)). Hence, the
proof is finished.

Algorithmic aspect: Clearly, the rearranging procedure described in the proof of
Lemma 3.15 only needs polynomial time. Note that, when building a Tashkinov tree,
we need not to build a normal tree first and rearrange it later. Given a colouring ϕ ∈
Ck(G− e), we can simply start with the trivial Tashkinov tree (x, y, e), then extend
it to the trunk using the (α, β)-chain joining x and y. Eventually, we build the rest
by repeatedly adding two edges of the same colour. As long as the vertex set remains
elementary with respect to our colouring ϕ, these steps can easily be accomplished,
resulting in a balanced triple (T, e, ϕ). Otherwise, that is, if at some point the vertex
of the Tashkinov tree is not elementary with respect to ϕ, Theorem 2.20 shows how
to construct a colouring ϕ′ ∈ Ck(G).

Although we can get balanced Tashkinov trees in the direct way, the rearrang-
ing procedure of Lemma 3.15 will be useful after operations that turn a balanced
Tashkinov tree into an unbalanced one. For example, there will be cases where we
are able to increase the height of a balanced Tashkinov tree by using other colours
for the trunk. Using Lemma 3.14 we can easily get a new normal Tashkinov tree
with the same order and larger height, but it may not be balanced anymore, so we
have to use Lemma 3.15.

Another recolouring and rearranging operation that we will use, is the following
one. Consider a graph G and a balanced triple (T, e, ϕ) ∈ T Bk (G) for an integer
k ≥ ∆(G) + 1. Then T has the form

T = (y0, e1, y1, . . . , ep−1, yp−1),

64

and Tyq−1 is the (α, β)-trunk of T , where q = h(T), α ∈ ϕ̄(y0), and β ∈ ϕ̄(y1).
Moreover, there is an edge fq ∈ EG(y0, yq−1) with ϕ(fq) = β. For i = 1, . . . , q − 1,
let fi = ei. Clearly, the edges f1, . . . , fq form a cycle in G. Furthermore, the edge
f1 = e is uncoloured, and the edges f2, . . . , fq are coloured alternately with α and β
with respect to ϕ. Now choose a j ∈ {1, . . . , q − 1}. Since (y0, y1) is an (α, β)-pair
with respect to ϕ, there is a colouring ϕ′ ∈ Ck(G− fj+1) such that ϕ′(e′) = ϕ(e′) for
all edges e′ ∈ E(G)\{f1, . . . , fq}, and the edges fj+2, . . . , fq, f1, . . . , fj are coloured
alternately with α and β with respect to ϕ′. Then

T ′ = (yjTyq−1, fq, y0Tyj−1, eq, yq, . . . , ep−1, yp−1)

is a balanced Tashkinov tree with respect to fj+1 and ϕ′, where T ′yj−1 is the
(α, β)-trunk of T ′. Clearly, (T ′, fj+1, ϕ

′) ∈ T Bk (G), and we write (T ′, fj+1, ϕ
′) =

(T, e, ϕ)(y0 → yj).

Let G be a critical graph with χ′(G) = k+ 1 for an integer k ≥ ∆(G) + 1. Then
let T N(G) = T (G)∩T Nk (G), that is, T N (G) is the set of all triples (T, e, ϕ) ∈ T (G)
for which T is a normal Tashkinov tree. Since T (G) 6= ∅, Lemma 3.14 implies that
T N (G) 6= ∅. Then, clearly, there is a greatest number q such that there is a triple
(T, e, ϕ) ∈ T N (G) with h(T) = q. We denote this number by h(G). Furthermore,
let T B(G) denote the set of all balanced triples of T (G) with h(T) = h(G).

Lemma 3.16 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1. Then the following statements hold:

(a) h(G) ≥ 3 is odd.

(b) T B(G) 6= ∅.

Proof: Let (T, e, ϕ) ∈ T N (G) with h(T) = h(G) = q. Then T has the form
T = (y0, e1, y1, . . . , ep−1, yp−1), and Tyq−1 is the (α, β)-trunk of T . By definition,
we have α ∈ ϕ̄(y0), β ∈ ϕ̄(y1), and there is an edge f ∈ EG(y0, yq−1) satisfying
P = Py0(α, β, ϕ) = P (y1, e2, y2, . . . , eq−1, yq−1, f, y0). Hence, P is a path with two
distinct endvertices and, moreover, the edges of P are alternately coloured with two
colours. Since every of these two colours is missing at one of the endvertices of P ,
we conclude that |E(P)| ≥ 2 is even. Hence, q = h(G) ≥ 3 is odd and (a) is proved.

Since T N (G) 6= ∅, (b) is a direct consequence of Lemma 3.15. This completes
the proof.

Algorithmic aspect: Some of the following results will depend on handling triples
(T, e, ϕ) ∈ T B(G). This seems to make it difficult to transform those results into
algorithms, because it is impracticable to search for balanced Tashkinov trees with
maximum order and height. However, the proofs of those results will always be in
the following way. If for a balanced triple (T, e, ϕ) some conditions are not fulfilled,
then we can recolour and increase either the order or the height of T . We will discuss
this in detail for the specific results.

65

3.4 The Main Lemma

Next we will establish several conditions related to Tashkinov trees, which imply
that a critical graph is elementary. Some of these results are generalizations of
results implicitly given in [8], others, like the following one, are new. The next
lemma analyses Tashkinov trees with a special structure, they will be used to handle
some of the cases in the proof of Theorem 3.2.

Lemma 3.17 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1, and let (T, e, ϕ) ∈ T (G). Suppose that T has the form

T = (y0, e1, y1, . . . , er−1, yr−1, f
1
γ1
, u1

γ1
, f2
γ1
, u2

γ1
, . . . , f1

γs , u
1
γs , f

2
γs , u

2
γs)

where Γ = {γ1, . . . , γs} is a set of s colours, Y = {y0, . . . , yr−1}, and the following
conditions hold:

(S1) f jγ ∈ EG(Y, ujγ) for every γ ∈ Γ and j ∈ {1, 2}.
(S2) ϕ(f1

γ) = ϕ(f2
γ) = γ ∈ ϕ̄(Y) for every γ ∈ Γ.

(S3) ϕ(ej) /∈ Γ for 2 ≤ j ≤ r − 1.

(S4) For every v ∈ F (T, e, ϕ), there is a colour γ ∈ Γ satisfying γ ∈ ϕ̄(v).

Then G is an elementary graph.

Proof: Since (T, e, ϕ) ∈ T (G) and G is critical, it follows from Corollary 3.7 that
V (T) is elementary and closed both with respect to ϕ, and (T, e, ϕ) ∈ Tk(G). If
V (T) is also strongly closed with respect to ϕ, then Theorem 1.4 implies that G is
an elementary graph and we are done. Hence, we only need to consider the case that
V (T) is not strongly closed with respect to ϕ. Then we construct a superset X of
V (T) such that X is elementary and strongly closed with respect to ϕ. Again, by
Theorem 1.4, this implies that G is elementary and we are done, too.

Since V (T) is not strongly closed with respect to ϕ, it follows from Propo-
sition 2.21(c) that Γd(T, e, ϕ) 6= ∅. This implies F (T, e, ϕ) 6= ∅ and, therefore,
s′ = |F (T, e, ϕ)| ≥ 1. Since V (T) is elementary with respect to ϕ, we conclude from
(S4) that there is a set Γ′ ⊆ Γ of s′ colours such that, for every v ∈ F (T, e, ϕ),
there is a unique colour γ ∈ Γ′ satisfying γ ∈ ϕ̄(v). Hence, there is a one to one
correspondence between F (T, e, ϕ) and Γ′. In particular, |ϕ̄(v) ∩ Γ′| = 1 for every
v ∈ F (T, e, ϕ), and ϕ̄(v) ∩ Γ′ = ∅ for every v ∈ V (T)\F (T, e, ϕ).

By Proposition 2.21(f), |ϕ̄(y0)| ≥ 2. Hence, there is a colour α0 ∈ ϕ̄(y0)\Γ′. Now
consider an arbitrary defective colour δ ∈ Γd(T, e, ϕ). Then let Pδ be defined by

Pδ = Py0(α0, δ, ϕ).

By Proposition 2.21(d),(e), the colour δ is present at any vertex of T . Since α0 ∈
ϕ̄(y0) and V (T) is elementary as well as closed with respect to ϕ, we then conclude
that Pδ is a path where one endvertex is y0 and the other endvertex, denoted by
zδ, belongs to V (G)\V (T). This implies that there is a last vertex in the linear
order ¹(y0,Pδ) that belongs to V (T). We denote this vertex by v0

δ . By definition,

66

v0
δ ∈ F (T, e, ϕ) is an exit vertex. Hence, there is a unique colour γ ∈ Γ′ such that
γ ∈ ϕ̄(v0

δ). We denote this colour by γ = γ(δ). Furthermore, v0
δ is incident with an

edge, denoted by f0
δ , such that ϕ(f0

δ) = δ. We denote the second endvertex of f0
δ by

u0
δ . Clearly, f0

δ ∈ Eδ(T, e, ϕ) and u0
δ ∈ V (G)\V (T). As we shall see later, u0

δ 6= zδ
and |Eδ(T, e, ϕ)| = 3. Hence, there is a set Uδ of two vertices distinct from u0

δ that
are incident with edges in Eδ(T, e, ϕ). Our aim is to show that the set

X = V (T) ∪
⋃

δ∈Γd(T,e,ϕ)

Uδ

is elementary and strongly closed with respect to ϕ. The proof is long and relies on
several statements.

(1) F (T, e, ϕ) ⊆ Y and, as a consequence, v0
δ ∈ Y for all δ ∈ Γd(T, e, ϕ).

Proof of (1): From (S2) it follows that all colours used on T with respect to ϕ are
contained in ϕ̄(Y). Since V (T) is elementary with respect to ϕ, and since ϕ̄(v) 6= ∅ for
every v ∈ V (G), this implies that ϕ̄(v)∩Γf (T, e, ϕ) 6= ∅ for every vertex v ∈ V (T)\Y .
By Lemma 3.13, ϕ̄(v) ∩ Γf (T, e, ϕ) = ∅ for every exit vertex v ∈ F (T, e, ϕ). Hence,
we obtain that F (T, e, ϕ) ⊆ Y .

For a colour γ ∈ Γ, let T − γ denote the sequence obtained from T by deleting
the edges f1

γ , f
2
γ as well as the vertices u1

γ , u
2
γ . By (S1) and (S2), it follows that T −γ

is a Tashkinov tree with respect to e and ϕ. In the sequel, let

Uγ = {u1
γ , u

2
γ}

and
Zγ = V (T − γ) = V (T)\Uγ .

(2) EG(u1
γ , u

2
γ) ∩ Eα(e, ϕ) 6= ∅ for every colour γ ∈ Γ′ and every colour α ∈

ϕ̄(Zγ)\{γ}.

Proof of (2): Since V (T) is elementary and closed with respect to ϕ, for every
γ ∈ Γ′ and every α ∈ ϕ̄(Zγ)\{γ}, there is an edge f ∈ EG(u1

γ , V (T)) with ϕ(f) = α.
Now suppose that f ∈ EG(u1

γ , Zγ). Then there is a second edge f ′ ∈ EG(u2
γ , Zγ)

with ϕ(f ′) = α. Hence, T ′ = (T −γ, f, u1
γ , f
′, u2

γ) is a Tashkinov tree with respect to
e and ϕ satisfying (T ′, e, ϕ) ∈ T (G), V (T ′) = V (T) and γ ∈ Γf (T ′, e, ϕ). Moreover,
Γd(T ′, e, ϕ) = Γd(T, e, ϕ), which implies F (T ′, e, ϕ) = F (T, e, ϕ) and, therefore, γ ∈
ϕ̄(F (T ′, e, ϕ)) ∩ Γf (T ′, e, ϕ), a contradiction to Lemma 3.13. Consequently, f /∈
EG(u1

γ , Zγ), but f ∈ EG(u1
γ , u

2
γ).

(3) EG(Uγ(δ), Zγ(δ)) ∩ Eδ(e, ϕ) = ∅ for every δ ∈ Γd(T, e, ϕ).

Proof of (3): Suppose, on the contrary, that there is a colour δ ∈ Γd(T, e, ϕ) and
an edge g1 ∈ EG(Uγ(δ), Zγ(δ)) with ϕ(g1) = δ, say g1 is incident to u1

γ(δ). From (2)
we know that there is an edge g2 ∈ EG(u1

γ(δ), u
2
γ(δ)) with ϕ(g2) = α0.

67

Clearly, we have |EG(Uγ(δ), V (G)\V (T))∩Eδ(e, ϕ)| ≤ 1. Then, evidently, Propo-
sition 2.21(e) implies |EG(Zγ(δ), V (G)\V (T))∩Eδ(e, ϕ)| ≥ 2. Hence, there is an edge
g3 ∈ EG(Zγ(δ), V (G)\V (T))\{f0

δ } with ϕ(g3) = δ. Let u3 be the endvertex of g3

that belongs to V (G)\V (T).
Now consider the subpath P1 = v0

δPδzδ. Then, clearly, V (P1) ∩ V (T) = {v0
δ}.

Furthermore, since α0, γ(δ) ∈ ϕ̄(V (T)) and V (T) is closed with respect to ϕ, we
can obtain a new colouring ϕ1 ∈ Ck(G − e) from ϕ by interchanging the colours
α0 and γ(δ) on all edges in EG(V (G) \ V (T), V (G) \ V (T)). Then we conclude
that P1 = Pv0

δ
(γ(δ), δ, ϕ1). For the colouring ϕ2 = ϕ1/P1, we then obtain that

ϕ2 ∈ Ck(G − e), and T1 = T − γ(δ) is a Tashkinov tree with respect to e and ϕ2

satisfying V (T1) = Zγ(δ) and δ ∈ ϕ̄2(v0
δ) ⊆ ϕ̄2(V (T1)). Since g1, g2, g3 neither be-

long to EG(V (G)\V (T), V (G)\V (T)) nor to E(P1), their colours did not change
and, therefore, we have ϕ2(g1) = ϕ2(g3) = δ and ϕ2(g2) = α0. Then, evidently,
T2 = (T1, g1, u

1
γ(δ), g2, u

2
γ(δ), g3, u3) is a Tashkinov tree with respect to e and ϕ2 sat-

isfying |V (T2)| > |V (T)| = t(G), a contradiction.

For a defective colour δ ∈ Γd(T, e, ϕ), let P ′δ be the chain defined by

P ′δ = Pv0
δ
(γ(δ), δ, ϕ),

and let ϕδ ∈ Ck(G− e) be the colouring

ϕδ = ϕ/P ′δ.

Evidently, P ′δ is a path where one endvertex is v0
δ and the other endvertex, denoted

by z′δ, belongs to V (G)\V (T).

(4) V (P ′δ) ∩ V (T) = {v0
δ} for every δ ∈ Γd(T, e, ϕ).

Proof of (4): Suppose, on the contrary, that there is a δ ∈ Γd(T, e, ϕ) with V (P ′δ)∩
V (T) 6= {v0

δ}. Since v0
δ ∈ V (P ′δ)∩V (T), the last vertex v1 in the linear order ¹(v0

δ ,P
′
δ)

belonging to V (T) satisfies v1 6= v0
δ . Obviously, v1 ∈ F (T, e, ϕ), and from (1) it then

follows that v1 ∈ Y .
Clearly, there is an edge f1 ∈ EG(v1, V (G)\V (T)) with ϕ(f1) = δ. Let u0 ∈ V (G)\

V (T) be the second endvertex of f0
δ , and let u1 ∈ V (G)\V (T) be the second endvertex

of f1. Furthermore, let P1 = v0
δPδzδ, and let P ′1 = v1P

′
δz
′
δ. Then V (P1)∩V (T) = {v0

δ}
and V (P ′1) ∩ V (T) = {v1}. Since v1 ∈ F (T, e, ϕ), there is an index j ∈ {1, . . . , s}
with γj ∈ ϕ̄(v1). Moreover, v1 6= v0

δ implies γ(δ) 6= γj . To simplify notation, let
γ = γ(δ).

Since V (T) is closed with respect to ϕ, no edge in EG(V (T), V (G) \V (T)) is
coloured with α0, γ, or γj with respect to ϕ. Hence, we can obtain two new colourings
from ϕ, the first one ϕ1 ∈ Ck(G−e) by interchanging the colours α0 and γ on all edges
in EG(V (G)\V (T), V (G)\V (T)), the second one ϕ′1 ∈ Ck(G−e) by interchanging the
colours γ and γj on all edges in EG(V (G)\V (T), V (G)\V (T)). Clearly (T, e, ϕ1) ∈
T (G) and (T, e, ϕ′1) ∈ T (G), Γf (T, e, ϕ1) = Γf (T, e, ϕ′1) = Γf (T, e, ϕ), Γd(T, e, ϕ1) =
Γd(T, e, ϕ′1) = Γd(T, e, ϕ) and, moreover, P1 = Pv0

δ
(γ, δ, ϕ1) and P ′1 = Pv1(γj , δ, ϕ′1).

For the colouring ϕ2 = ϕ1/P1, we then obtain that ϕ2 ∈ Ck(G−e), and T1 = T−γ
is a Tashkinov tree with respect to e and ϕ2 satisfying V (T1) = Zγ and δ ∈ ϕ̄2(v0

δ) ⊆

68

ϕ̄(V (T1)). Since f1 belongs neither to EG(V (G)\V (T), V (G)\V (T)) nor to E(P1),
its colour did not change, so we have ϕ2(f1) = δ. Moreover, v1 ∈ Y ⊆ V (T1) and,
therefore, T2 = (T1, f1, u1) is a Tashkinov tree with respect to e and ϕ2.

Analogously, for the colouring ϕ′2 = ϕ′1/P
′
1, we obtain that ϕ′2 ∈ Ck(G− e), and

T ′1 = T −γj is a Tashkinov tree with respect to e and ϕ′2 satisfying V (T ′1) = Zγj and
δ ∈ ϕ̄′2(v1) ⊆ ϕ̄(v(T ′1)). Since f0

δ belongs neither to EG(V (G)\V (T), V (G)\V (T)) nor
to P ′1, its colour did not change, so we have ϕ′2(f0

δ) = δ. Moreover, v0
δ ∈ Y ⊆ V (T ′1)

and, therefore, T ′2 = (T ′1, f
0
δ , u0) is a Tashkinov tree with respect to e and ϕ′2.

Let Z = V (T1) ∩ V (T ′1) = V (T) \Uγ \Uγj . Since δ /∈ ϕ̄(Z) and |Z| is odd,
also |EG(Z, V (G) \Z) ∩ Eδ(e, ϕ)| is odd. So besides f0

δ and f1 there is another
edge f2 ∈ EG(Z, V (G) \Z) with ϕ(f2) = δ. Since f2 has an endvertex in Z ⊆
V (T), but is distinct from f0

δ or f1, it neither belongs to E(P1), to E(P ′1), or to
EG(V (G)\V (T), V (G)\V (T)). So none of the recolourings have an effect on f2,
which leads to ϕ2(f2) = ϕ′2(f2) = δ.

Let u2 be the endvertex of f2 that belongs to V (G)\Z. We claim that u2 /∈ Uγj .
Suppose, on the contrary, that u2 ∈ Uγj , say u2 = u1

γj . From (2) we then conclude
that there is an edge f ′ ∈ EG(u1

γj , u
2
γj) with ϕ(f ′) = α0. Obviously, we have ϕ′2(f ′) =

α0 ∈ ϕ̄′2(V (T ′2)) and, therefore, T ′ = (T ′2, f2, u
1
γj , f

′, u2
γj) is a Tashkinov tree with

respect to e and ϕ′2 satisfying |V (T ′)| > |V (T)| = t(G), a contradiction. This proves
the claim, thus we have u2 /∈ Uγj . Moreover, from (3) we conclude that u2 /∈ Uγ and,
therefore, u2 ∈ V (G)\V (T). Hence, T3 = (T2, f2, u2) is a Tashkinov tree with respect
to e and ϕ2, and T ′3 = (T ′2, f2, u2) is a Tashkinov tree with respect to e and ϕ′2. Since
|V (T3)| = |V (T ′3)| = |V (T)| = t(G), this implies (T3, e, ϕ2), (T ′3, e, ϕ

′
2) ∈ T (G).

From Proposition 2.21(f) it follows that |ϕ̄({y0, y1})| ≥ 4. So there is a colour
β ∈ ϕ̄({y0, y1}) with β /∈ {α0, γ, γj}. Obviously, we also have β 6= δ and, there-
fore, the colour β does not matter in any of the mentioned recolourings This leads
to Eβ(e, ϕ) = Eβ(e, ϕ2) = Eβ(e, ϕ′2). Then, evidently, β ∈ ϕ̄2(V (T3)). By Corol-
lary 3.7, V (T3) is elementary and closed both with respect to ϕ2. Hence, there is an
edge f3 ∈ EG(u2, V (T3)) with ϕ2(f3) = β. Clearly, we also have ϕ(f3) = β, but since
V (T) is closed with respect to ϕ, the edge f3 cannot have an endvertex in V (T).
Therefore, we conclude f3 ∈ EG(u2, u1). Moreover, we have ϕ′2(f3) = β ∈ ϕ̄′2(V (T ′3)).
Hence T ′4 = (T3, f3, u1) is a Tashkinov tree with respect to e and ϕ′2 satisfying
|V (T ′4)| > |V (T)| = t(G), a contradiction. This proves (4).

For a defective colour δ ∈ Γd(T, e, ϕ), the colouring ϕδ satisfies the following
conditions. It is a simple consequence of (4).

