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Abstract

A recent result of Henning and Southey (A note on graphs with disjoint
dominating and total dominating set, Ars Comb. 89 (2008), 159–162) implies
that every connected graph of minimum degree at least three has a dominating
set D and a total dominating set T which are disjoint. We show that the
Petersen graph is the only such graph for which D ∪ T necessarily contains all
vertices of the graph.
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1 Introduction

We consider finite, simple, and undirected graphs G with vertex set V (G) and edge
set E(G). For a vertex u in G, the neighourhood is denoted by NG(u), the closed
neighourhood is denoted by NG[u] = NG(u) ∪ {u}, and the degree is denoted by
dG(u) = |NG(u)|. A set D of vertices of G is dominating if every vertex in V (G) \D
has a neighbour in D. Similarly, a set T of vertices of G is total dominating if every
vertex in V (G) has a neighbour in T [5, 6].

A simple yet fundamental observation made by Ore [13] is that every graph of
minimum degree at least one contains two disjoint dominating sets, i.e., the trivial
necessary minimum degree condition for the existence of two disjoint dominating sets
is also sufficient. In contrast to that, Zelinka [14, 15] observed that no minimum degree
condition is sufficient for the existence of three disjoint dominating sets or of two
disjoint total dominating sets. In [9] Henning and Southey proved the following result
which is somehow located between Ore’s positive and Zelinka’s negative observation.

Theorem 1 (Henning and Southey [9]) If G is a graph of minimum degree at
least 2 such that no component of G is a chordless cycle of length 5, then V (G) can
be partitioned into a dominating set D and a total dominating set T .

A characterization of graphs with disjoint dominating and total dominating sets is
given in [10]. Recently, several authors studied the cardinalities of pairs of disjoint
dominating sets in graph [2, 7, 8, 11, 12]. The context of this research motivates
the question for which graphs Theorem 1 is best-possible in the sense that the union
D ∪ T of the two sets necessarily contains all vertices of the graph G. Our following
main result gives a partial answer to this question.

Theorem 2 If G is a graph of minimum degree at least 3 with at least one component
different from the Petersen graph, then G contains a dominating set D and a total
dominating set T which are disjoint and satisfy |D|+ |T | < |V (G)|.

Clearly, if the domatic number [15] of a graph G is at least 2k, then, by definition,
G contains 2k disjoint dominating sets and hence also k disjoint total dominating sets.
Therefore, the results of Calkin et al. [1] and Feige et al. [3] imply that a sufficiently
large minimum degree and a sufficiently small maximum degree together imply the
existence of arbitrarily many disjoint (total) dominating sets.

The rest of the paper is devoted to the proof of Theorem 2.
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2 Proof of Theorem 2

A DT-pair of a graph G is a pair (D, T ) of disjoint sets of vertices of G such that D
is a dominating set and T is a total dominating set of G. A DT-pair (D, T ) in G is
exhaustive if |D| + |T | = |V (G)|. Thus a DT-pair (D, T ) in G is non-exhaustive if
|D| + |T | < |V (G)|. Note that Theorem 1 implies that every graph with minimum
degree at least 2 and with no component that is a chordless 5-cycle, has an exhaustive
DT-pair.
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Figure 1: The encircled vertices belong to D and the framed vertices belong to T .

Our first lemma collects some useful observations about the Petersen graph.

Lemma 3 The following properties hold for the Petersen graph.

(a) If G is the union of disjoint Petersen graphs, then every DT-pair in G is ex-
haustive.

(b) If G arises from the Petersen graph by adding an edge between two non-adjacent
vertices, then G has a non-exhaustive DT-pair.

(c) If G arises from the union of two disjoint Petersen graphs by adding an edge
between the two Petersen graphs, then G has a non-exhaustive DT-pair.

