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Abstract
For a non-negative integer 7T, we prove that the independence number of a

graph G = (V, E) in which every vertex belongs to at most 7' triangles is at least

> wev f(d(u), T) where d(u) denotes the degree of a vertex u € V, f(d,T) = ﬁ for

T > (3) and f(d,T) = (1+(d®> —d—2T)f(d—1,T))/(d> +1—2T) for T < (%). This
is a common generalization of the lower bounds for the independence number due to
Caro, Wei, and Shearer. We discuss further possible strengthenings of our result and
pose a corresponding conjecture.

Keywords: Independence; triangle-free graph
AMS subject classification: 05C69

1 Introduction

We consider finite, simple, and undirected graphs G = (V, E) with vertex set V' and edge set
E. The degree of a vertex u in G is denoted by dg(u). A set of vertices I C V of G is called
independent, if no two vertices in I are adjacent. The independence number a(G) is the maximum
cardinality of an independent set.

The independence number is among the most fundamental and well-studied graph-theoretical
concepts. In view of its computational hardness [7] bounds on the independence number received
a lot of attention. The following classical lower bound on the independence number of a graph
G was obtained independently by Caro [4] and Wei [13]

1
a(G) > ; R OESE (1)

This bound is best-possible in view of cliques. A simple proof of (1) is based on the observation
that the deletion of a vertex of maximum degree at least 1 from G does not decrease the right-
hand side of (1). Therefore, iteratively deleting such vertices results in an independent set of at
least the desired cardinality.



For triangle-free graphs G, Shearer [11] (cf. also [10]) proved

(@) = Y flda(w) (2)
ucV
where f(0) =1 and f(d) = %ﬁc(d_l) for d € N. The bound (2) improved on earlier results

[2, 3, 6] which gave bounds of the form a(G) > Q (%@) for triangle-free graph G of order n

and average degree d. For related results concerning k-clique-free graphs, we refer to [1, 9, 12].
Shearer’s bound (2) is similar to Caro and Wei’s bound (1) in the sense that every vertex
contributes a suitable degree-dependent weight to the value of the bound. Its inductive proof
is considerably harder than the proof for (1). In [11] Shearer exploited his approach further
to establish lower bounds on the independence number of graphs of large girth. For d-regular
graphs G of order n and girth g, he proved o(G) > (1 — o(g))nf(d) where f(3) = 13> and

fld) = %ﬂc(d_l) for d > 4. The strength of his approach is illustrated by the fact that this
last bound was only improved very recently [5, 8].

The goal of the research reported here was to prove a common generalization of (1) and (2).
For a graph G and a vertex u of G, let tg(u) denote the number of triangles of G' containing w.
Note that tg(u) equals the number of edges among neighbours of v in G. For a suitable function

f: N(Q) — R>0, we wanted to prove a bound of the form
a(G) = Y flda(u),ta(w))
ueV

which coincides with (2) for triangle-free graphs and is always at least as good as (1).

In Section 2 we discuss Shearer’s approach and the possibility to extend it to graphs which
may contain triangles. This leads to a number of properties the function f should possess. In
Section 3 we propose a candidate for f and establish most of the desired properties. While we
eventually succeed in proving a common generalization of (1) and (2), we found our result not
yet totally satisfactory and pose a conjecture concerning a possible strengthening.

2 Extending Shearer’s Approach

In this section we discuss how to extend Shearer’s approach from [11] to graphs which may contain
triangles. Consider a graph G. For a vertex u in G, let d, = dg(u) and ¢, = tg(u). Our goal is
a lower bound for the independence number of G of the form

(@) > w(@) =) f(duty) (3)

veV

where f : N2 — Rx is a suitable function. In order for Shearer’s inductive approach to work,
the function f has to possess several properties. For d,t € Ny, we assume

(Pl) f(()?()): 17
(PQ) f(d’t)zf(dvt+1)7
(P3) f(d,t)— f(d+1,t) > f(d+1,t) — f(d+2,t), and
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(P) 1= (d+2)f(d+1,8)+ ((d+1)? = (d+1) = 2t) (f(d,t) = f(d+1,8)) > 0 for t < (4}7).

Property (P;) implies (3) for |V| =1, i.e. the base case of the induction. Furthermore, by (P;),
we may assume that G has no vertex of degree 0.