(5) For every δ ∈ Γd(T, e, ϕ), the colouring ϕδ ∈ Ck(G− e) satisfies:

- ϕδ(f0
δ) = γ(δ),

- ϕδ(f) = ϕ(f) for every edge f ∈ EG−e(V (T), V (G))\{f0
δ },

- ϕδ(f) = ϕ(f) for every edge f ∈ E(G− e)\E(P ′δ),

- ϕ̄δ(v0
δ) = ϕ̄(v0

δ)\{γ(δ)} ∪ {δ},
- ϕ̄δ(v) = ϕ̄(v) for every vertex v ∈ V (T)\{v0

δ},
- ϕ̄δ(v) = ϕ̄(v) for every vertex v ∈ V (G)\V (P ′δ).

69

Next we claim that

(6) |EG(Zγ(δ), V (G)\V (T)) ∩ Eδ(e, ϕ)| = 3 for every δ ∈ Γd(T, e, ϕ).

Proof of (6): Suppose, on the contrary, that there is a δ ∈ Γd(T, e, ϕ) satisfying
|EG(Zγ(δ), V (G)\V (T)) ∩ Eδ(e, ϕ)| 6= 3.

Consider the case |EG(Zγ(δ), V (G) \ V (T)) ∩ Eδ(e, ϕ)| > 3. Then besides f0
δ

there are another three edges g1, g2, g3 ∈ EG(Zγ(δ), V (G)\V (T)) with endvertices
z1, z2, z3 ∈ V (G)\V (T) and ϕ(g1) = ϕ(g2) = ϕ(g3) = δ. From (4) and (5) it then
follows that ϕδ(g1) = ϕδ(g2) = ϕδ(g3) = δ. Hence, T1 = (T−γ(δ), g1, z1, g2, z2, g3, z3)
is a Tashkinov tree with respect to e and ϕδ satisfying |V (T1)| > |V (T)| = t(G), a
contradiction. Consequently, we have |EG(Zγ(δ), V (G)\V (T)) ∩ Eδ(e, ϕ)| < 3.

From (3) we know that |EG(Zγ(δ), Uγ(δ))∩Eδ(e, ϕ)| = 0. Consequently, we obtain
|EG(Zγ(δ), V (G)\Zγ(δ)) ∩Eδ(e, ϕ)| = |EG(Zγ(δ), V (G)\V (T)) ∩Eδ(e, ϕ)| < 3. Since
δ /∈ ϕ̄(Zγ(δ)) and |Zγ(δ)| is odd, this implies that |EG(Zγ(δ), V (G)\Zγ(δ)) ∩Eδ(e, ϕ)|
is odd, too, which leads to |EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eδ(e, ϕ)| = 1. Therefore, we
have EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eδ(e, ϕ) = {f0

δ }.
By (2), we have EG(Zγ(δ), Uγ(δ))∩Eα0(e, ϕ) = ∅. Since α0 ∈ ϕ̄(V (T)) and V (T) is

closed with respect to ϕ, this implies EG(Zγ(δ), V (G)\Zγ(δ))∩Eα0(e, ϕ) = ∅. Hence,
we have EG(Zγ(δ), V (G)\Zγ(δ)) ∩E(Pδ) = {f0

δ }. For the subpath P1 = y0Pδv
0
δ , this

means V (P1) ⊆ Zγ(δ). Since v0
δ is the last vertex in the linear order ¹(y0,Pδ) that

belongs to V (T), we conclude V (Pδ) ∩ V (T) ⊆ Zγ(δ).
Then especially the vertices u1

γ(δ), u
2
γ(δ) do not belong to Pδ. Hence, the chain

P2 = Pu1
γ(δ)

(α0, δ, ϕ) is vertex disjoint to Pδ and, moreover, V (P2) ∩ V (T) ⊆ Uγ(δ).
Then, evidently, E(P2) ∩ E(T) = ∅ and hence T is a Tashkinov tree with respect
to e and the colouring ϕ2 = ϕ/P2. Since |EG(Zγ(δ), V (G)\V (T)) ∩ Eδ(e, ϕ)| = 1,
Proposition 2.21(e) implies that there are two edges g4 ∈ EG(u1

δ , V (G)\V (T)) and
g5 ∈ EG(u2

δ , V (G) \V (T)) with ϕ(g4) = ϕ(g5) = δ. Evidently, g4 ∈ E(P2) and
ϕ2(g4) = α0 ∈ ϕ̄2(y0). If u4 is the endvertex of g4 belonging to V (G)\V (T), then
T2 = (T, g4, u4) is a Tashkinov tree with respect to e and ϕ2 satisfying |V (T2)| >
|V (T)| = t(G), a contradiction. This proves the claim.

For every δ ∈ Γd(T, e, ϕ), we know from (6) that beside f0
δ there are two other

edges f1
δ , f

2
δ ∈ EG(Zγ(δ), V (G)\V (T)) with ϕ(f1

δ) = ϕ(f2
δ) = δ. For j = 1, 2, let

f jδ ∈ EG(vjδ , u
j
δ) where v1

δ , v
2
δ ∈ Zγ(δ) and u1

δ , u
2
δ ∈ V (G)\V (T). Furthermore, let

Uδ = {u1
δ , u

2
δ}.

By (4), we have f1
δ , f

2
δ /∈ E(P ′δ) and, therefore, u1

δ , u
2
δ /∈ V (P ′δ). Then (5) implies:

(7) ϕδ(f) = ϕ(f) for every δ ∈ Γd(T, e, ϕ) and every f ∈ EG(Uδ, V (G)).

In particular, for every δ ∈ Γd(T, e, ϕ), this leads to ϕδ(f1
δ) = ϕδ(f2

δ) = δ. From
δ ∈ ϕ̄δ(v0

δ) then follows that Tδ, defined by

Tδ = (T − γ(δ), f1
δ , u

1
δ , f

2
δ , u

2
δ),

is a Tashkinov tree with respect to e and ϕδ satisfying |V (Tδ)| = |V (T)|. Therefore,
we obtain that

70

(8) (Tδ, e, ϕδ) ∈ T (G) for every δ ∈ Γd(T, e, ϕ).

Since V (T) is closed with respect to ϕ, for every δ ∈ Γd(T, e, ϕ) and every
α ∈ ϕ̄(Zγ(δ))\{γ(δ)}, we have EG(Zγ(δ), V (G)\V (T)) ∩ Eα(e, ϕ) = ∅. This implies
EG(Zγ(δ), Uδ) ∩ Eα(e, ϕ) = ∅ and, moreover, by (7), EG(Zγ(δ), Uδ) ∩ Eα(e, ϕδ) = ∅.
Since α ∈ ϕ̄δ(Zγ(δ)) ⊆ ϕ̄δ(V (Tδ)), and since, by Corollary 3.7, V (Tδ) is elementary
and closed with respect to ϕδ, there must be an edge between u1

δ and u2
δ coloured

with α with respect to ϕδ as well as, by (7), with respect to ϕ. Therefore, we have

(9) EG(u1
δ , u

2
δ) ∩ Eα(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ) and every α ∈ ϕ̄(Zγ(δ))\

{γ(δ)}.

Further, we claim that the following two statements are true.

(10) EG(u1
γ(δ), u

2
γ(δ)) ∩ Eδ(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ).

(11) EG(u1
δ , u

2
δ) ∩ Eγ(δ)(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ).

Proof of (10): Let δ ∈ Γd(T, e, ϕ). We have |Zγ(δ)| = r + 2s − 2 and hence, by
Proposition 2.21(f), |ϕ̄(Zγ(δ))| ≥ r + 2s. Since there are at most r − 2 + s colours
used on T with respect to ϕ, there is a colour β ∈ ϕ̄(Zγ(δ)) ∩ Γf (T, e, ϕ).

Let v ∈ Zγ(δ) be the unique vertex with β ∈ ϕ̄(v), and let P = Pv(β, δ, ϕ).
From (6) and Proposition 2.22 we conclude that P is a path having one endvertex v
and another endvertex z ∈ V (G)\V (T) satisfying E(P)∩EG(Zγ(δ), V (G)\V (T)) =
{f0
δ , f

1
δ , f

2
δ }. By (1), we have F (T, e, ϕ) ⊆ Y ⊆ Zγ(δ), so for the last vertex v′ in the

linear order ¹(v,P) belonging to V (T), we conclude v′ ∈ {v0
δ , v

1
δ , v

2
δ}.

From (9) it follows that there is an edge g ∈ EG(u1
δ , u

2
δ) with ϕ(g) = β. Hence, the

path P1 = P (v1
δ , f

1
δ , u

1
δ , g, u

2
δ , f

2
δ , v

2
δ) is a subpath of P and, therefore, v′ /∈ {v1

δ , v
2
δ},

but v′ = v0
δ .

By (2), we have EG(Uγ(δ), Zγ(δ)) ∩ Eβ(e, ϕ) = ∅. Moreover, it follows from (3)
that EG(Uγ(δ), Zγ(δ))∩Eδ(e, ϕ) = ∅. Hence, for the subpath P2 = vPv0

δ , we conclude
V (P2) ⊆ Zγ(δ)∪Uδ. Further, for P3 = v0

δPz, we clearly have V (P3)∩V (T) = {v0
δ} and

hence V (P)∩Uγ(δ) = ∅. Then from Theorem 3.8(a) it follows that EG(Uγ(δ), V (G)\
V (T)) ∩ Eδ(e, ϕ) = ∅. Since EG(Uγ(δ), Zγ(δ)) ∩ Eδ(e, ϕ) = ∅ and δ /∈ ϕ̄(V (T)), we
conclude EG(u1

γ(δ), u
2
γ(δ)) ∩ Eδ(e, ϕ) 6= ∅. This proves the claim.

Proof of (11): Let δ ∈ Γd(T, e, ϕ). We have |Zγ(δ)| = r + 2s − 2 and hence, by
Proposition 2.21(f), |ϕ̄δ(Zγ(δ))| ≥ r + 2s. Since there are at most r − 2 + s colours
used on Tδ with respect to ϕδ, there is a colour β ∈ ϕ̄δ(Zγ(δ)) ∩ Γf (T, e, ϕδ). Let
v ∈ Zγ(δ) be the unique vertex with β ∈ ϕ̄δ(v).

By (5), we have ϕδ(f0
δ) = ϕδ(f1

γ(δ)) = ϕδ(f2
γ(δ)) = γ(δ) and, therefore, we have

γ(δ) ∈ Γd(Tδ, e, ϕδ). Moreover, beside this three edges there can be no further edge
in EG(Zγ(δ), V (G)\V (Tδ)) coloured with γ(δ) with respect to ϕδ. Otherwise such an
edge f would, by (5), satisfy ϕ(f) = γ(δ) and it would belong to EG(V (T), V (G)\
V (T)). This would contradict the fact that V (T) is closed with respect to ϕ. Hence,
we have EG(Zγ(δ), V (G)\V (Tδ)) ∩ Eγ(δ)(e, ϕδ) = {f0

δ , f
1
γ(δ), f

2
γ(δ)}. From this and

Proposition 2.22 we conclude that P = Pv(β, γ(δ), ϕδ) is a path having one endvertex

71

v and another endvertex z ∈ V (G)\V (Tδ) satisfying E(P)∩EG(Zγ(δ), V (G)\V (Tδ)) =
{f0
δ , f

1
γ(δ), f

2
γ(δ)}.

By Proposition 2.21(f), we have ϕ̄δ(u1
δ) 6= ∅ and ϕ̄δ(u2

δ) 6= ∅. Since no colour in
ϕ̄δ(Uδ) is used on Tδ with respect to ϕδ, Lemma 3.13 implies that F (Tδ, e, ϕδ) ⊆ Zγ(δ).
Hence, for the last vertex v′ in the linear order ¹(v,P) belonging to V (T), we conclude
v′ ∈ {v0

δ , v1, v2}, where v1, v2 are the two endvertices of f1
γ(δ), f

2
γ(δ) belonging to Zγ(δ).

From (2) it follows that there is an edge g ∈ EG(u1
γ(δ), u

2
γ(δ)) with ϕ(g) = β and,

by (5), also ϕδ(g) = β. Hence, P1 = P (v1, f
1
γ(δ), u

1
γ(δ), g, u

2
γ(δ), f

2
γ(δ), v2) is a subpath

of P and, therefore, v′ /∈ {v1, v2}, but v′ = v0
δ .

Since V (T) is closed with respect to ϕ, we clearly have EG(Uδ, Zγ(δ))∩Eβ(e, ϕ) =
∅ and EG(Uδ, Zγ(δ)) ∩ Eγ(δ)(e, ϕ) = ∅. Therefore, by (5), we have EG(Uδ, Zγ(δ)) ∩
Eβ(e, ϕδ) = ∅ and EG(Uδ, Zγ(δ)) ∩ Eγ(δ)(e, ϕδ) = ∅. Hence, for the subpath P2 =
vPv0

δ , we conclude V (P2) ⊆ Zγ(δ) ∪ Uγ(δ). Furthermore, for P3 = v0
δPz, we clearly

have V (P3)∩V (Tδ) = {v0
δ} and, therefore, V (P)∩Uδ = ∅. Then from Theorem 3.8(a)

it follows that EG(Uδ, V (G)\V (Tδ))∩Eγ(δ)(e, ϕδ) = ∅. Since we have EG(Uδ, Zγ(δ))∩
Eγ(δ)(e, ϕδ) = ∅ and γ(δ) /∈ ϕ̄δ(V (Tδ)), we conclude EG(u1

δ , u
2
δ) ∩ Eγ(δ)(e, ϕδ) 6= ∅.

From (7) it then follows that EG(u1
δ , u

2
δ) ∩ Eγ(δ)(e, ϕ) 6= ∅. This proves the claim.

Further, we claim that the following two statements are true:

(12) EG(u1
γ(δ), u

2
γ(δ))∩Eα(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ) and every α ∈ ϕ̄(Uδ).

(13) EG(u1
δ , u

2
δ) ∩ Eα(e, ϕ) 6= ∅ for every δ ∈ Γd(T, e, ϕ) and every α ∈ ϕ̄(Uγ(δ)).

Proof of (12): Let δ ∈ Γd(T, e, ϕ), and let α ∈ ϕ̄(Uδ). Then, clearly, we have α 6= δ
and, by (11), also α 6= γ(δ). Consequently, Eα(e, ϕ) = Eα(e, ϕδ) and, therefore,
α ∈ ϕ̄δ(Uδ). Moreover α0 ∈ ϕ̄δ(y0), and V (Tδ) is elementary with respect to ϕδ.
Hence, we have α 6= α0. Since V (Tδ) is also closed with respect to ϕδ, for P =
Pu1

γ(δ)
(α0, α, ϕ) = Pu1

γ(δ)
(α0, α, ϕδ), we have V (P) ⊆ V (G) \V (Tδ). This implies

V (P) ∩ V (T) ⊆ Uγ(δ) and hence E(P) ∩ E(T) = ∅. Then T is a Tashkinov tree
with respect to e and the colouring ϕ′ = ϕ/P , and from y0 /∈ V (P) we conclude
α0 ∈ ϕ̄′(V (T)).

From (2) we know that EG(u1
γ(δ), u

2
γ(δ)) ∩ Eα0(e, ϕ) 6= ∅ and, therefore, we have

u2
γ(δ) ∈ V (P). If there is an edge g ∈ EG(Uγ(δ), z) for a vertex z ∈ V (G)\V (T) and
ϕ(g) = α, then we have ϕ′(g) = α0 ∈ ϕ̄′(V (T)), and T ′ = (T, g, z) is a Tashkinov tree
with respect to e and ϕ′, satisfying |V (T ′)| > |V (T)| = t(G), a contradiction. If there
is an edge g ∈ EG(Uγ(δ), Zγ(δ)) with ϕ(g) = α, then we have ϕδ(g) = α ∈ ϕ̄δ(V (Tδ)),
a contradiction, too, because V (Tδ) is closed with respect to ϕδ. Consequently, we
have EG(Uγ(δ), V (G)\Uγ(δ)) ∩ Eα(e, ϕ) = ∅. Since V (T) is elementary with respect
to ϕ, we conclude that there is an edge g ∈ EG(u1

γ(δ), u
2
γ(δ)) with ϕ(g) = α. This

proves the claim.

Proof of (13): Let δ ∈ Γd(T, e, ϕ), and let α ∈ ϕ̄(Uγ(δ)). Then, clearly, we have
α 6= γ(δ) and, by (10), also α 6= δ. Consequently, Eα(e, ϕ) = Eα(e, ϕδ). Moreover,
α0 ∈ ϕ̄δ(y0), and V (T) is elementary with respect to ϕ and hence α 6= α0. Since
V (T) is also closed with respect to ϕ, for P = Pu1

δ
(α0, α, ϕ) = Pu1

δ
(α0, α, ϕδ), we have

72

V (P) ⊆ V (G)\V (T). This implies V (P)∩V (Tδ) ⊆ Uδ and, therefore, E(P)∩E(Tδ) =
∅. Then Tδ is a Tashkinov tree with respect to e and the colouring ϕ′ = ϕδ/P , and
from y0 /∈ V (P) we conclude α0 ∈ ϕ̄′(V (Tδ)).

From (9) we know EG(u1
δ , u

2
δ)∩Eα0(e, ϕ) 6= ∅ and, therefore, u2

δ ∈ V (P). If there
was an edge g ∈ EG(Uδ, z) with z ∈ V (G)\V (Tδ) and ϕδ(g) = α, then we would have
ϕ′(g) = α0 ∈ ϕ̄′(V (Tδ)), and T ′ = (Tδ, g, z) would be a Tashkinov tree with respect
to e and ϕ′ satisfying |V (T ′)| > |V (Tδ)| = t(G), a contradiction. If there was an
edge g ∈ EG(Uδ, Zγ(δ)) with ϕδ(g) = α, then we would have ϕ(g) = α ∈ ϕ̄(V (T)), a
contradiction, too, because V (T) is closed with respect to ϕ. Consequently, we have
EG(Uδ, V (G)\Uδ)∩Eα(e, ϕδ) = ∅. Since V (Tδ) is elementary with respect to ϕδ, we
conclude that there is an edge g ∈ EG(u1

δ , u
2
δ) with ϕδ(g) = ϕ(g) = α. This proves

the claim.

Next we claim

(14) Uδ ⊆ A(T, e, ϕ) for every δ ∈ Γd(T, e, ϕ).

Proof of (14): Let δ ∈ Γd(T, e, ϕ), let α ∈ ϕ̄(Uδ), and let β ∈ Γf (T, e, ϕ)\{α}.
Clearly, we have α 6= δ and, by (11), also α 6= γ(δ). Since neither δ nor γ(δ) is a
free colour with respect to (T, e, ϕ), we also have β /∈ {δ, γ(δ)}. Hence, Eα(e, ϕ) =
Eα(e, ϕδ) and Eβ(e, ϕ) = Eβ(e, ϕδ).

Let u ∈ Uδ be the unique vertex with α ∈ ϕ̄(u) = ϕ̄δ(u), and let v ∈ V (T) be the
unique vertex with β ∈ ϕ̄(v) = ϕ̄δ(v). Moreover, let P = Pu(α, β, ϕ) = Pu(α, β, ϕδ).
Obviously, P is a path having u as an endvertex. We now have to show that v is the
second endvertex of P , this then implies u ∈ A(T, e, ϕ).

In the case v ∈ Zγ(δ) we have v ∈ V (Tδ) and, therefore, β ∈ ϕ̄δ(V (Tδ)). Since
also α ∈ ϕ̄δ(V (Tδ)), Proposition 2.21(h) implies that v is the second endvertex of P .

In the other case, we have v ∈ Uγ(δ). By (13), we have EG(u1
δ , u

2
δ)∩Eβ(e, ϕ) 6= ∅

and, therefore, Uδ ⊆ V (P). Since α ∈ ϕ̄δ(u) and V (Tδ) is elementary and closed with
respect to ϕδ, there is an edge f2 ∈ EG(Uδ, Zγ(δ)) with ϕδ(f2) = α and, moreover,
EG(Zγ(δ), V (G) \Zγ(δ)) ∩ Eα(e, ϕδ) = {f2}. Therefore, EG(Zγ(δ), V (G) \Zγ(δ)) ∩
Eα(e, ϕ) = {f2} and f2 ∈ E(P). Since β ∈ ϕ̄(Uγ(δ)) and V (T) is elementary and
closed with respect to ϕ, there is an edge f3 ∈ EG(Uγ(δ), Zγ(δ)) with ϕ(f3) = β and,
moreover, EG(Zγ(δ), V (G)\Zγ(δ)) ∩ Eβ(e, ϕ) = {f3}. Since we have f2 ∈ E(P) and
α, β /∈ ϕ̄(Zγ(δ)), and since f2, f3 are the only two edges in EG(Zγ(δ), V (G)\Zγ(δ))
coloured with α or β with respect to ϕ, we conclude that f3 ∈ E(P). By (12), there is
an edge f4 ∈ EG(u1

γ(δ), u
2
γ(δ)) with ϕ(f4) = α. This implies f4 ∈ E(P) and, therefore,

Uγ(δ) ⊆ V (P). Hence, we have v ∈ V (P), so v must be the second endvertex of P .
In both cases P is a path with endvertices u and v. Hence, by definition, we have

u ∈ A(T, e, ϕ) and the claim is proved.

Now let
X = V (T) ∪

⋃

δ∈Γd(T,e,ϕ)

Uδ.

Then, by (14), we have X ⊆ V (T) ∪A(T, e, ϕ). Hence, Proposition 3.9 implies

(15) X is elementary with respect to ϕ.

73

The aim is to show that X is also closed with respect to ϕ. To do this, we first
claim

(16) Xδ = V (T) ∪ Uδ is closed with respect to ϕ for every δ ∈ Γd(T, e, ϕ).

Proof of (16): Let δ ∈ Γd(T, e, ϕ), and let α ∈ ϕ̄(Xδ). We have to show that
EG(Xδ, V (G)\Xδ) ∩ Eα(e, ϕ) = ∅.

