Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 09/26
Interpolating between bounds on the independence number

Boßecker, Anett ; Rautenbach, Dieter

2009

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677693621
Fax: +493677 693270
http://www.tu-ilmenau.de/ifm/

Interpolating between Bounds on the Independence Number

Anett Boßecker and Dieter Rautenbach

Institut für Mathematik

TU Ilmenau, Postfach 100565
D-98684 Ilmenau, Germany
emails: \{anett.bossecker,dieter.rautenbach\}@tu-ilmenau.de

Abstract

For a non-negative integer T, we prove that the independence number of a graph $G=(V, E)$ in which every vertex belongs to at most T triangles is at least $\sum_{u \in V} f(d(u), T)$ where $d(u)$ denotes the degree of a vertex $u \in V, f(d, T)=\frac{1}{d+1}$ for $T \geq\binom{ d}{2}$ and $f(d, T)=\left(1+\left(d^{2}-d-2 T\right) f(d-1, T)\right) /\left(d^{2}+1-2 T\right)$ for $T<\binom{d}{2}$. This is a common generalization of the lower bounds for the independence number due to Caro, Wei, and Shearer. We discuss further possible strengthenings of our result and pose a corresponding conjecture.

Keywords: Independence; triangle-free graph
AMS subject classification: 05C69

1 Introduction

We consider finite, simple, and undirected graphs $G=(V, E)$ with vertex set V and edge set E. The degree of a vertex u in G is denoted by $d_{G}(u)$. A set of vertices $I \subseteq V$ of G is called independent, if no two vertices in I are adjacent. The independence number $\alpha(G)$ is the maximum cardinality of an independent set.

The independence number is among the most fundamental and well-studied graph-theoretical concepts. In view of its computational hardness [7] bounds on the independence number received a lot of attention. The following classical lower bound on the independence number of a graph G was obtained independently by Caro [4] and Wei [13]

$$
\begin{equation*}
\alpha(G) \geq \sum_{u \in V} \frac{1}{d_{G}(u)+1} . \tag{1}
\end{equation*}
$$

This bound is best-possible in view of cliques. A simple proof of (1) is based on the observation that the deletion of a vertex of maximum degree at least 1 from G does not decrease the righthand side of (1). Therefore, iteratively deleting such vertices results in an independent set of at least the desired cardinality.

For triangle-free graphs G, Shearer [11] (cf. also [10]) proved

$$
\begin{equation*}
\alpha(G) \geq \sum_{u \in V} f\left(d_{G}(u)\right) \tag{2}
\end{equation*}
$$

where $f(0)=1$ and $f(d)=\frac{1+\left(d^{2}-d\right) f(d-1)}{d^{2}+1}$ for $d \in \mathbb{N}$. The bound (2) improved on earlier results $[2,3,6]$ which gave bounds of the form $\alpha(G) \geq \Omega\left(\frac{n \ln (d)}{d}\right)$ for triangle-free graph G of order n and average degree d. For related results concerning k-clique-free graphs, we refer to [1, 9, 12].

Shearer's bound (2) is similar to Caro and Wei's bound (1) in the sense that every vertex contributes a suitable degree-dependent weight to the value of the bound. Its inductive proof is considerably harder than the proof for (1). In [11] Shearer exploited his approach further to establish lower bounds on the independence number of graphs of large girth. For d-regular graphs G of order n and girth g, he proved $\alpha(G) \geq(1-o(g)) n f(d)$ where $f(3)=\frac{125}{302}$ and $f(d)=\frac{1+\left(d^{2}-d\right) f(d-1)}{d^{2}+1}$ for $d \geq 4$. The strength of his approach is illustrated by the fact that this last bound was only improved very recently $[5,8]$.

The goal of the research reported here was to prove a common generalization of (1) and (2). For a graph G and a vertex u of G, let $t_{G}(u)$ denote the number of triangles of G containing u. Note that $t_{G}(u)$ equals the number of edges among neighbours of u in G. For a suitable function $f: \mathbb{N}_{0}^{2} \rightarrow \mathbb{R}_{\geq 0}$, we wanted to prove a bound of the form

$$
\alpha(G) \geq \sum_{u \in V} f\left(d_{G}(u), t_{G}(u)\right)
$$

which coincides with (2) for triangle-free graphs and is always at least as good as (1).
In Section 2 we discuss Shearer's approach and the possibility to extend it to graphs which may contain triangles. This leads to a number of properties the function f should possess. In Section 3 we propose a candidate for f and establish most of the desired properties. While we eventually succeed in proving a common generalization of (1) and (2), we found our result not yet totally satisfactory and pose a conjecture concerning a possible strengthening.

