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Abstract
For a non-negative integer T , we prove that the independence number of a

graph G = (V,E) in which every vertex belongs to at most T triangles is at least∑
u∈V f(d(u), T ) where d(u) denotes the degree of a vertex u ∈ V , f(d, T ) = 1

d+1 for
T ≥

(
d
2

)
and f(d, T ) = (1 + (d2− d− 2T )f(d− 1, T ))/(d2 + 1− 2T ) for T <

(
d
2

)
. This

is a common generalization of the lower bounds for the independence number due to
Caro, Wei, and Shearer. We discuss further possible strengthenings of our result and
pose a corresponding conjecture.
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1 Introduction

We consider finite, simple, and undirected graphs G = (V,E) with vertex set V and edge set
E. The degree of a vertex u in G is denoted by dG(u). A set of vertices I ⊆ V of G is called
independent, if no two vertices in I are adjacent. The independence number α(G) is the maximum
cardinality of an independent set.

The independence number is among the most fundamental and well-studied graph-theoretical
concepts. In view of its computational hardness [7] bounds on the independence number received
a lot of attention. The following classical lower bound on the independence number of a graph
G was obtained independently by Caro [4] and Wei [13]

α(G) ≥
∑
u∈V

1
dG(u) + 1

. (1)

This bound is best-possible in view of cliques. A simple proof of (1) is based on the observation
that the deletion of a vertex of maximum degree at least 1 from G does not decrease the right-
hand side of (1). Therefore, iteratively deleting such vertices results in an independent set of at
least the desired cardinality.
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For triangle-free graphs G, Shearer [11] (cf. also [10]) proved

α(G) ≥
∑
u∈V

f(dG(u)) (2)

where f(0) = 1 and f(d) = 1+(d2−d)f(d−1)
d2+1

for d ∈ N. The bound (2) improved on earlier results

[2, 3, 6] which gave bounds of the form α(G) ≥ Ω
(
n ln(d)
d

)
for triangle-free graph G of order n

and average degree d. For related results concerning k-clique-free graphs, we refer to [1, 9, 12].
Shearer’s bound (2) is similar to Caro and Wei’s bound (1) in the sense that every vertex

contributes a suitable degree-dependent weight to the value of the bound. Its inductive proof
is considerably harder than the proof for (1). In [11] Shearer exploited his approach further
to establish lower bounds on the independence number of graphs of large girth. For d-regular
graphs G of order n and girth g, he proved α(G) ≥ (1 − o(g))nf(d) where f(3) = 125

302 and

f(d) = 1+(d2−d)f(d−1)
d2+1

for d ≥ 4. The strength of his approach is illustrated by the fact that this
last bound was only improved very recently [5, 8].

The goal of the research reported here was to prove a common generalization of (1) and (2).
For a graph G and a vertex u of G, let tG(u) denote the number of triangles of G containing u.
Note that tG(u) equals the number of edges among neighbours of u in G. For a suitable function
f : N2

0 → R≥0, we wanted to prove a bound of the form

α(G) ≥
∑
u∈V

f(dG(u), tG(u))

which coincides with (2) for triangle-free graphs and is always at least as good as (1).
In Section 2 we discuss Shearer’s approach and the possibility to extend it to graphs which

may contain triangles. This leads to a number of properties the function f should possess. In
Section 3 we propose a candidate for f and establish most of the desired properties. While we
eventually succeed in proving a common generalization of (1) and (2), we found our result not
yet totally satisfactory and pose a conjecture concerning a possible strengthening.

2 Extending Shearer’s Approach

In this section we discuss how to extend Shearer’s approach from [11] to graphs which may contain
triangles. Consider a graph G. For a vertex u in G, let du = dG(u) and tu = tG(u). Our goal is
a lower bound for the independence number of G of the form

α(G) ≥ w(G) :=
∑
v∈V

f(dv, tv) (3)

where f : N2
0 → R≥0 is a suitable function. In order for Shearer’s inductive approach to work,

the function f has to possess several properties. For d, t ∈ N0, we assume

(P1) f(0, 0) = 1,

(P2) f(d, t) ≥ f(d, t+ 1),

(P3) f(d, t)− f(d+ 1, t) ≥ f(d+ 1, t)− f(d+ 2, t), and
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(P4) 1− (d+ 2)f(d+ 1, t) +
(
(d+ 1)2 − (d+ 1)− 2t

)
(f(d, t)− f(d+ 1, t)) ≥ 0 for t ≤

(
d+1
2

)
.