If α ∈ ϕ̄(V (T)) we conclude from (9), (11), and (13) that EG(u1
δ , u

2
δ)∩Eα(e, ϕ) 6=

∅ and, therefore, EG(Uδ, V (G)\Xδ) ∩ Eα(e, ϕ) = ∅. Moreover, since V (T) is closed
with respect to ϕ, we also have EG(V (T), V (G)\Xδ) ∩ Eα(e, ϕ) = ∅. Hence, we
conclude EG(Xδ, V (G)\Xδ) ∩ Eα(e, ϕ) = ∅.

If α ∈ ϕ̄(Uδ) then, clearly, we have α 6= δ and, by (11), also α 6= γ(δ). Hence, we
have Eα(e, ϕ) = Eα(e, ϕδ). Consequently, α ∈ ϕ̄δ(V (Tδ)) and, since V (Tδ) is closed
with respect to ϕδ, we obtain EG(V (Tδ), V (G)\Xδ) ∩Eα(e, ϕ) = EG(V (Tδ), V (G)\
Xδ)∩Eα(e, ϕδ) = ∅. Moreover, from (12) we know thatEG(u1

γ(δ), u
2
γ(δ))∩Eα(e, ϕ) 6= ∅

and, therefore, EG(Uγ(δ), V (G)\Xδ)∩Eα(e, ϕ) = ∅. Hence, we obtain EG(Xδ, V (G)\
Xδ) ∩ Eα(e, ϕ) = ∅.

In any case, we have EG(Xδ, V (G)\Xδ)∩Eα(e, ϕ) = ∅. This proves the claim.

Since, by (9), we have EG(u1
δ , u

2
δ)∩Eα0(e, ϕ) 6= ∅ for all δ ∈ Γd(T, e, ϕ), we easily

conclude the following.

(17) For any δ, δ′ ∈ Γd(T, e, ϕ), the sets Uδ and Uδ′ are either equal or disjoint.

Now we can show that

(18) X is closed with respect to ϕ.

Proof of (18): Suppose, on the contrary, that X is not closed with respect to
ϕ, that is, there exists a colour α ∈ ϕ̄(X) and an edge f ∈ EG(X,V (G) \X)
with ϕ(f) = α. Then, clearly, there is a colour δ ∈ Γd(T, e, ϕ) satisfying f ∈
EG(V (T) ∪ Uδ, V (G)\X). Since, by (16), V (T) ∪ Uδ is closed with respect to ϕ, we
conclude that α ∈ ϕ̄(X \V (T)\Uδ). Consequently, by (17), α ∈ ϕ̄(Uδ′) for a colour
δ′ ∈ Γd(T, e, ϕ) with Uδ ∩ Uδ′ = ∅.

Since, by (16), also V (T)∪Uδ′ is closed with respect to ϕ, we have f /∈ EG(V (T)∪
Uδ′ , V (G)\X). In particular, this means f /∈ EG(V (T), V (G)\X) and, therefore,
we conclude f ∈ EG(u, v) for two vertices u ∈ Uδ and v ∈ V (G) \X. Now let
P = Pu(α0, α, ϕ). Since α0, α ∈ ϕ̄(V (T)∪Uδ′) and V (T)∪Uδ′ is closed with respect
to ϕ, this implies V (P) ∩ V (T) = ∅. Hence, we have E(P) ∩ E(Tδ) = ∅.

By (15), X is elementary with respect to ϕ. Since α ∈ ϕ̄(Uδ′) and Γ ⊆ ϕ̄(V (T)),
we conclude that α /∈ Γ. Moreover, since, by (16), V (T) ∪ Uδ′ is closed with respect
to ϕ, and since f1

δ ∈ EG(V (T), V (G) \V (T) \Uδ′), we also conclude that α 6= δ.
Moreover, we also have α0 /∈ Γ and α0 6= δ. Evidently, we conclude Eα(e, ϕ) =
Eα(e, ϕδ) and Eα0(e, ϕ) = Eα0(e, ϕδ), which especially implies P = Pu(α0, α, ϕδ).
From E(P) ∩ E(Tδ) = ∅ it then follows that Tδ is a Tashkinov tree with respect
to e and ϕ′ = ϕδ/P . Since f ∈ E(P), we have ϕ′(f) = α0 ∈ ϕ̄′(V (Tδ)). Hence,
T ′ = (Tδ, f, v) is a Tashkinov tree with respect to e and ϕ′ satisfying |V (T ′)| >
|V (Tδ)| = t(G), a contradiction. This proves the claim.

Next, we claim the following:

74

(19) If α /∈ ϕ̄(X) and P = Py0(α0, α, ϕ), then |E(P) ∩ EG(X,V (G)\X)| = 1.

Proof of (19): By (15), X is elementary with respect to ϕ and, since α0 ∈ ϕ̄(y0),
we know that P is a path with one endvertex y0 and another endvertex z ∈ V (G)\X.
Evidently, there is a last vertex v in the linear order ¹(y0,P) that belongs to X, and
there is an edge in g ∈ EG(v, V (G)\X) with ϕ(g) = α. For the subpath P1 = y0Pv
of P , we have to show that V (P1) ⊆ X, this would complete the proof of (19). To
do this, we distinguish the following cases.

Case 1: v ∈ V (T) and α /∈ Γd(T, e, ϕ). Then we have EG(V (T), V (G)\V (T))∩
Eα(e, ϕ) = {g}. Since α0 ∈ ϕ̄(V (T)) and V (T) is closed with respect to ϕ, we
conclude that E(P)∩EG(V (T), V (G)\V (T)) = {g} and, therefore, V (P1) ⊆ V (T) ⊆
X.

Case 2: v ∈ V (T) and α ∈ Γd(T, e, ϕ). Then from (6) and (10) we conclude that
EG(V (T), V (G)\V (T)) ∩ Eα(e, ϕ) = {f0

α, f
1
α, f

2
α}. Hence, we have EG(Xα, V (G)\

Xα) = {f0
α}, which implies g = f0

α. Since α0 ∈ ϕ̄(Xα) and, by (16), Xδ is closed
with respect to ϕ, it follows that V (P1) ⊆ Xα ⊆ X.

Case 3: v /∈ V (T). Then, evidently, v ∈ Uδ for some δ ∈ Γd(T, e, ϕ). Since
ϕ(g) = α, we conclude that α 6= δ. Clearly, we also have α 6= γ(δ) and, therefore,
we infer that Eα(e, ϕ) = Eα(e, ϕδ). Moreover, we also have α0 /∈ {δ, γ(δ)} and,
therefore, it follows that P = Py0(α0, α, ϕδ). Clearly, v is the last vertex in ¹(y0,P)

that belongs to V (Tδ). Since no colour from ϕ̄δ(v) is used on Tδ with respect to
ϕδ, we infer that ϕ̄δ(v) ∩ Γf (Tδ, e, ϕδ) 6= ∅. From Lemma 3.13 it then follows that
v /∈ F (Tδ, e, ϕδ) and, therefore, α /∈ Γd(Tδ, e, ϕδ). Hence, we conclude that E(P) ∩
EG(V (Tδ), V (G)\V (Tδ)) = {g}, which implies V (P1) ⊆ V (Tδ) ⊆ X. This settles the
case.

In any of the three cases we have V (P1) ⊆ X, which implies E(P)∩EG(X,V (G)\
X) = {g}. This completes the proof.

Eventually, we can show that

(20) X is strongly closed with respect to ϕ.

Proof of (20): Suppose, on the contrary, that X is not strongly closed with respect
to ϕ. Since, by (18), X is closed with respect to ϕ, this implies that there is a colour
α satisfying α /∈ ϕ̄(X) and |EG(X,V (G)\X)∩Eα(e, ϕ)| ≥ 2. Obviously, this implies
|EG(X,V (G)\X) ∩ Eα(e, ϕ)| ≥ 3, because |X| is odd.

If |EG(V (T), V (G)\X) ∩ Eα(e, ϕ)| ≥ 2 then we would have α ∈ Γd(T, e, ϕ), but
then (6) and (10) would imply EG(V (T), V (G)\V (T))∩Eα(e, ϕ) = {f0

α, f
1
α, f

2
α} and,

therefore, EG(V (T), V (G)\X)∩Eα(e, ϕ) = {f0
α}, a contradiction. Consequently, we

have |EG(V (T), V (G)\X)∩Eα(e, ϕ)| ≤ 1, which leads to |EG(X\V (T), V (G)\X)∩
Eα(e, ϕ)| ≥ 2.

For the path P = Py0(α0, α, ϕ), it follows from (19) that |E(P) ∩ EG(X,V (G)\
X)| = 1. Consequently, there is a colour δ ∈ Γd(T, e, ϕ), and there is an edge
f ∈ EG(Uδ, V (G)\X) satisfying ϕ(f) = α and f /∈ E(P). Let u be the endvertex of
f that belongs to V (G)\X, and let P ′ = Pu(α0, α, ϕ). Since f ∈ E(P ′) but f /∈ E(P),
we infer that P and P ′ are vertex disjoint. Further, we claim that V (P ′)∩V (T) = ∅.
To prove this, we have two consider two cases.

75

Case 1: α ∈ Γd(T, e, ϕ). From (6) and (10) we then conclude EG(V (T), V (G)\
V (T)) ∩ Eα(e, ϕ) = {f0

α, f
1
α, f

2
α} and, therefore, we have |EG(Xα, V (G) \Xα) ∩

Eα(e, ϕ)| = 1. Since α0 ∈ ϕ̄(Xα) and, by (16), Xα is closed with respect to ϕ, we also
have EG(Xα, V (G)\Xα)∩Eα0(e, ϕ) = ∅. Since the only edge in EG(Xα, V (G)\Xα)∩
Eα(e, ϕ) must belong to E(P), we conclude that V (P ′)∩Xα = ∅ and, therefore, also
V (P ′) ∩ V (T) = ∅.

Case 2: α /∈ Γd(T, e, ϕ). Then the only edge in EG(V (T), V (G)\V (T))∩Eα(e, ϕ)
belongs to E(P). Since α0 ∈ ϕ̄(V (T)) and V (T) is closed with respect to ϕ, we
conclude that V (P ′) ∩ V (T) = ∅. This settles the case.

In any case we have V (P ′)∩ V (T) = ∅, which implies E(P ′)∩E(Tδ) = ∅. More-
over, from α, α0 /∈ {δ, γ(δ)} we conclude that P ′ = Pu(α0, α, ϕδ). Then, evidently, Tδ
is a Tashkinov tree with respect to e and ϕ′ = ϕδ/P

′. From ϕ′(f) = α0 ∈ ϕ̄′(V (Tδ))
it then follows that T ′ = (Tδ, f, u) is also a Tashkinov tree with respect to e and ϕ′

satisfying |V (T ′)| > |V (Tδ)| = t(G), a contradiction. This proves (20).

Now, by (15) and (20), X is elementary and strongly closed with respect to ϕ.
Then Theorem 1.4 implies that G is an elementary graph, which completes the proof.

Algorithmic aspect: An algorithmic version of the last result would be of the
following kind. Let G be a graph, and let (T, e, ϕ) ∈ Tk(G, e, ϕ) for an integer
k ≥ ∆(G) + 1 such that T is of the described structure. Then G is an elementary
graph, or there is a k-edge colouring of G, or there is a triple (T ′, e, ϕ′) ∈ Tk(G) with
|V (T ′)| > |V (T)|. The proof shows, if one of the many claims is not fulfilled, how this
colouring of G or the new triple can be computed. Note that, since we are not dealing
with a critical graph, many of the necessary recolouring and rearranging operations
need additionally steps for checking the usual properties like elementarity and so on.
If any of these checks fails, we can use the methods from the last section to compute
the k-edge colouring of G or the triple (T ′, e, ϕ′). Evidently, a detailed algorithmic
proof would be very nasty, but it is clear how an algorithm had to be constructed. It
is also very difficult to get, from this non-algorithmic proof, an exact running time
of such an algorithm. However, the running time is bounded polynomial in ∆(G)|
and |V (G)|, because all algorithms from the last section have such a running time
and have to be performed only a polynomially bounded number of times.

3.5 Proof of Theorem 3.2

Proposition 3.18 Let G be a critical graph with χ′(G) = k + 1 for an integer
k ≥ ∆(G) + 1. If h(G) > t(G)− 4 then G is an elementary graph.

Proof: Let h(G) > t(G) − 4. By Corollary 3.7 and Lemma 3.16(a), both t(G) and
h(G) are odd. Hence, we have either h(G) = t(G) or h(G) = t(G)− 2.

By Lemma 3.16(b), we have T B(G) 6= ∅. Consequently, there is an edge e ∈
EG(x, y), a colouring ϕ ∈ Ck(G− e) and a Tashkinov tree T with respect to e and ϕ
satisfying (T, e, ϕ) ∈ T B(G). Hence, h(T) = h(G).

If h(G) = t(G) then T consists only of its trunk, and only two colours α ∈ ϕ̄(x)
and β ∈ ϕ̄(y) are used on T with respect to ϕ. Therefore, Proposition 2.21(f) im-
plies that ϕ̄(v) ∩ Γf (T, e, ϕ) 6= ∅ for every vertex v ∈ V (T). From Lemma 3.13 we

76

then conclude that F (T, e, ϕ) = ∅ and hence, also Γd(T, e, ϕ) = ∅. From Propo-
sition 2.21(a),(c) it then follows that V (T) is elementary and strongly closed with
respect to ϕ. Consequently, by Theorem 1.4, G is an elementary graph.

In the other case we have h(G) = t(G)− 2 and, therefore, T has the form

T = (y0, e1, y1, . . . , eq−1, yq−1, f1, u1, f2, u2)

where x = y0, y = y1 and q = h(T). Clearly, exactly two colours α ∈ ϕ̄(x) and
β ∈ ϕ̄(y) are used on Tyq−1 with respect to ϕ. Moreover ϕ(f1) = ϕ(f2) = γ ∈
ϕ̄({y0, . . . , yq−1})\{α, β}, and for j = 1, 2 we have fj ∈ EG({y0, . . . , yq−1}, uj). Since
V (T) is elementary with respect to ϕ, there is a unique vertex yr ∈ {y0, . . . , yq−1}
with γ ∈ ϕ̄(yr). Since there are exactly three colours α ∈ ϕ̄(x), β ∈ ϕ̄(y) and
γ ∈ ϕ̄(yr) used on T with respect to ϕ, we conclude from Proposition 2.21(f) that
ϕ̄(v) ∩ Γf (T, e, ϕ) 6= ∅ for every vertex v ∈ V (T) \ {yr}. Then Lemma 3.13 im-
plies F (T, e, ϕ) ⊆ {yr}. Hence, (T, e, ϕ) fulfils the conditions of Lemma 3.17 and,
therefore, G is an elementary graph. This completes the proof.

Algorithmic aspect: An algorithmic version of this result would deal with an
arbitrary graph G and a balanced triple (T, e, ϕ) ∈ T Bk (G, e, ϕ) for an integer k ≥
∆(G) + 1. If h(T) > |V (T)| − 4 then G is an elementary graph, or there is a k-edge
colouring of G, or there is a triple (T ′, e, ϕ′) ∈ Tk(G) with |V (T ′)| > |V (T)|. Similar
to the proof, the algorithm works as follows. If T consists only of its trunk then
either V (T) is elementary and strongly closed with respect to ϕ, or there is an exit
vertex where a free colour is missing. In the first case, G is elementary; in the second
case, we can use Theorem 2.23 to construct a larger Tashkinov tree. Now consider
the case h(T) = |V (T)|−2. We can assume that there is a defective colour, otherwise
G is elementary. Then yr is the unique exit vertex and we can use the algorithm
corresponding to Lemma 3.17. We may use a specialized version of this algorithm,
because we have only one exit vertex. Since we are not interested in an exact running
time, it does not matter. In any case the running time of our algorithm is bounded
by a polynomial in ∆(G) and |V (G)|.

Proposition 3.19 Let G be a critical graph with χ′(G) = k + 1 for an integer
k ≥ ∆(G) + 1. If h(G) < 5 then G is an elementary graph.

Proof: Let q = h(G) < 5. Then, by Lemma 3.16(a), we have q = 3 and, by
Lemma 3.16(b), there is a triple (T, e, ϕ) ∈ T B(G). Hence, T has the form

T = (y0, e1, y1, . . . , ep−1, yp−1)

where p = t(G), and T1 = (y0, e1, y1, e2, y2) is the (α, β)-trunk of T where α ∈ ϕ̄(y0)
and β ∈ ϕ̄(y1). Moreover, there is an edge f ∈ EG(y2, y0) with ϕ(f) = β.

If p = 3 then t(G) = h(G), and Proposition 3.18 implies that G is an elementary
graph.

Now consider the case p > 3. Since (T, e, ϕ) is a balanced triple and q = 3,
we have ϕ(e3) = ϕ(e4) = γ and γ ∈ ϕ̄(yj) for some j ∈ {0, 1, 2}. Without loss
of generality we may assume that j = 0, otherwise we could replace the balanced
triple (T, e, ϕ) by the balanced triple (T, e, ϕ)(y0 → yj). Therefore, we have e3, e4 ∈

77

EG({y1, y2}, {y3, y4}) and, moreover, (y0, y1) is a (γ, β)-pair with respect to ϕ. From
Proposition 2.21(h) we then conclude that there is a (γ, β)-chain P with respect to
ϕ having endvertices y1 and y0. Evidently, q′ = |V (P)| is odd, f, e3, e4 ∈ E(P)
and y0, y1, y2, y3, y4 ∈ V (P). Therefore, we have q′ ≥ 5 and, by Lemma 3.14, there
is a Tashkinov tree T ′ with respect to e and ϕ satisfying (T ′, e, ϕ) ∈ T N (G) and
h(T ′) = q′ ≥ 5 > h(G), a contradiction. Hence, G is an elementary graph. This
completes the proof.

Algorithmic aspect: The corresponding algorithm to this result is very simple.
Let G be a graph, and let (T, e, ϕ) ∈ T Bk (G) for an integer k ≥ ∆(G) + 1. If
h(T) < 5 then h(T) = 3, and then the algorithm works as follows. If there is no
defective colour then G is elementary. So we assume that there is a defective colour.
If |V (T)| = 3 then there is an exit vertex where a free colour is missing and hence,
we can use Theorem 2.23 to construct a larger Tashkinov tree. If |V (T)| > 3 then
we can easily construct a normal triple (T ′, e′, ϕ′) ∈ T Nk (G) with V (T ′) = V (T) and
h(T ′) ≥ 5.

Lemma 3.20 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1, and let (T, e, ϕ) ∈ T (G) such that e ∈ EG(x, y). Furthermore, let (x, y)
be an (α, β)-pair with respect to ϕ, let P = Px(α, β, ϕ), and let ϕ′ = ϕ/P . Then
P is a path having endvertices x and y, (T, e, ϕ′) ∈ T (G), and there is a triple
(T ′, e, ϕ) ∈ T N (G) such that h(T) = |V (P)|.

Proof: By Corollary 3.7, (T, e, ϕ) ∈ Tk(G). Hence, Proposition 2.21(h) implies that
P is a path with endvertices x and y, and (T, e, ϕ′) ∈ Tk(G). Since |V (T)| = t(G),
we then have (T, e, ϕ′) ∈ T (G). Since (x, y) is an (α, β)-pair with respect to ϕ,
it follows from Lemma 3.14 that there is a triple (T ′, e, ϕ) ∈ T Nk (G) such that
V (T ′) = V (T) and h(T ′) = |V (P)|. Then |V (T ′)| = |V (T)| = t(G) and, therefore,
(T ′, e, ϕ) ∈ T N (G). This completes the proof.

Lemma 3.21 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1 such that h(G) = 5. Furthermore, let (T, e, ϕ) ∈ T N (G), and let T ′ =
(y0, e1, y1, e2, y2, e3, y3, e4, y4) be the (α, β)-trunk of T . If γ ∈ ϕ̄(y0) is a colour
satisfying EG(V (T ′), V (T) \V (T ′)) ∩ Eγ(e, ϕ) 6= ∅, then the following statements
hold:

(a) There are three edges f1 ∈ EG(y1, V (T)\V (T ′)), f2 ∈ EG(y4, V (T)\V (T ′)) and
f3 ∈ EG(y2, y3) with ϕ(f1) = ϕ(f2) = ϕ(f3) = γ.

(b) For the two endvertices v1, v2 ∈ V (T)\V (T ′) of the two edges f1, f2, we have
EG(v1, v2) ∩ Eα(e, ϕ) 6= ∅ and EG(v1, v2) ∩ Eβ(e, ϕ) 6= ∅.

Proof: Since T is a normal Tashkinov tree with respect to e and ϕ and T ′ = Ty4 is
the (α, β)-trunk of T , we conclude that T ′ is a path satisfying e1 = e, ϕ(e2) = ϕ(e4) =
α ∈ ϕ̄(y0), and ϕ(e3) = β ∈ ϕ̄(y1). Furthermore, there is an edge e0 ∈ EG(y4, y0)
with ϕ(e0) = β.

78

Let P1 = Py0(γ, β, ϕ). Clearly, (y0, y1) is a (γ, β)-pair with respect to ϕ. Since
(T, e, ϕ) ∈ T N (G), it then follows from Lemma 3.20 that P1 is a path having endver-
tices y0 and y1, and there is a triple (T1, e, ϕ) ∈ T N (G) such that h(T1) = |V (P1)|.
Since h(G) = 5, we then obtain |V (P1)| ≤ 5. Since y0, y1 are the endvertices of P1,
e0 ∈ EG(y4, y0), and ϕ(e0) = β, we conclude that e0 ∈ E(P1) and y0, y1, y4 ∈ V (P1).