2 Extending Shearer's Approach

In this section we discuss how to extend Shearer's approach from [11] to graphs which may contain triangles. Consider a graph G. For a vertex u in G, let $d_{u}=d_{G}(u)$ and $t_{u}=t_{G}(u)$. Our goal is a lower bound for the independence number of G of the form

$$
\begin{equation*}
\alpha(G) \geq w(G):=\sum_{v \in V} f\left(d_{v}, t_{v}\right) \tag{3}
\end{equation*}
$$

where $f: \mathbb{N}_{0}^{2} \rightarrow \mathbb{R}_{\geq 0}$ is a suitable function. In order for Shearer's inductive approach to work, the function f has to possess several properties. For $d, t \in \mathbb{N}_{0}$, we assume
$\left(P_{1}\right) f(0,0)=1$,
$\left(P_{2}\right) f(d, t) \geq f(d, t+1)$,
$\left(P_{3}\right) f(d, t)-f(d+1, t) \geq f(d+1, t)-f(d+2, t)$, and

$$
\text { (} \left.P_{4}\right) 1-(d+2) f(d+1, t)+\left((d+1)^{2}-(d+1)-2 t\right)(f(d, t)-f(d+1, t)) \geq 0 \text { for } t \leq\binom{ d+1}{2} .
$$

Property $\left(P_{1}\right)$ implies (3) for $|V|=1$, i.e. the base case of the induction. Furthermore, by $\left(P_{1}\right)$, we may assume that G has no vertex of degree 0 .

For two distinct vertices u and v in G, let $d_{\{u, v\}}$ denote the number of common neighbours of u and v. For a vertex u in G, let N_{u} denote the set of neighbours of u and let N_{u}^{2} denote the set of vertices at distance exactly two from u, respectively.

If there is a vertex u in G such that the deletion of all vertices in $\{u\} \cup N_{u}$ results in a graph G_{u} with $1-w(G)+w\left(G_{u}\right) \geq 0$, then adding u to a maximum independent set of G_{u} results in an independent set of G of order at least $1+w\left(G_{u}\right) \geq w(G)$. If $w \in N_{u}^{2}$, then $d_{G_{u}}(w)=d_{w}-d_{\{u, w\}}$ and $t_{G_{u}}(w) \leq t_{w}$. Therefore, by the monotonicity property $\left(P_{2}\right)$, it suffices to prove the existence of a vertex u in G with

$$
\begin{equation*}
1-f\left(d_{u}, t_{u}\right)-\sum_{v \in N_{u}} f\left(d_{v}, t_{v}\right)+\sum_{w \in N_{u}^{2}}\left(f\left(d_{w}-d_{\{u, w\}}, t_{w}\right)-f\left(d_{w}, t_{w}\right)\right) \geq 0 \tag{4}
\end{equation*}
$$

In [11] Shearer shows the existence of such a vertex by proving that (4) holds on average. Therefore, let

$$
A=\sum_{u \in V}\left(1-f\left(d_{u}, t_{u}\right)-\sum_{v \in N_{u}} f\left(d_{v}, t_{v}\right)+\sum_{w \in N_{u}^{2}}\left(f\left(d_{w}-d_{\{u, w\}}, t_{w}\right)-f\left(d_{w}, t_{w}\right)\right)\right) .
$$

Since $\sum_{u \in V} \sum_{v \in N_{u}} f\left(d_{v}, t_{v}\right)=\sum_{u \in V} d_{u} f\left(d_{u}, t_{u}\right)$ and $w \in N_{u}^{2} \Leftrightarrow u \in N_{w}^{2}$, we have

$$
\begin{align*}
A & =\sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, t_{u}\right)+\sum_{w \in N_{u}^{2}}\left(f\left(d_{w}-d_{\{u, w\}}, t_{w}\right)-f\left(d_{w}, t_{w}\right)\right)\right) \\
& =\sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, t_{u}\right)+\sum_{w \in N_{u}^{2}}\left(f\left(d_{u}-d_{\{u, w\}}, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)\right) \tag{5}
\end{align*}
$$