Property (P1) implies (3) for |V | = 1, i.e. the base case of the induction. Furthermore, by (P1),
we may assume that G has no vertex of degree 0.

For two distinct vertices u and v in G, let d{u,v} denote the number of common neighbours
of u and v. For a vertex u in G, let Nu denote the set of neighbours of u and let N2

u denote the
set of vertices at distance exactly two from u, respectively.

If there is a vertex u in G such that the deletion of all vertices in {u} ∪Nu results in a graph
Gu with 1−w(G) +w(Gu) ≥ 0, then adding u to a maximum independent set of Gu results in an
independent set of G of order at least 1 +w(Gu) ≥ w(G). If w ∈ N2

u , then dGu(w) = dw − d{u,w}
and tGu(w) ≤ tw. Therefore, by the monotonicity property (P2), it suffices to prove the existence
of a vertex u in G with

1− f(du, tu)−
∑
v∈Nu

f(dv, tv) +
∑
w∈N2

u

(
f
(
dw − d{u,w}, tw

)
− f(dw, tw)

)
≥ 0. (4)

In [11] Shearer shows the existence of such a vertex by proving that (4) holds on average. There-
fore, let

A =
∑
u∈V

1− f(du, tu)−
∑
v∈Nu

f(dv, tv) +
∑
w∈N2

u

(
f(dw − d{u,w}, tw)− f (dw, tw)

) .

Since
∑
u∈V

∑
v∈Nu

f(dv, tv) =
∑
u∈V

duf(du, tu) and w ∈ N2
u ⇔ u ∈ N2

w, we have

A =
∑
u∈V

1− (du + 1)f(du, tu) +
∑
w∈N2

u

(
f(dw − d{u,w}, tw)− f (dw, tw)

)
=

∑
u∈V

1− (du + 1)f(du, tu) +
∑
w∈N2

u

(
f(du − d{u,w}, tu)− f (du, tu)

) . (5)

By (P3),
f(du − d{u,w}, tu)− f (du, tu) ≥ d{u,w}(f(du − 1, tu)− f(du, tu)).

Furthermore, simple double-counting yields

∑
w∈N2

u

d{u,w} =

(∑
v∈Nu

(dv − 1)

)
− 2tu.

Together with (5) we obtain

A ≥
∑
u∈V

1− (du + 1)f(du, tu) +
∑
w∈N2

u

d{u,w}(f(du − 1, tu)− f(du, tu))


=

∑
u∈V

(
1− (du + 1)f(du, tu) +

((∑
v∈Nu

(dv − 1)

)
− 2tu

)
(f(du − 1, tu)− f(du, tu))

)
.(6)
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A crucial property of f — or of the pair (G, f) — needed at this point to continue along Shearer’s
argument is that∑

u∈V

∑
v∈Nu

(dv − 1)(f(du − 1, tu)− f(du, tu)) ≥
∑
u∈V

∑
v∈Nu

(du − 1)(f(du − 1, tu)− f(du, tu)).(7)

If the values of f are independent of the second parameter, i.e. f(d, t) = f(d, t + 1) for all
d, t ∈ N0, then (7) follows from property (P3) as follows∑

u∈V

∑
v∈Nu

(dv − 1)(f(du − 1, tu)− f(du, tu))

=
∑
uv∈E

((dv − 1)(f(du − 1, tu)− f(du, tu)) + (du − 1)(f(dv − 1, tv)− f(dv, tv)))

(P3)

≥
∑
uv∈E

((du − 1)(f(du − 1, tu)− f(du, tu)) + (dv − 1)(f(dv − 1, tv)− f(dv, tv)))

=
∑
u∈V

∑
v∈Nu

(du − 1)(f(du − 1, tu)− f(du, tu)).