Now we claim that EG({y2, y3}, V (T)\V (T ′)) ∩ Eγ(e, ϕ) = ∅. Suppose this is
not true. Then there is an edge g ∈ EG({y2, y3}, V (T) \V (T ′)) with ϕ(g) = γ.
Let v be the endvertex of g that belongs to V (T)\V (T ′). Since e3 ∈ EG(y2, y3)
and ϕ(e3) = β, we conclude that either none of the vertices y2, y3, v belong to P1,
or all three vertices belong to P1. In the latter case, however, we would obtain
|V (P1)| ≥ |V (T ′) ∪ {v}| ≥ 6, a contradiction. Hence, none of the vertices y2, y3, v
belong to P1. Then, for the colouring ϕ1 = ϕ/P1, we have α, β ∈ ϕ̄1(y0), γ ∈
ϕ̄1(y1), ϕ1(e0) = ϕ1(g) = γ, and ϕ1(e2) = ϕ1(e4) = α. Consequently, the chain
P2 = Py0(α, γ, ϕ1) contains the two subpaths P (y0, e0, y4, e4, y3) and P (y1, e2, y2),
implying g ∈ E(P2) and v ∈ V (P2). Hence, we have |V (P2)| ≥ 6. Moreover, by
Lemma 3.20, we have (T, e, ϕ1) ∈ T (G). Since (y0, y1) is an (α, γ)-pair with respect
to ϕ1, it then follows from Lemma 3.20 that there is a triple (T2, e, ϕ1) ∈ T N (G)
such that h(T2) = |V (P2)| ≥ 6, a contradiction to h(G) = 5. This proves the claim
that EG({y2, y3}, V (T)\V (T ′)) ∩ Eγ(e, ϕ) = ∅.

Since (T, e, ϕ) ∈ T (G), Corollary 3.7 implies that V (T) is elementary and closed
with respect to ϕ. Since γ ∈ ϕ̄(y0), we then conclude that Eγ(T, e, ϕ) = ∅ and, for
every vertex y ∈ {y1, y2, y3, y4}, there is an edge fy ∈ EG(y, vy) such that vy ∈ V (T)
and ϕ(fy) = γ.

Now, we claim that fy2 = fy3 = f3. Otherwise, EG({y2, y3}, V (T) \V (T ′)) ∩
Eγ(e, ϕ) = ∅ would imply that fy2 , fy3 ∈ EG({y2, y3}, {y1, y4}) and, therefore,
EG(V (T ′), V (T)\V (T ′)) ∩ Eγ(e, ϕ) = ∅, contradicting the assumption. This proves
the claim. Clearly, f3 ∈ EG(y2, y3) and, therefore, this part of (a) is proved.

Then the edges f1 = fy1 and f2 = fy4 are distinct, since otherwise we would again
have EG(V (T ′), V (T)\V (T ′))∩Eγ(e, ϕ) = ∅, a contradiction to the assumption. Since
f1 6= f2, the vertices v1 = vy1 and v2 = vy4 are distinct, too, and both vertices are
contained in V (T)\V (T ′). This completes the proof of (a).

Then, the chain P1 = Py0(γ, β, ϕ) contains the two subpaths P (y0, e0, y4, f2, v2)
and P (y1, f1, v1). Since |V (P1)| ≤ 5, this implies that there is an edge g1 ∈ EG(v1, v2)
such that ϕ(g1) = β. This proves the first part of (b).

Eventually, consider the chain P3 = Py0(α, β, ϕ) and the colouring ϕ2 = ϕ/P3.
Clearly, P3 = P (y1, e2, y2, e3, y3, e4, y4, e0, y0). Since (T, e, ϕ) ∈ T N (G) and (y0, y1)
is an (α, β)-pair with respect to ϕ2, Lemma 3.20 implies that (T, e, ϕ2) ∈ T (G).
Moreover, we have γ, β ∈ ϕ̄2(y0), α ∈ ϕ̄2(y1), ϕ2(e0) = α, and ϕ2(f1) = ϕ2(f2) = γ.
Hence, the chain P4 = Py0(γ, α, ϕ2) contains the two subpaths P (y0, e0, y4, f2, v2) and
P (y1, f1, v1), implying |V (P4)| ≥ 5. Since (T, e, ϕ2) ∈ T (G) and (y0, y1) is a (γ, α)-
pair with respect to ϕ2, Lemma 3.20 implies that there is a triple (T ′, e, ϕ2) ∈ T N (G)
such that h(T ′) = |V (P4)|. Since h(G) = 5, we conclude that |V (P4)| = 5. Hence,
there is an edge g2 ∈ EG(v1, v2) with ϕ2(g2) = α. Since g2 /∈ E(P3), we also have
ϕ(g2) = α. This completes the proof of (b).

79

This result gives some structural information about Tashkinov trees of height 5,
which is used in the proof of the next result. An algorithmic implementation of the
last result is quite simple. If an algorithm does not find the expected structure of a
Tashkinov tree T , then it can increase either the order or the height of T .

Proposition 3.22 Let G be a critical graph with χ′(G) = k + 1 for an integer
k ≥ ∆(G) + 1. If t(G) < 11 then G is an elementary graph.

Proof: By Corollary 3.7, t(G) ≥ 3 is odd and, therefore, we have t(G) ≤ 9. If
h(G) > t(G) − 4 or h(G) < 5, then it follows from Proposition 3.18 respectively
from Proposition 3.19 that G is elementary. So we only have to consider the case
where h(G) ≤ t(G) − 4 and h(G) ≥ 5. Since t(G) ≤ 9, this implies that h(G) = 5
and t(G) = 9. Our aim is to show that there is a balanced triple that fulfils the
conditions of Lemma 3.17. Clearly, this would imply that G is elementary.

By Lemma 3.16 and Corollary 3.7, we have ∅ 6= T B(G) ⊆ Tk(G). Hence, we can
choose a balanced triple (T, e, ϕ) ∈ T B(G). Since h(G) = 5 and t(G) = 9, T has the
form

T = (y0, e1, y1, e2, y2, e3, y3, e4, y4, e5, y5, e6, y6, e7, y7, e8, y8)

where e1 = e, ϕ(e2) = ϕ(e4) = α ∈ ϕ̄(y0), ϕ(e3) = β ∈ ϕ̄(y1), ϕ(e5) = ϕ(e6) = γ1 ∈
ϕ̄({y0, . . . , y4}) and ϕ(e7) = ϕ(e8) = γ2 ∈ ϕ̄({y0, . . . , y6}). Moreover, T1 = Ty4 is
the (α, β)-trunk of T and there is an edge e0 ∈ EG(y4, y0) with ϕ(e0) = β.

Clearly, γ1 ∈ ϕ̄(yi) for some i ∈ {0, . . . , 4}. We may assume that i = 0, since
otherwise we could replace the triple (T, e, ϕ) by the balanced triple (T, e, ϕ)(y0 →
yi). Since e5 ∈ EG({y0, . . . , y4}, y5), we conclude from Lemma 3.21 that there are
five edges f1, f2, f3, g1, g2 satisfying f1 ∈ EG(y1, v1) for a vertex v1 ∈ {y5, . . . , y8},
f2 ∈ EG(y4, v2) for a vertex v2 ∈ {y5, . . . , y8}, ϕ(f1) = ϕ(f2) = γ1, f3 ∈ EG(y2, y3),
ϕ(f3) = γ1, g1, g2 ∈ EG(v1, v2), ϕ(g1) = α and ϕ(g2) = β. In particular, this implies
{e5, e6} = {f1, f2} and {y5, y6} = {v1, v2}. By symmetry, we may assume that
e5 = f1 and e6 = f2, implying y5 = v1 and y6 = v2.

Now we have ϕ(e2) = ϕ(e4) = ϕ(g1) = α ∈ ϕ̄(y0), ϕ(e0) = ϕ(e3) = ϕ(g2) = β ∈
ϕ̄(y1), ϕ(e5) = ϕ(e6) = ϕ(f3) = γ1 ∈ ϕ̄(y0), and e7, e8 ∈ EG({y0, . . . , y6}, {y7, y8}).
Since ϕ(e7) = ϕ(e8) = γ2, we then conclude that γ2 /∈ {α, β, γ1}. Since, by Corol-
lary 3.7, V (T) is elementary and closed with respect to ϕ, there are three edges
f4, g3, g4 ∈ EG(y7, y8) satisfying ϕ(f4) = γ1, ϕ(g3) = α and ϕ(g4) = β.

We may assume that γ2 ∈ ϕ̄({y0, . . . , y4}), since otherwise we could replace T by
T1 = (y0, e1, y1, e5, y5, g2, y6, e6, y4, e2, y2, e4, y3, e7, y7, e8, y8). Obviously, (T1, e, ϕ) ∈
T B(G) is a balanced triple, T1y4 is the (γ1, β)-trunk of T1, and α ∈ ϕ̄(y0). Hence,
T1 has the same structure as T , just the two colours α and γ1 changed their role.

Now we claim that EG({y0, . . . , y4}, {y7, y8})∩Eγ2(e, ϕ) 6= ∅. Suppose this is not
true. Then we have e7, e8 ∈ EG({y5, y6}, {y7, y8}) and, by symmetry, we may assume
that e7 ∈ EG(y5, y7) and e8 ∈ EG(y6, y8). Evidently, the chain P1 = Py7(γ2, β, ϕ) =
P (y7, e7, y5, g2, y6, e8, y8, g4, y7) is a cycle. Consequently, T is a Tashkinov tree with
respect to e and ϕ1 = ϕ/P1 and, therefore, we have (T, e, ϕ1) ∈ T (G). Then
(y0, y1) is a (γ, β)-pair with respect to ϕ1, and the chain P2 = Py0(γ1, β, ϕ1) satisfies
P2 = P (y1, f1, v1, e7, y7, f4, y8, e8, v2, f2, y4, e0, y0). By Lemma 3.20, it then follows

80

that there is a triple (T2, e, ϕ1) ∈ T N (G) such that h(T2) = |V (P2)| = 7 > h(G), a
contradiction. This proves the claim.

Since we have γ2 ∈ ϕ̄(yj) for some j ∈ {0, . . . , 4}, we can construct a new
balanced triple as follows. In the case j = 0 let (T ′, e′, ϕ′) = (T, e, ϕ), otherwise let
(T ′, e′, ϕ′) = (T, e, ϕ)(y0 → yj). In any case we have (T ′, e′, ϕ′) ∈ T B(G), and T ′ has
the form

T ′ = (y′0, e
′
0, y
′
1, e
′
1, y
′
2, e
′
3, y
′
3, e
′
4, y
′
4, e5, y5, e6, y6, e7, y7, e8, y8)

where {y′0, . . . , y′4} = {y0, . . . , y4}, Ty′4 is the (α, β)-trunk of T ′, and ϕ′(e7) =
ϕ′(e8) = γ2 ∈ ϕ̄′(y′0). By Lemma 3.21, there are two vertices v′1, v′2 ∈ {y5, . . . , y8} and
four edges f ′1, f ′2, f ′3, g′1 satisfying f ′1 ∈ EG(y′1, v

′
1), f ′2 ∈ EG(y′4, v

′
2), ϕ′(f1) = ϕ′(f2) =

γ2, f ′3 ∈ EG(y′2, y
′
3), ϕ′(f ′3) = γ2, g′1 ∈ EG(v′1, v

′
2), and ϕ′(g′1) = α. Consequently,

we have f ′1, f ′2 ∈ EG({y0, . . . , y4}, {y5, . . . , y8}), f ′3 ∈ EG({y0, . . . , y4}, {y0, . . . , y4}),
ϕ(f ′1) = ϕ(f ′2) = ϕ(f ′3) = γ2, and ϕ(g′1) = α. Evidently, it then follows that
|EG({y0, . . . , y4}, {y5, . . . , y8}) ∩ Eγ2(e, ϕ)| = 2. Since EG({y0, . . . , y4}, {y7, y8}) ∩
Eγ2(e, ϕ) 6= ∅, we conclude that {y7, y8} ∩ {v′1, v′2} 6= ∅. From ϕ(g′1) = ϕ(g3) = α it
then follows that {y7, y8} = {v′1, v′2}.

Now we have α, γ1 ∈ ϕ̄(y0), β ∈ ϕ̄(y1), and γ2 ∈ ϕ̄(yj) for some j ∈ {0, . . . , 4}.
Since (T, e, ϕ) ∈ Tk(G), Proposition 2.21(f) then implies that |ϕ̄(v)\{α, β}| ≥ 1 for
every v ∈ V (T). Since no colours beside α, β, γ1 and γ2 are used on T with respect
to ϕ, we conclude that, for every vertex v ∈ V (T)\{y0, yj}, the set ϕ̄(v) contains at
least one free colour with respect to (T, e, ϕ). From Lemma 3.13 it then follows that
F (T, e, ϕ) ⊆ {y0, yj}. Since γ1 6= γ2 and e5, e6, e7, e8 ∈ EG({y0, . . . , y4}, {y5, . . . , y8}),
the triple (T, e, ϕ) fulfils the conditions from Lemma 3.17 and, therefore, G is an el-
ementary graph. This completes the proof.

Algorithmic aspect: This result handles the small Tashkinov trees up to a order
less than 11. It uses the previous results for most of the cases. The only new case is a
balanced Tashkinov tree of order 9 and height 5. Again, the proof can be translated
into an algorithm that, in the case when G is not elementary, either computes a
k-edge colouring of the graph G, or increases the order of the Tashkinov until it is at
least 11. Clearly, the running time again is bounded by a polynomial in ∆(G) and
|V (G)|.

Lemma 3.23 Let G be a critical graph with χ′(G) = k + 1 for an integer k ≥
∆(G) + 1, and let (T, e, ϕ) ∈ T (G). Moreover, let α, β ∈ {1, . . . , k}, and let P be an
(α, β)-chain with respect to ϕ satisfying V (P) ∩ V (T) = ∅. Then, for the colouring
ϕ′ = ϕ/P , the following statements hold:

(a) ϕ′(f) = ϕ(f) for every f ∈ EG−e(V (T), V (G)), and ϕ̄′(v) = ϕ̄(v) for every
v ∈ V (T).

(b) (T, e, ϕ′) ∈ T (G) and Γf (T, e, ϕ′) = Γf (T, e, ϕ).

(c) Γd(T, e, ϕ′) = Γd(T, e, ϕ) and Eδ(T, e, ϕ′) = Eδ(T, e, ϕ) for every δ ∈ Γd(T, e, ϕ).

(d) D(T, e, ϕ′) = D(T, e, ϕ).

81

Proof: From V (P) ∩ V (T) = ∅ we conclude that ϕ′(f) = ϕ(f) for every edge
f ∈ EG−e(V (T), V (G)). Clearly, this implies (a). Since (T, e, ϕ) ∈ T (G), statement
(a) implies (b) as well as (c).

Now let v ∈ D(T, e, ϕ). Then there are two colours γ ∈ Γf (T, e, ϕ) and δ ∈
Γd(T, e, ϕ) such that v is the first vertex in the linear order ¹(u,P1) that belongs
to V (G) \V (T), where u ∈ V (T) is the unique vertex with γ ∈ ϕ̄(u) and P1 =
Pu(γ, δ, ϕ). Consequently, for P2 = uP1v we have E(P2) ⊆ EG−e(V (T), V (G)).
Since γ ∈ Γf (T, e, ϕ′), δ ∈ Γd(T, e, ϕ′) and γ ∈ ϕ̄′(u), we conclude that ϕ′(f) = ϕ(f)
for every edge f ∈ E(P2). Hence, we have P2 = uP ′1v where P ′1 = Pu(γ, δ, ϕ′). This
leads to v ∈ D(T, e, ϕ′) and hence, we have D(T, e, ϕ) ⊆ D(T, e, ϕ′).

Since P is also an (α, β)-chain with respect to ϕ′ and since we not only have
ϕ′ = ϕ/P , but also ϕ = ϕ′/P , we conclude D(T, e, ϕ′) ⊆ D(T, e, ϕ) in an analogous
way. Consequently, we obtain D(T, e, ϕ′) = D(T, e, ϕ), and the proof is finished.

This result just gives some invariants of a recolouring operation that will be used
in the next proof. In the next result, the parameterm from the parameterized version
of Goldberg’s conjecture (Conjecture 3.1) is used for the first time.

Proposition 3.24 Let G be a critical graph with

χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

for an odd integer m ≥ 3. Moreover, let (T, e, ϕ) ∈ T (G) and Z = V (T)∪D(T, e, ϕ).
Then the following statements hold:

(a) |Z| ≤ m− 2.

(b) If |Z| = m− 2 then G is elementary.

Proof: From the assumption follows that χ′(G) > ∆(G) and hence ∆(G) ≥ 2. Then
we obtain χ′(G) > m

m−1∆(G) + m−3
m−1 ≥ ∆(G) + 1 and, therefore, χ′(G) ≥ ∆(G) + 2.

Hence, for k = χ′(G)− 1, we have k ≥ ∆(G) + 1 and ϕ ∈ Ck(G− e).
From Proposition 3.9 and Proposition 3.10 we conclude that Z is elementary with

respect to ϕ. Then Proposition 1.5(c) implies |Z| ≤ m− 1.
Now suppose |Z| = m − 1. Since k ≥ ∆(G) + 1, there is a colour α ∈ ϕ̄(Z).

Moreover, Z is elementary with respect to ϕ, and |Z| is even, so there is an edge
g ∈ EG(Z, V (G)\Z) having an endvertex z ∈ V (G)\Z and satisfying ϕ(g) = α.
Then F = (g, z) is a fan at Z with respect to ϕ, and Theorem 3.12 implies that
Z ∪ {z} is elementary with respect to ϕ. Since |Z ∪ {z}| = m, this contradicts
Proposition 1.5(c). Consequently, we have |Z| ≤ m− 2 and (a) is proved.

For the proof of (b), suppose that |Z| = m − 2. In the sequel, we will use the
following abbreviation. For a colouring ϕ′ ∈ Ck(G− e), a colour α ∈ {1, . . . , k}, and
a set X ⊆ V (G), let

Eα(X, e, ϕ′) = EG(X,V (G)\X) ∩ Eα(e, ϕ′).

First, we claim that Z is closed with respect to ϕ. Suppose this is not true. Then
there is a colour α ∈ ϕ̄(Z) satisfying Eα(Z, e, ϕ) 6= ∅. Since Z is elementary with

82

respect to ϕ, and since |Z| is odd, we then conclude that |Eα(Z, e, ϕ)| ≥ 2. Then there
are two distinct edges g1, g2 ∈ Eα(Z, e, ϕ). For j = 1, 2, let zj denote the endvertex
of gj that belongs to V (G)\Z. Clearly, z1 6= z2 and, therefore, F ′ = (g1, z1, g2, z2)
is a fan at Z with respect to ϕ. Hence, by Theorem 3.12, Z ∪ {z1, z2} is elementary
with respect to ϕ, but then |Z ∪ {z1, z2}| = m contradicts Proposition 1.5(c). This
proves the claim that Z is closed with respect to ϕ.

Now we want to show that Z is also strongly closed with respect to ϕ. Suppose
this is not true. Then there is a colour δ ∈ {1, . . . , k} satisfying δ /∈ ϕ̄(Z) and
|Eδ(Z, e, ϕ)| ≥ 2. Since |Z| is odd, we then conclude that |Eδ(Z, e, ϕ)| ≥ 3. Moreover,
by Proposition 2.21(f), there is a colour γ ∈ Γf (T, e, ϕ), and there is a unique vertex
v ∈ V (T) satisfying γ ∈ ϕ̄(v). Let P = Pv(γ, δ, ϕ). Then P is a path and v is
an endvertex of P . Since δ /∈ ϕ̄(Z) and Z is elementary with respect to ϕ, the
other endvertex of P belongs to V (G)\Z. Hence, in the linear order ¹(v,P) there
is a first vertex u that belongs to V (G)\Z. Let Φ denote the set of all colourings
ϕ′ ∈ Ck(G − e) such that (T, e, ϕ′) ∈ T (G), Γf (T, e, ϕ′) = Γf (T, e, ϕ), D(T, e, ϕ′) =
D, Eδ(e, ϕ′) = Eδ(e, ϕ), and EG(Z,Z) ∩ Eγ(e, ϕ′) = EG(Z,Z) ∩ Eγ(e, ϕ′). Clearly,
ϕ ∈ Φ.

Consider an arbitrary colouring ϕ′ ∈ Φ. Then Z = V (T)∪D = V (T)∪D(T, e, ϕ′).
By Proposition 3.9 and Proposition 3.10, it follows that Z is elementary with respect
to ϕ′. Since |Z| = m − 2, it follows from the above proof that Z is closed with
respect to ϕ′. Since Eδ(e, ϕ′) = Eδ(e, ϕ), it follows that δ /∈ ϕ̄′(Z) and Eδ(Z, e, ϕ′) =
Eδ(Z, e, ϕ). Hence, Z is not strongly closed with respect to ϕ′. Furthermore, γ ∈
Γf (T, e, ϕ) = Γf (T, e, ϕ′) and, since EG(Z,Z) ∩ Eγ(e, ϕ′) = EG(Z,Z) ∩ Eγ(e, ϕ),
we have γ ∈ ϕ̄′(v). Moreover, since E(vPu) ⊆ Eδ(e, ϕ) ∪ (EG(Z,Z) ∩ Eγ(e, ϕ)

)
, it

follows that ϕ′(f ′) = ϕ(f ′) for all edges f ′ ∈ E(vPu). Hence, we have vP ′u = vPu,
where P ′ = Pv(γ, δ, ϕ′). In particular, this implies that u is the first vertex in the
linear order ¹(v,P ′) that belongs to V (G)\Z.