Proof: In order to reduce the number of cases which we have to consider, we will use
the known facts that the Petersen graph is 3-arc transitive, distance-transitive, and
vertex-transitive (see Sections 4.4 and 4.5 of [4]).
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Let P denote the Petersen graph where (see Figure 1(a))

V (P ) = {v1, v2, . . . , v10}
E(P ) = {v1v2, v2v3, v3v4, v4v5, v5v1}

∪ {v1v6, v2v7, v3v8, v4v9, v5v10}
∪ {v6v8, v8v10, v10v7, v7v9, v9v6}.

Let (D, T ) be an DT-pair of P . Since P is 3-arc transitive, we may assume, by
symmetry, that v2, v3 ∈ T and v1, v4 ∈ D. Since |NP (v5) ∩ T | ≥ 1, v10 ∈ T (see
Figure 1(b)). Suppose no vertex in {v7, v8} belongs to D ∪ T . Then, v5 ∈ T to
totally dominate v10, while {v6, v9} ⊂ D to dominate {v7, v8}. But then no vertex of
T totally dominates v6 or v9. Hence, at least one vertex in {v7, v8} belongs to D ∪ T .
We may assume, by symmetry, that v7 ∈ D ∪ T .
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Figure 2: The encircled vertices belong to D and the framed vertices belong to T .

First, we assume v7 ∈ D. Since |NP (v9) ∩ T | ≥ 1, v6 ∈ T . Since |NP [v8] ∩D| ≥ 1,
v8 ∈ D. Since |NP (v6) ∩ T | ≥ 1, v9 ∈ T . Since |NP (v10) ∩ T | ≥ 1, v5 ∈ T (see
Figure 2(a)). Now, |D|+ |T | = |V (P )|.

Next, we assume v7 ∈ T . Since |NP [v7] ∩D| ≥ 1, v9 ∈ D. Since |NP (v6) ∩ T | ≥ 1,
v8 ∈ T . Since |NP [v8] ∩ D| ≥ 1, v6 ∈ D. Since |NP [v10] ∩ D| ≥ 1, v5 ∈ D (see
Figure 2(a)). Again, |D|+ |T | = |V (P )|.

Since in both cases (D, T ) is exhaustive, the proof of (a) is complete.

Since the Petersen graph is distance-transitive, Figure 3(a) proves (b).

Finally, since the Petersen graph is vertex-transitive, Figure 3(b) proves (c). 2

The next lemma contains the core of our argument.
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Figure 3: The encircled vertices constitute a dominating set and the framed vertices
constitute a total dominating set.

Lemma 4 If G is a graph such that

(i) the minimum degree of G is at least 3,

(ii) G is not the union of disjoint Petersen graphs, and

(iii) the set of vertices of degree at least 4 is independent,

then G has a non-exhaustive DT-pair.

Proof: For sake of contradiction, we assume that G is a counterexample of minimum
order. Hence G satisfies condition (i), (ii) and (iii), but

By (i) and Theorem 1, G has a non-exhaustive DT-pair if and only if some compo-
nent of G has a non-exhaustive DT-pair. Hence, by the minimality of G, the graph
G is connected.

We establish a series of claims concerning G.

Claim A For u ∈ V (G), the subgraph G − {u} of G induced by V (G) \ {u} has no
C5-component.

Proof of Claim A: For contradiction, we assume that for some vertex u of G, the
graph G′ = G−{u} has at least one C5-component. Let V5 denote the set of vertices
of all C5-components of G′. By the minimum degree condition (i) in G, we note that
u is adjacent to every vertex of V5 in G. If V5 ∪ {u} = V (G), then letting v ∈ V5, we
have that (D, T ) = ({u}, V5 \{v})) is a non-exhaustive DT-pair of G, a contradiction.
Hence, V5 ∪ {u} 6= V (G). Let G′′ = G− ({u} ∪ V5). Then, G′′ has no C5-component
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and has minimum degree at least 2. Thus, by Theorem 1, G′′ has an exhaustive DT-
pair (D′′, T ′′). If v ∈ V5, then (D, T ) = (D′′∪{u}, T ′′∪ (V5 \{v})) is a non-exhaustive
DT-pair of G, a contradiction. 2

Claim B For a 5-cycle C in G, the graph G − V (C) either has a C5-component or
is of minimum degree less than 2.