By $\left(P_{3}\right)$,

$$
f\left(d_{u}-d_{\{u, w\}}, t_{u}\right)-f\left(d_{u}, t_{u}\right) \geq d_{\{u, w\}}\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right) .
$$

Furthermore, simple double-counting yields

$$
\sum_{w \in N_{u}^{2}} d_{\{u, w\}}=\left(\sum_{v \in N_{u}}\left(d_{v}-1\right)\right)-2 t_{u} .
$$

Together with (5) we obtain

$$
\begin{align*}
A & \geq \sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, t_{u}\right)+\sum_{w \in N_{u}^{2}} d_{\{u, w\}}\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)\right) \\
& =\sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, t_{u}\right)+\left(\left(\sum_{v \in N_{u}}\left(d_{v}-1\right)\right)-2 t_{u}\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)\right) . \tag{6}
\end{align*}
$$

A crucial property of f - or of the pair (G, f) - needed at this point to continue along Shearer's argument is that

$$
\begin{equation*}
\sum_{u \in V} \sum_{v \in N_{u}}\left(d_{v}-1\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right) \geq \sum_{u \in V} \sum_{v \in N_{u}}\left(d_{u}-1\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right) . \tag{7}
\end{equation*}
$$

If the values of f are independent of the second parameter, i.e. $f(d, t)=f(d, t+1)$ for all $d, t \in \mathbb{N}_{0}$, then (7) follows from property $\left(P_{3}\right)$ as follows

$$
\begin{aligned}
& \sum_{u \in V} \sum_{v \in N_{u}}\left(d_{v}-1\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right) \\
&= \sum_{u v \in E}\left(\left(d_{v}-1\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)+\left(d_{u}-1\right)\left(f\left(d_{v}-1, t_{v}\right)-f\left(d_{v}, t_{v}\right)\right)\right) \\
& \stackrel{\left(P_{3}\right)}{\geq} \sum_{u v \in E}\left(\left(d_{u}-1\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)+\left(d_{v}-1\right)\left(f\left(d_{v}-1, t_{v}\right)-f\left(d_{v}, t_{v}\right)\right)\right) \\
&= \sum_{u \in V} \sum_{v \in N_{u}}\left(d_{u}-1\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)
\end{aligned}
$$

Assuming (7) we would obtain from (6) that

$$
\begin{aligned}
A & \geq \sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, t_{u}\right)+\left(\left(\sum_{v \in N_{u}}\left(d_{u}-1\right)\right)-2 t_{u}\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)\right) \\
& =\sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, t_{u}\right)+\left(d_{u}^{2}-d_{u}-2 t_{u}\right)\left(f\left(d_{u}-1, t_{u}\right)-f\left(d_{u}, t_{u}\right)\right)\right)
\end{aligned}
$$

Since $t_{u} \leq\binom{ d_{u}}{2}$ for every vertex u in G, property $\left(P_{4}\right)$ would imply $A \geq 0$ which would complete the inductive proof. In order to turn the sketched approach into a result we need to describe a function f which possesses the desired properties. In fact, apart from a version of (7) in full generality our proposal for f will possess all these properties.

3 A Reasonable Proposal for f

In this section we propose a choice for f which has properties $\left(P_{1}\right)$ through $\left(P_{4}\right)$ and which appears reasonable in the sense that it allows to prove a common generalization of Caro and Wei's bound (1) and Shearer's bound (2).