We claim that there is a colouring ϕ′ ∈ Φ such that γ ∈ ϕ̄′(u). Clearly, this
implies that Pv(γ, δ, ϕ′) = vPu. For the proof of this claim, we consider the following
two cases:

Case 1: ϕ̄(u)∩ϕ̄(Z) 6= ∅. Then there is a colour β ∈ ϕ̄(u)∩ϕ̄(Z). If β = γ then,
since ϕ ∈ Φ, we are done. If β 6= γ then let P1 = Pu(γ, β, ϕ) and ϕ′ = ϕ/P . Since Z
is closed with respect to ϕ, we obtain Eγ(Z, e, ϕ) = Eβ(Z, e, ϕ) = ∅. Hence, we have
V (P1) ∩ Z = ∅. By Lemma 3.23, it follows that (T, e, ϕ′) ∈ T (G), Γf (T, e, ϕ′) =
Γf (T, e, ϕ), and D(T, e, ϕ′) = D. Since the recolouring involves neither edges of
EG(Z,Z) nor edges coloured with δ, this implies that ϕ′ ∈ Φ. Moreover, γ ∈ ϕ̄′(u)
and, therefore, ϕ′ has the desired properties.

Case 2: ϕ̄(u) ∩ ϕ̄(Z) = ∅. Since Z is elementary with respect to ϕ, this implies
that Z ∪ {u} is elementary with respect to ϕ, too. Since γ ∈ ϕ̄(Z), there is a
vertex u′ ∈ V (G) and an edge f ∈ EG(u, u′) with ϕ(f) = γ. Since Z is closed with
respect to ϕ, it follows that u′ ∈ V (G)\Z. Then |Z ∪ {u, u′}| = m and hence, by
Proposition 1.5(c), the set Z ∪ {u, u′} is not elementary with respect to ϕ. Since
Z ∪ {u} is elementary with respect to ϕ, this implies that ϕ̄(u′) ∩ ϕ̄(Z ∪ {u}) 6= ∅.
We consider three subcases.

Case 2a: There is a colour γ1 ∈ ϕ̄(u′) ∩ ϕ̄(u). Then we can simply obtain the
desired colouring ϕ′ ∈ Φ from ϕ by recolouring the edge f with the colour γ1.

83

Case 2b: There is a colour γ1 ∈ ϕ̄(u′) ∩ ϕ̄(Z) satisfying γ1 ∈ Γf (T, e, ϕ). Then
there is a unique vertex v′ ∈ V (T) with γ1 ∈ ϕ̄(v′). Moreover, by Proposition 2.21(f),
there is a colour γ2 ∈ ϕ̄(u). Since Z ∪{u} is elementary with respect to ϕ, we clearly
have γ1 6= γ2 and γ2 /∈ ϕ̄(Z). Furthermore, from ϕ(f) = γ it follows that γ /∈ {γ1, γ2}.
Since δ /∈ ϕ̄(Z) and δ ∈ ϕ(u), we also obtain δ /∈ {γ1, γ2}.

Now let P2 = Pv′(γ1, γ2, ϕ). Then P2 is a path, where one endvertex is v′ and
the other endvertex is some vertex w′ ∈ V (G) \Z. Since γ1 ∈ ϕ̄(V (T)), Propo-
sition 2.21(d) implies Eγ1(T, e, ϕ) = ∅. Hence, we obtain ∅ 6= EG(V (T), V (G) \
V (T)) ∩ E(P2) ⊆ Eγ2(T, e, ϕ). Then we conclude that Eγ2(T, e, ϕ) ⊆ E(P2). If
|Eγ2(T, e, ϕ)| = 1, this is evident, otherwise it follows from Theorem 3.8(a), because
γ1 ∈ Γf (T, e, ϕ).

If w′ = u then, evidently, u′ is not an endvertex of P2 and, therefore, u′ does
not belong to V (P2) at all. Let P3 = Pu′(γ1, γ2, ϕ), and let ϕ3 = ϕ/P3. Clearly,
P3 and P2 are disjoint. Since Eγ1(T, e, ϕ) = ∅ and Eγ2(T, e, ϕ) ⊆ E(P2), this im-
plies that V (P3) ∩ V (T) = ∅. By Lemma 3.23, it follows that (T, e, ϕ3) ∈ T (G),
Γf (T, e, ϕ3) = Γf (T, e, ϕ), and D(T, e, ϕ3) = D. Since the recolouring does not
involve edges coloured with γ or δ, this implies that ϕ3 ∈ Φ. Moreover, since
u /∈ V (P3), we have γ2 ∈ ϕ̄3(u) ∩ ϕ̄3(u′) and ϕ3(f) = γ. Hence, we can obtain
the desired colouring ϕ′ ∈ Φ from ϕ3 by recolouring the edge f with the colour γ2.

If otherwise w′ 6= u then, evidently, u does not belong to V (P2) at all. Let P4 =
Pu(γ1, γ2, ϕ) and ϕ4 = ϕ/P4. Clearly, P4 and P2 are disjoint. Since Eγ1(T, e, ϕ) = ∅
and Eγ2(T, e, ϕ) ⊆ E(P2), this implies that V (P4) ∩ V (T) = ∅. By Lemma 3.23,
it follows that (T, e, ϕ4) ∈ T (G), Γf (T, e, ϕ4) = Γf (T, e, ϕ), and D(T, e, ϕ4) = D.
Since the recolouring does not involve edges coloured with γ or δ, this implies that
ϕ4 ∈ Φ. Moreover, we have γ1 ∈ ϕ̄4(u) ∩ ϕ̄4(Z) and ϕ4(f) = γ. Hence, we are in
the same situation as in Case 1, just with the colouring ϕ4 instead of ϕ, and the
colour γ1 instead of β. Then we can obtain the desired colouring ϕ′ ∈ Φ from ϕ4

analogously to Case 1, that is, ϕ′ = ϕ4/Pu(γ, γ1, ϕ4).
Case 2c: There is a colour γ1 ∈ ϕ̄(u′) ∩ ϕ̄(Z) satisfying γ1 /∈ Γf (T, e, ϕ). By

Proposition 2.21(f), there is a colour γ3 ∈ Γf (T, e, ϕ)\{γ}. Evidently, γ1 6= γ3. Let
P5 = Pu′(γ1, γ3, ϕ), and let ϕ5 = ϕ/P5. Since γ1, γ3 ∈ ϕ̄(Z) and Z is closed with
respect to ϕ, we obtain Eγ1(Z, e, ϕ) = Eγ3(Z, e, ϕ) = ∅. Consequently, P5 is a path
satisfying V (P5) ∩ Z = ∅. From Lemma 3.23 it then follows that (T, e, ϕ5) ∈ T (G),
Γf (T, e, ϕ5) = Γf (T, e, ϕ), and D(T, e, ϕ5) = D. Since the recolouring does not
involve edges coloured with γ or δ, this implies that ϕ5 ∈ Φ. Moreover, we have
γ3 ∈ ϕ̄5(u′) ∩ Γf (T, e, ϕ5). Since γ3 6= γ, we also have ϕ5(f) = γ. Hence, we are in
the same situation as in Case 2b, just with the colouring ϕ5 instead of ϕ, and the
colour γ3 instead of γ1. Then we can obtain the desired colouring ϕ′ ∈ Φ from ϕ4

analogously to Case 2b.
Thus the claim is proved, and there is a colouring ϕ′ ∈ Φ such that γ ∈ ϕ̄′(u) and,

therefore, P ′ = Pv(γ, δ, ϕ′) = vPu. Evidently, we have |E(P ′) ∩ EG(Z, V (G)\Z)| =
1. Since, by assumption, we also have |Eδ(Z, e, ϕ)| ≥ 3, there must be two edges
f1, f2 ∈ EG(Z, V (G)\Z)\E(P ′) with ϕ(f1) = ϕ(f2) = δ. Since ϕ′ ∈ Φ, this implies
ϕ′(f1) = ϕ′(f2) = δ. For j = 1, 2, let vj ∈ Z and uj ∈ V (G)\Z denote the endvertices
of fj .

84

Now let P ′1 = Pu1(γ, δ, ϕ′) and P ′2 = Pu2(γ, δ, ϕ′). Note that P ′1 and P ′2 may
be equal. Since E(P ′) ∩ {f1, f2} = ∅, both chains P ′1 and P ′2 are vertex disjoint to
P ′. Since γ ∈ ϕ̄′(V (T)), Proposition 2.21(d) implies Eγ(T, e, ϕ′) = ∅. Moreover,
by Theorem 3.8(a), Eδ(T, e, ϕ) ⊆ P ′. Consequently, we obtain V (P ′1) ∩ V (T) =
V (P ′2) ∩ V (T) = ∅. If P ′1 = P ′2 then let ϕ′2 = ϕ′/P ′1, otherwise let ϕ′2 = (ϕ′/P ′1)/P ′2.
From Lemma 3.23 we then conclude that (T, e, ϕ′2) ∈ T (G), and D(T, e, ϕ′2) =
D. Moreover, we have ϕ′2(f1) = ϕ′2(f2) = γ ∈ ϕ̄′2(V (T)) and, therefore, F =
(f1, u1, f2, u2) is a fan at Z with respect to ϕ′2. From Theorem 3.12 it then follows
that Z ∪ {u1, u2} is elementary with respect to ϕ′2. Since |Z ∪ {u1, u2}| = m, this
contradicts Proposition 1.5(c). This proves the claim that Z is strongly closed with
respect to ϕ. Then, by Theorem 1.4, G is an elementary graph. This completes the
proof of statement (b).

Algorithmic aspect: Now we will discuss the algorithmic interpretation of this
result. Let G be a graph and (T, e, ϕ) ∈ Tk(G) for an integer k ≥ ∆(G) + 1. We
assume that Z = V (T) ∪D(T, e, ϕ) is elementary with respect to ϕ, otherwise our
colouring algorithm had computed a k-edge colouring of G or a larger Tashkinov tree
before.

If |Z| > m − 2 then we distinguish two cases. First, the case |Z| > m − 1.
This means that we have an elementary set of size at least m, containing the two
endvertices x, y of e. Moreover, at every vertex at least k−∆(G) colours are missing,
and at x, y at least k−∆(G)+1 colours are missing. This implies k ≥ m(k−∆(G))+2.
From this we obtain

k + 1 ≤ m

m− 1
∆(G) +

m− 3
m− 1

.

Consequently, we can use a new colour for e without exceeding our desired bound.
In the second case we have |Z| = m − 1. Then |Z| is even and we find a fan (g, z)
at Z with respect to ϕ. If Z ∪ {z} is not elementary with respect to ϕ, the proof of
Theorem 3.12 shows how we can recolour and increase the order of T . If Z ∪ {z} is
elementary with respect to ϕ. Again, we have an elementary set of size m containing
x, y, allowing to use a new colour for e.

If |Z| = m−2 then we first check whether T is closed with respect to ϕ. If not then
we find a fan (g1, z1, g2, z2) at Z with respect to ϕ. On one hand, if Z∪{g1, g2} is not
elementary with respect to ϕ then, by Theorem 3.12, we can recolour and increase
the order of T . On the other hand, if Z ∪ {g1, g2} is elementary with respect to ϕ
then we can again use a new colour for e without exceeding our desired bound. So
we only have to consider the case that Z is closed with respect to ϕ. We can further
assume that Z is not strongly closed with respect ϕ, otherwise G is elementary.

Again we have to distinguish some cases, we skip the details here, they can be
found in the proof. If we cannot, at some point, use Theorem 3.8 to increase the
order of T then, eventually, we get again an elementary set of size m, allowing to
use a new colour for the edge e. Clearly, the algorithm only has a running time
polynomial in ∆(G) and |V (G)|.

Proposition 3.25 Let G be a critical graph with

χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

85

for an odd integer m ≥ 3. Then the following statements hold:

(a) If t(G) > m− 4 then G is elementary.

(b) If t(G) = m− 4 and h(G) > t(G)− 8 then G is elementary.

Proof: Let t(G) > m − 4. Since m is odd and, by Corollary 3.7, t(G) is odd, too,
this implies t(G) ≥ m − 2. Evidently, for any (T, e, ϕ) ∈ T (G) we have |V (T) ∪
D(T, e, ϕ)| ≥ m−2. Then Proposition 3.24 implies that |V (T)∪D(T, e, ϕ)| = m−2,
and that G is elementary. This proves (a).

Now let t(G) = m− 4 and h(T) > |V (T)| − 8. By Lemma 3.16, there is a triple
(T, e, ϕ) ∈ T B(G). Then we have e ∈ EG(x, y) for two vertices x, y ∈ V (T), and
ϕ ∈ Ck(G−e) with k = χ′(G)−1. Since χ′(G) > ∆(G), we conclude that ∆(G) ≥ 2.
Then χ′(G) > m

m−1∆(G) + m−3
m−1 ≥ ∆(G) + 1 and, therefore, χ′(G) ≥ ∆(G) + 2 and

k ≥ ∆(G) + 1.
By Corollary 3.7, V (T) is elementary and closed with respect to ϕ, and (T, e, ϕ) ∈

Tk(G). If V (T) is strongly closed with respect to ϕ, then Theorem 1.4 implies that
G is elementary, and we are done. So for the rest of the proof, assume that V (T)
is not strongly closed with respect to ϕ. Then, by Proposition 2.21(c), we have
Γd(T, e, ϕ) 6= ∅ and, therefore, D = D(T, e, ϕ) 6= ∅. If |D| ≥ 2 then |V (T) ∪ D| ≥
t(G) + 2 = m−2, and from Proposition 3.24 it then follows that |V (T)∪D| = m−2
and that G is elementary. So from now on we assume that |D| = 1.

Let α1 ∈ ϕ̄(x) and α2 ∈ ϕ̄(y) be the two colours used on the trunk of T with
respect to ϕ. By Proposition 2.21(f), we have |ϕ̄(v)| ≥ k −∆(G) + 1 for v ∈ {x, y},
and |ϕ̄(v)| ≥ k −∆(G) for v ∈ V (T)\{x, y}. Since V (T) is elementary with respect
to ϕ, this implies that |ϕ̄(v)\{α1, α2}| ≥ k−∆(G) for every v ∈ V (T). Since (T, e, ϕ)
is a balanced triple and h(T) > |V (T)| − 8, we conclude that beside α1, α2 there are
at most 3 other colours used on T with respect to ϕ. This leads to (k−∆(G))s ≤ 3,
where s is the number of vertices v ∈ V (T), such that ϕ̄(v) contains no free colour
with respect to (T, e, ϕ).

Let δ ∈ Γd(T, e, ϕ), and let E′ = Eδ(T, e, ϕ). By Proposition 2.21(e), we have
|E′| ≥ 3. Let E′ = {fj | 1 ≤ j ≤ |E′|}, and for j = 1, . . . , |E′| let vj ∈ V (T) and
uj ∈ V (G)\V (T) be the endvertices of fj . By Proposition 2.21(f), there is a free
colour γ0 ∈ Γf (T, e, ϕ). Hence, there is a vertex v0 ∈ V (T) with γ0 ∈ ϕ̄(v0). Let
P0 = Pv0(γ0, δ, ϕ). Then Proposition 2.22(a),(b) implies that, in the linear order
¹(v0,P0), one of the vertices u1, . . . , u|E′|, say u1, is the first one that belongs to
V (G)\V (T). Consequently, u1 ∈ D. Since |D| = 1, we then obtain D = {u1}.

Now let j ∈ {2, . . . , |E′|}. Suppose that the set ϕ̄(vj) contains a free colour γj .
Then (γj , δ)-chain Pj = Pvj (γj , δ, ϕ) is a path, and vj is an endvertex of Pj . Moreover,
on the linear order ¹(vj ,Pj), the vertex uj is the first vertex that belongs to V (G)\
V (T). Hence, we have uj ∈ D, a contradiction. Consequently, ϕ̄(vj)∩Γf (T, e, ϕ) = ∅
for j = 2, . . . , |E′|. Clearly, this implies s ≥ |E′| − 1 ≥ 2. Since we also have
(k −∆(G))s ≤ 3, it follows that 2 ≤ s ≤ 3

k−∆(G) . Since k ≥ ∆(G) + 1, this implies
k = ∆(G) + 1 and, therefore, 2 ≤ |E′| − 1 ≤ 3. Since, by Proposition 2.21(e), |E′| is
odd, we then conclude that |E′| = 3, that is, E′ = {f1, f2, f3}. From Proposition 3.9
and Proposition 3.10 we conclude that Z = V (T) ∪D = V (T) ∪ {u1} is elementary
with respect to ϕ. Since V (T) is closed with respect to ϕ, this implies that, for

86

every colour γ′ ∈ ϕ̄(V (T)), there is a vertex uγ′ ∈ V (G)\Z and an edge fγ′ such
that fγ′ ∈ EG(u1, uγ′) and ϕ(fγ′) = γ′. Now let u = uγ′ and f = fγ′ for some
γ′ ∈ ϕ̄(V (T)). Then (f, u) is a fan at Z with respect to ϕ. Hence, by Theorem 3.12,
X = Z ∪ {u} is elementary with respect to ϕ.

Now we claim that δ /∈ ϕ̄(X). Suppose this is not true. Since δ /∈ ϕ̄(V (T)) and
δ /∈ ϕ̄(u1), this implies that δ ∈ ϕ̄(u). Then (f, u, f2, u2, f3, u3) is a fan at Z with
respect to ϕ and hence, by Theorem 3.12, X1 = X ∪ {u2, u3} is elementary with
respect to ϕ. Since |X1| = m, this contradicts Proposition 1.5(c). This proves the
claim.

This clearly implies k ≥ |ϕ̄(X)| + 1. Since k = ∆(G) + 1, Proposition 2.21(f)
implies that |ϕ̄(v)| ≥ 2 for v ∈ {x, y}, and |ϕ̄(v)| ≥ 1 for v ∈ V (T)\{x, y}. Since X
is elementary with respect to ϕ, we then obtain |ϕ̄(X)| ≥ |X| + 2 = m. Hence, on
the one hand, we have k ≥ m+ 1. On the other hand, since k = ∆(G) + 1, we have

k + 1 = χ′(G) >
m

m− 1
∆(G) +

m− 3
m− 1

= ∆(G) + 1 +
∆(G)− 2
m− 1

= k +
k − 3
m− 1

and, therefore, k < m+ 2. Since both k and m are integers, we then conclude that
k = m+ 1 = |ϕ̄(X)|+ 1.

Now we claim that X is closed with respect to ϕ. Suppose this is not true.
Then there is a colour α ∈ ϕ̄(X) satisfying E1 = EG(X,V (G)\X) ∩ Eα(e, ϕ) 6= ∅.
Since X is elementary with respect to ϕ, there is a unique vertex in X where the
colour α is missing with respect to ϕ. Moreover, |X| = m− 2 is odd and, therefore,
|E1| is even and |E1| ≥ 2. Hence, there is at least one edge f ′ ∈ E1 having an
endvertex in Z. Let u′ be the endvertex of f ′ that belongs to V (G) \X. Then
(f, u, f ′, u′) is a fan at Z with respect to ϕ and, by Theorem 3.12, X2 = X ∪ {u′}
is elementary with respect to ϕ. From k = m + 1 and |X2| = m − 1 we then
conclude that k = |X2|+ 2 ≤ |ϕ̄(X2)| ≤ k and, therefore, |ϕ̄(X2)| = k. This implies
δ ∈ ϕ̄(X2), and from δ /∈ ϕ̄(X) it then follows that δ ∈ ϕ̄(u′). Consequently, we have
u′ /∈ {u2, u3} and, therefore, at least one of the vertices u2, u3 does not belong to
X2, say u2 /∈ X2. Then, evidently, (f, u, f ′, u′, f2, u2) is a fan at Z with respect to ϕ
and hence, by Theorem 3.12, X3 = X2 ∪{u2} is elementary with respect to ϕ. Since
|X3| = m, this contradicts Proposition 1.5(c). This proves the claim.

Let E′′ = EG(X,V (G)\X)∩Eδ(e, ϕ). Since δ /∈ ϕ̄(X) and |X| is odd, we conclude
that |E′′| ≥ 1 is odd, too. We claim that |E′′| = 1. Suppose on the contrary that
|E′′| > 1. Since |E′′| is odd, this implies |E′′| ≥ 3. From E′ = {f1, f2, f3} and f1 ∈
EG(X,X) it then follows that |E′′| = 3 and E′′ = {f2, f3, g}, where g ∈ EG(u, v) and
v ∈ V (G)\X. Clearly, there is a colour β ∈ ϕ̄(v). Evidently, we have β 6= δ, and since
k = |ϕ̄(X)|+ 1 and δ /∈ ϕ̄(X), we have β ∈ ϕ̄(X). Moreover, by Proposition 2.21(f),
there is a colour γ ∈ Γf (T, e, ϕ)\{β}. Now let P = Pv(β, γ, ϕ) and ϕ′ = ϕ/P . Since
β, γ ∈ ϕ̄(X) and X is closed with respect to ϕ, we conclude that V (P)∩X = ∅. By
Lemma 3.23, we then have (T, e, ϕ′) ∈ T (G), γ ∈ Γf (T, e, ϕ′), δ ∈ Γd(T, e, ϕ′) and
D(T, e, ϕ′) = {u1}. Moreover, we have ϕ′(f1) = ϕ′(f2) = ϕ′(f3) = ϕ′(g) = δ and
γ ∈ ϕ̄′(v). Since both V (T) and X are closed with respect to ϕ, there is an edge
g′ ∈ EG(u1, u) satisfying ϕ′(g′) = ϕ(g′) = γ. Let v′ ∈ V (T) be the unique vertex
with γ ∈ ϕ̄′(v), and let P ′ = Pv′(γ, δ, ϕ′). Since D(T, e, ϕ′) = {u1}, we conclude that
u1 is the first vertex in the linear order ¹(P ′,v′) that belongs to V (G)\V (T). Then,

87

evidently, u, v are the next vertices in the linear order ¹(P ′,v′) and, moreover, v is
the second endvertex of P ′. Consequently, we have f2, f3 /∈ E(P ′), a contradiction
to Theorem 3.8(a). Hence, the claim is proved.