Proof of Claim B: For contradiction, we assume that C : v1v2v3v4v5v1 is a 5-cycle in
G such that G′ = G − V (C) has minimum degree at least 2 and no C5-component.
By Theorem 1, G′ has an exhaustive DT-pair (D′, T ′). If a vertex in T ′ is adjacent
to a vertex of C, say to v1, then (D, T ) = (D′ ∪ {v2, v5}, T ′ ∪ {v3, v4}) is a non-
exhaustive DT-pair of G, a contradiction. Hence, by condition (i), every vertex of C
has a neighbour in D′. But then (D, T ) = (D′, T ′ ∪ {v1, v2, v3}) is a non-exhaustive
DT-pair of G, once again producing a contradiction. 2

Claim C G contains no 3-cycle.

Proof of Claim C: For contradiction, we assume that C : v1v2v3v1 is a 3-cycle in G.
First, we assume that there is a vertex v4 ∈ V (G) \ V (C) which is adjacent to at
least two vertices of C, say to v1 and to v2. By (iii), at least one of the vertices v1

and v2 has degree exactly 3, say v2. Now the graph G′ = G − {v1} has minimum
degree at least 2 and, by Claim A, has no C5-component. Thus, by Theorem 1, G′

has an exhaustive DT-pair (D′, T ′). Since dG′(v2) = 2, |D′ ∪ {v2, v3, v4}| > 0 and
|T ′ ∪ {v3, v4}| > 0. Thus (D, T ) = (D′, T ′) is a non-exhaustive DT-pair of G, a
contradiction. Hence, every vertex in V (G) \ V (C) is adjacent to at most one vertex
of C. Thus the graph G′ = G − V (C) has minimum degree at least 2. If G′ has a
C5-component G5, then G− V (G5) has no C5-component and is of minimum degree
at least 2 which contradicts Claim B. Hence, G′ has no C5-component. Applying
Theorem 1 to G′, the graph G′ has an exhaustive DT-pair (D′, T ′). If a vertex in T ′

is adjacent to a vertex of C, say to v1, then (D, T ) = (D′ ∪ {v3}, T ′ ∪ {v1}) is a non-
exhaustive DT-pair of G, a contradition. Hence, every vertex of C has a neighbour
in D′. But then (D, T ) = (D′, T ′ ∪ {v1, v2}) is a non-exhaustive DT-pair of G, once
again producing a contradiction. 2

Claim D G contains no K3,3 as a subgraph.

Proof of Claim D: For contradiction, we assume that G contains a K3,3-subgraph with
partite sets Vv = {v1, v2, v3} and Vw = {w1, w2, w3}. Note that, by Claim C, every
K3,3-subgraph of G is induced. By (iii), we may assume that all vertices in Vv have
degree exactly 3. Since K3,3 has a non-exhaustive DT-pair, we may assume that w1
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has degree more than 3. Now the graph G′ = G−{w1} is of minimum degree at least 2
and, by Claim A, has no C5-component. By Theorem 1, G′ has an exhaustive DT-pair
(D′, T ′). Since |NG′(v1)∩T ′| ≥ 1, |D′∩{w2, w3}| is either 0 or 1. If |D′∩{w2, w3}| = 0,
then {v1, v2, v3} ⊆ D′, {w2, w3} ⊂ T ′, and (D, T ) = ((D′ \ {v1, v2}) ∪ {w1}, T ′ ∪ {v2})
is a non-exhaustive DT-pair of G, a contradiction. Hence, |D′ ∩ {w2, w3}| = 1. But
then (D, T ) = ((D′ \ Vv) ∪ {v1}, (T ′ \ Vv) ∪ {v2}) is a non-exhaustive DT-pair of G,
once again producing a contradiction. 2

Claim E G contains no K3,3 − e as a subgraph.