For non-negative integers d and t let

$$
\begin{equation*}
r(d, t, f)=\frac{1+\left(d^{2}-d-2 t\right) f}{d^{2}+1-2 t} \tag{8}
\end{equation*}
$$

Furthermore, let

$$
f(d, t)= \begin{cases}\frac{1}{(d+1)} & , t \geq\binom{ d}{2} \tag{9}\\ r(d, t, f(d-1, t)) & , t<\binom{d}{2}\end{cases}
$$

Clearly, the function $f(\cdot, 0)$ coincides with the function $f(\cdot)$ from (2). Furthermore, we will show $f(d, t) \geq \frac{1}{d+1}$ for $d, t \in \mathbb{N}_{0}$. In view of Section 2 it makes sense to define $f(d, t)$ also for values of d
and t with $t>\binom{d}{2}$ which are graph-theoretically meaningless. Table 1 shows some specific values of f. The bold entries correspond to vertices whose neighbourhoods induce complete graphs. As soon as the neighbourhood of a vertex is not complete the Shearer-like recursion (8) sets in.

$f(d, t)$	$d=0$	$d=1$	$d=2$	$d=3$	$d=4$	$d=5$
$t=0$	$\mathbf{1}$	$\mathbf{1} / \mathbf{2}$	$2 / 5$	$17 / 50$	$127 / 425$	$593 / 2210$
$t=1$	1	$1 / 2$	$\mathbf{1} / \mathbf{3}$	$7 / 24$	$47 / 180$	$19 / 80$
$t=2$	1	$1 / 2$	$1 / 3$	$5 / 18$	$29 / 117$	$581 / 2574$
$t=3$	1	$1 / 2$	$1 / 3$	$\mathbf{1} / \mathbf{4}$	$5 / 22$	$23 / 110$
$t=4$	1	$1 / 2$	$1 / 3$	$1 / 4$	$2 / 9$	$11 / 54$
$t=5$	1	$1 / 2$	$1 / 3$	$1 / 4$	$3 / 14$	$11 / 56$
$t=6$	1	$1 / 2$	$1 / 3$	$1 / 4$	$\mathbf{1} / \mathbf{5}$	$13 / 70$
$t=7$	1	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$11 / 60$
$t=8$	1	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$9 / 50$
$t=9$	1	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$7 / 40$
$t=10$	1	$1 / 2$	$1 / 3$	$1 / 4$	$1 / 5$	$\mathbf{1} / \mathbf{6}$

Table $1 f(d, t)$ for $0 \leq d \leq 5$ and $0 \leq t \leq 10$.
The next lemma collects properties of f. For $t \in \mathbb{N}_{0}$, let $d_{t}=\max \left\{d \in \mathbb{N}_{0} \left\lvert\, t \geq\binom{ d}{2}\right.\right\}$. Note that (9) is equivalent with $f(d, t)=\frac{1}{d+1}$ for $d \leq d_{t}$ and $f(d, t)=r(d, t, f(d-1, t))$ for $d>d_{t}$.

Lemma 1 Let $d, t \in \mathbb{N}_{0}$.
(i) $f(d, t) \geq \frac{3(d+2)}{2\left(d^{2}+5 d+5+t\right)}$ for $d \geq d_{t}$.
(ii) $f(d, t) \geq \frac{1}{d+1}$.
(iii) $f(d, t) \geq f(d+1, t)$.
(iv) $f(d, t) \geq f(d, t+1)$.
(v) $f(d, t)-f(d+1, t) \geq f(d+1, t)-f(d+2, t)$.
(vi) $1-(d+2) f(d+1, t)+\left((d+1)^{2}-(d+1)-2 t\right)(f(d, t)-f(d+1, t)) \geq 0$ for $t \leq\binom{ d+1}{2}$.

Proof: (i) We prove this statement by induction on $d \geq d_{t}$. By (9), $f\left(d_{t}, t\right)=\frac{1}{d_{t}+1}$. Since $t \geq\binom{ d_{t}}{2}=\frac{1}{2} d_{t}\left(d_{t}-1\right)$, we obtain

$$
\begin{aligned}
\frac{3\left(d_{t}+2\right)}{2\left(d_{t}^{2}+5 d_{t}+5+t\right)} & \leq \frac{3\left(d_{t}+2\right)}{2\left(d_{t}^{2}+5 d_{t}+5+\frac{1}{2} d_{t}\left(d_{t}-1\right)\right)} \\
& =\frac{3\left(d_{t}+2\right)}{3\left(d_{t}+2\right)\left(d_{t}+1\right)+4}<\frac{1}{d_{t}+1}=f\left(d_{t}, t\right)
\end{aligned}
$$