Since k = |ϕ̄(X)|+ 1 and δ /∈ ϕ̄(X), and since X is closed with respect to ϕ, we
then conclude that every edge in EG(X,V (G)\X) is coloured with δ with respect
to ϕ. Then |E′′| = 1 implies that X is strongly closed with respect to ϕ. Since X is
also elementary with respect to ϕ, we infer from Theorem 1.4 that G is elementary.
This, eventually, proves (b).

Algorithmic aspect: The last result handles large Tashkinov trees with a order
near to the parameter m. A corresponding algorithm works as follows. Let G be a
graph, and (T, e, ϕ) ∈ T Bk (G) for an integer k ≥ ∆(G) + 1 such that either |V (T)| >
m − 4, or |V (T)| = m − 4 and h(T) > |V (T)| − 8. If |V (T) ∪D(T, e, ϕ)| ≥ m − 2
then we use the algorithm from the preceding result. This leaves only the case
|V (T)| = m−4, h(T) > |V (T)|−8 and |D(T, e, ϕ)| = 1. Now we have to distinguish
several cases, leading to one of three outcomes. First, we get a larger Tashkinov tree
due to Theorem 3.8. Second, we get an elementary set of size m containing the two
endvertices of e. This allows us to use a new colour for e without exceeding our
desired bound. And last, we get an elementary and strongly closed set, implying
that G is elementary. This algorithm also has a polynomial (in ∆(G) and |V (G)|)
running time like the others.

Proof of Theorem 3.2: Let G be a graph with χ′(G) > 15
14∆(G) + 12

14 . Moreover,
let H be a critical subgraph of G satisfying χ′(H) = χ′(G). Clearly, we have ∆(H) ≤
∆(G) and, therefore,

χ′(H) >
15
14

∆(H) +
12
14
.

In the following we show that H is elementary. From this we then conclude that also
G is elementary, because W(G) ≤ χ′(G) = χ′(H) = W(H) ≤ W(G).
To show that H is elementary, we distinguish four cases.
Case 1: t(H) < 11. Then, by Proposition 3.22, H is elementary.
Case 2: t(H) > 11. Then, by Proposition 3.25(a), H is elementary.
Case 3: t(H) = 11 and h(H) ≤ 3. Then from Proposition 3.19 it follows that H is
elementary.
Case 4: t(H) = 11 and h(H) > 3. Then from Proposition 3.25(b) it follows that H
is elementary.

In any case H is an elementary graph, this completes the proof.

Algorithmic aspect: Now it is easy to construct an algorithm that colours a given
graph G with at most max{15

14∆(G) + 12
14 ,W(G)} colours. The kernel algorithm

that extends a partial colouring to a new edge, is a combination of the algorithms
corresponding the previous results. Given a graph H, an edge e ∈ E(H), and a
colouring ϕ ∈ Ck(H − e) for an integer k ≥ ∆(H) + 1, this algorithm works as
follows. It successively builds a Tashkinov tree T with respect to e and ϕ until either
the vertex set V (T) is not elementary with respect to ϕ, or T is a maximal Tashkinov
tree. In the first case, due to Theorem 2.20, we can colour H with k colours. In
the second case, due to Lemma 3.15, we may assume that (T, e, ϕ) is a balanced

88

triple. Depending on the order and the height of T , we use one of algorithms of
Proposition 3.22, Proposition 3.25, or Proposition 3.19. This may have different
outcomes. First, we get a k-edge colouring of H. Second, we can recolour and
increase the order of T . Then we start over again. Third, we get an elementary set
of size 15. Then we can use a new colour for e and still use at most 15

14∆(G) + 12
14

colours. And last, we get an elementary and strongly closed set, implying that H is
elementary. Then we use a new colour for e and still use at most W(G) colours.

An colouring algorithm that uses this described kernel and, on the input G,
starts with ∆(G) colours, will not use more than max{15

14∆(G) + 12
14 ,W(G)} for the

whole graph G. Since all described subroutines have a running time polynomial in
∆(G) and |V (G)|, the running time of the whole algorithm is bounded polynomial
in |V (G)| and |E(G)|.

Corollary 3.26 The parameter

max
{⌊

15
14

∆ +
12
14

⌋
,W
}

is an efficiently realizable upper bound of the chromatic index χ′.

3.6 Some Conclusions

As a consequence of Theorem 3.2, Goldberg’s conjecture holds for graphs of small
order or small maximum degree.

Theorem 3.27

(a) Every graph with ∆(G) ≤ 15 satisfies χ′(G) ≤ max{∆(G) + 1,W(G)}.
(b) Every graph with |V (G)| ≤ 15 satisfies χ′(G) ≤ max{∆(G) + 1,W(G)}.

Proof: If G is a graph with ∆(G) ≤ 15 then
⌊

15
14

∆(G) +
12
14

⌋
=
⌊

∆(G) + 1 +
∆(G)− 2

14

⌋
≤ ∆(G) + 1.

Hence, Corollary 3.3 implies that χ′(G) ≤ max{∆(G) + 1,W(G)}. This proves (a).
To prove (b), let G be a graph with |V (G)| ≤ 15. Suppose that χ′(G) ≥ ∆(G)+2.

We have to show that χ′(G) = W(G), that is, G is elementary with respect to ϕ.
By Proposition 1.1(a), G contains a critical subgraph H satisfying χ′(H) = χ′(G) ≥
∆(G) + 2 ≥ ∆(H) + 2. Let k = χ′(H) − 1 ≥ ∆(H) + 1. By Lemma 3.16(b), there
is a triple (T, e, ϕ) ∈ T B(H). Then T is a Tashkinov tree with respect to e and ϕ
satisfying |V (T)| = t(H) and h(T) = h(H).

If t(H) < 11 then, by Proposition 3.22, H is elementary, and we are done. So
consider the case that t(H) ≥ 11. By Corollary 3.7, V (T) is elementary and closed
with respect to ϕ, and (T, e, ϕ) ∈ Tk(G). If V (T) is also strongly closed with respect
to ϕ, then Theorem 1.4 implies that H is elementary, and we are done, too. So
consider the case that V (T) is not strongly closed with respect to ϕ. Then, by
Proposition 2.21(c), we have Γd(T, e, ϕ) 6= ∅ and, therefore, D = D(T, e, ϕ) 6= ∅.

89

Let u ∈ D(T, e, ϕ), and let Z = V (T) ∪ {u}. Then, by Proposition 3.9 and
Proposition 3.10, Z is elementary with respect to ϕ. Since ϕ̄(Z) 6= ∅ and, by Propo-
sition 2.21 (b), |Z| = |V (T)|+ 1 is even, this implies that there is a colour γ ∈ ϕ̄(Z)
and an edge f1 ∈ EH(Z, V (H)\Z) with ϕ(f1) = γ. Let u1 be the endvertex of f1

that belongs to V (H)\Z. Then (f1, u1) is a fan at Z with respect to ϕ and, by Theo-
rem 3.12, X1 = Z ∪{u1} is elementary with respect to ϕ. Since |V (T)| = t(H) ≥ 11,
we have |X1| ≥ 13. Since |V (H)| ≤ |V (G)| ≤ 15, this implies that |V (H)\X1| ≤ 2.

For every colour β /∈ ϕ̄(X1), since |X1| is odd, |EH(X1, V (H)\X1)∩Eβ(e, ϕ)| is
odd, too. Since |V (H)\X1| ≤ 2, this implies that |EH(X1, V (H)\X1) ∩Eβ(e, ϕ)| =
1. Consequently, if X1 is closed with respect to ϕ then X1 is also strongly closed
with respect to ϕ. From Theorem 1.4 it then follows that G is elementary, and
we are done. So consider the case that X1 is not closed with respect to ϕ. Then
there is a colour γ′ ∈ ϕ̄(X1) and, since |X1| is odd, there are two distinct edges
f2, f3 ∈ EH(X1, V (H)\X1) with ϕ(f2) = ϕ(f3) = γ′. For j = 2, 3, let uj be the
endvertex of fj that belongs to V (H) \X1. At least one of these two edges, say
f2, has an endvertex in Z. Hence, (f1, u1, f2, u2) is a fan at Z with respect to ϕ.
Hence, by Theorem 3.12, the set X2 = Z ∪ {u1, u2} is elementary with respect to
ϕ. Moreover, we have 15 = |X2 ∪ {u3}| ≤ |V (H)| ≤ |V (G)| ≤ 15 and, therefore,
V (H)\X2 = {u3}. Since |X2| is even, this implies that, for every colour α ∈ ϕ̄(X2),
there is an edge gα ∈ EH(X2, u3) satisfying ϕ(gα) = α, and hence, α ∈ ϕ(u3).
Consequently, V (H) = X2 ∪ {u3} is elementary with respect to ϕ. Then from
Theorem 1.4 we conclude that G is elementary. This completes the proof of (b).

Theorem 3.2 can also be used to improvement a result about the existence of
extreme graphs, i.e., graphs for which the chromatic index attains Vizing’s bound.
In [27],[30] it was shown that, for any positive ∆, µ, p satisfying

2p(µ− 1) + 2 ≤ ∆ ≤ 2pµ,

there exists an extreme graph G with ∆(G) = ∆ and µ(G) = µ. It is also proved in
[27],[30] that this characterization is complete provided that Goldberg’s conjecture
holds. That means, if Goldberg’s conjecture is true, then every graphG with ∆(G) =
∆, µ(G) = µ and

2pµ+ 1 ≤ ∆ ≤ 2(p+ 1)µ− (2p+ 1),

for an integer p ≥ 1, satisfies χ′(G) ≤ ∆ + µ − 1. In [27],[30] is it proved, without
needing Goldberg’s conjecture, that this holds for p ≤ 5. With Theorem 3.2 we now
can slightly improve this result.

Lemma 3.28 (Scheide [27] 2007) Let ∆, µ be positive integers, and let G be a
graph with ∆(G) = ∆ and µ(G) = µ such that

2pµ+ 1 ≤ ∆ ≤ 2(p+ 1)µ− (2p+ 1)

holds for some integer p ≥ 1. If G is critical and elementary, then χ′(G) ≤ ∆+µ−1.

90

Theorem 3.29 Let ∆, µ be positive integers, and let G be a graph with ∆(G) = ∆
and µ(G) = µ such that

2pµ+ 1 ≤ ∆ ≤ 2(p+ 1)µ− (2p+ 1)

holds for some integer p ≥ 1. If p ≤ 6 then χ′(G) ≤ ∆ + µ− 1.

Proof: Suppose, on the contrary, that χ′(G) ≥ ∆ + µ. By Vizing’s bound, this
implies that χ′(G) = ∆ + µ, that is, G is an extreme graph. Let H be a critical
subgraph of G satisfying χ′(H) = χ′(G) = ∆ + µ. Clearly, we have ∆(H) ≤ ∆
and µ(H) ≤ µ. Since, by Vizing’s bound, we also have χ′(H) ≤ ∆(H) + µ(H), this
implies that ∆(H) = ∆ and µ(H) = µ. Since 2pµ + 1 ≤ ∆ ≤ 2(p + 1)µ − (2p + 1)
and 1 ≤ p ≤ 6, we conclude that

µ ≥ ∆ + (2p+ 1)
2p+ 2

=
∆− 1
2p+ 2

+ 1 ≥ ∆− 1
14

+ 1 >
1
14

∆ +
12
14
.

Consequently, we have

χ′(H) = ∆ + µ >
15
14

∆ +
12
14
.

From Theorem 3.2 it then follows that H is an elementary graph. Since H is critical,
Lemma 3.28 then implies that χ′(H) ≤ ∆ + µ− 1, a contradiction.

4 Polynomial-Time Algorithms

Usually, a graph G can be described by its vertex set V , its edge set E, and its
incidence function i assigning to each edge a 2-subset of V . Instead of i(e) = {x, y} we
always wrote e ∈ EG(x, y). However, up to isomorphisms the graph G is completely
determined by its vertex set V and the function µG assigning to each vertex pair (x, y)
with x 6= y its multiplicity µG(x, y) = |EG(x, y)|. Since our graphs are undirected,
we need to know the multiplicity only for each 2-subset of V . For a set X, let
X(2) denote the set of all 2-subsets of X. A graph G = (V, µ) is then a pair
consisting of the vertex set V and the multiplicity function µ : V (2) → N. Then
the representation of a graph G has length bounded, from above as well as from
below, by polynomials in |V (G)| and logµ(G). So far, all considered edge colouring
algorithms had a running time polynomial in the number of edges and the number
of vertices of the input graph. Hence, these algorithms are not polynomial in the
length of the input. The running time of a real polynomial-time edge colouring
algorithm has also to be bounded, for an input graph G, by a polynomial in |V (G)|
and logµ(G). Using two concepts from Sanders and Steurer [25], we will develop an
scheme that allows us to transform all our former algorithms into polynomial-time
algorithms which achieve the same approximation guaranties. The first concept is
an elegant data storing during the algorithm such that the standard recolouring
operations have a running time that is polynomial only in the number of vertices,
provided that the size of the stored data is sufficiently small. The second concept is
a divide-and-conquer-strategy that produces a partial edge colouring of a graph G,
that uses not more than max{∆(G),W(G)} colours, needs sufficiently small storage

91

space, and leaves only a sufficiently small number of edges uncoloured. Then this
partial edge colouring is completed by simply colouring the remaining edges one by
one, using any of our kernel routines from the last chapters.

Let G = (V, µ) be a graph. A subgraph of G is then a graph H = (V ′, µ′) such
that V ′ ⊆ V and µ′(e) ≤ µ(e) for every e ∈ V ′(2). We say that the subgraph H
is obtained from G by deleting an edge e from EG(x, y) if V ′ = V , µ′({x, y}) =
µ({x, y})− 1, and µ′(f) = µ(f) for all f ∈ V (2)\{{x, y}}. In this case we write, as
usual, H = G−{e} or H = G−e. Note that e denotes an edge from EG(x, y) rather
than a 2-subset. However, we do not mean a specific edge just one edge joining x
and y in G. Hence it would be more natural to replace e by the 2-set e′ = {x, y},
and to say that H is obtained from G by deleting an edge from the 2-set e′, written
H = G− {e′} = G− {{x, y}}.

Since we do not distinguish between parallel edges, we consider a k-edge colour-
ing ϕ of G as a function that assigns to each 2-subset of V a subset of the colour set
{1, . . . , k} such that |ϕ(e)| = µ(e) for every e ∈ V (2) and ϕ(e) ∩ ϕ(e′) = ∅ whenever
e, e′ ∈ V (2) are distinct, but not disjoint.

Now let ϕ ∈ Ck(G) be an k-edge colouring of G. A colour class for a given
colour α ∈ {1, . . . , k} is then defined as the set Eα(ϕ) = {e ∈ V (2) | α ∈ ϕ(e)}.
An (α, β)-chain of G with respect to ϕ is a component of the subgraph Gα,β
consisting of the vertex set V , and having the multiplicity function µ′ defined by
µ′(e) = |ϕ(e)∩{α, β}| for every e ∈ V (2). Let P be an (α, β)-chain of G with respect
to ϕ, having the multiplicity function µP . Clearly, P is a path or a cycle, and if we
interchange the two colours on P , we get a new k-edge colouring ϕ′ of G satisfying

ϕ′(e) =

(ϕ(e)\{α}) ∪ {β} if µP (e) = 1 and ϕ(e) ∩ {α, β} = {α},
(ϕ(e)\{β}) ∪ {α} if µP (e) = 1 and ϕ(e) ∩ {α, β} = {β},
ϕ(e) otherwise.

For a vertex v of G, the set of colours present at v consists of all colours α ∈
{1, . . . , k} such that there is a 2-set e ∈ V (2) with v ∈ e and α ∈ ϕ(e). Clearly,
ϕ̄(v) = {1, . . . , k}\ϕ(v) is then the set of colours missing at v.

Let G = (V, µ) be a graph, let e be an edge of EG(x, y) (or let e = {x, y}), and
let ϕ ∈ Ck(G − {e}) be a colouring of the graph obtained from G by deleting an
edge from {x, y}. We can now easily adapt all concepts, like multi-fans, Kierstead
paths, or Tashkinov trees to the new graph model. Clearly, we may still think of a
Tashkinov tree T with respect to e and ϕ as sequence T = (y0, e1, y1, . . . , ep, yp) of
vertices y0, . . . , yp and edges e1, . . . , ep satisfying the conditions (T1) and (T2) from
Section 2.6. However, formally we have to replace the edges by 2-sets and hence, the
conditions (T1) and (T2) by the following two conditions.

(T1′) The vertices y0, . . . , yp are distinct, e1 = {y0, y1} = {x, y} and, for i = 1, . . . , p,
there exists 0 ≤ j < i such that ei = {yi, yj} and µ(ei) ≥ 1.

(T2′) For every ei with 2 ≤ i ≤ p, there is a vertex yh with 0 ≤ h < i such that
ϕ(ei) ∩ ϕ̄(yh) 6= ∅.

92

To obtain a better performance for our colouring algorithms it is not enough to
consider a graph with multiple edges as a pair consisting of a vertex set and a mul-
tiplicity function. This graph model, however, gives us the possibility to introduce
more efficient data structures.

4.1 Implementation Details

Let G = (V, µ) be a graph with |V | = n and ∆ = ∆(G). To obtain a k-edge colouring
of G, we start with the edgeless subgraph and the empty colouring, and extend the
colouring in several steps using any of our subroutines Ext. In each step, we have a
partial k-edge colouring of G, that means a k-edge colouring of a subgraph of G.
Then ϕ is a function from V (2) in the power set of {1, . . . , k} such that |ϕ(e)| ≤ µ(e)
for every e ∈ V (2) and ϕ(e) ∩ ϕ(e′) = ∅ for every e, e′ ∈ V (2) such that |e ∩ e′| = 1.
Clearly, ϕ may be considered as a k-edge colouring of the subgraph G′ = (V, µ′),
where µ′(e) = |ϕ(e)| for all e ∈ V (2).

Now consider a partial k-edge colouring ϕ of G. For each colour α ∈ {1, . . . , k},
we have the colour class Eα(ϕ) = {e ∈ V (2) | α ∈ ϕ(e)}. Using an idea of Sanders
and Steurer [25], we can contract consecutive colours with the same colour class to
colour intervals. If I is such a colour interval, then let EI(ϕ) = Eα(ϕ) for some
α ∈ I. For every colour interval I, we store the corresponding colour class EI(ϕ)
as a doubly-linked list, we call it the cc-list of I. Every element of a cc-list also
contains a pointer to the colour interval the cc-list belongs to. Since a colour class
corresponds to a matching of G, we have |EI(ϕ)| ≤ n

2 . Since the colour intervals are
pairwise disjoint, we can order them (in the natural way) and store them, along with
their cc-lists, as a sorted, doubly-linked list. Let ` be the number of colour intervals.
Then the space needed to store the partial edge colouring ϕ of G is O(n · `).

Note that the cc-lists of the colour intervals correspond to the same-colour lists
described in Section 2.2. Only that we now work with 2-subsets of vertices instead of
edges, and that such a list is stored for every colour interval instead of every colour.
The graph structure itself is stored by adjacency lists that contain, for every vertex,
its neighbours along with the corresponding multiplicities. Every 2-subset e = {x, y}
of vertices with µ(x, y) ≥ 1 can now appear in the cc-list of several colour intervals.
For every such 2-set e, we store a list of pointers to the corresponding elements in
the cc-lists of these colour intervals. It is similar to the representation described in
Section 2.2, only that in this former representation an edge appeared only in one
same colour list.

Since all colours of a colour interval have the same colour class, the algorithms will
usually work on the colour intervals, not on special colours. Such a colour interval will
always be represented as a pointer to an element of the list of all colour intervals.
This way, the algorithm has direct access to the colour class of a colour interval
without having to scan the list of colour intervals for a particular interval. If an
algorithm has to handle a set of colours (e.g., missing colours, free colours, defective
colours), this set will always be represented as an ordered list of colour intervals. Of
course, since we already have an ordered list of all colour intervals, we avoid copying
them and store the set of colours simply as a list of pointers to elements of the
list of all colour intervals, maintaining its ordering. If an algorithm has to perform a

93

recolouring operation, for example colouring an edge or performing a Kempe change,
then special colours from given intervals are needed. In this case the algorithm can
simply choose an arbitrary colour from a given colour interval. Clearly, to perform
such a simple recolouring operation, the involved colour intervals usually have to
be split, because such an operation changes the colour class of only one colour per
colour interval. Hence, it would be clever to choose the maximum or the minimum
colour of the interval. This way, the interval is split into at most two parts instead of
at most three. However, it is always split into a constant number of parts, so it does
not affect the time and space complexities of such an algorithmic step. Of course,
an algorithm can significantly increase the number of colour intervals, affecting the
time complexities of subsequent steps.

When formulating algorithms, we will still use colours instead of colour intervals.
Otherwise we would have to change much of our notation. For example, an (α, β)-
chain Px(α, β, ϕ) would have to be a (I, J)-chain Px(I, J, ϕ) for two colour intervals
I and J . Clearly, this is not of much benefit, so we simply use the old notation. Just
keep in mind, what this means for the algorithm and its time complexity.

Our aim is to construct an edge colouring of G in such a way, that in each step the
number of colour intervals remains bounded by a polynomial in n = |V (G)|. Then
the space of the colouring representation is polynomial in the length of the graph
representation, a simple requirement for a polynomial-time edge colouring algorithm.

Before we construct such an algorithm, we first need to analyse how the new
colouring representation affects the time complexity of our colouring operations for
a partial k-edge colouring ϕ of G that is contracted to ` colour intervals. Since the
representation resembles the one described in Section 2.2, we can basically perform
the operations in a similar way, using colour intervals and cc-lists instead of particular
colours and same colour lists.

Apart from determining the time complexity of an operation, we also have to
analyse how this operation affects the number of colour intervals. This number
has to remain sufficiently small, in order to get a polynomial-time edge colouring
algorithm in the end.