For two distinct vertices w and v in G, let dy, .} denote the number of common neighbours
of u and v. For a vertex u in G, let N, denote the set of neighbours of u and let N2 denote the
set of vertices at distance exactly two from w, respectively.

If there is a vertex u in G such that the deletion of all vertices in {u} U IV, results in a graph
G, with 1 —w(G) +w(Gy) > 0, then adding u to a maximum independent set of G, results in an
independent set of G of order at least 1+ w(G,) > w(G). If w € N2, then dg, (w) = duw — dgy
and t¢, (w) < t,. Therefore, by the monotonicity property (P), it suffices to prove the existence
of a vertex w in G with

Fldutn) = > fldot) + D> (f (dw = dpyuys tw) = f(dw, tw)) = 0. (4)

vENy weN2

In [11] Shearer shows the existence of such a vertex by proving that (4) holds on average. There-
fore, let

A = D 1= fldusta) = D Fldute) + > (Fldw = diuwys tw) = f (duw, tw))

ueV vEN, weN2

Since >° Y f(dy,ty) = 3 duf(dy,ty) and w € N2 & u € N2, we have
ueV veEN, ueV

A = > 1= (du+ Df(dust) + Y (fldw = dpuwy tw) — f (dus tw))

ueV weNZ
= Z 1 - (du + 1)f(dmtu) + Z (f(du - d{u,w}atu) —f (dwtu)) : (5)
ueV weN?

By (P3),
f(du - d{u7w}7tu) - f (duvtu) > d{u,w}(f(du - 17tu) - f(du;tu))

Furthermore, simple double-counting yields

Z diuwy = (Z (dy — 1)) — 2t

w€N3 VEN,

Together with (5) we obtain

A > Z 1 - (du +1 duatu Z d{u w} 17tu) - f(dmtu))
ueV weN2
ueV VENy



A crucial property of f — or of the pair (G, f) — needed at this point to continue along Shearer’s
argument is that

Z Z (dv - 1)(f(du - 1atu) - f(duatu)) Z Z Z (du - 1)(f(du - 1atu) - f(dmtu))(?)

ueV veN,, ueV veN,,

If the values of f are independent of the second parameter, i.e. f(d,t) = f(d,t + 1) for all
d,t € Ny, then (7) follows from property (P3) as follows

Z Z (dv - 1)(f(du - 1atu) - f(dmtu))

ueV veN,

= Z ((dv - 1)(f(du - 1atu) - f(du,tu)) + (du - 1)(f(dv - 17750) - f(dvatv)))

wekl

Z ((du - 1)(f(du - lvtu) - f(du;tu)) + (dv - 1)(f(dv - lth) - f(dvatv>))

wek

= S (du— D)(f(da — Lta) = f(dustu)):

ueV ’UGNu

Assuming (7) we would obtain from (6) that

A > Z <1 - (du + 1)f(dmtu) + << Z (du - 1)) - 2tu> (f(du - 1,tu) - f(dmtu))>
ueV vENy
= D (1= (du+ 1) f(du tu) + (d2 = du — 2tu) (f(du — 1, tw) = f(du, tu))) -

ueV

Since t, < (dzu) for every vertex u in G, property (P4) would imply A > 0 which would complete
the inductive proof. In order to turn the sketched approach into a result we need to describe
a function f which possesses the desired properties. In fact, apart from a version of (7) in full
generality our proposal for f will possess all these properties.

3 A Reasonable Proposal for f

In this section we propose a choice for f which has properties (P;) through (P;) and which
appears reasonable in the sense that it allows to prove a common generalization of Caro and
Wei’s bound (1) and Shearer’s bound (2).

For non-negative integers d and ¢ let

1+ (d?—d—2t)f

rdtf) = —prioaw (8)

Furthermore, let

1 t
fld,t)y = ¢ @0 ’
t

>
r(d,t, f(d—1,t)) ,t<

@,
(o). ¥

Clearly, the function f(-,0) coincides with the function f(-) from (2). Furthermore, we will show
f(d,t) > T-lu for d,t € Ny. In view of Section 2 it makes sense to define f(d,t) also for values of d
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and t with ¢ > (g) which are graph-theoretically meaningless. Table 1 shows some specific values
of f. The bold entries correspond to vertices whose neighbourhoods induce complete graphs. As
soon as the neighbourhood of a vertex is not complete the Shearer-like recursion (8) sets in.