Assuming (7) we would obtain from (6) that

A ≥
∑
u∈V

(
1− (du + 1)f(du, tu) +

((∑
v∈Nu

(du − 1)

)
− 2tu

)
(f(du − 1, tu)− f(du, tu))

)
=

∑
u∈V

(
1− (du + 1)f(du, tu) +

(
d2
u − du − 2tu

)
(f(du − 1, tu)− f(du, tu))

)
.

Since tu ≤
(
du

2

)
for every vertex u in G, property (P4) would imply A ≥ 0 which would complete

the inductive proof. In order to turn the sketched approach into a result we need to describe
a function f which possesses the desired properties. In fact, apart from a version of (7) in full
generality our proposal for f will possess all these properties.

3 A Reasonable Proposal for f

In this section we propose a choice for f which has properties (P1) through (P4) and which
appears reasonable in the sense that it allows to prove a common generalization of Caro and
Wei’s bound (1) and Shearer’s bound (2).

For non-negative integers d and t let

r(d, t, f) =
1 + (d2 − d− 2t)f

d2 + 1− 2t
. (8)

Furthermore, let

f(d, t) =

{
1

(d+1) , t ≥
(
d
2

)
,

r(d, t, f(d− 1, t)) , t <
(
d
2

)
.

(9)

Clearly, the function f(·, 0) coincides with the function f(·) from (2). Furthermore, we will show
f(d, t) ≥ 1

d+1 for d, t ∈ N0. In view of Section 2 it makes sense to define f(d, t) also for values of d
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and t with t >
(
d
2

)
which are graph-theoretically meaningless. Table 1 shows some specific values

of f . The bold entries correspond to vertices whose neighbourhoods induce complete graphs. As
soon as the neighbourhood of a vertex is not complete the Shearer-like recursion (8) sets in.

f(d, t) d = 0 d = 1 d = 2 d = 3 d = 4 d = 5
t = 0 1 1/2 2/5 17/50 127/425 593/2210

t = 1 1 1/2 1/3 7/24 47/180 19/80

t = 2 1 1/2 1/3 5/18 29/117 581/2574

t = 3 1 1/2 1/3 1/4 5/22 23/110

t = 4 1 1/2 1/3 1/4 2/9 11/54

t = 5 1 1/2 1/3 1/4 3/14 11/56

t = 6 1 1/2 1/3 1/4 1/5 13/70

t = 7 1 1/2 1/3 1/4 1/5 11/60

t = 8 1 1/2 1/3 1/4 1/5 9/50

t = 9 1 1/2 1/3 1/4 1/5 7/40

t = 10 1 1/2 1/3 1/4 1/5 1/6

Table 1 f(d, t) for 0 ≤ d ≤ 5 and 0 ≤ t ≤ 10.

The next lemma collects properties of f . For t ∈ N0, let dt = max
{
d ∈ N0 | t ≥

(
d
2

)}
. Note that

(9) is equivalent with f(d, t) = 1
d+1 for d ≤ dt and f(d, t) = r(d, t, f(d− 1, t)) for d > dt.

Lemma 1 Let d, t ∈ N0.

(i) f(d, t) ≥ 3(d+2)
2(d2+5d+5+t)

for d ≥ dt.

(ii) f(d, t) ≥ 1
d+1 .

(iii) f(d, t) ≥ f(d+ 1, t).

(iv) f(d, t) ≥ f(d, t+ 1).

(v) f(d, t)− f(d+ 1, t) ≥ f(d+ 1, t)− f(d+ 2, t).

(vi) 1− (d+ 2)f(d+ 1, t) +
(
(d+ 1)2 − (d+ 1)− 2t

)
(f(d, t)− f(d+ 1, t)) ≥ 0 for t ≤

(
d+1
2

)
.