Since colour intervals are represented as pointers to elements of the sorted list of
all colour intervals, we have direct access to the colour class of a given colour interval.
We need not to find an interval by scanning the whole interval list. So there is no
disadvantage compared to the old representation, where colours was only integers.

To determine the colour set ϕ(e) for a given 2-set e of vertices, we need time O(`).
This is because we stored pointers to the elements of the cc-lists corresponding to
e, and these elements are linked to colour interval of their cc-list. Keep in mind
that we handle the set ϕ(e) always as an ordered list of pointers to colour intervals.
To maintain the ordering of the list that represents the set ϕ(e), we first mark the
intervals in our colour interval list, and then scan the whole list (which is ordered) to
find the marked intervals. Clearly, we unmark them along the way. To determine the
colour set ϕ(x) for a given vertex x, we also need time O(`). We simply determine,
for all neighbours y of x, the set ϕ({x, y}). Since, for different neighbours y of x,
the colour sets ϕ({x, y}) are disjoint, every colour interval appears in at most one
of the lists of such a 2-set {x, y} and, therefore, we have to handle at most ` colour

94

intervals. This gives the mentioned time complexity. Note, that we can maintain the
ordering of the list representing ϕ(x) the same way as described above. Clearly, we
can also determine the set ϕ̄(x) in time O(`) by constructing ϕ(x) and comparing to
the whole colour interval list. Consequently, for two vertices x, y, we can determine
the colour set ϕ̄(x) ∩ ϕ̄(y) in time O(`). Note that, for all these operations, the
ordering of the lists is essential to obtain these time complexities. However, using
unordered representations, they still would need only polynomial time.

Another important operation is, for two distinct colour intervals I, J containing
colours α respectively β, to find an (α, β)-chain P containing a given vertex x. We
can find P in the following way. First we construct the graph H = Gα,β . This graph
is defined by the two colour classes EI(ϕ) and EJ(ϕ). To construct H, we start with
the edgeless graph containing the n vertices of G, and then, for every 2-set {u, v}
in one of the cc-lists of I and J , we add to H an edge between u and v. Note that
we only need a standard adjacency list to represent H. Since all components of H
are paths or cycles, H contains at most n edges and can be constructed in time
O(n). For the same reason, we can find P in time O(n) by simply starting at x and
following the edges of H. Clearly, we need time O(n) in total to construct P .

If |ϕ(e)| = µ(e) for every e ∈ V (2), then all edges ofG are coloured and ϕ ∈ Ck(G).
Otherwise, there is a 2-subset e = {x, y} such that |ϕ(e)| < µ(e). This means that
at least one edge of e (or of EG(x, y)) is uncoloured. Colouring one more edge of
e = {x, y} with a colour from a given colour interval I, or with the new colour
α = k + 1, needs time O(n) and increases the number of colour intervals by only a
constant. This can be done in the following way. If we use a new colour α = k + 1
then I ′ = {α} forms a new interval, and the cc-list of I ′ only contains the 2-set e.
Note that, for e, we also have to store a list of pointers to the cc-list elements of
the corresponding colour intervals. This list can easily be updated by adding the
pointer to the element e in the cc-list of I ′. If we use a colour from a colour interval
I then we choose an arbitrary α ∈ I, and split I into at most three intervals, one
containing the colours smaller than α, one containing the colours higher than α, and
one interval I ′ = {α}. Clearly, we can choose α as the minimum or maximum of I,
and then we have to split I into at most two parts, but we will consider the general
case. Further, note that, in order to maintain an ordered colour interval list, we have
to include the new intervals at the right position. Since we use a doubly-linked list,
we can include them directly before or after the position of I in constant time. We
also have to make copies of the cc-list of I for the new intervals. This includes linking
the copied cc-list elements to the new intervals they now belong to. Since the cc-list
contains at most n

2 elements, this is done in time O(n). Afterwards we add the 2-set
e to the cc-list of I ′. Note that, for all 2-sets in the cc-list of the former interval I,
we have to update the list of pointers to the cc-lists elements of the corresponding
colour intervals. Since the interval I just became one of the new intervals, the old
pointers are still valid. For each 2-set in the cc-list of the former interval I, we just
have to add pointers to the copied cc-list elements in the cc-lists of the new intervals.
Clearly, this also needs time O(n). Additionally, for the 2-set e, we add a similar
pointer to the colour interval I ′. Then we are done. Consequently, the time needed
for the whole colouring operation is O(n). Moreover, the number of colour intervals
is increased by only a constant.

95

Performing a Kempe change of a (α, β)-chain P , where α, β belong to the colour
intervals I respectively J , also needs time O(n), and increases the number of colour
intervals by only a constant. It can be done in the following way. If P consists only
of a multiple edge then we have nothing to do. Otherwise I and J are distinct. First
we need to split I and J into at most three intervals, respectively. We do this in the
same way as described above, this includes copying the cc-list and, for all 2-sets in
the cc-list, updating the list of pointers to the cc-list elements. As already described,
this needs time O(n). Now we have to interchange some elements between the two
cc-lists of I and J . We can do this in the following way. First we build the graph
H = Gα,β in the same way as we did for finding the chain P . We even may still
have this graph from this step. If not, we need time O(n) to do it. In H, we then
mark the edges of the component corresponding to P in time O(n). These edges,
respectively the 2-sets in G, have to be recoloured. For every element e in the cc-lists
of I and J , we can decide in constant time whether it is marked in H or not. If it is
marked, we move this element to the cc-list of the other colour interval, and change
the pointer from the former interval to the new one. This also needs only constant
time. Note that we have to move this element instead of copying it and deleting the
original, otherwise we would have to find and update the pointer from the 2-set e to
the corresponding element e in the cc-list, and this could not be done in constant
time. Since any cc-list contains at most n

2 elements, this whole interchanging is done
in time O(n). That gives a total time of O(n) to perform a Kempe change. Moreover,
the number of colour intervals is increased by only a constant.

Note that all these time complexities correspond to the time complexities of the
same operations described in Section 2.2. The time for finding (α, β)-chains is in
both cases linear in the number of vertices. Only that in the new system two colour
intervals are given instead of the two colours α and β. In the new system we can
simply choose these colours from the given intervals. Constructing and comparing
colour sets like ϕ̄(x) needed time linear in the number k of colours and, hence,
linear in the maximum degree ∆(G). Now we have a time linear in the number `
of colour intervals. We have this correspondence between ∆(G) and ` in general. If
an algorithm using the old data structures has to scan all edges incident to a vertex
x, then the corresponding algorithm using the new data structures has to scan all
neighbours of x and, for every neighbour, the list of pointers to the cc-lists elements of
the corresponding colour intervals. Since, for different neighbours y of x, the colour
sets ϕ({x, y}) are disjoint, every colour interval appears in at most one of these
lists and, therefore, there are at most ` colour intervals to handle. Consequently,
for any graph operation that works only in a neighbourhood of a vertex, a time
complexity polynomial in |V (G)| and ∆(G) when using the old data structures of
Section 2.2 can be implemented with the new data structures of this chapter with a
time complexity polynomial in |V (G)| and the resulting number ` of colour intervals.
Clearly, the same holds for operations that can be divided into a polynomial (in
|V (G)|) number of such operations. Since the old and the new data structures and
techniques correspond in such a strong way, we can even expect that in many cases
the time complexities of the two approaches are nearly exactly the same, only that
∆(G) and ` are interchanged.

Let Ext be some algorithm that extends a given partial edge colouring of a graph

96

G to an additional uncoloured edge. Further, suppose that Ext uses the old data
structures of Section 2.2, and that Ext only uses simple recolouring techniques such
as Kempe changes. Clearly, this algorithm Ext can transformed into a version Ext′

that uses the new data structures an techniques from this chapter. If the running
time of Ext is polynomially bounded in |V (G)| and ∆(G), then the running time of
Ext′ is polynomially bounded in |V (G)| and in the number of colour intervals ` the
resulting colouring is contracted to. Moreover, in many cases we can even expect
that Ext′ has basically the same running time as Ext, only that ∆(G) is replaced
by `.

All the algorithms of Chapter 2 or Chapter 3 that extend a given colouring to
an additional edge, can be transformed into similar algorithms using the new data
structures. Then these new versions have running times bounded by a polynomial
in |V (G)| and `. Moreover, the number of recolouring operations (usually Kempe
changes) in all these algorithms, is bounded by a polynomial in |V (G)|. Since a
Kempe change increases the number of colour intervals by only a constant, this
implies that these algorithms increase the number of colour intervals by at most a
polynomial in |V (G)|. We will formalize this and define a class of algorithms that
will be useful.

For an integer r ∈ N, let CEr be the class of algorithms Alg that satisfy the
following conditions:

(C1) The input ofAlg is a tuple (G, x, y, k, ϕ), where G = (V, µ) is a graph, x, y ∈ V
are two adjacent vertices, and ϕ ∈ Ck(G − {x, y}) is a k-edge colouring, that
is, |ϕ({x, y})| = µ(x, y)− 1 and |ϕ(e)| = µ(e) for every e ∈ V (2)\{{x, y}}.

(C2) If k ≥ ∆(G) + r then Alg returns a tuple (k′, ϕ′), where k′ ∈ {k, k + 1} and
ϕ′ ∈ Ck′(G).

(C3) The running time of Alg is bounded by a polynomial in |V | and `′, where `′ is
the number of colour intervals ϕ′ is contracted to. Moreover, if ϕ is contracted
to ` colour intervals then `′ − ` is bounded by a polynomial in |V |.

Let VizExt′, KierExt′, TashExt1′ respectively TashExt2′ be the ver-
sions of VizExt, KierExt, TashExt1 respectively TashExt2 using our new data
structures and techniques. Evidently, we then have

VizExt′ ∈ CE0 (4.1)

KierExt′,TashExt1′,TashExt2′ ∈ CE1 (4.2)

In Chapter 3 we, bit by bit, described another kernel algorithm that extends a
partial edge colouring by additionally colouring one edge. Although this algorithm is
somewhat more complex, constructing elementary and strongly closed sets in many
different ways, it mainly works on Tashkinov trees and fans, and uses Kempe changes
as recolouring operations. Hence, this algorithm also has a polynomial-time imple-
mentation Tashkinov3′ using our new data structures. Therefore, we have

Tashkinov3′ ∈ CE1 (4.3)

97

4.2 Divide and Conquer

To get a polynomial-time edge colouring algorithm, we cannot simply colour all the
edges one by one, since the number of edges is the critical parameter which may be
too large. An obvious idea is to use a divide-and-conquer strategy to split the graph
into halves, colour one half, and double the colouring. Clearly, it is not this easy. For
one thing, a graph usually cannot split exactly into halves. If some edge multiplicities
are odd, we have to additionally colour the remaining edges. A much greater problem
is that the bounds, we want to achieve with our colouring algorithm, usually are not
homogeneous in the sense that the parameter value for an edge-doubled graph is the
double of the parameter value for the original graph. A way out of this situation
is given by an idea from Sanders and Steurer [25]. We first compute a partial edge
colouring with the divide-and-conquer strategy, and the colour the remaining edges
one by one. Note that this restricts the number of uncoloured edges in the partial
colouring that we compute in the first step. On one hand we can leave only so many
edges uncoloured, that we can colour them one by one in polynomial time. On the
other hand, to ensure that the divide-and-conquer algorithm works properly, we have
to leave at least so many edges uncoloured, that the maximal number of used colours
is homogeneous with respect to doubling the edges of a graph.

Let G = (V, µ) be graph, and let G′ = (V, µ′) be the graph satisfying µ′(e) =
2µ(e) for all e ∈ V (2). What graph parameters ρ satisfy ρ(G′) = 2ρ(G)? Clearly,
this equality holds for ρ = ∆, the maximum degree. It also holds for ρ = W, the
density. That W(G′) ≥ 2W(G) simply follows from the fact that every subgraph H
of G corresponds to a subgraph H ′ of G′ that results from H by doubling all edges.
Moreover, every subgraph H ′′ of G′ is also a subgraph of another subgraph H ′ of G′

with only even edge multiplicities. Since H ′ corresponds to a subgraph H of G, that
results from H ′ by dividing all edges multiplicities by 2, we obtain W(G′) ≤ 2W(G).

The aim is to use a divide-and-conquer strategy to compute, for a graph G, a
partial edge colouring that uses not more than max{∆(G),W(G)} colours and leaves
only few edges (bounded by a polynomial in the number of vertices) uncoloured. The
remaining edges can be coloured one by one. Since both parameters ∆ and W are
lower bounds of the chromatic index χ′, the partial edge colouring uses only as many
colours as we need at least to colour the whole graph G. This gives a wide choice
of colouring algorithms for the remaining edges to achieve several approximation
guarantees.

To construct the partial edge colouring, we also need some kernel algorithm that
extends an edge colouring by colouring an additional edge, which was uncoloured
before. At this point we do not give a special kernel, but we define some conditions
for such an algorithm, that will be sufficient to achieve our goal. For a function d :
N→ N, let CE∗d be the class of algorithms Alg that satisfy the following conditions:

(C1∗) The input of Alg is a tuple (G, x, y, k, ϕ), where G = (V, µ) is a graph, x, y ∈
V are two adjacent vertices, and ϕ ∈ Ck(G−{x, y}) is a k-edge colouring, that
is, |ϕ({x, y})| = µ(x, y)− 1 and |ϕ(e)| = µ(e) for every e ∈ V (2)\{{x, y}}.

(C2∗) If k ≥ ∆(G) + d(|V |) then Alg returns a tuple (k′, ϕ′), where k′ ∈ {k, k + 1}
and ϕ′ ∈ Ck′(G). Moreover, if k′ = k + 1 then W(G) = k′ = k + 1.

98

(C3∗) If k ≥ ∆(G)+d(|V |) then the running time ofAlg is bounded by a polynomial
in |V | and `′, where `′ is the number of colour intervals ϕ′ is contracted to.
Moreover, if ϕ is contracted to ` colour intervals then `′ − ` is bounded by a
polynomial in |V |.

Let d : N → N be a function that is polynomially bounded, and let Ext ∈ CE∗d.
Then we can construct the following algorithm PartialCol[Ext, d] that computes
a partial edge colouring of a given graph G = (V, µ), that is, a tuple (G′, k, ϕ) such
that G′ = (V, µ′) is a subgraph of G, and ϕ ∈ Ck(G′) is a k-edge colouring of G′.

PartialCol[Ext, d](G = (V, µ)):

1) ∆← ∆(G), D ← d(|V |)
If ∆ ≤ D then Return ((V, ∅), 0, ∅).

2) µ′ ← µ, G′ ← (V, µ′).

3) While ∆(G′) > ∆−D do
3a) Find x, y ∈ V such that dG′(x) > ∆−D and µ′({x, y}) ≥ 1.
3b) µ′({x, y})← max{0, µ′({x, y})− dG′(x) + ∆−D}.

G′ ← (V, µ′).

4) ∀e ∈ V (2) : µ0(e)←
⌊
µ′(e)

2

⌋
.

5) ((V, µ′0), k, ϕ)← PartialCol[Ext, d]((V, µ0)).

6) ∀e ∈ V (2) : µ′1(e)← 2µ′0(e).

7) k ← 2k.
I ← [2a− 1, 2b] for every colour interval I = [a, b] of ϕ.

8) If k < ∆(G) then k ← ∆(G).

9) While µ′1 6= µ′ do
9a) Let x, y ∈ V such that µ′1({x, y}) < µ′({x, y}).
9b) µ′1({x, y})← µ′1({x, y}) + 1.
9c) (k, ϕ)← Ext((V, µ′1), x, y, k, ϕ).

10) Return (G′, k, ϕ).

Proposition 4.1 Let d : N → N be a function that is polynomially bounded, and
let Ext ∈ CE∗d. Furthermore, let G = (V, µ) be a graph. Then, on the input G,
the algorithm PartialCol[Ext, d] returns a tuple (G′, k, ϕ) satisfying the following
conditions:

(a) G′ = (V ′, µ′) is a subgraph of G, that is, V ′ = V and µ′(e) ≤ µ(e) for all
e ∈ V (2).

(b) |E(G′)| ≥ |E(G)| − d(|V |)|V |.
(c) ∆(G′) = max{0,∆(G)− d(|V |)}.
(d) ϕ ∈ Ck(G′).

99

(e) k ≤ max{∆(G),W(G)}.
(f) If ϕ is contracted to ` colour intervals, then ` ≤ p(|V |) · logµ(G), where p is a

polynomial.

(g) On the input G = (V, µ), the algorithm PartialCol[Ext, d] has a running
time bounded by a polynomial in |V | and logµ(G).

Proof: First we proof (a)-(e), that is, the correctness of the algorithm. This proof
is based on induction over the maximum degree ∆(G). If ∆(G) ≤ d(|V |) then, in
step 1, the algorithm returns the edgeless graph on n = |V | vertices, and the empty
colouring. Then the statements (a)-(e) are clearly true. This settles the basic case.

For the inductive step, let ∆(G) > d(|V |) = D. In step 2 the graph G′ is
initialized with G. The loop starting in step 3 deletes edges of G′ = (V, µ′) as
long as ∆(G′) > ∆ − D. The algorithm chooses only 2-sets {x, y} with dG′(x) >
∆ − D and µ′({x, y}) ≥ 1 (step 3a), and then deletes at least one and at most
min{dG′(x) − ∆ + D,µ′({x, y})} edges from EG′(x, y) (step 3b). Hence, the loop
ends after at most D|V | iterations, and then we have ∆(G′) = ∆ − D > 0 and
|E(G′)| ≥ |E(G)| −D|V |. Further, note that the graph G′ does not change during
the rest of the algorithm. Consequently, if the algorithm terminates, this proves
(a)-(c).

Step 4 computes the graph G0 = (V, µ0) by dividing the edge multiplicities of G′

into halves. Then step 5 recursively calls the algorithm PartialCol[Ext, d] with
the input G0. Clearly, we have ∆(G0) ≤ ⌊1

2∆(G′)
⌋ ≤ ⌊1

2∆(G)
⌋
. Since ∆(G) ≥

D+1 ≥ 1, this implies that ∆(G0) < ∆(G) and, therefore, we can use the induction.
Consequently, after step 5, the vertex set V is the same as before, G′0 = (V, µ′0)
is a subgraph of G0, the graph G′0 has at least |E(G0)| − D|V | edges, ∆(G′0) =
max{0,∆(G0)−D}, ϕ ∈ Ck(G′0), k ≤ max{∆(G0),W(G0)}.

In step 6 the graph G′1 = (V, µ′1) is computed by doubling the edges of G′0.
Clearly, G′1 is a subgraph of G′. Moreover, we have ∆(G′1) = 2∆(G′0) and W(G′1) =
2W(G′0). Then in step 7, the value of k and the length of the colour intervals of ϕ
is doubled. Hence, after this step, ϕ is a k-edge colouring of G′1. Moreover, we have
k ≤ 2 max{∆(G0),W(G0)} ≤ max{∆(G′),W(G′)}. If k ≤ ∆(G) then, in the next
step 8, k is increased to ∆(G). Consequently, since G′1 is a subgraph of G′, we then
have ∆(G) ≤ k ≤ max{∆(G),W(G′)}. Moreover, since k is not decreased, we still
have ϕ ∈ Ck(G′1).

The loop starting in step 9 increases the graph G′1 = (V, µ′1) and updates the
colouring ϕ ∈ Ck(G′1). The loop ends when G′1 = G′. In every sweep of the loop,
an edge is added to G′1, such that G′1 remains a subgraph of G′ (step 9a-9b). Then
in step 9c the colouring ϕ is extended to this edge, using the algorithm Ext. Since
Ext ∈ CE∗d and k ≥ ∆(G) = ∆(G′)+D ≥ ∆(G′1)+D, the value of k is increased only
if k < W(G′1) ≤ W(G′). Since we had k ≤ max{∆(G),W(G′)} before the loop, this
implies that, after step 9c, we always have k ≤ max{∆(G),W(G′)}. Since every sweep
of the loop increases G′1 by one edge, at some point we have G′1 = G′, and the loop
ends. Then we have ϕ ∈ Ck(G′) where k ≤ max{∆(G),W(G′)} ≤ max{∆(G),W(G)}.
This proves (d)-(e).

100

Before we prove (f) and (g), we first analyse the recursion depth of the algorithm.
If ∆(G) ≤ d(|V |) then there is no recursion. Otherwise, there is one recursive call
of PartialCol[Ext, d] with the input graph G0. Since ∆(G0) ≤ 1

2∆(G), we have
a recursion depth of at most log2(∆(G)) ≤ log2(|V |µ(G)).

Besides the recursion step, the number of colour intervals of the colouring ϕ is
increased only in step 9c, inside the loop starting in step 9. From Ext ∈ CE∗d we
then conclude that the step itself increases the number of colour intervals by at most
a polynomial in |V |. We have to count, how often this step is repeated. The loop
runs exactly |E(G′)| − 2|E(G′0)| times. Since we have |E(G′0)| ≥ |E(G0)| − D|V |,
the loop runs at most |E(G′)| − 2|E(G0)| + 2D|V | times. Moreover, we also have
µ′(e) − 2µ0(e) ≤ 1 for every e ∈ V (2) and, therefore, |E(G′)| − 2|E(G0)| ≤ |V |2.
Then it follows that the loop runs at most |V |2 +2D|V | times. Since D = d(|V |) and
d is polynomially bounded, it follows the number of executing step 9c is bounded
by a polynomial in |V |. Consequently, besides the recursion, the number of colour
intervals is increased by at most p′(|V |), where p′ is a polynomial. Since the recursion
depth is at most log2(|V |µ(G)), we conclude that, at the end of the algorithm, the
number ` of colour intervals is at most p(|V |) · logµ(G), where p is a polynomial.
This proves (f).