| fld,t)[[d=0]d=1]d=2]d=3] d=4 | d=5 |

t=0 | 1 [ 1/2 [ 2/5 [17/50|127/425 | 593/2210
t=11 1 | 1/2 | 1/3 | 7/24 | 47/180 | 19/80
t=2 1 1 | 1/2 | 1/3 | 5/18 | 29/117 | 581/2574
t=3 1 1 | 1/2 [ 1/3 | 1/4 | 5/22 | 23/110
t=4 || 1 | 1/2 | 1/3 | 1/4 | 2/9 11/54
t=5 1 1 | 1/2 | 1/3 | 1/4 | 3/14 | 11/56
t=6 1 1 | 1/2 [ 1/3 ] 1/4 | 1/5 13/70
t=7 1 1 |12 [1/3] 1/a | 1/5 11/60
t=8 1 1 |12 [1/3 ] 1/a | 1/5 9/50
t=9 1 1 |12 [1/3 ] 1/a | 1/5 7/40
t=10] 1 | 1/2 [ 1/3 [ 1/a | 1/5 1/6

Table 1 f(d,t) for 0 < d <5and 0 <t < 10.

The next lemma collects properties of f. For t € Ny, let d; = max {d eNy|t> (g) } Note that
(9) is equivalent with f(d,t) = d+1 for d < d; and f(d,t) =r(d,t, f(d—1,t)) for d > d;.
Lemma 1 Let d,t € Ny.

(i) f(d,t) > o@D for d > d.

2(d21-5d+5+1)
(i1) f(d,t) > g1
(iii) f(d,t) > f(d+1 t).
(iv) f(d,t)> f(d,t+1).
(v) f(d,t) — f(d+1,t) > f(d+1,t) — f(d+2,t).

(i) 1= (d+2)f(d+1,t)+ ((d+1)2 = (d+1) —2t) (f(d,t) — f(d+1,8)) > 0 for t < (*}1).

Proof: (i) We prove this statement by induction on d > d;. By (9), f(di,t) = ﬁ. Since
t> (Cé) = 1dy(d, — 1), we obtain

3(di +2) - 3(d¢ +2)
2(d? +5d; +54+1) T 2(d?+5d +5+ sdi(dy — 1))
3(dt—|—2) 1
= 7 < dy,
STt d a1 el
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which proves the base case of the induction.
If d > d;, then 2t < d(d — 1) and, by (9), f(d,t) = r(d,t, f(d — 1,t)). Since r(d,t,z) is
monotonously decreasing as a function of x, we obtain, by induction,

3(d+2) 3(d +2)

M) = S sars+ 74(d’t’f(d_1’7“t))_2(d2+£’>al+5+t)

3((d—1)+2) 3(d+2)
> r|d,t, —
2((d—1)2+5(d—1)+5+1) 2(d? 4+ 5d + 5+ t)
B d*+2d+2 -2t
(2 +5d+5+t)(dP+3d+1+1)
- d?+2d+2—d(d—1)

(> +5d+5+1t)(d3+3d+1+1)
B 3d + 2 -0
(2 4+5d+5+1)(d3+3d+1+1)

which completes the proof of (i).

(ii) We prove this statement by induction on d. If d < d, then, by (9), f(d,t) = 1.
If d > dy, then t < (g) and, by induction,

1 (9 1 1+ (d?—d—2t)f(d—1,t) 1
dt)— —— = r(d,t,f(d—1,t)) — = -
f(d2) d+1 rid,, /( t) d+1 d>+1-2¢ d+1

1+ (d> —d—2t)% 1 ?—d—2t
> - = >0
d>+1-2t d+1 (d®>+1-2t)d(d+1)

which completes the proof of (ii).

(iii) If d < dy — 1, then f(d,t) = 717 > 715 = f(d+1,1).
If d > dy, then t < (*}') and

fdot)— fd+1t) L pdt) - rd+ 1.t f(d 1) 2 ((‘fl - 1))f(f 1”__21 Yo

which completes the proof of (iii).

(iv) We prove this statement by induction on d. If d < d;, then f(d, ) i pE
Hence, we may assume that d > d; which implies ¢ < ( ) and f(d,t) = r(d,t, f(d — 1,t)).
Ift+1< (g), then, by induction,

fdt+1)2 L
.