Proof: (i) We prove this statement by induction on d ≥ dt. By (9), f(dt, t) = 1
dt+1 . Since

t ≥
(
dt

2

)
= 1

2dt(dt − 1), we obtain

3(dt + 2)
2(d2

t + 5dt + 5 + t)
≤ 3(dt + 2)

2
(
d2
t + 5dt + 5 + 1

2dt(dt − 1)
)

=
3(dt + 2)

3(dt + 2)(dt + 1) + 4
<

1
dt + 1

= f(dt, t)
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which proves the base case of the induction.
If d > dt, then 2t < d(d − 1) and, by (9), f(d, t) = r(d, t, f(d − 1, t)). Since r(d, t, x) is

monotonously decreasing as a function of x, we obtain, by induction,

f(d, t)− 3(d+ 2)
2(d2 + 5d+ 5 + t)

= r(d, t, f(d− 1, t))− 3(d+ 2)
2(d2 + 5d+ 5 + t)

≥ r

(
d, t,

3((d− 1) + 2)
2((d− 1)2 + 5(d− 1) + 5 + t)

)
− 3(d+ 2)

2(d2 + 5d+ 5 + t)

=
d2 + 2d+ 2− 2t

(d2 + 5d+ 5 + t)(d3 + 3d+ 1 + t)

≥ d2 + 2d+ 2− d(d− 1)
(d2 + 5d+ 5 + t)(d3 + 3d+ 1 + t)

=
3d+ 2

(d2 + 5d+ 5 + t)(d3 + 3d+ 1 + t)
> 0

which completes the proof of (i).

(ii) We prove this statement by induction on d. If d ≤ dt, then, by (9), f(d, t) = 1
d+1 .

If d > dt, then t <
(
d
2

)
and, by induction,

f(d, t)− 1
d+ 1

(9)
= r(d, t, f(d− 1, t))− 1

d+ 1
=

1 + (d2 − d− 2t)f(d− 1, t)
d2 + 1− 2t

− 1
d+ 1

≥
1 + (d2 − d− 2t)1

d

d2 + 1− 2t
− 1
d+ 1

=
d2 − d− 2t

(d2 + 1− 2t)d(d+ 1)
≥ 0

which completes the proof of (ii).

(iii) If d ≤ dt − 1, then f(d, t) = 1
d+1 >

1
d+2 = f(d+ 1, t).

If d ≥ dt, then t <
(
d+1
2

)
and

f(d, t)− f(d+ 1, t)
(9)
= f(d, t)− r(d+ 1, t, f(d, t))

(8)
=

(d+ 2)f(d, t)− 1
(d+ 1)2 + 1− 2t

(ii)

≥ 0

which completes the proof of (iii).

(iv) We prove this statement by induction on d. If d ≤ dt, then f(d, t)
(9)
= f(d, t+ 1)

(9)
= 1

d+1 .
Hence, we may assume that d > dt which implies t <

(
d
2

)
and f(d, t) = r(d, t, f(d− 1, t)).

If t+ 1 <
(
d
2

)
, then, by induction,

f(d, t)− f(d, t+ 1)
(9)
= r(d, t, f(d− 1, t))− r(d, t+ 1, f(d− 1, t+ 1))

=
1 + (d2 − d− 2t)f(d− 1, t)

d2 + 1− 2t
− 1 + (d2 − d− 2t− 2)f(d− 1, t+ 1)

d2 + 1− 2t− 2

≥ 1 + (d2 − d− 2t)f(d− 1, t)
d2 + 1− 2t

− 1 + (d2 − d− 2t− 2)f(d− 1, t)
d2 + 1− 2t− 2

=
(2d+ 2)f(d− 1, t)− 2

(d2 + 1− 2t)(d2 + 1− 2t− 2)

(ii)

≥ 0.
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Hence, we may assume that t+ 1 =
(
d
2

)
. This implies

f(d, t)− f(d, t+ 1)
(9)
= r (d, t, f(d− 1, t))− 1

d+ 1
= r

(
d, t,

1
d

)
− 1
d+ 1

=
1 + (d2 − d− 2t)1

d

d2 + 1− 2t
− 1
d+ 1

=
d2 − d− 2t

(d2 + 1− 2t)d(d+ 1)
≥ 0

which completes the proof of (iv).