which proves the base case of the induction.
If $d>d_{t}$, then $2 t<d(d-1)$ and, by $(9), f(d, t)=r(d, t, f(d-1, t))$. Since $r(d, t, x)$ is monotonously decreasing as a function of x, we obtain, by induction,

$$
\begin{aligned}
f(d, t)-\frac{3(d+2)}{2\left(d^{2}+5 d+5+t\right)} & =r(d, t, f(d-1, t))-\frac{3(d+2)}{2\left(d^{2}+5 d+5+t\right)} \\
& \geq r\left(d, t, \frac{3((d-1)+2)}{2\left((d-1)^{2}+5(d-1)+5+t\right)}\right)-\frac{3(d+2)}{2\left(d^{2}+5 d+5+t\right)} \\
& =\frac{d^{2}+2 d+2-2 t}{\left(d^{2}+5 d+5+t\right)\left(d^{3}+3 d+1+t\right)} \\
& \geq \frac{d^{2}+2 d+2-d(d-1)}{\left(d^{2}+5 d+5+t\right)\left(d^{3}+3 d+1+t\right)} \\
& =\frac{3 d+2}{\left(d^{2}+5 d+5+t\right)\left(d^{3}+3 d+1+t\right)}>0
\end{aligned}
$$

which completes the proof of (i).
(ii) We prove this statement by induction on d. If $d \leq d_{t}$, then, by $(9), f(d, t)=\frac{1}{d+1}$.

If $d>d_{t}$, then $t<\binom{d}{2}$ and, by induction,

$$
\begin{aligned}
f(d, t)-\frac{1}{d+1} & \stackrel{(9)}{=} r(d, t, f(d-1, t))-\frac{1}{d+1}=\frac{1+\left(d^{2}-d-2 t\right) f(d-1, t)}{d^{2}+1-2 t}-\frac{1}{d+1} \\
& \geq \frac{1+\left(d^{2}-d-2 t\right) \frac{1}{d}}{d^{2}+1-2 t}-\frac{1}{d+1}=\frac{d^{2}-d-2 t}{\left(d^{2}+1-2 t\right) d(d+1)} \geq 0
\end{aligned}
$$

which completes the proof of (ii).
(iii) If $d \leq d_{t}-1$, then $f(d, t)=\frac{1}{d+1}>\frac{1}{d+2}=f(d+1, t)$.

If $d \geq d_{t}$, then $t<\binom{d+1}{2}$ and

$$
f(d, t)-f(d+1, t) \stackrel{(9)}{=} f(d, t)-r(d+1, t, f(d, t)) \stackrel{(8)}{=} \frac{(d+2) f(d, t)-1}{(d+1)^{2}+1-2 t} \stackrel{(\mathrm{ii})}{\geq} 0
$$

which completes the proof of (iii).
(iv) We prove this statement by induction on d. If $d \leq d_{t}$, then $f(d, t) \stackrel{(9)}{=} f(d, t+1) \stackrel{(9)}{=} \frac{1}{d+1}$. Hence, we may assume that $d>d_{t}$ which implies $t<\binom{d}{2}$ and $f(d, t)=r(d, t, f(d-1, t))$. If $t+1<\binom{d}{2}$, then, by induction,

$$
\begin{aligned}
f(d, t)-f(d, t+1) & \stackrel{(9)}{=} r(d, t, f(d-1, t))-r(d, t+1, f(d-1, t+1)) \\
& =\frac{1+\left(d^{2}-d-2 t\right) f(d-1, t)}{d^{2}+1-2 t}-\frac{1+\left(d^{2}-d-2 t-2\right) f(d-1, t+1)}{d^{2}+1-2 t-2} \\
& \geq \frac{1+\left(d^{2}-d-2 t\right) f(d-1, t)}{d^{2}+1-2 t}-\frac{1+\left(d^{2}-d-2 t-2\right) f(d-1, t)}{d^{2}+1-2 t-2} \\
& =\frac{(2 d+2) f(d-1, t)-2}{\left(d^{2}+1-2 t\right)\left(d^{2}+1-2 t-2\right)} \stackrel{\text { (ii) }}{\geq} 0 .
\end{aligned}
$$