—~
=

fld,t) — f(d,t+1) = r(d,t,f(d—1,t)) —r(d,t+ 1, f(d—1,t+1))
14 (d?—d-2t)f(d—1,t) 1+ (d*—d—2t—2)f(d—1,t+1)
B d24+1 -2t a 2+1-2t—2
- 1+ (> —d=20)f(d=1,t) 1+ (d>—d—2t—2)f(d—1,t)
- d?+1-—2t d2+1-2t—2
B (2d +2)f(d —1,t) — 2 (;)0

(d®4+1-2t)(d>+1—-2t—-2) —

6



Hence, we may assume that t +1 = (g) This implies

©) 1 1 1
— 1) ¥ -1 — = Z) =
fd.0 - s n) @ o fd=10) - g = (d6g) - o
14 (P —d—-20) 1 d? —d—2t
N d2+1—2t d+1 (d®2+1—-2t)d(d+1) ~

which completes the proof of (iv).
(v) If d < dy — 1, then

1 1 1 d
(i1 a73) ~ (e~ fa2m) = 120 - Gy

1 d 2
2 03 @eD)d+y @i+ @d+s) Y

If d > dy, then

—~
=
~

VE
=
=

(f(d,t) = fld+1,1)) = (f(d+1,1) = f(d+2,1))
= f(d,t) —2r(d+1,t, f(d,t)) +r(d+2,t,r(d + 1,t, f(d,1))).

—~
=

It is straightforward to verify that the last expression is non-negative if and only if f(d,t) >

2(‘121?7;1% which holds by (i) which completes the proof of (v).

(vi) It is straightforward to verify that the desired statement is equivalent to
fld+1,t) <r(d+1,t, f(d,1))

for t < (131).
Ift < (dgl), this follows immediately from (9). Hence, we may assume that ¢t = (dgl). This
implies

r(d+1,t, f(d,t)) — f(d+ 1,%)

(o () (2 (5) -1 (. (137)

(@2 - @y —2()) A

(d+1)2+1—2(4h Td+2

0

which completes the proof of (vi). O
Having collected numerous properties of f we can now state a joint generalization of (1) and (2).

Theorem 2 Let T' € Ny. If G is a graph such that every vertex of G belongs to at most T
triangles, then

a(@) = Y f(da(u). 7).

ueV



Proof: We proceed by induction on the order of GG as in Section 2. By Lemma 1, the function
g : N2 — R with g(d,t) = f(d,T) has properties (P1), (P,), and (Ps). Therefore, we can argue
exactly as in Section 2 until the point when (6) is established (with g(d,t) = f(d,T) instead of
f(d,t)). Also as shown in Section 2, (P3) for g implies

Z Z (dv - 1)(f(du - 17T) - f(du - 1>T)) > Z Z (du - 1)(f(du - 17T) - f(du - 1aT))'(1O)

u€EV vEN,, u€V vEN,,

Starting with (6) we obtain

(6)
A > (1 f(dT) + <<Z<dv—1>)—2tu> (f(du—l,T)—f(du,T))>
S VEN,

1-— du,T) << Z (du - 1) - 2tu> (f(du - 17T) - f(me)))

VEN,

<

I

(]

IS
<

S

= (1= (du+ 1) f(dy, T) + (d2 — dy — 2t,) (f(du — 1,T) — f(dy,T))) -

e
<

If7T > ( +), then t, < ( %) and, by Lemma 1,

1= (dy + 1) f(du T) + (@2 — dy — 2t2) (F(dy = 1,T) = f(du, T)) = 1 = (du + 1) f(du, T) L 0.

IfT<( ) then ¢, < T and, by Lemma 1,

1- (du + 1)f(d’M7T) + (d%t - du - 2tu) (f(du - 17T) - f(me))
> 1= (du+ 1) f(d, T) + (d2 — dy — 2T) (f(du — 1,T) = f(du, T)) = 0.

Altogether, we obtain A > 0 which completes the proof of the theorem. O

Lemma 1 collected more properties than we actually needed for the proof of Theorem 2. We hope
that these are helpful to prove — rather than to disprove — the following conjecture.

Conjecture 3 If G is a graph, then o(G) > > f(dg(u),tc(u)).
ucV
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