Since the number of colour intervals is never decreased during the algorithm, ` is
an upper bound of the number of colour intervals at earlier points in the algorithm.
When estimating the time complexity of the algorithm, we can always use this highest
value ` instead of the possibly smaller number in the actual analysed step. Clearly,
the steps 1-2, 3a, 3a-3b, 4, 6, 8, 9, and 9a-9b need only polynomial time in |V |. The
loop starting in step 3 runs at most D|V | = |V |d(|V |) times. Since d is polynomially
bounded, this implies that the whole loop only needs polynomial time in |V |. Step 7
clearly needs time O(`) which is bounded by a polynomial in |V | and logµ(G). Since
Ext ∈ CE∗d, step 9c needs time bounded by a polynomial in |V | and ` and hence, by
a polynomial in |V | and logµ(G). The loop starting in step 9 is repeated at most
|V |2 + 2D|V | = |V |2 + 2|V |d(|V |). Since d is polynomially bounded, this implies
that the whole loop only needs polynomial time in |V | and logµ(G). Consequently,
besides the recursion step, the algorithm has a running time bounded by a polynomial
in |V | and logµ(G). Since the recursion depth is at most log2(|V |µ(G)), this proves
(g).

This result shows, that we can compute a partial edge colouring with our desired
properties, as long as we find a kernel algorithm Ext′ ∈ CE∗d for some function
d : N→ N that is polynomially bounded. As we will see, the algorithm TashExt2,
or rather the version TashExt2′ that uses our new data structures, will suffice.
Although the algorithm TashExt2′ basically works in the same way as TashExt2,
we will give it here using the new notation. Keep in mind that even in this new
formulation we use several colours, but the algorithm uses only the colour intervals
and chooses a colour if necessary, see Section 4.1 for details.

101

TashExt2′(G = (V, µ), x, y, k, ϕ):

1) p← 1, ep ← {x, y}, yp ← y, y0 ← x, T ← (y0, ep, yp).

2) If ϕ̄(V (Typ−1)) ∩ ϕ̄(yp) 6= ∅ then
2a) Compute ϕ′ ∈ Ck(G) as in Theorem 2.20.
2b) Return (k, ϕ′).

3) If ∃xp+1 ∈ V (T), yp+1 ∈ V (G) \ V (T), ep+1 = {xp+1, yp+1} : ϕ(ep+1) ∩
ϕ(E(T)) 6= ∅ then
3a) T ← (T, ep+1, yp+1), p← p+ 1.
3b) Goto 2.

4) If ∃xp+1 ∈ V (T), yp+1 ∈ V (G) \ V (T), ep+1 = {xp+1, yp+1} : ϕ(ep+1) ∩
(ϕ̄(V (T))\ϕ(E(T))) 6= ∅ then
4a) T ← (T, ep+1, yp+1), p← p+ 1.
4b) Goto 2.

5) If Γd(T, e, ϕ) = ∅ then
5a) ϕ′ ← ϕ, ϕ′(e)← ϕ′(e) ∪ {k + 1}.
5b) Return (k + 1, ϕ′).

6) Choose δ ∈ Γd(T, e, ϕ) and γ ∈ Γf (T, e, ϕ).
Let u ∈ V (T) with γ ∈ ϕ̄(u) and P ← Pu(γ, δ, ϕ).

7) If Eδ(T, e, ϕ) * E(P) then
7a) Compute ϕ′ = ϕ/P and set ϕ← ϕ′.
7b) Goto 3.

8) Set v0, v1, v2 according to Theorem 2.23(a).

9) If ϕ̄(v0) ∩ Γf (T, e, ϕ) 6= ∅ then
9a) Compute ϕ′ ∈ Ck(G− e) as in Theorem 2.23(b), and set ϕ← ϕ′.
9b) Goto 3.

10) If V (T) ∪ {v1, v2} is not elementary with respect to ϕ then
10a) Compute ϕ′ ∈ Ck(G− e) as in Theorem 2.23(c), and set ϕ← ϕ′.
10b) Goto 3.

11) ϕ′ ← ϕ, ϕ′(e)← k + 1.

12) Return (k + 1, ϕ′).

Proposition 4.2 Let d : N→ N a function defined by d(n) = max{0, ⌊n−1
2

⌋}. Then
TashExt2′ ∈ CE∗d.

Proof: Since TashExt2′ ∈ CE1, condition (C1∗) is fulfilled. Let (G, x, y, k, ϕ) an
input of TashExt2′, where G = (V, µ) and k ≥ ∆(G) + d(|V |). Since G contains an
edge, we have |V | ≥ 2.

If |V | = 2 then G consists only of a multiple edge. Obviously, we then have
ϕ̄(x) = ϕ̄(y). Moreover, from k ≥ ∆ is it follows that ϕ̄(x) 6= ∅. Consequently, the

102

condition of step 2 in TashExt2′ is fulfilled, and TashExt2′ computes a colouring
ϕ′ ∈ Ck(G). Consequently, the conditions (C2∗) and (C3∗) are fulfilled in this case.

If |V | ≥ 3 then d(|V |) ≥ 1. Then it follows from TashExt2′ ∈ CE1 that
condition (C3∗) is fulfilled in this case. Since TashExt2′ works in the same way
as TashExt2, Theorem 2.25 applies to TashExt2′. Consequently, TashExt2′

computes a colouring ϕ′ ∈ Ck′(G) satisfying k′ ∈ {k, k + 1}. Moreover, if k′ = k + 1
then W(G) = k + 1 or, as a consequence of (2.16), |V | ≥ 2(k − ∆(G)) + 3. Since
2(k − ∆(G)) + 3 ≥ 2d(|V |) + 3 = 2

⌊
1
2(|V | − 1)

⌋
+ 3 ≥ |V | + 1, we conclude that

W(G) = k+1 if k′ = k+1. Hence, condition (C2∗) is also fulfilled in the case |V | ≥ 3.
This completes the proof.

4.3 A Polynomial Time Colouring Scheme

Let d : N → N be a function that is polynomially bounded, and let Ext ∈ CE∗d.
Furthermore, let r ∈ N, and let Ext′ ∈ CEr. Then we can formulate the following
algorithm PolyCol[Ext, d,Ext′, r].

PolyCol[Ext, d,Ext′, r](G = (V, µ)):

1) ((V, µ′), k, ϕ)← PartialCol[Ext, d](G).

2) If k < ∆(G) + r then k ← ∆(G) + r.

3) While µ′ 6= µ do
3a) Let x, y ∈ V such that µ′({x, y}) < µ({x, y}).
3b) µ′({x, y})← µ′({x, y}) + 1.
3c) (k, ϕ)← Ext′((V, µ′), x, y, k, ϕ).

4) Return (k, ϕ).

Theorem 4.3 Let d : N→ N be a function that is polynomially bounded, let Ext ∈
CE∗d, let r ∈ N, and let Ext′ ∈ CEr. Furthermore, let G = (V, µ) be a graph. Then
the algorithm PolyCol[Ext, d,Ext′, r] is a polynomial-time algorithm that, on the
input G, returns a tuple (k, ϕ) such that ϕ ∈ Ck(G).

Proof: The algorithm PolyCol[Ext, d,Ext′, r] calls PartialCol[Ext, d](G) in
step 1. Since the function d is polynomially bounded and Ext ∈ CE∗d, it follows
from Proposition 4.1 that, after step 1, the graph G′ = (V, µ′) is a subgraph of G,
k ≤ max{∆(G),W(G)}, ϕ is a k-edge colouring of G′ (or a partial k-edge colouring
of G), and at most d(|V |)|V | edges of G are uncoloured. Moreover, the colouring
ϕ is contracted to at most p(|V |) logµ(G) colour intervals, and the running time of
step 1 is bounded by a polynomial in |V | and logµ(G).

Step 2 simply increases the value of k if necessary. This is only to ensure that
the inputs of Ext′ in the later steps are valid. The loop starting in 3 extends the
colouring ϕ step by step to an edge colouring of the whole graph G. In every sweep,
the graph G′ = (V, µ′) is extended by an edge of G that is uncoloured (steps 3a and
3b), and then this edge is coloured using the algorithm Ext′ (step 3c). Since the

103

value of k is at least ∆(G) + r before the loop, and it is never decreased during the
loop, it follows from Ext′ ∈ CEr that the input of Ext′ is always valid, and that step
3c works correctly, increases the number of colour intervals by just a number that is
polynomially bounded in |V |, and needs only time polynomially bounded in |V | and
in the resulting number of colour intervals. Consequently, since the loop ends after
at most d(|V |)|V | iterations, in step 4 ϕ is a k-edge colouring of G, and the number
` of colour intervals is bounded by a polynomial in |V | and logµ(G). Moreover, the
running time of the whole loop is bounded by a polynomial in |V | and `, and hence by
a polynomial in |V | and logµ(G). Consequently, PolyCol[Ext, d,Ext′, r] works
correctly and is a polynomial-time algorithm. This completes the proof.

This result shows how a polynomial-time edge colouring algorithm can be con-
structed, and still leaving a wide choice for the subroutines Ext and Ext′. We
already have suitable candidates at hand. Since we have (4.1), (4.2), and (4.3),
Proposition 4.2 and Theorem 4.3 imply the following result.

Corollary 4.4 Let d : N → N a function defined by d(n) = max{0, ⌊n−1
2

⌋}. Then
the following algorithms are polynomial-time edge colouring algorithms:

(a) PolyCol[TashExt2′, d,VizExt′, 0]

(b) PolyCol[TashExt2′, d,KierExt′, 1]

(c) PolyCol[TashExt2′, d,TashExt1′, 1]

(d) PolyCol[TashExt2′, d,TashExt2′, 1]

(e) PolyCol[TashExt2′, d,Tashkinov3′, 1]

From Proposition 4.1(e) it follows that, for any suitable algorithms Ext and
Ext′, and for any input graph G, the first part of PolyCol[Ext, d,Ext′, r] pro-
duces a partial edge colouring of G using at most max{∆(G),W(G)} colours. Since
this is a lower bound for the chromatic index, PolyCol[Ext, d,Ext′, r] has the
same approximation guarantees as a an algorithm that, for the input G, starts
with ∆(G) + r colours and uses Ext′ to colour G edge by edge. For example, if
d(n) = max{0, ⌊n−1

2

⌋} then PolyCol[TashExt2′, d,VizExt′, 0] uses, on the input
G, not more than ∆(G) + µ(G) or 3

2∆(G) colours. Further, Theorem 2.26, Corol-
lary 2.28 and Theorem 2.29 imply that PolyCol[TashExt2′, d,TashExt2′, 1] uses
not more than τ(G), and, for every ε > 0, not more than τε(G) colours. Moreover,
from Corollary 3.26, or rather the algorithmic versions of the preceding results of
Chapter 3, it follows that the algorithm PolyCol[TashExt2′, d,Tashkinov3′, 1]
uses at most 15/14∆(G) + 12/14 colours. In general, one can expect that for all
colouring algorithms, that use an arbitrary edge order and colour the graph edge
by edge, there exists a polynomial-time edge colouring algorithm that has the same
approximation guarantees.

Corollary 4.5 The graph parameters ∆ + µ, 3
2∆, τ , χ′f +

√
1
2χ
′
f , τε (for every

ε > 0), and 15
14∆ + 12

14 are upper bounds for χ′ that can be realized by a polynomial-
time edge colouring algorithm.

104

References

[1] L. D. Andersen, On edge-colourings of graphs. Math. Scand. 40 (1977), 161-
175.

[2] D. Cariolaro, The 1-factorization problems and some related conjectures. Ph.D.
thesis, University of Reading (2004)

[3] A. G. Chetwynd, A. J. W. Hilton, Critical star multigraphs. Graphs and Com-
binatorics 2 (1986), 209-221.

[4] S. A. Choudum, K. Kayathri, An extension of Vizing’s adjacency lemma on
edge chromatic critical graphs. Discrete Math. 206 (1999), 97-103.

[5] G. A. Dirac, Note on the colouring of graphs. Math. Z. 54 (1951), 347-353.

[6] P. Erdős, A. Hajnal, On the chromatic number of graphs and set-systems. Acta
Math. Acad. Sci. Hungar. 17 (1966), 61-99.

[7] L. M. Favrholdt, Kantfarvning af grafer. Master thesis, Odense University,
Odense (1998)

[8] L. M. Favrholdt, M. Stiebitz, B. Toft, Graph Edge Colouring: Vizing’s The-
orem and Goldberg’s Conjecture, Preprint: DMF-2006-10-003, IMADA-PP-
2006-20, University of Southern Denmark (2006)

[9] M. K. Goldberg, On multigraphs of almost maximal chromatic class (in Rus-
sian). Diskret. Analiz 23 (1973), 3-7.

[10] M. K. Goldberg, Remark on the chromatic class of a multigraph (in Russian).
Vyčisl. Math. i Vyčisl. Techn. (Kharkow) 5 (1974), 128-130.

[11] M. K. Goldberg, Edge-coloring of multigraphs: recoloring technique. J Graph
Theory 8 (1984), 123-137.

[12] P. J. Heawood, Map colour theorem. Quart. J Pure Appl. Math. 24 (1890),
332-338.

[13] A. J. W. Hilton, B. Jackson, A note concerning the chromatic index of multi-
graphs. J Graph Theory 11 (1987), 267-272.

[14] D. S. Hochbaum, T. Nishizeki, D. B. Shmoys, A better than “best possible”
algorithm to edge color multigraphs. Journal of Algorithms 7 (1986), 79-104.

[15] I. Holyer, The NP-completeness of edge-colouring. SIAM J Comput. 10 (1981),
718-720.

[16] I. T. Jakobsen, On critical graphs with chromatic index 4. Discrete Math. 9
(1974), 265-276.

[17] T. R. Jensen, B. Toft, Choosability versus Chromaticity. Geombinatorics 5
(1995), 45-64.

105

[18] J. Kahn, Asymptotics of the Chromatic Index for Multigraphs. Journal of
Combinatorial Theory Series B 68 (1996), 233-254.

[19] H. A. Kierstead, On the chromatic index of multigraphs without large triangles.
Journal of Combinatorial Theory Series B 36 (1984), 156-160.

[20] M. Kochol, N. Krivoňáková, S. Smejová, Edge-coloring of multigraphs. Discrete
Mathematics 300 (2005), 229-234.

[21] D. König, Über Graphen und ihre Anwendungen auf Determinantentheorie
und Mengenlehre. Math. Ann. 77 (1916), 453-465.

[22] T. Nishizeki, K. Kashiwagi, On the 1.1 edge-coloring of multigraphs. SIAM J
Discrete Math. 3 (1990), 391-410.

[23] O. Ore, The Four-Colour Problem, Academic Press, New York (1967)

[24] B. Reed, P. Seymour, Hadwiger’s Conjecture for line graphs. European J of
Combinatorics 25 (2004), 873-876.

[25] P. Sanders, D. Steurer, An Asymptotic Approximation Scheme for Multigraph
Edge Coloring. Proceedings of the Sixteenth ACM-SIAM Symposium on Dis-
crete Algorithm (SODA05), em SIAM (2005), 897-906.

[26] D. P. Sanders, Y. Zhao, Planar graphs of maximum degree seven are class I. J
Combinatorial Theory Ser. B 83 (2001), 201-212.

[27] D. Scheide, Kantenfärbungen von Multigraphen. Diplomarbeit, TU Ilmenau
(2007)

[28] D. Scheide, On a 15/14-edge-coloring of multigraphs, Preprint: DMF-2007-09-
007, IMADA-PP-2007-11, University of Southern Denmark (2007)

[29] D. Scheide, Graph edge coloring: Tashkinov trees and Goldberg’s conjecture,
Preprint: No. M 08/07, TU Ilmenau (2008)

[30] D. Scheide, M. Stiebitz, On Vizing’s bound for the chromatic index of a multi-
graph. Discrete Math. (to appear)

[31] D. Scheide, M. Stiebitz, The maximum chromatic index of multigraphs with
given ∆ and µ. (submitted)

[32] D. Scheide, M. Stiebitz, Vizing’s Colouring Algorithm and the Fan Number.
(submitted)

[33] E. R. Scheinerman, D. H. Ullman, Fractional Graph Theory, a Rational Ap-
proach to the Theory of Graphs, Wiley Interscience, New York (1997)

[34] A. Shrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer,
Berlin (2003)

106

[35] P. D. Seymour, Some unsolved problems on one-factorization of graphs. In:
J. A. Bondy, U. S. R. Murty, editors, Graph Theory and Releated Topics,
Academic Press, New York (1979)

[36] C. E. Shannon, A theorem on coloring the lines of a network. Journal of Math.
Phys. 28 (1949), 148-151.

[37] G. Szekeres, H. S. Wilf, An inequality for the chromatic number of a graph.
Journal of Combinatorial Theory Series B 4 (1968), 1-3.

[38] V. A. Tashkinov, On an algorithm to colour the edges of a multigraph (in
Russian). Diskret. Analiz. 7 (2000), 72-85.

[39] V. G. Vizing, On an Estimate of the Chromatic Class of a p-Graph (in Russian).
Diskret. Analiz. 3 (1964), 23-30.

[40] V. G. Vizing, Critical graphs with a given chromatic class (in Russian). Diskret.
Analiz. 5 (1965), 9-17.

[41] L. Zhang, Every planar graph with maximum degree 7 is class I. Graphs and
Combinatorics 16 (2000), 467-495.

107

Index

absorbing
vertex, 59

adjacent
edges, 2
vertices, 2

almost simple, 24

balanced
Tashkinov tree, 63
triple, 63

cc-list, 93
(α, β)-chain, 3, 92
chromatic index, 3
class one, class two, 26
closed, 4
colour

defective, 43
free, 43
missing, 3, 92
present, 3, 92
unused, 34
used, 34

colour class, 92
colour interval, 93
colouring index, 8
colouring number, 8
critical, ρ-critical

edge, 5
graph, 5

defective
colour, 43
vertex, 60

degree, 2
density, 5
depth

edge order, 8

ECP, 7
edge chromatic number, 3
edge colouring, 3, 92

k-edge colouring, 3, 92
fractional edge colouring, 6

partial, 93
edge order, 8
efficiently realizable, 7
elementary

graph, 5
vertex set, 4

endvertex, 3
exit vertex, 62
Ext, 8
extreme

graph, 90

fan, 61
fan equation, 15
fan number, 19
fan-degree, 18
feasible

sequence, 19
fractional chromatic index, 6
free

colour, 43

Goldberg’s Conjecture, 6
graph, 2, 92

almost simple, 24
empty graph, 5
extreme, 90
regular, r-regular, 2
simple, 2

graph parameter, 4
greedy algorithm, 7

Heawood number, 27
height

of a Tashkinov tree, 63

induced
subgraph, 2

Kempe change, 3
KierExt, 31
KierExt′, 97
Kierstead, 33
Kierstead path, 30

108

line graph, 2, 8
lower bound, 4

maximal
Kierstead path, 30
multi-fan, 13
Tashkinov tree, 34
test object, 10

maximum degree, 2
maximum multiplicity, 2
minimum degree, 2
minimum fan-degree, 19
missing

colour, 3, 92
monotone

graph parameter, 4
multi-fan, 12
multiplicity, 2

neighbour, 2
normal

Tashkinov tree, 63

optimal sequence, 20

(α, β)-pair, 3
partial edge colouring, 93
path number, 34
present

colour, 3, 92

k-reducible, 25
regular, r-regular, 2

same-colour list, 11
simple, 2
strongly closed, 4
subgraph, 2

induced, 2
supermultiplicity, 25
Szekeres-Wilf number, 27

TashExt1, 41
TashExt1′, 97
TashExt2, 49
TashExt2′, 97
Tashkinov3′, 97
Tashkinov order, 58

Tashkinov tree, 34
balanced, 63
normal, 63

Tashkinov1, 42
test object, 9
trunk, 63
(α, β)-trunk, 63

unused
colour, 34

upper bound, 4
used

colour, 34

vertex
absorbing, 59
defective, 60
exit vertex, 62

VizExt, 15
VizExt′, 97
Vizing, 17

109

Symbols

A(T, e, ϕ), 59
CE∗d, 98
CEr, 97
Ck(G), 3
D(T, e, ϕ), 60
∆(G), 2
∆µ(G), 8
E(G), 2
E(S), 2
EG(X,Y), 2
EG(x), 2
EG(x, y), 2
EI(ϕ), 93
Eα(ϕ), 92
Eα(e, ϕ), 43
Eα(T, e, ϕ), 43
F (T, e, ϕ), 62
Fk(G), 18
Fan(G), 21
G[X], 2
Γd(T, e, ϕ), 43
Γf (T, e, ϕ), 43
Gα,β , 92
H(g), 27
L(G), 2
NG(x), 2
O(G, e, ϕ), 9
P (v0, e1, v1, . . . , ep, vp), 2
Pv(α, β, ϕ), 3
T (G), 58
T N (G), T B(G), 65
Tk(G), 43
T Nk (G), T Bk (G), 63
V (G), 2
V (S), 2
ag(G), 25
col′(G), 8
dG(x), 2
degG(x, y), 18
δ(G), 2
δf (G), 19
fan(G), 19
h(T), h(G), 63, 65

µ(G), 2
µ−(G), 24
µF (x, y), 13
µG(x, y), 2
σ(G), 19
smG(x, y), sm(G), 25
t(G), 58
τ(G), 43
τε(G), 43
W(G), 5
χ′(G), 3
χ′f (G), 6

G− {e}, G− {x, y}, . . ., 92
G− F,G− e,G+ e, . . ., 2
G−X,G− x, . . ., 2
ϕ(e), ϕ(v), ϕ̄(v), . . ., 3
ϕ/C, . . ., 3
Sv, vS, 2
(T, e, ϕ)(y0 → yj), . . ., 65
xPy, . . ., 3

¹(v,P), 3

110