Hence, we may assume that $t+1=\binom{d}{2}$. This implies

$$
\begin{aligned}
f(d, t)-f(d, t+1) & \stackrel{(9)}{=} r(d, t, f(d-1, t))-\frac{1}{d+1}=r\left(d, t, \frac{1}{d}\right)-\frac{1}{d+1} \\
& =\frac{1+\left(d^{2}-d-2 t\right) \frac{1}{d}}{d^{2}+1-2 t}-\frac{1}{d+1}=\frac{d^{2}-d-2 t}{\left(d^{2}+1-2 t\right) d(d+1)} \geq 0
\end{aligned}
$$

which completes the proof of (iv).
(v) If $d \leq d_{t}-1$, then

$$
\begin{aligned}
& \quad(f(d, t)-f(d+1, t))-(f(d+1, t)-f(d+2, t)) \\
& \left.\stackrel{(9)}{=}\left(\frac{1}{d+1}-\frac{1}{d+2}\right)-\left(\frac{1}{d+2}-f(d+2, t)\right)\right)=f(d+2, t)-\frac{d}{(d+1)(d+2)} \\
& \stackrel{(\text { (ii) }}{\geq} \frac{1}{d+3}-\frac{d}{(d+1)(d+2)}=\frac{2}{(d+1)(d+2)(d+3)}>0 .
\end{aligned}
$$

If $d \geq d_{t}$, then

$$
\begin{array}{ll}
& (f(d, t)-f(d+1, t))-(f(d+1, t)-f(d+2, t)) \\
\stackrel{(9)}{=} & f(d, t)-2 r(d+1, t, f(d, t))+r(d+2, t, r(d+1, t, f(d, t))) .
\end{array}
$$

It is straightforward to verify that the last expression is non-negative if and only if $f(d, t) \geq$ $\frac{3(d+2)}{2\left(d^{2}+5 d+5+t\right)}$ which holds by (i) which completes the proof of (v).
(vi) It is straightforward to verify that the desired statement is equivalent to

$$
f(d+1, t) \leq r(d+1, t, f(d, t))
$$

for $t \leq\binom{ d+1}{2}$.
If $t<\binom{d+1}{2}$, this follows immediately from (9). Hence, we may assume that $t=\binom{d+1}{2}$. This implies

$$
\begin{aligned}
& r(d+1, t, f(d, t))-f(d+1, t) \\
= & r\left(d+1,\binom{d+1}{2}, f\left(d,\binom{d+1}{2}\right)\right)-f\left(d+1,\binom{d+1}{2}\right) \\
= & \frac{1+\left((d+1)^{2}-(d+1)-2\binom{d+1}{2}\right) \frac{1}{d+1}}{(d+1)^{2}+1-2\binom{d+1}{2}}-\frac{1}{d+2}=0
\end{aligned}
$$

which completes the proof of (vi).
Having collected numerous properties of f we can now state a joint generalization of (1) and (2).
Theorem 2 Let $T \in \mathbb{N}_{0}$. If G is a graph such that every vertex of G belongs to at most T triangles, then

$$
\alpha(G) \geq \sum_{u \in V} f\left(d_{G}(u), T\right)
$$

Proof: We proceed by induction on the order of G as in Section 2. By Lemma 1, the function $g: \mathbb{N}_{0}^{2} \rightarrow \mathbb{R}_{\geq 0}$ with $g(d, t)=f(d, T)$ has properties $\left(P_{1}\right),\left(P_{2}\right)$, and $\left(P_{3}\right)$. Therefore, we can argue exactly as in Section 2 until the point when (6) is established (with $g(d, t)=f(d, T)$ instead of $f(d, t))$. Also as shown in Section $2,\left(P_{3}\right)$ for g implies
$\sum_{u \in V} \sum_{v \in N_{u}}\left(d_{v}-1\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}-1, T\right)\right) \geq \sum_{u \in V} \sum_{v \in N_{u}}\left(d_{u}-1\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}-1, T\right)\right) .(10$
Starting with (6) we obtain

$$
\begin{aligned}
A & \geq \sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, T\right)+\left(\left(\sum_{v \in N_{u}}\left(d_{v}-1\right)\right)-2 t_{u}\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}, T\right)\right)\right) \\
& \stackrel{(10)}{\geq} \sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, T\right)+\left(\left(\sum_{v \in N_{u}}\left(d_{u}-1\right)\right)-2 t_{u}\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}, T\right)\right)\right) \\
& =\sum_{u \in V}\left(1-\left(d_{u}+1\right) f\left(d_{u}, T\right)+\left(d_{u}^{2}-d_{u}-2 t_{u}\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}, T\right)\right)\right)
\end{aligned}
$$