Proof of Claim E: For contradiction, we assume that G contains a (K3,3−e)-subgraph,
i.e., there is a subset {v1, v2, v3, w1, w2, w3} of vertices in G such that {v1w1, v1w2, v1w3,
v2w1, v2w2, v2w3, v3w1, v3w2} ⊆ E(G) and v3w3 /∈ E(G). By Claim C, {v1, v2, v3} and
{w1, w2, w3} are independent sets.

If dG(v3) > 3 and dG(w3) > 3, then, by (iii), dG(v1) = dG(w1) = dG(v2) =
dG(w2) = 3. The graph G′ = G − {v1, v2, w1, w2} has minimum degree at least 2.
Since dG′(u) ≥ 3 for all u ∈ V (G′) \ {v3, w3}, G′ contains no C5-component. There-
fore, by Theorem 1, G′ has an exhaustive DT-pair (D′, T ′). If v3 ∈ D′, let (D, T ) =
(D′ ∪ {w1}, T ′ ∪ {v2, w2}). If v3 ∈ T ′, let (D, T ) = (D′ ∪ {v1, w1}, T ′ ∪ {w2}). In both
cases, (D, T ) is a non-exhaustive DT-pair of G, a contradiction. Hence, dG(v3) = 3
or dG(w3) = 3. By symmetry and (iii), we may assume that dG(v1) = dG(v2) =
dG(v3) = 3.

Suppose that dG(w3) > 3. If at least one vertex in {w1, w2} is of degree more
than 3, say w2, then G′ = G − {v1, v2, w1} has minimum degree at least 2. By
Claim C, at most two neighbours of w1 can belong to a possible C5-component of G′.
Since w2, w3, and the three neighbours of w1 are the only vertices which can have
degree exactly 2 in G′, G′ contains no C5-component. Thus, by Theorem 1, G′ has
an exhaustive DT-pair (D′, T ′). If {v3, w2} ⊂ D′, let (D, T ) = (D′, T ′ ∪ {v1, w1}). If
{v3, w2} ⊂ T ′, let (D, T ) = (D′ ∪ {v1, w1}, T ′). If v3 ∈ D′ and w2 ∈ T ′, let (D, T ) =
(D′ ∪ {w1}, T ′ ∪ {v1}). If v3 ∈ T ′ and w2 ∈ D′, let (D, T ) = (D′ ∪ {v1}, T ′ ∪ {w1}).
In all cases, (D, T ) is a non-exhaustive DT-pair of G, a contradiction. Hence,
dG(w1) = dG(w2) = 3. Thus, G′ = G − {v1, v2, v3, w1, w2} has minimum degree
at least 2. Let N(v3) = {w1, w2, v

′
3}. Since dG′(u) ≥ 3 for all u ∈ V (G′) \ {w3, v

′
3},

G′ contains no C5-component. Thus, by Theorem 1, G′ has an exhaustive DT-pair
(D′, T ′). Now, (D, T ) = (D′ ∪ {v1, w1}, T ′ ∪ {v2, w2}) is a non-exhaustive DT-pair of
G, a contradiction. Hence, dG(w3) = 3.

Suppose that at least one vertex in {w1, w2} is of degree more than 3, say w2. Then,
G′ = G − {v2, v3, w1} has minimum degree at least 2. Let N(v3) = {w1, w2, v

′
3} and

let w′
2 ∈ V (G) \ {v1, v2, v3} be a neighbour of w2. By Claim C, v′

3 6= w′
2.
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First, we assume that G′ contains a C5-component C. By Claim C, at most two
neighbours of w1 can belong to C. Since w2 and w3 are the only neighbours of v1

in G′, either |V (C) ∩ {w2, v1, w3}| = 0 or |V (C) ∩ {w2, v1, w3}| = 3. Since w2, w3,
v′

3, and the neighbours of w1 are the only vertices which can have degree exactly 2
in G′, we have that V (C) = {v1, v