(v) If d ≤ dt − 1, then

(f(d, t)− f(d+ 1, t))− (f(d+ 1, t)− f(d+ 2, t))
(9)
=

(
1

d+ 1
− 1
d+ 2

)
−
(

1
d+ 2

− f(d+ 2, t))
)

= f(d+ 2, t)− d

(d+ 1)(d+ 2)
(ii)

≥ 1
d+ 3

− d

(d+ 1)(d+ 2)
=

2
(d+ 1)(d+ 2)(d+ 3)

> 0.

If d ≥ dt, then

(f(d, t)− f(d+ 1, t))− (f(d+ 1, t)− f(d+ 2, t))
(9)
= f(d, t)− 2r(d+ 1, t, f(d, t)) + r(d+ 2, t, r(d+ 1, t, f(d, t))).

It is straightforward to verify that the last expression is non-negative if and only if f(d, t) ≥
3(d+2)

2(d2+5d+5+t)
which holds by (i) which completes the proof of (v).

(vi) It is straightforward to verify that the desired statement is equivalent to

f(d+ 1, t) ≤ r(d+ 1, t, f(d, t))

for t ≤
(
d+1
2

)
.

If t <
(
d+1
2

)
, this follows immediately from (9). Hence, we may assume that t =

(
d+1
2

)
. This

implies

r(d+ 1, t, f(d, t))− f(d+ 1, t)

= r

(
d+ 1,

(
d+ 1

2

)
, f

(
d,

(
d+ 1

2

)))
− f

(
d+ 1,

(
d+ 1

2

))

=
1 +

(
(d+ 1)2 − (d+ 1)− 2

(
d+1
2

))
1
d+1

(d+ 1)2 + 1− 2
(
d+1
2

) − 1
d+ 2

= 0

which completes the proof of (vi). 2

Having collected numerous properties of f we can now state a joint generalization of (1) and (2).

Theorem 2 Let T ∈ N0. If G is a graph such that every vertex of G belongs to at most T
triangles, then

α(G) ≥
∑
u∈V

f(dG(u), T ).
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Proof: We proceed by induction on the order of G as in Section 2. By Lemma 1, the function
g : N2

0 → R≥0 with g(d, t) = f(d, T ) has properties (P1), (P2), and (P3). Therefore, we can argue
exactly as in Section 2 until the point when (6) is established (with g(d, t) = f(d, T ) instead of
f(d, t)). Also as shown in Section 2, (P3) for g implies∑
u∈V

∑
v∈Nu

(dv − 1)(f(du − 1, T )− f(du − 1, T )) ≥
∑
u∈V

∑
v∈Nu

(du − 1)(f(du − 1, T )− f(du − 1, T )).(10)

Starting with (6) we obtain

A ≥
∑
u∈V

(
1− (du + 1)f(du, T ) +

((∑
v∈Nu

(dv − 1)

)
− 2tu

)
(f(du − 1, T )− f(du, T ))

)
(10)

≥
∑
u∈V

(
1− (du + 1)f(du, T ) +

((∑
v∈Nu

(du − 1)

)
− 2tu

)
(f(du − 1, T )− f(du, T ))

)
=

∑
u∈V

(
1− (du + 1)f(du, T ) +

(
d2
u − du − 2tu

)
(f(du − 1, T )− f(du, T ))

)
.

If T >
(
du

2

)
, then tu ≤

(
du

2

)
and, by Lemma 1,

1− (du + 1)f(du, T ) +
(
d2
u − du − 2tu

)
(f(du − 1, T )− f(du, T )) ≥ 1− (du + 1)f(du, T )

(9)
= 0.

If T ≤
(
du

2

)
, then tu ≤ T and, by Lemma 1,

1− (du + 1)f(du, T ) +
(
d2
u − du − 2tu

)
(f(du − 1, T )− f(du, T ))

≥ 1− (du + 1)f(du, T ) +
(
d2
u − du − 2T

)
(f(du − 1, T )− f(du, T )) ≥ 0.

Altogether, we obtain A ≥ 0 which completes the proof of the theorem. 2

Lemma 1 collected more properties than we actually needed for the proof of Theorem 2. We hope
that these are helpful to prove — rather than to disprove — the following conjecture.

Conjecture 3 If G is a graph, then α(G) ≥
∑
u∈V

f(dG(u), tG(u)).

References
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