If $T>\binom{d_{u}}{2}$, then $t_{u} \leq\binom{ d_{u}}{2}$ and, by Lemma 1 ,

$$
1-\left(d_{u}+1\right) f\left(d_{u}, T\right)+\left(d_{u}^{2}-d_{u}-2 t_{u}\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}, T\right)\right) \geq 1-\left(d_{u}+1\right) f\left(d_{u}, T\right) \stackrel{(9)}{=} 0
$$

If $T \leq\binom{ d_{u}}{2}$, then $t_{u} \leq T$ and, by Lemma 1 ,

$$
\begin{aligned}
& 1-\left(d_{u}+1\right) f\left(d_{u}, T\right)+\left(d_{u}^{2}-d_{u}-2 t_{u}\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}, T\right)\right) \\
\geq & 1-\left(d_{u}+1\right) f\left(d_{u}, T\right)+\left(d_{u}^{2}-d_{u}-2 T\right)\left(f\left(d_{u}-1, T\right)-f\left(d_{u}, T\right)\right) \geq 0
\end{aligned}
$$

Altogether, we obtain $A \geq 0$ which completes the proof of the theorem.
Lemma 1 collected more properties than we actually needed for the proof of Theorem 2 . We hope that these are helpful to prove - rather than to disprove - the following conjecture.

Conjecture 3 If G is a graph, then $\alpha(G) \geq \sum_{u \in V} f\left(d_{G}(u), t_{G}(u)\right)$.

References

[1] M. Ajtai, P. Erdős, J. Komlos, and E. Szemeredi, On Turan's theorem for sparse graphs, Combinatorica 1 (1981), 313-317.
[2] M. Ajtai, J. Komlos, and E. Szemeredi, A note on Ramsey numbers, J. Comb. Theory, Ser. A 29 (1980), 354-360.
[3] M. Ajtai, J. Komlos, and E. Szemeredi, A dense infinite Sidon sequence, Eur. J. Comb. 2 (1981), 1-11.
[4] Y. Caro, New Results on the Independence Number, Technical Report, Tel-Aviv University, 1979.
[5] F. Göring, J. Harant, D. Rautenbach, and I. Schiermeyer, Locally Dense Independent Sets in Regular Graphs of Large Girth, In: Research Trends in Combinatorial Optimization, Springer Berlin Heidelberg, 2009, 163-183.
[6] J.R. Griggs, An upper bound on the Ramsey numbers $R(3, k)$, J. Comb. Theory, Ser. A 35 (1983), 145-153.
[7] J. Håstad, Clique is hard to approximate within $n^{1-\epsilon}$, in: Proceedings of 37th Annual Symposium on Foundations of Computer Science (FOCS), 1996, 627-636.
[8] J. Lauer and N. Wormald, Large independent sets in regular graphs of large girth, J. Comb. Theory, Ser. B 97 (2007), 999-1009.
[9] I. Schiermeyer, Approximating Maximum Independent Set in k-Clique-Free Graphs, in: Proceedings of Approximation Algorithms for Combinatorial Optimization (APPROX98), Lecture Notes in Computer Science 1444 (1998), 159-168.
[10] J.B. Shearer, A note on the independence number of triangle-free graphs, Discrete Math. 46 (1983), 83-87.
[11] J.B. Shearer, A note on the independence number of triangle-free graphs. II, J. Comb. Theory, Ser. B 53 (1991), 300-307.
[12] J.B. Shearer, On the independence number of sparse graphs, Random Struct. Algorithms $\mathbf{7}$ (1995), 269-271.
[13] V.K. Wei, A Lower Bound on the Stability Number of a Simple Graph, Technical memorandum, TM 81-11217-9, Bell laboratories, 1981.