′
3, w2, w

′
2, w3} implying that dG(v′

3) = dG(w′
2) = 3,

dG(w2) = 4, and {w1w
′
2, v

′
3w3, v

′
3w

′
2} ⊂ E(G). Thus the graph F shown in Figure 4

is a subgraph of G. We note that the degree of every vertex in the subgraph F ,
except possibly for the vertex w1, is the same as its degree in the graph G; that is,
dF (v) = dG(v) for all v ∈ V (F ) \ {w1}.
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Figure 4: Configuration in the proof of Claim E

If G = F , then (D, T ) = ({v1, w1, w
′
2}, {v2, v

′
3, w2}) is a non-exhaustive DT-pair of

G, a contradiction. Hence, G 6= F . We now consider the graph G′′ = G − V (F ).
Every vertex in G′′ has degree at least 3, except possibly for vertices in NG(w1)\V (F )
which have degree at least 2 in G′′. By Claim A, the graph G′′ has no C5-component.
Thus, by Theorem 1, G′′ has an exhaustive DT-pair (D′′, T ′′). Now, (D, T ) = (D′′ ∪
{v2, w2, w

′
2}, T ′′ ∪ {v3, v

′
3, w3}) is a non-exhaustive DT-pair of G, a contradiction. We

deduce, therefore, that G′ has no C5-component.

By Theorem 1, G′ has an exhaustive DT-pair (D′, T ′). If w2 ∈ T ′, let (D, T ) =
(D′ ∪ {w1}, T ′ ∪ {v2}). If {v1, w2} ⊂ D′, let (D, T ) = (D′, T ′ ∪ {v2, w1}). If w2 ∈ D′

and v1 ∈ T ′, let (D, T ) = (D′ ∪ {v2}, T ′ ∪ {w1}). In all cases, (D, T ) is a non-
exhaustive DT-pair of G, a contradiction. We deduce, therefore, that the vertices
v1, v2, v3, w1, w2, w3 are all of degree 3 in G.

Let N(v3) = {w1, w2, v
′
3}. We now consider the graph G′ obtained from G −

{v2, v3, w1} by adding the edge w2v
′
3. Then, G′ has minimum degree at least 2. Since

dG′(u) ≥ 3 for all u ∈ V (G′) \ {v1, w2, w3}, the graph G′ contains no C5-component.
Thus, by Theorem 1, G′ has an exhaustive DT-pair (D′, T ′).

If {v1, w2} ⊆ D′, then {w3, v
′
3} ⊆ T ′, and let (D, T ) = (D′ ∪ {v3}, T ′ ∪ {v2}). If

v1 ∈ D′ and w2 ∈ T ′, then v′
3 ∈ T ′ and let (D, T ) = (D′ ∪ {w1}, T ′ ∪ {v3}). If

v1 ∈ T ′ and w2 ∈ D′, then w3 ∈ T ′ and let (D, T ) = (D′ ∪ {v3}, T ′ ∪ {w1}). Finally,
if {v1, w2} ⊆ T ′, then {w3, v

′
3} ⊆ D′, and let (D, T ) = (D′ ∪ {v2}, T ′ ∪ {v3}). In all
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cases, (D, T ) is a non-exhaustive DT-pair of G, a contradiction which completes the
proof of the claim. 2

Claim F G contains no K2,3 as a subgraph.

Proof of Claim F: For contradiction, we assume that G contains a K2,3-subgraph, i.e.,
there are two vertices v1 and v2 that have ` ≥ 3 common neighbours w1, w2, . . . , w`.
By Claim C, {v1, v2} and {w1, w2, . . . , wl} are independent sets. We now consider the
graph G′ = G−{v1, v2, w1, w2, . . . , w`}. By Claims C, D and E, every vertex in V (G′)
is adjacent in G to at most one vertex in V (G)\V (G′). Hence, G′ has minimum degree
at least 2. By Claim B, G′ therefore has no C5-component. Hence, by Theorem 1, G′

has an exhaustive DT-pair (D′, T ′). Now, (D, T ) = (D′ ∪ {v1, w1}, T ′ ∪ {v2, w2}) is a
non-exhaustive DT-pair of G, a contradiction. 2

Claim G G contains no 4-cycle.

Proof of Claim G: For contradiction, we assume that C : v1v2v3v4v1 is a 4-cycle in
G. Let G′ = G − V (C). By Claim C and F, every vertex in V (G′) is adjacent
in G to at most one vertex in V (G) \ V (G′). Hence, G′ has minimum degree at
least 2. By Claim B, G′ therefore has no C5-component. Hence, by Theorem 1, G′

has an exhaustive DT-pair (D′, T ′). If a vertex in D′ is adjacent to a vertex of C, say
to v1, then (D, T ) = (D′ ∪ {v3}, T ′ ∪ {v1, v2}) is a non-exhaustive DT-pair of G, a
contradiction. Hence, no vertex in D′ is adjacent to a vertex of C ′. Thus, every vertex
of C has a neighbour in T ′. But then (D, T ) = (D′ ∪ {v1, v2}, T ′) is a non-exhaustive
DT-pair of G, a contradiction. 2

Claim H G contains no 5-cycle.

Proof of Claim H: For contradiction, we assume that C : v1v2v3v4v5v1 is a 5-cycle in
G. Let G′ = G − V (C). By Claim C and G, every vertex in V (G′) is adjacent in G
to at most one vertex in V (G)\V (G′). Hence, G′ has minimum degree at least 2. By
Claim B, G′ therefore has a C5-component C ′ : v6v8v10v7v9v6 and, again by Claim B,
V (G) = V (C) ∪ V (C ′). We may assume that v1v6 ∈ E(G). By (i), symmetry, and
Claims C and G, we may assume that v2v7 ∈ E(G) and v3v8 ∈ E(G). Now Claims C
and G imply v5v10 ∈ E(G), v2v7 ∈ E(G), and v4v9 ∈ E(G), i.e., G is the Petersen
graph, a contradiction. 2

We now return to our proof of Lemma 4. By Claims C, G, and H, the graph
G contains no 3-cycle, 4-cycle, or 5-cycle. Let P : v1v2v3v4 be a path in G and let
v′

1 ∈ V (G) \ {v1, v3} be a neighbour of v2. Let G′ = G − {v1, v2, v3, v4, v
′
1}. Since
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G has girth at least 6, the graph G′ has minimum degree at least 2 and contains no
C5-component. Hence, by Theorem 1, G′ has an exhaustive DT-pair (D′, T ′).

If a vertex in D′ is adjacent to a vertex in {v1, v
′
1}, say to v′

1, let (D, T ) = (D′ ∪
{v1, v4}, T ′∪{v2, v3}). If every vertex in {v1, v4, v

′
1} has a neighbour in T ′, let (D, T ) =

(D′ ∪ {v2, v3}, T ′ ∪ {v1, v4}). If every vertex of {v1, v
′
1} has a neighbour in T ′ and v4

has a neighbour in D′, then (D, T ) = (D′ ∪ {v2}, T ′ ∪ {v3, v4}). In all cases, (D, T )
is a non-exhaustive DT-pair of G, a contradiction which completes the proof of the
lemma. 2

With the help of Lemma 4, the proof of Theorem 2 follows readily. Recall the
statement of Theorem 2: If G is a graph of minimum degree at least 3 with at least
one component different from the Petersen graph, then G contains a dominating set
D and a total dominating set T which are disjoint and satisfy |D|+ |T | < |V (G)|.

Proof of Theorem 2: We prove the result by induction on the number of edges be-
tween vertices of degree at least 4. If there is no such edge, then the result follows
immediately from Lemma 4. Hence, we assume that e ∈ E(G) is such an edge. If e is
a bridge, then deleting e results in two components G1 and G2. If both of G1 and G2

are the Petersen graph, then the result follows from Lemma 3(c). If at least one of
G1 or G2 is not the Petersen graph, then the result follows by induction. Hence, we
may assume that e is no bridge. If G′ = G− e is the Petersen graph, then the result
follows from Lemma 3(b). If G′ is not the Petersen graph, then the result follows by
induction. This completes the proof of the theorem. 2
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